
Complete Axiomatizations for XPath
Fragments?

Balder ten Cate1??, Tadeusz Litak2, and Maarten Marx1

1 Informatics Institute, University of Amsterdam
Kruislaan 403, 1098 SJ, Amsterdam, The Netherlands

balder.tencate@uva.nl / marx@science.uva.nl
2 School of Computer Science and Information Systems

Birkbeck College, University of London
Malet Street, Bloomsbury, London WC1E 7HX, UK

tadeusz@dcs.bbk.ac.uk

Abstract. We provide complete axiomatizations for several fragments
of XPath: sets of equivalences from which every other valid equivalence
is derivable. Specifically, we axiomatize downward single axis fragments
of Core XPath (that is, Core XPath(↓) and Core XPath(↓+)) as well as the
full Core XPath. We make use of techniques from modal logic.

XPath is a language for navigating through XML documents. In this pa-
per, we consider the problem of finding complete axiomatizations for fragments
of XPath. By an axiomatization we mean a finite set of valid equivalences be-
tween XPath expressions. These equivalences can be thought of as (undirected)
rewrite rules. Completeness then means that any two equivalent expressions can
be rewritten to each other using the given equivalences. Completeness tells us,
in a mathematically precise way, that the given set of equivalences captures
everything there is to say about semantic equivalence of XPath expressions.

We are aware of two complete axiomatizations for XPath fragments. The
first is for the downward, positive and filter-free fragment of XPath [1], a rather
limited fragment, and the second [5] concerns Core XPath 2.0, a very expressive
language, with non-elementary complexity for query containment (see [4]).

In this paper, we study Core XPath 1.0, which was introduced in [7, 8] to
capture the navigational core of XPath 1.0. Our main results are:

– A complete axiomatization for Core XPath(↓+) and for Core XPath(↓), i.e.,
the fragments with only the descendant and only the child axis, respectively.
The axiomatizations are complete both for node expressions and for path
expressions.

? This technical report is the full version of a paper accepted for LID 2008
workshop. If you are kindly going to quote it in your work, please check
http://www.dcs.bbk.ac.uk/~tadeusz/ for the most current version published.

?? Currently on leave visiting IBM Almaden and UC Santa Cruz.

– An axiomatization for full Core XPath that is complete for node expressions.
The completeness can be extended to path expressions as well, at the cost
of introducing an additional rule of inference.

Proofs utilize techniques and known results from modal logic. We will de-
scribe the connection in more detail in Section 4.

Acknowledgements The first author is supported by the Netherlands Organiza-
tion for Scientific Research (NWO) grant 639.021.508. The second author was
supported by NWO grant 680–50–0613 during the period when most of the re-
sults were obtained. At present, he is supported by EPSRC grant EP/F002262/1.
We would like to thank the anonymous referees for their comments.

1 Preliminaries

1.1 XML Trees

We abstract away from atomic data attached to the individual elements, and view
an XML document as a finite node-labeled sibling-ordered tree. More formally,
given a countably infinite set lab = v1, v2, v3 . . . of node labels, we define an
XML tree to be a structure T = (D,R↓, R→, L), where

– (N,R↓) is a finite tree (with N the set of nodes and R↓ the child relation),
– R→ is the successor relation of some linear ordering between siblings in the

tree (in particular, for R→+ the transitive closure of R→, we have that for
any two distinct siblings x, y, either xR→+y or yR→+x), and

– L : N → ℘(lab) labels the nodes with elements of lab.

We denote by R↓+ and R→+ the transitive closures of R↓ and R→, i.e.,
the descendant and following-sibling relations. R←, R←+ , R↑ and R↑+ are the
converses of, respectively, R→, R→+ , R↓ and R↓+ . The elements of lab correspond
to XML tags. It is customary to require that each node satisfies precise one tag.
We do not make this assumption, but its role will be discussed in some detail.

1.2 Core XPath, the Navigational Core of XPath 1.0

The syntax of Core XPath is defined as follows:

Step := ↓ | ← | ↑ | →
Axis := . | Step | Step+

PathEx := Axis | PathEx [NodeEx] | PathEx/PathEx | PathEx ∪ PathEx

NodeEx := v | 〈PathEx〉 | ¬NodeEx | NodeEx ∨ NodeEx (v ∈ lab)

In this paper, Greek letters φ, ψ . . . range over elements of NodeEx and Roman
capitals A,B,C . . . over elements of PathEx. s and a are metavariables ranging
over, respectively, elements of Step and elements of Axis distinct than “.”; thus,

Table 1. Semantics of Core XPath

[[.]]PExpr := {(x, x) | x ∈ D}
[[s]]PExpr := Rs

[[s+]]PExpr := the transitive closure of Rs

[[A/B]]PExpr := {(x, y) | ∃z such that (x, z) ∈ [[A]]PExpr and (z, y) ∈ [[B]]PExpr}
[[A ∪ B]]PExpr := [[A]]PExpr ∪ [[B]]PExpr

[[A [φ]]]PExpr := {(x, y) | (x, y) ∈ [[A]]PExpr and y ∈ [[φ]]NExpr}

[[v]]NExpr := {x | v ∈ L(x)}
[[〈PathEx〉]]NExpr := {x | ∃y.(x, y) ∈ [[PathEx]]PExpr}
[[¬φ]]NExpr := {x | x 6∈ [[φ]]NExpr}
[[φ1 ∨ φ2]]NExpr := [[φ1]]NExpr ∪ [[φ2]]NExpr

we can write a := s | s+. Note that we include the non-transitive sibling axes
→ and ← in the language. Also, we use angled brackets to distinguish path
expressions from node expressions that test for the existence of a path. We use
the following abbreviations:

true for the node expression 〈.〉 ⊥ for the path expression . [false]
false for the node expression ¬true φ ∧ ψ for the node expression ¬(¬φ ∨ ¬ψ)

The semantics of Core XPath is defined in Table 1 by the functions [[·]]PExpr

and [[·]]NExpr which take as input an XML tree and a path expression or node
expression, and produce a binary relation over the set of nodes or a set of nodes,
respectively. The XML tree is kept implicit in our notation.

