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Abstract

Visual tracking usually can be formulated as a graphical model and involve a searching process

for inferring the motion of an object from uncertain and ambiguous observations. This paper brings a

new view to tracking problem from a swarm intelligence perspective. Inspired by the animal swarm

intelligence in the evolutionary computing, we propose a sequential particle swarm based searching

strategy for robust visual tracking. Unlike the independent particles in the conventional particle filter,

the particles in our searching strategy cooperate with each other and evolve according to the cognitive

effect and social effect in analogy with the cooperative and social aspects of animal populations. In

the graphical models, we conduct a theoretical analysis from Bayesian inference view, and shows that

our searching strategy is essentially a hierarchial importance sampling process which is guided by the

swarm intelligence extracted from the particle configuration. The process can incorporate the newest

observations into the state transition distribution p(xt|xt−1) to approximate to the ‘optimal’ importance

distribution p(xt|x(n)
t−1, yt), and thus overcome the sample impoverishment problem suffered by particle

filters. Experimental results demonstrate that, compared with the state-of-the-art particle filter and its

variation-the unscented particle filter, the proposed tracking algorithm is more robust and effective with

both synthetic data and real world sequences.

Index Terms

Particle swarm optimization, visual tracking, graphical model, particle filter, importance sampling

I. INTRODUCTION

Visual tracking, as a fundamental task in many visual systems, is to locate the specified

region in the video sequence. It has received significant attention due to its crucial value in

visual applications, such as surveillance [1], [2], [3], human-computer interaction [4], [5], smart

rooms [6], [7], intelligent transportation [8], augmented reality and video compression [9], [10],

etc.

Specially, the tracking process usually can be formulated as a graphical model (as shown in

Fig. 1), where xt and yt represent temporal state and observation respectively. Based on the

following two conditional independence assumptions:

1) States follow a first order Markov process

p(xt|xt−1, xt−2, · · ·, x0) = p(xt|xt−1)
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Fig. 1. A graphical model of tracking process

2) Observations depend only on the current state

p(yt|xt, A) = p(yt|xt)

the graphical model can be described by the following dynamical state-space model [11]:

state transition model xt = ft(xt−1, εt) ↔ p(xt|xt−1) (1)

observation model yt = ht(xt, νt) ↔ p(yt|xt) (2)

where εt, νt are the system noise and observation noise, ft(., .) and ht(., .) are the state transition

model and observation model, which characterize probability distributions p(xt|xt−1) and p(yt|xt)

respectively. As a result, the tracking process can be viewed as the following probabilistic

inference problem: given an initial object state density p(x0), transition density p(xt|xt−1),

and observation likelihood p(yt|xt), the objective of the tracking process is to infer the real

motion state of the object at time t given the uncertain and ambiguous observations up to

time t, which is in essence amount to estimating the posterior density p(xt|y0:t). Although the

posterior density provides a complete solution to the visual tracking problem, the problem still

remains challenging since it contains integration and marginalization operation in the estimating

process of the posterior density. When the dynamical system is nonlinear and non-Gaussian, the

estimating process is intractable. To address the above issue, we propose a swarm intelligence

based solution to approximate and propagate posterior density with a set of particles. The main

idea of our work is to approximate the optimal solution through the cooperation between particles

which are inspired from the swarm intelligence of animal populations.

A. Related Work

Much effort has been expended to tackle the above problem in recent years, and these

approaches can be divided into two categories: parametric ones and non-parametric ones.
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Parametric approaches need to assume or approximate ft(., .) and ht(., .) with a parametric

model. When the equations (1)(2) reduce to the linear dynamic systems with Gaussian noise, the

seminal the Kalman filter [12] provides an analytical solution, in which the sufficient statistics

of mean and covariance matrix are calculated and propagated. However, the use of Kalman

filter is limited by the ubiquitous nonlinearity and non-Gaussianity of real world. By linearizing

the nonlinear functions with first-order Taylor expansion around the predicted values, extended

Kalman filter (EKF) [13], [14] is proposed to solve nonlinear system problems, but such a first

order approximation has significant limitations for accurate state estimation. Later, Julier et al.

[15] propose an alternative approach to approximate the nonlinearity called unscented Kalman

filter (UKF). It first generate a set the sigma points by unscented transformation, and then

propagated through the state transition model and observation model to obtain the final filtered

result. While UKF is significantly better than EKF in density statistics estimation, it still assumes

a Gaussian parametric form of the posterior, thus can not handle multi-modal distributions.

To maintain the multi-modal properties, the non-parametric techniques based on Monte Carlo

simulations are introduced, among which the particle filter [11], [16] is the most typical one

and is firstly applied for visual tracking in [17]. The basic idea of particle filtering is to use a

number of independent random variables called particles, sampled from a proposal distribution, to

represent the posterior probability, and to update the posterior by involving the new observations.

Although particle filtering has achieved a considerable success in tracking literature, it is faced

with a fatal problem-sample impoverishment due to its ‘suboptimal sampling’ mechanism in

the importance sampling process. When the samples are drawn from a proposal distribution

which lies in the tail of the observation distribution or the observation distribution is peaked,

the performance of the particle filter will be very poor since most particles have low weights,

thereby leading to the well-known sample impoverishment problem. Moreover, the sample size

needed for estimation will grow exponentially as the dimension of the state space increases.

