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Abstract—We consider the tensor-based spectral-spatial fea-
ture extraction problem for hyperspectral image classification.
First, a tensor framework based on circular convolution is pro-
posed. Based on this framework, we extend the traditional PCA to
its tensorial version TPCA, which is applied to the spectral-spatial
features of hyperspectral image data. The experiments show
that the classification accuracy obtained using TPCA features
is significantly higher than the accuracies obtained by its rivals.

Index Terms—tensor model, principal component analysis,
feature extraction, hyperspectral image classification.

I. INTRODUCTION

HYPERSPECTRAL imaging sensors collect hyperspectral
images in the form of 3D arrays, with two spatial

dimensions representing the image width and height, and
a spectral dimension describing the spectral bands, whose
number is usually more than one hundred. Due to the redun-
dancy of the raw representation, it is advantageous to design
effective feature extractors to exploit the spectral information
of hyperspectral images [1], [2]. For example, via a linear
projection after an eigenanalysis, PCA (Principal Component
Analysis) reduces a high-dimensional vector to a lower di-
mensional feature vector. By choosing the so-called principal
components, the obtained feature vectors can retain most of
the available information. But PCA, like many other vector-
based counterparts, lacks, in its model, a prior mechanism to
capture the spatial information in the relative positions of the
pixels. This deficiency of vectorial models can be overcome
using a tensorial representations of hyperspectral imagery.

There exist many different tensor models derived from
different perspectives. Tensor models are essentially extensions
of traditional vector models. In the recent years, tensor-based
approaches have been successfully applied in many different
areas, including image analysis, video processing [3], [4] and
remote sensing imagery analysis [5], [6], etc. For example,
Zhang et al. reported a tensor discriminative locality alignment
method, called TDLA, to extract features from hyperspectral
images [6]. Zhong et at. proposed a tensorial discriminant
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extractor called LTDA to obtain spectral-spatial features from
hyperspectral images for image classification [7].

The aforementioned works have shown the superior rep-
resentation capability of a tensor-based multilinear algebra,
compared with that of the traditional matrix algebra. For
example, in the work of M. E. Kilmer et al [8], the authors
introduced the t-product model and defined a generalization
of matrix multiplication for tensors in the form of 3D arrays
(tensors of order three). The generalized matrix multiplication
is based on the circular convolution operation and can be
implemented more efficiently via the Fourier transform. The t-
product model is further developed using the concepts of tubal
scalar (also known as tubal fiber), frontal slice, array folding
and unfolding, etc, to establish its connection to traditional
linear algebra [9], [10]. This development make it possible
to generalize all the classical algorithms formulated in linear
algebra.

Inspired by the recently reported “t-product” tensor model,
we propose a tensor-based spectral-spatial feature extractor
for classifying the pixels of a hyperspectral image. First, a
novel straightforward tensor algebraic framework is proposed.
In the framework, the “t-product” tensors are confined to
the same size and therefore form an algebraic tensor ring.
The algebraic framework combines the “multi-way” merits of
high-order arrays and the “multi-way” intuitions of traditional
matrices since the “t-product” tensors serve as the entries of
our proposed tensor-vectors or tensor-matrices. This algebraic
framework is backwards compatible with the traditional linear
algebra based on non-tensorial vectors and matrices. With the
help of the proposed tensor algebra, we extend PCA to its
tensorial counterpart TPCA (Tensor PCA), which has a prior
mechanism to exploit the spatial information of images. We
demonstrate in our experiments on some publicly available
images that the TPCA outperforms PCA and some other
vector or tensorial feature extractors in terms of classification
accuracy.

This letter is organized as follows. In Section II, we discuss
the tensor algebraic framework. In Section III we propose
a tensorial feature extractor called TPCA (Tensor Principal
Component Analysis) and its fast version via the Fourier
transform. In Section IV, we present the experimental results
and analysis. Finally, we conclude this letter in Section V.

