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Abstract— Localizing objects in cluttered backgrounds is
challenging under large-scale weakly supervised conditions. Due
to the cluttered image condition, objects usually have large
ambiguity with backgrounds. Besides, there is also a lack of
effective algorithm for large-scale weakly supervised localiza-
tion in cluttered backgrounds. However, backgrounds contain
useful latent information, e.g., the sky in the aeroplane class.
If this latent information can be learned, object-background
ambiguity can be largely reduced and background can be
suppressed effectively. In this paper, we propose the latent
category learning (LCL) in large-scale cluttered conditions.
LCL is an unsupervised learning method which requires only
image-level class labels. First, we use the latent semantic analysis
with semantic object representation to learn the latent categories,
which represent objects, object parts or backgrounds. Second, to
determine which category contains the target object, we propose
a category selection strategy by evaluating each category’s
discrimination. Finally, we propose the online LCL for use in
large-scale conditions. Evaluation on the challenging PASCAL
Visual Object Class (VOC) 2007 and the large-scale imagenet
large-scale visual recognition challenge 2013 detection data sets
shows that the method can improve the annotation precision by
10% over previous methods. More importantly, we achieve the
detection precision which outperforms previous results by a large
margin and can be competitive to the supervised deformable part
model 5.0 baseline on both data sets.

Index Terms— Weakly supervised learning, object localization,
latent semantic analysis, large-scale.

I. INTRODUCTION

BJECT localization is a fundamental problem in
computer vision. Most studies adopt a fully-supervised
approach, which requires manually annotating both object
categories and locations. However, the annotation of object
location, which is specified by a bounding box around the
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object of interest, is usually tedious, laborious and ambiguous,
especially in the large-scale localization task such as those
found in the ImageNet database. Therefore, learning to anno-
tate object locations automatically has great practical value,
which leads to the problem of weakly supervised localization.
Though the idea sounds attractive, this task is challenging
because objects usually appear in cluttered backgrounds, and
there is also a lack of effective algorithm for large-scale
weakly supervised localization. In this paper, we focus on the
large-scale weakly supervised localization in cluttered images.

In recent years, many studies on weakly supervised
localization have been proposed and most of them adopt a
similar framework, as shown in Fig. 1(a). Firstly, region
proposals are used to extract candidate detection regions,
which are represented by some feature such as the histogram
of gradients or bag-of-words. Then, the object regions (correct
localizations) are selected from these candidate regions by
some region mining strategy, e.g., exhaustive search [1], [2],
multiple  instance learning  [3]-[5], inter-intra-class
modeling [3], [6]-[9] and topic model [10], [11]. These strate-
gies have achieved promising results when objects occupy
a large portion of the image [12]. However, on the
highly cluttered and large-scale conditions such as the
PASCAL Visual Object Class (VOC) challenge [13]
and the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [14], weakly supervised methods are far from being
competitive with supervised methods [15], and an effective
algorithm for large-scale weakly supervised localization is
required [16], [17].

In cluttered conditions, objects may not be salient and
usually have large ambiguity with backgrounds. Besides, in
the weakly supervised task, only image-level class labels
are available, e.g., the image contains the class of aeroplane
in Fig. 1(a). However, a large quantity of candidate detection
regions have large background area. With such little super-
vision, discovering object regions (correct localizations)
with large object-background ambiguity is very challenging,
e.g., the localization in Fig. 1(a) contains too much background
and it is a wrong localization.

Though we only know the image-level class label, there is a
vast area of background regions to be explored. Is it possible
to explore the background to reduce the object-background
ambiguity? Backgrounds contain some latent information, e.g.,
there is also sky, grass and mountain in the image of Fig. 1(a).
This latent information can be very beneficial because if we
can learn these latent categories, object-background ambiguity
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The framework of the proposed latent category learning (LCL) and most previous studies for weakly supervised object localization. (a) The framework

of most previous studies. (b) The framework of the proposed latent category learning (LCL).

can be largely reduced to suppress the background area in the
candidate regions. For example in Fig. 1(b), the regions
containing too much sky, grass and mountain can be
suppressed effectively to obtain correct localizations.

Due to the unknown label of background regions, learning
these latent categories is an unsupervised learning problem.
In recent years, methods have been developed in finding latent
categories in object-centered conditions. These categories can
represent objects, object parts, backgrounds and the relations
between objects and object parts [10], [16], [18]-[22].
However, in highly cluttered conditions, these methods are
challenged by high object-background ambiguity. Inspired by
them, we learn the latent categories in cluttered
backgrounds.

In this paper, we propose the latent category learning (LCL)
for large-scale weakly supervised object localization. The
framework of the LCL is shown in Fig. 1(b). There are
three main differences from previous studies:

1) Category Learning: Is it possible to learn meaningful
latent categories in backgrounds? We show that the typical
unsupervised semantic analysis can successfully learn the
latent categories to represent objects, object parts and back-
grounds, as shown in Fig. 1(b).

2) Category Selection: After learning these categories,
which category contains the target object class? We propose a
category selection method by evaluating the discrimination of
each category and select the most discriminative one. In this
paper, we denote by “class” the given image-level object class
and by “category” the latent category in an object class.

3) Online Learning: We also propose online latent category
learning (online-LCL) in this paper. We show that the category
learning and category selection can be easily modified into
online algorithms, which are more appropriate in practical

applications and can be used in the large-scale weakly super-
vised localization effectively.

In the evaluation, we use the challenging PASCAL
VOC 2007 database [13] and the large-scale ILSVRC 2013
detection competition. Both databases have large image vari-
ations and cluttered backgrounds. We use the complete
dataset with only image-level class labels for fair compari-
son with the supervised method. On PASCAL VOC 2007,
results show that the proposed method obtains an annotation
accuracy of 48%, which is 10% higher than the previous
results [3], [8], [11]. More importantly, it achieves the
detection performance of 31.6%, which outperforms previous
results [8], [9] by 10% and can be competitive to the super-
vised deformable part model 5.0 baseline 33.7% [23]. On the
large-scale ILSVRC 2013 detection competition, the online
LCL yields the mAP of 6.0%, which is competitive to the
DPM 5.0 baseline 8.8%.