To improve the sampling efficiency, various techniques are proposed to design an effective

proposal distribution, which can be roughly divided into two categories: explicit methods and

implicit methods. The explicit approaches attack this problem by explicitly designing a sophis-

ticated proposal distribution. Unscented particle filter [18], [19] adopts the UKF to design the a

Gaussian proposal distribution, whose mean and covariance are calculated from UKF filtering.

However, the proposal distribution is still limited to Gaussian. Meanwhile, the generation of
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sigma points and the updating of the covariance for all particles are time-consuming, which do

not fulfill the real time requirement. Later, Han et al. [20] improve Merwe’s work by modeling

the proposal distribution with Gaussian mixture, in which the parameters of the mixture model

are found by the well-known kernel method-mean shift. An alternative explicit method model

the proposal distribution with an autoregressive (AR) model [17], whose parameters are learnt

from pre-labeled video sequences. However, this method often suffers a over fitting problem,

consequently feasible only to the training sequences. In contrast, there is no explicit proposal

distribution employed in the implicit methods, but the particles are selected based on some

heuristic rules. As in ICONDENSATION algorithm [21], the particles in main contour tracker

are guided by an auxiliary color tracker. A similar work is the Co-inference approach [22], which

formulates the multiple cue integration as a graphical model and factories to achieve feasible

inference. In factorized process, the sampling of particles for one cue from other cue’s filtering

distributions. This process is iterated until convergence. However, a major problem suffered

by the both work is that, the cue for guiding the particles must be reliable. In fact, sampling

from an unreliable cue’s filtering distribution offers no benefit and might even be detrimental to

the performance. Another elegant work is the auxiliary particle filter (APF) [23], [24] generates

particles from a two-stage procedure: at the first stage, simulate the particles with large predictive

likelihoods; at the second stage, reweigh the particles and draw the final states.

Although considerable work have already been made above, a more effective and efficient

sampling strategy is still of significant importance for the tracking system.

B. Our Work

Recently PSO (particle swarm optimization) [25], [26], [27], [28], [29], [30], [31], [32], a

new population based stochastic optimization technique, has received more and more attention

because of its considerable success. Unlike the independent particles in the particle filter, the

particles in a PSO interact locally with one another and with their environment in analogy with

the cooperative and social aspects of animal populations, for example as found in birds flocking.

Starting from a diffuse population, now called a swarm, individuals, now termed as particles,

tend to move about the searching space and eventually cluster in regions where optimal states

are located. As a result, the advantages of this mechanism are, on one hand, the robustness and

sophistication of the obtained group behavior and, on the other hand, the simplicity and low
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costs of the computations associated with each particle.

Inspired by the forgoing discussions, we propose a sequential particle swarm optimization

based algorithm for robust and efficient visual tracking, in which the particles are viewed

as intelligent individuals, e.g. birds, and evolve through communicating and cooperating with

each other. Meanwhile, we also conduct a theoretical analysis of the proposed approach in

the graphical model and Bayesian inference perspective, and find that the proposed algorithm

is essentially a novel graphical model with a hierarchial importance sampling based inference

process. The hierarchial importance sampling process consists of two stages: 1) a coarse sampling

from the state transition distribution p(xt|xt−1), 2) a fine sampling carried out by the PSO

iterations which are extracted from the the ‘cognitive’ and ‘social’ aspects of particle populations.

In this way, the newest observations are gradually taken into consideration to approximate

the optimal proposal distribution p(xt|x(n)
t−1, yt) [16], and thereby greatly overcomes the sample

impoverishment problem suffered by the convectional particle filters.

The rest of this paper is structured as follows. A brief introduction to the traditional PSO

algorithm is presented in Section 2. In Section 3, the proposed sequential PSO framework is

described in detail and the theoretical analysis of our framework is shown in Section 4. Section 5

presents the proposed tracking algorithm in the sequential PSO framework. Experimental results

are shown in Section 5, and Section 6 is devoted to conclusion.

II. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization, originally developed by Kennedy and Eberhart in 1995 [25], is a

population based stochastic optimization technique, which is inspired by the social behavior of

bird flocking. In detail, a PSO algorithm is initialized with a group of random particles {xi,0}N
i=1

(N is the number of particles). Each particle xi,0 has a corresponding fitness value which is

evaluated by a fitness model f(xi,0), and has a relevant velocity vi,0 which directs the movement

of the particle. In each iteration, the ith particle moves with the adaptable velocity vi,0, which is

a function of the best state found by that particle (pi, for individual best), and of the best state

found so far among all particles (g, for global best). Given these two best values, the particle

updates its velocity and state with following equations in the nth iteration (as shown in Fig. 2),

vi,n+1 = X (vi,n + ϕ1u1(p
i − xi,n) + ϕ2u2(g − xi,n)) (3)
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Fig. 2. The nth iteration of particle i

xi,n+1 = xi,n + vi,n+1 (4)

where ϕ1, ϕ2 are acceleration constants, u1, u2 ∈ (0, 1) are uniformly distributed random num-

bers, and X is a constriction factor to confine the velocity within a reasonable range: ||vi,n|| ≤
vmax. In Equation (12), the three different parts represent inertial velocity, cognitive effect and

social effect respectively. The cognitive effect and social effect are in analogy with the cooperative

and social aspects of animal populations. After the nth iteration, the fitness value of each particle

is evaluated by a predefined fitness model as follows.

