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1 Introduction

Active databases provide reactive functionality by supporting event-condition-action rules of the form `on
event if condition do actions'. A key issue for active databases is optimising the run-time execution of
such rules. Given the data-intensive nature of the rules, previous research has aimed at either adopting
existing database optimisation techniques, or developing special-purpose solutions for improving execution
e�ciency. In contrast, in this paper we show how the programming language framework of partial
evaluation provides a formal and general route to optimising active database rules.

Partial evaluation [9] aims to improve program e�ciency by producing specialised versions of the
program for speci�c input values. In the case of sets of active rules, the `program' being optimised is
the rule execution semantics and the `input values' are the current database state and the rule actions
currently awaiting execution. Producing a specialised version of the rule execution semantics for each
possible sequence of actions that may execute on that database state provides the opportunity to optimise
rule execution for each particular sequence of actions, for example by abstraction of common sub-queries
from the sequences of conditions that will need to be evaluated.

We obtain information about possible sequences of actions by applying abstract interpretation to
the rule execution semantics, using an abstract representation of the current database state and current
action(s) awaiting execution. In [1], we presented a framework for termination analysis of active rules
using abstract interpretation. Here, we use similar techniques for generating the set of input values with
respect to which the rule execution semantics should be partially evaluated and optimised. Our techniques
are applicable both statically, i.e. at rule compilation time, and dynamically, during rule execution.

The contributions of this work are as follows: We introduce for the �rst time partial evaluation and
abstract interpretation as techniques for globally optimising sets of active rules. The combination of these
techniques generalises a number of optimisations already found in the active database literature. A key
di�erence between this previous work and our approach is that our optimisations are automatically derived
using general principles. This places rule optimisation on a sound theoretical footing, and also provides
the opportunity to discover new optimisations. In particular, we show how abstract interpretation can
be used to generate information about sequences of rule actions that will be executed, and this approach
produces more possibilities for rule optimisation than previous graph-based analyses.

This extended abstract is structured as follows. Section 2 speci�es the rule execution semantics that
we assume for the purposes of this paper and discusses abstract interpretation of these semantics. It
also shows how abstract interpretation can be integrated with rule execution in order to avoid condition
evaluation by making use of cheap incremental inferencing techniques. Section 3 shows how partial
evaluation can be used for optimising specialisations of the rule execution semantics for single rule actions.
Section 4 extends the approach to possible sequences of rule actions, using abstract interpretation to derive
such sequences. Section 5 shows how abstract interpretation can also be applied at run-time, to generate
sequences of rule actions that will de�nitely be executed so that these can be dynamically optimised.
Section 6 discusses the costs and bene�ts our techniques and compares our approach with related work
on optimising active rules. Section 7 summarises our contributions and outlines directions for future
work.
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2 Rule Optimisation using Abstract Interpretation

2.1 The Rule Execution Semantics

We specify the rule execution semantics that we are assuming for the purposes of this paper as a function,
execSched, which takes as input a database and a schedule. The schedule consists of a list rule actions
to be executed. The database consists of a set relation names and an extent associated with each one.
Relations are of three kinds: user-de�ned relations and, for each user-de�ned relation R, two event
relations, insEventR and delEventR and two delta relations 4R and 5R. insEventR (delEventR) is
non-empty if and only if the latest action executed was an insertion into (deletion from) R. 4R (5R)
contains the tuples inserted into (deleted from) R by the latest action executed1.

Active rules take the form `on event if condition do actions'. The event part may be 4R, 5R,
insEventR or delEventR, for some R. The condition part is a query. We de�ne a rule's event-condition
query to be the conjunction of its event query and its condition query. A rule is said to be triggered if the
relation speci�ed in its event part evaluates to non-empty. A rule �res if it is triggered and its condition
part evaluates to non-empty i.e. if its event-condition query evaluates to non-empty.

Each rule has a list of one or more actions, each action being of the form Ins R q or Del R q for some
user-de�ned relation R and query q. Each rule also has a coupling mode, which may be either Immediate
or Deferred. With Immediate coupling mode, if the rule �res then its actions are pre�xed to the current
schedule; with Deferred coupling mode, they are su�xed. If multiple rules with the same coupling mode
�re, the actions of higher-priority rules precede those of lower-priority ones on the schedule. We assume
that all rules have the same binding mode, whereby the delta relation names in each action's query part,
q, are bound to the database state in which the rule's condition is evaluated and all other relation names
in q are bound to the database state in which the action is executed. A greater variety of coupling
modes and binding modes can be handled by our rule analysis and optimisation techniques, which are
generically applicable, but here we con�ne ourselves to this subset for ease of exposition (see [12] for a
detailed description of the coupling and binding possibilities for active rules).