There are three contributions in this paper:

« We propose to discover the latent categories in cluttered

backgrounds to reduce the object-background ambiguity.
The method can effectively suppress the background area
to enhance object localization.

« We achieve detection performance competitive with the
supervised deformable part model 5.0. To our best
knowledge, this is the first time the weakly supervised
method can be competitive to the supervised approaches
in cluttered conditions.

« We propose the online latent category learning to make
our method applicable to large-scale localization tasks.
The method can largely reduce the manual effort in
annotating large-scale image datasets.

The rest of this paper is organized as follows. In Sec.II,

we first review the related studies on weakly supervised
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object localization. Then, we present the proposed method
in Sec.IIl and its online algorithm in Sec.IV. To evaluate
the method, we give detailed experimental results in Sec.V.
Finally, Sec.VI summarizes the paper.

II. RELATED WORK

In recent years, many studies have been proposed in weakly
supervised localization, e.g., the exhaustive search [1], [2],
[6], [24], multiple instance learning [3]-[5], [25], [26], inter-
intra-class modeling [7]-[9], [27] and topic model [10], [11],
[28]-[30]. Most of them adopt a similar framework, which
has three main steps: (1) Region Extraction: candidate regions
are extracted for object detection in each image; (2) Region
Representation: each candidate region is represented by a
feature vector with semantic meaning; (3) Region Mining:
object regions (correct localizations) are discovered among the
candidate regions by region mining strategies. Though these
methods achieve promising results on object-centered images,
they do not work well in cluttered backgrounds because of
large object-background ambiguity. More importantly, with the
rapid increase in the amount of image data, there is still a
lack of effective algorithms for large-scale weakly supervised
object localization. In this part, we first review the main studies
based on the above three steps, then we present some studies
on large-scale weakly supervised object localization.

A. Region Extraction

In [1] and [2], Pandy ef al. and Nguyen et al. extract dense
image regions in an initial bounding box as candidate regions.
However, the size and shape of these regions are fixed, which
makes it difficult to take account of large object variations.
As a result, not enough object regions are generated.
To improve the candidate regions, many proposals for
extracting more reliable detection regions based on
object saliency and image segmentation have been put
forward [15], [31]-[36]. Among these methods, the one
popularly used in many weakly supervised localization
methods [3], [7], [8] is the one proposed by Alexe et al. [37],
who present a generic objectness measure by combining mul-
tiple image cues in a Bayesian framework. [3], [7], [8], [37].
Though high recalls have been obtained, the Maximum
Average Best Overlap (MABO) [38], which measures the
overlap between the candidate regions and the ground truth
bounding box, is still low. A recent segmentation based region
proposal, named Selective Search [38], can generate candidate
regions with better quality for hierarchical segmentation and
grouping strategies [38]-[40]. In addition, it yields a much
higher MABO with only the comparable number of regions.
In this paper, we use the selective search in region extraction.

B. Region Representation

In [1], each candidate region is represented by the histogram
of oriented gradients (HOG) descriptor [15]. With additional
viewpoint annotation, promising results are obtained on the
subset of the PASCAL VOC 2007 challenge [13]. However,
this gradient based low-level descriptor is sensitive to cluttered
backgrounds and large object-background ambiguity will exist.
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Therefore, many studies use higher level object representation,
for example the Bag-of-Words (BoW) is popularly used for its
mid-level object representation [3], [7]-[9], [41], [42]. Due to
the feature clustering in BoW, it can effectively remove noise,
while the feature encoding and pooling can suppress the back-
ground response [41]-[47]. Furthermore, some researchers
combine the multiple low-level feature representation and the
mid-level BoW for better discrimination [7]. In recent years,
with the great progress in theoretical achievements and parallel
computing, the deep neural networks have achieved great suc-
cess in many large-scale visual tasks [48]-[50]. In particular,
the Convolutional Neural Network (CNN), which has achieved
great success in the large-scale object recognition, can generate
highly semantic object representation [39], [51]. In this paper,
we use the CNN for region representation.

C. Region Mining

In exhaustive search, a detector classifier is applied to
each candidate region and the one with the highest score is
considered as the probable object region [1], [2]. However,
the number of regions is often large, which reduces the
efficiency of the exhaustive search. To improve the efficiency
and discover more object regions, multiple instance learning
considers inter-class relations to reduce object-background
ambiguity by organizing the candidate regions as positive and
negative bags [2]-[5]. Then, classification on these bags gives
the object regions. To further suppress the background area
and improve the quality of the object regions, researchers
model intra-class relations to improve the similarity of the
regions of within an object class [7]-[9], [27]. Though these
methods have yield some improvements, they only consider
the target objects but neglect the backgrounds, which result in
large object-background ambiguity. To reduce the ambiguity,
Shi et al. [11] propose to model objects and backgrounds
in a joint Bayesian topic model, which yields considerable
improvements in the annotation accuracy. Inspired by their
work, we realize that backgrounds contain useful latent
categories, which can represent objects, object parts or back-
grounds. These latent categories can be beneficial to reduce
the object-background ambiguity and suppress the background
area. Given only the image-level class label, learning latent
categories from backgrounds is an unsupervised learning
problem. Some related studies have attempted to learn these
categories from large quantities of images in object-centered
conditions [10], [16], [18]-[22]. Motivated by their studies, in
this paper, we propose to learn the latent categories in cluttered
conditions.

D. Large-Scale Weakly Supervised Localization

In recent years, several studies have
the weakly supervised localization in large-scale
conditions [11], [16]-[18]. Shi et al. [11] propose the
Bayesian joint topic model which can be learned with a
mixture of weakly labelled and unlabelled images, allowing
the large volume of unlabelled images on the Internet to be
exploited for learning [11]. To learn more object categories,
Chen et al [16] propose the Never Ending Image

explored
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Learner (NEIL), which continuously learns and updates
the object categories and locations from Internet images.
They have achieved impressive results that the NEIL system
can successfully learn objects, scenes, attributes and the
relations between objects. However, starting the system
requires a large set of seed images which are annotated
with both object categories and locations. To reduce the
supervision, Divvala et al. [17] propose to learn the visual
classes in a weakly supervised way, and object detectors are
learned from internet images given only object categories.
However, these studies mainly focus on object-centered image
conditions, in which objects usually occupy a large portion
of the image. In this paper, we deal with large-scale weakly
supervised localization in cluttered backgrounds.

