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The appearance model is an important issue in the visual tracking community. Most subspace-based
appearance models focus on the time correlation between the image observations of the object, but the
spatial layout information of the object is ignored. This paper proposes a robust appearance model for
visual tracking which effectively combines the spatial and temporal eigen-spaces of the object in a
tensor reconstruction way. In order to capture the variations in object appearance, an incremental
updating strategy is developed to both update the eigen-space and mean of the object. Experimental
results demonstrate that, compared with the state-of-the-art appearance models in the tracking
literature, the proposed appearance model is more robust and effective.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Visual tracking is an important research topic in the computer
vision community, because it is the foundation for high level
visual tasks such as motion analysis and behavior understanding.
Recent years have witnessed a great advance in the literature, e.g.
snakes model [1], condensation [2], mean shift [3], appearance
model [4], and the probabilistic data association filter [5].

Generally speaking, most of the tracking algorithms address
two major issues: the tracking framework and the appearance
model of the object. For visual tracking, handling appearance
variations of an object is a fundamental and challenging task.
Consequently, effectively modeling such appearance variations
plays a critical role in visual tracking.

Image patch [6], which takes the set of pixels in the target
region as the model representation, is a direct way to model the
target, but it loses the discriminative information that is implicit
inside the layout of the target. The color histogram [3,7] provides
global statistical information about the target region which is
robust to noise, but it has two major problems: (1) the histogram
is very sensitive to illumination changes; (2) the relative positions
of the pixels in the image are ignored. A consequence of (2) is that
trackers based on color histograms are prone to lose track if the
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object is near to other objects with a similar appearance. In [2],
curves or splines are used to represent the apparent boundary of
the object, and Condensation algorithm is developed for contour-
based tracking. Due to the simplistic representation scheme, which
is confined to the apparent boundary, the algorithm is sensitive to
image noise, leading to tracking failures in cluttered backgrounds.
Stauffer et al. [8] employ a Gaussian mixture model (GMM) to
represent and recover the appearance changes in consecutive
frames. Jepson et al. [4] develop a more elaborate Gaussian mixture
model which consists of three components S,W,L, where S compo-
nent models temporally stable images, W component models the
two-frame variations, and L component models data outliers, for
example those caused by occlusion. An online EM algorithm is
employed to explicitly model appearance changes during tracking.
Later, Zhou et al. [9] replace the component L with a component F,
which is a fixed template of the target to prevent the tracker from
drifting away from the target. This appearance-based adaptive
model is embedded into a particle filter to achieve a robust visual
tracking. Wang et al. [10] present an adaptive appearance model
based on a mixture of Gaussians model in a joint spatial-color
space (referred to as SMOG). SMOG captures rich spatial layout and
color information. However, these GMM-based appearance models
consider each pixel independently and with the same level of
confidence, which is not reasonable in practice.

Recently, the subspace learning-based appearance models
have received more and more attention because of the following
merits: (1) constant subspace assumption is more reasonable
than constant brightness assumption, so it is more robust to
model drifting; (2) it is easy to learn the subspace of the object;
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(3) it possess low computation and storage resources. For exam-
ple, in [11], a view-based eigenbasis representation of the object
is learned off-line, and applied to form a tracking algorithm which
matches successive views of the object. However, it is very
difficult to collect training samples that cover all possible viewing
conditions. Therefore, this algorithm is only feasible under those
conditions for which training data has been obtained. Later, some
researchers try to update the object subspace in the tracking
process to capture the changes of the appearance. The pioneering
work on applying the incremental subspace learning to tracking is
by Lim et al. [12], where they extend the SKL (sequential
Karhunen-Loeve) [13] algorithm to effectively learn the varia-
tions of both appearance and illumination in an incremental way.
However, their work only focuses on the matching between the
object subspace and candidates. The information for classification
in the background is discarded. In [14], a two-class FDA (Fisher
discriminant analysis) based model is proposed to learn the
discriminative subspace to separate the object from the back-
ground. It has a more discriminative ability than PCA (principal
component analysis) models, since it utilizes the background
appearance as negative training data. Zhang et al. [15] propose
a graph embedding-based learning algorithm for object tracking,
which can simultaneously learn the subspace of the target and its
local discriminative structure against the background. Despite the
success of the above algorithms in the tracking literature, they
still have the following limitation: all the above subspace-based
tracking algorithms use a flattened vector to represent a target, so
the local spatial information contained in the relative positions of
the pixels which form the target is almost lost, making the
appearance model not discriminative enough for tracking against
cluttered backgrounds. To address this problem, Li et al. [16,17]
propose a visual tracking framework based on online tensor
decomposition. The framework relies on image-as-matrix techni-
ques for considering the spatial layout information, and adopts
the R-SVD (Singular Value Decomposition) technique [19] to
incrementally calculate the sample mean and subspace of each
tensor mode. However, their calculation of the eigenstructure is
not accurate, because, in the tracking process, the eigenvectors
with small eigenvalues are discarded in order to fulfill the real-
time requirement. The tracking errors accumulate, causing the
subspace model to drift away from the target.

