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A new method for obtaining multivariate distributions for sub-images of natural images
is described. The information in each sub-image is summarized by a measurement vector
in a measurement space. The dimension of the measurement space is reduced by
applying a random projection to the truncated output of the discrete cosine transforms of
the sub-images. The measurement space is then reparametrized, such that a Gaussian
distribution is a good model for the measurement vectors in the reparametrized space.
An Ornstein–Uhlenbeck process, associated with the Gaussian distribution, is used to
model the differences between measurement vectors obtained from matching sub-images.
The probability of a false alarm and the probability of accepting a correct match are
calculated. The accuracy of the resulting statistical model for matching sub-images is
tested using images from the MIDDLEBURY stereo database with promising results. In
particular, if the probability of accepting a correct match is relatively large, then there is
good agreement between the calculated and the experimental probabilities of obtaining a
unique match that is also a correct match.

Keywords: compressive sensing; discrete cosine transform; image statistics;
principal components analysis; random projection; stereo matching
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1. Introduction

One of the fundamental tasks in computer vision is to find statistical models for
the patterns of pixel values in images. These statistical models have many
applications, including object detection (Torralba & Oliva 2003; Charpiat et al.
2005), edge detection (Konishi et al. 1999), image classification (Srivastava et al.
2003; Torralba & Oliva 2003), image denoising (Srivastava et al. 2003; Tan &
Jiao 2007), super resolution (Tappen et al. 2003) and the matching of patterns
between images. Statistical models for images can be used to make quantitative
predictions about the performance of algorithms. For example, if the distribution
of a particular class of patterns is known, then it is possible to estimate the
number of such patterns that are likely to be found in an image, and hence to
estimate the probability of a false match between patterns or the probability of a
false detection of an object associated with a pattern.

It is convenient to restrict the patterns of pixel values to rectangular regions
or sub-images within a larger image. Let J be an image of size n1!n2 pixels2.
Then a sub-image w of J is any m1!m2 rectangle of pixel values in J, where
1%mi%n, iZ1, 2. In most applications m1 and m2 are much smaller than n1, n2.
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S. J. Maybank2
Each sub-image corresponds to a point in a measurement space R
m1m2 specified

by a vector with m1m2 components, corresponding to the pixels in w. For a wide
range of images, the description of a general sub-image is simplified by making an
appropriate choice of basis in R

m1m2 . The basis associated with the discrete cosine
transform (DCT) is a convenient and simple choice (Gonzalez & Woods 2002).
The vector v(w) of DCT components of w tends to have many components with
relatively small absolute values and only a few components with relatively large
absolute values. The few relatively large components can be retained and the
remaining components set to zero with only a small loss of information (Field
1987). The components set to zero may be different for different vectors v(w), but
this difficulty is overcome using a random projection to a new lower dimensional
measurement space Rk. Experiments reported in §3b below show that this method
of reducing the dimension of the measurement space consistently outperforms
principal components analysis (PCA) on a number of natural images.

There is a second reason for using a random projection; the properties of the
projected vectors can be summarized by a simple statistical model. The
directions of the projected measurement vectors tend to be uniformly distributed
on the unit hypersphere in R

k, centred at the origin (Diaconis & Freedman 1984;
Dasgupta 1999, 2000). The fit of the directions of the projected vectors to a
uniform distribution is improved by reparametrizing R

k. In the reparametrized
space, the distribution of the measurement vectors is modelled by the uniform
distribution on the unit hypersphere for their directions and an empirical
distribution for their lengths. The lengths of the vectors are then scaled such that
the resulting vectors are compatible with the Gaussian distribution N (0, I(k))
with expected value 0 and covariance I(k), where I(k) is the k!k identity matrix.
This reparametrization does not lose any information.

The distribution N (0, I(k)) is applied to the matching of sub-images, or more
precisely, to the matching of the measurement vectors obtained from sub-
images with given dimensions m1!m2. A pair (h1, h2) of measurement vectors in
R
k!R

k is accepted as a match if h2 is near to h1. In order to define ‘near’ in this
context, the difference, h2Kh1 between h1 and a correct match, h2, is modelled by
an Ornstein–Uhlenbeck process on R

k with limiting distribution N (0, I(k)).
A false alarm occurs for a given h1 if h2 is sampled from N (0, I(k)) and by chance
is near to h1. The distribution for sub-images is used to calculate various
probabilities, including the probability of a false alarm and the probability of
accepting a correct match. In §6, the distribution for sub-images is tested by
using it to predict the performance of a stereo matching algorithm on images
from the MIDDLEBURY stereo database (Scharstein & Pal 2007), with a good
agreement between theory and experiment. To the author’s knowledge, this is
the first time that a statistical model for sub-images has been used to predict the
performance of a stereo matching algorithm.

All the calculations in this paper were carried out using MATHEMATICA

(Wolfram 1999).
The remainder of this paper is organized as follows. Related work is described

in §2. The reduction in the dimension of the measurement space using a random
projection is described in §3. The probability density function for sub-images is
obtained in §4 and applied in §5 to the task of finding matching sub-images. The
experiments with images from the MIDDLEBURY stereo database are reported in §6
and some concluding remarks are made in §7.
Proc. R. Soc. A



3Distribution for sub-images
2. Related work

The use of a random linear projection to reduce the dimension of a measurement
space is one of the main themes of the recent work on compressive sensing. An
introduction to compressive sensing is given by Baraniuk (2007) and there is a
much more detailed discussion by Donoho (2006). Applications of random
projections to dimension reduction for data mining and database search are
described by Bingham & Mannila (2001). Dasgupta (1999) showed that the
eccentricity of a high-dimensional Gaussian distribution is reduced under a
random linear projection and Diaconis & Freedman (1984) showed that for many
sets of vectors in high-dimensional spaces, the projections of the vectors to a one-
or two-dimensional space are modelled accurately by Gaussian distributions. The
application of random projections to face recognition is described by Goel et al.
(2005) and by Han & Jin (2007). Their experiments show that random projections
compare well with PCA. Good accounts of PCA are given by Gonzalez & Woods
(2002) and Forsyth & Ponce (2003).