III. LATENT CATEGORY LEARNING

In this section, we present the offline latent category
learning (LCL). We first introduce the extraction of the seman-
tic candidate regions. Then we elaborate how to learn the latent
categories, and discover object regions by category selection.
Finally, we give a short summary and analyze the influence
of different modeling and parameter choices. In this paper,
we refer to object regions as correct localizations.

A. Region Extraction

Region proposal is an important step for generating
candidate regions for object locations. It reduces the number
of regions, thus making the learning more efficient. In this
paper, we use a recent segmentation based region proposal
named Selective Search [38], which uses multiple low-level
cues, hierarchical segmentation and various grouping strate-
gies to generate regions in which objects are likely to be
found [39], [40]. Compared to other proposals [37], it is
reported to have a higher Maximum Average Best
Overlap (MABO) [38] and recall but only with a comparable
number of regions [38]. The selective search is category
independent, thus it can find the possible locations of all
objects. Fig. 3(b) shows some extracted regions on the training
set of the PASCAL VOC 2007 database. It is observed that
although objects vary a lot in size, illumination and occlusion
in cluttered backgrounds, selective search can always extract
reliable regions.

After generating the candidate regions, the next step
is to construct feature representation for them. In this
paper, we use Convolutional Neural Network (CNN)
to represent the regions. CNN has made a great break-
through in many object recognition tasks [40], [51]. It can
construct semantic object representation for its deep hierarchi-
cal structure. As demonstrated in [40], the classification results
on ImageNet [14] can generalize well to the detection task in
PASCAL VOC challenge. We train a CNN classification model
on the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) 2012. With the same setup to [40], which uses
a CNN architecture with five convolutional layers and three
fully-connected layers, we represent each candidate region by
the CNN output from the fc6 layer of the classification model.
The fc6 layer is the first fully-connected layer and it contains
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Fig. 2. An illustration of the graphical model of the probabilistic Latent

Semantic Analysis (pLSA) [10].

4096 neurons. Therefore, the feature representation of each
region has the dimension of 4096.

B. Category Learning

With the candidate regions extracted, in this part, we learn
the latent categories from them. Due to the unknown object
class label of these regions, learning the latent category
is an unsupervised learning problem. Popular methods for
unsupervised learning include k-means, probabilistic Latent
Semantic Analysis (pLSA) [52], [53] and Latent Dirichlet
Allocation (LDA) [54], [55]. pLSA and LDA are more
powerful than k-means, while pLSA is more efficient than
LDA. In this paper, we use the typical pLSA for latent category
learning.

We use positive images in an object class for category
learning. Suppose we have N candidate regions in positive
images, and the CNN representation of each region is dj;.
As introduced in Sec.IlI-A, d; is obtained from the fc6 layer
and has a dimension of 4096. In document analysis, the
pLSA usually takes the histogram of occurrence frequency on
visual words as input, while the CNN region representation
satisfies this histogram input for two reasons. Firstly, due to
the Rectified Linear Units in the deep network [40], all the
region representation is non-negative. Secondly, we consider
each neuron in the fc6 layer as a visual word, and the CNN
representation is the occurrence confidence on these words.
Due to the high accuracy [37] of the extracted regions and
high semantics of CNN representation, these neurons (words)
can represent high-level visual patterns. More importantly, the
larger confidence leads to the larger occurrence probability of a
pattern. If a hard threshold function (d; >T I;else 0) is used on
the CNN representation, it will turn into the 0,1 value, thus the
representation is the same to the histogram of occurrence fre-
quency on the visual patterns; while if the threshold function
is not used, the CNN representation is not the strict frequency
but the soft version. Therefore, this CNN region representation
can fit well in the framework of topic modeling.

We denote each word (neuron) as w;, thus the occurrence
frequency of region d; on w; is the i-th dimension of d;.
In addition, there is a hidden topic variable z; associated with
all the visual words. We treat each topic as a latent category
in an object class. The pLSA optimizes the joint probability
P (w,-,d j,zk), which has the form of the graphical model
shown in Fig. 2 [10]. Marginalizing over the latent category
2 determines the conditional probability P (w;|d;):

K
P (wildj) = > P (wld;) P (wilz), ()
k=1

where P (zk|d j) is the probability of category zx occurring in
region d;. Based on this term, each region has K probabilities
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for K latent categories. We consider that if region d; has the
maximum probability on category zx, then d; only belongs
to zx. In this way, all candidate regions are divided into K sets,
each of which contains the regions with a similar semantic
meaning. Fig. 3(c) shows some learned latent categories of
the aeroplane class. These categories have strong semantic
meanings, e.g., category | represents the aeroplane, category 2
is the aerofoil, while others contain backgrounds such as sky
and grass. The latent categories in each object class are learned
separately to avoid a large memory cost.

C. Category Selection

After learning the latent categories, a problem is to decide
which one contains the object regions of the target object
class? In this part, we propose a category selection strategy
to discover the object regions. The idea is that the latent
categories have different semantic meanings, thus they have
different discrimination to the target object class. For example

in Fig. 3(c), category 1 is more discriminative for describing
the aeroplane than others. We exploit the different discrim-
ination to find out the correct category. To evaluate the
discrimination, it is observed that in each latent category,
the regions of positive and negative images have different
occurrence frequencies on all the categories. For example, in
category 1, regions of positive images have a high occurrence
frequency on aeroplane but much lower frequency on others,
while it is the opposite for the regions of negative images,
as shown in Fig. 3(d). Combined with the image-level class
label, we select the category with the frequency which best
differentiates the target object class and backgrounds.
The detailed implementations are as follows.

Fig. 3 is used for an illustration. To construct the frequency
for each category, we first have to select the regions which
can represent the category. We train a selection model to
select them. For any target category (category 1), we
consider the regions in it as positive regions, while the negative
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regions consist of two parts: the ones in other categories
(category 2-4) and the ones from negative images (negative).
Therefore, a selection model of the target category can be
trained (category 1), and the top 7 scored regions in each
positive and negative image are selected. Secondly, we observe
that the occurrence frequencies of the 7 selected regions
is the BoW representation on all the categories, as shown
in Fig. 3(d). Based on these regions, we construct the BoW
image representation for each positive and negative image.
Finally, with the BoW representation, a classification model of
the target latent category (category 1) is trained on the training
set with the image-level class label, and the discrimination is
evaluated by the classification performance on the validation
set. By evaluating all categories, the one with the highest
classification precision is selected, and its corresponding top T'
regions in positive images constitute the positive training set.
Fig. 3(d) shows the selection process and the positive training
set on the aeroplane class.