f(xi,n+1) = p(yi,n+1|xi,n+1) (5)

where yi,n+1 is the observation corresponding to the state xi,n+1. Then the individual best and

global best of the particles are updated based on the fitness value of each particle in the following

equations:

pi =

{
xi,n+1, if f(xi,n+1) > f(pi)

pi, else
(6)

g = arg max
pi

f(pi) (7)

In this way, the particles search for the optima through the above iterations until convergence.

In conventional PSO algorithm, there are several parameters to be tuned: constriction factor X ,

maximum velocity vmax, acceleration constants ϕ1, ϕ2, the maximum number of iterations T ,

and the initialization of the particles.

III. SEQUENTIAL PARTICLE SWARM OPTIMIZATION

A. Motivation

In this section, an interpretation of the tracking process in a stochastic optimization view is

presented to show why PSO can achieve good performance in tracking applications.
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Let’s consider the following version of the tracking problem: suppose there is a groundtruth

corresponding to the object (food) in the image (state space) being searched. Suppose a group

of particles (birds) are randomly generated in the image (state space), and none of the particles

(birds) knows where the object (food) is. But each particle (bird) knows how far it is from the

object (food) by evaluating the observation in each iteration. What is the best strategy to find the

object (food), and how can the information obtained by each particle (bird) be used efficiently?

The PSO framework, inspired by the swarm intelligence–birds flocking, provides an effective

way to answer these questions, which motivates us to design a PSO based framework for robust

and efficient visual tracking.

However, the tracking task has several major properties which distinguish it from traditional

optimization problems:

1) Dynamic: The cost function is influenced by both the object state and the time, and optima

may shift spatially, change both height and shape, or come into or go out of existence according

to the time.

2) Sequential: The object state follows a first order markov process, which means that the

current optimization process is closely related to the previous convergent results.

3) Real-time: The real-time requirement is another major difference between tracking prob-

lems and optimization problems.

To effectively tackle such a dynamic optimization problem, we need to answer these questions:

a) how to utilize the temporal continuity information between two consecutive frames, b) how

to maintain the diversity of the particles in the optimization process, c) how to design a effective

convergent criterion to fulfill the real-time requirement.

B. Sequential PSO Based Framework

Motivated by the above discussion, we propose a sequential PSO based framework for visual

tracking. To give a clear view, the flowchart of the sequential PSO based framework is schemati-

cally shown in Fig. 3. First, the individual best of particles from the previous optimization round

are randomly propagated to enhance their diversities. Then, a modified PSO with parameters

adaptively tuned is carried out. Finally, an effective convergence criterion is checked to decide

whether the PSO iteration stops or not. There are three major stages in the sequential PSO based
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Fig. 3. Overview of the sequential PSO algorithm

framework: random propagation, modified PSO and convergence criterion, which are described

in the following sections.
1) Random Propagation: When PSO is applied to such dynamic optimization problems,

the major difficulty is the diversity loss of particles due to the convergence of the previous

optimization process. Thus, a re-diversification mechanism must be employed when the particles

are propagated to the next image frame.

The re-diversification process is used to enhance the diversity of particle set, so they can have

a higher probability to cover the real object state. Thus, an effective re-diversification mechanism

needs to know the prior knowledge of the object motion. In this paper, the particle set is randomly

propagated according to a Gaussian transition model whose mean is the previous individual best

particle and covariance matrix is determined by the predicted velocity of the object motion.

Given the individual best of particle set {pi
t}N

i=1 converged at time t, the re-diversification

strategy is carried out as follows.

xi,0
t+1 ∼ N (pi

t, Σ) (8)

where Σ is the covariance matrix of the Gaussian distribution, whose diagonal elements are

proportional to the predicted velocity vpred
t of the optimum at time t.

vpred
t = gt−1 − gt−2 (9)

In our re-diversification strategy, resampling process is not needed because the individual best

of particle set converged at time t provides a compact sample set for propagation (for the reason,

please see the Section ‘Convergence Criterion’). Although randomly propagation according to

the predicted velocity is simple, it is sufficient because it is only used to produce an initial value

for a subsequent search for the optimal state.

2) Modified PSO: A drawback of the aforementioned version of PSO is the lack of a reason-

able mechanism for controlling the acceleration parameters ϕ1, ϕ2 and the maximum velocity
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Fig. 4. The convergence criterion of the sequential PSO algorithm

vmax
t , fostering the danger of swarm explosion and divergence especially in high-dimensional

state space. To overcome this deficiency, we introduce a modified Gaussian swarm optimization

version, where the particles and their velocity are updated in the following way,

vi,n+1 = |randn|(pi − xi,n) + |Randn|(g − xi,n) + ε (10)

xi,n+1 = xi,n + vi,n+1 (11)

where |randn| and |Randn| are the absolute values of the independent samples from the Gaussian

probability distribution, such as N (0, 1), and ε is zero-mean Gaussian perturbation noise to avoid

trapping in local optimal, which is adaptively controlled by the system noise ε.

