

Refactoring trends across N versions of N Java open source systems: an

empirical study

Deepak Advani and Youssef Hassoun,

School of Computer Science, Birkbeck, University of London,
Malet Street, London, WC1E 7HX
Email: yhassoun@dcs.bbk.ac.uk

Steve Counsell
Department of Information Systems and Computing, Brunel University,

Uxbridge, Middlesex. UB8 3PH.
Email: steve.counsell@brunel.ac.uk

Abstract

In the past few years, refactoring has emerged as
an important consideration in the maintenance and
evolution of software. Yet very little empirical evidence
exists to support the claim about whether developers
actively undertake refactoring, or whether as Fowler
suggests that the benefits of doing refactoring are not
short-term but too ‘long-term’ [8]. In this paper, we
describe an empirical study of multiple versions of a
range of open source Java systems in an attempt to
understand whether refactoring does occur and, if so,
which types of refactoring were most (and least)
common. Fifteen refactorings were chosen as a basis
(on seven Java systems) and the code analysed using
an automated tool. Results confirmed that refactoring
did take place, but the majority were of the simpler,
less complex type. Interestingly, the most common
refactorings empirically identified were those which,
according to Fowler (and from a dependency graph of
the ‘seventy two’ original refactorings), were central
to larger more involved refactorings. One conclusion
from the study is thus that developer time and effort for
relatively large restructuring and testing of refactored
code is prohibitive; making small, simple changes is
preferred. A further conclusion from our study is that
refactoring didn’t occur in the earliest or latest
versions of the systems we investigated.

1. Introduction

One of the key software engineering disciplines to
emerge over recent years is that of refactoring [8, 15,
19]. Refactoring can be defined as a restructuring of
the internal structure of a software artefact without

changing its external behaviour; Fowler has likened
refactoring to the reversal of software decay, in the
sense that it repairs badly damaged software. While the
outcome of refactoring effort is desirable, there is very
little empirical basis to answer the simple question: do
developers generally refactor? Since a large proportion
of development time is devoted to maintenance,
understanding how software is ‘changed’ over time is
of enormous value. Moreover, if the answer to this
question is ‘yes’, then it would be useful to know
which types of refactoring are the most common and
which the least common. An impression of likely
future demands and refactoring trends may then be
possible. Anecdotal evidence suggests that developers
have very little time to devote to larger code
restructurings often involving an inheritance hierarchy.

In this paper, we describe the results of an empirical
study of the trends across multiple versions of open
source Java software. A specially developed software
tool extracted data related to each of fifteen
refactorings from multiple versions of seven Java
systems according to specific criteria. Results showed
that, firstly, the large majority of refactorings identified
in each system were the simpler, less involved
refactorings. Very few refactorings related to structural
change involving an inheritance relationship were
found. Secondly, and surprisingly, no pattern in terms
of refactorings across different versions of the software
was found. Results thus suggest that developers do
simple ‘core’ refactorings at the method and field
level, but not as part of larger structural changes to the
code (i.e., at the class level). It is unlikely that we will
be able to identify whether those ‘core’ refactorings
were done in a conscious effort by the developer to
refactor, or as simply run-of-the-mill changes as part

of the usual maintenance process. However, we feel
that identification of the major refactoring categories is
a starting point for understanding the types of change
and the inter-relationships between changes typically
made by developers.

In the next section, we describe related work. In
Section 3 we describe the refactorings extracted, the
systems used and the criteria adopted by the tool to
extract the refactoring data. In Section 4 we discuss the
data extracted using the tool and use the data to
examine three suppositions. We then discuss some of
the issues raised from this study (Section 5) and
conclude, pointing to future work, in Section 6.

2. Motivation and Related Work

The motivation for the study in this paper stems
from a number of issues. Firstly, there has been a large
amount of interest in the criteria for carrying out
refactoring [6]. In other words, the decision as to when
certain types of refactoring should be undertaken. Yet
very little empirical data addresses the question of how
widespread refactoring is in practice. The results in
this study support earlier findings from an empirical
study of a set of library classes [5]. In that paper, the
‘substitute algorithm’ refactoring [8] (i.e., modification
of the body of a method to improve the way it
functions) together with the core refactorings
investigated herein were found to be the most popular
type of change identified.

