
Cryptic Crossword Clues: Generating Text with a Hidden Meaning

David Hardcastle
Open University, Milton Keynes, MK7 6AA

Birkbeck, University of London, London, WC1E 7HX
d.w.hardcastle@open.ac.uk

ahard04@dcs.bbk.ac.uk

Abstract

This paper discusses the generation of cryptic crossword clues: a task that involves generating
texts that have both a surface reading, based on a natural language interpretation of the words,
and a hidden meaning in which the strings that form the text can be interpreted as a puzzle. Pro-
ductions of a domain grammar representing the puzzle meaning of a clue are realized through the
aggregation of atomic chunks of text, each of which corresponds to a symbol in the domain
grammar. This process of aggregation is restricted by syntactic and semantic selectional con-
straints to assure a valid surface reading.

1 Introduction

This paper discusses a system called ENIGMA which generates cryptic crossword clues: fragments of text
that also have a hidden meaning, quite different from the surface reading. This raises an interesting re-
search question, namely how to generate text that has multiple layers of meaning based on different syn-
tactic rules and different semantic interpretations. The input to the realizer is a production of a high-level
cryptic clue grammar whose terminals are the strings that participate in the puzzle presented by the clue.
These conceptualizations of possible crossword clues contain no implicit syntactic or semantic informa-
tion, and so a mechanism is required to ensure that the resulting surface text is syntactically correct and
semantically appropriate while the meaning of the text, derived directly from the input, is not disturbed
during lexicalization.

Although there are other contexts in which text with a secondary meaning is generated - such as com-

putational humour (see Ritchie, 2003) – ENIGMA is unusual in that the input data does not represent the
surface reading at all.

1.1 Cryptic Crossword Clues

The cryptic crossword clues generated by ENIGMA consist of two separate indications of the solution
word, one of which is a definition, the other a puzzle based on its orthography. Consider, for example, the
following simple clue for noiseless:

Still wild lionesses (9)
Here noiseless is represented both by the synonym still (the definition) and a wordplay puzzle (an ana-
gram of lionesses) indicated by the convention keyword wild. All of the clues generated by the system
conform to Ximenean conventions (Macnutt, 1966), a set of guidelines that impose restrictions of inflec-
tion and word order to ensure that clues are ‘fair’ and also encourage the use of homographs and conven-
tion vocabulary to make them cryptic in nature.

It is important to note here that there are two separate readings of this clue: a surface reading in which
the clue is also a fragment of English text, and the puzzle reading required to solve the clue. In the surface

reading the word still is an adverb qualifying the adjective wild, while in the puzzle reading it is an adjec-
tive that is a synonym for noiseless.

There are many different types of crossword clue wordplay, including anagrams, homophones, writing

words backwards, appending words together, and more besides. ENIGMA generates clues using seven of
the eight main types listed in (Macnutt, 1966) and can also generate complex clues with subsidiary puz-
zles. This coverage combined with the richness of lexical choice in cryptic crossword convention vocabu-
lary means that it is not uncommon for ENIGMA to generate several hundred valid clues for a single input
word.

1.2 Requirements for Generation

Given a particular solution word, such as noiseless, the first step for the system is to determine the differ-
ent ways in which the letters of the solution could be presented as a puzzle. For example, the basis of the
clue could be that noiseless is an anagram of lionesses, or that it can be formed by running noise and less
together, or that it is composed of a river (Oise) followed by the letter l all placed inside the word ness. In
its present form ENIGMA locates 154 such formulations for the input word noiseless.

Each of these formulations can be represented as a clue tree under ENIGMA’s domain grammar for

cryptic crosswords in which the terminal elements are the strings used to compose the solution word. An
example of such a tree is shown below in Figure 1. It represents the fact that noiseless can be formed by
running noise and less together, a puzzle type known as a charade (Macnutt, 1966; Manley, 2001). These
clue trees contain no linguistic information - the terminals should be thought of as strings not as words.

Figure 1. A clue tree that represents appending noise and less to form noiseless.

