
Shared Feature Extraction
for Semi-supervised Image Classification∗

Yong Luo† , Dacheng Tao‡ , Bo Geng†, Chao Xu†, and Stephen Maybank§
†Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China

‡Faculty of Engineering and Information Technology, University of Technology, Sydney, Sydney, Australia
§Department of Computer Science and Information Systems, Birkbeck College, Malet Street, London, UK

{luoyong, gengbo, xuchao}@cis.pku.edu.cn, Dacheng.Tao@uts.edu.au, sjmaybank@dcs.bbk.ac.uk

ABSTRACT
Multi-task learning (MTL) plays an important role in image
analysis applications, e.g. image classification, face recogni-
tion and image annotation. That is because MTL can esti-
mate the latent shared subspace to represent the common
features given a set of images from different tasks. However,
the geometry of the data probability distribution is always
supported on an intrinsic image sub-manifold that is embed-
ded in a high dimensional Euclidean space. Therefore, it is
improper to directly apply MTL to multiclass image classi-
fication. In this paper, we propose a manifold regularized
MTL (MRMTL) algorithm to discover the latent shared sub-
space by treating the high-dimensional image space as a sub-
manifold embedded in an ambient space. We conduct exper-
iments on the PASCAL VOC’07 dataset with 20 classes and
the MIR dataset with 38 classes by comparing MRMTL with
conventional MTL and several representative image classi-
fication algorithms. The results suggest that MRMTL can
properly extract the common features for image representa-
tion and thus improve the generalization performance of the
image classification models.

Categories and Subject Descriptors
I.4.7 [Image Processing and Computer Vision]: Fea-
ture Measurement—feature representation; I.5.2 [Pattern
Recognition]: Design Methodology—pattern analysis

General Terms
Algorithm, Experimentation, Theory

Keywords
Image classification, manifold regularization, multi-task learn-
ing, semi-supervised

1. INTRODUCTION
In real image analysis applications, e.g. image classi-

fication and face recognition, labeling is time consuming
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while large amounts of unlabeled images are available. Semi-
supervised learning (SSL) can improve the generalization
ability of supervised learning by leverage of the unlabeled
samples under some circumstances [4, 3]. Particularly, in
semi-supervised image classification, we usually have to pre-
dict multiple labels and a typical method is to divide it
into multiple binary classification tasks [16]. The traditional
method is to learn each task separately. However, learning
all of these tasks simultaneously can be advantageous by uti-
lizing the multi-task learning (MTL) framework [1].

MTL is an approach to learn a task together with other
related tasks at the same time, using a shared representa-
tion. This can often lead to a better model for the main
task, because it allows the learner to use the commonality
among the tasks. MTL has been widely used in various im-
age analysis applications. In [5], it was applied to locating
doors and recognizing door types from image pixel level fea-
tures. Torralba et al. [13] applied MTL to object detection
by utilizing the common features shared by different object
classes. Since then, a lot of consequent results have been
obtained for face recognition and image annotation.

MTL makes sense in these applications because we usu-
ally have a large number of classes but a limited number of
the labeled training images from each class. By the use of
MTL, images from related tasks can be combined together
to jointly discover the shared features. These features are
useful for each particular task. Besides, it has proven that
the number of training samples required to train each task
decreases linearly with the increasing number of tasks [2].
Therefore, given a large number of image classification tasks,
it is feasible to obtain satisfied classification performance by
using a very small number of labeled samples from each task.

However, it is not advisable to directly apply MTL to
the high dimensional Euclidean space because images repre-
sented by a specific feature space, lie on a very low-dimensional
image sub-manifold embedded in the ambient space. In this
situation, a small amount of labeled samples cannot repre-
sent the true underlying data distribution. Thus the pre-
dictive function estimated with a risk minimization princi-
ple only using the labeled samples is not optimal. To solve
this problem for MTL based image classification, we pro-
pose to minimize the joint empirical risks (JER) in MTL
and approximate the sub-manifold together to obtain a ro-
bust model, which can smooth the predictive functions along
the sub-manifold. This is motivated by the manifold regu-
larization (MR) [3] framework. MR is a data-dependent
regularization that exploits the geometry of the probability
distribution. This geometry can be used to approximate the
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Figure 1: The framework of our proposed Manifold
Regularized Multi-Task Learning algorithm.

true underlying image sub-manifold. MR has widely applied
to many areas, e.g., image classification [7], image search
ranking [8, 9], query suggestion [17], and video annotation
[15, 14].