Secondly, an open research issue is whether
refactorings are compound in nature. Does one
refactoring always require specific types of other
refactoring (empirically speaking)? In this paper, we
use a dependency diagram of the seventy-two
refactorings to determine whether empirical
relationships between refactorings match the
theoretical relationships. For example, if refactoring X
insists on carrying out refactoring Y first, does the
empirical data reflect these dependencies?

Finally, we would expect changes of any type to
grow over the lifetime of the system. So we would
expect there to be clear (increasing) refactoring trends
as a system evolves. Yet, if a system is refactored
frequently, then in theory it does not need to have
increasing amounts of maintenance applied to it and
‘peak’ and ‘trough’ patterns should appear. A key
motivation is therefore to see if the trends in
refactorings follow any specific patterns as the system
evolves. The need for more studies into software
evolution issues is highlighted in Perry [18].

In terms of related work, the seminal text and from
which our fifteen refactorings were taken is that of

Fowler [8]. The work of Opdyke [15], Johnson and
Foote [10] and Johnson and Opdyke [16] has also been
instrumental in promoting refactoring. Earlier work by
Najjar et al. has shown the quantitative and qualitative
benefits of refactoring [12]; the refactoring ‘replacing
constructors with factory methods’ of Kerievsky [11]
showed quantitative benefits in terms of reduced lines
of code and potential qualitative benefits in terms of
improved class comprehension. Developing heuristics
for undertaking refactorings based on system change
data has also been investigated by Demeyer et al. [6].

In terms of automating the search for refactoring
trends, research by Tokuda and Batory [19] has shown
that three types of design evolution, including that of
hot-spot identification, are possible. A key result of
their work was the automatic (as opposed to hand-
coded) refactoring of fourteen thousand lines of code.
Finally, the principles of refactoring are not limited to
object-oriented languages; other languages have also
been the subject of refactoring effort [2].

The findings in this study suggest that refactorings
based on inheritance are infrequently made. It may be
that developers avoid any restructuring inheritance
hierarchies because of the relatively large number of
class dependencies (i.e., coupling) and the subsequent
testing effort required. A number of studies have
investigated inheritance and cast doubt on the way that
inheritance is used in practice [3, 9], thus supporting
the view that inheritance-based refactorings are
avoided by developers. Finally, very little research has
been carried out into composite refactorings [14],
where one refactoring is followed by n other
refactorings.

3. Study Details

3.1 The fifteen refactorings chosen

The choice of which fifteen refactorings to
implement in our tool was based on two criteria.
Firstly, on the likelihood of finding large numbers of
those refactorings over versions of the systems. This
led us to implement simple refactorings such as those
found to be common in single versions of the library
classes of an earlier study [5]. Secondly, we wanted to
see if more involved (i.e., complex) refactorings were
undertaken and on what scale. We thus implemented
the search for a set of refactorings requiring structural
changes to the system to be made; for example, those
related to an inheritance hierarchy. All the refactorings
apart from refactoring number 9 (Rename Field) were
taken from Fowler’s text. The fifteen refactorings

chosen and the circumstances motivating that
refactoring (added where not obvious) were:

1. Add Parameter (to the signature of a method).
2. Encapsulate Downcast. According to Fowler,

‘a method returns an object that needs to be
downcasted by its callers’. In this case, the
downcast is moved to within the method.

3. Hide Method. ‘A method is not used by any
other class’ (the method should thus be made
private).

4. Rename Method. A method is renamed to make
its purpose more obvious.

5. Remove Parameter (from the signature of a
method).

6. Encapsulate Field. The declaration of a field is
changed from public to private.

7. Move Method. ‘A method is, or will be, using
or used by more features of another class than
the class on which it is defined’.

8. Move Field. ‘A field is, or will be, used by
another class more than the class on which it is
defined’.

9. Rename Field. A field is renamed to make its
purpose more obvious.

10. Push Down Field. ‘A field is used only by
some subclasses’. The field is moved to those
subclasses.

11. Push Down Method. ‘Behaviour on a
superclass is relevant only for some of its
subclasses’. The method is moved to those
subclasses.

12. Pull Up Field. ‘Two subclasses have the same
field’. In this case, the field in question should
be moved to the superclass.

13. Pull Up Method. ‘You have methods with
identical results on subclasses’. In this case, the
methods should be moved to the superclass.

