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Abstract 
 

In the past few years, refactoring has emerged as 
an important consideration in the maintenance and 
evolution of software. Yet very little empirical evidence 
exists to support the claim about whether developers 
actively undertake refactoring, or whether as Fowler 
suggests that the benefits of doing refactoring are not 
short-term but too ‘long-term’ [8]. In this paper, we 
describe an empirical study of multiple versions of a 
range of open source Java systems in an attempt to 
understand whether refactoring does occur and, if so, 
which types of refactoring were most (and least) 
common. Fifteen refactorings were chosen as a basis 
(on seven Java systems) and the code analysed using 
an automated tool. Results confirmed that refactoring 
did take place, but the majority were of the simpler, 
less complex type. Interestingly, the most common 
refactorings empirically identified were those which, 
according to Fowler (and from a dependency graph of 
the ‘seventy two’ original refactorings), were central 
to larger more involved refactorings. One conclusion 
from the study is thus that developer time and effort for 
relatively large restructuring and testing of refactored 
code is prohibitive; making small, simple changes is 
preferred. A further conclusion from our study is that 
refactoring didn’t occur in the earliest or latest 
versions of the systems we investigated.          

 
1. Introduction 
 

One of the key software engineering disciplines to 
emerge over recent years is that of refactoring [8, 15, 
19]. Refactoring can be defined as a restructuring of 
the internal structure of a software artefact without 

changing its external behaviour; Fowler has likened 
refactoring to the reversal of software decay, in the 
sense that it repairs badly damaged software. While the 
outcome of refactoring effort is desirable, there is very 
little empirical basis to answer the simple question: do 
developers generally refactor? Since a large proportion 
of development time is devoted to maintenance, 
understanding how software is ‘changed’ over time is 
of enormous value. Moreover, if the answer to this 
question is ‘yes’, then it would be useful to know 
which types of refactoring are the most common and 
which the least common. An impression of likely 
future demands and refactoring trends may then be 
possible. Anecdotal evidence suggests that developers 
have very little time to devote to larger code 
restructurings often involving an inheritance hierarchy.  

In this paper, we describe the results of an empirical 
study of the trends across multiple versions of open 
source Java software. A specially developed software 
tool extracted data related to each of fifteen 
refactorings from multiple versions of seven Java 
systems according to specific criteria. Results showed 
that, firstly, the large majority of refactorings identified 
in each system were the simpler, less involved 
refactorings. Very few refactorings related to structural 
change involving an inheritance relationship were 
found. Secondly, and surprisingly, no pattern in terms 
of refactorings across different versions of the software 
was found. Results thus suggest that developers do 
simple ‘core’ refactorings at the method and field 
level, but not as part of larger structural changes to the 
code (i.e., at the class level). It is unlikely that we will 
be able to identify whether those ‘core’ refactorings 
were done in a conscious effort by the developer to 
refactor, or as simply run-of-the-mill changes as part 



of the usual maintenance process. However, we feel 
that identification of the major refactoring categories is 
a starting point for understanding the types of change 
and the inter-relationships between changes typically 
made by developers.     

In the next section, we describe related work. In 
Section 3 we describe the refactorings extracted, the 
systems used and the criteria adopted by the tool to 
extract the refactoring data. In Section 4 we discuss the 
data extracted using the tool and use the data to 
examine three suppositions. We then discuss some of 
the issues raised from this study (Section 5) and 
conclude, pointing to future work, in Section 6.     
 
2. Motivation and Related Work 
 

The motivation for the study in this paper stems 
from a number of issues. Firstly, there has been a large 
amount of interest in the criteria for carrying out 
refactoring [6]. In other words, the decision as to when 
certain types of refactoring should be undertaken. Yet 
very little empirical data addresses the question of how 
widespread refactoring is in practice. The results in 
this study support earlier findings from an empirical 
study of a set of library classes [5]. In that paper, the 
‘substitute algorithm’ refactoring [8] (i.e., modification 
of the body of a method to improve the way it 
functions) together with the core refactorings 
investigated herein were found to be the most popular 
type of change identified.   

