Opening the Black Box: Deriving Rules from Data

Elena Baralis

Politecnico di Torino

BICOD 2017 – RuleML+RR 2017

London, July 12th 2017
Opening the black box

i.e., the long and winding road that takes to knowledge...
Mining large datasets

- Continuously growing amounts of data are being collected and stored

- Available for exploration and analysis
 - Patterns and models are extracted from data to
 - describe their characteristics
 - predict variable values

- User generated content
- Sensor data
- E-commerce data
The Quest for Interpretability

- Powerful analysis techniques are being designed
 - Among them, deep learning techniques
- Unfortunately, many high quality models are characterized by being hardly interpretable
 - Data interpretability is important for decision making
- Rules mined from data may provide easily interpretable knowledge
 - both for exploration and classification (or prediction) purposes
Introducing some types of rules inferred from data
- association rules
- (associative) classification rules
- with variations on the theme...

Discussing their capability of
- describing phenomena
- giving meaning to the data under analysis
Rule patterns

- High quality patterns derived bottom-up
 - Not assuming any apriori knowledge on data
 - will relax somewhat this hypothesis

- Several kinds of pattern
 - descriptive patterns: association rules & itemsets
 - rule models for prediction

- Focus on association rules

- Many application domains
 - Data exploration and explanation
 - Constraint derivation
 - ...
Descriptive patterns

- Many different types of association-based patterns
 - itemsets
 - association rules
 - weighted association rules
 - generalized association rules
Association rules

- Objective
 - extraction of frequent correlations or patterns from a transactional database

Purchases at a supermarket counter

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diapers, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diapers, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diapers, Milk</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Association rule
 - diapers ⇒ beer
 - 2% of transactions contain both items
 - 30% of transactions containing diapers also contain beer
A transaction can be any set of items
- Market basket data
- Textual data
 - A document is a transaction
 - Words in a document are items in the transaction
- Structured data
 - A table row is a transaction
 - Pairs (attribute, value) are items in the transaction

Example
Refund=no, MaritalStatus=married, TaxableIncome<80K, Cheat=No

Example from: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Association rules

- Identification of hidden correlations among data

 \[X \rightarrow Y \]

- X and Y are itemsets, sets of one or more items

- Quality indices
 - **Support**: percentage of transactions containing X and Y
 - **Confidence**: conditional probability of finding Y given X
 - **Lift**: ratio between rule confidence and support of Y
Considering weight

- Items may be characterized by different importance within a transaction
 - Examples: product quantity, term frequency of occurrence, tf-idf

- Weighted dataset
 - Each item is assigned a weight measuring its relevance in the corresponding transaction

- Weighted itemsets represent correlations among multiple highly relevant terms
 - Several different definitions of weighted itemset support
Document summarization

- The summary of a collection of news documents ranging over the same topic
 - provides a synthetic overview of the most relevant news facets
 - does not require access to the entire document collection
- Itemset-based summarizers analyze the co-occurrences between multiple document terms
 - frequent weighted itemsets consider only the correlations between *highly relevant* terms
 - term weights measure term relevance in the analyzed collection
Document summarization

- Language-agnostic approach
 - makes minimal use of language-dependent analyses (stopwords, optionally stemming)
 - is easily applicable to document collections written in different languages (Arabic, Czech, English, French, Greek, Hindi)

- Item weights are particularly effective for summarizing documents written in languages other than English
Considering hierarchies

- Generalization hierarchies
 - Aggregation over attributes in a dataset
 - Typically user provided

- Examples
 - Time hierarchy
 - Product category
 - Location hierarchy
 - …
Taxonomy

- A taxonomy is a set of is-a hierarchies that aggregate data items into higher-level concepts

- **Data item**
 - Instance in the (transactional) dataset
 - Represents detailed concepts

- **Generalized item**
 - Aggregation in higher-level concepts
 - Represents abstractions on instances
Generalized itemsets

- Sets of items at different generalization levels
 - May contain data items together with generalized items defined in the taxonomy
 - Summarize knowledge represented by a set of lower-level descendants
 - Both frequent and infrequent
- A generalized itemset covers a transaction when all
 - its generalized items are ancestors of items included in the transaction
 - its data items are included in the transaction
- Generalized itemset support
 - ratio between number of covered transactions and dataset cardinality
Context-aware data analysis

- Context data provided by different, possibly heterogeneous, sources
 - Mobile devices provide information on
 - the user context (e.g., GPS coordinates)
 - the supplied services
 - temporal information
 - service description
 - duration
 - Additional information available
 - demographics of the user requesting the service
Generalized itemset example

user: John, time: 6.05 p.m., service: Weather (s = 0.005%)

- A very low support
 - The itemset may be discarded

- By generalizing
 - the time attribute on a time period
 - the user on a user category

 user: employee, time: 6 p.m. to 7 p.m., service: Weather (s = 0.2%)

- May discover interesting properties generalizing infrequent items
Generalized association rules

- Extension of “classical” association rules

 \[X \rightarrow Y \]

- X and Y are either generalized or not generalized itemsets
 - Support, confidence and lift are defined accordingly
Patient data analysis