14. Extract Subclass. ‘A class has features that are
used only in some instances’. In this case, a
subclass is created for that subset of features.

15. Extract Superclass. ‘You have two classes with
similar features’. In this case, create a
superclass and move the common features to
the superclass.

Fowler divides refactorings into different groups

depending on the activity employed in transforming
the system. According to Fowler’s classification, our
refactorings are chosen from the groups:

1. Making Method Calls Simpler: refactorings 1,

2, 3, 4, 5.
2. Organising Data: refactoring 6.

3. Moving Features Between Objects: refactorings
7, 8.

4. Dealing with Generalisation: refactorings 10,
11, 12, 13, 14, 15.

We note that in the case of certain refactorings, use

of our software tool to assist was impossible unless the
semantics of the code change were investigated. For
example, the ‘substitute algorithm’ refactoring where
one or more lines in the body of a method are changed
would require the tool to check every line in every
method in every class for a single change in the body
of that method; even then it would require certain
assumptions to be sure of the scope of change. For
systems with thousands of classes in each of n
versions, the problem this poses becomes clearer. The
same problem arises with the extract method
refactoring where one method is split into two (to
become two methods). The parser, an integral part of
our tool [1], would have to check groups of lines of
code in any new methods added (to a later version)
with all lines of code in methods of the earlier version.

Each refactoring transformation that we
implemented was defined through a set of rules or
criteria. For example, to detect whether the ‘Move
Field’ refactoring had taken place in the transition
from one release to the next, the tool checked whether:

1. A field (name, type) that appeared in a class

type (belonging to older version) appeared to
be missing i.e., has been dropped from the
corresponding type of a later version.

2. The field (name, type) did not appear in any
superclass or subclass of the original type.

3. A similar field (name, type) appeared to
have been added to another type (belonging
to later version).

If the criteria (1 to 3) was satisfied for the field

under investigation, the tool reported an occurrence of
the Move Field refactoring. Similarly, the criteria for
‘Extract Superclass’ was as follows:

1. A class type whose ‘unaccounted’ for fields

and/or methods have been pulled up into a
newly created superclass (that did not exist in a
former release) to become a superclass.

2. The class from which this superclass was
extracted has become the base type.

The criteria for the ‘Encapsulate Field’ refactoring

is simply that a field in a later version in the same
class, and with the same name, has had its declaration
changed from public to private. To verify that the data

produced by the software tool was correct, manual
checks of the source code (from which the refactoring
data was selected) were carried out by the authors.

3.2 Java systems chosen

Seven open source Java systems were analysed as
part of our study. We note that we included both
classes and interfaces in our analysis.

1. MegaMek. A computer game. The number of

classes and interfaces in this system remained
static at 190 and 13, respectively.

2. Tyrant. A graphically-based, fantasy adventure
game. Incorporates landscapes, dungeons and
towns. The system began with 112 classes and
5 interfaces. At the tenth version, it had 138
classes and 6 interfaces.

3. Velocity. A template engine allowing web
designers to access methods defined in Java.
Velocity began with 224 classes and 44
interfaces. At the tenth version, it had 300
classes and 80 interfaces.

4. Antlr. Provides a framework for constructing
compilers and translators using a source input
of Java, C++ or C#. Antlr began with 153
classes and 31 interfaces. The latest version had
171 classes and 31 interfaces.

5. HSQLDB. A relational database application
supporting SQL. HSQLDB started with 52
classes and 1 interface. The latest version had
254 classes and 17 interfaces.

6. JasperReports. A Java reporting tool to help
produce page-oriented documents in a simple
and flexible way. JasperReports started with
288 classes and 50 interfaces; the latest version
comprised 294 classes and 52 interfaces.

7. PDFBox. A Java PDF library allowing access
to components found in a PDF document. The
initial system had 135 classes and 10
interfaces; the latest version had 294 classes
and 52 interfaces.

3.3 Description of the tool

The set of values for an entire system are
represented as an XML tree consisting of sequences of
sub-trees representing the individual types. Using this
representation, XML data which appears to have been
refactored can be identified by applying the criteria
described in the previous section. The tool compares
consecutive releases of the same industrial software
system according to that criteria.