3) Convergence Criterion: The goal of tracking is to find the object as soon as possible. It is

not necessary for all the particles to converge to the object. As a result, the convergence criterion

is designed as follows:

f(gt) >Th , where Th is a predefined threshold, and all the individual best {pi
t}N

i=1 are in

a neighborhood of gt, as shown in Fig. 4, or the maximum iteration number is encountered.

According to this criterion, the object to be searched can be efficiently identified and the

convergent particle set {pi
t}N

i=1 provides a compact initialization without sample impoverishment

for the next optimization process, and the temporal continuity information can be naturally

incorporated into the sequential PSO framework.

IV. THEORETICAL ANALYSIS OF OUR APPROACH

We will conduct a theoretical analysis of the proposed approach in the graphical model and

particle filtering perspective, and show the reason why our approach improves on other sampling

based inference techniques.
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To make this paper self-contained, we first briefly review the standard particle filtering frame-

work and its major limitation, which are described in more detail in [11]. We then present the

detail theoretical analysis.

A. Particle Filtering framework

As shown in Fig. 1, the tracking process can be formulated as a graphical model, and usually

can be tackled by the sampling based techniques, in which particle filter is most typical one.

1) Standard Particle Filter: Particle filter [11] is an online Bayesian inference process for

estimating the unknown state xt at time t from a sequential observations y1:t perturbed by noises.

Here, let us recall the formulation of the dynamic state-space model employed in the Bayesian

inference framework

state transition model xt = ft(xt−1, εt) ↔ p(xt|xt−1)

observation model ot = ht(xt, νt) ↔ p(yt|xt)

The Bayesian inference process is achieved by

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1) (12)

where the prior p(xt|y1:t−1) is the propagation of the previous posterior along the temporal axis,

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (13)

When the state transition and observation models are nonlinear and non-Gaussian, the above

integration is intractable and one has to resort to sampling techniques such as particle filters.

The basic idea of particle filter is to use a number of independent random variables called particles

{x(n)
t }N

n=1, sampled directly from the state space, to approximate the posterior distribution. Thus

the posterior can be formulated as p(xt|y1:t) = 1
N

∑N
n=1 δ(xt − x

(n)
t ), where δ(·) is the Dirac

function. Since it is usually impossible to sample from the true posterior, a common solution

is to sample from an easy-to-implement distribution, the so-called proposal distribution denoted

by q(·), hence x
(n)
t ∼ q(xt|x(n)

t−1, y1:t), (n = 1, · · ·, N), then each particle’s weight is set to

w
(n)
t ∝ p(yt|x(n)

t )p(x
(n)
t |x(n)

t−1)

q(xt|x(n)
t−1, y1:t)

. (14)
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Finally, the posterior probability distribution is approximated as p(xt|y1:t) =
∑N

n=1 w
(n)
t δ(xt −

x
(n)
t ). After the importance sampling step, a re-sampling step is adopted to ensure the efficiency

of the particles’ evolution. To summarize, the detail process of standard particle filter is presented

in Algorithm 1.

Algorithm 1 Standard Particle Filter

1. Initialization: for n = 1, · · ·, N , sample x
(n)
0 ∼ p(x0), w

(n)
0 = 1/N .

2. For time steps t = ω1, 2, · · ·
3. Importance Sampling: for n = 1, · · ·, N , draw samples from the importance proposal

distribution as follows:

x̂
(n)
t ∼ q(xt|x(n)

t−1, y1:t)

4. Weight update: evaluate the importance weights with Equation (14).

5. Normalize the importance weights: w̃
(n)
t =

w
(n)
tPN

i=1 w
(i)
t

.

6. Output the statistics of the particles: MMSE or MAP estimate.

7. Resampling: generate N new particles x
(n)
t from the set {x̂(n)

t }N
n=1 according to the im-

portance weights {w̃(n)
t }.

8. Repeat Steps 3 to 7.

2) Limitation: The proposal distribution q(·) is critically important for a successful particle

filter since it concerns putting the sampling particles in the useful area where the posterior is

significant. In practice, the dynamic transition distribution p(xt|xt−1) is usually taken as the

proposal distribution. However, when p(xt|xt−1) lies in the tail of p(yt|xt) (as shown in Fig.

5) or the p(yt|xt) is peaked, the performance of the particle filter will be very poor since most

particles have low weights, thereby leading to the well-known sample impoverishment problem.

In fact, Doucet et al. [16] show that the ‘optimal’ proposal distribution is p(xt|xi
t−1, yt). So the

question is, how to incorporate the current observation yt into the transition model to approximate

the optimal proposal distribution in reasonable computation cost.

B. Theoretical Analysis in a Graphical Model and Particle Filtering View

1) A Novel Graphical Model: From the description of Section III, we can see that our

tracking process consists of three parts: time propagation, PSO iteration and fitness evaluation.
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Fig. 5. An illustration of importance sampling (left: sample from p(xt|xt−1), right: after PSO iterations )

Fig. 6. A novel graphical model of our tracking process

Time propagation and fitness evaluation are corresponding to the state transition model and

observation model respectively. The PSO iteration carries out the particle’s evolution according

to its observation. Based on the three parts, we can formulate the graphical model of our tracking

process, which is shown in Fig. 6. Different from the former graphical model illustrated in Fig.