We specify the rule execution semantics as a recursive function execSched which takes a database
and schedule, and repeatedly executes the �rst action on the schedule, updating the schedule with the
actions of rules that �re along the way. If execSched terminates, it outputs the �nal database state and
the �nal, empty, schedule:

execSched : (DBState,Schedule) -> (DBState,Schedule)

execSched (db,[]) = (db,[])

execSched (db,a:s) = execSched o schedRules (exec (a,db), a:s)

schedRules : (DBState,Schedule) -> (DBState,Schedule)

schedRules (db,a:s) =

let (db,pre,suf) = fold schedRule (db,[],[]) (triggers a)

in (db,pre++s++suf)

schedRule : RuleId -> (DBState,Schedule,Schedule) -> (DBState,Schedule,Schedule)

schedRule i (db,pre,suf) =

if (eval (ecq i) db) = {}

then (db,pre,suf)

else updateSched (actions i,mode i,db,pre,suf)

updateSched (actions,Immediate,db,pre,suf) = (db, pre ++ (bind actions db),suf)

updateSched (actions,Deferred, db,pre,suf) = (db, pre, suf ++ (bind actions db))

In the above speci�cation, we assume that rules are identi�ed by unique rule identi�ers. The functions
ecq, actions and mode take a rule identi�er and return the event-condition query, the list of actions, and
the mode of the rule, respectively. The function triggers takes a rule action, and returns the id's of rules
triggered by that action, in order of their priority.

1Allowing both event and delta relations means that both semantic and syntactic triggering are supported.
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The function exec executes an action a on a database db and returns the updated database. The
function schedRules applies the function schedRule to each rule triggered by a (in order of the rules'
priority). schedRule determines whether a given rule �res by invoking the eval function to evaluate
its event-condition query w.r.t the current database state. If so, updateSched is called to update the
schedule pre�x or su�x. The function bind replaces the delta relation names in an action's query part
by the contents of these relations in the current database state. � denotes function composition, [ ] the
empty list, (x : y) a list with head x and tail y, and ++ is the list append operator. We also assume the
following function which \folds" a binary function f into a list:

fold f x [] = x

fold f x (y:ys) = fold f (f x y) ys

Discussion. The above rule execution semantics are a simpli�cation of the framework we presented
in [1]. The optimisation techniques we describe here are applicable to the full framework, but we con�ne
ourselves to this subset for ease of exposition. The above semantics encompass most of the functionality
of SQL3's statement-level triggers [10] | see [2] for a full discussion of this point. They do not encompass
BEFORE triggers or UPDATE events but the optimisation techniques we describe here are easily extended
to these also. The above semantics do encompass semantic triggering and Deferred rule coupling, which
are not supported in SQL3. Finally, we do not directly consider row-level triggers here, but we outline
how they too could be handled in the Conclusions section.

2.2 The Abstract Execution Semantics

The abstract counterpart to execSched is execSched�, given below. execSched� is identical to execSched
except that it operates on abstract databases and abstract schedules, and that at the \leaves" of the
computation the functions eval and exec are replaced by abstract counterparts eval� and exec�; we
distinguish abstract types and functions from their concrete counterparts by su�xing their names with
a `*'.

An abstract database consists of a set of identi�ers and an abstract value associated with one.
Generally, these abstract values will be drawn from di�erent domains for di�erent abstractions. An
abstract schedule consists of a list of abstract actions. An abstract action may contain abstract values
in its query part, arising from the binding of delta relation names to the current abstract database
state. Rules and queries are syntactic objects which are common to both the concrete and the abstract
semantics. The functions triggers, ecq, actions and updateSched are the same in both semantics:

execSched* : (DBState*,Schedule*) -> (DBState*,Schedule*)

execSched* (db*,[]) = (db*,[])

execSched* (db*,a*:s*) = execSched* o schedRules* (exec* (a*,db*), a*:s*)

schedRules* : (DBState*,Schedule*) -> (DBState*,Schedule*)

schedRules* (db*,a*:s*) =

let (db*,pre*,suf*) = fold schedRule* (db*,[],[]) (triggers a*)

in (db*,pre* ++ s*++ suf*)

schedRule* : RuleId -> (DBState*,Schedule*,Schedule*) ->

(DBState*,Schedule*,Schedule*)

schedRule* i (db*,pre*,suf*) =

if (eval* (ecq i) db* = False)

then (db*,pre*,suf*)

else updateSched (actions i,mode i,db*,pre*,suf*))