Figure 1 displays the functionality of the tool in
sequential order of execution. Phase-1 produces an
XML document file in one step for each release of
each system. When two consecutive releases of a
system are parsed into XML files, phase-2 is
initialised. In phase-2, consecutive releases of all
systems are compared (one by one). Once all the
consecutive releases of each and every API have been
compared, phase-3 is initialised. Phase-3 gathers
statistics about the refactorings performed. For the
interested reader, a detailed description of our tool is
provided in [1].

Figure 1: Structure of the refactoring tool

4. Data Analysis

We investigated three suppositions in our analysis

of the data. Firstly, we investigated the question of
which are the most and least common refactorings
across all versions of the systems studied. Secondly,
we investigate whether, within each of the seven
systems, any refactoring trends are evident. Thirdly
and finally, we investigate whether there are any
patterns in refactoring across versions of the systems
investigated and analyse the possibility that
refactorings are connected (in the sense that one
refactoring always follows another specific type of
refactoring).

4.1 Supposition One

Our first supposition examines which refactorings
are the most common from the systems analysed and

equally, which are least common. Prior to the study,
we had no pre-conceived ideas about the most likely
findings of the tool. A reasonable assumption might
have been that the more ‘involved’ refactorings would
be less frequent because of the extra work involved on
the part of the developer. Figure 2 shows the
frequency of refactorings uncovered by the tool in the
form of a bar chart. The order of the bars on Figure 2
follows the order of the legend (i.e., for MegaMek,
then JasperReports etc.)

Figure 2: Refactorings extracted from the

seven systems

Figure 2 shows the most popular refactoring to be
the ‘Rename Field’ refactoring, followed by ‘Rename
Method’. In the HSQLDB system, 158 occurrences of
this refactoring were found. Interestingly, for the
MegaMek system, no occurrences of this refactoring
were found.

Least popular was the ‘Encapsulate Downcast’
refactoring (zero occurrences were found across the
seven systems) and the ‘Push Down Method’
refactoring (only 6 occurrences, all for the Velocity
system). The ‘Pull Up Method’ refactoring value for
Velocity is noteworthy since 55 occurrences of this
refactoring were found (we investigate this feature of
Velocity in Section 4.2).

One surprising result from Figure 2 is the lack of
‘Hide Method’ and ‘Encapsulate Field’ refactorings. In
theory, these are quite simple refactorings; in each

case, the mechanics of doing each of these refactorings
are trivial. For hide method, the declaration of the
method is changed from public to private. For the
encapsulate field, an identical process is carried out. A
number of suggestions could be made for the low
numbers of these two refactorings. Firstly, we suggest
that developers do tend to attach a low priority for
visibility issues in terms of declaration of methods and
attributes. We support this claim with earlier work on
five C++ systems, where trends in encapsulation
showed anomalies in four of the five systems. In
particular, we found protected attributes in classes
without any inheritance coupling [4]. Secondly, recent
work by Najjar et al. [13] has found that even for a
simple refactoring such as encapsulate field, a number
of problems arise. These related to high coupling of the
field and problems with the position of the class in the
inheritance hierarchy (and dependencies thereof).
Practically, simple refactorings are not always that
simple.

Although we would not have expected a high
number of inheritance-based refactorings, the
exceptionally low value found was a surprising result.
Perhaps it is the nature of open-source software (where
independent developers can make unilateral changes)
that explains why changes requiring developers to re-
organise the system’s structure do not take place. More
studies would be needed before any conclusion could
be drawn on this issue. Table 1 shows the aggregate
refactorings for the seven systems together with the
maximum, minimum and mean value for each
refactoring over the seven systems.

Table 1: Refactoring summary data

Refactoring Type Max Min Mean Total
Encap. Downcast 0 0 n/a 0
PushDown Meth. 0 6 0.86 6
Extract Subclass 0 5 0.86 6
Encapsulate Field 0 9 1.71 12
Hide Method 0 8 1.86 13
Pull Up Field 0 10 2.00 14
Extract Superclass 0 15 3.29 23
Remove Paramet. 0 7 3.43 24
Push Down Field 0 19 3.71 26
Pull Up Method 0 55 9.29 65
Add Parameter 0 39 14.14 99
Move Method 0 39 13.00 88
Move Field 0 100 19.29 135
Rename Method 1 76 23.86 167
Rename Field 0 158 29.86 209

The key result from the data shown in Figure 2 (and
evident from Table 1) is the trend towards more simple
refactorings such as basic operations on fields and
methods. Figure 2 illustrates this feature by the
relatively large number of refactorings towards the
right hand side of the figure. More involved
refactorings (such as those requiring manipulation of
the inheritance hierarchy, e.g., extract subclass,
encapsulate downcast and push down method) were
not found to occur in large numbers. We thus suggest
that developers avoid more involved refactorings,
especially those requiring changes to, and
manipulation of the inheritance hierarchy. We also
suggest that the most common refactorings are those
more in-line with typical changes a system may
undergo (i.e., field and method operations).

