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The Fisher information and the Rao measure are obtained in closed form for a family
of probability density functions parametrized by the manifold PSL(2,R) of projective
transformations of the real projective line. In addition, the Fisher information and
the Rao measure are obtained for the sub-manifold of affine transformations. An
application of these results to computer vision is described. The Rao measure is
used to obtain a closed form approximation to the probability of misclassifying a
projective transformation of the line as an affine transformation. The approximation
is a function of the number of pairs of points that correspond under the projective
transformation and the standard deviation of the error in locating a point.
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1. Introduction

The Fisher information (Cover & Thomas 1991; Lindsey 1996) is used to define
the Rao metric for pairs of probability density functions in a family of densities
parametrized by the points of a smooth manifold (Amari 1985; Kotz & Johnson
1992; Rao 1945). The Rao metric has a statistical meaning when a pair of proba-
bility density functions have parameters given by points which are close together in
the manifold: suppose that independent samples are drawn from one of the densities.
Then the second density is also likely to be good candidate for the source of the sam-
ple (Balasubramanian 1996, 1997; Myung et al . 2000). The Rao metric transforms
under reparametrizations of the manifold in such a way that the distance between
the two probability density functions is invariant (Jost 1995). This invariance is nec-
essary if the choice of parametrization is not to affect statistical estimation (Fisher
1922; Jeffreys 1961, ch. III, § 3.10).

The Rao metric defines a canonical measure, or Rao measure, on the parameter
manifold. If the manifold has a finite volume under the Rao measure, then the mea-
sure can be normalized to give a prior density suitable for the Bayesian estimation of
parameter values from data samples. The prior density favours regions of the param-
eter space where the probability densities change rapidly. It is precisely these regions
that offer the best chance of finding a density which fits closely to the data samples.
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2 S. J. Maybank

The pinhole camera provides a good model for image formation (Faugeras 1993).
The essential components of a pinhole camera are the pinhole itself and an image
plane chosen such that it does not contain the pinhole. The pinhole is usually called
the optical centre of the camera. Each space point p distinct from the optical centre OK?
O defines a line 〈O, p〉. The image of p is formed by taking the intersection of 〈O, p〉
with the image plane. The totality of lines through O comprises a projective plane
P

2. If p is restricted to lie on a line k not containing O, then the totality of lines
〈O, p〉 for p ∈ k forms a projective line P

1.
The following two examples show how projective transformations of the line arise

in computer vision. Suppose that two images of the same scene are taken. A point
q in the first image is said to correspond to a point r in the second image, q ↔ r,
if q and r are both projections of the same scene point. For the first example, let
m1, m2 be the two images of the line k. Then m1, m2 are both projective lines and
the function m1 �→ m2 defined by the pairs of corresponding points is a projective
transformation of the line.

For the second example, suppose that the two images are each projections of a
plane, Π, such as the side of a building or a flat area of ground. Let qi, 0 � i � n, be
a set of points in the first image ofΠ, and let ri, 0 � i � n, be the set of corresponding
points in the second image. The set of image lines through q0 is called the pencil of
lines with centre q0 (Semple & Kneebone 1952). It comprises a projective line P

1.
The correspondences 〈q0, qi〉 �→ 〈r0, ri〉, 1 � i � n, between image lines are part of
a projective transformation from the pencil of lines with centre q0 to the pencil of
lines with centre r0. A numerical version of this example is described in § 4.

The geometrical properties of the projective transformations of the line are
described by Semple & Kneebone (1952) but note that they call these transformations
‘homographies’. Hartley & Zisserman (2000) discuss many estimation problems in
computer vision, including the estimation of projective transformations of the plane.
They use the term homography to mean an projective transformation of the plane.

A projective transformation of the line can be estimated using data in the form of
measurements of point correspondences. Algorithms for estimating projective trans-
formations usually involve a search through a range of models, where each model
has a geometric part, namely the projective transformation, and a probabilistic part
which quantifies the extent to which the measurements are compatible with the pro-
jective transformation. The Fisher information and the Rao metric are the basis of
estimation algorithms that are unaffected by changes in the parametrization of the
models. Invariance under changes in the parametrization is desirable because the
parametrization is chosen independently of the true projective transformation and
so should not affect any estimate of it.

Parameter estimation becomes more difficult if the functional form of the model is
allowed to vary, especially if this includes a variation in the number of parameters.
In the general case there is a set of candidate manifolds, M1,M2, . . . , with vary-
ing dimension. The term ‘model selection’ refers to the selection of the best manifold OK?
amongst the different candidates. It is not appropriate simply to choose the manifold
containing the parameter value which best fits the measurements, because models
with large numbers of parameters will almost always be favoured over models with
small numbers of parameters (Torr et al . 2000; Torr & Zisserman 1998). An exam-
ple of model selection for projective transformations is analysed in § 6. The example
contains two manifolds. The first manifold parametrizes the projective transforma-
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tions. The second manifold parametrizes the affine transformations and forms a co-
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dimensional 1 sub-manifold of the first manifold.
Section 2 describes a model for estimating projective transformations of the line.

The Fisher information and the Rao measure of the model are obtained in closed
form in § 3. A numerical example is described in § 4. The sub-manifold of affine
transformations is described in § 5 and the probability of misclassification is estimated
in § 6. Some concluding remarks are made in § 7.

2. Geometrical and probabilistic models

All coordinates will be real numbers and all transformations between spaces will be
defined over the real numbers. Let the projective line P

1 have coordinates (x, y)T.
As usual, if y �= 0, then (x, y) and (xy−1, 1) refer to the same point of P

1 and xy−1

is a point of R ⊂ P
1. Let H be the invertible matrix

H =
(
a b
c d

)
. (2.1)

The matrix H defines a projective transformation as follows (Thurston 1997):(
x
y

)
�→ H

(
x
y

)
=
(
ax+ by
cx+ dy

)
. (2.2)

Two invertible 2 × 2 matrices H, K define the same projective transformation if
and only if there exists a non-zero scalar λ such that H = λK. The projective
transformations (2.2) such that ad−bc > 0 form a Lie group PSL(2,R). It is assumed
from now on that ad− bc > 0. If this condition does not hold in an application, then
it can be imposed by reversing the coordinate either in the domain or in the range
of the projective transformation.