In general there is no guarantee that execSched� will terminate and so we need a criterion for halting
it. If the abstract domain is �nite (which it is for the abstraction that we use for rule optimisation) a
simple way is to maintain a history of the (db�; s�) arguments passed to execSched� and to halt if a
repeating argument is detected | this is also the approach that we adopted for dynamic analysis of rule
termination and it is discussed in [2].
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In [1], we discussed the use of abstract interpretation for rule termination analysis and we identi�ed
three speci�c abstractions, two suitable for static analysis and one for dynamic analysis. In [2], we further
explored the third of these abstractions and we addressed the pragmatics of dynamic termination analysis
in active databases. Here, we briey review this abstraction again since, as we will see later, it can also
be used for rule optimisation.

With this abstraction, the abstract database consists of an identi�er corresponding to each event
query and each condition query in the rule set. These identi�ers are assigned values from the three-
valued domain fTrue; False; Unknowng. exec� uses a function infer to deduce new truth values for
these queries. infer takes a query q, a truth value inferred for q w.r.t. a previous abstract database state,
and the sequence of actions applied to the database since that inference, and returns a new truth value
for q. This inferencing is performed using incremental techniques that determine the e�ect of updates on
queries [7, 13] and we refer the reader to [2] for the full details of the inferencing algorithms we use. Since
the properties being tested are undecidable in general, it is of course possible that Unknown truth values
will be inferred for queries. eval� q db� returns the truth value inferred for an event-condition query q

from the current abstract database db�.
Example 1. Consider the following rule set. Assume that all the rules have Immediate coupling

mode, rule 2 has higher priority than rule 3, and rule 4 higher priority than rule 5.

1 : on 4R9 2 : on 4R0 3 : on 4R0

if R1 �R0 if R2 [ (R3 1 R4) if (R3 1 R4)�R5

do Ins R0 R1 do Del R1 (R7 �R8) do Ins R5 R3 [ (R7 �R8)

4 : on 4R5 5 : on 4R5

if R2 [ (R3 1 R4) if R7 �R8

do Del R4 (R5 [R6) do Ins R9 (R7 �R8)

The triggering graph of these rules is as follows:

2 4

1 3 5

Given an initial schedule consisting of the action of rule 1, i.e. [Ins R0 R1], and an initial abstract
database in which all condition queries have value Unknown, a trace of the abstract execution of these
rules on each successive call to execSched� is as follows, where ci denotes the condition query of rule i
and ai the action of rule i:

Iteration c1 c2 c3 c4 c5 Schedule

1 U U U U U [a1]
2 F U U U U [a2; a3]
3 F U U U U [a3]
4 F U U U U [a4; a5]
5 F U U U U [a5]

We see that the execution of rule 1's action on iteration 1 causes its condition to become False (a
description of the details of the inferencing used to deduce this can be found in [2]). Thereafter rule 1's
condition remains False. At iteration 5, it is evaluated again and its falsity means that rule 1 cannot �re
at this point. We can therefore conclude that if rule 1 is the �rst rule triggered then rule execution will
de�nitely terminate within 5 iterations.

In general, our rule termination test consists of running execSched� once for each possible initial
singleton schedule, with an initial abstract database in which all queries have an Unknown value. If all
invocations of execSched� terminate, then de�nite termination of the set of active rules can be concluded.
Otherwise, the set of rules is deemed to be possibly non-terminating. We refer the reader to [1, 2] for
a more detailed discussion of our abstract interpretation approach to rule termination analysis. In
Section 2.3 below we turn to its use for rule optimisation. Before doing so, we �rst consider the issue of
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the correctness of the abstract semantics.
An abstract database approximates a number of real databases and an abstract schedule a number

of real schedules. These possible concretisations are obtained by applying a concretisation function to the
abstract database or schedule. Two kinds of properties of active rules can be analysed using our abstract
interpretation approach | universal properties and existential properties. Universal properties are ones
that must hold for all possible concrete executions. Existential properties are ones that must hold for
some concrete execution. Termination is an example of a universal property and rule reachability an
example of an existential property.