In terms of Fowler’s four categories of refactorings,
we thus found very little evidence of the ‘Dealing with
Generalisation’ category yet a large number falling
into the ‘Making Method Calls Simpler’ and ‘Moving
Features Between Objects’ categories. Very little
evidence of refactorings from the ‘Organizing Data’
category were evident.

4.2 Supposition Two

The second supposition investigates whether there

are any trends within each system across the fifteen
refactorings. Since we would expect more refactoring
effort to be carried out as a system grows older, our
hypothesis would be that refactoring tends to take
place towards the later versions of the system rather
than earlier in its lifetime. We accept that the systems
we looked at are still ‘live’ and will probably evolve
through many more versions before they become
obsolete. However, on the basis that we cannot
necessarily predict the lifetime of a system, we still
feel this supposition to be an interesting one to
investigate.

Figures 3, 4 and 5 illustrate data for three of the
systems; we have chosen the three systems with the
most releases to use as a basis of this analysis (and
because of space limitations in this paper). For the
Velocity system (Figure 3), relatively few refactorings
appear to happen in later versions of the system;
equally, relatively few refactorings occur in earlier
versions of the software. The bulk of the refactoring
activity seems to happen in the mid-versions of the
system. We note that the order of the bars for each
refactoring follows the order of the comparisons in the
legend; Velocity10VS101.xml denotes the XML
representation generated by our tool as a result of
comparing the two consecutive versions 1.0 and 1.01
of Velocity software.

Figure 3: Refactorings for the Velocity system

For the Tyrant system (Figure 4), there is a clear
trend of refactorings happening towards later versions
of the system (as we hypothesised) in contrast to the
Velocity system. It is interesting to note that activity
for both the ‘Rename Method’ and ‘Rename Field’
features prominently in both systems.

Figure 4: Refactorings for the Tyrant system

For the PDFBox system (Figure 5), the bulk of the

refactoring effort seems to occur at both the middle
and end of the versions in contrast to the single trends
of Velocity and Tyrant. Table 2 summarises for the
seven systems the number of refactorings carried out in
each version.

Figure 5: Refactorings for the PDFBox system

Table 2: Summary of refactorings across the

versions of the seven systems

Ver
s

Meg. Tyr. Vel. Antl. HSQ. Jaspe. PDFBox

1-2 1 0 0 4 80 2 2
2-3 0 0 23 37 78 9 3
3-4 0 0 102 1 307 4 22
4-5 0 2 65 0 0 - 5
5-6 0 1 34 - - - 1
6-7 0 0 1 - - - 27
7-8 0 19 34 - - - -
8-9 - 7 - - - - -

9-10 - 17 - - - - -

From Table 2, no clear pattern emerges in terms of
when refactorings are carried out. We would therefore
conclude that as a system evolves, it is not necessarily
the case that increasing amounts of refactoring effort is
undertaken. Similarly, it is not the case that large

amounts of effort are invested in refactoring effort in
the earlier versions of the systems (which is probably
more plausible as an hypothesis).

Of the total number of refactorings, the
overwhelming majority were carried out in versions 2-
3 and 3-4. One suggestion for this trend may be that it
takes two or three versions of a system to evolve
before the ‘decay’ starts to creep in. In other words,
systems retain a certain stability (in a refactoring
sense) for several versions before it becomes
worthwhile (and necessary) to undertake any changes

An interesting feature of the refactoring data
presented is the tendency for a ‘peak’ and ‘trough’ in
refactoring effort. For example, for the HSQLDB
system, zero changes were made in version 4-5 after
307 refactorings in version 3-4. The same phenomenon
is evident in Antlr, PDFBox and to a lesser extent the
Velocity and Tyrant systems. This might suggest that
after completing a series of refactorings in version X,
very few refactorings of the type described are needed
in version X+1. It is worth noting that HSQLDB also
saw the highest rise in the number of classes over the
versions we investigated; this is reflected in the
relatively large numbers of refactorings across the
versions of this system.