The matrix H defines an affine transformation if c = 0. The affine transformations
form a subgroup A(2,R) of PSL(2,R).

(a) Parametrization of PSL(2,R)

The scale factor of the matrix H in (2.1) is fixed by requiring firstly that det(H) ≡
ad− bc = 1, and secondly that the vector (a, c) satisfies either c > 0 or c = 0, a > 0.

There exist µ, µ̃ ∈ [0,∞), α ∈ [0, π), β ∈ [−α, 2π − α) such that

(a, c) = µ̃(cosα, sinα), (2.3)

(b, d) = µ(cos(α+ β), sin(α+ β)). (2.4)

The values of µ, µ̃, α, β are uniquely determined by (2.3) and (2.4). It follows from
(2.3), (2.4) and the constraint det(H) = 1 that

µ̃µ(cosα sin(α+ β) − sinα cos(α+ β)) = 1;

thus sinβ > 0 and Author:
unnecessary
brackets around β
removed here and
throughout OK?

µ̃−1 = µ sinβ. (2.5)

It follows from (2.4) and (2.5) that(
a b
c d

)
=
(

cosα/(µ sinβ) µ cos(α+ β)
sinα/(µ sinβ) µ sin(α+ β)

)
. (2.6)
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4 S. J. Maybank

Figure 1. Parametrization of a pencil of lines.

The triple θ(H) = (µ, α, β) is determined by H, and conversely, (µ, α, β) determines
H up to scale. It follows that θ = (µ, α, β) parametrizes PSL(2,R). The constraints
α ∈ [0, π), β ∈ [−α, 2π − α), sinβ > 0 yield β ∈ (0, π). Let D be defined by

D = {(α, β) : 0 � α < π, 0 < β < π}.
The set (0,∞) ×D is mapped bijectively to PSL(2,R) by (µ, α, β) �→ H.

(b) Parametrizations of a pencil of lines

To parametrize a pencil of lines in the image, pick a fixed reference line l
through the centre q of the pencil. Each line m in the pencil defines a unique angle
ψ(m) ∈ [−π/2, π/2) between m and l, as shown in figure 1. The angle ψ(m) is the
angular coordinate of m. The reference line l has angular coordinate ψ(l) = 0. The
argument m may be omitted from ψ(m) if the meaning is clear from the context.

A second parametrization of the pencil is obtained. Let h be a fixed line normal to l
such that ‖l⋂h− q‖ = 1. The coordinate x(m) ofm is defined by x(m) = tan(ψ(m)),
i.e. x(m) is the signed distance from l

⋂
h to m

⋂
h. The corresponding projective

coordinates, (x(m), 1), are given in terms of ψ(m) by (sin(ψ(m)), cos(ψ(m))), after
multiplying (x(m), 1) by the scale factor cos(ψ(m)). If m is parallel to h, then x(m)
is not defined, but ψ(m) = −π/2, and the projective coordinates of m are (−1, 0) or,
equivalently, (1, 0).

Recall the example from § 1 in which a plane Π in space contains a pencil of
lines and two images of the pencil are taken by different cameras. Let m1, m2 be
corresponding lines from the first and second images, respectively, and let x1 =
x1(m1), x2 = x2(m2) be the coordinates of the lines. Then x1, x2 are related by a
projective transformation

x2 =
ax1 + b

cx1 + d
, (2.7)

where the coefficients a, b, c, d depend on the relative positions and orientations of
the two cameras and Π.

Let ψ1, ψ2 be the angular coordinates of m1, m2. The function F (ψ1, θ) is defined
such that ψ1 �→ F (ψ1, θ) is the function between angular coordinates equivalent
to (2.7),

ψ2 = tan−1
(
a tanψ1 + b

c tanψ1 + d

)
≡ F (ψ1, θ), (2.8)

where θ = θ(a, b, c, d) is as defined in § 2 a,
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Suppose that the projective transformation is required to map a specified line
m1 in the first pencil to a specified line m2 in the second pencil. Then coordinates
can be chosen in each pencil such that m1 = (1, 0)T, m2 = (1, 0)T. The projective
transformations which map m1 to m2 are then exactly the transformations for which
c = 0 in (2.7), i.e. they are the affine transformations.

(c) Probabilistic model

Let φ1, φ2 be the measured values of the angular coordinates of the corresponding
lines m1, m2. The measurement φ1 is given a uniform prior density on [−π/2, π/2),
to reflect the belief that there is no preferred direction for the observed lines. In
general, φ2 �= F (φ1, θ), because of the effects of measurement errors.

It is assumed that the difference φ2 − F (φ1, θ) has a Gaussian density with stan-
dard deviation σ � π/2. The pair (φ1, φ2) of measurements has the density

p(φ1, φ2 | θ) =
1√

2π3σ2
exp
(

− 1
2σ2 (φ2 − F (φ1, θ))2

)
. (2.9)

In numerical work the difference φ2 − F (φ1, θ) must be normalized to the range
[−π/2, π/2). The advantage of (2.9) is that it is simple enough to allow the calculation
of closed form expressions for the Fisher information and the Rao measure, but at
the same time it is similar to the probability density functions used in practice, for
example by Hartley & Zisserman (2000) in their § 3.3.

The above assumption that φ1 has a uniform density on [−π/2, π/2) differs from
the usual formulation in which φ1 is the sum of a true measurement ψ1 and an error
ε1. If ψ1 has a uniform prior density on [−π/2, π/2) and ε1 is Gaussian and with a
small standard deviation, then the density of ψ1 + ε1 is closely approximated by the
uniform density.

