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Abstract—In many detection problems, the structures to be detected are parameterized by the points of a parameter space. If the

conditional probability density function for the measurements is known, then detection can be achieved by sampling the parameter

space at a finite number of points and checking each point to see if the corresponding structure is supported by the data. The number

of samples and the distances between neighboring samples are calculated using the Rao metric on the parameter space. The Rao

metric is obtained from the Fisher information which is, in turn, obtained from the conditional probability density function. An upper

bound is obtained for the probability of a false detection. The calculations are simplified in the low noise case by making an asymptotic

approximation to the Fisher information. An application to line detection is described. Expressions are obtained for the asymptotic

approximation to the Fisher information, the volume of the parameter space, and the number of samples. The time complexity for line

detection is estimated. An experimental comparison is made with a Hough transform-based method for detecting lines.

Index Terms—Analysis of algorithms, clustering, edge and feature detection, multivariate statistics, robust regression, sampling,

search process.
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1 INTRODUCTION

ONEof themain tasks in computervision is thedetectionof
image structures such as lines and circles, as well as

more abstract structures such as epipolar transforms,
collineations, and fundamental matrices [13]. This paper
describes a class of probabilistic models which are applicable
to a wide range of image structures and shows how a
probabilistic model can supply the information needed to
design an algorithm for detecting the relevant structure. Each
probabilistic model is a conditional density pðxj�Þ, where x is
ameasurement in ameasurement spaceD and � corresponds
to a structure and takes values in a parameter space T . The
example of line detection is discussed in detail in order to
show how the general theory is applied to a particular case.

The advantages of this approach are: 1) The parameters
required by the algorithm can be calculated from pðxj�Þ and a
user defined threshold ef on the probability of a false
detection. 2) The algorithm is simple: The space T is sampled
at a finite number of points and the structures corresponding
to one or more of these points are detected if they have a
sufficient number of inliers. 3) In the case of line detection,
the time complexity is only OðNð�tÞ�1=2 lnðNð�tÞ�1=2ÞÞ,
where N is the number of measurements, � ¼ Oð1Þ, and 2t
is the variance of the measurement noise.

The class of probabilistic models is an extension of the
class of models defined by Werman and Keren [24]. In the
absence of noise, the measurements compatible with the
structure corresponding to the parameter value � in T form
a subset Mð�Þ of D. In the special case of lines, D coincides
with the image, T is a two-dimensional manifold, and Mð�Þ
is a line in D. The probability density function pðxj�Þ for a
measurement x given Mð�Þ is obtained from a solution

ðs; xÞ7!psðxj�Þ to the heat equation on D, where s is the time
parameter in the heat equation. At time 0, p0ðxj�Þ is zero
outside Mð�Þ. As s increases, the density psðxj�Þ takes larger
values away fromMð�Þ. The heat flow is stopped at a time t.
The density pðxj�Þ is given by pðxj�Þ ¼ ptðxj�Þ. The density
pðxj�Þ is a familiar one, in spite of its elaborate definition: If t
is small, then ln pðxj�Þ is proportional to the squared
distance from x to Mð�Þ. Further information about pðxj�Þ
is given in Section 3.1 and in Appendices A and B.

The density pðxj�Þ contains information which has not so
far been used in applications to computer vision. The source
of the information is aRiemannianmetric [5], [9] defined onT
by pðxj�Þ and known in statistics as the Rao metric [15], [22].
The Rao metric is the distance metric for comparing
parameter vectors wished for in the Introduction to [11]. It
is defined at each point � of T by a matrix Jð�Þ which is the
Fisher information [1], [4], [7], [19] of pðxj�Þ. Under the Rao
metric, the spaceT has a volumeV ðT; JÞ. The volumeV ðT; JÞ
is ameasure of the difficulty of searchingD for occurrences of
the structures Mð�Þ. If V ðT; JÞ is small, then, in a sense to be
made precise in Section 4.2 below, D contains only a few
distinct structures and it is possible to search D quickly for
those structures which are supported by the measurements.

The Rao metric leads to an upper bound on the
probability of a false detection. The upper bound exists
because it is, in some sense, possible to make a finite list of
“all the false detections that might occur.” If the probability
of each individual false detection is small, then the
probability of obtaining any false detection on the list is
also small. False detections are often discussed in the
literature, see [6], [11], [23] for example, but, until now, the
discussion has not included any quantitative description of
all the false detections that might occur. The results on false
detection obtained in this paper support the claim in [23]
that “...fits with an arbitrarily low inlier percentage...may be
found, as long as the bad data are random and the good
data are close enough to the correct fit.” Numerical
evidence presented in Section 6.2 suggests but does not
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prove that, at a fixed noise level and a fixed probability of
false detection, the ratio r=N of the least number r of inliers
sufficient for detection to the total number of measurements
N tends to 0 as N tends to infinity.

An advantage of using the Rao metric is that the results,
including the volume V ðT; JÞ, the number of distinct
structures, and the upper bound for the probability of a
false detection, are independent of the choice of parameter-
ization of T . If a tractable parameterization of T exists, then
it can be used with no loss of information.

Unfortunately, the densities pðxj�Þwhich arise in practice
only rarely yield mathematically tractable or closed form
expressions for Jð�Þ. This difficulty can sometimes be
overcome when the measurement noise is small by
replacing Jð�Þ with an asymptotic approximation Kð�Þ
which is more likely to have a closed form expression. A
formula (34) for Kð�Þ is given below in Appendix B. The
strategy of approximating Jð�Þ by Kð�Þ is successful in the
case of lines: Kð�Þ takes a particularly simple form and it is
straightforward to calculate V ðT;KÞ and to implement a
line detection algorithm based on Kð�Þ.

Related work on line detection is discussed in Section 2.
Background material from statistics is covered in Section 3.
In Section 4, it is shown in detail how the theory outlined
above leads to structure detection algorithms based on
sampling the parameter space and an upper bound is
obtained for the probability of false detection. In Section 5,
the theory developed in Sections 3 and 4 is applied to line
detection. False detections of lines are discussed in Section 6
and experimental results are reported in Section 7. Some
suggestions for future research are made in Section 8.

2 LINE DETECTION

It is assumed that the data for line detection consist of a set
of measurements of image points. The task is to find those
subsets of the measurements which support the presence of
a line. It is not assumed that a line is present and, even if
there is a line present, it is not assumed to be unique. The
measurements supporting the presence of a line l are
known as the inliers for l. The remaining measurements are
outliers for l, but some of them may be inliers for other lines
in the image. In this section, four methods for detecting
lines are described, namely RANSAC [6], MINPRAN [23],
the Hough transform [8], [10], [14], [17], and the new
method based on the Rao metric on T .