In constructing the BoW representation, we use three typical
steps: (1) Codebook Generation. In our method, we quantify
each latent category by averaging the regions in it. Let
Z = [z1,...,2x]T € RM*K denote the codebook with
K categories. We use the average to quantify the category
for two reasons: one is that the regions in a category look
very similar. From the viewpoint of clustering, it is reasonable
to use the center; another is that the regions in the correct
category overlap heavily with the target object, thus averaging
them is beneficial to suppress the background influence.
(2) Feature Encoding. In each image, suppose the T selected
regions are denoted as [dy, ... ,dt]T e WMXT | we encode
each region by the Super Vector Coding [46]:

M dim.
—
0,...,0 , di—gz, 0,...,0
—_——— —_———
(j—1)*M dim. (K—j)«M dim. | - 2)

s.t. zj = argmin ||dj — zk ||,
i
(3) Feature Pooling. After the encoding, average pooling [46]
is used on the encoding of all the T regions to construct the
BoW image representation, as shown in Fig. 3(d).

D. Algorithm Pipeline

In this part, as a short summary of the proposed idea, we
give the pseudo-code of the whole algorithm in Alg.1. The
pipeline summarizes the algorithm from initialization, training
and testing. First, in the initialization, we set some parameters
(the number of latent categories K and top selected regions 7T'),
pre-train a CNN classification model and generate CNN repre-
sentation for the candidate regions in all training images. Then,
in the training phase, we learn K latent categories by pLSA
for each individual class, and use a BoW selection strategy to
select the best category based on the classification performance
on the validation set. With the best category selected, the final
object detector is learned for each class. Finally, in the testing
phase, we generate CNN representation for all the regions in
test images, and the learned object detectors are applied on
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Algorithm 1 The Pipeline of Latent Category Learning

Initilization:

: Set the number of object classes C';

: Set the number of latent categories K;

: Set the number of the top selected region T';

. Pre-train a CNN classification model on ILSVRC 2012;

: Extract candidate regions by selective search for all training images;
: Generate representation d; by CNN with fc6 layer for all regions;
aining:

Fousrwo—

7: forc=1,...,C do

8: Learn K latent categories with pLSA: zq, ..., zK;

9: fork=1,..,K do

10: Learn a selection model for z: regions in zy as positive samples,
the ones in other topics as negative samples;

11: Apply the selection model to select the top 7" regions in each
positive and negative image of class c;

12: Use the T regions to generate the BoW representation for each
positive and negative image of class c;

13: Learn a classification model based on the BoW representation with
the classification label of class c;

14: Apply the classification model on the validation set to get classifi-
cation performance;

15: end for

16: Select the best topic z* which yields the highest classification perfor-
mance on the validation set;

17: Use z*’s corresponding top T regions in positive images as positive
samples;

18: Train the final object detector for class c;

19: end for

Testing:

20: Extract the candidate regions by selective search for all test images;

21: Generate representation dj by CNN with fc6 layer for all regions;

22: Apply all the learned object detectors on all the candidate regions;

23: After processing NMS with the threshold of 0.5, preserve the regions

whose score> —1;

the test regions to evaluate localization performance for each
object class.

This category selection is efficient for two reasons. (1) Both
the selection and classification models are trained by the
stochastic dual coordinate ascent algorithm [56], which can
handle millions of samples efficently; (2) The number of the
categories (K) and the top regions (7)) is usually small,
e.g., K is around 30 and T is set to be 10, thus constructing
the BoW image representation is fast. All the experiments are
implemented on several computer servers with 24 cores and
128G memory, and the whole selection for an object class
takes about only 1 hour.

E. Modeling and Parameter Influence

As can be seen from Alg.1, the proposed method has
three important factors: category learning, category selection
and their parameters (K and 7). In fact, there are many
choices in modeling and selecting them, e.g., K-means
and pLSA in category learning. These different choices
will affect differently on the final quality of the model.
In the following, we give some analysis to the difference.
The experimental evaluation of the analysis will be given
in Sec.V-E and Sec.V-F.

1) Category Learning: This step can be understood as
clustering, and any clustering methods can be used, but only
with the image-level class label. Here we consider two types
of clustering methods, one is the typical method such as
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K-means and Gaussian Mixture Model (GMM), and the other
one is the topic model such as pLSA and Latent Dirichlet
Allocation (LDA). In cluttered conditions, there is large object-
background ambiguity. For the typical methods, this ambiguity
will result in synonymous and polysemous latent categories,
e.g., there may be two categories for the whole aeroplane
regions and the aerofoil may also appear in the boat class. As a
result, the target category will not be discriminative enough,
which will lead to the failure of category selection. However,
the topic model can combine these ambiguous clusters to
generate highly semantic topics, which are more discriminative
to represent the target object class.

2) Category Selection: This step selects the category which
contains clean target objects. Due to the unknown object
location in the training set, the only way for selection is to
use the image-level class label. The basic idea is to train a
classification model for each category and test it on the
validation set. Then, the category with the highest classifi-
cation performance is selected as the target one. Here we
compare three possible selection methods:

e Selection Model as Classification Model: In training
the selection model, we observe that there is the case
many positive samples coming from a few images. This
unbalanced distribution in the positive set will hurt the
performance badly. Besides, the target latent category
may also contain many backgrounds regions because of
the large object-background ambiguity, which will reduce
the discrimination of the model.

o Final Object Detector as Classification Model: In testing
the classification model on each validation image, we
cannot guarantee the region with the highest classification
score is the correct localization, e.g., aerofoil may be
detected by the model of aeroplane. Therefore, the ambi-
guity between similar latent categories such as aeroplane
and aerofoil is difficult to deal with.

e BoW Based Model as Classification Model: Based on
our observation, most of the top 7T regions are correct
localizations. Instead of considering the top 1 in testing,
BoW considers the top T to obtain an average prediction,
which can reduce the ambiguity influence.