1, our graphical model introduce an arrow from observation node to the state node, aiming

at incorporate the current observation into the particle evolution procedure. This procedure is

effectively conducted by the PSO iterations.

2) A Particle Filtering Interpretation: From the above graphical model, we can see that our

tracking process is a combination of the PSO iterations and the standard particle filter. Unlike the

traditional particle filter algorithm which directly samples the particles from the state transition

distribution, the particle evolution process in our tracking process is essentially a two-stage

sampling strategy to generate samples that approximate to the ‘optimal’ proposal distribution:

first, the particles are sampled from the state transition distribution p(xt|xt−1); second, the

sampled particles evolve through the PSO iterations to obtain the final importance sampling.

In more detail, our strategy is essentially a hierarchical importance sampling process. In the

coarse importance sampling stage, the particles are firstly sampled from the state transition
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distribution as in conventional particle filters to enhance their diversity.

xi,0
t ∼ p(xt|p̃i

t−1) (15)

In the fine importance sampling stage, the particles evolve through PSO iterations, and are

updated according to the newest observations. In fact, this stage is essentially a latent multi-

layer importance sampling process with an implicit proposal distribution. Suppose xt ∈ Rd

be d-dimensional state, let’s focus on one PSO iteration, which is equivalent to the following

sampling process.

xi,n+1
t ∼ N (xi,n

t + vi,n
t , Σi,n

t ) (16)

Σi,n
t =




ϕ2
1(p

i
t,1 − xi,n

t,1 )2 + ϕ2
2(gt,1 − xi,n

t,1 )2 0
. . .

0 ϕ2
1(p

i
t,d − xi,n

t,d)2 + ϕ2
2(gt,d − xi,n

t,d)2




where N (·, ·) is a Gaussian distribution with mean xi,n
t , and covariance matrix Σi,n

t , in which

xi,n
t,k , p

i
t,k, gt,k, εk are the kth element of xi,n

t , pi
t, gt, ε respectively. Although the implicit proposal

distribution is also limited to Gaussian distribution, the parameters of the Gaussian distribution is

heuristically changed by the individual best state and global best state, thus obtaining a favorable

performance.

After this sampling, the newest observations are incorporated by evaluating the fitness values of

the particles and updating the two best particles. The detail of this latent multi-layer importance

sampling strategy is presented in Algorithm 2.

As shown in Fig.5, when the transition distribution is situated in the tail of the observation

likelihood, the particles directly drawn from this distribution do not cover a significant region of

the likelihood, and thus the importance weights of most particles are low, resulting to unfavorable

performance. In contrast, through hierarchial sampling process in our algorithm, the particles

are moved towards the region where the likelihood of observation has larger values, and are

finally relocated to the dominant modes of the likelihood, demonstrating the effectiveness of our

sampling strategy.

V. PROPOSED TRACKING ALGORITHM

In this section, we introduce the proposed tracking algorithm and demonstrate how the above-

mentioned sequential PSO algorithm is adopted for tracking. In the implementation, our algorithm
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Algorithm 2 Latent Multi-layer Importance Sampling
1. Particle set Xt = {xi,0

t }N
i=1 from the coarse importance sampling stage.

2. for n = 0 : T do

3. Carry out the sampling

xi,n+1
t ∼ N (

xi,n
t , Σ

)

4. Incorporate the current observations by evaluating the fitness values

f(xi,n+1
t ) = p(yi,n+1

t |xi,n+1
t )

5. Update the parameters of the proposal distribution

pi
t =

{
xi,n+1

t , if f(xi,n+1
t )>f(pi

t)

pi
t, else

gt = arg maxpi
t

f(pi
t)

6. Check the stop criterion: if satisfied, break;

7. end for

8. Output the sampling result Xt = {xi,n
t }N

i=1

localizes the tracked object in each video frame using a rectangular window, and the motion of

a target object between two consecutive frames is approximated by an affine image warping.

Specifically, the motion is characterized by the state of the particle xt = (x, y, θ, s, α, β) where

{x, y} denote the 2-D translation parameters and {θ, s, α, β} are deformation parameters. The

fitness value of each particle is evaluated by a spatial constraint MOG based appearance model.

In the following parts, we first introduce the spatial constraint MOG based appearance model,

then give a detailed description of the proposed tracking algorithm in the species based sequential

PSO based framework.

A. Spatial Constraint MOG Based Appearance Model

The appearance of the target is modeled by a spatial constraint MOG, with the parameters

estimated by an on-line EM algorithm.