Many authors have shown that there are accurate univariate statistical models
for the filter responses obtained from natural images (Field 1987; Huang &
Mumford 1999; Huang 2000; Grenander & Srivastava 2001; Srivastava et al.
2003). More recently the emphasis has been moved to multivariate statistical
models. Grenander & Srivastava (2001) showed how a bivariate distribution can
be built-up from marginal distributions. Huang & Mumford (1999) modelled
multivariate sets of filter responses using generalized Laplace distributions. Tan &
Jiao (2007) used elliptically contoured distributions, among which are included
the isotropic distributions, to model wavelet components in natural images, with
applications to image denoising and image restoration.

Lee et al. (2003) made a detailed analysis of the distribution of high contrast
3!3 sub-images of natural images. These sub-images tend to cluster near to a
two-dimensional manifold that corresponds to ideal images of edges. Srivastava
et al. (2003) reviewed the statistical modelling of natural images and describe
statistical models for whole images and for sub-images. They emphasize the non-
Gaussian nature of traditional representations of sub-images, as reported by
Field (1987), and note that in many cases sub-images cluster near to low-
dimensional nonlinear submanifolds of the feature space.

Torralba & Oliva (2003) obtained statistics from the Fourier spectra of entire
images. They showed that these statistics are affected by the large-scale
properties of scenes in systematic ways, and that as a result images can be
assigned to broad categories without the necessity of a detailed segmentation or
accurate object detection. A general stochastic model for natural images is
described by Mumford & Gidas (2001).

The general view emerging from the above work on image statistics by many
authors over the past 20 years is that the filter responses for natural images are
remarkably predictable, in that they can bemodelled by relatively simple leptokurtic
distributions that depend on only a small number of parameters. The purpose of
this paper is to extend this work on image statistics by defining a useful multivariate
statistical model for sub-images, and then applying it to thematching of sub-images.

The algorithm used in §5 below to test the statistical model for image
matching is an example of a dense two-frame stereo algorithm. A comprehensive
review of such algorithms is given by Scharstein & Szeliski (2002). The algorithm
Proc. R. Soc. A
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Figure 1. (a) Image 1 in the Rocks1 sequence, (b) graph of the average values of the ranked absolute
values of the DCT components of 7!7 sub-images of image 1.
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in §5 has some similarity to the first entry in Scharstein and Szeliski’s table 1:
traditional sum of squared differences (SSD) method, with aggregation over a
square window.
3. Method for reducing the dimension of the measurement space

A new method for reducing the dimension of a measurement space is described in
§3a, and an experimental comparison of the method with PCA is described in
§3b. In the experiments, all RGB images are reduced to grey scale images by
taking the average of the RGB values at each pixel.

(a ) DCT components

Let w be an m1!m2 sub-image of an image J. It is known that the discrete
cosine transform (DCT) of w tends to have only a few components with relative
large absolute values (Field 1987). Let the m1!m2 matrix DCT(w) be the
discrete cosine transform of w, indexed such that DCT(w)11 is proportional to the
mean grey level in w. Let v(w) be the m1!m2K1 dimensional vector obtained by
listing the elements of DCT(w) row by row, except that DCT(w)11 is omitted,

vðwÞZ ðDCTðwÞ12;DCTðwÞ13;.;DCTðwÞm1m2
Þu:

Let ci(v), 1%i%m1m2K1 be the components of v(w) in decreasing order by
absolute value. Thus, ci(v)Zvj(i ) for some integer j(i ) and

j c1ðvÞ jR j c2ðvÞ jR/R j cm1m2K1ðvÞ j :
Figure 1a shows image number 1 from the Rocks1 sequence of the 2006
MIDDLEBURY stereo datasets1 (Scharstein & Pal 2007). Figure 1b shows the
corresponding graph of the average value of jci(v(w))j as a function of i, where w
ranges over a set of 7!7 sub-images of image 1. It is apparent from figure 1b that
the average value of jci(v)j drops rapidly as i increases away from 1, and then
1 URL http://vision.middlebury.edu/Stereo/data/scenes2006, full size image, illumination 2,
exposure 2.
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5Distribution for sub-images
decreases less rapidly for larger values of i. It is known that curves of this type
are obtained from a wide range of natural images, and that they are well
approximated by power laws (Field 1987; Ruderman 1997).

Figure 1b suggests that the information in w can be summarized, to within a
small error, by recording the values of the ci(v) for 1%i%j, where j is a fixed
integer less than m1m2K1. A difficulty arises because a DCT component vi(w),
with i fixed, may be large for one choice of w but small for another choice of w.
This difficulty is overcome using random measurements (RM). Let l be the
number of DCT components in vðwÞ2R

m1m2K1 that is to be retained. Let v(l, w)
be the vector in R

m1m2K1 obtained by setting to zero the m1m2KlK1 components
in v(w) with the smallest absolute values. The vector v(l, w) thus has at most l
non-zero entries. The number of random measurements is made strictly greater
than the number of DCT components that are retained. This ensures that with
probability 1, the vectors v(l, w) that cannot be recovered exactly from their
associated random measurements form a set of measure 0 (Baron et al. 2005).
This result holds because the set of v(l, w), for varying w, is a union of manifolds
of dimension l or less, and each measurement imposes one constraint on those
v(l, w) compatible with it.