Secondly, an open research issue is whether 
refactorings are compound in nature. Does one 
refactoring always require specific types of other 
refactoring (empirically speaking)? In this paper, we 
use a dependency diagram of the seventy-two 
refactorings to determine whether empirical 
relationships between refactorings match the 
theoretical relationships. For example, if refactoring X 
insists on carrying out refactoring Y first, does the 
empirical data reflect these dependencies? 

Finally, we would expect changes of any type to 
grow over the lifetime of the system. So we would 
expect there to be clear (increasing) refactoring trends 
as a system evolves. Yet, if a system is refactored 
frequently, then in theory it does not need to have 
increasing amounts of maintenance applied to it and 
‘peak’ and ‘trough’ patterns should appear. A key 
motivation is therefore to see if the trends in 
refactorings follow any specific patterns as the system 
evolves. The need for more studies into software 
evolution issues is highlighted in Perry [18].    

In terms of related work, the seminal text and from 
which our fifteen refactorings were taken is that of 

Fowler [8]. The work of Opdyke [15],  Johnson and 
Foote [10] and Johnson and Opdyke [16] has also been 
instrumental in promoting refactoring. Earlier work by 
Najjar et al. has shown the quantitative and qualitative 
benefits of refactoring [12]; the refactoring ‘replacing 
constructors with factory methods’ of Kerievsky [11] 
showed quantitative benefits in terms of reduced lines 
of code and potential qualitative benefits in terms of 
improved class comprehension. Developing heuristics 
for undertaking refactorings based on system change 
data has also been investigated by Demeyer et al. [6].      

In terms of automating the search for refactoring 
trends, research by Tokuda and Batory [19] has shown 
that three types of design evolution, including that of 
hot-spot identification, are possible. A key result of 
their work was the automatic (as opposed to hand-
coded) refactoring of fourteen thousand lines of code. 
Finally, the principles of refactoring are not limited to 
object-oriented languages; other languages have also 
been the subject of refactoring effort [2]. 

The findings in this study suggest that refactorings 
based on inheritance are infrequently made. It may be 
that developers avoid any restructuring inheritance 
hierarchies because of the relatively large number of 
class dependencies (i.e., coupling) and the subsequent 
testing effort required. A number of studies have 
investigated inheritance and cast doubt on the way that 
inheritance is used in practice [3, 9], thus supporting 
the view that inheritance-based refactorings are 
avoided by developers. Finally, very little research has 
been carried out into composite refactorings [14], 
where one refactoring is followed by n other 
refactorings.   

 
3.  Study Details  
 
3.1 The fifteen refactorings chosen 
 

The choice of which fifteen refactorings to 
implement in our tool was based on two criteria. 
Firstly, on the likelihood of finding large numbers of 
those refactorings over versions of the systems. This 
led us to implement simple refactorings such as those 
found to be common in single versions of the library 
classes of an earlier study [5]. Secondly, we wanted to 
see if more involved (i.e., complex) refactorings were 
undertaken and on what scale. We thus implemented 
the search for a set of refactorings requiring structural 
changes to the system to be made; for example, those 
related to an inheritance hierarchy. All the refactorings 
apart from refactoring number 9 (Rename Field) were 
taken from Fowler’s text. The fifteen refactorings 



chosen and the circumstances motivating that 
refactoring (added where not obvious) were:  

 
1. Add Parameter (to the signature of a method).  
2. Encapsulate Downcast. According to Fowler, 

‘a method returns an object that needs to be 
downcasted by its callers’. In this case, the 
downcast is moved to within the method.   

3. Hide Method. ‘A method is not used by any 
other class’ (the method should thus be made 
private).  

4. Rename Method. A method is renamed to make 
its purpose more obvious.   

5. Remove Parameter (from the signature of a 
method).   

6. Encapsulate Field. The declaration of a field is 
changed from public to private.  

7. Move Method. ‘A method is, or will be, using 
or used by more features of another class than 
the class on which it is defined’. 