The RANSAC method of line detection is described first.
Suppose that there are N measurements xð1Þ; . . . ; xðNÞ. A
pair of distinct measurements xðiÞ, xðjÞ is chosen and the
remaining measurements are checked to see how many are
inliers for the line hxðiÞ; xðjÞi. If there are a sufficient number
of inliers, then hxðiÞ; xðjÞi is detected. Ideally, each of the
NðN � 1Þ=2 pairs of measurements should be checked to see
if enough of the remaining measurements are inliers to the
line defined by the pair. However, this is inefficient if N is
large. Instead, RANSAC takes a series of random samples
from the set of NðN � 1Þ=2 pairs of measurements. The
numberof randomsamplesdependsonaprior estimateof the
number of measurements which are inliers to a given line.
RANSAC detects lines in the presence of large numbers of
outliers. It has the disadvantage that it is not possible to
calculate the probability of a false detection.

MINPRAN builds on RANSAC by making a careful
investigation of the criteria for deciding 1) if a measurement

is an inlier to a particular line and 2) if there are enough
inliers to justify detecting the line. The resulting improve-
ments make it possible to detect lines and other structures
reliably even if there are a large number of outliers and even
if the variance of the measurement noise is unknown. The
problem remains of calculating the probability of a false
detection over all the lines that might occur.

In the Hough transform method, the set of all lines in the
image is parameterized by a two-dimensional parameter
space T . Each point � in T corresponds to a line in the
image. An example of a parameter space is given: Let l be
an image line and let �ðcosð�Þ; sinð�ÞÞ be the vector of
minimum Euclidean length from the origin to l. Then, � ¼
ð�; �Þ and T is the region of the plane defined by 0 � � < b,
0 � � < 2�, where b is an upper bound depending on the
size of the image. The space T is divided into small regions
called buckets [8] or accumulator cells [10]. Each bucket B is
assigned an integer aðBÞ which is initialized to zero. The
measurements xðiÞ are examined, in turn, for 1 � i � N . If
xðiÞ is on a line corresponding to a point � in B, then aðBÞ is
increased by 1. The final value of aðBÞ is equal to the
number of measurements which are on lines corresponding
to points in B. If aðBÞ is large, then a line is detected in the
image with parameter vector � in B. The disadvantage of
the Hough transform is that there is no probabilistic model
for deducing the values of the key parameters. These
parameters include the size and number of the buckets and
the threshold on aðBÞ for detecting a line.

In the new method, T is sampled at a finite set of points
G � T . The set G does not depend on the values of the
measurements or on the numberN of themeasurements. The
setG is searched for the set L � G of points corresponding to
lines with r or more inliers, where r is a threshold which
depends on the noise level t, the number ofmeasurementsN ,
and a user specified probability ef of false detection. The
points in L correspond to the lines detected in the image.

3 PROBABILISTIC MODEL FOR IMAGE STRUCTURES

The aim in this section is to describe a general probabilistic
model suitable for a wide range of detection problems,
including line detection. The application to line detection is
described in detail in Sections 5, 6, and 7.

3.1 The Model for pðxj�Þ
The definition of the probability density function pðxj�Þ is an
extension of a definition given in [24] for D ¼ IRd. The space
D is given a Riemannian metric g with the associated
canonical measure d� [5], [9]. The measure d� is obtained by
using g to calculate the volumes of sets in D. For example, a
d-dimensional cuboid at x with sides �x1 � . . .��xd has a
volume under d� approximately equal to j detðgðxÞÞj1=2
�x1 . . . �xd. The probability that a measurement x is
contained in a subset A of D, given the presence of a
structure Mð�Þ � D, is Probðx 2 Aj�Þ ¼

R
A pðxj�Þ d�.

It is assumed that each measurement x is obtained by
addingnoise to anunderlying noise freemeasurement ~xx such
that pðxj~xxÞ is the result of a heat flow or diffusion on D. The
heat flow begins at time 0 as a delta function concentration of
heat at ~xx. The heat flow lasts for a time t, giving a probability
density function pðxj~xxÞ ¼ ptðxj~xxÞ. If D ¼ IRd and g is the
Euclideanmetric, then d� is the Lebesguemeasure in IRd and
ptðxj~xxÞ is the Gaussian density with expected value ~xx and
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covariance 2tI, where I is the d� d identitymatrix. In the case
of line detection, D is the unit disc in IR2, g is the Euclidean
metric, and d� is the Lebesgue measure onD.

Each subset Mð�Þ of D is given a probability measure dh
which specifies the distribution of ~xx on Mð�Þ. If the
measurements are more likely to arise from certain parts of
Mð�Þ, then dh should be larger in those parts. Conversely, dh
should be smaller in those parts ofMð�Þ less likely to give rise
to measurements. If there is no information about the
distribution of ~xx onMð�Þ, then the simplest default choice is
to make dh equal to a scaled version of the measure induced
onMð�Þas a submanifoldofD. The scaling is chosen such that
the total volume of Mð�Þ under dh is 1. The density pðxj�Þ ¼
ptðxj�Þ is obtained by integrating the different contributions
ptðxj~xxÞ as ~xx ranges overMð�Þ or, equivalently, by solving the
heat equation on D with the condition that, at time 0, the
distribution of the heat is given by dh. As the time increases
away from 0, heat flows from Mð�Þ into the rest of D. If t is
small, then the density ptðxj�Þ is concentrated in a neighbor-
hood ofMð�Þ.

3.2 Fisher Information and the Rao Metric

General arguments from probability theory show that the
Fisher information for the family of densities x 7! pðxj�Þ,
� 2 T gives rise to a statistically meaningful definition of
volume on T . Intuitively, a subset B of T has a small
volume if the densities pðxj�Þ, � 2 B are similar to each
other. Let nðT Þ be the dimension of T . The Fisher
information is the symmetric nðT Þ � nðT Þ matrix Jð�Þ
defined for � 2 T by

Jijð�Þ ¼ �
Z
D

@2
�i;�j

lnðpðxj�ÞÞ
� �

pðxj�Þ d�ðxÞ; 1 � i; j � nðT Þ;

where �i, �j are components of the vector � and @2
�i;�j

is the
differential operator defined such that @2

�i;�j
lnðpðxj�ÞÞ ¼ @2 ln

ðpðxj�ÞÞ=@�i@�j. The Fisher information for r measurements
sampled independently from pðxj�Þ is rJð�Þ.However,Jð�Þ is
used rather than a multiple such as rJð�Þ because it is not
known a priori which sets of measurements are inliers to the
same line.

The Fisher information defines a Riemannianmetric on T ,
known as the Raometric. The square of the length element ds
for the Rao metric is ds2 ¼ d�>Jð�Þd�. The Rao metric has a
statistical meaning [1], [2]. Let x 7! pðxj�Þ, x 7! pðxj�0Þ be two
probability density functions and let x be a measurement
sampled either from pðxj�Þ with probability 1/2 or from
pðxj�0Þwith probability 1/2. Suppose that x and �, �0 are given
but the information about which of pðxj�Þ, pðxj�0Þ provided
the samplex is hidden. If �, �0 are close together under theRao
metric, then any method for choosing the density which
provided x has a high probability of error.