4.3 Supposition Three

The third supposition investigated was whether any

trends in the type of refactoring undertaken across
different versions of the systems studied were evident.
For example, do certain types of refactoring occur in
similar versions. Supposition three also investigated
the possibility that refactorings are connected in some
sense. The mechanics of all refactorings advise the use
of other refactorings [8]. Table 3 shows for each
transition between consecutive versions, the total
number of each type of refactoring undertaken across
the seven systems. We remark that ten is the maximum
number of versions (Tyrant); the contribution to Table
3 of systems with fewer than ten versions is thus zero.

One noteworthy feature of Table 3 is the trend of
refactoring effort in earlier versions of the systems (in
transitions 2-3 and 3-4) and an almost complete
absence of refactoring in 4-5. This dip in the
refactoring effort supports our ‘peak’ and ‘trough’
theory about refactoring. Another feature of this data is
that from versions 5 to 9, the trend in refactorings is
downward; it then rises sharply. Figure 6 graphically
illustrates the trend across versions in terms of total
number of refactorings. The general trend however, is
for reduced refactoring effort as time evolves

Table 3: Refactorings across the different
versions of seven systems1

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

EncD 0 0 0 0 0 0 0 0 0
PudM 0 0 1 0 1 0 0 0 4
ExSub 0 2 3 0 1 0 0 0 0
EncpF 0 5 4 0 0 1 0 1 1
HidM 3 6 2 0 0 1 0 1 0

PupF 0 1 7 0 2 4 0 0 0
ExSup 0 2 10 0 8 1 0 0 2
RemP 3 2 12 0 1 1 1 1 3
PudnF 0 16 3 0 7 0 0 0 0
PupM 0 9 17 0 24 5 0 0 10
AddPa 13 16 41 1 1 9 15 0 3
MovM 14 10 49 0 3 11 1 1 2
MovF 6 45 79 1 1 3 0 0 0
RenM 19 15 71 6 16 21 1 2 16
RenF 31 22 37 0 2 5 1 1 10
 Total 89 151 236 8 67 61 17 7 51

The third supposition also investigates the
possibility that certain refactorings are connected. In
other words, when one refactoring, for example, move
method, is performed, there is always (or most times)
an accompanying ‘move field’ refactoring. To
understand more fully the relationships between
certain refactorings, we begin by describing an
accompanying analysis of the relationships between
the different refactorings described by Fowler.

Figure 6: Total refactorings across versions

1 The first column refers to the refactoring type. Due to place
restrictions, full names are replaced by abbreviations. The order of
refactorings follows the same of Table 1.

4.3.1 A dependency analysis. Data analysis has
shown that the majority of the refactorings fall into
two categories of refactoring originally envisaged by
Fowler. As part of our ongoing refactoring research,
we developed a dependency diagram which showed
the inter-relationships between the 72 refactorings. The
diagram was developed by hand using Fowler’s text as
a basis. As a result of producing this graph, it becomes
possible to see the likely implications of undertaking a
specific refactoring in terms of how many other
potential refactorings either must be carried out or
may be carried out at the same time.

For example, for the ‘Encapsulate Field’
refactoring, Fowler himself suggests that one possible
implication of the refactoring is that ‘once I’ve done
Encapsulate Field I look for methods that use the new
methods’ (i..e, accessors needed for the encapsulated
field) ‘to see whether they fancy packing their bags
and moving to the new object with a quick Move
Method’.

The encapsulate field refactoring thus has only one
possible ‘dependency’. From a developer’s point of
view, the encapsulate field is an attractive and
relatively easy refactoring to complete. The ‘Add
Parameter’ refactoring falls into the same category as
the Encapsulate Field refactoring. It does not need to
use any other refactorings. The only other refactoring
that it may consider using is the ‘Introduce Parameter
Object’ refactoring where groups of parameters which
naturally go together are replaced by an object.

The extract subclass refactoring, on the other hand,
requires the use of six (possible) other refactorings,
two of which are mandatory. It has to use ‘Push Down
Method’ and ‘Push Down Field’ as part of its
mechanics. It may (under certain conditions) also need
to use the ‘Rename Method’, ‘Self Encapsulate Field’,
‘Replace Constructor with Factory Method’ and
‘Replace Conditional with Polymorphism’
refactorings. The extract superclass refactoring
requires a similar number of refactorings to be
considered. In fact, for most of the refactorings
involving a re-structuring of the inheritance hierarchy,
the mechanics are lengthy (requiring many steps and
testing along the way).