8. Move Field. ‘A field is, or will be, used by 
another class more than the class on which it is 
defined’. 

9. Rename Field. A field is renamed to make its 
purpose more obvious. 

10. Push Down Field. ‘A field is used only by 
some subclasses’. The field is moved to those 
subclasses.    

11. Push Down Method. ‘Behaviour on a 
superclass is relevant only for some of its 
subclasses’. The method is moved to those 
subclasses.     

12. Pull Up Field. ‘Two subclasses have the same 
field’. In this case, the field in question should 
be moved to the superclass.  

13. Pull Up Method. ‘You have methods with 
identical results on subclasses’. In this case, the 
methods should be moved to the superclass.   

14. Extract Subclass. ‘A class has features that are 
used only in some instances’. In this case, a 
subclass is created for that subset of features.     

15. Extract Superclass. ‘You have two classes with 
similar features’. In this case, create a 
superclass and move the common features to 
the superclass.   

 
Fowler divides refactorings into different groups 

depending on the activity employed in transforming 
the system. According to Fowler’s classification, our 
refactorings are chosen from the groups:  

 
1. Making Method Calls Simpler: refactorings 1, 

2, 3, 4, 5.   
2. Organising Data:  refactoring 6. 

3. Moving Features Between Objects: refactorings 
7, 8. 

4. Dealing with Generalisation: refactorings 10, 
11, 12, 13, 14, 15. 

 
We note that in the case of certain refactorings, use 

of our software tool to assist was impossible unless the 
semantics of the code change were investigated. For 
example, the ‘substitute algorithm’ refactoring where 
one or more lines in the body of a method are changed 
would require the tool to check every line in every 
method in every class for a single change in the body 
of that method; even then it would require certain 
assumptions to be sure of the scope of change. For 
systems with thousands of classes in each of n 
versions, the problem this poses becomes clearer. The 
same problem arises with the extract method 
refactoring where one method is split into two (to 
become two methods). The parser, an integral part of 
our tool [1], would have to check groups of lines of 
code in any new methods added (to a later version) 
with all lines of code in methods of the earlier version.  

Each refactoring transformation that we 
implemented was defined through a set of rules or 
criteria. For example, to detect whether the ‘Move 
Field’ refactoring had taken place in the transition 
from one release to the next, the tool checked whether:  

 
1. A field (name, type) that appeared in a class 

type (belonging to older version) appeared to 
be missing i.e., has been dropped from the 
corresponding type of a later version. 

2. The field (name, type) did not appear in any 
superclass or subclass of the original type. 

3. A similar field (name, type) appeared to 
have been added to another type (belonging 
to later version). 

 
If the criteria (1 to 3) was satisfied for the field 

under investigation, the tool reported an occurrence of 
the Move Field refactoring.  Similarly, the criteria for 
‘Extract Superclass’ was as follows:  

 
1. A class type whose ‘unaccounted’ for fields 

and/or methods have been pulled up into a 
newly created superclass (that did not exist in a 
former release) to become a superclass.   

2. The class from which this superclass was 
extracted has become the base type. 

 
The criteria for the ‘Encapsulate Field’ refactoring 

is simply that a field in a later version in the same 
class, and with the same name, has had its declaration 
changed from public to private. To verify that the data 



produced by the software tool was correct, manual 
checks of the source code (from which the refactoring 
data was selected) were carried out by the authors.  
 
3.2 Java systems chosen 
 

Seven open source Java systems were analysed as 
part of our study. We note that we included both 
classes and interfaces in our analysis.   

 
1. MegaMek. A computer game. The number of 

classes and interfaces in this system remained 
static at 190 and 13, respectively.     

2. Tyrant. A graphically-based, fantasy adventure 
game. Incorporates landscapes, dungeons and 
towns. The system began with 112 classes and 
5 interfaces. At the tenth version, it had 138 
classes and 6 interfaces.  

3. Velocity. A template engine allowing web 
designers to access methods defined in Java. 
Velocity began with 224 classes and 44 
interfaces. At the tenth version, it had 300 
classes and 80 interfaces.  