II. TENSOR ALGEBRA

In this section, we extend the “t-product” model [8], [9],
[10] to a novel tensor algebraic framework, which is back-
wards compatible to the traditional matrix algebra. Without
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losing generality, the tensors presented in this letter are second
order. It is easy to extend the method to higher order tensors.

Before extending the “t-product” model, we first confine the
“t-product” tensors to the same size. For second-order tensors,
the tensor size is defined by m×n. In the following discussion,
given second order array X (such as tensor, matrix, etc), [X]i,j
denotes its (i, j)-th entry. If X is first order, [X]i denotes its
i-th entry. Then, some denotations and definitions on the “t-
product tensor” are summarized as follows [8], [9], [10].

Tensor addition: given tensors xt and yt of the same size,
the sum ct = xt + yt is a tensor of the same size such that
[ct]i,j = [xt]i,j + [yt]i,j ,∀i, j.

Tensor multiplication: given tensors xt and yt of size m×n,
the product dt = xt ◦ yt is defined by the result of the circular
convolution of xt and yt, such that

[d]i,j =
m∑

k1=1

n∑
k2=1

[xt]k1,k2
[yt]mod((i−k1),m)+1,mod((j−k2),n)+1.

Given tensors xt and yt of the same size, their product can
be computed efficiently via the fast Fourier transform and the
inverse fast Fourier transform because of the following Fourier
transform theorem.

Fourier transform: Given tensors xt, yt, dt = xt ◦ yt and
their Fourier transforms F (xt), F (yt) and F (dt), the follow-
ing equation holds [F (dt)]i,j = [F (xt)]i,j · [F (yt)]i,j ,∀i, j.

By the virtue of the Fourier transform, the (mn)2 scalar
multiplications of the circular convolution are reduced to the
mn independent scalar multiplications in the Fourier domain.
Thus, the Fourier transform can be employed to speed up a
convolution-based algorithms.

Zero tensor: The zero tensor zt is a tensor whose entries
are all 0, namely [zt]i,j ≡ 0,∀i, j.

Identity tensor: The identity tensor et is a tensor satisfying
[et]1,1 = 1 and [et]i,j = 0 if (i, j) 6= (1, 1).

It is not difficult to prove that the tensors of size m×n de-
fined above form an algebraic ring R. The algebraic operations
of addition and multiplication in R are backwards compatible
with the analogous operations in the field R of real numbers.
Based on the above mentioned “t-product” definitions, we ex-
tend the “t-product” model to a novel straightforward algebraic
framework by the following definitions.

Definition 1. Scalar multiplication: given tensor xt and scalar
α, the product dt = αxt is a tensor of the same size as xt
such that [dt]i,j = α[xt]i,j ,∀i, j.

Definition 2. Vectors and matrices of tensors: A vector of
tensors is a list of elements of R. A matrix of tensors is an
array of elements of R.

In our tensor algebraic framework, the mathematical oper-
ations between elements of vectors of tensors or of matrices
of tensors comply with the operations defined in R. Some
definitions of the mathematical manipulations of vectors and
matrices of tensors are given as follows.

Definition 3. Tensor matrix multiplication: given Xtm ∈
RD1×D2 and Ytm ∈ RD2×D3 , their product Ctm = Xtm ◦
Ytm ∈ RD1×D3 is a new tensor matrix, such that [Ctm]i,j =∑D2

k=1[Xtm]i,k ◦ [Ytm]k,j ,∀i, j

Definition 4. Identity matrix of tensors: The identity matrix
of tensors Etm is a matrix such that [Etm]i,j = et if i = j,
otherwise [Etm]i,j = zt.

Definition 5. Tensor transposition: given tensor xt, its trans-
pose x>t is a tensor of the same size, satisfying [x>t ]i,j =
[xt]mod(1−i,m)+1,mod(1−j,n)+1,∀i, j.

Definition 6. Tensor matrix transposition: given Xtm ∈
RD1×D2 , X>tm ∈ RD2×D1 is a new tensor matrix satisfying
[X>tm]i,j = [Xtm]>j,i,∀i, j, where [Xtm]>j,i is the transpose of
tensor [Xtm]j,i, as defined by Definition 5.