In many previous applications of projective transformations to computer vision the
coordinates x1, x2, rather than φ1, φ2, are used. The problem with x1 (and x2) is
that the weighting of the measurement errors in x1 should decrease as |x1| increases:
if |x1| is large, then a large error in the measurement of x1 may be equivalent to only
a small error in the orientation of the line m1 specified by x1. The strategy adopted
here is to use the more complicated angular coordinates, φ1, φ2, and to make the
probability density function for the errors depend on φ1 and φ2 only through the
difference φ2 − F (φ1, θ).

3. Properties of the Fisher information for PSL(2, R)

In § 3 a–e closed form expressions are obtained for the Fisher information and the
Rao measure. The final subsection, § 3 f , gives a justification for using the Rao metric
to compare probability density functions and for using the Rao measure to define a
prior density on the parameter manifold.

(a) Fisher information

The Fisher information, J(θ), for the parametrized family of densities θ �→
p(φ1, φ2 | θ) is the symmetric 3×3 matrix defined by (Amari 1985; Balasubramanian
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1996, 1997; Lindsey 1996)

Jij(θ) = −Eφ

(
∂2

∂θi∂θj
ln(p(φ1, φ2 | θ))

)
, 1 � i, j � 3,

where Eφ is the expected value with respect to the density (2.9) for φ. If θ̂ is the
maximum-likelihood estimation of θ for data consisting of independent measurements
of the coordinates of N pairs of corresponding points, then as N → ∞ the probability
density of θ̂ − θ tends to the Gaussian density N (0, N−1J(θ)−1) (Lindsey 1996).

A short calculation shows that

Jij(θ) = Eφ

((
∂

∂θi
ln(p(φ1, φ2 | θ))

)(
∂

∂θj
ln(p(φ1, φ2 | θ))

))
, 1 � i, j � 3. (3.1)

It follows from (2.9) that

∂

∂θi
ln p(φ1, φ2 | θ) = σ−2(φ2 − F (φ1, θ))

∂F

∂θi
, 1 � i � 3;

thus Author:
rearrangement of
equation OK? Also
please distinguish
between variable ‘d’
and differential ‘d’
throughout.

Jij(θ) = σ−4Eφ

(
(φ2 − F (φ1, θ))2

∂F

∂θi

∂F

∂θj

)
=

1
πσ2

∫ π/2

−π/2

∂F

∂θi

∂F

∂θj
dφ1, 1 � i, j � 3.

(3.2)

The Fisher information, J(θ), defines on PSL(2,R) a Riemannian metric known
in statistics as the Rao metric for the family of densities (2.9). If θ1, θ2 are nearby
points of PSL(2,R), then the square of the distance between θ1 and θ2 is

(θ1 − θ2)TJ(θ1)(θ1 − θ2) +O(‖θ1 − θ2‖3).

Under the Rao metric, PSL(2,R) has a canonical measure τ(θ) dθ defined by (Gal-
lot et al . 1990)

τ(θ) =
√

| det(J(θ))|. (3.3)

In applications to statistics the canonical measure τ(θ) dθ is called the Rao measure.

(b) Invariance of the Rao metric under rotations

The Fisher information and the Rao metric are independent of the coordinate α
introduced in § 2 a. To see this, let R(γ) be the 2 × 2 rotation matrix

R(γ) =
(

cos γ − sin γ
sin γ cos γ

)
.

The matrix R(γ) is an element of the special orthogonal group SO(1). The group
SO(1) acts on PSL(2,R) by matrix multiplication on the left, H �→ R(γ)H. Let
θ(H) = (µ, α, β), with the action of R(γ) on the parameter vector θ written as
θ �→ R(γ) · θ. A short calculation shows that Change to centred

dot here OK? Is
this multiplication
or scalar product?

R(γ)
(

cosα/(µ sinβ) µ cos(α+ β)
sinα/(µ sinβ) µ sin(α+ β)

)

=
(

cos(α+ γ)/(µ sinβ) µ cos(α+ β + γ)
sin(α+ γ)/(µ sinβ) µ sin(α+ β + γ)

)
. (3.4)

Proc. R. Soc. Lond. A (2003)
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Let the function γ �→ s(γ) be defined as follows. If there exists an integer n
such that α+ γ + 2nπ = 0, then set s(γ) = 1. Otherwise, choose s(γ) ∈ {−1, 1} and
choose the integer n such that 0 < s(γ)(α+ γ + 2nπ) < π. It follows that

R(γ) · θ =

{
(µ, α+ γ + 2nπ, β) if s(γ) = 1,

(µ, α+ γ + (2n+ 1)π, β) if s(γ) = −1.

Note that if s(γ) = −1, then the matrix R(γ)H is scaled by −1 before obtaining the
components of θ(R(γ)H).

Let (u, v)T be defined by (
u
v

)
= R(γ)H

(
tanφ1

1

)
.

The vector (u, v)T is parallel to

R(γ)

(
sin(F (φ1, θ(H)))
cos(F (φ1, θ(H)))

)
. (3.5)

It follows from (3.4) and (3.5) that

F (φ1, θ(R(γ)H)) = tan−1(u/v) = F (φ1, θ(H)) − γ;

thus

Jij(R(γ) · θ) = σ−4Eφ

(
(φ2 − F (φ1, θ) + γ)2

∂F

∂θi

∂F

∂θj

)
= Jij(θ), 1 � i, j � 3.

The Fisher information and the Rao metric are invariant under the action of SO(1)
on PSL(2,R). In particular, J(µ, α, β) = J(µ, 0, β).

(c) Closed form expressions for J(θ) and τ(θ)

It follows from (2.6) and (2.8) that

F (φ, θ) = tan−1
(

cosα(µ sinβ)−1 tanφ+ µ cos(α+ β)
sinα(µ sinβ)−1 tanφ+ µ sin(α+ β)

)
.