Based on the forgoing discussions, we propose a dynamic
tensor analysis-based tracking algorithm, which effectively com-
bines the spatial and temporal eigen-space of the object.

The main features of our tracking approach are summarized as
follows:

e We propose a dynamic tensor analysis-based tracking algo-
rithm, which effectively captures the spatial and temporal
eigen-space of the object.

e We propose an effective strategy for incrementally updating
the spatial and temporal eigen-space of the object.

e We conduct a theoretical comparison with the subspace
models in [12,16], and show that the proposed incremental
updating strategy for the eigen-space of the object is more
accurate.

The arrangement of this paper is as follows. Section 2 gives an
overview of the tracking algorithm. The details of the proposed
appearance model and the incremental updating strategy are
introduced in Section 3. The particle filtering-based tracking
framework is given in Section 4. Experimental results are pre-
sented in Section 5, and Section 6 is devoted to conclusion.

2. Overview of the tracking algorithm

The proposed tracking framework includes three stages:
(a) tensor analysis-based appearance model; (b) particle filtering-
based tracking framework; (c) dynamic tensor update. In (a), an
object region is represented as a tensor that consists of the object’s
observation matrices obtained from the frames preceding the
current frame. Each matrix in the tensor represents an image
observation of the object in the tracking process. In (b), the object
state in the current frame is obtained by maximum a posteriori
(MAP) estimation within the particle filtering framework.
(c) During the tracking process, the tensor subspace is needed to
update incrementally to accommodate the appearance variations.
The aforementioned three stages are executed iteratively as time
progresses. The architecture of the framework is shown in Fig. 1.

3. The proposed appearance model

In this section, we first introduce the basic theory of dynamic
tensor analysis, and then present the proposed appearance model.
Finally, a comparison with two other subspace-based appearance
models [12,16] is carried out to show the theoretical advantages
of the proposed appearance model.

3.1. Basic theory of dynamic tensor analysis

3.1.1. Tensor decomposition

A tensor can be regarded as a multidimensional generalization
of a matrix. We denote an N-order tensor as A e R <kl each
element of which is represented as a;,..,.;, for 1<i, <I,. In the
tensor terminology, each dimension of a tensor is associated with
a ‘mode’. The mode-n unfolding matrix A e R"™ Il of 4
consists of the I,,-dimensional mode-n vectors obtained by vary-
ing the nth-mode index i, while keeping the other mode indices

Dynamic tensor
update

Tracking process

Y
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Input Data
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Fig. 1. The architecture of the tracking framework.
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Fig. 2. Illustration of unfolding a 3-order tensor.

fixed. Namely, the column vectors of Ay, are just the mode-n
vectors. For a better understanding of the tensor unfolding, we
show an example in Fig. 2 of the unfolding of a 3-order tensor.

Based on the mode-n unfolding operation, the tensor .4 can be
decomposed as follows:

A=Bx1UDx,UP ... xyUN 1)

where B=Ax;UV x;,U@" ...« UM which denotes the core
tensor controlling the interaction among the mode matrices
U®m, ..., UN, The orthonormal column vectors of U™ span the
column space of the mode-n unfolding matrix Ay (1 <n<N).

3.1.2. Dynamic tensor analysis

In some applications, such as visual tracking, the data is
typically a time sequence, and hence the tensor data changes
over the time, so the off-line tensor decomposition method in
Section 3.1.1 is not suitable in this case.