To lexicalize such a clue tree the system must construct a fragment of natural language that can be rein-
terpreted - through the resolution of homographs and a knowledge of special conventions - as a valid
cryptic clue puzzle based on this non-linguistic structure. Along the way the syntax and semantics of the
puzzle reading must not be disturbed or the clue will lose its hidden meaning. At the same time, the natu-
ral language syntactic and semantic information that is missing from the input data must be imposed on
the clue so that a valid surface reading is achieved.

2 Chunk by Chunk Generation

A complete clue does not need to be a sentence, or even a clause, it can be any valid fragment of text, and
ENIGMA takes advantage of this fact to simplify the generation algorithm. The clue tree shown in Figure 1
is realized through a process of composition. First the symbol labeled A is realized. Next B1 and B2 are
realized individually and then combined to form B. Now, A and B can themselves be combined to form
the clue. Each realization is a fragment of text, and I refer to each of these fragments as a chunk, although
I note that they are rather different from chunks based on major heads (Abney, 1989), for the reasons set
out below. To implement this process the system needs to be able to do two things: create chunks for each
terminal in the clue tree, and merge chunks into successively larger ones until the root of the tree is
reached. This recursive process enables ENIGMA to construct complex clues with subsidiary puzzles using
the same implementation it uses for simple puzzles.

2.1 Chunk Atomicity

A key feature of chunks in ENIGMA is that they are atomic: when chunks are combined together they can-
not interleave or nest. The reason for this is that each chunk represents a part of the hidden meaning of the
clue, and so any text inserted into it would render the clue invalid. For example, in the sample clue above,
the chunk wild lionesses, indicating an anagram of lionesses, might have been rendered predicatively as
lionesses are wild instead. If the qualifier still was added to this fragment and attached to the adjective
wild the result would be lionesses are still wild, and this is no longer a valid clue as the definition word
(still) is now embedded in the middle of the wordplay puzzle, breaking the rules of the game.

3 Implementation

Each chunk can attach to the left, to the right, or via an intermediary, something I call ‘upward attach-
ment’. This specification resembles Combinatorial Categorial Grammar (Steedman, 2000), in that a noun
can attach to the left to the verb of which it is the direct object, an adjective can attach to the right to the
noun that it modifies and so on. This attachment information is encoded as a set of three extension points1
to each chunk: one specifies the relationships that can occur to the left, another those that can occur to the
right, and the third specifies upward attachments. For example the chunk wild lionesses has, amongst
many others, an extension point to the left indicating that it can attach as direct object to a verb, one to the
right indicating that it can attach to a verb as subject and an upward attachment through which it can at-
tach via a coordinating conjunction to another noun.

In addition to specifying the relationship and target type each extension point also specifies an erasure2

for the chunk to which it belongs - this erasure indicates a word in the chunk that can stand in for the
chunk as a whole when determining attachment. The erasure serves two purposes: it provides a mecha-
nism for syntactic flexibility and it also enables semantic checks to be undertaken.

In addition to looking for a verb to the left the chunk wild lionesses also has an extension point looking

for an adverb to the left, since an adverb could qualify the adjective wild. Therefore, while the extension
point looking for a verb erases the chunk to the noun lionesses, so that a verb chunk looking for a noun to
its right as direct object will accept it, the extension point looking for an adverb erases this same chunk to
the adjective wild, so that an adverb looking to its right for an adjective to qualify could also accept it. In

1 The term extension point is more commonly used to define the interfaces to plug-in components in extensible
computer systems.
2 In Object-Oriented Programming an erasure is a simplification or genericisation of a type through some interface,
see e.g. Bracha et al, 2001.

this way the concept of erasure makes it possible for a wider variety of syntactic dependencies to be en-
coded in the same way on a single chunk, allowing diverse behaviour.

It is important to note here that the erasures do not specify a type (such as noun or adjective) but a

member of the chunk: wild and lionesses in this case. This enables the erasures to be used to determine
what semantic checks are required to validate the attachment. For example, if the chunk wild lionesses
matches a chunk to its left that erases to a verb and is looking for a direct object then it knows from its
own direct object extension point that the attachment is syntactically correct, but this is not enough. Since
the clue tree only contains information about crossword conventions a separate semantic check is now
required to ensure that it makes sense for the verb to take the noun lionesses as its direct object, and this
semantic check will be performed using the relation and the erasures as arguments.