The six different integrals in (3.2) can all be evaluated in closed form using Math-
ematica (Wolfram 1999). Certain substitutions are necessary to speed up the cal-
culations. For example, before submitting to Mathematica, the right-hand side
of

J11(θ) =
1
πσ2

∫ π/2

−π/2

µ2 sin2(2φ1)
(cosec2 β cos2(φ1) + µ4 sin2(φ1) + µ2 cotβ sin(2φ1))2

dφ1.

Here cos2 φ is replaced by 1
2(1 + cos(2φ)), sin2 φ is replaced by 1

2(1 − cos(2φ)), cotβ Author: change to
text and
punctuation added
OK? Please clarify
sentence(s)!

is replaced by a symbol such as w and cosec2 β is replaced by 1 + w2. With these
replacements the integral is evaluated quickly in closed form.

Let r be defined by
r = (1 + µ2)2 + cot2 β.

Proc. R. Soc. Lond. A (2003)
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Figure 2. Contour plot of (µ, β) �→ τ(µ, 0, β).

The following expressions for J(θ) and τ(θ) are obtained:

J11 = 2σ−2r−2((1 + µ2)2 + (2 + 4µ2 + µ4) cot2 β + cot4 β),

J12 = J21 = −2σ−2r−1µ cotβ,

J13 = J31 = σ−2r−2µ cotβ(1 − µ4 + (2 + 4µ2 + µ4) cot2 β + cot4 β),

J22 = σ−2,

J23 = J32 = σ−2r−1µ2(1 + µ2 − cot2 β),

J33 =
µ2

2σ2r2
(2µ6 + 4µ2(1 + cot4 β) + µ4(5 − 2 cot2 β + cot4 β) + cosec6 β)




(3.6)

and
τ(θ) =

µ

σ3(cos2 β + sin2 β(µ2 + 1)2)
. (3.7)

A contour plot of τ(θ) is shown in figure 2. The function (µ, β) �→ τ(µ, 0, β) has a
saddle point at µ = 1/

√
3, β = 1

2π.

(d) Ricci tensor and scalar curvature

Various curvature properties of PSL(2,R) under the Rao metric can be calculated.
The Ricci curvature and the scalar curvature (Gallot et al . 1990; Jost 1995) are
obtained in this subsection, but note that neither is required for the estimation in
§ 6 of the probability of misclassification.

The definitions of the Ricci tensor and the scalar curvature are given by Misner et
al . (1973) together with the formulae for calculating them. Let the partial derivatives
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of a function f with respect to µ, α or β be denoted by f,i, with the appropriate i.
For example, f,β = ∂f/∂β. Define the connection coefficients Γijk by

Γijk = 1
2(Jij,k + Jik,j − Jjk,i).

Let J ij be the i, jth entry of the inverse matrix J−1. Indices are raised using J−1,
Γ i

jk = J imΓmjk, where the Einstein summation convention applies to the repeated
index m in the usual way.

The Ricci tensor R and the scalar curvature κ are defined by Author: change to
notation for clarity
OK here and
below?Rij = τ−1(τΓ k

ij),k − (ln(τ)),ij − Γ k
liΓ

l
jk,

κ = Ri
i ≡ J ijRji.

Calculations with Mathematica yield the covariant components of R,

R =
1

µ2 sin4 β


 −2 sin2 β 0 −µ sinβ cosβ

0 0 0
−µ sinβ cosβ 0 −1

2µ
2




and the scalar curvature

κ = −2σ2
(

2 + µ2 +
1

µ2 sin2 β

)
. (3.8)

It follows from (3.8) that κ has a global maximum of −8σ2, attained at all points on
the codimension-2 sub-manifold defined by µ = 1, β = 1

2π.

(e) Finite volume subset of PSL(2,R)

The Rao measure τ(θ) dθ is a candidate for the prior density on PSL(2,R) needed
for a Bayesian estimation of θ from a sample of independent measurements of the
coordinates of pairs of corresponding points. A difficulty arises, because the Rao
measure cannot be normalized: the integral of τ(θ) dθ over PSL(2,R) is infinite.

To overcome the problem of infinite volume, the range of µ is restricted to the
interval [0, µm], where µm is large and positive. Define B(µm), V (µm) by

B(µm) = {(µ, α, β) ∈ PSL(2,R), 0 � µ � µm},

V (µm) =
∫

Bµm

τ(θ) dθ.


 (3.9)

The volume V (µm) is finite and τ(θ)/V (µm) is a probability density function on
B(µm). It follows from (3.7) and (3.9) that

V (µm) =
π2

2σ3 ln(1 + µ2
m), 0 � µm < ∞. (3.10)

(f ) Justification for the Rao metric and the Rao measure

Any manifold M has an infinite number of Riemannian metrics defined on it. If M
parametrizes a family of probability density functions, θ �→ p(x | θ), θ ∈ M , then why

Proc. R. Soc. Lond. A (2003)



10 S. J. Maybank

should the Rao metric be used to measure the distance between nearby parameter
values θ1, θ2?

A partial answer can be given as follows. Let dm be the dimension of M and let
∆θ = θ2 − θ1. If

dm∑
i,j=1

Jij∆θi∆θj ≡ ∆θTJ(θ1) ∆θ

is small, then, as noted in the first paragraph of § 1, the probability density functions
p(x | θ1), p(x | θ2) provide similar descriptions of the data x. There is no reason to
select one of θ1, θ2 in preference to the other.