Dynamic tensor analysis (DTA) [18], is an incremental algo-
rithm for tensor decomposition. The basic idea in DTA is to update
the covariance matrix along each unfolding mode. In the algo-
rithm in [18], the samples are assumed to have zero mean, so in a
incrementally learning process, the covariance matrix of the dth
mode is updated as

Ci=Cy +X(d)X(7;j) 2)

where X, is mode-d unfolding matrix of new incoming tensor.
Then the mean and eigenstructure of the object region can be
easily updated by solving the eigenproblem for the updated C,.

In order to make the dynamic model depend more heavily on
the most recent tensor data, we assume that the previous data are
gradually forgotten and new data are gradually added to the
dynamic model, so the Eq. (2) is modified as

Cy=ACy +X(d)X(Td) 3

where 4 e[0, 1] is a forgetting factor, and it is used to weight the
historical data. If =1, then the historical data and the new data
contribute equally to the construction of the tensor subspace. If
2 =0, then the historical data are discarded and the tensor
subspace only depends on the new data.

3.2. Dynamic tensor analysis-based appearance model

Based on the theory of dynamic tensor analysis, we proposed a
dynamic tensor analysis-based appearance model, which consists
of the image likelihood for observation evaluation and the
incremental updating process of the object subspaces.

3.2.1. Image likelihood based the reconstruction error

Let © e Rh*2x1 be a set of image observations of the object,
where I3, I, and I5 represent the width, height and frame index of
the image observations. According to the multilinear algebra and
tensor theory, the tensor O can be unfolded in three modes, which
is shown in Fig. 2.

Let us focus on the unfolding matrixes A,A¢2),A3). We can see
that the column spaces of A, and A capture the spatial layout
information of the object, and the row space of A, captures the
temporal information of the object during tracking process.

In order to obtain the column spaces of Aax)Ap).Ajs), the
covariance matrixes of them are calculated as follows:

=D (Al —t)Ay =)' “)

Co= (Al — i) Ay — 1) 6)
j

G= Z(A’g)—#ﬁ(A’é)_ﬂQT (6)
k

where p,,1, are the column mean of unfolding sample matrixes
Aq).Ap), respectively, and p is the row mean of unfolding sample
matrix As). Based on the covariance matrixes, the eigen-spaces
can be easily obtained by diagonalization: Cq = U;S,UT,d =1,2,3.

After the diagonalization process, given a test image candidate
o; e Rz and its flattened vector form v; e R2*1 the sum of
the reconstruction squared error norms on the three modes is
calculated as follows:

RE; = H(ot—[LJl)—(ot—[LJl)UlulTH2 7
RE; = l(0;— M) —(0;— M) U UL 17 ®)
RE3 = (ve—pi3)— (Ve —i3)Us UT 12 )
RE = RE{ +RE; 4+ RE;3 (10)

where [J; and [U, are defined as follows:

L

M= (#r---vlh) eR "
I

My = (ﬂz---v-ﬂz) e R

Finally, the image likelihood of the image candidate o, can be
formulated as follows:

P(0¢|x¢) oc eXp(—RE) an

In this way, the spatial layout information and the temporal
information of the object can be effectively combined through the
image observation reconstruction process. As a result, the pro-
posed appearance model is robust to image noise, cluttered
backgrounds and partial occlusion.

3.3. Dynamic tensor analysis with mean update
In most tracking applications, the tracker must simultaneously

deal with the changes in both the target appearance and the
illumination. As a result, it is necessary to update the subspaces
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Us,d=1,2,3 and the means u,,d=1,2,3 incrementally to accom-
modate these changes. In practice, the zero mean assumption in
Eq. (3) for the tensor data is not reasonable. So, the key point of
updating the subspaces is how to update both the covariance
matrix and the mean.

Denote the current matrix data in mode-d as Agy = [I1,l2, ... ,Im],
where I, is the kth sample, and denote the corresponding sample
mean as py. The covariance matrix of the sample matrix Ag, is
calculated as C; = 32", (Iy—ptg)(Ix—4)". Denote the incoming data
matrix in mode-d as X4) = [Im+1.Im+2, - - . .Jm+n], and the correspond-
ing sample mean as u;. Denote the total data matrix in mode-d as
A(d):[h,lz,...,l(mm)], with its covariance matrix C; and sample
mean [,

According the definition of the covariance matrix, C4 can be
calculated as

m+n

Cao= Y U—pp—pp)"
k=1

3

m+n
= U= p@e— )T + Z (TR
1

k=m+1

=~
Il

(U= g+ prg— U=ty + Hg— 1"