Definition 7. Orthonormal matrix of tensors: if the matrix
Xtm of tensors satisfies X>tm ◦Xtm = Etm we call Xtm an
orthonormal matrix of tensors.

Definition 8. Singular value decomposition of a square tensor
matrix: each matrix Gtm ∈ RD×D has a singular value
decomposition Gtm = Utm◦Stm◦V >tm such that Utm ∈ RD×D

and Vtm ∈ RD×D are both orthonormal tensor matrices and
Stm ∈ RD×D is a diagonal tensor matrix and [Stm]>i,i =
[Stm]i,i,∀i.

To speed up the computations with vectors and matrices of
tensors, we extend the Fourier transform of a tensor to the
Fourier transform of a vector or matrix of tensors.

Definition 9. Fourier transform of a tensor matrix: given a
tensor matrix Xtm, let its Fourier transform be F (Xtm), such
that [F (Xtm)]i,j = F ([Xtm]i,j),∀i, j.

The Fourier transform of a tensor matrix is defined by
the Fourier transform on its matrix tensorial entities. This
definition give a mechanism to decompose a tensor matrix
in the Fourier domain to a range of sperate traditional matrix.

To have the mechanism, we define the following slice of a
tensor matrix by the index of its tensorial entity (ω1, ω2), for
all ω1 = 1, . . . ,m and ω2 = 1, . . . , n.

Definition 10. Slice of a tensor matrix: given Xtm ∈
RD1×D2 , let its slice by index (ω1, ω1) be Xtm(ω1, ω2) such
that Xtm(ω1, ω2) ∈ RD1×D2 and

[Xtm(ω1, ω2)]i,j = [[Xtm]i,j ]ω1,ω2
, ∀i, j, ω1, ω2.

Let the slice of Xftm
.
= F (Xtm) by index (ω1, ω2) be

Xftm(ω1, ω2), such that Xftm(ω1, ω2) ∈ CD1×D2 and

[Xftm(ω1, ω2)]i,j = [[Xftm]i,j ]ω1,ω2
, ∀i, j, ω1, ω2.

Tensor vector is a special case of tensor matrix, thus the slicing
of a tensor vector complies with the the definition of the slicing
of a tensor matrix.

By virtue of Definitions 9 and 10, given the tensor size
of m × n, a mathematical tensor matrix operation can be
decomposed to and efficiently computed by m × n separate
traditional matrix operations in the Fourier domain.

III. TPCA: TENSOR PRINCIPAL COMPONENT ANALYSIS

A. PCA
Traditional PCA can be briefly described as follows — given

x1, · · · , xN ∈ RD and x̄ = (1/N)
∑N

k=1 xk, the covariance
matrix G is given by G = 1

N−1
∑N

k=1(xk − x̄)(xk − x̄)>.
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The singular value decomposition of G is computed such
that G = U · S · V > where both U and V are D × D
orthonormal matrices, in that U> · U = V > · V = ID×D and
S = diag(λ1, λ2, · · · , λD), where λ1 > λ2 > · · ·λD > 0.

Then, given y ∈ RD, its PCA features are given by ŷ =
U> · (y − x̄). To reduce the dimension of ŷ from D to d
(d < D), the last (D − d) entries of ŷ are simply discarded.

B. TPCA

TPCA (Tensor PCA) is a straightforward tensorial extension
of the traditional PCA — given Xtv,1, Xtv,2, · · · , Xtv,N ∈
RD and X̄tv = (1/N)

∑N
k=1Xtv,k tensor matrix Gtm ∈

RD×D is defined by

Gtm = 1
N−1

∑N
k=1(Xtv,k − X̄tv) ◦ (Xtv,k − X̄tv)> (1)

Its singular value decomposition is computed as in Defini-
tion 8, namely

Gtm = Utm ◦ Stm ◦ V >tm. (2)

Then, given a query tensor vector Ytv ∈ RD, its tensor
feature vector Ŷtv is given by