In this application the number, k, of random measurements is equal to lC1.
Let F be a fixed k!(m1m2K1) matrix with entries Fij sampled independently
from the Gaussian distribution N (0, 1) in R with expected value 0 and variance 1.
The components of the projected measurement vector Fv(kK1, w) constitute
the k random measurements. The fact that Fv(kK1, w) uniquely determines
v(kK1, w) for almost all v(kK1, w) is sufficient for the applications made
below. It is not necessary to undertake the difficult task of recovering v(kK1, w)
from Fv(kK1, w).
(b ) Numerical comparison between PCA and random measurements

PCA is applied to nZ5000 sub-images sampled from image 1 in the Rocks1
sequence. Each sub-image w is of size 7!7. Let C be the covariance of the n
vectors v(w), under the assumption that the mean value of the vectors is 0, and
let e(i ), 1%i%48, be the eigenvectors of C.

The root mean square error, r.m.s.(PCA, i ), of i measurements is defined by

r:m:s:ðPCA; iÞZ 1

n

X
w

X48
jZiC1

ðvðwÞ:eðjÞÞ2
 !1=2

:

Similarly, the root mean square error, r.m.s.(RM, i ), of i random measurements
is defined by

r:m:s:ðRM; iÞZ 1

n

X
w

kvðwÞKvðiK1;wÞk2
 !1=2

:

It is noted that

r:m:s:ðPCA; 0ÞZ r:m:s:ðRM; 1ÞZ 1

n

X
w

kvðwÞk2
 !1=2

:
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Figure 2. Graphs of i1r.m.s.(PCA, i ) and i1r.m.s.(RM, i ) for 5000 sub-images are chosen from
image 1 in figure 1a. The graph of i1r.m.s.(PCA, i ) is the upper one at iZ20.

S. J. Maybank6
The calculation of the r.m.s. error using the vectors v(w) is legitimate because the
DCT preserves the norms of vectors. The graphs of i1r.m.s.(PCA, i ) and
i1r.m.s.(RM, i ) are shown in figure 2 for the Rocks1 image. The graph of
i1r.m.s.(PCA, i ) is the upper one at iZ20. Define g(PCA, r), g(RM, r) by

gðPCA; rÞZmin i;
r:m:s:ðPCA; iÞ
r:m:s:ðPCA; 0Þ!r

� �
; 0!r!1;

gðRM; rÞZmin i;
r:m:s:ðRM; iÞ
r:m:s:ðRM; 1Þ!r

� �
; 0!r!1:

Thus, g(PCA, r) is the least number of measurements required by PCA to ensure
that the normalized r.m.s. error is strictly less than r. Experiments with a range
of images show that g(RM, r) is significantly smaller than g(PCA, r). The result
is particularly noteworthy, because the use of the r.m.s. error favours PCA, due
to the fact that PCA minimizes the r.m.s. error over all projections onto a space
with a given dimension (Forsyth & Ponce 2003). Some values of g(PCA, r) and
g(RM, r) are compared in table 1 for three images from the MIDDLEBURY stereo
database (Scharstein & Szeliski 2002; Hirschmüller & Scharstein 2007), an image
from the Groningen natural image data base2 (van Hateren & van der Schaaf
1998) and the Lena (http://www-ece.rice/wwakin/images/lena512.bmp) image.
The terms Illum2, Exp2, etc. are explained on the MIDDLEBURY web pages
accessible from http://vision.middlebury.edu/Stereo/data/scenes2006.

The variable r in the second column of table 1 is an upper threshold on the
normalized r.m.s. error. The first image, from Rocks1, is figure 1a and the four
remaining images are shown in figure 3.
4. A multivariate distribution for sub-images

A model is found for the distribution of the measurement vectors obtained from
the sub-images of a natural image. The strategy is to reparametrize the
measurement space, in order to improve the compatibility of the sampled
2 The original Groningen image, imk00038.iml, at http://hlab.phys.rug.nl/imlib/l1_200/index.html
was converted to the JPEG format for ease of use.
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Figure 3. Four of the images used in table 1, (a) Aloe, (b) Bowling2, (c) Groningen, (d ) Lena.

Table 1. Comparison of the number of measurements required by PCA and by RM.

image r g(PCA, r) g(RM, r)

Rocks1, Illum2 0.05 41 31
Exp2 0.1 32 23
view1.png 0.15 25 17

Aloe, Illum3 0.05 38 28
Exp2 0.1 28 20
view1.png 0.15 22 15

Bowling2, Illum3 0.05 40 31
Exp2 0.1 32 22
view1.png 0.15 25 16

Groningen 0.05 47 38
imk0003.iml 0.1 44 31

0.15 40 26

Lena 0.05 41 30
0.1 31 21
0.15 23 15

7Distribution for sub-images
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S. J. Maybank8
measurement vectors with an isotropic distribution, and then scale the lengths of
the sampled vectors in order to make them compatible with the Gaussian
distribution N (0, I(k)). If a second natural image is given, similar to the first, for
example, the two images might be a stereo pair, then it is assumed that the
measurement vectors from the second image are modelled by N (0, I(k)), after
reparametrization and scaling using the functions learnt from the first image.

Statistical tests to verify the compatibility of the reparametrized and scaled
measurement vectors with N (0, I(k)) are reported in §4b, and some remarks on
statistical modelling are made in §4c.