It is worthy emphasizing that the key in learning with
MR is constructing a data adjacency graph to encode the
low-dimensional sub-manifold. In single task learning, the
amount of data may be insufficient for estimating the true
underlying structure. The problem is lessened in MTL be-
cause the data used to construct the graph are from multiple
tasks.

Therefore, we propose manifold regularized MTL (MRMTL)
to discover the latent shared subspace of different tasks.
Given several visual representations for image, we aim to
learn a corresponding mapping by using MRMTL for each
of them. We first calculate the graph Laplacian of the whole
data set and conduct MRMTL to obtain the optimal trans-
formation. Subsequently, original features are mapped to
the low-dimensional shared subspace across labels by this
transformation. Finally, we calculate kernels in the orig-
inal features and cross-label features respectively and lin-
early combine the two kernels. We conduct extensive ex-
periments on the PASCAL VOC’07 dataset with 20 classes
[6] and the MIR dataset with 38 classes [11] by comparing
MRMTL with conventional MTL [1] and several representa-
tive semi-supervised image classification algorithms [4, 10].
The experimental results demonstrate the effectiveness of
the proposed MRMTL.

2. MANIFOLD REGULARIZED
MULTI-TASK LEARNING

MRMTL is a particular implementation of SSL. Fig.1
shows the diagram of MRMTL for image classification: Given
both labeled and unlabeled images, we first extract visual
features for image representation. A data adjacency graph
is then constructed by the use of all images from different
tasks to generate a manifold regularization term. Multiple
image classification tasks, e.g. ”whether it is a dog or not?”,
are created and we can then find an optimal feature map-
ping by minimizing JER of these predictors with MR.

2.1 Notations
We use N , M , D and P to denote the number of train-

ing images, the number of different kinds of visual features

for image representation, the data dimensionality, and the
number of labels, respectively. The subscripts l, u and lu
signify labeled, unlabeled, and labeled + unlabeled. The
data matrix and the label indicator matrix for the mth vi-
sual feature are denoted as Xm = [xm

1 , . . . ,xm
N ] ∈ R

D×N

and Y ∈ R
P×N , where xm

n ∈ R
D is the nth instance, and

Ypn = 1 if the pth label is assigned to the nth instance, and
−1 otherwise. The superscript m is omitted in our formula-
tion because we handle each kind of feature in the same way.

2.2 Multi-Task Learning with MR
Given a set of Nl labeled samples {(xn, yn)}Nl

n=1, yn ∈
{+1,−1} drawn from a probability distribution P and a set

of Nu unlabeled samples {xn}Nl+Nu
n=Nl+1 generated according

to the marginal distribution PX of P , the manifold regular-
ization framework is to estimate an unknown function f by
minimizing

argmin
f∈HK

1

Nl

Nl∑
n=1

L(xn, yn, f) + γA‖f‖2K + γI‖f‖2I , (1)

whereHK is an associated Reproducing Kernel Hilbert Space
(RKHS) and L is a prescribed loss function. ‖f‖2K penal-
izes the classifier complexities in the ambient space. ‖f‖2I is
a smoothness penalty corresponding to the probability dis-
tribution. Both γA and γI are trade-off parameters. Fol-
lowing [3], ‖f‖2I can be approximated by 1

(Nl+Nu)2
fTLf ,

where f = [f(x1), . . . , f(xNl+Nu)]
T , 1

(Nl+Nu)2
is the nor-

malizing coefficient and L is the graph Laplacian given by
L = D−W. Here, Wij is the edge weight, e.g., the heat ker-

nel weight Wij = e−‖xi−xj‖2/4t in the data adjacency graph
constructed by using k nearest neighbors and the diagonal
matrix D is given by Dii =

∑Nl+Nu
j=1 Wij .

The construction of the graph Laplacian needs large amounts
of data. Now we learn multiple tasks at the same time and
have enough data to construct a graph to approximate the
true underlying data manifold. Thus, the proposed manifold
regularized multi-task learning (MRMTL) can be written as:

argmin
{fp}∈HK

P∑
p=1

⎛
⎝ 1

Nlp

Nlp∑
n=1

L(xp
n, y

p
n, fp) + γA‖fp‖2K + γI‖fp‖2I

⎞
⎠ ,

(2)
where yp

n = Ypn.This formulation differs from the traditional
MTL framework in the added MR term, which is helpful for
learning with image features as illustrated in section 1.