4. Antlr. Provides a framework for constructing 
compilers and translators using a source input 
of Java, C++ or C#. Antlr began with 153 
classes and 31 interfaces. The latest version had 
171 classes and 31 interfaces.  

5. HSQLDB.  A relational database application 
supporting SQL. HSQLDB started with 52 
classes and 1 interface. The latest version had 
254 classes and 17 interfaces.  

6. JasperReports. A Java reporting tool to help 
produce page-oriented documents in a simple 
and flexible way. JasperReports started with 
288 classes and 50 interfaces; the latest version 
comprised 294 classes and 52 interfaces.  

7. PDFBox. A Java PDF library allowing access 
to components found in a PDF document.  The 
initial system had 135 classes and 10 
interfaces; the latest version had 294 classes 
and 52 interfaces.  

 
3.3 Description of the tool 
 

The set of values for an entire system are 
represented as an XML tree consisting of sequences of 
sub-trees representing the individual types. Using this 
representation, XML data which appears to have been 
refactored can be identified by applying the criteria 
described in the previous section. The tool compares 
consecutive releases of the same industrial software 
system according to that criteria.  

Figure 1 displays the functionality of the tool in 
sequential order of execution. Phase-1 produces an 
XML document file in one step for each release of 
each system.  When two consecutive releases of a 
system are parsed into XML files, phase-2 is 
initialised. In phase-2, consecutive releases of all 
systems are compared (one by one). Once all the 
consecutive releases of each and every API have been 
compared, phase-3 is initialised. Phase-3 gathers 
statistics about the refactorings performed. For the 
interested reader, a detailed description of our tool is 
provided in [1]. 

 

 
 
Figure 1: Structure of the refactoring tool 

 
 
4. Data Analysis 

 
We investigated three suppositions in our analysis 

of the data. Firstly, we investigated the question of 
which are the most and least common refactorings 
across all versions of the systems studied. Secondly, 
we investigate whether, within each of the seven 
systems, any refactoring trends are evident. Thirdly 
and finally, we investigate whether there are any 
patterns in refactoring across versions of the systems 
investigated and analyse the possibility that 
refactorings are connected (in the sense that one 
refactoring always follows another specific type of 
refactoring).  
 
4.1 Supposition One 
 

Our first supposition examines which refactorings 
are the most common from the systems analysed and 



equally, which are least common. Prior to the study, 
we had no pre-conceived ideas about the most likely 
findings of the tool.  A reasonable assumption might 
have been that the more ‘involved’ refactorings would 
be less frequent because of the extra work involved on 
the part of the developer.  Figure 2 shows the 
frequency of refactorings uncovered by the tool in the 
form of a bar chart. The order of the bars on Figure 2 
follows the order of the legend (i.e., for MegaMek, 
then JasperReports etc.)  
 

 
Figure 2: Refactorings extracted from the 

seven systems 
 

Figure 2 shows the most popular refactoring to be 
the ‘Rename Field’ refactoring, followed by ‘Rename 
Method’. In the HSQLDB system, 158 occurrences of 
this refactoring were found. Interestingly, for the 
MegaMek system, no occurrences of this refactoring 
were found.  

Least popular was the ‘Encapsulate Downcast’ 
refactoring (zero occurrences were found across the 
seven systems) and the ‘Push Down Method’ 
refactoring (only 6 occurrences, all for the Velocity 
system). The ‘Pull Up Method’ refactoring value for 
Velocity is noteworthy since 55 occurrences of this 
refactoring were found (we investigate this feature of 
Velocity in Section 4.2).  

One surprising result from Figure 2 is the lack of 
‘Hide Method’ and ‘Encapsulate Field’ refactorings. In 
theory, these are quite simple refactorings; in each 

case, the mechanics of doing each of these refactorings 
are trivial. For hide method, the declaration of the 
method is changed from public to private. For the 
encapsulate field, an identical process is carried out. A 
number of suggestions could be made for the low 
numbers of these two refactorings. Firstly, we suggest 
that developers do tend to attach a low priority for 
visibility issues in terms of declaration of methods and 
attributes. We support this claim with earlier work on 
five C++ systems, where trends in encapsulation 
showed anomalies in four of the five systems. In 
particular, we found protected attributes in classes 
without any inheritance coupling [4]. Secondly, recent 
work by Najjar et al. [13] has found that even for a 
simple refactoring such as encapsulate field, a number 
of problems arise. These related to high coupling of the 
field and problems with the position of the class in the 
inheritance hierarchy (and dependencies thereof). 
Practically, simple refactorings are not always that 
simple.    