L=

=~
Il

m+n
D =g+ == + g — )"

k=m+1

Based on wjj=(m/(m+n)uy+n/(m+n)uy,, the above formula-
tion can be simplified as

m m+n
Co= > h—p)U—p)" + D Ue—pp)Te—pp"
k=1 k=m+1

mn , ,
+ men (Hg—Ha) (g _.ud)T

mn
=Cq+ Xiay—MypXa)— [UQ)T +

m+n

(a— (g — )"

where [}, is defined as follows:

/ ’/_/nh/
Ha= | tta---+tta

Similar to Eq. (3), we include the forgetting factor 1 to make the
covariance matrix more concentrated on the new coming data,

Here, C, is exponentially forgotten for A= 1—e~1/7, where 7 is a
predefined constant.

In summary, the reason why the dynamic tensor analysis-
based appearance model with mean update is effective for visual
tracking is two-fold: (1) the dynamic analysis of tensor subspace
effectively captures the changes of object appearance along the
spatial and temporal axes; (2) the calculation of tensor subspace
and reconstruction is accurate only when the sample mean is
updated.

3.4. Comparison with two other subspace-based appearance models

In this part, we compare the proposed appearance model with
other two subspace-based appearance models [12,16].

For the appearance model in [12], we call it ISL (incremental
subspace learning) for short. In the implementation of ISL, the
image observation in the object region is firstly flatted into a
vector and then the R-SVD technique [19] is applied to the vector
data to incrementally learn the subspace of the object. ISL only
captures the temporal information of the object in the tracking
process, while almost loses the spatial information of the object.
In contrast, as shown in Fig. 3, in our appearance model, the first
two unfolding modes correspond to the vertical and horizontal
spatial layout of the object, respectively, and the third unfolding
mode corresponds to the temporal evolution of the object. By
combining the three modes together, the proposed appearance
model is more discriminative than the ISL. Furthermore, let us
focus on the bottom row of Fig. 3, if only the third unfolding mode
is used, the proposed model degenerates to ISL. As a result, the
proposed appearance model is a unified framework for subspace
learning and the ISL is a special case of our framework.

For the appearance model in [16], we call it IRSTA (Incremental
Rank-R Tensor Subspace Analysis) for short. Although the tensor
unfolding process in IRSTA is the same as in our proposed
appearance model, the methods for calculating the eigenstructure
of the unfolding matrix are different. In the implementation of
IRSTA, R-SVD is adopted to incrementally learn the sample mean
and subspace of each tensor mode. The method in [16] is efficient,
however, the solution of the eigenstructure is not accurate,
because in the tracking process, only the first R eigenvectors are
retained, and the eigenvectors with small eigenvalues are dis-
carded in order to fulfill the real-time requirement. As a result,
the tracking errors accumulate, causing the subspace model to
drift away from the target. While in the proposed appearance

Co e ACat (Ko — I YXT. T 4 T IV 12 model, the updating process of the new coming tensor data is
d at+ X~ HdXa—Ha) + m+n(ud Ha)(Ha=Ha) 12 performed at the level of the covariance matrix. As a result, all the
I
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Fig. 3. The corresponding relationship between the unfolding matrices and images.
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spatial and temporal information of the object in the tracking
process is retained. While maintaining a similar computational
complexity to IRSTA, our proposed appearance model is more
robust to the model drifting problem.

4. Particle filtering-based tracking framework

Particle filtering provides a flexible and effective tracking
framework. Therefore, we embed the above appearance model
into a particle filtering framework to form a robust tracking
algorithm.

Our algorithm localizes the tracked object in each image frame
using a rectangular window. The motion of a tracked object
between two consecutive frames is approximated by an affine
image warping. Specifically, the motion is characterized by the
state of the particle x; = (t,ty,0,5,a,8) where {tt,} is the 2-D
translation parameters and {0,s,o,f} are deformation parameters.
We employ a Gaussian distribution for the state transition

distribution p(x¢|x;_1),
PXelXe—1) = N (X¢; X—1,2) 13)

where X2 is a diagonal covariance matrix whose elements are
the corresponding variances of affine parameters, i.e., 67,63,53,
02,0507,

The observation model p(o:|x;) reflects the probability that
a sample is generated from the subspace, and it is defined in
Eq. (11). Finally, the tracking result is the maximum a posteriori
(MAP) estimation given the candidate samples.