(a ) Isotropic statistical models

Let J be an image, let m1, m2 be given strictly positive integers and let F be a
k!(m1m2K1) matrix with entries Fij sampled independently from N (0, 1). Let

V Z fvðkK1;wÞ; w is an m1!m2 sub-image in Jg; ð4:1Þ
where v(kK1,w) is as defined in §3a. Let jV j be the number of elements in V,
define the matrix C by

C Z
1

jV j
X
v2V

ðFvÞ5ðFvÞ;

and define the set ~V by
~V Z fCK1=2Fv; v 2Vg: ð4:2Þ

The subtraction of the mean value from the vectors in V or in {Fv, v2V } prior
to calculating C does not improve the results. Most of the vectors in V and
{Fv, v2V} are clustered about the origin, but the mean is strongly affected by a
few vectors far from the origin. If the mean is subtracted out, then the directions
of the resulting vectors are less isotropic.

The results of Diaconis & Freedman (1984) and Dasgupta (1999) suggested
that an isotropic Gaussian distribution is a possible model for ~V . With this
in mind, a function v1f(v) is sought, such that the directions of the vectors
ff ðvÞ; v 2 ~Vg are compatible with the uniform distribution on SkK1. The uniform
distribution on SkK1 has expected value 0 and covariance kK1I(k). Let v be a
non-zero vector in R

k and consider a perturbation of the form

v1kvkkvCMvk�1ðvCMvÞ; ð4:3Þ
where M is a symmetric k!k matrix such that the Frobenius norm, kMk, is
small. The asymmetric part of M is set to zero because to first order its effect on
vCMv is a rotation, which does not change the fit of a set of vectors to an
isotropic distribution. In detail,

kvCMvk2 Z kvk2 C2vuMvCOðkMk2Þ;
and the antisymmetric part of M makes no contribution to kvCMvk, to first
order, as claimed. Let v̂ZkvkK1v. The covariance C(M) of the directions of
the perturbed vectors in ~V , omitting any zero vector in ~V , is

CðMÞ Z 1

j ~V j
X
v2~V

kvCMvkK2ðvCMvÞ5ðvCMvÞ;

Z
1

j ~V j
X
v2~V

v̂5v̂CMv̂5v̂C v̂5v̂MK2ðv̂uMv̂Þv̂5v̂COðkMk2Þ: ð4:4Þ
Proc. R. Soc. A



9Distribution for sub-images
ThematrixM is estimated by omitting theO(kMk2) term from the right-hand side
of (4.4), setting the remaining terms equal to kK1I(k), and then solving forM. The
matrices tI(k) for t 2R are excluded from the solution space because the term in
(4.4) linear in M vanishes if MZtI.

The perturbation (4.3) is iterated. In practice, four iterations are sufficient
to ensure that the covariance of the directions of the resulting vectors is close
to kK1I(k). Let the four k!k matrices obtained as successive values of M be Mi ,
1%i%4, define the matrices Ai , 1%i%4, by AiZI(k)CMi , and set AZA4A3A2A1.
Then v1f(v) is defined by f(0)Z0 and

f ðvÞZ kvkkAkK1Av; vs0: ð4:5Þ
An isotropic probability density function in R

k is determined by the density for
the lengths of vectors (Samorodnitsky & Taqqu 1994; Tan & Jiao 2007). Thus, a
given isotropic density can be converted to any other isotropic density by an
appropriate scaling of the lengths of vectors. The vectors in f ð ~V Þ are scaled
such that the resulting vectors are modelled by the distribution N (0, I(k)). The
scaling function is estimated using the empirical distribution of the lengths of
the vectors in f ð ~V Þ or equivalently the lengths of the vectors in ~V .

Define the integer valued function r1n(r) by

nðrÞZ j fv; v 2 ~V and kvk%rg j ; rR0:

If x is sampled from N (0, I(k)), then

Pðkxk%rÞ Z
k

ðk=2Þ!2k=2
ðr
0
skK1exp K

1

2
s2

 !
ds;

Z 1K
Gðk=2; r2=2Þ

Gðk=2Þ ;

where (a, z)1G(a, z) is the incomplete gamma function (Abramowitz & Stegun
1965; Wolfram 1999). The required scaling r1r(r), rR0, is obtained by
numerical solution of the equation

1K
Gðk=2; rðrÞ2=2Þ

Gðk=2Þ Z
nðrÞ
j ~V j

; rR0:

The scaling of the lengths of the vectors in f ð ~V Þ is

v1rðkvkÞkvkK1v; vs0:

The resulting function f from V to vectors in R
k compatible with N (0, I(k)) is

fð0ÞZ 0 and fðvÞZ rðkCK1=2FvkÞACK1=2Fv

kACK1=2Fvk
; v 2V ; vs0: ð4:6Þ

(b ) Statistical tests

Let HZ{f(v),v2V}, where V is defined by (4.1) and f is defined by (4.6). The
distribution of the vectors in H is tested for compatibility with N (0, I(k)). There
are three tests. In the first test, the vectors in H are separated by a random
Proc. R. Soc. A



Table 2. Empirical standard deviations ŝðY Þ and ŝðZÞ for the same five images as in table 1.

image ŝðY Þ ŝðZÞ

Rocks1 0.0055 0.0048
Aloe 0.0106 0.0081
Bowling2 0.0157 0.0114
Groningen 0.0593 0.0441
Lena 0.0147 0.0109

S. J. Maybank10
hyperplane through the origin. If H is modelled by N (0, I(k)), then the fraction of
vectors in a given half space should be close to 0.5, with a small standard
deviation. The second test is similar, except that the hyperplane is chosen at a
given non-zero distance from the origin. In the third test, the vectors in H are
projected onto a random one-dimensional subspace. If H is modelled by
N (0, I(k)), then the empirical standard deviation of the projected vectors should
be close to 1.