Let �ð�Þ d� be the canonical measure on T associated with
the Rao metric. The measure �ð�Þ d� is defined by �ð�Þ d� ¼
j detðJð�ÞÞj1=2 d�. The volume V ðB; JÞ of any subset B of T
under the canonical measure is defined by V ðB; JÞ ¼R
B �ð�Þ d�. The volume V ðB; JÞ is independent of the choice
of parameterization of T . If V ðB; JÞ is large and if a
measurement x is given, then there is a high probability that
B contains apoint � forwhich pðxj�Þ is large. The reason is that
the pðxj�Þ varywidely as � ranges overB. In some sense, there
are “many” pðxj�Þ for � 2 B and, therefore, an increased
probability that pðxj�Þ is large for some � 2 B. Conversely, if

V ðB; JÞ is small, then there is a low probability of finding a
point � in B for which pðxj�Þ is large.

Amari [1] shows that a wide range of metrics for
comparing probability density functions reduce to simple
functions of the Rao metric when the density functions are
near to each other. Examples of such metrics include
Kullback-Leibler, Bhattarcharrya, Matusita-Hellinger,
Chernoff, and the Jensen-Shannon divergence. For example,
the Kullback-Leibler distance Dð�jj�0Þ between pðxj�Þ and
pðxj�0Þ is approximated by

Dð�jj�0Þ ¼ 1

2
ð�� �0Þ>Jð�Þð�� �0Þ þOðk�� �0k3Þ: ð1Þ

Further information is given in [19]. The connection between
Dð�jj�0Þ and the Rao metric fails ifDð�jj�0Þ is large. The right-
hand side of (1) is an approximation to half the square of the
geodesic distance [5], [9] between � and �0. The geodesic
distance is symmetric in �, �0, but Dð�jj�0Þ is not symmetric,
thus (1) cannot hold, in general, if Dð�jj�0Þ is large. To the
author’s knowledge, there is no known statistical or informa-
tion theoretic interpretation of the geodesic distance between
widely separated points �, �0 of T .

4 MODELS

In Section 4.1, it is shown that T can be divided into small
subsets Bð�Þ, in which the central point � is a single
representative for all the points �0 in Bð�Þ. The different �
together form a discrete approximation to T which is the
basis of a simple algorithm for detecting the structures
parameterized by T . In this approach to structure detection,
it is possible to calculate upper bounds for the probability of
false detection, as explained in Sections 4.3 and 4.4.

4.1 Models Represented by �

Let � be a constant of order 1. The set Bð�Þ of models
represented by � is the ellipsoid defined by

Bð�Þ ¼ �0 2 T;
1

2
ð�0 � �Þ>Jð�Þð�0 � �Þ � �

� �
: ð2Þ

The factor 1=2 is included in (2) to ensure that � is
approximately equal to the Kullback-Leibler distance from
� to any point on the boundary of Bð�Þ. If �0 is in Bð�Þ, then
the submanifoldsMð�Þ,Mð�0Þ ofD are so close together that
a measurement x arising from ~xx in Mð�Þ can, with a high
probability, also arise from a nearby point ~yy in Mð�0Þ. The
point � is regarded as a representative model for all the
points �0 in Bð�Þ.

The value of � should not be too small, otherwise there
would exist points �0 well outside Bð�Þ but such that Mð�Þ,
Mð�0Þ are indistinguishable given a single measurement. On
the other hand, an upper boundof the form � � 1 is needed to
ensure that, if �0; �00 2 Bð�Þ, then any inlier x forMð�0Þ is also
an inlier for Mð�00Þ. It may be possible to deduce an exact
value of � using a constraint on the probability of missed
detection. An argument is given in Section 5.4 to show that, in
the case of line detection, it is reasonable to choose � ¼ 1=2.

4.2 Number of Models

Let bðnðT ÞÞ be the volume of the unit ball in the
Euclidean space IRnðT Þ. It can be shown that the volume
V ðBð�Þ; JÞ of Bð�Þ in T is V ðBð�Þ; JÞ � ð2�ÞnðT Þ=2bðnðT ÞÞ.
In particular, V ðBð�Þ; JÞ is independent of � to leading
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order. The number, nðT; J; �Þ, of models in T is defined,
as in [2], [21], by nðT; J; �Þ ¼ ð2�Þ�nðT Þ=2bðnðT ÞÞ�1V ðT; JÞ.
The quantity nðT; J; �Þ is independent of the choice of
parameterization of T . It is a measure of the complexity
of the problem of detecting the structures Mð�Þ. If
nðT; J; �Þ is small, then it is easy to detect the structures
Mð�Þ by first covering T with sets Bð�ðiÞÞ, 1 � i �
nðT; J; �Þ and then checking each �ðiÞ, in turn, to see if
it is supported by the measurements.

4.3 Threshold for Detecting a Model

Let Að�; �Þ � D be defined by

Að�; �Þ ¼ fx; x 2Mð�0Þ for some �0 2 Bð�Þg: ð3Þ

The inliers forMð�Þ are defined to be the points ofAð�; �Þ. Let
xðiÞ, 1 � i � N , be the measurements and let nð�Þ be the

number of measurements in Að�; �Þ, nð�Þ ¼ #fxðiÞ; xðiÞ 2
Að�; �Þ; 1 � i � Ng. If nð�Þ is large, then this is evidence in

favor of the detection ofMð�Þ.
A false detection arises if there are, by chance, many

measurements which are inliers for Mð�Þ but which do not
arise from a “true” image structure, where “true” might
mean a structure as seen by a human observer. If the
measurements are chosen randomly and uniformly in D,
then there is a small but nonzero probability that a large
number of measurements will be inliers to Mð�Þ for some
value of �. A human observer, knowing the origin of the
measurements, would not agree that Mð�Þ is detected.

As in [23], the problem of false detections is reduced by
using a threshold r: If nð�Þ � r, then Mð�Þ is detected. If r is
sufficiently large, then the probability of a false detection is
small. However, r should not be too large, otherwise it may
happen that nð�Þ < r evenwhen the structureMð�Þ is present
in the image. The threshold r is chosen such that, if the xðiÞ,
1 � i � N , are independent samples from a random variable
taking values uniformly distributed onD, then there is only a
small probability that there exists � 2 T for which nð�Þ � r.

4.4 Upper Bound for Probability of False Detection

Let A be a subset ofD, let Eðj; AÞ be the event that j or more
of the measurements xðiÞ are in A and let F be the
probability of a false detection. An upper bound for F is
obtained. The strategy in the proof is to express T as a union
of sets Bð�ðiÞÞ, 1 � i � nðT; J; �Þ, and to sum the contribu-
tion of each Bð�ðiÞÞ to F . The result is only an upper bound
because the interdependencies between the events
Eðr; Að�; �ÞÞ, � 2 T are not fully taken into account.