3) Hyper-Parameters: The number of latent categories K
and the top region T are two important parameters. We use the
best K and T by parameter selection. For K, if it is too small,
the target category will contain many background regions, then
the category will not be clean enough to train a good model;
if K is too large, the object regions will be split into multiple
categories, which will also hurt the model. For T, if it is too
small, we cannot guarantee the top 7 regions are absolutely
correct, thus several wrong localizations will hurt the model
badly; while if T is too large, there will be many background
regions which reduces the discrimination.

IV. ONLINE ALGORITHM

In Sec.Ill, we have introduced the offline latent category
learning. As the big data becoming important, a question
arises: “Can it be used in the large-scale condition such as
the ImageNet?” In this section, we first analyze the challenges
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TABLE I
THE CHANGES OF THE PIPELINE IN THE LARGE-SCALE CONDITION

Category Learning Model Training

Offline pLSA Liblinear

Online Online K-means Stochastic Gradient Descent (SGD)

of the offline learning in large-scale conditions, then we give
an online algorithm for latent category learning.

Large-scale conditions have many challenges such as the
large diversity of object classes, large number of object classes
and large number of images. Among these factors, the large
number of images is the most important factor for two main
concerns: (1) In the offline category learning, we use all the
regions of positive images in an object class, and we load all
of them into the memory. However, on large-scale conditions,
there is not enough memory to store all the regions. (2) In the
offline training of the selection and classification models, due
to the same reason, there is no way to train such models in an
offline way. Therefore, two challenges in the offline method is
the large memory cost in category learning and model training.

Based on these two limitations, we propose to replace the
category learning and model training by online algorithms,
which operate data in batches in limited memory. For category
learning, there are many available methods such as the online
k-means, online pLSA and online LDA [55]. We prefer to
use the online k-means which has higher efficiency than the
others. In training the selection and classification models, the
Stochastic Gradient Descent (SGD) [57] is preferred for its
high efficiency and comparable performance to the offline
training. We summarize the difference of the pipeline for the
online-LCL algorithm in Table I.

V. EXPERIMENTAL EVALUATION

In this section, we give the experimental evaluation of the
proposed method. We evaluate the method on the challenging
PASCAL VOC 2007 dataset and the large-scale ILSVRC 2013
detetion competition. We first give the detailed settings, then
we present the main results.

A. Experimental Settings

1) Datasets: We use two popular datasets for evaluation:
PASCAL VOC 2007 dataset and ILSVRC 2013 detec-
tion competition. The PASCAL VOC 2007 dataset contains
9963 images, which are divided into three subsets: 2501 for
training, 2510 for validation and 4952 for testing. There are
20 object classes, and due to cluttered backgrounds and large
object variations, this dataset is very challenging. The
ILSVRC 2013 detection dataset contains 464278 images,
which are also divided into three subsets: 404005 for training,
20121 for validation and 40152 for testing. There are
200 object classes with large object variations and diversity,
which make object detection more difficult. In both cases, we
use the complete dataset with only image-level class labels for
fair comparison with supervised approaches.
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TABLE II
THE COMPARISON OF ANNOTATION ACCURACY BETWEEN THE PROPOSED METHOD AND PREVIOUS STUDIES ON PASCAL VOC 2007 TRAINVAL SET

Method | plane bike bird boat bottle bus car cat chair cow |
Joint Learning [2] 30.7 16.5 23 14.9 49 29.6 26.5 353 72 234
MIL-SVM [60] 37.8 17.7 26.7 13.8 4.9 34.4 337 46.6 54 29.8
Drift Detect [8] 45.8 21.8 30.9 20.4 53 37.6 40.8 51.6 7 29.8
MIL-Negative [3] 424 46.5 18.2 8.8 29 40.9 73.2 44.8 54 29.8
Transfer Learning [61] 54.7 227 337 24.5 4.6 339 425 57 7.3 39.1
Beyasian Topic [11] 67.3 544 343 17.8 1.3 46.6 60.7 68.9 2.5 324
Multifold MIL [26] 56.6 58.3 28.4 20.7 6.8 54.9 69.1 20.8 9.2 50.5
LCL-kmeans 74.9 61.7 49.6 13.5 17.0 574 733 44.0 27.5 70.0
LCL-pLSA 80.1 63.9 51.5 14.9 21.0 55.7 74.2 435 26.2 534
Method | table dog horse mbike person plant sheep sofa train tv | Accuracy
Joint Learning [2] 20.5 321 24.4 33.1 17.2 12.2 20.8 28.8 40.6 7 224
MIL-SVM [60] 14.5 32.8 34.8 41.6 19.9 11.4 25 23.6 452 8.6 254
Drift Detect [8] 27.5 413 41.8 473 24.1 12.2 28.1 32.8 48.7 9.4 30.2
MIL-Negative [3] 14.5 32.8 34.8 41.6 19.9 11.4 25 23.6 452 8.6 30.4
Transfer Learning [61] 241 433 413 51.5 253 13.3 28 29.5 54.6 11.8 32.1
Beyasian Topic [11] 16.2 58.9 51.5 64.6 18.2 3.1 20.9 347 63.4 5.9 36.2
Multifold MIL [26] 10.2 29.0 58.0 64.9 36.7 18.7 56.5 132 54.9 59.4 38.8
LCL-kmeans 16.3 56.3 553 69.5 13.6 40.0 60.3 46.2 45.5 61.9 47.7
LCL-pLSA 16.3 56.7 583 69.5 14.1 38.3 58.8 472 49.1 60.9 48.5

2) Region Extraction: In extracting the region proposals
by selective search, we use the source code released by
Uijlings et al. [38]. The “fast” option is used for high efficiency
and the minimum width of the regions is 20. About
2000 candidate regions are generated for each image. Then,
to represent the regions with CNN, we train a CNN model on
the ILSVRC 2012 dataset with five convolutional layers and
three fully-connected layers, which is the same architecture
as in [41] and [52]. We do not use any fine-tuning in the
experiments. All the regions are warped to the same size
of 224 x 224 and represented by the fc6 layer with the
dimension of 4096.