Although we would not have expected a high 
number of inheritance-based refactorings, the 
exceptionally low value found was a surprising result. 
Perhaps it is the nature of open-source software (where 
independent developers can make unilateral changes) 
that explains why changes requiring developers to re-
organise the system’s structure do not take place. More 
studies would be needed before any conclusion could 
be drawn on this issue. Table 1 shows the aggregate 
refactorings for the seven systems together with the 
maximum, minimum and mean value for each 
refactoring over the seven systems. 

 
Table 1: Refactoring summary data 

 
Refactoring Type Max Min Mean Total 
Encap. Downcast 0 0 n/a 0 
PushDown Meth. 0 6 0.86 6 
Extract Subclass 0 5 0.86 6 
Encapsulate Field 0 9 1.71 12 
Hide Method 0 8 1.86 13 
Pull Up Field 0 10 2.00 14 
Extract Superclass 0 15 3.29 23 
Remove Paramet. 0 7 3.43 24 
Push Down Field 0 19 3.71 26 
Pull Up Method 0 55 9.29 65 
Add Parameter 0 39 14.14 99 
Move Method 0 39 13.00 88 
Move Field 0 100 19.29 135 
Rename Method 1 76 23.86 167 
Rename Field 0 158 29.86 209 

 



The key result from the data shown in Figure 2 (and 
evident from Table 1) is the trend towards more simple 
refactorings such as basic operations on fields and 
methods. Figure 2 illustrates this feature by the 
relatively large number of refactorings towards the 
right hand side of the figure. More involved 
refactorings (such as those requiring manipulation of 
the inheritance hierarchy, e.g., extract subclass, 
encapsulate downcast and push down method) were 
not found to occur in large numbers. We thus suggest 
that developers avoid more involved refactorings, 
especially those requiring changes to, and 
manipulation of the inheritance hierarchy. We also 
suggest that the most common refactorings are those 
more in-line with typical changes a system may 
undergo (i.e., field and method operations).  

In terms of Fowler’s four categories of refactorings, 
we thus found very little evidence of the ‘Dealing with 
Generalisation’ category yet a large number falling 
into the ‘Making Method Calls Simpler’ and ‘Moving 
Features Between Objects’ categories. Very little 
evidence of refactorings from the ‘Organizing Data’ 
category were evident.  
 
4.2 Supposition Two 

 
The second supposition investigates whether there 

are any trends within each system across the fifteen 
refactorings.  Since we would expect more refactoring 
effort to be carried out as a system grows older, our 
hypothesis would be that refactoring tends to take 
place towards the later versions of the system rather 
than earlier in its lifetime. We accept that the systems 
we looked at are still ‘live’ and will probably evolve 
through many more versions before they become 
obsolete. However, on the basis that we cannot 
necessarily predict the lifetime of a system, we still 
feel this supposition to be an interesting one to 
investigate.   

Figures 3, 4 and 5 illustrate data for three of the 
systems; we have chosen the three systems with the 
most releases to use as a basis of this analysis (and 
because of space limitations in this paper). For the 
Velocity system (Figure 3), relatively few refactorings 
appear to happen in later versions of the system; 
equally, relatively few refactorings occur in earlier 
versions of the software. The bulk of the refactoring 
activity seems to happen in the mid-versions of the 
system. We note that the order of the bars for each 
refactoring follows the order of the comparisons in the 
legend; Velocity10VS101.xml denotes the XML 
representation generated by our tool as a result of 
comparing the two consecutive versions 1.0 and 1.01 
of Velocity software.    