Amari (1985) develops the argument further, by showing that a wide range of
methods for comparing probability density functions are well approximated by the
Rao metric when the densities being compared are close together on the manifold.
Suppose that two probability densities p(x | θ1), p(x | θ2) are compared using a func-
tion D(θ1, θ2) of the form

D(θ1, θ2) =
∫
G(p(x | θ1), p(x | θ2))p(x | θ1) dx,

where G is a function differentiable up to third order. If D(θ1, θ2) is required to be
invariant under reparametrizations of the data x, then there exists a function g such
that G(p(x | θ1), q(x | θ2)) = g(p(x | θ2)/p(x | θ1)). It follows that

D(θ1, θ2) = g(1) + 1
2g

′′(1) ∆θTJ(θ1) ∆θ + third-order terms in ∆θ. (3.11)

The well-known Kullback–Leibler, Bhattacharya–Matusita–Hellinger and Chernoff
methods for comparing densities satisfy (3.11).

The Rao measure τ(θ) dθ = | det(J(θ))|1/2 dθ is important because it measures the
density of models parametrized by M (Balasubramanian 1996; Myung et al . 2000).
More precisely, if τ(θ) is large then p(x | θ) varies rapidly with θ. When τ(θ) dθ is
used as a prior density for θ it makes explicit a bias which would otherwise be hidden:
those regions where p(x | θ) varies rapidly are more likely to contain a value of θ for
which p(x | θ) is a good fit to the data.

The results of Balasubramanian (1996) and Myung et al . (2000) shed light on a
long-standing controversy: what should be done when a prior density for θ cannot be
obtained from τ(θ) dθ because the integral of τ(θ) dθ over M is infinite? Suggested
solutions (Jeffreys 1961) include (i) modifying the form of p(x | θ); (ii) using τ(θ) dθ
as an unnormalized or improper density; or (iii) restricting θ to a subset of M over
which the integral of τ(θ) dθ is finite. The root of the problem is that M parametrizes
an infinite number of probability density functions, one for each value of θ. In many
cases there is a ‘lucky cancellation’: the number of densities is infinite, but nearby
densities are indistinguishable, leaving in effect only a finite number of distinguishable
densities. As a consequence, the integral of τ(θ) dθ over M is finite. However, there
are cases in which M contains an infinite number of distinguishable densities and the
integral of τ(θ) dθ over M is infinite. The problem is that M parametrizes ‘too many’
densities. This suggests that option (i) above is not appropriate. Option (ii) is ruled
out because it contradicts the axioms of probability theory. The preferred option in
this work is (iii).
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Table 1. Pixel coordinates of the image points qi, ri

i 0 1 2 3 4 5 6 7

qi 392, 217 392, 119 454, 118 502, 116 546, 113 545, 144 546, 187 546, 220
ri 522, 220 524, 124 575, 121 615, 118 651, 117 653, 151 650, 193 650, 226

(a) (b)

Figure 3. Test images.

Figure 4. Diagram showing windows and chosen measurements.

4. Numerical example

The example is based on two images of a pencil of lines, as described in § 1. The
projective transformation matches corresponding lines in the images. Figure 3 shows
two images from the PETS’2001 database (Ferryman 2001). The left-hand image
is number 0017.jpg in /DATASET1/TESTING/CAMERA1 JPEGS/ and the right-
hand image is number 0017.jpg in /DATASET3/TESTING/CAMERA2 JPEGS/. Author: these URLs

do not appear to be
complete! Please
provide the domain
name, etc. Is this
case-dependent
(style is to make
URLs lower-case)?

In the left-hand image the front face of the nearest building has a pattern of six
windows as illustrated in figure 4. Eight of the corners of the windows are labelled
q0, . . . , q7. The matching points in the right-hand image are r0, . . . , r7. The pixel
coordinates of all 16 points were measured by hand using the xv program.† The Author: change

from ref citation to
footnote OK?measurements are shown in table 1. The image origin is at the top left-hand corner.

The angular coordinates φq,i of the lines 〈q0, qi〉, 1 � i � 7, were calculated using
〈q0, q0 + (0, 1)〉 as the line with angular coordinate 0. The angular coordinates φr,i

of the 〈r0, ri〉, 1 � i � 7, were calculated similarly. The estimate θ̂ was obtained by

† Available from John Bradley at http://www.trilon.com/xv/.
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0 1 2 3 4 5
0

1

2

3

µ

β

Figure 5. Contour plot of (µ, β) �→ τA(µ, β).

numerical minimization of
7∑

i=1

(φr,i − F (φq,i, θ))2

with the result θ̂ = (1.106 72, 3.169 56, 1.560 02)T. The corresponding 2×2 matrix Ĥ
is

Ĥ =
( −0.903 267 0.019 028 5

−0.025 269 9 −1.106 56

)
.

The estimated covariance C of the error in θ̂ is C = 7−1J(θ̂)−1, which yields

C = σ2


 91.6169 0.014 252 7 −4.628 23

0.014 252 7 0.143 131 −0.000 497 125
−4.628 23 −0.000 497 125 0.233 988




The standard deviation in the measurements of the coordinates of the points qi, ri is
estimated to be one pixel. The value of σ is estimated at σ = 1/50 rad, after noting
that ‖q0 − qi‖, ‖r0 − ri‖, 1 � i � 7, are in the range of 96–186 pixels and after
taking into account the effects of the errors in q0, r0 and in the qi, ri, 1 � i � 7,
on the orientations of the lines. The estimated standard deviations of the errors in
the components µ̂, α̂, β̂ of θ̂ are, respectively, 0.19, 0.0076, 0.0097, working to two
significant figures. The numerical error in µ̂ is likely to be much larger than the
numerical errors in α̂ and β̂.

In many practical applications the coordinates of points or the positions of lines
are measured automatically (Sonka et al . 1999).

5. Affine transformations

The projective transformation (2.2) is an affine transformation if and only if c = 0,

x2 = d−1(ax1 + b).
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As noted in § 2 b, if a projective transformation is required to map a specified point in
the domain to a specified point in the range, then coordinates can be chosen such that
both points have coordinates (1, 0)T. The projective transformation is then affine.