3) Category Learning: For each object class, the latent
categories are learned separately and all the regions from
positive images in the class are used for learning. On the
PASCAL VOC 2007 dataset, we use the pLSA to learn the
latent categories, and the number of categories (K) is deter-
mined by the highest classification precision on the validation
set based on different K. In fact, we observe that the best K
is around 30 for most object classes. Therefore, on the large-
scale ILSVRC 2013 detection dataset, we fix K to be 30 and
use the online k-means to improve efficiency. We will give the
selection of K in Sec.V-F.

4) Category Selection: One parameter in category selection
is the number of the top scored regions (7'), which influence
the quality of the positive training set. We observe that the best
performance is achieved when T is around 10, thus we set T
to be 10 on both datasets. Besides, in constructing the BoW
image representation, we quantify each latent category by the
average representation of the regions in it, and the super-vector
coding [46] and average pooling [41], [42] are used to generate
the BoW representation.

5) Training and FEvaluation: On PASCAL VOC 2007,
we use the Liblinear SVM to train all the models, which
include the selection model, the classification model and
the final object detector. The Stochastic Dual Coordinate

Ascent (SDCA) algorithm [56] in VLFeat [60] is used for
its high efficiency in handling millions of samples. On the
ILSVRC 2013 detection competition, due to the memory
and efficiency problem, all these models are trained by the
Stochastic Gradient Descent (SGD) algorithm [57]. In both
cases, the penalty term of the classifier is determined by cross-
validation. In the testing phase, we first use the trained object
detector to select the regions with the score larger than —1,
then the Non Maximum Suppression (NMS) [15] with the
threshold of 0.5 is used to obtain the final localizations.
We report the annotation precision on the trainval set and the
mean average detection precision on the validation/testing set.

B. Annotation Results

Table II shows the annotation accuracy of the proposed LCL
and the previous studies on the trainval set. The accuracy
is measured by the percentage of training images in which
an instance is correctly localized according to the PASCAL
criterion, which requires the overlap of larger than 0.5 between
the object region and the ground truth. We also use k-means
in category learning as a baseline for comparison with pLSA.
It is observed that LCL yields an annotation accuracy
of 48.5%, which outperforms the previous best result by 10%.
LCL improves most classes, and the improvement is quite
promising on some difficult ones, e.g., 18% on chair and 22%
on plant. Besides, LCL-pLSA outperforms LCL-kmeans by
a small margin, which shows that pLSA is slightly better
in learning latent category, but it is much better than
LCL-kmeans in the detection results, as shown below
in Sec. V-C. Fig. 4 shows some successful and failed difficult
localizations by LCL on the trainval set. Although objects
vary a lot in size, occlusion and illumination in cluttered
backgrounds, LCL correctly localizes most difficult samples.

Though LCL shows promising improvements, it fails on
some classes such as boat and table. Based on our obser-
vation, there are two main reasons for this: (1) Too much
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Fig. 4. Some successful and failed localizations on the VOC 2007 trainval set. The last column of each class shows the failed localizations.

TABLE III
THE COMPARISON OF DETECTION mAP BETWEEN THE PROPOSED METHOD AND PREVIOUS STUDIES ON PASCAL VOC 2007 TEST SET

Method | plane bike bird boat bottle bus car cat chair cow |
Drift-Detect [8] 134 44.0 3.1 3.1 0.0 31.2 439 7.1 0.1 9.3
Object-Centric [9] - - - - - - - - - -
Multifold MIL [26] 35.8 40.6 8.1 7.6 3.1 359 41.8 16.8 1.4 23.0
Latent SVM [27] 27.6 41.9 19.7 9.1 10.4 35.8 39.1 33.6 0.6 20.9
LCL-kmeans 41.5 29.7 24.9 12.0 10.7 30.3 40.9 31.8 10.5 21.8
LCL-pLSA 48.8 41.0 23.6 12.1 11.1 42.7 40.9 355 11.1 36.6
DPM 5.0 [15] 332 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1
CNN Supervise [41] 61.8 62.0 38.8 35.7 29.4 52.5 61.9 539 22.6 49.7
Method | table dog horse mbike person plant sheep sofa train tv | mAP
Drift-Detect [8] 9.9 1.5 29.4 383 4.6 0.1 04 3.8 342 0.0 13.9
Object-Centric [9 - - - - - - - - - - 15.0
Multifold MIL [26] 4.9 14.1 31.9 41.9 19.3 11.1 27.6 12.1 31.0 40.6 224
Latent SVM [27] 10.0 27.7 29.4 39.2 9.1 19.3 20.5 17.1 35.6 7.1 22.7
LCL-kmeans | 154 294 243 37.8 19.1 14.7 33.1 24.1 36.2 43.0 | 26.6
LCL-pLSA 18.4 353 34.8 51.3 17.2 17.4 26.8 32.8 35.1 45.6 30.9
DPM 5.0 [15 26.7 12.7 58.1 48.2 432 12.0 21.1 36.1 46.0 43.5 33.7
CNN Supervise [41 40.5 48.8 49.9 57.3 44.5 28.5 50.4 40.2 543 61.2 47.6

object variation. For example in boat, the size and appearance
vary too much. Some images have small sailboats while some
have large ships, which makes it difficult to learn meaningful
latent categories under the limited number of positive images.
(2) Similar co-occurrent classes. For example the table, it
always co-exists with chairs. They look very similar in most
cases, e.g., both the table and chair have a flat area with several
legs, which makes it difficult to learn two different latent
categories. Therefore, under the cases of too much variation
and similar co-occurrent classes, it is challenging for LCL to
generate good localizations.

C. Detection Results

Table III shows the detection mean average precision (mAP)
of the proposed LCL, the previous studies and the supervised
approaches on the PASCAL VOC 2007 test set. It is observed
that LCL-pLSA yields a detection mAP of 30.9%, which
improves the previous best result by 8% and improves most
classes by a large margin, e.g., 21% on aeroplane, 13% on
cow, 10% on motorbike and 15% on sofa. We also make a

breakthrough on the classes which are almost zero in previous
results, e.g., the improvement is about 11% on chair. More
importantly, compared to the supervised approach, the 30.9%
obtained by LCL-pLSA can be competitive to the deformable
part model 5.0 released baseline 33.7%. The precision on
most classes is comparable to DPM 5.0, and some classes
show better precision, e.g., the improvement is about 15% on
aeroplane, 12% on bird, cat and cow, and 23% on dog. This
result is very encouraging because without the tedious and
ambiguous annotation of object locations, the weakly super-
vised localization yields the comparable detection precision to
the supervised methods in cluttered image conditions. Some
successful and failed difficult detections on the test set are
shown in Fig. 5, in which LCL correctly localizes most objects
under large variations of size, occlusion and illumination.
Though LCL has achieved comparable performance
to DPM 5.0, the precision on some classes is relatively low,
e.g., bicycle, car, horse and person. We observe that for the
classes which DPM beats LCL, most of them are the classes
of rigid objects, e.g., bicycle, boat, bottle, chair and table.
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Some successful and failed localizations on the VOC 2007 test set. The last column of each class shows the failed localizations.