 
Figure 3: Refactorings for the Velocity system 
 

For the Tyrant system (Figure 4), there is a clear 
trend of refactorings happening towards later versions 
of the system (as we hypothesised) in contrast to the 
Velocity system. It is interesting to note that activity 
for both the ‘Rename Method’ and ‘Rename Field’ 
features prominently in both systems.     
 

 
Figure 4: Refactorings for the Tyrant system 



 
For the PDFBox system (Figure 5), the bulk of the 

refactoring effort seems to occur at both the middle 
and end of the versions in contrast to the single trends 
of Velocity and Tyrant.  Table 2 summarises for the 
seven systems the number of refactorings carried out in 
each version.   
 

 
Figure 5: Refactorings for the PDFBox system 
 

 
Table 2: Summary of refactorings across the 

versions of the seven systems 
 

Ver
s 

Meg. Tyr. Vel. Antl. HSQ. Jaspe. PDFBox 

1-2 1 0 0 4 80 2 2 
2-3 0 0 23 37 78 9 3 
3-4 0 0 102 1 307 4 22 
4-5 0 2 65 0 0 - 5 
5-6 0 1 34 - - - 1 
6-7 0 0 1 - - - 27 
7-8 0 19 34 - - - - 
8-9 - 7 - - - - - 

9-10 - 17 - - - - - 
 

From Table 2, no clear pattern emerges in terms of 
when refactorings are carried out. We would therefore 
conclude that as a system evolves, it is not necessarily 
the case that increasing amounts of refactoring effort is 
undertaken. Similarly, it is not the case that large 

amounts of effort are invested in refactoring effort in 
the earlier versions of the systems (which is probably 
more plausible as an hypothesis).  

Of the total number of refactorings, the 
overwhelming majority were carried out in versions 2-
3 and 3-4. One suggestion for this trend may be that it 
takes two or three versions of a system to evolve 
before the ‘decay’ starts to creep in. In other words, 
systems retain a certain stability (in a refactoring 
sense) for several versions before it becomes 
worthwhile (and necessary) to undertake any changes   

An interesting feature of the refactoring data 
presented is the tendency for a ‘peak’ and ‘trough’ in 
refactoring effort. For example, for the HSQLDB 
system, zero changes were made in version 4-5 after 
307 refactorings in version 3-4. The same phenomenon 
is evident in Antlr, PDFBox and to a lesser extent the 
Velocity and Tyrant systems. This might suggest that 
after completing a series of refactorings in version X, 
very few refactorings of the type described are needed 
in version X+1. It is worth noting that HSQLDB also 
saw the highest rise in the number of classes over the 
versions we investigated; this is reflected in the 
relatively large numbers of refactorings across the 
versions of this system.      
 
4.3 Supposition Three 

 
The third supposition investigated was whether any 

trends in the type of refactoring undertaken across 
different versions of the systems studied were evident. 
For example, do certain types of refactoring occur in 
similar versions. Supposition three also investigated 
the possibility that refactorings are connected in some 
sense. The mechanics of all refactorings advise the use 
of other refactorings [8]. Table 3 shows for each 
transition between consecutive versions, the total 
number of each type of refactoring undertaken across 
the seven systems. We remark that ten is the maximum 
number of versions (Tyrant); the contribution to Table 
3 of systems with fewer than ten versions is thus zero.  

One noteworthy feature of Table 3 is the trend of 
refactoring effort in earlier versions of the systems (in 
transitions 2-3 and 3-4) and an almost complete 
absence of refactoring in 4-5.  This dip in the 
refactoring effort supports our ‘peak’ and ‘trough’ 
theory about refactoring. Another feature of this data is 
that from versions 5 to 9, the trend in refactorings is 
downward; it then rises sharply. Figure 6 graphically 
illustrates the trend across versions in terms of total 
number of refactorings. The general trend however, is 
for reduced refactoring effort as time evolves 
 



Table 3: Refactorings across the different 
versions of seven systems1 

 
1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

EncD 0 0 0 0 0 0 0 0 0 
PudM 0 0 1 0 1 0 0 0 4 
ExSub 0 2 3 0 1 0 0 0 0 
EncpF 0 5 4 0 0 1 0 1 1 
HidM 3 6 2 0 0 1 0 1 0 