Let u be a random vector uniformly distributed on SkK1, let H1(u) be the set of
vectors h2H for which uuhO0 and let Y(u)ZjH1(u)j/jHj. The hypersphere SkK1

was sampled 1000 times and the empirical standard deviation, ŝðY Þ, was
calculated. If N (0, I(k)) is a good model for the elements of H, then ŝðY Þ should
be near to zero with a high probability.

Let u2SkK1 and define A(u, d ) for d 2R by Aðu; dÞZfh; h2R and uuh%dg.
Let ZðuÞZ jAðu; dÞhH j = jH j , for dZ0.8. The empirical standard deviation
ŝðZÞ was found for 1000 values of u sampled independently and uniformly
from SkK1. If N (0, I(k)) is a good model for the elements of H, then ŝðZÞ should
be near to zero.

The values of ŝðY Þ and ŝðZÞ are shown in table 2 for the same five images as
in table 1. In each case, kZ12, the sub-images are of size 7!7 and jHjZ9000.

Typical results for a set H consisting of 9000 samples drawn randomly from
N (0, I(k)) are ŝðY ÞZ0:00578, ŝðZÞZ0:00449. The values of ŝðY Þ, ŝðZÞ
obtained from the five images are comparable with those obtained using samples
from N (0, I(k)).

In the final test, the projections of H are examined. If u2SkK1 and the
elements of H are sampled from N (0, I(k)), then the elements of HðuÞZ
fuuh; h2Hg are sampled from N (0, 1). Conversely, it is a consequence of the
Cramér–Wold theorem that if X is a random variable defined on R

k such that
uuXwNð0; 1Þ for all u2SkK1, then XwN (0, I(k)) (Moran 1984). As in the case
of table 1, kZ12, m1Zm2Z7 and jHjZ9000. The normalized histogram of H(u)
for the Rocks1 image in figure 1a is shown in figure 4, superposed on the density
function for N (0, 1). The vector u was sampled from the uniform distribution on
Sk. There is a good agreement between the histogram and the density.

The standard deviation of H(u) is estimated under the assumption that the
elements of H(u) are sampled from a zero mean Gaussian distribution. Let s be a
candidate value for the standard deviation. The real line, R, is divided into 10
intervals such that each interval is assigned a probability of 1/10 by the distri-
bution N (0, 1). Let Hi(u) be the number of elements of H(u) in the ith interval,
and let piðuÞZ jHiðuÞ j = jHðuÞ j , 1%i%10. An application of Bayes rule yields
Proc. R. Soc. A
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Figure 4. Histogram of H(u) superposed on the density for N (0, 1).

Table 3. Mean and standard deviations of 100 values of ŝðuÞ for each of five images.

image mean s.d.

Rocks1 0.9988 0.0086
Aloe 1.0015 0.0138
Bowling2 1.9996 0.0085
Groningen 1.0005 0.0076
Lena 1.0002 0.0128

11Distribution for sub-images
Pðs j fp1ðuÞ;.; p10ðuÞgÞZ
Pðfp1ðuÞ;.; p10ðuÞg jsÞPðsÞ

Pðfp1ðuÞ;.; p10ðuÞgÞ
: ð4:7Þ

Let qi be the probability mass assigned by N(0, s2) to the ith interval,
1%i%10. The probability Pðfp1ðuÞ;.; p10ðuÞg jsÞ is obtained using the
multinomial distribution,

Pðfp1ðuÞ;.p10ðuÞg j sÞZ
jHðuÞ j

jH1ðuÞ j . jH10ðuÞ j

 !Y10
iZ1

q
jHiðuÞ j
i ;

and P(s) is obtained from the scale invariant prior, P(s)ZsK1 (Jaynes 2003).
An estimate ŝðuÞ of s is obtained by maximizing the numerator on the right-
hand side of (4.7),

ŝðuÞZ argmax s1
1

s

jHðuÞ j
jH1ðuÞ j . jH10ðuÞ j

 !Y10
iZ1

q
jHiðuÞ j
i :

Values of ŝðuÞ were obtained for 100 samples u from SkK1. The mean and
the standard deviations of the 100 values of ŝðuÞ are shown in table 3 for the
five images listed in table 2.
Proc. R. Soc. A



S. J. Maybank12
Typical results for a set H consisting of 9000 samples from N (0, I(k)) are mean
0.9987 and standard deviation 0.0097, both of which are comparable with the
appropriate entries in table 2.
(c ) Discussion

The fact that the empirical covariance of H is equal to I(k) and the fact that
the results of the tests in §4b are compatible with the hypothesis that H is
modelled by N (0, I(k)) do not prove that the vectors in H are sampled from
N (0, I(k)). There is always the possibility that H inherits from the original image
structures that are not modelled by N (0, I(k)). However, the use of random
measurements and the reduction of the dimension of the measurement space
from m1m2K1 to k both tend to improve the compatibility of H with N (0, I(k)),
and the results on stereo matching, reported in §6 below, confirm that the model
N (0, I(k)) does contain a significant amount of useful information about H.
5. Theory of matching sub-images

The distribution for sub-images obtained in §4a is applied to the matching of
sub-images. An Ornstein–Uhlenbeck process (Karatzas & Shreve 1988) is used to
model the difference between a given measurement vector and a matching
measurement vector. Formulae for the probability of a single false alarm and the
probability of a single correct match with no false alarm are obtained.
(a ) Statistical model for the differences between sub-images

Let J1, J2 be a pair of images and consider the task of matching a sub-image
sampled from J1 with a sub-image sampled from J2. Let the random variables
W1, W2 model the sub-images of J1, J2, respectively, and let the random variable
D(W1) model the difference between W1 and the matching random sub-image in
J2. It follows that W2ZW1CD(W1).