For example, when the chunk still is combined to the left of wild lionesses the system performs a se-

mantic check to ensure that still can qualify wild. If the verb calm (an alternative homograph of a syno-
nym for noiseless) is attached to the left then the system checks that lionesses can be the direct object of
calm.

The third type of attachment, upward attachment, is reserved for chunks that attach via an intermediary

word, such as a conjunction. The chunk wild lionesses will also have an upward extension point that will
connect via a coordinating conjunction to another chunk that erases to a noun, allowing ENIGMA to form
simple coordinations.

4 Sample output

Figure 2 depicts system output from ENIGMA representing the sample clue given in the introduction. Since
so many clues are generated the system also generates a list of justifications which it uses to determine a
score for the clue. This allows the long list of clues to be ranked with the most promising clues at the top.

Clue for [noiseless]
Score [3.50]
Clue [Still wild lionesses (9)]
Homograph pun: to solve the clue 'still' must be read as Adjecti ve but
has surface reading Adverb
Orthographic distance: distance from light string 'lionesses' to surface
string 'noiseless' is 0.60
Syntactic collocate: dependency fit 'wild lioness' of type Adjective
Modifier characterized as 'inferred'
Syntactic pattern: 'wild lioness' assembled as Attr ibutive Adjective
Syntactic pattern: 'still wild' assembled as Adverbial Qualifier

Figure 2. Sample output from ENIGMA.

5 Discussion

ENIGMA constructs clues using their hidden meaning as the starting point. Lexical choice is very unre-
stricted, while word order is quite tightly constrained. This leads to combinatorial explosion in lexical
choice, but of the intractably large number of possible productions for each clue very few also function as
viable fragments of natural language. ENIGMA ’s approach is to work against the structure of the hidden
clue and determine constraints on the surface reading on the fly. The compositional process reins in the
combinatorial explosion by pushing language constraints down to the most local level at which they can
operate.

For the surface readings to seem to have some meaning as well as a valid syntax ENIGMA checks the
erasures of each chunk against the relation under which they attach for semantic fit, and this requires an
array of generic linguistic data sources constructed specifically for the application:

• A Collocational Semantic Lexicon based on an analysis of the constituents of dependency relations
in the British National Corpus and expanded through generalization with WordNet determines if a
proposed dependency relation between two words is semantically probable (Hardcastle 2007). This
lexicon is used to impose selectional constraints on syntactic dependency relations, such as between a
verb and its direct object.

• A Word Association Measure based on a distributional analysis of data in the British National Cor-
pus indicates whether a given pair of words share content meaning. This measure is useful for analyz-
ing connections based on dependencies not covered in the lexicon, such as coordinations for example
(Hardcastle 2005).

• A Phrase Dictionary derived from the Moby Compound word list3 is used to identify aggregations
that result in the creation of multi-word units such as compound nouns or phrasal verbs.

Once the whole clue tree has been processed, the set of chunks that result are syntactically and seman-

tically valid under the symbolic language grammar of the domain, and at the same time are plausible
fragments of natural language.

References

S. Abney. (1989). Parsing by Chunks. In The MIT Parsing Volume, edited by C. Tenny. The MIT Press.

G. Bracha, N. Cohen, C. Kemper, S. Mark, M. Odersky, S.-E. Panitz, D. Stoutamire, K. Thorup, and P. Wadler.
(2001). Adding generics to the Java programming language: Participant draft specification. Technical Report,
Sun Microsystems.

D. Hardcastle. (2007). Building a Collocational Semantic Lexicon. Technical Report BBKCS-07-02. Birkbeck,
London.

D. Hardcastle. (2005). An examination of word association scoring using distributional analysis in the British Na-
tional Corpus: what is an interesting score and what is a useful system? In Proceedings of Corpus Linguistics,
Birmingham.

D. S. Macnutt. (1966). On the Art of the Crossword. Swallowtail Books.

D. Manley. (2001). Chambers Crossword Manual. Chambers.

G. Ritchie. (2003). The JAPE riddle generator technical specification. Informatics Research Report EDI-INF-RR-
0158

M. Steedman. (2000). The Syntactic Process. The MIT Press.

3 http://www.dcs.shef.ac.uk/research/ilash/Moby/.