The probability F is given by F ¼ Probð[fEðr;Að�; �ÞÞ;
� 2 TgÞ. Let T be covered by the sets Bð�ðiÞÞ, 1 � i � n

ðT; J; �Þ. It follows that

F ¼ Prob
[nðT;J;�Þ

i¼1

[
�2Bð�ðiÞÞ

Eðr; Að�; �ÞÞ

0
@

1
A

�
XnðT;J;�Þ

i¼1
Prob

[
�2Bð�ðiÞÞ

Eðr; Að�; �ÞÞ

0
@

1
A:

ð4Þ

If r measurements are contained in Að�; �Þ for some
� 2 Bð�ðiÞÞ, then the same r measurements are contained
in [fAð�; �Þ; � 2 Bð�ðiÞÞg, thus

[ fEðr; Að�; �ÞÞ; � 2 Bð�ðiÞÞg � E r;[fAð�; �Þ; � 2 Bð�ðiÞÞgð Þ:
ð5Þ

If x 2 Að�; �Þ for some � 2 Bð�ðiÞÞ, then there exists �0 2 Bð�Þ
such that x 2Mð�0Þ. It is assumed that �ðiÞ, �, �0 are close
enough to ensure that Jð�ðiÞÞ � Jð�Þ � Jð�0Þ. With this
assumption, Dð�ðiÞjj�Þ � �, Dð�jj�0Þ � � and Dð�ðiÞjj�Þ � 4�.
It follows that x 2 Að4�; �ðiÞÞ and

E r;[fAð�; �Þ; � 2 Bð�ðiÞÞgð Þ � E r;Að4�; �ðiÞÞð Þ: ð6Þ

Equations (4), (5), and (6) yield

F �
XnðT;J;�Þ

i¼1
Prob E r;

[
�2Bð�ðiÞÞ

Að�; �Þ

0
@

1
A

0
@

1
A

�
XnðT;J;�Þ

i¼1
ProbðE r;Að4�; �ðiÞÞð ÞÞ:

ð7Þ

Let pð�; �Þ be the probability that a random variable
uniformly distributed in D takes a value in Að�; �Þ. Recall
from Section 3.2 that V ðAð�; �Þ; gÞ is the volume of Að�; �Þ
under the canonical measure defined on D by the metric g.
It follows that

pð�; �Þ ¼ V ðAð�; �Þ; gÞ=V ðD; gÞ; ð8Þ

ProbðEðj;Að�ÞÞÞ ¼
XN
i¼j

N

i

� �
pð�; �Þið1� pð�; �ÞÞN�i: ð9Þ

Let pmð�Þ be defined by pmð�Þ ¼ supfpð�; �Þ; � 2 Tg. An

argument similar to that used in [23] Lemma 2 establishes

that ProbðEðj; Að4�; �ÞÞÞ is an increasing function of pð4�; �Þ,
thus (9) yields

ProbðEðr; Að4�; �ÞÞÞ �
XN
i¼r

N
i

� �
pmð4�Þið1�pmð4�ÞÞN�i: ð10Þ

The upper bound Fup for F is obtained from (7) and (10),

Fup ¼ nðT; J; �Þ
XN
i¼r

N
i

� �
pmð4�Þið1� pmð4�ÞÞN�i: ð11Þ

The upper bound, Fup, on F is general in the following
sense: Let A be any algorithm which samples T at points �
and checks without error to see if nð�Þ � r. Then, Fup

bounds the probability of false detection by A regardless of
the number of samples � and regardless of whether A uses
the subsets Bð�Þ of T . A numerical investigation of Fup is
made in Section 6.2.

5 APPLICATION TO LINE DETECTION

The theory developed in Sections 3 and 4 is applied to the
detection of lines in two-dimensional images. As noted in
Section 1, the theory is made mathematically tractable by
replacing the Fisher information Jð�Þ with an asymptotic
approximation Kð�Þ. The error in the approximation is
small provided the measurement noise is small.

5.1 Parameter Space for Lines

Themathematical calculations are simplified by choosing the
image to be a disc rather than the usual square or rectangle.
The disc is scaled to have unit radius and Cartesian
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coordinates x1, x2 are chosenwith the origin of coordinates at
the center of the disc. The image coincides with the
measurement space D, the metric g on D is the usual
Euclidean metric, and d� is the Lebesgue measure onD.

Let l be any line in D. If l does not contain the origin,
then l is specified by giving the polar coordinates ð�; �Þ of
the point on l nearest to the origin. If l contains the origin,
then l is specified by the coordinates ð0; �Þ, where � is the
angle between the x1 axis and the normal to l. If
0 � � < �, then ð0; �Þ and ð0; �þ �Þ specify the same line.
The parameter space is T ¼ ½0; 1Þ � ½0; 2�Þ and the equa-
tion of the line l with parameter vector � ¼ ð�; �Þ is
x1 cosð�Þ þ x2 sinð�Þ ¼ �, 0 � � < 1; 0 � � < 2�.

5.2 Approximation to the Fisher information

The line l ¼Mð�Þ has the arc length parameterization

s 7! �ðcosð�Þ; sinð�ÞÞ þ sð� sinð�Þ; cosð�ÞÞ;
� ð1� �2Þ1=2 < s < ð1� �2Þ1=2:

ð12Þ

As noted in Section 3.1, it is assumed that each measure-
ment x arises from an underlying point ~xx in Mð�Þ. It is
assumed that ~xx is uniformly distributed on Mð�Þ. This is the
most general assumption that can be made in default of any
additional information about ~xx. The probability measure dh

on Mð�Þ is equal to the Lebesgue measure on Mð�Þ, scaled
such that Mð�Þ has one-dimensional volume equal to 1,

dhðsÞ ¼ 2�1ð1� �2Þ�1=2 ds; �ð1� �2Þ1=2 < s < ð1� �2Þ1=2:
ð13Þ

The following notation is employed: x ¼ ðx1; x2Þ is a point
ofD, yðxÞ is thepoint onMð�Þ closest toxanduðxÞ ¼ x� yðxÞ.
(More technically,D is identified with a subset of the tangent
space TyðxÞD and expyðxÞðuðxÞÞ ¼ x, where exp is the expo-
nential map from a neighborhood of 0 in TyðxÞD toD [9].) The
Euclidean norm of uðxÞ is denoted by kuðxÞk. The asymptotic
approximation Kð�Þ to Jð�Þ is obtained using (34) in
Appendix B. The point yðxÞ 2Mð�Þ has a parameter value s
given by s ¼ x:ð� sinð�Þ; cosð�ÞÞ ¼ �x1 sinð�Þ þ x2 cosð�Þ. A
short calculation yields

yðxÞ ¼ �ðcosð�Þ; sinð�ÞÞ þð�x1 sinð�Þ
þx2 cosð�ÞÞð� sinð�Þ; cosð�ÞÞ;

uðxÞ ¼ ðx1 cosð�Þþx2 sinð�Þ��Þ ðcosð�Þ; sinð�ÞÞ;

gyðxÞðuðxÞ; uðxÞÞ ¼ kuðxÞk2 ¼ ðx1 cosð�Þ þ x2 sinð�Þ � �Þ2;
@2
�;�gyðxÞðuðxÞ; uðxÞÞ ¼ 2;