TABLE IV
THE DETECTION mAP OF THE PROPOSED LCL BY INCORPORATING OBJECT STRUCTURE AND INTER-CLASS RELATION

Method | plane bike bird boat bottle bus car cat chair cow |
Drift-Detect [8] | 13.4 44.0 3.1 3.1 0.0 31.2 439 7.1 0.1 93 |
LCL-pLSA 48.8 41.0 23.6 12.1 11.1 427 40.9 35.5 11.1 36.6
LCL+DPM 30.2 46.9 10.4 4.6 11.1 47.0 449 14.7 5.6 174
LCL+Context 48.9 423 26.1 11.3 11.9 413 40.9 34.7 10.8 34.7
Method | table dog horse mbike person plant sheep sofa train tv | mAP
Drift-Detect [8] | 9.9 1.5 29.4 38.3 4.6 0.1 0.4 3.8 34.2 0 | 139
LCL-pLSA 18.4 353 34.8 51.3 17.2 17.4 26.8 32.8 35.1 45.6 30.9
LCL+DPM 4.6 15.0 38.6 41.8 13.9 10.6 19.3 31.8 16.3 379 23.1
LCL+Context 18.8 34.4 354 52.7 19.1 17.4 359 333 34.8 46.5 31.6
Under this condition, object structures provide good three components on the classes of bicycle and horse. The top

representations because rigid objects do not change much.
Combined with the HOG representation, the DPM achieves
better results.

D. DPM and Context Embedding

To incorporate object structure and inter-class relations, we
consider DPM and context in LCL for further enhancement.
In DPM, we use the LCL annotations as ground truth, and
the same setup to [15] is used, i.e., 8 object parts and 3 object
components. In the context, similar to the contextual operation
in [15], we concatenate the region score, region location
and the detection score of each class to the CNN region
representation, thus the dimension of the feature vector for
each candidate region is 4096 + 25 = 4121.

Table. IV shows the detection mAP of LCL by considering
DPM and context in the framework. It is observed that the
LCL+DPM obtains a mAP of 23.1%, which is 9% higher
than the Drift-Detect [8] which also trains DPM. However,
compared to the LCL-pLSA baseline, it decreases by 7% due
to the inaccurate annotations of LCL, and the precision on
most classes decreases a lot. But we see some promising
improvements in detecting rigid objects, e.g., the improvement
over LCL-pLSA is about 6% in bicycle, 5% on bus and car,
and 4% in horse. Fig. 6 shows the detection model with

two components describe the side views of the objects based
on the different size, and the bottom component is more like
the frontal or the rear view. These results show that object
structures can be beneficial to represent rigid objects.

We see that by considering inter-class relations in LCL,
performance can be further improved. LCL+Context achieves
the mAP of 31.6%, which outperforms the LCL-pLSA
baseline by 0.7%. The improvements on some classes are
promising, e.g., 9% on sheep, 3% on bird and 2% on person,
but this improvement is too small. The reason may be that
the detection results are not accurate, i.e., the locations and
scores of the detections are not accurate enough to provide
meaningful co-occurrence information. As a result, this will
hurt the detection precision, e.g., the precision decreases
about 1 ~ 2% on boat, bus, cow and dog.

E. Modeling Influence

In this part, we evaluate the influence of different modeling
choices in category learning and selection.

In category learning, we evaluate two methods: K-means
and pLSA. Table.V shows their Maximum Average Best
Overlap (MABO) [40] with ground truth on the PASCAL VOC
2007 training set. It is observed that pLSA yields a 5% higher
mean MABO over k-means, and the improvement on some
classes is quite impressive, e.g., 11% on car, 23% on table
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Fig. 6.
(a) Bicycle. (b) Horse.

The detection model trained on the LCL localizations on the PASCAL VOC 2007 trainval set. Each model is trained with three components.

TABLE V
THE MAXIMUM AVERAGE BEST OVERLAP (MABO) [40] WITH GROUND TRUTH ON THE PASCAL VOC 2007 TRAINING SET BY K-MEANS AND pLSA

Method | plane bike bird boat bottle bus car cat chair cow |
K-means ‘ 71.2 61.15 54.52 50.81 4343 71.55 58.24 78.48 50.68 67.45 ‘
pLSA 72.09 70.97 58.65 50.94 47.17 76.94 69.84 79.43 45.57 69.83
Selective Search | 85.63 80.13 78.86 76.89 67.70 83.64 79.22 86.65 78.78 80.02 |
Method | table dog horse mbike person plant sheep sofa train tv | mean MABO
K-means ‘ 55.31 76.96 64.33 71.10 46.92 35.03 48.57 50.57 71.16 60.31 ‘ 59.38
pLSA 78.50 80.08 73.84 79.34 50.92 48.70 48.37 57.48 71.08 66.44 64.80
Selective Search | 83.32 84.32 79.30 81.60 73.97 72.14 79.42 86.74 82.36 8520 | 80.30
e e S

Cls mAP
Cls mAP

Fig. 7. The three category selection methods on the
Their number of latent categories is set to be 20.

and 9% on horse. In addition, compared to the MABO given
by selective search, the pLSA does not lose too much object
regions. On some classes such as the dog and motorbike, it can
preserve most object regions, e.g., there is only a 2% difference
of MABO on dog. Although there are some lost in category
learning, the selection model will recall some object regions in
the top selected T regions. These results imply that the latent
category generated by pLSA contain more object regions than
the one by K-means, which demonstrates that the topic model
is more powerful in learning semantic categories.