execSched� is a safe approximation for universal properties if the equivalence below holds for all
db� 2 DBState� and s� 2 Schedule�, where conc is the chosen concretisation function and v the
information ordering on the powerdomain P(DBState; Schedule):

conc (execSched� (db�; s�)) v map execSched (conc (db�; s�)) (1)

The LHS of this equivalence corresponds to the set of possible concrete databases and schedules obtained
by �rst running the abstract execution on (db�; s�) and then deriving all possible concretisations of the
resulting abstract database and schedule. The RHS corresponds to �rst deriving all possible concretisa-
tions of (db�; s�) and then applying the real execution to each concrete database and schedule pair. We
refer the reader to [1] for details of the de�nitions of conc and v. Informally, S1 v S2 holds if S1 contains
the schedules in S2 and possibly more schedules. Thus, if the approximation yields a positive answer for
some universal property, then that property must be true for all real executions.

The following theorem states su�cient conditions for (1) to hold:
Theorem 1. execSched� is a safe approximation for universal properties if

(i) for all abstract actions a� and abstract databases db�,
conc (exec� (a�; db�)) v map exec (conc (a�; db�)), and
(ii) for all event-condition queries q and abstract databases db�,
eval� q db� = False) (8db 2 conc db� : eval q db = fg).

Similarly, execSched� is a safe approximation for existential properties if the equivalence below holds
for all db� 2 DBState� and s� 2 Schedule�:

map execSched (conc (db�; s�)) v conc (execSched� (db�; s�)) (2)

In this case the approximation must produce a subset of the schedules produced by the real execution.
Thus, if the approximation yields a positive answer for some existential property, then there must be a
real execution for which that property holds.

The following theorem states su�cient conditions for (2) to hold:
Theorem 2. execSched� is a safe approximation for existential properties if

(i) for all abstract actions a� and abstract databases db�,
map exec (conc (a�; db�)) v conc (exec� (a�; db�)), and
(ii) for all event-condition queries q and abstract databases db�,
eval� q db� 6= False) (8db 2 conc db� : eval q db 6= fg).

Observation. The abstraction described in [2] and used in Example 1 above satis�es the conditions
of Theorem 1 and is thus safe for universal properties. It also satis�es the conditions of Theorem 2, and
is thus safe for existential properties, if eval� returns only True or False i.e. it is unsafe if eval� returns
Unknown.

2.3 Mixed Execution Semantics

Our �rst observation regarding rule optimisation is that it is possible to use the abstract execution to
optimise the concrete execution by not evaluating an event-condition query using eval if its abstract value
is inferred to be True or False by eval�.

Conversely, after using eval to evaluate event-condition queries whose abstract value is currently
Unknown, it is possible to upgrade this value to True or False in the abstract database state. This
in turn will result in more precise future inferencing of abstract values, and hence in further gains in
avoiding query evaluation.
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These two observations lead to our mixed execution semantics, speci�ed by the function execSchedM
below, whereby the concrete and abstract executions proceed together. The abstract database state is
consulted for the presence of de�nite truth values, and it is updated after undertaking query evaluation
when this is necessary:

execSchedM : (DBState,Schedule,DBState*,Schedule*)

-> (DBState,Schedule,DBState*,Schedule*)

execSchedM (db,[],db*,[]) = (db,[],db*,[])

execSchedM (db,a:s,db*,a*:s*) = execSchedM o schedRulesM

(exec (a,db), a:s, exec (a*,db*), a*:s*)

schedRulesM : (DBState,Schedule,DBState*,Schedule*)

-> (DBState,Schedule,DBState*,Schedule*)

schedRulesM (db,a:s,db*,a*:s*) =

let (db,pre,suf,db*,pre*,suf*) =

fold schedRuleM (db,[],[],db*,[],[]) (triggers a)

in (db,pre++s++suf,db*,pre*++s*++suf*)

schedRuleM : RuleId -> (DBState,Schedule,Schedule,DBState*,Schedule*,Schedule*)

-> (DBState,Schedule,Schedule,DBState*,Schedule*,Schedule*)

schedRuleM i (db,pre,suf,db*,pre*,suf*) =

case (eval* (ecq i) db*) of

False :(db,pre,suf,db*,pre*,suf*);

True :updateSchedM (actions i,mode i,db,pre,suf,db*,pre*,suf*);

Unknown:let newdb* = replaceVal (ecq i) db* (eval (ecq i) db)

in schedRuleM i (db,pre,suf,newdb*,pre*,suf*)

updateSchedM (actions,Immediate,db,pre,suf,db*,pre*,suf*) =

(db, pre++(bind actions db),suf,db*,pre*++(bind actions db*),suf*)

updateSchedM (actions,Deferred, db,pre,suf,db*,pre*,suf*) =

(db, pre, suf++(bind actions db),db*, pre*, suf*++(bind actions db*))

Here the function replaceV al takes a query q, an abstract database db�, and a concrete value, val, for
the query, and replaces the abstract value of q in db� by True or False depending on whether val is
non-empty or empty.