@2
�;�gyðxÞðuðxÞ; uðxÞÞ ¼ 2ðx1 sinð�Þ � x2 cosð�ÞÞ;

@2
�;�gyðxÞðuðxÞ; uðxÞÞ ¼ 2ðx1 sinð�Þ � x2 cosð�ÞÞ2

� 2ðx1 cosð�Þ þ x2 sinð�ÞÞ2

þ 2�ðx1 cosð�Þ þ x2 sinð�ÞÞ:
ð14Þ

If x ¼ yðxÞ, then x is on Mð�Þ. In this case,

s ¼ �x1 sinð�Þ þ x2 cosð�Þ;
� ¼ x1 cosð�Þ þ x2 sinð�Þ:

ð15Þ

It follows from (13), (14), (15), and (34) that the asymptotic
approximationKð�Þ to the Fisher informationJð�Þ is givenby

Kð�Þ ¼ 1

4t

Z ffiffiffiffiffiffiffiffi
1��2
p

�
ffiffiffiffiffiffiffiffi
1��2
p

1 �s
�s s2

� �
ds

ð1� �2Þ1=2

¼ 1

2t

1 0

0 ð1� �2Þ=3

� �
; � 2 T:

ð16Þ

5.3 Curvature and volume of T

The parameter space T ¼ ½0; 1Þ � ½0; 2�Þ, as defined in
Section 5.1, is flat under the Euclidean metric in the plane.
However, the Euclidean metric on T has no statistical
meaning. It is simply a consequence of the choice of
parameterization of the lines in D. The Rao metric on T
does have a statistical meaning, as described in Section 3.2.
Under the Rao metric, T is curved. The scalar curvature [20]
R of T under the approximation Kð�Þ to the Rao metric is
R ¼ 4t=ð1� �2Þ2, 0 � � < 1, thus T has positive scalar
curvature at every point. The Gaussian curvature of T isR=2.

The definition (2) of the sets Bð�Þ, � ¼ ð�; �Þ, becomes

Bð�Þ¼fð�0; �0Þ; ð4tÞ�1ð�0��Þ2þð12tÞ�1ð1� �2Þð�0��Þ2 � �g:
ð17Þ

It follows from (17) that the boundary of Bð�Þ is an ellipse
with its axes aligned with the coordinate axes. As �

increases toward 1, the length of the � axis of the ellipse
is constant but the length of the � axis increases, showing
that estimates of the orientations of lines decrease in
accuracy for lines near to the circumference of D.

The canonical measure �ð�Þ d� defined on T by K is

�ð�Þ d�¼j detðKð�ÞÞj1=2 d�¼ð2
ffiffiffi
3
p

tÞ�1ð1� �2Þ1=2d�d� � 2 T:

ð18Þ

The volume V ðT;KÞ of T and the number nðT;K; �Þ of
models are

V ðT;KÞ ¼
Z
T

�ð�Þ d� ¼ �2=ð4
ffiffiffi
3
p

tÞ; ð19Þ

nðT;K; �Þ ¼ V ðT;KÞ=ð2�bð2ÞÞ ¼ �=ð8
ffiffiffi
3
p

�tÞ: ð20Þ

5.4 Value of �

The theory developed in Sections 3 and 4 does not assign a
value to �. In the case of line detection, a plausible value is
found as follows: Note first that, if x is away from the
boundary of D, then pðxj~xxÞ is very closely approximated by
a Gaussian density pðxj~xxÞ ¼ ð4�tÞ�1 expð�kx� ~xxk2=ð4tÞÞ. It
follows that 2t ¼ �2, where � is the standard deviation of
the measurement noise for the components x1, x2 of x.

The sets Að�Þ are narrow strips containing the line �. To a
first approximation in t, Að�Þ is symmetric about the line �.
If � is large, then the sets Að�; �Þ � D are relatively large
and it is difficult to justify including the boundary points of
Að�; �Þ as inliers toMð�Þ. This suggests choosing � such that
all the points of Að�; �Þ are within 2� of Mð�Þ, where � ¼
ð2tÞ1=2 is the standard deviation of the measurement noise.
Let � be a line through the origin, i.e., � ¼ 0. It follows from
(26) below that the furthest distance of a point of Að�; �Þ
from Mð�Þ is 4ðt�Þ1=2 to leading order in t. On setting
2� ¼ 4ðt�Þ1=2, it follows that � ¼ 1=2.
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5.5 Comparison with the Hough Transform

The Hough transform buckets are similar to the sets Bð�Þ
defined by (2). The innovation in this paper is that the size
and shape of each Bð�Þ and the total number nðT;K; �Þ of
sets Bð�Þ needed to cover T are calculated using the
approximation Kð�Þ to the Rao metric on T . The Hough
transform is analyzed in [11], but the measurements in [11]
are line segments rather than points. Yuen and Hlavac [26]
and Lam et al. [16] use geometric arguments to obtain
values for the sides��,�� of the Hough transform buckets.

The dimensions of Bð�Þ are now compared with ��, ��.
It follows from (17) that, if � ¼ 1=2, � ¼ ð�; �Þ, then

maxfj�0 � �j; ð�0; �0Þ 2 Bð�Þg ¼ ð4t�Þ1=2 ¼ ð2tÞ1=2;

maxfj�0 � �j; ð�0; �0Þ 2 Bð�Þg ¼ ð12t�Þ=ð1� �2Þ
� 	1=2� ð6tÞ1=2;

ð21Þ

which suggest �� ¼ 2ð2tÞ1=2, minf��g ¼ 2ð6tÞ1=2. The
equation �� ¼ 2ð2tÞ1=2 is similar to an expression for ��

given as (7) in [26], provided the ðN þ 1Þ � ðN þ 1Þ pixel2
image in [26] is scaled to the unit square. The equation
minf��g ¼ 2ð6tÞ1=2 is similar to an expression for ��

given as (13) in [26]. It follows from (21) and �� ¼ 2ð2tÞ1=2
that ð1� �2Þ1=2�� ¼

ffiffiffi
3
p

�� which is similar to the formula
2ð1� �2Þ1=2 sinð��=2Þ ¼ �� given as (13) in [16].

6 PROBABILITY OF A FALSE DETECTION

A major advantage of the approach to line detection
described in Section 5 is that it allows the calculation of
upper bounds for the probability of false detection. An
upper bound is obtained in Section 6.1 and checked using
synthetic data in Section 6.2.

6.1 Upper Bound for the Probability of a False
Detection

Let x be a measurement sampled using the uniform density
on D. The probability pð�; �Þ that x is an inlier for Mð�Þ is
given by (8). The two-dimensional volume V ðAð�; �Þ; gÞ is
the usual Euclidean area of Að�; �Þ. Let ds be the length
element on Mð�Þ and let maxfjujg be the distance from a
point on Mð�Þ to the boundary of Að�; �Þ in the direction
normal to Mð�Þ. It is assumed that 1� �2 6¼ OðtÞ. Then, to a
first approximation, the line Mð�Þ runs down the middle of
Að�; �Þ and the area of Að�; �Þ can be estimated by
integrating 2maxfjujg ds along Mð�Þ. The points on the
boundary of Að�; �Þ are on lines with parameter values �0 in
the boundary of Bð�Þ, thus the first step in estimating
V ðAð�; �Þ; gÞ is to examine the boundary points of Bð�Þ.