It is assumed that W1 and W2 have the same distribution. This assumption
places a strong constraint on D(W1). The correct choice of distribution for
D(W1) becomes apparent on considering the random vectors GiZf(v(kK1,Wi)),
iZ1; 2 in R

k, where f is defined by (4.6). Let ~DðG1Þ be the perturbation
such that

G2 ZG1 C ~DðG1Þ; ð5:1Þ
and suppose that G1wN (0, I(k)). It is necessary to define ~DðG1Þ such that
G2wN (0, I(k)). The random vectors G1, G2 are regarded as nearby states in a
stochastic process on R

k, and ~DðG1Þ is regarded as an increment in the process. If
the process has N (0, I(k)) as a limiting distribution, then this distribution is
preserved under the increment ~DðG1Þ, giving G1C ~DðG1ÞwNð0; I ðkÞÞ, as
required. The simplest option is to use the Ornstein–Uhlenbeck process s1Xs,
0%s, in R

k (Karatzas & Shreve 1988), as described by the Itô stochastic
differential equation

dXs ZKXs dsC
ffiffiffi
2

p
dBs; 0%s:
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The process B is a standard Brownian motion on R
k. If X0 is given, then the

expected value ms and covariance Cs of Xs are

ms Z expðKsÞX0; 0%s;

Cs Z ð1KexpðK2sÞÞI ðkÞ; 0%s:

The diffusion model for image matching preserves the symmetry between the
two images J1, J2, in that the random vectorsG1,G2 are required to have the same
distribution, N (0, I(k)). The symmetry is broken when a single sub-image, w1, is
chosen in J1 and a matching sub-image is sought in J2. The diffusion model biases
the matching in favour of those sub-images that appear frequently in J2. This bias
is more extreme if the vector, h1, in R

k obtained from w1 is in a region of Rk in
which the probability density function for N (0, I(k)) takes very small values.

The two random vectors G1, G2 are regarded as states of a single Ornstein–
Uhlenbeck process X. The pair (h1, h2) is defined to be a correct match, or
equivalently a realization of (G1, G2), if X0Zh1 and XtZh2 where t is a fixed
time, to be determined. Let x1ft(h1, x) be the probability density function for
Xt, given that X0Zh1. The density ft(h1, x) is Gaussian with expected value
mt(h1)Zexp(Kt)h1 and covariance CtZ(1Kexp(K2t))I(k). Let b(d) be defined
for 0%d!1 such that ð

kxKmtðh1Þk%bðdÞ
ftðh1; xÞdx Z d: ð5:2Þ

A pair (h1, h2) is accepted as a match if kh2Km1(h1)k%b(d). The quantity d is
the probability that (h1, h2) is accepted, given that (h1, h2) is a correct match.

It remains to estimate t. A training set (hi1, hi2), 1%i%m, of correctly matched
pairs of vectors is required. It is assumed that hi2 is sampled from the density
x1ft(hi1, x) and t is estimated numerically using maximum likelihood,

t Z argmax s1
1

m

Xm
iZ1

lnðfsðhi1; hi2ÞÞ: ð5:3Þ

The above matching algorithm is related to the sum of squared differences
(SSD) algorithm, as listed by Scharstein & Szeliski (2002) in their table 1. The
difference is that the above algorithm does not calculate the SSD using the
original sub-images but instead calculates a version of the SSD in a measurement
space, Rk, in which the measurement vectors have the distribution N (0, I(k)).

It is noted that other diffusion models for sub-images are possible. For
example, the feature space R

k could be parametrized such that the probability
density function for sub-images is the uniform density on the unit ball. The
natural diffusion for sub-images is then a Brownian motion in the unit ball with
reflection at the boundary. Unfortunately, the numerical calculations associated
with this diffusion are extremely complicated.

(b ) Probabilities of false alarm and acceptance

Let E(h1, h2) be the event that (h1, h2) is a correct match and let A(h1, h2) be
the event that (h1, h2) is accepted as a match. It follows from (5.2) and the
criterion for accepting a match that

PðAðh1; h2Þ jEðh1; h2Þ; h1ÞZ d: ð5:4Þ
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It is assumed that there are c candidate matches to h1 and that the correct match
is included among them. It follows that:

PðEðh1; h2Þ j h1ÞZ cK1:

The probability P(A(h1, h2)jE(h1, h2),h1) is affected by the assumption that the
correct match is included in the c candidate matches, but this effect is neglected
under the assumption that c is large.

If (h1, h2) is not a correct match, then it is assumed that h2 is sampled from
N (0, I(k)), independently of h1. A false alarm occurs if (h1, h2) is accepted, even
though it is not a correct match. Let �Eðh1; h2Þ be the complement of the event
E(h1, h2). The probability of a false alarm is given by

PðAðh1; h2Þ j �Eðh1; h2Þ; h1ÞZ
1

ð2pÞk=2
ð
kxKmtðh1Þk%bðdÞ

exp K
1

2
kxk2

� �
dx:

Let gðh1; dÞZPðAðh1; h2Þ j �Eðh1; h2Þ; h1Þ. A short calculation yields

PðAðh1; h2Þ j h1Þ ZPðAðh1; h2Þ jEðh1; h2Þ; h1ÞPðEðh1; h2Þ; h1Þ
CPðAðh1; h2Þ j �Eðh1; h2Þ; h1ÞPð �Eðh1; h2Þ; h1Þ;

Z cK1dCcK1ðcK1Þgðh1; dÞ:
Let N(h1) be the event that no match to h1 is accepted. It follows that:

PðNðh1Þ j h1ÞZ ð1KdÞð1Kgðh1; dÞÞcK1:

Suppose that vectors HZ{hi1, 1%i%n} are obtained from sub-images of J1, and
each vector hi1 has c candidate matches obtained from sub-images of J2, of which
one is a correct match to hi1. The average probability, P(N(H )jH ), that no match
is accepted is