5. Experimental results

In order to show the effectiveness of the proposed appearance
model (here, called DTAMU: dynamic tensor analysis with mean
updating), we first conduct an experimental comparison between
DTAMU and DTA (dynamic tensor analysis without mean updat-
ing) to investigate the importance of mean updating. Then we

Fig. 5. Tracking results of ‘pedestrian’ sequence (top row: ISL, bottom row: DTAMU).

Fig. 6. Tracking results of ‘Dudek’ sequence (top row: ISL, bottom row: DTAMU).
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carry out a number of comparison experiments with several
state-of-the-art appearance models including: (1) DTAMU vs. ISL;
(2) DTAMU vs. IRSTA; (3) DTAMU vs. other state-of-the-art appear-
ance models. All the experiments are conducted with Matlab on a
platform with Pentium IV 2.8 GHz CPU and 512 M memory, and the
initial object positions are manually labeled.

5.1. DTAMU vs. DTA

To show the importance of the mean updating process in
Eq. (12), we conduct an experimental comparison between two

50 . . . . .
DTAMU: 6.32
ISL: 7.53 :

45

40 f ]
35 | 1
30 1
25 | 1

RMS error

20 1
151 ]

10 1

5t 4

0
0 100 200 300 400 500 600
The frame number of Dudek sequence

Fig. 7. The RMS error curve of tracking results (red: DTAMU, green: ISL). (For

interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

subspace updating strategies during tracking: mean updating
(DTAMU) and no updating (DTA).

The parameters in this experiment are set to {N =300, =
diag(5%,5%,0.012,0.012,0.0012,0.001%)} which are, respectively, the
number of particles and the covariance matrix of the transition
distribution, and the forgetting factor 4 is set to 0.99. As shown in
the top row of Fig. 4, we can see that with no updating for the
mean of the subspace model, the tracking window gradually
deviates from the car when the car turns a corner, and the track
is lost completely in the subsequent frames. The reason is that
when the car turns a corner, its image intensities undergo large

40 . . . . .
DTAMU: 9.19

IRSTA: 17.73
35 ]

30 T

25t 1

20

RMS error

15

10

0 . . . . .
0 50 100 150 200 250 300

The frame number of Dudek sequence

Fig. 10. The RMS error curve of tracking results (red: DTAMU, green: ISL). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 9. Tracking results of ‘football’ sequence (top row: IRSTA, bottom row: DTAMU).
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Fig. 11. Tracking results of ‘boxing’ sequence (top row: S-SWF, bottom row: DTAMU).

changes, so the correspondence of pixels between the car and the
subspace is not accurate without mean updating. In contrast,
DTAMU can successfully track the car throughout the whole
sequence, because the mean and eigenstructure of the car are
correctly calculated and updated in the tracking process.

5.2. DTAMU vs. ISL

In this part, an experimental comparison is made between
DTAMU and ISL.

The first testing sequence is from the PETS 2001 database which is
an open database for research on visual surveillance.! This sequence
contains a pedestrian of small apparent size, moving down a road in a
dark and blurry scene. To make a fair comparison, the parameters
adopted in these two algorithms are set to {N =500,
¥ = diag(5%,5%,0.03%,0.03%, 0.0052,0.001%), 1=0.99}. Fig. 5 illus-
trates some key frames showing the tracking results for this
sequence, in which the top row and the bottom row represent the
tracking results of ISL and DTAMU, respectively. From Fig. 5, we can
see that the tracking window of ISL drifts from the correct position at
frame 238, and in addition its size shrinks gradually, leading to a total
loss of track with no recovery. In contrast, DTAMU tracks the object
right through the sequence and maintains a suitable window size,
which covers the object region. The tracking is successful in spite of
the poor lighting. The underlying reason for the above tracking results
is as follows: in ISL, most of the spatial layout information in the
object region is discarded, and because the apparent size of the
pedestrian is small, there is not enough information in the temporal
subspace to support the tracker. DTAMU extracts the spatial layout of
the object and combines with the temporal subspace, and this
additional information makes the tracker more accurate.

To further illustrate the importance of the object’s spatial layout
information for the localization accuracy, we test these two appear-
ance models on the labeled Dudek sequence.? As shown in the Fig. 6,
the tracking results are represented by seven key facial points, and
the root mean square (RMS) error between the estimated points and
the groundtruth is used to evaluate the tracking performance.