It follows from (17) that the boundary of Bð�Þ is the
ellipse ð4tÞ�1ð�0 � �Þ2 þ ð12tÞ�1ð1� �2Þð�0 � �Þ2 ¼ �: The
points �0 ¼ ð�0; �0Þ on the boundary of Bð�Þ are parameter-
ized by 	 2 ½0; 2�Þ as follows:

�0 ¼ �þ ð4t�Þ1=2 cosð	Þ;
�0 ¼ �þ ð12t�Þ1=2ð1� �2Þ�1=2 sinð	Þ:

ð22Þ

Let y be a point on Mð�Þ. The coordinates of y in the arc
length parameterization (12) of Mð�Þ are

y ¼ �ðcosð�Þ; sinð�ÞÞ þ sð� sinð�Þ; cosð�ÞÞ: ð23Þ

Let x be a point in Að�; �Þ such that x� y is normal to Mð�Þ
and let u be the signed distance from y to x, u ¼ �kx� yk. It
follows from (23) that

x ¼ ð�þ uÞðcosð�Þ; sinð�ÞÞ þ sð� sinð�Þ; cosð�ÞÞ: ð24Þ

The expression juj is amaximumwhen x is on a lineMð�0Þ
for some �0 in the boundaryofBð�Þ. It follows that �0 ¼ ð�0; �0Þ,
where �0, �0 are given by (22). The condition that x is onMð�0Þ
is x:ðcosð�0Þ; sinð�0ÞÞ ¼ �0. It follows from this equation and

(24) that ð�þ uÞ cosð�0 � �Þ þ s sinð�0 � �Þ ¼ �0, which yields

u ¼ �0 � �� sð�0 � �Þ þOðtÞ

¼ 2ðt�Þ1=2 cosð	Þ �
ffiffiffi
3
p

s sinð	Þð1� �2Þ�1=2
� �

þOðtÞ:

ð25Þ

On taking the maximum of juj over 0 � 	 < 2�, it follows

from (25) that

max
	
fjujg ¼ 2ðt�Þ1=2 1þ 3s2ð1� �2Þ�1

� �1=2
þOðtÞ: ð26Þ

Now that maxfjujg is obtained, V ðAð�; �Þ; gÞ is estimated by

the following integral along Mð�Þ,

V ðAð�; �Þ; gÞ¼2

Z
Mð�Þ

max
	
fjujg dsþOðtÞ

¼8ðt�Þ1=2
Z ffiffiffiffiffiffiffiffi

1��2
p

0

1þ3s2ð1� �2Þ�1
� �1=2

dsþOðtÞ

¼4ðt�ð1� �2ÞÞ1=2 2þð
ffiffiffi
3
p
Þ�1sinh�1

ffiffiffi
3
p� �� �

þOðtÞ:

ð27Þ

It follows from (8) and (27) that

pð�; �Þ ¼

4��1 t�ð1� �2Þ
� 	1=2

2þ ð
ffiffiffi
3
p
Þ�1 sinh�1

ffiffiffi
3
p� �� �

þOðtÞ;
ð28Þ

thus the supremum, pmð�Þ, of the probabilities pð�; �Þ, � 2 T is

pmð�Þ ¼ supfpð�; �Þ; � 2 Tg

¼ 4 ��1ðt�Þ1=2 2þ ð
ffiffiffi
3
p
Þ�1 sinh�1

ffiffiffi
3
p� �� �

þOðtÞ:

ð29Þ

When pmð�Þ is used in numerical calculations, the OðtÞ term
is omitted from (29).

It follows from (11), (20), and (29) that the upper bound

Fup for the probability of a false detection of a line is

Fup ¼
�

8
ffiffiffi
3
p

�t

XN
i¼r

N
i

� �
pmð4�Þið1� pmð4�ÞÞN�i: ð30Þ

6.2 Numerical Results

Theexpression (30) forFupwasevaluated for a rangeofvalues

of r with � ¼ 1=2, t ¼ 1=2� 10�4. The graphs of lnðFupÞ as a
function of r are shown in Fig. 1 for the two cases N ¼ 20

(lower graph) and N ¼ 40 (upper graph). The graphs show

that to achieveFup � 1 forN ¼ 20, a threshold of r ¼ 6 almost

sufficesandforN ¼ 40,r ¼ 9suffices. It isapparent fromFig.1

that Fup decreases rapidly as r increases. For example, the
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upper graph in Fig. 1 can be approximated by a straight line

with gradient �1:56 . . . . If r is increased by 1 in the region

where the straight line approximation is accurate, then

Fupðrþ 1Þ=FupðrÞ � expð�1:56Þ ¼ 0:21 . . . .

The fact that Fup is an upper bound for the probability of

false detection suggests that the values of r predicted using

Fup are too high. This suggestion is supported by the graphs

shown in Fig. 2. As in Fig. 1, � ¼ 1=2, t ¼ 1=2� 10�4. Let rðNÞ
be the integer such thatFupðrðNÞÞ � 1 andFupðrðNÞ � 1Þ > 1.

Theupper graph in Fig. 2 shows rðNÞ=N as a function ofN for

10 � N � 150. The lowergraph is obtainedas follows:Aset of

N points is sampled from the uniform distribution onD. Let

rmin be the least value of r for which no lines are detected by

Algorithm 1 which is described in Section 7.2 below. The

sampling is repeated three times for each value ofN , yielding

rminðN; 1Þ, rminðN; 2Þ, rminðN; 3Þ. Let ravðNÞ be defined by

ravðNÞ ¼ ðrminðN; 1Þ þ rminðN; 2Þ þ rminðN; 3ÞÞ=3. The lower

graph in Fig. 2 shows ravðNÞ=N as a function of N for

10 � N � 150.

It is clear from Fig. 2 that ravðNÞ=N < rðNÞ=N . For

example, rð150Þ ¼ 17, rminð150Þ ¼ 7. The downward slope

of the graph for N 7! ravðNÞ=N supports the conjecture

made in Section 1 that the ratio of the minimum acceptable

number of inliers to N tends to 0 as N tends to infinity. The

fact that the graph of N 7! rðNÞ=N also has a downward

slope suggests that the bound Fup might be accurate enough

to support a proof of the conjecture.

7 EXPERIMENTS

An algorithm for detecting lines was implemented in

Mathematica [25] and tested by comparing its results with

those obtained from a publicly available Matlab implemen-

tation of the Hough transform [12]. The algorithm is

described in Sections 7.1 and 7.2. Experimental results are

reported in Section 7.3 and the time complexity of the

algorithm is estimated in Section 7.4.