In MTL, the predictive function for the pth task(label) is,

fp(x) = wT
p x+ vT

p Θx, (3)
where w ∈ R

D and v ∈ R
r are the weight vectors, Θ ∈ R

r×D

is the linear transformation parameterizing the latent shared
low-dimensional subspace, and r is the dimensionality of the
latent shared subspace. The transformation Θ is common
for all labels, and it has the orthogonality ΘΘT = I . We
simplify the general formulation in (2) by assuming that the
input data for each task are identical and we propose to
learn an optimal feature map Θ from the data in the orig-
inal feature space by minimizing the following regularized
empirical risk:

argmin
Θ

P∑
p=1

(
1

Nl

Nl∑
n=1

L(fp(xn), y
p
n) + α‖wp‖2

+β‖wp +ΘTvp‖2 + γI
(Nl +Nu)2

fTp Lfp
)
,

(4)

where fp = [fp(x1), . . . , fp(xNl+Nu)]
T , ‖wp‖2 is the regular-

izer used in MTL and ‖wp+ΘTvp‖2 controls the complexity
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of the models. Both α and β are trade-off parameters. Let
up = wp +ΘTvp, This problem can be reformulated equiv-
alently as

min
Θ

P∑
p=1

(
1

Nl

Nl∑
n=1

L(uT
p xn, y

p
n) + α‖up −ΘTvp‖2

+β‖up‖2 + γI
(Nl +Nu)2

fTp Lfp
)
,

s.t. ΘΘT = I.

(5)

where fp = [uT
p x1, . . . ,u

T
p xNl+Nu ]

T . We consider the least
squares loss function,

L(uT
p xn, y

p
n) = (uT

p xn − yp
n)

2.
Therefore, we can simplify (5) as:

min
Θ

1

Nl
‖XT

l U − Y T ‖2F + α‖U −ΘTV ‖2F
+ β‖U‖2F +

γI
(Nl +Nu)2

tr
(
(XT

luU)TL(XT
luU)

)
s.t. ΘΘT = I.

(6)

where ‖ · ‖F denotes the Frobenius norm of a matrix, U =
[u1, . . . ,uP ], and V = [v1, . . . ,vP ].

This is a convex optimization problem and we can get a
closed form solution. Fixing (Θ, U), we obtain the optimal V
by taking the derivative of the expression in (6) with respect
to V and setting it to be zero.

V ∗ = ΘU.
Similarly, substituting V ∗ = ΘU into (6) and fixing Θ, we
obtain the optimal U ,

U∗ =
1

Nl

(
M − αΘTΘ

)−1
XlY

T , (7)

where M is defined as:

M =
1

Nl
XlX

T
l + (α+ β)I +

γI
(Nl +Nu)2

XluLXT
lu. (8)

Finally, we can substitute the expression for (U∗, V ∗) into
(6) and obtain the optimal Θ. It is direct that this can be
done by solving the following trace maximization problem:

max
Θ

tr
((

ΘS1Θ
T
)−1

ΘS2Θ
T
)

s.t. ΘΘT = I,
(9)

where S1 and S2 are defined as:
S1 = I − αM−1 (10)

S2 = M−1XlY
TY XT

l M−1, (11)

The obtained Θ∗ can be used to induce a set of cross-
label features, i.e., Θ∗x. We use these features to construct
a visual kernel Kv−comn and combine it with the original
kernel Kv , i.e.,

Kv−new = λKv + (1− λ)Kv−comn, (12)
where λ ∈ [0, 1] is the combination parameter. The new
visual kernel Kv−new contains both the shared information
of different image classification tasks extracted by MRMTL
and also the discriminative information in the original fea-
tures. This kernel is further used for semi-supervised image
classification.

3. EXPERIMENTS
We evaluate our method on two data sets, the PASCAL

VOC’07 [6] and the MIR Flickr [11], which have been used in
[10]. There are around 10,000 images of 20 different object
categories in the PASCAL VOC’07 set and 25,000 images of
38 categories in the MIR Flickr set. The 15 different kinds of
visual representations as described in [10] are extracted. We
measure the performance using the average precision (AP)

criterion for each class and the mean AP (mAP) over all
classes. The number of labeled training examples is 100 (50
positive and 50 negative) in our experiments.