To illustrate, consider again the rule set in Example 1. Suppose we have the same initial schedule
and abstract database state. Suppose also that in the initial actual database state, the conditions of rules
2 and 4 would evaluate to empty and those of rules 3 and 5 to non-empty. Then a trace of the abstract
database state and schedule on each successive call to execSchedM is as follows:

Iteration c1 c2 c3 c4 c5 Schedule

1 U U U U U [a1]
2 F F T U U [a3]
3 F F T F T [a5]

At iteration 1, the event-condition queries of rules 2 and 3 are evaluated, the abstract database state
is updated accordingly and rule 3 �res. At iteration 2, the event-condition queries of rules 4 and 5 are
evaluated, the abstract database state is updated accordingly and rule 5 �res. At iteration 3, the abstract
value of condition 1 can be used to infer that rule 1 won't �re after the execution of rule 5's action |
rule 1's event-condition query need not be evaluated. Notice also how the abstract database state has
been \upgraded" with more de�nite information by this rule execution and will thus be more useful for
optimising future rule executions.
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3 Rule Optimisation using Partial Evaluation

Partial evaluation [9] aims to improve program e�ciency by producing specialised versions of the pro-
gram for speci�c input values. Here we show how partial evaluation can be applied to the problem of
optimising a given set of active rules. A sequence of rewriting steps is performed on the de�nition of
execSched, preserving its semantics but resulting in a specialisation of it for each form of rule action.
Each specialisation is then optimised for that particular form of rule action. The rewriting steps are as
follows:
Step 1: Produce an equation de�ning execSched for each possible form of action a1, ..., an appearing
in the current rule set:

execSched (db; a1 : s) = execSched � schedRules (exec (a1; db); a1 : s)

execSched (db; a2 : s) = execSched � schedRules (exec (a2; db); a2 : s) :::

By \form of action" we mean whether the action is an insertion or deletion, and with respect to which
relation. Thus, for the rule set given in Example 1, the forms of action are Ins R0 q, Del R1 q, Ins R5 q,
Del R4 q and Ins R9 q, and one specialisation will be produced for execSched for each of these.
Step 2: Also produce an equation de�ning schedRules(db; a : s) for each form of action:

schedRules (db; a1 : s) = let (db; pre; suf) = fold schedRule (db; [ ]; [ ]) (triggers a1)

in (db; pre++s++suf)

schedRules (db; a2 : s) = let (db; pre; suf) = fold schedRule (db; [ ]; [ ]) (triggers a2)

in (db; pre++s++suf) :::

Step 3: Replace each call to triggers ai above by the speci�c list of rule identi�ers triggered by the
action ai, and unfold the applications of the fold function. At this point it is useful to switch to a
concrete example rule set before proceeding further. Considering again the rule set of Example 1, the
specialisations of schedRules for this are:

schedRules (db; Ins R0 q : s) = let (db; pre; suf) = schedRule (schedRule (db; [ ]; [ ]) 2) 3)

in (db; pre++s++suf)

schedRules (db;Del R1 q : s) = let (db; pre; suf) = (db; [ ]; [ ])

in (db; pre++s++suf)

schedRules (db; Ins R5 q : s) = let (db; pre; suf) = schedRule (schedRule (db; [ ]; [ ]) 4) 5)

in (db; pre++s++suf)

schedRules (db;Del R4 q : s) = let (db; pre; suf) = (db; [ ]; [ ])

in (db; pre++s++suf)

schedRules (db; Ins R9 q : s) = let (db; pre; suf) = schedRule (db; [ ]; [ ]) 1

in (db; pre++s++suf)