Ŷtv = U>tm ◦ (Ytv − X̄tv). (3)

We call Ŷtv the TPCA vector of Ytv . To accommodate the
traditional algorithms which only deal with traditional vectors,
with the help of the tensor slicing operation, we propose a
mapping δ(·) to transform Ŷtv ∈ RD to δ(Ŷtv) ∈ RD — let
the tensor size be m× n, δ(Ŷtv) is given by

δ(Ŷtv) = 1
mn

∑m
ω1=1

∑n
ω2=1 Ŷtv(ω1, ω2) . (4)

We call ŷ = δ(U>tm ◦ (Ytv − X̄tv)) the traditional TPCA
feature vector, which can be conveniently employed by tradi-
tional non-tensorial algorithms. To reduce the dimension of ŷ
from D to d, the last (D − d) entries are simply discarded.

TPCA is organized in Algorithm 1.
Algorithm 1. Tensor Principal Component Analysis

Input: Query tensor vector Ytv ∈ RD and N training tensor
vectors Xtv,1, · · · , Xtv,N ∈ RD.

Output: non-tensorial TPCA feature vector y ∈ RD

1: Compute Gtm and X̂tv as in equation (1).
2: Compute Utm as in equation (2).
3: Compute Ŷtv as in equation (3).
4: return y ← δ(Ŷtv).

C. Fast TPCA via the Fourier transform

Note that, with the help of the slicing operation, equation
(2) can be computed much more efficiently via a series of tra-
ditional SVDs computed in the Fourier domain. More specifi-
cally, given the tensor matrix Gtm, and Ω

.
= {(ω1, ω2) : ω1 =

1, · · · ,m, ω2 = 1, · · · , n}, equation (2) can be computed as
in the following pseudo-code.

1: Gftm ← F (Gtm).
2: for all (ω1, ω2) ∈ Ω do
3: Compute the traditional SVD of slice Gftm(ω1, ω2)

such that Gftm(ω1, ω2) = U · S · V H , where V H is
the Hermitian transpose of the matrix V .

4: Uftm(ω1, ω2)← U , Sftm(ω1, ω2)← S,
Vftm(ω1, ω2)← V .

5: end for
6: return Utm ← F−1(Uftm), Stm ← F−1(Sftm),
Vtm ← F−1(Vftm).

Furthermore, the Fourier transform and the slicing operation
are also applicable to equations (1), (2) and (3). Thus, the
whole TPCA procedure can be implemented by a series of
traditional PCAs in the Fourier domain. More specifically, with
tensors of size m×n, the fast implementation of the whole T-
PCA can be carried as follows.

1: X̄tv ← (1/N)
∑N

i=1Xtv,i.
2: Yftv ← F (Ytv − X̄tv), Xftv,i ← F (Xtv,i − X̄tv), ∀i.
3: for all (ω1, ω2) ∈ Ω do
4: G← 1

N−1
∑N

i=1Xftv,i(ω1, ω2) (Xftv,i(ω1, ω2))
H
.

5: Compute SVD of G, such that G = U · S ·VH .
6: Ŷftv(ω1, ω2)← UH · Yftv(ω1, ω2).
7: end for
8: return y ← δ(F−1(Ŷftv)).

D. Computational complexity

By the above mentioned speeding-up scheme, a tensorial
operation (such as TPCA or the tensor SVD) is decomposed to
|Ω| separate corresponding traditional non-tensorial operations
computed in the Fourier domain. If the traditional operation
in the Fourier involves one flop, the corresponding tensorial
operation needs |Ω| flops. If the cost of Fourier transform
is ignored, the computational complexity of TPCA or tensor
SVD is proportional to |Ω|. A complex number is a tensor
with |Ω| = 1, therefore the computational complexity of PCA
(or SVD) is O(1). The computational complexity of TPCA
(or tensor SVD) is O(|Ω)|.