1) Appearance Model: Similar to [33],[34], the appearance model consists of three compo-

nents S, W,F , where the S component captures temporally stable images, the W component

characterizes the two-frame variations, and the F component is a fixed template of the target

to prevent the model from drifting away. However, this appearance model treats each pixel
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Fig. 7. A 2-D gaussian spatial constraint MOG based appearance model

independently and discards the spatial outline of the target. So it may fail in the case that, for

instance, there are several similar objects close to the target or partial occlusion. In our work,

we apply a 2-D gaussian spatial constraint to the SWF based appearance model, whose mean

vector is the coordinate of the center position and the diagonal elements of the covariance matrix

are proportional to the size of the target in the corresponding spatial directions, as illustrated in

Fig. 7. Thus the fitness function of particles can be formulated as follows,

ft = f(yt|xt) =
d∏

j=1

{
N(x(j); xc, Σc) ∗

∑

i=s,w,f

πi,t(j)N(yt(j); µi,t(j), σ
2
i,t(j))

}
(17)

where N(x; µ, σ2) is a Gaussian density

N(x; µ, σ2) = (2πσ2)−1/2exp

{
−(x− µ)2

2σ2

}
(18)

{πi,t, µi,t, σi,t, i = s, w, f} represent mixture probabilities, mixture centers and mixture variances

of the S, W,F components respectively, yt is the candidate region corresponding to state of

particle xt and d is the number of pixels inside yt. x(j),xc and Σc represent the coordinate of

the pixel j, the center coordinate of the target and the variance matrix in the spatial space.

Such a spatial constraint appearance model introduces the space information, and it works

based on the underlying assumption that the closer the pixel to the center, the more important

it is for the model representation. Fortunately, such an assumption is almost always satisfied in

real applications.

2) Parameter Estimation: In order to make the model parameters depend more heavily on

the most recent observation, we assume that the past appearance is exponentially forgotten and

new information is gradually added to the appearance model. To avoid having to store all the
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data from previous frames, a on-line EM algorithm is used to estimate the parameters of the

S, W,F components as follows.

Step1: During the E-step, the ownership probability of each component is computed as

mi,t(j) ∝ πi,t(j)N(yt(j); µi,t(j), σ
2
i,t(j)) (19)

which fulfills
∑

i=s,w,f mi,t = 1.

Step2: The mixing probability of each component is estimated as

πi,t+1(j) = αmi,t(j) + (1− α)πi,t(j); i = s, w, f (20)

and a recursive form for moments {Mk,t+1; k = 1, 2} are evaluated as

Mk,t+1(j) = αok
t (j)ms,t(j) + (1− α)Mk,t(j); k = 1, 2 (21)

where α = 1− e−1/τ acts as a forgotten factor and τ is a predefined constant.

Step3: Finally, the mixture centers and the variances are estimated in the M-step

µs,t+1(j) =
M1,t+1(j)

πs,t+1(j)
, σ2

s,t+1 =
M2,t+1(j)

πs,t+1(j)
− µ2

s,t+1(j)

µw,t+1(j) = ot(j), σ2
w,t+1(j) = σ2

w,1(j)

µf,t+1(j) = µf,1(j), σ2
f,t+1(j) = σ2

f,1(j)

In fact, updating of the appearance model every frame may be dangerous in case that, for

instance, some backgrounds are misplaced into the target or the target is partially occluded. Thus,

we developed a selective adaptation scheme to tackle such cases, which is described detailedly

in the following section.

B. Selective Adaptation for Appearance Model

In most tracking applications, the tracker must simultaneously deal with the changes of both

the target and the environment. So it is necessary to design a adaption scheme for the appearance

model. However, over updating of the model may gradually introduce the noise of background

into the target model, causing the model drift away finally. Thus, a proper updating scheme is

of significant importance for the tracking system.

In this part, we propose a selective updating scheme based on three different confidence

measures of the appearance model. First the MAP estimated state is respectively evaluated
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TABLE I

SELECTIVE ADAPTATION FOR THE APPEARANCE MODEL

1: if (πa > Ta)

2: if (πsw > Tsw)&&(πf > Tf )

3: Update the appearance model of the target;

4: else if(πsw > Tsw)&&(πf ≤ Tf )

5: Only update the SW components of the appearance model;

6: else if(πsw ≤ Tsw)&&(πf > Tf )

7: Only update the F components of the appearance model;

8: else if(πsw ≤ Tsw)&&(πf ≤ Tf )

9: Keep the appearance model of the target

10: end if

11: end if

by the appearance model, the SW combined components, and the F component, denoted as

πa, πsw, πf . And {Ta, Tsw, Tf} represent three thresholds correspondingly. Each component of

the appearance model is updated selectively as shown in Table. I.

It is investigated that S together with W components effectively capture the variations of

the target and F prevents the model from drifting away. As a result, such a selective updating

strategy not only effectively captures the variations of the target, but also reliably prevents the

drifting away problem during the tracking process.

C. Sequential PSO Based Tracking Algorithm

Sequential PSO has provided a general and effective tracking framework. Therefore, we embed

the spatial constraint MOG based appearance model into this framework for the fitness value

evaluation. The detail of the sequential PSO based tracking algorithm is presented as follows.

VI. EXPERIMENT RESULTS

We compare the performance of our algorithm to several non-linear filters on two different

tasks: 1) a 1D state tracking with synthetic data; 2) real world visual tracking problem. All of

the experiments are carried out on a CPU Pentium IV 3.2GHz PC with 512M memory.
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Algorithm 3 Sequential PSO Based Tracking Algorithm
Input: Given the individual best particles {pi

t}N
i=1 at time t;

1. Randomly propagate the particle set to enhance their diversities according to the following

transition model

xi,0
t+1 ∼ N (pi

t, Σ)

where Σ is a diagonal covariance matrix whose elements are the corresponding variances of

affine parameters, i.e., σ2
x, σ

2
y , σ

2
θ , σ

2
s , σ

2
α, σ2

φ.