4.3.2 Connections between refactorings. One
explanation for the result in Table 1 (i.e, the high
values for simple refactorings and the low values for
more ‘complex’ refactorings) could be attributed to
the relative effort required (in terms of activities
required) to complete the refactoring. The testing effort
of more complex refactorings has also to be
considered; the more changes made as part of the

refactoring then mutatis mutandis, the more testing
would be required.

In terms of whether refactorings are somehow
linked, we can see from Table 3 that when the extract
superclass refactoring is evident, the pull up method is
also a feature. The mechanics of the extract superclass
refactoring insist that pull up method is part of that
refactoring. Equally, there seems to be evidence of pull
up field for the same refactoring (also a part of the
extract superclass refactoring). Rename field and
method also seem to feature when extract superclass is
carried out; rename method (but not rename field) play
an important role in the extract superclass refactoring.
The rename field refactoring is not specified in
Fowler’s text. This is interesting since it suggests that
may be some effects of refactoring which aren’t
covered by the refactoring according to Fowler.

Extract subclass also requires use of the rename
method refactoring, which may explain the high
numbers for that refactoring. To try and explain the
high numbers of rename field refactoring, one theory
may be that developers automatically change the name
of fields when methods are ‘pulled up’ (in keeping
with the corresponding change of method name). A
conclusion that we can draw is that there may well be
relationships between some of the fifteen refactorings
in line with the mechanics specified by Fowler in [8].
However, we suggest that most of the simple
refactorings were not as part of any larger refactoring.
In the following section, we discuss a number of issues
related to our study.

5. Discussion

There are a number of threats to the validity of this

study that have to be considered. Firstly, the systems
chosen for analysis were open-source systems rather
than commercial systems developed and maintained by
traditional teams of programmers. In defence of this
threat however, we feel that the results described in
this study are as valid as any for commercial systems
[7]. The results inform our understanding of how open
source systems evolve and are maintained. Parallel
studies on commercial systems developed in the
traditional way would not necessarily detract from
these results, but we feel add to them.

The second threat is that we chose seven systems of
largely differing application domains; systems of
identical application domain may have provided more
relevant results. In defence of this criticism, we would
claim that for the results described in this paper to be
generalised, we would want systems of different
application domains.

Another threat might be that we have looked at
different changes due to refactoring and ignored the
vast number of other types of refactorings and changes
which can be applied to software. In terms of other
refactorings, the intention of the study was to choose a
subset of the seventy-two refactorings which we
believed would provide a cross-section of the types of
change typically made to software.

One final threat to the validity of the study is fact
that we have ignored any consideration of other types
of change to the systems investigated which would
inevitably have been made. We also need to consider
that contrary to the definition of refactoring given in
Section 1, refactoring often involves changes to the
internal structure of the system which do change its
external behaviour. In other words, not all refactorings
are semantic preserving. We also have to consider the
possibility that some connections between refactorings
may exist but cannot be identified unless we widen the
number of refactorings investigated. In the next
section, we draw some conclusions and point to future
work.

6. Conclusions and Future work

In this paper, we have described a study of the

refactoring trends across different versions of seven
systems. A software tool was used to extract the
different refactorings which the software had
undergone. Results showed that the majority of
refactorings were relatively simple and easy to apply.
Those related to structural changes did not seem
particularly common. Results also showed that no clear
patterns when refactoring was carried out emerged,
although a ‘peak’ and ‘trough’ effect in terms of
refactoring effort was observed. One theory is that
perhaps refactoring effort is done in bursts and the
system left to settle before further refactoring is
attempted. Other results suggest that there are links
between complex refactorings and the ‘core’ (simpler)
refactorings which are part of those larger refactorings.
Of the large numbers of smaller refactorings we
believe that most are carried out independently of any
larger refactorings. Finally, and interestingly, it seemed
to take two or three versions of a system before any
major refactoring effort was observed, suggesting that
systems may not start ‘decaying’ until that point.