IV. EXPERIMENTS

Two publicly available image sets are employed in our
experiments. One is the Indian Pines scene. It consists of
145× 145 pixels and 200 spectral bands. The groundtruth of
the Indian Pines scene is based on 16 classes. Another image
set is the Pavia University scene. It consists of 610×340 pixels
with 103 spectral bands. Its groundtruth is based on 9 classes.

A. Tensorization

We employ a straightforward approach to tensorize the given
images — given a hyperspectral image Z ∈ RD1×D2×D3 , let
Zi,j ∈ RD3 denote the traditional vector representation of the
(i, j)-th pixel such that [Zi,j ]k = [Z]i,j,k,∀i, j, k. Then, we

tensorize each pixel sample to a tensor vector whose entries
are 3×3 tensors, transforming traditional vector Zi,j ∈ RD3 to
tensor vector Ztv,(i,j) ∈ RD3 , ∀i, j. More specifically, Ztv,i,j

is defined via its slice Ztv,(i,j)(ω1, ω2) ∈ RD3 as

Ztv,(i,j)(ω1, ω2) = Zi′,j′ , ∀i, j, ω1, ω2

where i′ .= mod(i+ ω1 − 3, D1) + 1 and j′ .= mod(j + ω2 −
3, D2) + 1.



4

We call {(i′, j′) : ω1 = 1, 2, 3 and ω2 = 1, 2, 3} the 3 × 3
circular-shift neighborhood of (i, j). Given a hyperspectral im-
age with N training pixels and D bands (D = D3), we denote
the acquired tensor vectors in order by Xtv,1, · · · , Xtv,N ∈
RD, which are inputs in Algorithm 1.

B. Experimental results

We report the overall accuracies (OA) and the κ coefficient
of the classification results obtained by five feature extractors
and three classifiers. Higher values of OA and κ indicate a
better classification result [11]. The employed classifiers are
Nearest Neighbour (NN), Support Vector Machine (SVM) and
Random Forest (RF). The Gaussian RBF kernel is employed
for SVM and, in the experiments, the Gaussian parameter σ ∈
{2i}10i=−15 and the regularization parameter C ∈ {2i}15i=−5 are
trained from the 5-fold cross validation.

The extractors include two classical vector-based algorithms
— PCA and LDA, and three state-of-the-art tensor-based
algorithms — TDLA [6], LTDA [7] and TPCA (ours). We also
give the quantitative results obtained by the original raw vector
representation (denoted as “original”) as a comparison base
line. For PCA, TPCA and LDA, we use a range of values for
the feature dimension D, namely D = 5, 10, · · · , Dmax with
Dmax = 200 for the Indian Pines image and Dmax = 100 for
the Pavia University image. The highest classification accuracy
for the range of values of D is reported. In the experiments,
10% of the pixels of interests are uniformly randomly chosen
as the training samples, the rest of the pixels are chosen
as query samples. The classification experiment is repeated
independently 10 times and the average OA and κ is recorded.

The quantitative comparison of the classification results is
given in Table I. The third and fourth column of Table I show
the classification result of OA and κ obtained on the Indian
Pines image. It is clear that the results obtained by the tensorial
features (TDLA, LTDA and TPCA) are better than those ob-
tained by the vectorial features (PCA and LDA). Furthermore,
among all the extractors, TPCA always yields the highest OA
and the largest κ, outperforming its tensorial rivals TDLA and
LTDA. For a comparison with its vectorial counterpart, the
OA obtained by TPCA is about 6% − 11% higher than that
obtained by PCA — with RF, the TPCA accuracy is 91.01%
compared with the baseline 76.78% and the PCA accuracy
79.78%. The Indian Pines image, the groundtruth and the
classification maps with the highest classification accuracies
for the different experimental settings are shown in Figure 2.
It is clear that TPCA yields the best classification.

Since PCA and TPCA have a similar structure, to compare
their performances, the OA curves of PCA and TPCA over
varying feature dimension, obtained by classifiers NN, SVM,
RF on the Indian Pines image, are given in Figure 3. The figure
shows that, no matter which classifier and feature dimension
are chosen, TPCA always outperforms PCA.