2. The fitness value of each particle is evaluated by the spatial constraint MOG based

observation model as follows.

f(xi,n
t+1) = p(yi,n

t+1|xi,n
t+1), i = 1 · · ·N,n = 0 · · · T

3. Update {pi
t+1}N

i=1 and gt+1 by the fitness values obtained above,

pi =

{
xi,n+1, if f(xi,n+1) > f(pi)

pi, else
, g = arg max

pi
f(pi)

4. Carry out the PSO iteration.

vi,n+1 = |randn|(pi − xi,n) + |Randn|(g − xi,n) + ε

xi,n+1 = xi,n + vi,n+1

5. Check the convergence criterion: if satisfied, continue, otherwise go to step 2;

Output: Global optimum: gt+1;

A. 1D State Tracking

Our approach is firstly tested on a non-linear state tracking problem, which is described as

benchmark in many papers [18]. Consider the following nonlinear state transition model given

by

xt+1 = 1 + sin(wπt) + φ1xt + vt, xt ∈ R (22)

where vt is a Gamma Ga(3, 2) random variable modeling the process noise, and w = 4e−2 and

φ = 0.5 are scalar parameters. A non-stationary observation model is as follows

yt =

{
φ2x

2
t + nt, t ≤ 30

φ3xt − 2 + nt, t > 30
(23)
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TABLE II

EXPERIMENTAL RESULTS OF STATE TRACKING

Algorithm Proposal MSE mean MSE var Time(s)

Particle filter (PF) p(xt|xt−1) 0.43272 0.051286 2.1763

Extended Kalman particle filter (EKPF) N(x̄t, P̄t) 0.29632 0.011964 6.0026

Unscented particle filter (UPF) N(x̄t, P̄t) 0.069229 0.0062162 12.3884

Auxiliary particle filter (APF) p(xt|xt−1) 0.5563 0.034481 3.4996

Our algorithm p(xt|xt−1) 0.043998 0.038742 6.2499

where φ2 = 0.2, φ3 = 0.5, and the observation noise nt is drawn from a Gaussian distribution

N(0, 0.00001). Given only the noisy observation yt, several filters are used to estimate the

underlying clean state sequence xt for t = 1 · · · 60. Here, we compare our approach with

conventional particle filter, extended Kalman based particle filter [14], unscented particle filter

[18], and auxiliary particle filter [23]. For each algorithm, a proposal distribution is chosen as

shown in Table II. Generally, the covariance matrix of the perturbation noise ε is determined

by the system noise of the state transition model. Since the system noise in this example is not

Gaussian, and the state is 1-dimension, so the variance of ε is set to 0.4. In order to qualitatively

gauge performance and discuss resulting issues, the MSE (mean square error) between the tracked

points and the true state and the execute time of each run are computed. Fig. 9 gives an illustration

of the estimates generated from a single run of the different filters. Since the result of a single

run is a random variable, the experiment is repeated 100 times with re-initialization to generate

statistical averages. Table 1 summarizes the performance of all the different filters in the following

aspects: the means, variances of the mean-square-error (MSE) of the state estimates and the

average execute time for one run. It is obvious that the average accuracy of our algorithm is

better than generic PF, EKPF, APF and comparable to that of UPF, and the MSE variance of our

algorithm is a little higher than other filters, this is because our algorithm takes the gt as output

unlike the mean output of the particles from other filters, so the estimation fluctuates according

to the severity with which the observations are contaminated by the noise. Meanwhile, the real-

time performance of our algorithm is much better than UPF as Table 1 shows. So the total

performance of our algorithm prevails over that of other nonlinear filters.
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Fig. 8. An illustration of a single run of different filters

B. Visual Tracking

The affine motion is considered in real motion tracking task. Each candidate image is rectified

to a 30×15 patch, and the feature is a 450-dimension vector of gray level values subject to zero-

mean-unit-variance normalization. The testing video sequence1 contains a human face with a

rapid motion. In tracking application, p(xt|xt−1) is used to model the object motion, when

p(xt|xt−1) is not coincident with the accutal motion, the sampling directly from p(xt|xt−1) will

be not efficient. Therefore, although this sequence seems simple, its rapid and arbitrary motion

is an effective testing the different improvements of sampling strategy.

In this experiment,, we firstly apply these filters (except EKPF) to this video sequence to

demonstrate the effectiveness of the sampling strategy in our algorithm. Then, a detail investi-

gation is presented to show why SPSO has advantages over the other nonlinear filters.