7.1 Preliminaries

In the Mathematica program, the parameter space T ¼
½0; 1Þ � ½0; 2�Þ is sampled at the points of a grid G which is
square in the usual Euclidean metric on T . The grid G is
chosen to be fine, i.e., with more than nðT;K; �Þ points, in

order to make sure that each subset Bð�Þ of T contains at
least one point of G. The choice of a square grid is not
optimal, but it has the advantage of simplicity.

The size of the grid G is ng � ng, where ng ¼ d2�=he and

h ¼ min
�

maxfj�0 � �j; ð�0; �0Þ 2 Bð�Þg ¼ �=ð�tÞ1=2: ð31Þ

The points of G are labeled by pairs of integers ði; jÞ,
0 � i; j < ng. The point ði; jÞ in G has coordinates �ði; jÞ ¼
ð�ðiÞ; �ðjÞÞ in T , where �ðiÞ ¼ i=ng, 0 � i < ng, �ðjÞ ¼ 2�j=ng,

0 � j < ng. Each point ði; jÞ inG is the center of a setBði; jÞ of
points of G defined by

Bði; jÞ ¼ fðk; lÞ; ðk; lÞ 2 G and �ðk; lÞ 2 Bð�ði; jÞÞg;
0 � i < ng; 0 � j < ng:

ð32Þ

Let xðkÞ be one of the measurements. The curve CðkÞ of
points ð�; �Þ in T corresponding to the lines in D containing

xðkÞ is defined by � ¼ xðkÞ:ðcosð�Þ; sinð�ÞÞ, 0 � � < 1, 0 �
� < 2�. For each measurement, xðkÞ define the function

j 7! iðk; jÞ, 0 � j < ng, and the set SðkÞ by iðk; jÞ ¼ Round

ðngxðkÞ:ðcosð�ðjÞÞ; sinð�ðjÞÞÞÞ, 0 � j < ng, SðkÞ ¼
Sng�1

j¼0
Bðiðk; jÞ; jÞ, 1 � k � N . The set SðkÞ contains the points of G
close toCðkÞ in the following sense: If �ðl;mÞ 2 SðkÞ, thenxðkÞ
is an inlier for the lineMð�ðl;mÞÞ.

7.2 Algorithm 1

The parameters for Algorithm 1 are t, ef , where ef is a user

defined threshold for the probability of a false detection.

The variable � is assigned the value 1=2, as discussed in

Section 5.4. The threshold r for detection is r ¼ ravðNÞ,
where ravðNÞ is as defined in Section 6.2. The threshold r

can be calculated at runtime using �, t, ef and the numberN

of measurements, but, to increase efficiency, it is assumed

that a suitable table of values N 7! ravðNÞ is computed

offline and r is obtained as an input from the table at run

time. The output of Algorithm 1 is a list L of points of G

corresponding to lines with r or more inliers.
By definition, a run in a list S is a sequence of successive

identical elements of S. The function maxrunðSÞ returns the
length of the largest run in S and the function
maxrunentryðSÞ returns an element of S which belongs to
a run in S with length equal to maxrunðSÞ.
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Algorithm 1

1. Input t, ef , r and the measurements xðiÞ, 1 � i � N .
2. Compute the sets SðiÞ, 1 � i � N .
3. W  ;.
4. While True

4.1. S  SortðListðSð1Þ; . . . ; SðNÞÞÞ.
4.2. If maxrunðSÞ < r, Goto 5.
4.3. W  W [ fmaxrunentryðSÞg.
4.4. If maxrunentryðSÞ 2 SðiÞ, SðiÞ  ;, 1 � i � N .

5. EndWhile.
6. L ;;
7. While W 6¼ ;,

7.1. ðl;mÞ ¼ argmaxði;jÞfjBði; jÞ \W j; ði; jÞ 2Wg;
7.2. L L [ fðl;mÞg;
7.3. W  W nBðl;mÞ;

8. EndWhile.
9. Output L.
10. Stop.

Line 4.4 in Algorithm 1 removes all the measurements
which are inliers to a line, once the line has been detected. If
the inliers are not removed in this way, then the algorithm
failswhena largenumberofmeasurements aregroupedclose
to apointx in the image:All the points inGwhich correspond
to lines passing near to x are added to L. The While loop at
line 7 extracts fromW the set L of representative points ofG.

7.3 Results

Algorithm 1was applied to image 0017.jpg from the publicly
available PETS 2001 database.1 A gray-scale version of this
image is shown in Fig. 3. The parameters for Algorithm 1 are
shown in Table 1. The image 0017.jpg was converted to gray
scale and three images Ið1Þ, Ið2Þ, Ið3Þ were selected from it.
Each IðiÞ was square and centered at the center ð164; 123Þ of
0017.jpg. The Sobel edge detector was applied to each
image IðiÞ and the magnitude of the response calculated for
each pixel. The N pixels with the largest responses were
selected as measurements, where N is given for each IðiÞ by
the appropriate entry in Table 1. The Sobel edge magnitudes
were not filtered or edited in any other way. The number N
is proportional to the width of IðiÞ rather than the area,

because the structures to be detected, i.e., lines, are one-
dimensional. The parameter t depends on the size wðiÞ �
wðiÞ pixel2 of IðiÞ, t ¼ 2wðiÞ�2. This is equivalent to assuming
that the standard deviation of the measurement noise is
equal to 1 pixel. The last column of Table 1 shows the lines
detected in each IðiÞ.

The images IðiÞ are shown in Fig. 4 with the detected lines
superimposed on them. Thewhite circlesmark the boundary
of the measurement space D. The lines include structures in
the buildings as well as structures in the straight row of cars
parked in front of the buildings. Some lines in the original
gray-level images are undetected because they do not
contribute to the set of N measurements. Fig. 5 shows the
detected lines superimposed on the measurements. For
comparison, the results obtained using a publicly available
implementation of the Hough transform [12] are shown in
Fig. 6. The measurements are the same as those shown in
Fig. 5. Note that the implementation [12] contains a
parameter p which controls the number of detected lines in
the followingway: LetB be a bucket for theHough transform
and let aðBÞ be the integer defined in Section 2. A line is
detected in the bucketB if aðBÞ � pmaxCfaðCÞg. If p is small,
then a large number of lines is detected. The value of p is
chosen for each IðiÞ such that the number of lines detected by
the Hough transform is similar to the number of lines
detected byAlgorithm 1. The results for Ið1Þ and Ið2Þ in Fig. 6
suggest that the Hough transform, as implemented in [12],
has a tendency to detect sets of near concurrent lines.

7.4 Time Complexity

ThetimecomplexityofAlgorithm1isestimated.The lengthof
the curve CðkÞ in T under the Euclidean metric is Oð1Þ. It
follows that the number jSðkÞj of points in SðkÞ is OðngÞ. The
time taken to construct SðkÞ is OðjSðkÞjÞ. The length of S is
OðN ngÞ, thusthetimetakentosortS isOðNng lnðNngÞÞ,which
istheleadingorderterminthetimecomplexityofAlgorithm1.
Equation (31) is used to substitute for ng ¼ d2�=he to give the
time complexityOðNð�tÞ�1=2 lnðN ð�tÞ�1=2ÞÞ.