For the Dudek sequence, the parameters are set to {N =300,
Y = diag(11%,112,0.052,0.052,0.0052,0.001%),4 = 0.98}. As illustra-
ted in Fig. 6, the tracking results of DTAMU are more accurate than
ISL for most image frames. The RMS error of DTAMU for the whole
sequence is 6.32 while the corresponding RMS error of ISL is 7.53.
Fig. 7 shows several key frames from the Dudek sequence. We can see

1 The source data was obtained from http://homepages.inf.ed.ac.uk/rbf/
CAVIAR/.

2 The source data was obtained from http://www.cs.toronto.edu/vis/projects/
dudekfaceSequence.html

that the facial points estimated by DTAMU are consistent with
groundtruth, and can be used for facial expression analysis.

5.3. DTAMU vs. IRSTA

In this part, we conduct a quantitative comparison between
DTAMU and IRSTA [16]. There are two differences between DTAMU
and IRSTA: (1) the calculation of object subspace; (2) the incremental
updating process.

For the two testing image sequences, the parameters
employed in DTAMU and IRSTA are set as follows: (1) N=400,
> = diag(5%,5%,0.032,0.022,0.0052,0.001%), 21=0.97; (2) N=300,
> = diag(5%,5%,0.03%,0.02%,0.003%,0.001%), /. =0.98. In addition,
the R employed in IRSTA is set to 10. For the first image sequence,
the tracking results is shown in Fig. 8, from which we can see that
IRSTA fails to track the woman when she is partially occluded by
the car, while DTAMU achieves better performance than IRSTA.
For the second image sequence, some key frames of the tracking
results are shown in Fig. 9. The tracking window of IRSTA drifts off
the target at frame 162, while DTAMU can successfully tracks the
target until frame 286 when the target is severely occluded. The
groundtruth of the tracking window in this sequence is manually
labeled for the quantitatively evaluation. As illustrated in Fig. 10,
the tracking results of DTAMU is more accurate than IRSTA. The
RMS error of DTAMU for the whole sequence is 9.19 while the
corresponding RMS error of IRSTA is 17.73. The reason is that only
the first R eigenvectors are retained in the incremental updating
process, so in each tracking process, the subspace is not accurate
enough, causing the model drift problem.

5.4. DTAMU vs. two other appearance models

In this part, we compare DTAMU with two state-of-the-art
appearance models [20,10]. Before illustrating the tracking results,
we first state the reason of choosing these two appearance models
for the comparison. Both of these two appearance models combine
the spatial-temporal information of the object. In this way they are
similar to DTAMU. The appearance model in [20] is an extension of
SWF model [9], which incorporates the spatial constraint to the
SWF model, so it is called S-SWF for short in this work. We use the
term ‘SMOG'’ (taken from [10]) for the model in [10].

The first testing sequence for DTAMU and S-SWF is a boxing
match (see Fig. 11), which contains two boxers and the referee. There
are large changes in the appearances of the participants. From
experimental results shown in Fig. 11, we can see that S-SWF fails
at frame 38 and can not recover again. In contrast, DTAMU can
effectively capture the dynamic motion and adapt to the appearance
changes. The test sequence for DTAMU and SMOG is shown in Fig. 12,
where a man moves in an outdoor environment with large changes in
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SMOG

‘ sMOG

Fig. 12. Tracking results of ‘Trellis’ sequence (top row: SMOG, bottom row: DTAMU).

illumination and in his appearance. As shown in Fig. 12, SMOG loses
track when the man undergoes large illumination changes. However,
DTAMU successfully tracks the man through the entire sequence even
with large illumination and appearance changes. The reason for these
results is that the spatial and temporal subspaces capture more
information than simply modeling the object region as a mixture of
Gaussians. Thus the proposed appearance model is more robust and
discriminative, especially in changing environments.

6. Conclusion

In this paper, we have proposed a dynamic tensor-based
appearance model, which effectively combines the spatial and
temporal eigen-space of the object using methods from tensor
analysis. In order to adapt the changes of object appearance, the
eigen-space and mean of the object are incrementally updated on
the covariance matrix level, which never loses any correlation
information of the object region in both spatial and temporal
axes. Several comparison experiment results demonstrate the
effectiveness and robustness of the proposed appearance model.
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