PðNðHÞ jHÞZ 1

n
ð1KdÞ

Xn
iZ1

ð1Kgðhi1; dÞÞcK1: ð5:5Þ

Let F(h1) be the event that the correct match to h1 is not accepted and that there
is a single false alarm. It follows that:

PðFðh1Þ j h1ÞZ ðcK1Þð1KdÞgðh1; dÞð1Kgðh1; dÞÞcK2

and

PðFðHÞ jHÞZ 1

n
ðcK1Þð1KdÞ

Xn
iZ1

gðhi1; dÞð1Kgðhi1; dÞÞcK2: ð5:6Þ

Let T (h1) be the event that the correct match to h1 is accepted and that there are
no false alarms. It follows that:

PðTðh1Þ j h1ÞZ dð1Kgðh1; dÞÞcK1

and

PðTðHÞ jHÞZ d

n

Xn
iZ1

ð1Kgðhi1; dÞÞcK1: ð5:7Þ

In §6, the calculated probabilities P(N(H )jH ), P(F(H )jH ), P(T (H )jH ) are
compared with their empirical estimates.
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Figure 5. The 500 sub-images for stereo matching with m1Zm2Z15.

15Distribution for sub-images
6. Experiments on stereo matching

The theory of matching described in §5 was tested experimentally on stereo
images from the MIDDLEBURY stereo database. The aim of the test was to show
that it is possible to predict the performance of the matching algorithm.

(a ) Experiments

All RGB colour images were reduced to grey scale images by taking the average
of the RGB values at each pixel. The Rocks1 image sequence contains seven
images numbered from 0 to 6, and rectified such that if (x1, y1) and (x2, y2) are
matching points in different images then x1Zx2. The disparities y2Ky1 for the
matches between image 1 and 5 are available, rounded to integer values, in the file
disp1.pgm. Image 1 is shown above in figure 1a, with the y-axis horizontal.

Suitable values for k, m1, m2 were chosen and the function f in (4.6) was
calculated using 9000 m1!m2 sub-images sampled from image 1 at the vertices
of a square grid. Stereo matching was carried out between image 1 and 5 using
500 sub-images sampled from image 1, with the centres of the sub-images at
the vertices of another square grid. The 500 sub-images are shown in figure 5
for m1Zm2Z15.

Let D(x1, y1) be the disparity, rounded to an integer, at (x1, y1) in image 1. If
the disparity at (x1, y1) is not defined, for example, due to occlusion, then
D(x1, y1)Z0. A match (x1, y1)4(x5, y5) was regarded as correct if

j y1KDðx1; y1ÞK y5 j%2: ð6:1Þ
The bound of 2 in (6.1) is reasonable, first because y1, y2 and D(x1, y1) are
rounded to integers and second because the correlations between nearby sub-
images lead to additional matches in the neighbourhood of a correct match.
A consequence of (6.1) is that correct matches to (x1, y1) occur in groups of five.
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Let Dmax, Dmin be, respectively, the maximum and minimum of the non-zero
entries of D. The number of candidate matches to (x1, y1) is DmaxKDminC1. The
number c of candidate matches, as defined in §5b, is defined pessimistically by
cZDmaxKDminK3. This definition of c is obtained by subtracting four from
DmaxKDminC1, to take account of the fact that five of the matches are grouped
together and considered to be a single correct match. The value of c is adjusted
for the relatively small number of sub-images that are near to the boundaries of
the images. The parameter t was estimated using (5.3) applied to 1000 sub-
images sampled from image 1 and their matching sub-images in image 5.
(b ) Results

The results of the experiments are shown in tables 4–8. The same random
projection matrix F was used throughout. The variable d in the first column
of each table is the probability (5.4) that a correct match is accepted. The
average probabilities P(N(H )jH ), P(F(H )jH ), P(T (H )jH ) are as defined by

(5.5)–(5.7), respectively, and P̂ðNÞ, P̂ðFÞ, P̂ðTÞ are the empirical estimates of
these average probabilities.

The empirical estimates were calculated as follows. Any sub-image with 11 or
more false alarms was discarded on the grounds that the large number of false
alarms was incompatible with the statistical model for matching described in
§5a. To give a numerical example, in the case of the Rocks1 image, if kZ12 and
dZ0.95, then (5.2) yields b(d)Z2.6328, giving a probability of a false alarm less
than 0.1379, and an exceedingly small probability of 11 or more false alarms. If,
nevertheless, 11 false alarms are observed, then this is a sign that the model has
failed for the particular sub-image under consideration. Let n be the number of
the remaining sub-images and let n(F ) be the number of sub-images for which no
match was found. Then P̂ðNÞ is defined by P̂ðNÞZnðFÞ=n, and P̂ðFÞ, P̂ðTÞ are
defined analogously. The values of n are given in the second column of each table.

The final column in tables 4–8 gives the value sZ(p(1Kp)/n)1/2 of the
standard deviation in the estimate of the probability pZP(T (H )jH ) by the mean
value of n independent Bernoulli random variables, each of which takes the value
1 with probability p. The prediction of P̂ðTÞ by P(T (H )jH ) is the best possible if
P̂ðTÞKPðTðHÞ jHÞZOðsÞ.

The probability P̂ðFÞ is similar to the percentage BO of unoccluded badly
matched pixels defined by Scharstein & Szeliski (2002) in their §5.1. The values
of PðF̂Þ in tables 4–8 are similar to the values of BO, in spite of the fact that the
values of c are much larger than the maximum disparity of 15 given by
Scharstein and Szeliski in their table 2.