The classification results obtained using a range of clas-
sifiers and feature extractors on the Pavia University image
are given in the last two columns of Table I. The visual
classification maps obtained by RF with different extractors,
are shown in Figure 2. The maps with the highest classification
accuracies for the different experimental settings are shown. To

compare the performances of PCA and TPCA, the OA curves
of PCA and TPCA for changing feature dimension, obtained
by classifiers NN, SVM, RF on the Pavia University image,
are given in Figure 4. From Table I, Figure 2 and Figure 4,
a similar observation that TPCA outperforms its rivals can be
drawn, supporting our claims for TPCA.

TABLE I
CLASSIFICATION ACCURACY COMPARISON OBTAINED ON THE INDIAN

PINES IMAGE AND THE PAVIA UNIVERSITY IMAGE

Classifier Extractor Indian Pines Pavia
OA κ OA κ

NN

original 73.43 0.6972 86.35 0.8170
PCA 73.49 0.6977 86.40 0.8178
LDA 71.54 0.6642 85.04 0.8037

TDLA[6] 74.21 0.7209 89.27 0.8568
LTDA[7] 75.14 0.7216 90.48 0.8718

TPCA[ours] 79.15 0.7624 92.35 0.8979

SVM

original 82.95 0.8053 93.60 0.9143
PCA 83.06 0.8065 93.41 0.9123
LDA 79.53 0.7673 89.76 0.8606

TDLA[6] 83.51 0.8168 96.14 0.9498
LTDA[7] 85.68 0.8372 94.91 0.9324

TPCA[ours] 90.62 0.8930 97.34 0.9648

RF

original 76.78 0.7315 89.79 0.8624
PCA 79.78 0.7667 90.42 0.8712
LDA 76.59 0.7353 87.74 0.8395

TDLA[6] 84.96 0.8237 94.32 0.9245
LTDA[7] 86.57 0.8475 93.03 0.9178

TPCA[ours] 91.01 0.8969 96.44 0.9526

V. CONCLUSION

A novel tensor-based feature extractor called TPCA (Tensor
Principal Component Analysis) is proposed for hyperspectral
image classification. First, we propose a new tensor matrix
algebraic framework, which combines the merits of the re-
cently emerged t-product model, which is based on the circular
convolution, and the traditional matrix algebra. With the help
of the proposed algebraic framework, we extend the traditional
PCA algorithm to its tensorial variant TPCA. To speed up
the tensor-based computing of TPCA, we also propose a fast
TPCA for which the calculations are conducted in the Fourier
domain. With a tensorization scheme via a neighborhood of
each pixel, each sample is defined by a tensorial vector whose
entries are all second-order tensors and TPCA can effectively
extract the spectral-spatial information in a given hyperspectral
image. To make TPCA applicable to traditional vector-based
classifiers, we design a straightforward but effective approach
to transform TPCA’s output tensor vector to a traditional
vector. Experiments to classify the pixels of two publicly
available benchmark hyperspectral images show that TPCA
outperforms its rivals including PCA, LDA, TDLA and LDLA
in term of classification accuracy.
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(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 1. Classification maps obtained using RF with different types of features on the Indian Pines images.. (a) Pavia University scene (b) groundtruth (c)
original (d) PCA (e) LDA (f) TDLA (g) LTDA (h) TPCA

(a)
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(b) (c) (d) (e) (f) (g) (h)
Fig. 2. Classification maps obtained using RF with different types of features on the Pavia University images. (a) Pavia University scene (b) groundtruth (c)
original (d) PCA (e) LDA (f) TDLA (g) LTDA (h) TPCA
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Fig. 3. Classification accuracy curves obtained using NN, SVM and RF with PCA/TPCA on the Indian Pines image. (a) NN (b) SVM (c) RF
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Fig. 4. Classification accuracy curves obtained using NN, SVM and RF with PCA/TPCA on the Pavia University image. (a) NN (b) SVM (c) RF
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