Step 4: Unfold the calls to schedRule | we just develop the �rst equation from now on:

schedRules (db; Ins R0 q : s) = let (db; pre; suf) =

if (eval (ecq 2) db) = fg

then if (eval (ecq 3) db) = fg

then (db; [ ]; [ ])

else (db; [ ] + +(bind (actions 3) db); [ ])

else if (eval (ecq 3) db) = fg

then (db; [ ] + +(bind (actions 2) db); [ ])

else (db; [ ] + +(bind (actions 2) db) + +

(bind (actions 3) db); [ ])

in (db; pre++s++suf)
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Step 5: Finally, unfold the calls to ecq and simplify applications of ++ to the empty list:

schedRules (db; Ins R0 q : s) = let (db; pre; suf) =

if (eval (�R0 � (R2 [ (R3 1 R4))) db) = fg

then if (eval (�R0 � ((R3 1 R4)�R5)) db) = fg

then (db; [ ]; [ ])

else (db; (bind (actions 3) db); [ ])

else if (eval (�R0 � ((R3 1 R4)�R5)) db) = fg

then (db; (bind (actions 2) db); [ ])

else (db; (bind (actions 2) db) + +

(bind (actions 3) db); [ ])

in (db; pre++s++suf)

The above transformations have brought together all of the event-condition query evaluations that
will result from the execution of a speci�c form of rule action. It is now possible to apply standard
optimisation techniques to each resulting equation of schedRules. For example, common sub-queries
can be abstracted from the event-condition queries so that they are evaluated at most once e.g. the
sub-queries �R0 and R3 1 R4 from the event-condition queries of rules 2 and 3 above. It is also possible
for eval to use previous values of queries with respect to past database states to incrementally evaluate
these queries with respect to the current database state [13, 6, 3, 15, 7].

Finally, abstract execution can be \mixed into" the partially evaluated rule execution code, and
hence can further optimise it, in the same way as for the original rule execution code in Section 2.3.

4 Specialising for possible sequences of actions

In Section 3 our specialisations of execSched were for single rule actions. Suppose we can determine that a
sequence of actions [a1; :::; an] may appear on the schedule without any action ai, 1 � i < n, triggering any
rule, so that the values of pre and suf returned by schedRules are known to be empty for this sequence
of actions. Then execSched can be specialised for such sequences of actions also. Doing this presents the
opportunity to optimise such sequences of actions (note that these specialisations are additional to the
single-action specialisations already generated by the treatment described in the previous section).

Such sequences of actions can be derived from the abstract execution traces obtained by running
execSched� once for each possible initial singleton schedule, in each case with an initial abstract database
state in which all queries have an Unknown value c.f. our test for rule termination described in Section 2.2.
Doing this for the rule set of Example 1, we �nd that the actions of rules 2 and 3 may be placed
consecutively on the schedule by the execution of rule 1's action and that rule 2's action can never
�re any other rule. Denoting by a2 and a3 the actions of rules 2 and 3 (a2 = Del R1 (R7 � R8),
a3 = Ins R5 (R3 [ (R7 �R8))), we can therefore generate this additional specialisation for execSched:

execSched (db; a2 : a3 : s) = execSched � schedRules (exec (a2; db); a2 : a3 : s)

The RHS of this equation reduces to

execSched (db; a2 : a3 : s) = execSched � schedRules (exec (a3; exec (a2; db)); a3 : s)

Standard update optimisation techniques can now be applied to this RHS. For example, in the query
parts of actions a2 and a3 notice the common sub-query R7 � R8 whose value is independent of the
e�ect of action a2. This common sub-query can be abstracted out from the two applications of exec and
evaluated only once. Incremental evaluation of action queries, or sub-queries thereof, using their previous
values is also possible.

Note that such sequences of actions do not de�nitely have to appear on the schedule, only that
there is the possibility that they may appear. If a sequence does not appear then this specialisation of
execSched will simply not be invoked. For example, rules 2 and 3 have di�erent condition queries, so it

8



may be the case that only one �res after some execution of rule 1's action rather than both of them. In
such a case the individual specialisation of execSched matching a2 or a3 would be invoked rather than
the specialisation for the sequence a2; a3.