In category selection, we evaluate three methods for the
classification model: selection model, final object detector and
BoW based model. Fig. 7(a-c) show the category selection on

aeroplane class. (a) Selection Model; (b) Final Object Detector; (c) BoW based Selection Model.

the aeroplane class by these three methods respectively. The
number of latent categories K is set to be 20, and the Cls-mAP
denotes the classification performance by the classification
model on the validation set. It can be observed that for the
selection model, the best Cls-mAP is much lower than the
other two. Though the category selection is correct, but there is
background influence and unbalanced distribution of positive
samples in training the selection model. For the final object
detector and BoW based model, they also give the correct
selection and they have a similar and much higher Cls-mAP.
However, we observe that the highest Cls-mAP does not have
a large margin over the ones of other categories, e.g., the
13th category also has a high precision. The reason is that
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TABLE VI
THE PARAMETER INFLUENCE ON THE BICYCLE CLASS: THE NUMBER OF LATENT CATEGORIES K AND THE NUMBER OF TOP SELECTED REGIONS T

The number of latent categories K ‘

The number of top selected regions 7'

K 20 30 40 50 60 ‘ T 5 10 20 30 40 50
Cls-mAP 66.7 67.6 65.2 68.4 69.6 Cls-mAP 65.3 69.6 68.5 68.4 67.9 67.3
MABO 57.2 68.2 67.3 62.2 70.0 Det-mAP 39.40 48.85 44.24 45.52 45.26 43.32
50
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Fig. 8.

from the viewpoint of classification, the categories such as
aerofoil and sky also contribute a lot to the aeroplane class.
In spite of the small margin, we can guarantee that the best
category always has the highest classification performance.
As a result, we prefer to use the final object detector and
BoW based selection model in category selection.

F. Parameter Influence

In this part, we evaluate the parameter influence in category
learning and selection. In category learning, the number of
latent categories K is an important factor. Table.VI shows
the highest Cls-mAP and MABO of the bicycle class under
different K. We initially set K to be 20 ~ 60, then we use
the above BoW based selection method to obtain the most
discriminative category for each K. Finally, K with the highest
Cls-mAP is used. We see the K = 60 is the best, which
yields the improvement of 1.2% on Cls-mAP and 1.8% on
MABO over the other values of K. We also test K on other
classes, in which K= 30 yields the best performance for most
classes. If K is too small, the discriminative category will
contain many background regions; while if K is too large,
object regions will be assigned to different latent categories
which may not be discriminative to the target object class.

In category selection, the important parameter is the number
of the top selected regions 7. Table.VI shows the Cls-mAP
on the validation set and Detection mAP (Det-mAP) on the
test set of the bicycle class under different 7. It is observed
that 7 = 10 obtains the Cls-mAP of 69.6 and the Det-mAP
of 48.85, which is the best among all the test values and has a

The Average Precision (AP) of the deformable part model 5.0 and online LCL on the validation set of the ImageNet 2013 detection competition.

large improvement over the other values of 7. One observation
is that the result of 7 =5 is not that good. This is because if
T is too small, it cannot be guaranteed that the top T regions
are absolutely correct, thus several wrong localizations will
hurt the model badly. However, if T is too large, there will be
many background regions which reduces the discrimination,
e.g., the mAP of T > 10 begins to decrease.

G. Online-LCL Results

In this part, we validate the online LCL on the
large-scale ImageNet 2013 detection competition. Based on
the experiments on PASCAL VOC 2007, we observe that most
classes yield the best performance when K is around 30 and
T is about 10, thus we fix them to be 30 and 10. In the
evaluation, we compare the DPM 5.0 baseline and online LCL
on the validation set. The Average Precision (AP) of these
two methods on the 200 object classes is shown in Fig. 8.
The online LCL gives a mAP of 6.0% on all these classes.
Given the fact the online-LCL does not select the best K for
each class as did in PASCAL VOC 2007, this result can be
competitive with the DPM 5.0 baseline. In addition, among the
200 object classes, the online-LCL yields a higher precision
on 91 classes, which is encouraging in handling large-scale
situation. Some classes improves DPM by a large margin, and
11 classes have an improvement over 10%, e.g., 27% on the
82th class (hamburger), 25% on the 78th class (guacamole)
and 19% on the 129th class (pizza).

However, the results of online LCL on some classes are
much lower than the DPM 5.0 baseline, and there is also a
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3% difference between the online-LCL and DPM 5.0.
Based on our observation, there are two main reasons:

« Online k-means is not as powerful as pLSA. As discussed
before, pLSA can generate more semantic category by
reducing the synonymous and polysemous categories in
k-means. This is shown in Table.IIl and Table.V, in
which pLSA yields an large improvement of Det-mAP
and preserves much more object regions after category
learning. In addition, the online k-means, which operates
data in batches, is not robust enough in clustering. Due to
the limited batch size and large image variations, online-
kmeans is more easily affected by image noise and the
clustering centers are more easily shifted to some data
which is not discriminative.

o The fixed number of latent categories is not flexible
to generate semantic categories. As demonstrated
in Sec.V-F, the different K will cause a large difference.
Given the fixed K, we observe that in some object classes,
the object regions may be assigned to multiple latent
categories; while there is also the case that the category
containing most object regions has many background
regions. Therefore, the fixed K cannot always give dis-
criminative latent categories, and how to determine the
best K for each class is a challenging problem for using
LCL in large-scale applications.

VI. CONCLUSION

In this paper, we have proposed the latent category
learning (LCL) for weakly supervised object localization.
We first use a segmentation based region proposal to generate
semantic candidate regions, each of which is represented by
the Convolutional Neural Network trained on ILSVRC 2012.
Then, based on the large number of candidate regions, the
probabilistic Latent Semantic Analysis (pLSA) is used to learn
the latent categories, from which the category containing target
object class is selected by evaluating each latent category’s
discrimination. Evaluation on the challenging PASCAL VOC
2007 dataset and the large-scale ILSVRC 2013 detection
competition shows encouraging results achieved by LCL, with
state-of-the-art annotation and detection performance among
the weakly supervised localization methods. More importantly,
the results are competitive with the supervised deformable part
model 5.0 released baseline. In the future, we will design a
category learning algorithm which automatically determine the
number of latent categories for use in large-scale conditions.
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