Under certain conditions a general projective transformation can be approximated
by an affine transformation. For example, suppose that a line k in space has images
m1, m2 taken by two cameras placed such that each image plane is near parallel to
k. The projective transformation from m1 to m2 defined by pairs of corresponding
points is approximated by an affine transformation if m1, m2 are each parametrized
such that the point at infinity in the image is (1, 0).

The affine transformations form a subgroup A(2,R) of PSL(2,R). Under the
parametrization θ = (µ, α, β) of PSL(2,R), A(2,R) is the hypersurface defined by
α = 0.

Let Jij , 1 � i, j � 3, be the components (3.6) of the Fisher information for
PSL(2,R). The Fisher information JA, canonical measure τA(µ, β) dµdβ, and scalar
curvature κA of A(2,R) under the parametrization θA = (µ, β), 0 � µ < ∞, 0 < β <
π, are given by

JA(θA) =
(
J11 J13
J31 J33

)
,

τA(θA) =
µ(1 + 2µ2 sin2 β)1/2

σ2(cos2 β + sin2 β(µ2 + 1)2)
,

κA(θA) =
−2σ2(1 + 3µ2 sin2 β)(cos2 β + sin2 β(µ2 + 1)2)

µ2 sin2 β(1 + 2µ2 sin2 β)2
.

The function τA(µ, β) has a saddle point at

µ = (1 +
√

17)1/2/
√

8,

β = π/2.

The scalar curvature κA is always negative, and it has no global maximum. A contour
plot of τA(µ, β) is shown in figure 5.

Calculations with Mathematica show that A(2,R) is an Einstein manifold with
Einstein curvature equal to zero (Gallot et al . 1990; Jost 1995; Misner et al . 1973).

(a) Volume of A(2,R)

The volume of A(2,R) under the Rao metric is infinite. To prove this, let ωA(µ)
be the function defined by

ωA(µ) =
∫ π

0
τA(µ, β) dβ. (5.1)

The function τA(µ, β) is bounded from below:

τA(µ, β) � µ

σ2(cos2 β + sin2 β(µ2 + 1)2)
.
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Thus

ωA(µ) �
∫ π

0

µ

σ2(cos2 β + sin2 β(µ2 + 1)2)
dβ,

=
πµ

σ2(µ2 + 1)
, 0 � µ < ∞. (5.2)

It follows from (5.2) that the integral of ωA(µ) over [0,∞) is infinite; thus A(2,R)
has infinite volume.

In a similar manner to § 3 e, let BA(µm), VA(µm) be defined by

BA(µm) = {(µ, β) ∈ A(2,R), 0 � µ � µm},

VA(µm) =
∫

BA(µm)
τA(θA) dθA.

It follows from (5.1) that

VA(µm) =
∫ µm

0
ωA(µ) dµ, 0 � µm < ∞.

The function τA(θA)/VA(µm) is a probability density on BA(µm).
The ratio VA(µm)/V (µm) is bounded above and below as follows. The function

τA(µ, β) is bounded above by

τA(µ, β) � µ(1 + µ2 sin2 β)
σ2(cos2 β + (1 + µ2)2 sin2 β)

;

thus

ωA(µ) � 2πµ
σ2(2 + µ2)

� 2πµ
σ2(1 + µ2)

, 0 � µ < ∞. (5.3)

It follows from (5.2) and (5.3) that

σ

π
� VA(µm)

V (µm)
� 2σ

π
, 0 � µm < ∞. (5.4)

An expression for ωA(µ) can be obtained in terms of elliptic integrals. Let K(m)
be the complete elliptic integral of the first kind and let Π(n | m) be the complete
elliptic integral of the third kind (Abramowitz & Stegun 1965; Wolfram 1999). The
integral (5.1) is evaluated using Mathematica, to yield

ωA(µ) =
2µ

σ2(2 + µ2)
(2K(−2µ2) + µ2Π(−2µ2 − µ4 | −2µ2)).

Numerical calculation shows that ωA(µ) has a global maximum at µ = 1.224 35 . . . .

(b) Geodesic distance to A(2,R)

Let d(θ,A) be the signed geodesic distance from θ to A(2,R). To be specific about
the sign, let d(θ,A) be positive if α is small and positive. Let θA be the closest point of
A(2,R) to θ and let h = (0, 1, 0)T. The manifold A(2,R) is the set of θ ∈ PSL(2,R)
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such that θ · h = 0. If θ is close to A(2,R), then θA is estimated by minimizing
(θ− u)TJ(θ)(θ− u) over u subject to the constraint u · h = 0. Let λ1 be a Lagrange
multiplier and define V1 by

V1(u) = (u− θ)TJ(θ)(u− θ) + 2λ1u · h.
On solving ∂V1(u)/∂u = 0 and ∂V1(u)/∂λ1 = 0, it follows that, to leading order

θA = θ − (θ · h)(hTJ(θ)−1h)−1J(θ)−1h,

d(θ,A) = (hTJ(θ)−1h)−1/2(θ · h).

}
(5.5)

6. Model selection

The model-selection problem, as described in § 1, is to select the best parame-
ter manifold for the data from a list of candidates M1,M2, . . . . Consider the two
parameter manifolds PSL(2,R) and A(2,R). After scaling, the Rao measures τ(θ) dθ,
τA(µ, β) dµdβ define prior densities on suitable subsets of PSL(2,R), A(2,R). With
these prior densities, model selection can be based on a Bayesian decision rule: select
the model with the greatest probability, given the data. The aim in this section is to
approximate the probability of misclassification, i.e. the probability that the decision
rule selects A(2,R) when the true model is PSL(2,R). Numerical calculations sug-
gest that the probability of misclassification tends to a limit as the chosen subsets
of PSL(2,R), A(2,R) increase in size.

The probability of misclassification is a fundamental property of the family of
densities (2.9). Its value depends on the balance between the ‘number’ of distin-
guishable probability density functions corresponding to points in PSL(2,R) but
near to A(2,R) and the bias of the Bayes decision rule in favour of the model A(2,R)
with fewer parameters.