PupF 0 1 7 0 2 4 0 0 0 
ExSup 0 2 10 0 8 1 0 0 2 
RemP 3 2 12 0 1 1 1 1 3 
PudnF 0 16 3 0 7 0 0 0 0 
PupM 0 9 17 0 24 5 0 0 10 
AddPa 13 16 41 1 1 9 15 0 3 
MovM 14 10 49 0 3 11 1 1 2 
MovF 6 45 79 1 1 3 0 0 0 
RenM 19 15 71 6 16 21 1 2 16 
RenF 31 22  37 0 2 5 1 1 10 
 Total    89 151 236 8 67 61 17 7 51 
 

The third supposition also investigates the 
possibility that certain refactorings are connected. In 
other words, when one refactoring, for example, move 
method, is performed, there is always (or most times) 
an accompanying ‘move field’ refactoring. To 
understand more fully the relationships between 
certain refactorings, we begin by describing an 
accompanying analysis of the relationships between 
the different refactorings described by Fowler.    
 

 
 

Figure 6: Total refactorings across versions 
                                                           
1 The first column refers to the refactoring type. Due to place 
restrictions, full names are replaced by abbreviations. The order of 
refactorings follows the same of Table 1. 

 
4.3.1 A dependency analysis. Data analysis has 
shown that the majority of the refactorings fall into 
two categories of refactoring originally envisaged by 
Fowler. As part of our ongoing refactoring research, 
we developed a dependency diagram which showed 
the inter-relationships between the 72 refactorings. The 
diagram was developed by hand using Fowler’s text as 
a basis. As a result of producing this graph, it becomes 
possible to see the likely implications of undertaking a 
specific refactoring in terms of how many other 
potential refactorings either must be carried out or 
may be carried out at the same time.  

For example, for the ‘Encapsulate Field’ 
refactoring, Fowler himself suggests that one possible 
implication of the refactoring is that ‘once I’ve done 
Encapsulate Field  I  look for methods that use the new 
methods’ (i..e, accessors needed for the encapsulated 
field) ‘to see whether they fancy packing their bags 
and moving to the new object with a quick Move 
Method’.   

The encapsulate field refactoring thus has only one 
possible ‘dependency’. From a developer’s point of 
view, the encapsulate field is an attractive and 
relatively easy refactoring to complete.  The ‘Add 
Parameter’ refactoring falls into the same category as 
the Encapsulate Field refactoring. It does not need to 
use any other refactorings. The only other refactoring 
that it may consider using is the ‘Introduce Parameter 
Object’ refactoring where groups of parameters which 
naturally go together are replaced by an object.   

The extract subclass refactoring, on the other hand, 
requires the use of six (possible) other refactorings, 
two of which are mandatory. It has to use ‘Push Down 
Method’ and ‘Push Down Field’ as part of its 
mechanics. It may (under certain conditions) also need 
to use the ‘Rename Method’, ‘Self Encapsulate Field’, 
‘Replace Constructor with Factory Method’ and 
‘Replace Conditional with Polymorphism’ 
refactorings. The extract superclass refactoring 
requires a similar number of refactorings to be 
considered. In fact, for most of the refactorings 
involving a re-structuring of the inheritance hierarchy, 
the mechanics are lengthy (requiring many steps and 
testing along the way). 

 
4.3.2 Connections between refactorings. One 
explanation for the result in Table 1 (i.e, the high 
values for simple refactorings and the low values for 
more ‘complex’ refactorings) could  be attributed to 
the relative effort required (in terms of activities 
required) to complete the refactoring. The testing effort 
of more complex refactorings has also to be 
considered; the more changes made as part of the 



refactoring then mutatis mutandis, the more testing 
would be required.   