We note that with the rule set of Example 1, simple inspection of the triggering graph would also have
derived a2; a3 as a possible execution sequence, since rule 2 triggers no other rule. However, our abstract
interpretation approach can yield more possibilities for optimisation than simple analysis of the triggering
graph. For example, consider Example 1 again, this time with the addition of an extra rule Rule 6:on5R1

if R7�R8 do Del R9 R7�R8, having immediate coupling mode. This new rule is triggered by rule 2 and
does not trigger any rule. If rule 1 is the �rst rule triggered, then the abstract execution trace is as follows:

Iteration c1 c2 c3 c4 c5 c6 Schedule

1 U U U U U U [a1]
2 F U U U U U [a2; a3]
3 F U U U U U [a6; a3]
4 F U U U U U [a3]
5 F U U U U U [a4; a5]
6 F U U U U U [a5]

We see that a6; a3 is a possible sequence of actions on the schedule, and that a6 can never �re any
other rule. We can therefore generate this additional specialisation for execSched:

execSched (db; a6 : a3 : s) = execSched � schedRules (exec (a6; db); a6 : a3 : s)

The RHS of this equation reduces to

execSched (db; a6 : a3 : s) = execSched � schedRules (exec (a3; exec (a6; db)); a3 : s)

and standard update optimisation techniques such as abstraction of common sub-expressions can now be
applied to this RHS.

5 Dynamic specialisation for de�nite sequences of actions

So far the optimisation techniques we have described have been static ones i.e. applicable at compile-
time. If we know at run-time that certain action execution sequences will de�nitely be followed from
the current database state and schedule, then we can use this knowledge to dynamically perform further
unfoldings of execSched, and thereby create further opportunities for update optimisation. This kind of
de�nite execution information can be obtained by using a modi�ed version of execSched� that halts if
eval� returns Unknown (see the Observation in Section 2.2).

To illustrate, consider again the set of rules in Example 1, this time with the input abstract database
state shown below and with rule 1 just having been triggered. The abstract execution trace using
execSched� is as follows:

Iteration c1 c2 c3 c4 c5 Schedule

1 any T T T U [a1]
2 F T T T U [a2; a3]
3 F T T T U [a3]
4 F T U T U [a4] or [a4; a5]

At iterations 1-3, eval� returns True or False when applied to the event-condition queries of rules 2
and 3. At iteration 4, eval� returns Unknown for rule 5's event-condition query and we halt the analysis.
We conclude that a1; a2; a3; a4 is a de�nite execution sequence from this execution state. We can therefore
dynamically generate an equation for execSched(db; a1 : s) which performs four unfoldings of execSched:

execSched (db; a1 : s) = execSched � schedRules (exec (a4; exec (a3; exec (a2; exec (a1; db)))); a4 : s)

We can then optimise the RHS of this equation.
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We stress that this dynamically generated code is applicable only to the given execution state. After
it has been executed, this specialisation becomes invalid and the default specialisation for a1 generated
at compile time is the only one that can safely be used without further dynamic analysis.

Abstract execution can again be \mixed into" the dynamically specialised code. Note that this will
now just retrace the already computed abstract execution trace up to the Unknown event-condition
query, and will therefore not need to be updated by the concrete execution until that point.

The overall rule execution cycle using dynamic specialisation is as follows:

repeat

from the current concrete and abstract states (db,s) and (db*,s*)

execute execSched* till Unknown is encountered;

generate specialised execSchedM;

execute specialised execSchedM;

until s = []

We note that these dynamically generated specialisations subsume the specialisations generated statically
in Sections 3 and 4. The precise trade-o� between the cost of dynamically generating the specialised
execSchedM code versus the gain of using this rather than the statically generated default specialisations
needs to be determined empirically, and this is an area of ongoing work.

6 Discussion

We have extended the PFL active database system [14] with some of the analysis and optimisation
techniques described here. In particular, we have implemented the single-action specialisation described
in Section 3, and the abstract interpretation approach to dynamic termination analysis described in [2]
and Section 2.2 above. We have not yet amalgamated the abstract interpretation and partial evaluation
techniques to obtain the mixed semantics and the multi-action specialisations, and this is an area of
ongoing work.

In our implementation of the single-action specialisations, active rules are \compiled" into one 0-
ary scheduling function for each rule action. These scheduling functions correspond to the specialised
equations of schedRule� in Section 3. The scheduling functions are de�ned in PFL itself and so are
optimised using the same query optimiser as for other PFL queries/functions e.g. to perform common
sub-expression abstraction. During rule execution, after an action has been executed its scheduling
function is evaluated to determine which rules have �red, and how the schedule needs to be updated as
a result. The costs incurred by our techniques are low. For undertaking the analysis/optimisation they
are:

(i) Deriving possible/de�nite execution sequences using abstract interpretation. Given n rule actions,
to statically derive all `possible' sequences, execSched� needs to be run at most n times. To
dynamically derive a de�nite execution sequence from some execution state, execSched� needs to
be run once. The cost of the abstract inferencing itself is negligible, being based on simple query
rewriting.