(a) Expression for the probability of misclassification

Let E = {e1, . . . , eN} be a set of N independent samples from the probability
density function p(φ | t) defined by (2.9), where t is the true value of θ. The two
manifolds PSL(2,R), A(2,R) provide different models for E. Let P, for projective
transformation, be the model in which t is drawn from PSL(2,R) and let A be the
model in which t is drawn from A(2,R).

Let C(P) be the event that P is selected as the best model and let C(A) be
the event that A is selected as the best model. A misclassification occurs if A is
selected when P is the true model for E. Let B(µm) be the set defined by (3.9).
Suppose initially that t is drawn from B(µm) according to the density τ(θ)/V (µm).
The probability pM(N,µm) of misclassification is

pM(N,µm) = V (µm)−1
∫

B(µm)
τ(θ)P (C(A) | θ) dθ. (6.1)

The integral on the right-hand side of (6.1) includes cases in which θ is a point of
A(2,R). It is still appropriate to call pM(N,µm) the probability of misclassification
because the contribution of such points to pM(N,µm) is zero.

In the following subsections the probability pM(N,µm) is estimated as a function
of the number of samples N and the standard deviation σ of the measurement errors.
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The probability of misclassification for t drawn from PSL(2,R) is obtained as the
limit of pM(N,µm) for µm → ∞.

(b) Criterion for model selection

The Bayesian approach to model selection is taken. Let P (E) be the prior proba-
bility of E, and let P (P), P (A) be the prior probabilities of P, A. Let p(E | θ) be
the probability of E given θ:

p(E | θ) =
N∏

i=1

p(ei | θ).

An application of Bayes’s rule (Balasubramanian 1997) yields

P (P | E) =
P (P)

P (E)V (µm)

∫
B(µm)

τ(θ)p(E | θ) dθ,

P (A | E) =
P (A)

P (E)VA(µm)

∫
BA(µm)

τA(θA)p(E | θA) dθA.

The model A is selected if P (A | E) � P (P | E), otherwise P is selected.
The prior probability P (E) does not affect the selection of a model because it is

the same for A and P. In the absence of any further information about the correct
model it is assumed that P (A) = P (P) = 1/2. Define χ(E), χA(E) by

χ(E) = − ln
(
V (µm)−1

∫
B(µm)

τ(θ)p(E | θ) dθ
)

χA(E) = − ln
(
VA(µm)−1

∫
BA(µm)

τA(θA)p(E | θA) dθA

)

The model A is selected if χA(E) � χ(E), otherwise P is selected.

(c) Estimation of χA(E) − χ(E)

Let p(φ | t) be the true density from which the elements of E are sampled, and
let f be the Taylor expansion of θ �→ −N−1 ln(p(E | θ)) centred at t and truncated
after the second order terms:

f(θ) = a+ b · (θ − t) + 1
2(θ − t)TB(θ − t). (6.2)

The minimum value of f is a− 1
2b

TB−1b and it is achieved at θ̂ = t−B−1b. It is
assumed that f is a close approximation to θ �→ −N−1 ln(p(E | θ)) and that θ̂ is a
close approximation to the maximum-likelihood estimate argmaxθ{p(E | θ)} of t.

A rearrangement of the right-hand side of (6.2) yields

f(θ) = a− 1
2b

TB−1b+ 1
2(θ − θ̂)TB(θ − θ̂).
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It follows that as N → ∞, χ(E) has the asymptotic expansion (Wong 1989)

χ(E) ∼ N(a− 1
2b

TB−1b) − ln
(
V (µm)−1

∫
B(µm)

τ(θ) exp(−1
2N(θ − θ̂)TB(θ − θ̂))

)

∼ N(a− 1
2b

TB−1b) + 1
2 ln(det(B))

+ 3
2 ln
(
N

2π

)
− ln(τ(θ̂)V (µm)−1) +O(N−1). (6.3)

Let θ̂A be the point in A(2,R) at which the restriction of f to A(2,R) attains its
minimum value. As in § 5 b, a point θ is in A(2,R) if and only if θ · h = 0, where
h = (0, 1, 0)T. The point θ̂A = (µ̂A, β̂A) is estimated by minimizing f(θ) + λθ · h,
where λ is a Lagrange multiplier. The minimization yields

(µ̂A, 0, β̂A) = θ̂ − λB−1h,

f(θ̂A) = a− 2−1bTB−1b+ 2−1λ2hTB−1h.

}
(6.4)

Let BA be the Hessian matrix of the restriction of f to A(2,R),

BA =
(
B11 B13
B31 B33

)
.

It follows that as N → ∞, χA(E) has the asymptotic expansion

χA(E) ∼ N(a− 1
2b

TB−1b+ 1
2λ

2hTB−1h) + 1
2 ln(det(BA))

+ ln
(
N

2π

)
− ln(τ(θ̂A)VA(µm)−1) +O(N−1). (6.5)

It follows from (6.3) and (6.5) that

χA(E) − χ(E) ∼ 1
2Nλ

2hTB−1h

+ ln
(√

det(BA)

τA(θ̂A)

)
− ln

(√
det(B)

τ(θ̂)

)

− 1
2 ln
(
N

2π

)
+ ln

(
VA(µm)
V (µm)

)
+O(N−1).

The matrix B is given by

Bij = − 1
N

N∑
k=1

∂2 ln(p(ek | θ))
∂θi∂θj

∣∣∣∣
θ=t

, 1 � i, j � 3.

Let t = (µ, α, β). It follows from the central limit theorem that with a high probability

B = J(t) +O(N−1/2),

BA = JA(µ, β) +O(N−1/2).