In terms of future work, it would be interesting to
investigate whether any relationship existed between
the refactorings identified and the bugs found across
the different releases of the seven systems. The
intention of the authors is to replicate a number of
recent studies on versions of software and the link with

faults [17]. We also intend extending both the number
of refactorings which the tool is capable of extracting
and the number of systems. It would also be interesting
to run the tool on versions of commercial systems
written in a more traditional way (i.e., non open source
systems) to see if common features exist.

References

[1] D. Advani, Y. Hassoun and S. Counsell. Heurac: A
heuristic-based tool for extracting refactoring data from
open-source software versions. Technical Report BBKCS-
05-01, Birkbeck College, School of Computer Science and
Information Systems, 2005.
[2] D. Arsenovski. Refactoring – elixir of youth for legacy
VB code. Available at:
www.codeproject.com/vb/net/Refactoring_elixir.asp.
[3] L. Briand, C. Bunse and J. Daly. A controlled
experiment for evaluating quality guidelines on the
maintainability of object-oriented designs. IEEE
Transactions on Software Engineering, 27(6), 2001, pages
513—530.
[4] S. Counsell, G. Loizou, R. Najjar, and K. Mannock. On
the relationship between encapsulation, inheritance and
friends in C++ software. Proceedings of International
Conference on Software System Engineering and its
Applications (ICSSEA’02), Paris, France, 2002.
[5] S. Counsell, Y. Hassoun, R. Johnson, K. Mannock and E.
Mendes. Trends in Java code changes: the key identification
of refactorings, ACM 2nd International Conference on the
Principles and Practice of Programming in Java, Kilkenny,
Ireland, June 2003.
[6] S. Demeyer, S. Ducasse and O. Nierstrasz, Finding
refactorings via change metrics, ACM Conference on Object
Oriented Programming Systems Languages and Applications
(OOPSLA), Minneapolis, USA. pages 166-177, 2000,
[7] R. Ferenc, I. Siket, T. Gyimothy. Extracting Facts from
Open Source Software. Proceedings of 20th International
Conference on Software Maintenance (ICSM 2004),
Chicago, USA, pages 60-69.
[8] M. Fowler. Refactoring (Improving The Design of
Existing Code). Addison Wesley, 1999.
[9] R. Harrison, S. Counsell and R. Nithi. Experimental
assessment of the effect of inheritance on the maintainability
of object-oriented systems, Journal of Systems and Software,
52, 2000, pages 173—179.
[10] R. Johnson and B. Foote. Designing Reusable Classes,
Journal of Object-Oriented Programming 1(2), pages 22-35.
June/July 1988.
[11] J. Kerievsky, Refactoring to Patterns, Industrial Logic,
online at: www.industriallogic.com, 2002.
[12] R. Najjar, S. Counsell, G. Loizou and K. Mannock. The
role of constructors in the context of refactoring object-
oriented software. Seventh European Conference on
Software Maintenance and Reengineering (CSMR '03).
Benevento, Italy, March 26-28, 2003. pages 111 – 120.
[13] R. Najjar, S. Counsell and G. Loizou. Encapsulation and
the vagaries of a simple refactoring: an empirical study.

SCSIS-Birkbeck, University of London Technical Report,
BBKCS-05-03-02, 2005.
[14] M. O’Cinneide and P. Nixon. Composite Refactorings
for Java Programs. Proceedings of the Workshop on Formal
Techniques for Java Programs. ECOOP Workshops 1998.
[15] W. Opdyke. Refactoring object-oriented frameworks,
Ph.D. Thesis, University of Illinois. 1992.
[16] B. Foote and W. Opdyke, Life Cycle and Refactoring
Patterns that Support Evolution and Reuse. Pattern
Languages of Programs (James O. Coplien and Douglas C.
Schmidt, editors), Addison-Wesley, May, 1995.
[17] T. J Ostrand, E J. Weyuker and R. M. Bell. Where the
bugs are. Proceedings of ACM SIGSOFT International
Symposium on Software Testing and Analysis, Boston,
Massachusetts, USA. Pages: 86 – 96, 2004.
[18] D. Perry. Laws and Principles of Evolution, Panel
Paper, International Conference on Software Maintenance,
Montreal, Canada pages 70-71, 2002.
[19] L. Tokuda and D. Batory. Evolving object-oriented
designs with refactorings. Automated Software Engineering,
8:89-120, 2001.