3.1 Extracting Shared Subspace
This set of experiments evaluates the effectiveness of MRMTL.

We compare it with two popular methods for extracting
shared subspace. The experiments are performed by the
use of features in the shared subspace for semi-supervised
image classification and the 15 different image representa-
tions are used for evaluation individually. The experimental
setup is summarized as follows:

• MRMTL: The regularization parameters α, β and γI
are tuned from the candidate set {10i|i = −4,−3, . . . , 3, 4}.
The parameters k and t used in computing the Laplacian
matrix are tuned from {1, 2, . . . , 10, 20, . . . , 100} and {10i|i =
2, 3, . . . , 9} respectively. The performance of the proposed
method is not sensitive to the dimensionality of the shared
subspace r as long as it is not too small. Hence, it is fixed
to 5× �(m− 1)/5�, where m is the number of labels.

• ML-LS: The multi-label formulation is presented in
[12]. The regularization parameters α and β are tuned from
the candidate set {10i|i = −4,−3, . . . , 3, 4}.

• ASO-SVM: The alternating structural optimization
(ASO) algorithm proposed in [1] with hinge loss. The regu-
larization parameter is tuned on the set {10i|i = −4,−3, . . . , 2, 3}.

The experimental results on the two data sets are pre-
sented in Figure 2. We observe that the proposed MRMTL
approach perform the best for 9 features in the VOC set and
7 features in the MIR set.

3.2 Kernel Combination
In this subsection we use the shared features extracted

with MRMTL to calculate a kernel and combine it with the
kernel obtained from the original features. We choose the
best combination parameter for combining the two kernels
with this set of experiments. For the 15 kinds of original
features, we average the distances between images based on
these descriptors and use it to compute an RBF kernel. For
the common features, we average the similarities which are
computed based on a linear kernel. We simply combine the
two kernels with varying λ to create the new kernel and ap-
ply it to classification, the results are shown in Figure 3.

The results indicate that common features (λ = 0) are
not as good as the original features (λ = 1) for classification
tasks on both PASCAL VOC’07 and MIR Flickr. However,
by properly combining common features and original fea-
tures, we can obtain significant performance improvement.
In particular, by setting λ = 0.8, we can obtain 13.7% im-
provement on the PASCAL VOC’07 dataset and 7.8% im-
provement on the MIR Flickr dataset compared to the use
of only original features.

3.3 Semi-supervised Image Classification with
the New Kernel

With the best combination parameter, we calculate the
new kernel described in (12) and use it for semi-supervised
image classification to further verify the effectiveness of MRMTL.
This set of experiments are based on the same setting as that
used in [10]. In which, some additional textual information
is used. We specifically compare the following methods:

• SVM: visual classifier learned on labeled examples.
• Co-training: learn a visual classifier and a textual clas-

sifier on the labeled data set, and bootstrap training ex-
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Figure 2: Performance in mAP on the two data sets (Left: PASCAL VOC’07; Right: MIR Flickr) for 15
kinds of features using 50 positive and 50 negative labeled examples for each class.
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Figure 3: Performance in mAP on the two data
sets (Left: PASCAL VOC’07; Right: MIR Flickr)
of combining the original kernel and common ker-
nel.

Table 1: Performance in mAP on the two data sets
for different learning methods.

PASCAL VOC’07 MIR Flickr

SVM 0.294 0.333
Co-training 0.323 0.351
MKL+LSR 0.366 0.367

MRMTL+CoTR 0.385 0.386

amples for each classifier based on the output of the other
classifier.

• MKL+LSR: the approach proposed in [10]. A multiple
kernel learning (MKL) classifier is learned on the labeled
examples firstly. Then a classifier (only using the visual
information) was obtained by the least squares regression
(LSR) on the MKL scores for all examples.

• MRMTL+CoTR: simply replace Kv with Kv−new in
the co-training setup.

The results of MKL+LSR, co-training and baseline SVM
presented in [10] are directly used here because we use the
same datasets and the same features. The experimental re-
sults shown in Table 1 show the superiority of the proposed
MRMTL for image classification. The individual APs of the
58 classes are not reported due to the limited page length.

4. CONCLUSION AND DISCUSSION
We present a novel manifold regularized multi-task learn-

ing (MRMTL) based algorithm for semi-supervised image
classification in this paper. In particular, the algorithm ex-
tracts the latent shared subspace among multiple tasks, in
which a feature mapping is computed to discover this sub-
space for each kind of visual feature. Afterward, we trans-
form the data into the shared subspace and a linear combi-
nation of the original features and the common features is
used to get a new visual kernel. Our experiments demon-
strate that 1) MRMTL outperforms popular algorithms for
extracting shared subspace on image classification tasks, 2)
it is effective to combine both the common features across
different tasks with the original visual features.
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