Let η ∼ N (0, I) be a Gaussian random variable. The maximum-likelihood estimate
θ̂ of t is to a first approximation a Gaussian random variable (Lindsey 1996):

θ̂ = t+N−1/2J(t)−1/2η. (6.6)
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Figure 6. Graphs of pM(N) for σ = 1/64 (upper) and σ = 1/256 (lower).

It follows that with a high probability

ln(
√

det(B)/τ(θ̂)) = O(N−1/2),

ln(
√

det(BA)/τA(θ̂A)) = O(N−1/2);

thus

χA(E) − χ(E) ∼ 1
2Nλ

2hTJ(t)−1h+ ln
(
VA(µm)
V (µm)

)
− 1

2 ln
(
N

2π

)
+O(N−1/2). (6.7)

It follows from (6.4) and (6.6) that

λ =
θ̂ · h

hTB−1h
=
(
t · h+N−1/2hTJ(t)−1η

hTJ(t)−1h

)
(1 +O(N−1/2)). (6.8)

Let u be the unit vector defined by

u = (hTJ(t)−1h)−1/2J(t)−1/2h.

It follows from (5.5), (6.7) and (6.8) that
Author: is this
variable or
differential ‘d’?χA(E)−χ(E) ∼ 1

2(N1/2d(t, A)+u·η)2− 1
2 ln
(
N

2π

)
+ln

(
VA(µm)
V (µm)

)
+O(N−1/2) (6.9)

(d) Estimation of pM(N,µm)

It is assumed that N is large enough to ensure that

NV (µm)2 � 2πVA(µm)2. (6.10)

It follows from (5.4) that (6.10) holds provided that N � 8σ2/π, which is the case
in most applications because σ � 1. Define ζ by

ζ(N,µm) =

√
ln
(
NV (µm)2

2πVA(µm)2

)
. (6.11)

It follows from (6.9) that if N is sufficiently large, then to a good approximation A
is selected if and only if

|N1/2d(t, A) + u · η| � ζ(N,µm).
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The unit vector u is independent of η thus u · η has a normal distribution,
u · η ∼ N (0, 1). Let Φ be the cumulative distribution function for N (0, 1). It follows
from (6.9) and (6.11) that

P (C(A) | t) = Φ(N1/2d(t,A) + ζ(N,µm)) − Φ(N1/2d(t,A) − ζ(N,µm)). (6.12)

If t /∈ A(2,R), then P (C(A) | t) → 0 as N → ∞. If t ∈ A(2,R), then P (C(A) | t) → 1
as N → ∞.

Let coordinates µ, z, β be chosen in a neighbourhood of A(2,R), where µ, β are
as in § 2 a, and z is the signed distance from (µ, z, β) to A(2,R). If N is sufficiently
large, then P (C(A) | t) drops rapidly to zero as the z-component of t increases
in magnitude. Near to A(2,R), τ(θ) dθ is approximated by τA(µ, β) dµdβ dz. The
probability pM(N) is thus approximated by

pM(N,µm) = V (µm)−1
∫ µm

µ=0

∫ π

β=0

∫ ∞

z=−∞
τA(µ, β)P (C(A) | θ) dz dβ dµ. (6.13)

The integral over z can be carried out exactly, using the expression (6.12) for
P (C(A) | t) and the fact that d(t, A) = z:∫ ∞

−∞
P (C(A) | t) dz =

2ζ(N,µm)
N1/2 . (6.14)

It follows from (6.13) and (6.14) that

pM(N,µm) =
2ζ(N,µm)
N1/2V (µm)

∫ µm

0

∫ π

0
τA(µ, β) dβ dµ,

=
2VA(µm)ζ(N,µm)

N1/2V (µm)
. (6.15)

Numerical calculations, reinforced by the bounds (5.4), suggest that

lim
µm→∞

VA(µm)
V (µm)

= 0.345 081 · · ·σ. (6.16)

Let pM(N) = limµm→∞ pM(N,µm). It follows from (6.15) and (6.16) that

pM(N) ≈ 0.690 162σ
N1/2

√
ln
(

1.336 528N
σ2

)
. (6.17)

Graphs of pM(N) as a function of N are shown in figure 6 for noise levels σ =
1/256 rad and σ = 1/64 rad. These noise levels are of an order appropriate for the
task of locating lines in images 512 × 512 pixels in size.

On examining the two graphs in figure 6, it appears that there is at these noise
levels little benefit in using more than about N = 10 points for classifying affine
transformations and projective transformations. Beyond N = 10, a large increase in
the number of pairs of corresponding points produces only small decrease in pM(N).

The data from the numerical example in § 4 are used to estimate χA(E) − χ(E),
by setting u · η = 0, t = θ̂ = (1.106 72, 3.169 56, 1.560 02)T, N = 7, σ = 1/50 rad
on the right-hand side of (6.9), and using the approximation (5.5) to d(t, A). The
value obtained is χA(E) − χ(E) ≈ 614 143. This large positive value suggests that
the Bayes rule strongly rejects the affine model. The result is consistent with the fact
that the two images in figure 3 show a strong perspective distortion of the front face
of the nearest building.
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7. Conclusion

Closed form expressions have been obtained for the Fisher information and the Rao
measure on both the group PSL(2,R) of projective transformations and on the sub-
group A(2,R) of affine transformations. The Rao measures have been used to obtain
an approximation to the probability, pM(N), of misclassifying a projective transfor-
mation as an affine transformation. The approximation is a relatively simple function
(6.17) of (i) the number N of pairs of corresponding points and (ii) the limiting ratio
of the 2-volume of the affine transformations to the 3-volume of the projective trans- OK?
formations. It is only through the latter ratio that the standard deviation of the
measurement noise contributes to the probability of misclassification.

The probabilistic model (2.9) used in the above calculations is a tractable simpli-
fication of the models used in practical estimation problems. It remains to be seen
how the calculations are affected when more complicated probabilistic models are
used.

I thank James Ferryman for permission to use images from the PETS2001 database, and the
referees for their comments on an earlier draft of this paper.
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