The agreement between P(T (H )jH ) and P̂ðTÞ is good in tables 4–6 for the
larger values of d. In contrast to P(T (H )jH ) and P̂ðTÞ, the differences between
P(N(H )jH ) and P̂ðNÞ and between P(F(H )jH ) and P̂ðFÞ in tables 4–6 are small at
low values of d, and tend to increase as d increases. The increase in the value of k for
table 5 led to increases in P(T (H )jH ) and P̂ðTÞ, when compared with table 4, but
to a reduction in the accuracy with which P(T (H )jH ) predicted P̂ðTÞ.

There is less agreement betweenP(T (H )jH ) andP̂ðTÞ in table 7 for the Bowling2
sequence.The values ofn are low, showing that a large number of sub-images have 11
or more false alarms. In addition,P(T (H )jH ) andP̂ðTÞ are very low. The Bowling2
image, as shown in figure 3b, is dominated by the uniform surface of the bowling ball.
Proc. R. Soc. A



Table 7. Bowling2 sequence, m1Z7, m2Z7, kZ12, tZ0.3375, cZ159.

d n P̂ðNÞ P(N(H )jH ) P̂ðFÞ P(F(H )jH ) P̂ðTÞ P(T (H )jH ) s

0.8 272 0.077 0.010 0.040 0.018 0.154 0.043 0.012
0.85 240 0.058 0.004 0.037 0.009 0.133 0.027 0.010
0.9 204 0.053 0.001 0.034 0.003 0.078 0.014 0.008
0.95 145 0.013 0.000 0.041 0.000 0.068 0.005 0.005

Table 4. Rocks1 sequence, m1Z7, m2Z7, kZ12, tZ0.2, cZ114.

d n P̂ðNÞ P(N(H )jH ) P̂ðFÞ P(F(H )jH ) P̂ðTÞ P(T (H )jH ) s

0.8 473 0.152 0.128 0.046 0.047 0.437 0.515 0.022
0.85 460 0.132 0.085 0.050 0.038 0.439 0.483 0.023
0.9 452 0.110 0.046 0.037 0.027 0.376 0.414 0.023
0.95 428 0.084 0.015 0.030 0.013 0.282 0.294 0.022

Table 5. Rocks1 sequence, m1Z7, m2Z7, kZ24, tZ0.3, cZ114.

d n P̂ðNÞ P(N(H )jH ) P̂ðFÞ P(F(H )jH ) P̂ðTÞ P(T (H )jH ) s

0.8 490 0.183 0.170 0.026 0.025 0.575 0.682 0.021
0.85 487 0.151 0.119 0.030 0.024 0.554 0.674 0.021
0.9 478 0.129 0.069 0.025 0.021 0.525 0.629 0.022
0.95 452 0.099 0.026 0.017 0.013 0.482 0.509 0.022

Table 6. Aloe sequence, m1Z7, m2Z7, kZ12, tZ0.2, cZ165.

d n P̂ðNÞ P(N(H )jH ) P̂ðFÞ P(F(H )jH ) P̂ðTÞ P(T (H )jH ) s

0.8 443 0.099 0.111 0.045 0.051 0.395 0.446 0.023
0.85 429 0.093 0.071 0.046 0.039 0.368 0.403 0.023
0.9 411 0.070 0.037 0.051 0.025 0.321 0.338 0.023
0.95 389 0.056 0.012 0.041 0.010 0.251 0.230 0.021

Table 8. Bowling2 sequence, m1Z15, m2Z15, kZ56, tZ0.5, cZ159.

d n P̂ðNÞ P(N(H )jH ) P̂ðFÞ P(F(H )jH ) P̂ðTÞ P(T (H )jH ) s

0.8 471 0.144 0.158 0.050 0.034 0.458 0.634 0.022
0.85 456 0.135 0.105 0.039 0.034 0.427 0.596 0.022
0.9 438 0.111 0.055 0.038 0.028 0.406 0.498 0.023
0.95 403 0.084 0.016 0.032 0.014 0.362 0.307 0.022

17Distribution for sub-images
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This suggests that the results in table 7 arise because the perturbations ~DðG1Þ in (5.1)
are comparable in size with the differences between the pairs of 7!7 sub-images
sampled from the area covered by the bowling ball. Table 8 shows that the larger
values of n and larger values of P(T (H )jH ) are obtained if the sub-images are
increased in size to 15!15, and k is increased proportionately to 56. (Note that
for this largevalue ofk, the covariance of thedirections of thevectors in ~V (see (4.2)) is
near to kK1I(k) and thus thematrixA in (4.5) can be set equal to I(k).)The agreement
between P(T (H )jH ) and P̂ðHÞ is less in table 8 than in tables 4–6.
7. Conclusion

The sub-images of an image have been mapped to a measurement space R
k in

which they are modelled by a Gaussian distribution N (0, I(k)). The differences
between the measurement vectors of matching sub-images are modelled using an
Ornstein–Uhlenbeck process which has N (0, I(k)) as a limiting distribution. The
resulting statistical model for image matching is tested by using it to calculate
certain probabilities that measure the performance of a stereo matching
algorithm. The calculated probabilities are compared with those obtained
experimentally by applying the algorithm to images from the MIDDLEBURY stereo
database. The performance of the algorithm is successfully predicted. In
particular, if the probability of accepting a correct match is relatively large,
then there is good agreement between the calculated and the experimental
probabilities of obtaining a unique match which is also a correct match.

The probability density function for sub-images and the associated Ornstein–
Uhlenbeck process has many potential applications, including image registration,
object detection and stereo matching. In the case of stereo matching it may be
possible to predict the amount of information contributed by each part of a
matching algorithm, and in this way find out which parts of the algorithm are
optimal and which parts could be improved.
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