In terms of whether refactorings are somehow 
linked, we can see from Table 3 that when the extract 
superclass refactoring is evident, the pull up method is 
also a feature. The mechanics of the extract superclass 
refactoring insist that pull up method is part of that 
refactoring. Equally, there seems to be evidence of pull 
up field for the same refactoring (also a part of the 
extract superclass refactoring). Rename field and 
method also seem to feature when extract superclass is 
carried out; rename method (but not rename field) play 
an important role in the extract superclass refactoring. 
The rename field refactoring is not specified in 
Fowler’s text. This is interesting since it suggests that 
may be some effects of refactoring which aren’t 
covered by the refactoring according to Fowler.  

Extract subclass also requires use of the rename 
method refactoring, which may explain the high 
numbers for that refactoring.  To try and explain the 
high numbers of rename field refactoring, one theory 
may be that developers automatically change the name 
of fields when methods are ‘pulled up’ (in keeping 
with the corresponding change of method name). A 
conclusion that we can draw is that there may well be 
relationships between some of the fifteen refactorings 
in line with the mechanics specified by Fowler in [8]. 
However, we suggest that most of the simple 
refactorings were not as part of any larger refactoring. 
In the following section, we discuss a number of issues 
related to our study. 
 
5. Discussion 

 
There are a number of threats to the validity of this 

study that have to be considered. Firstly, the systems 
chosen for analysis were open-source systems rather 
than commercial systems developed and maintained by 
traditional teams of programmers. In defence of this 
threat however, we feel that the results described in 
this study are as valid as any for commercial systems 
[7]. The results inform our understanding of how open 
source systems evolve and are maintained. Parallel 
studies on commercial systems developed in the 
traditional way would not necessarily detract from 
these results, but we feel add to them.  

The second threat is that we chose seven systems of 
largely differing application domains; systems of 
identical application domain may have provided more 
relevant results. In defence of this criticism, we would 
claim that for the results described in this paper to be 
generalised, we would want systems of different 
application domains.   

Another threat might be that we have looked at 
different changes due to refactoring and ignored the 
vast number of other types of refactorings and changes 
which can be applied to software. In terms of other 
refactorings, the intention of the study was to choose a 
subset of the seventy-two refactorings which we 
believed would provide a cross-section of the types of 
change typically made to software.    

One final threat to the validity of the study is fact 
that we have ignored any consideration of other types 
of change to the systems investigated which would 
inevitably have been made. We also need to consider 
that contrary to the definition of refactoring given in 
Section 1, refactoring often involves changes to the 
internal structure of the system which do change its  
external behaviour. In other words, not all refactorings 
are semantic preserving. We also have to consider the 
possibility that some connections between refactorings 
may exist but cannot be identified unless we widen the 
number of refactorings investigated.  In the next 
section, we draw some conclusions and point to future 
work. 
 
6. Conclusions and Future work     

 
In this paper, we have described a study of the 

refactoring trends across different versions of seven 
systems. A software tool was used to extract the 
different refactorings which the software had 
undergone. Results showed that the majority of 
refactorings were relatively simple and easy to apply. 
Those related to structural changes did not seem 
particularly common. Results also showed that no clear 
patterns when refactoring was carried out emerged, 
although a ‘peak’ and ‘trough’ effect in terms of 
refactoring effort was observed. One theory  is that 
perhaps refactoring effort is done in bursts and the 
system left to settle before further refactoring is 
attempted. Other results suggest that there are links 
between complex refactorings and the ‘core’ (simpler) 
refactorings which are part of those larger refactorings.  
Of the large numbers of smaller refactorings we 
believe that most are carried out independently of any 
larger refactorings. Finally, and interestingly, it seemed 
to take two or three versions of a system before any 
major refactoring effort was observed, suggesting that 
systems may not start ‘decaying’ until that point.            

In terms of future work, it would be interesting to 
investigate whether any relationship existed between 
the refactorings identified and the bugs found across 
the different releases of the seven systems. The 
intention of the authors is to replicate a number of 
recent studies on versions of software and the link with 



faults [17]. We also intend extending both the number 
of refactorings which the tool is capable of extracting 
and the number of systems. It would also be interesting 
to run the tool on versions of commercial systems 
written in a more traditional way (i.e., non open source 
systems) to see if common features exist.      
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