- Analysis of multiple level correlations on patient treatment historical data
 - Dataset collected by an Italian Local Health Center
 - Diabetes complications at various severity levels
 - 95K records, 3.5K patients
 - Features
 - Prescribed examinations (26 examinations, 7 categories)
 - Prescribed drugs (200 drugs, 14 categories)
 - Census patient data (gender, age discretized in age groups)
- Sparse dataset
 - Difficult setting of support threshold
 - Low: generates too many rules
 - High: interesting information at lower levels of abstraction may remain hidden
Patient data analysis

- Rule exploration in top-down fashion
 - From small subset of high-level rules drill down to more specific rules
 - Descending level of abstraction on the considered taxonomy
 - Discovery of rule groups at different abstraction levels
 - Typically more manageable for manual exploration

- Consider only non redundant rules
 - Compact subset based on closed itemsets
 - Rule is redundant if it has same support and confidence of its specialized version
 - Reduces cardinality of rule set
Patient data analysis

- High-level rules
 - Only generalized itemsets (examination and drug categories)
 - Represent general knowledge
 - May be too high level to perform targeted analyses
Patient data analysis

- Extracted high-level rule

 (Examination, Liver) -> (Examination, Kidney)

- Frequently prescribed together
- May be used for examination scheduling
Patient data analysis

- Cross-level rules
 - Different abstraction levels (generalized items and data items)
 - Combine detailed and general information
- Extracted cross-level rule
 - (Examination, Liver) -> (Examination, Uric acid)
 - Insight into specific kidney examinations correlated with liver examinations
 - Confidence: 74.8%
Patient data analysis

- **Low-level rules**
 - Only not generalized itemsets (only data items)
 - Very detailed knowledge
 - Covered by high and cross-level rules
 - Large rule set
 - Challenging exploration task
 - Drill down exploration based on formerly extracted high and cross-level rules
Outcomes

- Allow experts to
 - Identify medical treatments commonly followed by patients with a given disease
 - Verify adherence of medical treatment to shared medical guidelines
 - Improve the effectiveness of medical treatments
 - Plan resource allocation and reduce costs incurred by organization
Flipping correlations

- Discovery of contrasting situations between ancestor and descendant itemsets
 - Identify exceptional or unexpected situations

- Itemsets characterized by a correlation type
 - Positive, negative, or null
 - Correlation strength measured by correlation indices
 - Kulczynsky, lift, ...

- Itemsets whose *correlation type flips* (changes) when its items are generalized to a higher level of abstraction
Flipping correlations

- Twitter dataset on Music topic
- Flipping correlation
 - Generalized itemset, *negative* correlation
 (Date: Working day), (Location: Twickenham Rugby Stadium)
 - Exception, *positive* correlation
 (Date: 2012-09-08), (Location: 51.45542-0.34165)
 - Lady Gaga sold-out concert in the stadium on 2012-09-08
Classification

- Objectives
 - prediction of a (discrete) class label
 - definition of a model of a given phenomenon
 - interpretable?
Rule patterns for classification

- **Targets**
 - Defining an *interpretable rule model* capable of
 - assigning class label to unclassified object
 - describing main class characteristics
 - Providing *reasons for a classification* outcome
 - why a class label is assigned to a given instance?

- **Several types of rules**
 - Class association rules (CARs)
 - Good quality classification models
 - Many different approaches
Class Association Rules

- Structure of “classical” association rules
 \[X \rightarrow Y \]

 where Y is a class label

- CARs selection
 - Rule selection & sorting
 - based on support, confidence and lift thresholds
 - Rule pruning
 - Database coverage: the training set is covered by selecting topmost rules according to previous sort
Lazy pruning

- L^3: Live and Let Live
 - Low support threshold for rule extraction
 - Rule selection based on confidence
 - Multiple support thresholds for different classes
 - Level-based approach in selecting rules
 - *Good rules*, small subset of high quality rules
 - *Spare rules*, larger set of rules not used during database coverage
 - *Harmful rules*, discarded because only wrongly classifying training data

- High quality model
 - Larger rule set, considering spare rules
Instance-centric approaches

- **DeEPs**
 - Emerging Pattern are patterns that sharply differentiate one (training) class from the others
 - Interesting patterns occur frequently in one class and less frequently in the others
 - *Lazy* classification
 - EP extraction takes place for the given test instance
 - Aggregate supports of extracted EPs assign class label

- **Harmony**
 - Selects a subset of best possible rules for each training instance
 - highest confidence frequent covering rules
The challenge of big data

- **Huge data collections exacerbate the problem**
 - Very sparse datasets
 - Support threshold setting
 - Computational challenge
 - Scalability in item cardinality is a challenge
 - Hadoop/Spark framework not straightforwardly usable

- **Local exploration of datasets**
 - Several criteria to select area to explore
 - Rule constraints
 - Schema constraints, item constraints
 - Predicates on attributes
 - Instance constraints
Rules as building blocks

- Rules may support black box learning paradigms
 - Learn rule patterns from data
 - Learn some abstractions by experience
 - E.g., a positioning rule for objects
 - Use learned patterns (abstractions) to support deep learning techniques
 - Drive learning also by abstractions
 - E.g., use rule to improve object detection

- It is the way our brain works!
Thanks to...

- everybody in my research group, PhD students and researchers, but especially...

- Giulia Bruno
- Luca Cagliero
- Tania Cerquitelli
- Silvia Chiusano
- Paolo Garza
- Luigi Grimaudo
Thank you!

Questions?