For comparison, consider a second algorithm, Algo-
rithm 2, which checks each of nðT;K; �Þ models in turn to
see how many inliers it has. If each check has a time
complexity OðNÞ, then the total time complexity for the
second algorithm is OðNð�tÞ�1Þ.

The time complexity of RANSAC is estimated. The
probability that two measurements xðiÞ, xðjÞ are inliers to
the same line is, in theworst case, rðNÞ2=N2,where rðNÞ is the
threshold for detection. Let u be the number of random
selectionsofpairsxðiÞ,xðjÞ sufficiently large toensure that the
probability of obtaining two inliers to the same line is 1� 
,
where 
 is a small constant. It follows that ð1� rðNÞ2=N2Þu
� 
, thus u � N2 lnð
�1Þ=rðNÞ2. If the time taken to find the
inliers for a given line hxðiÞ; xðjÞi is OðNÞ, then the time
complexity of RANSAC isOð1ÞNu ¼ OðN3 lnð
�1Þ=rðNÞ2Þ.

The above estimates of time complexity suggest that
Algorithm 1 and Algorithm 2 have a lower time complexity
than RANSAC for large N , especially if rðNÞ=N becomes
small. On the other hand, Algorithm 1 and Algorithm 2
have a large time complexity if t is small.

8 CONCLUSION

The probability density function pðxj�Þ for a measurement x
given an image structure � contains information about the
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Fig. 3. Gray-scale version of the original image 0017.jpg.
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TABLE 1
Parameters Used to Obtain the Results Shown in Figs. 3, 4, 5

Fig. 4. Detected lines for (a) Ið1Þ, (b) Ið2Þ, and (c) Ið3Þ.

Fig. 5. Measurements and detected lines for (a) Ið1Þ, (b) Ið2Þ, and (c) Ið3Þ.

Fig. 6. Lines detected using the Hough transform for (a) Ið1Þ, (b) Ið2Þ, and (c) Ið3Þ.



parameter space T in which � takes values. This information
leads to a metric on T known in statistics as the Rao metric.
The Raometric is used to define a class of optimal algorithms
for detecting structures � in an image. The algorithms are
optimal in that they have the least detection threshold
required to reduce the probability of false detection below a
specified limit in the presence of uniformly distributed
outliers. The prior information needed by the algorithms
consists of the density pðxj�Þ and a single additional
parameter: an upper bound ef on the probability of a false
detection. All the other parameters in the algorithms are
calculated from pðxj�Þ and ef . An upper bound for the
probability of a false detection is obtained under the
assumption that the outliers are uniformly distributed.

Line detection is a special case in which the structures �
are lines in the image. Experiments show that the new
algorithm detects lines at least as well as Hough transform-
based algorithms. The advantage of the new algorithm is
that the parameters of the algorithm, apart from a user
defined threshold on the probability of a false detection, are
deduced from pðxj�Þ. The time complexity of the new
algorithm is less than the time complexity of RANSAC if the
number of measurements is large.

Possible directions for future research include:

1. Devise algorithms for detecting image structures
other than lines;

2. Find better methods for choosing the sample points
in the parameter manifold;

3. Improve the upper bound (11) on the probability of a
false detection;

4. Improve the speed of the detection algorithms;
5. Improve the choice of density pðxj�Þ, for example by

taking into account the statistics of images [18].

APPENDIX A

DEFINITION OF pðxj�Þ
As noted in Section 3.1, the conditional density pðxj�Þ is
obtained as the solution to the heat equation on the

measurement space D. The space D has a Riemannian

metric g which depends on the format of the measurements.

The simplest case is D � IRd with g equal to the Euclidean

metric. Let4x be the Laplace-Beltrami operator onD [3]. The

signof4x is chosensuch that, in thespecial caseD � IRd,4x is

the negative of the Laplacian, i.e., if f : IRd ! IR is a C2

function, then4xf ¼ �
Pd

i¼1 @
2
xi
f . The heat equation onD is

@tfðx; tÞ þ 4xfðx; tÞ ¼ 0, x 2 D; t � 0. The density pðxj�Þ ¼
ptðxj�Þ is obtainedby solving theheat equationwith the initial

condition that that fðx; 0Þ is the generalized function defined

by the measure dh on Mð�Þ. If t is small, then ptðxj�Þ is
concentrated in a neighborhood ofMð�Þ.

APPENDIX B

ASYMPTOTIC APPROXIMATION TO pðxj�Þ
The Riemannian metric g defines an inner product on the
tangent space TxD of D at x. If u; v 2 TxD, then the inner
product of u, v is written as gxðu; vÞ. The geodesic distance
between x; y 2 D is distgðx; yÞ. If distgðx; yÞ is small, then it is
equal to the length of the shortest geodesic from x to y.

Let the function w : D� T ! IR be defined by
wðx; �Þ ¼ miny2Mð�Þfdistgðx; yÞg, x 2 D, � 2 T . If x is
sufficiently close to Mð�Þ, then there is a unique point
yðxÞ 2Mð�Þ such that wðx; �Þ ¼ distgðx; yðxÞÞ and there
exists uðxÞ 2 TyðxÞD such that expyðxÞðuðxÞÞ ¼ x, where
exp is the exponential map from an open neighborhood
of 0 in TyðxÞD to D. It follows from the properties of
the exponential map that wðx; �Þ2 ¼ gyðxÞðuðxÞ; uðxÞÞ. It
can be shown that ln ptðxj�Þ has the asymptotic
approximation ln ptðxj�Þ 	 �ð4tÞ�1wðx; �Þ2 þOð1Þ, x 2 D,
t > 0. This approximation is accurate provided Mð�Þ
does not have large curvatures over an Oðt1=2Þ length
scale. The resulting asymptotic approximation to the
Fisher information Jð�Þ is

Jijð�Þ 	
1

4t

Z
D

@2
�i;�j

wðx; �Þ2
� �

ptðxj�Þ d�ðxÞ

	 1

4t

Z
Mð�Þ

@2
�i;�j

wðx; �Þ2
h i

x¼y
dhðyÞ

	 1

4t

Z
Mð�Þ

@2
�i;�j

gyðxÞðuðxÞ; uðxÞÞ
h i

x¼y
dhðyÞ;

1 � i; j � nðT Þ:

ð33Þ

It follows from (33) that Jð�Þ 	 Kð�Þ, where Kð�Þ is the
matrix defined by

Kijð�Þ ¼
1

4t

Z
Mð�Þ

@2
�i;�j

gyðxÞðuðxÞ; uðxÞÞ
h i

x¼y
dhðyÞ; 1 � i; j � nðT Þ:

ð34Þ

In the application to line detection in Section 5.2, g is the
Euclidean metric on D and gyðxÞðuðxÞ; uðxÞÞ ¼ kuðxÞk2 ¼
kx� yðxÞk2.
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