In our implementation, the parameters in the particle filter, auxiliary particle filter and un-

scented particle filter are set to {N = 200, Σs = diag(82, 82, 0.022, 0.022, 0.0022, 0.0022)}
corresponding to the number of particles and the covariance matrix of the transition distribution

1The sequence is available at http://vision.stanford.edu/ birch/headtracker/seq/.
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TABLE III

QUANTITATIVE RESULTS OF THE TRACKING PERFORMANCE

Algorithm Frames Tracked MSE of Position (by pixels)

PF 5/31 26.1551

UPF 31/31 3.2097

APF 12/31 20.8094

Our algorithm 31/31 2.0829

respectively. To give a convincing comparison, the sequential PSO algorithm is calibrated in the

same metric, implementing with the same covariance matrix and the same particle number in

each iteration.

As shown in Fig. 9(a) and Fig. 9(c), the PF based tracker and APF based fail to track the

object very soon, because it can not catch the rapid motion of the object. More particles and an

enlargement for the diagonal elements of the covariance matrix would improve its performance,

but this strategy involves more noises and a heavy computational load, and it may trap in the

curse of dimensionality when the dimension of the state increases. Fig. 9(b) shows the tracking

performance of the unscented particle filter, from which we can notice that the tracker follows the

object throughout the sequence, but the localization accuracy is unsatisfactory. In comparison,

our method, which utilizes individual and environmental information in the search space, never

loses the target and achieves the most accurate results (see Fig. 9(d)). Furthermore, we have

conducted a quantitative evaluation of these algorithms, and have a comparison in the following

aspects: frames of successful tracking, MSE (mean square error) between the estimated position

and the labeled groundtruth. In table 1, it is clear that the PF tracker and APF tracker fails

at frame 5, while the UPF and SPSO trackers succeed in tracking throughout the sequence.

Additionally, the SPSO tracker outperforms the UPF tracker in term of accuracy.

A investigation shows the underlying reasons for the above experimental results. The undesired

behavior of particle filter in Fig. 9(a) is caused by the sample impoverishment in its particle

generation process. Let’s focus on the frame 19 when the PF tracker loses the target. Here, the

particles are sampled from the Gaussian based transition distribution to catch the object motion.
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(a) Particle filter

(b) Unscented particle filter

(b) Auxiliary particle filter

(c) Sequential PSO

Fig. 9. Tracking performances of a human face with rapid motion

When the object has rapid and arbitrary motion, the particles drawn from this distribution do not

cover a significant region of the likelihood (as shown in top-left of Fig.10), and thus the weights

of most particles are low, leading to the tracking failure. As for the unscented particle filter,

the sigma-states are generated by UT (unscented transformation) and propagated (as shown in

top-right Fig.10), and the weighted mean and covariance are calculated to form a better proposal

distribution, thus enhancing the tracking performance to some degree. However, the estimation

accuracy of UT is only to the second-order for non-Gaussian data, which may not be coincident

with actual motion and thus leads to inaccurate localization. Meanwhile, the generation of sigma-

states and the updating of the covariance are time-consuming. While the SPSO framework

extracts the local and global information in the particle configuration, and incorporates the newest

observations into the proposal distribution, resulting in a better performance. The bottom row of

Fig.10 shows the multi-layer importance sampling processes in SPSO framework, which pulls

the particles to significant regions of likelihood. As a result, the SPSO framework can handle

this rapid motion even with a smaller particle number.
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Particle filter Unscented particle filter

Sequential PSO

Fig. 10. Tracking procedure of the frame 19

C. Tracking Results of Different Scenes

In order to further evaluate the performance of the proposed tracking framework, it is tested

on three video sequences with different environments. The first video sequence contains a man

walking across a lawn with a cluttered background, large appearance and illumination changes.

In the second video sequence, a pedestrian walks with a large pose change (bows down to reach

the ground and stands back up later). Both of these two video sequences are taken from moving

cameras outdoors. The third video sequence is a figure skating match, which contains a figure

skater with a drastic motion.

From Fig.11(a), we can see that the online updating scheme easily absorbs the appearance and

illumination changes, and our tracking framework provides an effective solution to follow the

walking man in the cluttered background, because the sequential PSO framework is very effective

at finding the global optimum. Fig.11(b) shows the result of tracking the walking pedestrian,

demonstrating the effectiveness of our framework in tracking the large pose changes. A tracking

result of the figure skater with agile motions is shown in Fig.11(c), which demonstrates that our

algorithm has the ability to track the object where large movements exist between two successive

frames.

VII. CONCLUSION

A new sequential particle swarm optimization framework for visual tracking has been proposed

in this paper. The sequential information required by the tracking process is incorporated into the

modified PSO to make this swarm technique properly suited for tracking. In addition, we have
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(a) clutter background, large appearance and illumination changes

(b) large pose changes

(c) drastic motion

Fig. 11. More experimental results

reformulated the SPSO framework in a Bayesian way, and found that it is essentially a multi-

layer importance sampling based particle filter. Furthermore, this framework has been naturally

extended to multi-object tracking as multi-modal optimization. In experiments, the sequential

PSO based tracker is compared very favorably with the particle filter and the unscented particle

filter, both in terms of accuracy and efficiency, demonstrating that the sequential PSO is a

promising framework for visual tracking.

In summary, the sequential PSO provides a more reasonable mechanism and an more effective

way to tackle the dynamic optimization problems than sequential Monte Carlo methods. So it

has many other potential applications in computer vision, including image registration, template

matching and dynamic background modeling.
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