(ii) Generating the specialisations. In the worst case this is O(s � n) for s specialisations and n rules
(for a `complete' triggering graph where each action �res all the rules).

The costs incurred during rule execution are:

(iii) Matching schedule pre�xes with respect to specialisations. This retrieves a scheduling function from
the database using a hash index on the function name and hence has O(1) cost.

(iv) Performing abstract inferencing as part of the \mixed" execution. Again, the cost of this is negli-
gible, being based on simple query rewriting.

A key question is what kinds of rule sets are likely to bene�t from our partial evaluation approach? An
important feature of our technique is that it presents an opportunity to abstract common sub-expressions
from conditions and action queries of rules that are evaluated as part of the same execution sequence.
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Consequently, it will be particularly e�ective for rule sets where conditions and/or action queries are
signi�cantly overlapping. e.g. a set of rules that incrementally maintains the contents of a collection of
similar views, such as a data cube, in response to updates on the underlying base relations.

The bene�t of performing mixed abstract and actual execution depends on the precision of the
abstract inferencing (but as we have noted above, this is cheap to carry out and so always worth doing).
The precision of the abstract inferencing depends on the complexity of the conditions and action queries.
If these are relatively simple (e.g. for simple alerter triggers or for triggers performing log updates) then
inferencing will more often produce de�nite information about the truth/falsity of conditions, and so
performing mixed execution will give commensurately greater speed-ups.

6.1 Related Work

There has been a much work on local optimisation of the condition parts of active rules: [8] proposes
discrimination networks for optimising repetitive evaluations of single rules, and strategies used by other
systems are reviewed in [16, 12]. There has been less research, however, on global rule optimisation. The
two main papers containing relevant work in this area are [11] and [4].

[11] generates alternative versions of triggers according to the di�erent ways in which they can be
invoked from a top-level transaction. Di�erences from our work are that: (a) The optimisations are not
couched in the framework of partial evaluation and it is consequently more di�cult to see the broad
relationships and how they can be extended. (b) The complex behaviour of chained rule execution is
not the focus for generating specialised versions of triggers. Instead, triggers are generated according to
the way in which they are initially invoked from the host transaction. (c) The integration of analysis
information is not made explicit and the notions of de�nite and possible execution sequences are not a
feature.

[4] discusses optimisation of multiple rules and an optimisation is identi�ed in the case when multiple
rules are triggered by an action and none of them can trigger further rules. The main di�erence from our
work is that the method for identifying multiple rules whose behaviour can be globally optimised is based
on a simpler analysis of the triggering graph. Consequently, it does not take into account information
about the current database state, and possible/de�nite execution sequences from it, as derived by our
analysis.

A third paper, [5] looks at optimisation in the context of large numbers of triggers. However, the
techniques proposed are not meant for triggers that can have arbitrary relational conditions/actions, and
it is assumed that many of the triggers will be identical except for constant values.

7 Conclusions

We have described how abstract interpretation and partial evaluation can be used for optimising active
database rules. Abstract interpretation can be \mixed into" the rule execution to avoid query evaluation
by making use of cheap incremental inferencing techniques. Partial evaluation can be applied at compile-
time to yield a specialised version of the rule execution semantics for each possible rule action. This
brings together into one expression all of the event-condition query evaluations that will arise after the
execution of that action. Standard query optimisation techniques can then be applied to this expression,
for example abstraction of common sub-expressions and incremental evaluation.

Abstraction of common sub-expressions and incremental evaluation have been proposed before for
active rules [11, 4]. The key di�erence between this work and our partial evaluation approach is that
our optimisations are automatically derived using general principles. This places rule optimisation on a
sound theoretical footing, encompassing many previous optimisation approaches, and also providing the
opportunity to discover new ones. For example, we have shown how it is possible to use the abstract
execution traces to produce specialised code for possible or de�nite sequences of actions, and such multi-
action specialisations have not been proposed before.

We are currently implementing the mixed semantics and the multi-action specialisations within
our PFL prototype. The next step will be to investigate the cost/bene�t of dynamic versus static
specialisation. Further work involves extending our optimisation techniques to row-level triggers. Our
techniques for generating single-action specialisations can be re-used for these. In [2] we discussed how
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our abstract semantics can be modi�ed to safely analyse row-level triggers also. This was in the context
of termination analysis, but we believe that the same approach can be used for optimising row-level
triggers and in particular for generating de�nite/possible execution sequences and hence multi-action
specialisations | this is an area for further investigation.
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