For arbitrary a, we will denote by Core XPath(a) the fragment of Core XPath
in which the only allowed axes are a and “.”. We will be mostly interested in
Core XPath(↓+) and Core XPath(↓), as well as the full Core XPath language.

A Core XPath node equivalence is an expression of the form φ ≡ ψ, where
φ, ψ ∈ NodeEx, and a Core XPath path equivalence is an expression of the form
A ≡ B, where A,B ∈ PathEx. An equivalence is a Core XPath(a) equivalence if
expressions on both sides belong to Core XPath(a). If in any XML tree it holds
that [[φ]]NExpr = [[ψ]]NExpr, respectively [[A]]PExpr = [[B]]PExpr, then we say that the
equivalence is valid. We will use A ⊆ B as shorthand for A∪B ≡ B, and φ ≤ ψ
as shorthand for φ ∨ ψ ≡ ψ.

2 Single Axis Fragments of Core XPath

2.1 Axioms

Our basic axioms for Core XPath are presented in Table 2. We discuss them in
some detail.

Idempotent Semirings Axioms The name comes from algebra. Idempotency
is the property expressed by the axiom ISAx3. The natural numbers with addi-
tion and multiplication form a semiring, but not an idempotent one. Distributive
lattices are natural examples of idempotent semirings if ∩ is denoted as / and

Table 2. Single Axis Axioms

Path Axiom Schemes for Idempotent Semirings

ISAx1 (A ∪ B) ∪ C ≡ A ∪ (B ∪ C)
ISAx2 A ∪ B ≡ B ∪ A
ISAx3 A ∪ A ≡ A
ISAx4 A/(B/C) ≡ (A/B)/C

ISAx5{ ./A ≡ A
A/. ≡ A

ISAx6{ A/(B ∪ C) ≡ A/B ∪ A/C
(A ∪ B)/C ≡ A/C ∪ B/C

ISAx7 ⊥ ⊆ A

Path Axiom Schemes for Predicates

PrAx1 A [¬ 〈B〉] /B ≡ ⊥
PrAx2 . [〈.〉] ≡ .
PrAx3 A [φ ∨ ψ] ≡ A [φ] ∪ A [ψ]
PrAx4 (A/B) [φ] ≡ A/B [φ]

Node Axiom Schemes

NdAx1 φ ≡ ¬(¬φ ∨ ψ) ∨ ¬(¬φ ∨ ¬ψ)
NdAx2 〈. [φ]〉 ≡ φ
NdAx3 〈A ∪ B〉 ≡ 〈A〉 ∨ 〈B〉
NdAx4 〈A/B〉 ≡ 〈A [〈B〉]〉

Axioms for Transitive Axes

TransAx1
˙
s+ [φ]

¸
≡

˙
s+

ˆ
φ ∧ ¬

˙
s+ [φ]

¸˜¸
TransAx2 s+/s+ ⊆ s+

> as “.”. Tarski’s relation algebras [18, 19] and Kleene algebras [12, 13] inter-
pret / and ∪ in the same way as we do (as composition and union of relations,
respectively), hence both have idempotent semirings reducts.

Predicate Axioms In the one-sorted signature of Tarski’s relation algebras
[18, 19], which include intersection and complementation operators for binary
relations, predicates can be treated as defined operations. This fact was used
in [5] for the axiomatization of Core XPath 2.0. In XPath 1.0, there are less
operations on relations available and predicates cannot be defined away.

Node Axioms NdAx1 is known in the algebraic community as the Hunting-
ton equation [11, 10, 14] and together with Der1 and Der2 from Table 3 force
that the node expression connectives ¬ and ∨ form a Boolean algebra. The ax-
ioms NdAx2, NdAx3 and NdAx4 are counterparts of PrAx2, PrAx3 and PrAx4,
respectively. This slight redundancy is the price one pays for working in a two-
sorted signature.

Axioms for Transitive Axes TransAx1 is known by logicians as The Löb
Axiom. It is valid on transitive structures which are well-founded, i.e., contain
no infinite ascending s+-chains and no s+-cycles. Axiom TransAx2 forces tran-
sitivity for path expressions; the corresponding axiom for node expressions is
already derivable from TransAx1. See [2, 20] for more information.

An Aside on Labelling Recall that in “real” XML trees, unlike the ones that
we are using, each node satisfies exactly one label. In order to obtain complete-
ness for this more restricted semantics, it would suffice to add a further axiom
scheme:

v ∧ v′ ≡ ⊥ for v, v′ ∈ lab distinct

In what follows, however, we will not bother to add the above to our list of
axioms. Thus, one may think of labels in the present setting as modelling both
XML tag names and attribute-value pairs.

2.2 Rules and Derivations

Definition 1. For P,Q both path expressions or both node expressions, we say
that P ≡ Q is derivable from a given set of axioms and axioms schemes if it can
be obtained from them using the standard rules of equational logic:

– P ≡ P
– If P ≡ Q then Q ≡ P
– If P ≡ Q and Q ≡ R, then P ≡ R
– If P ≡ Q and R′ is obtained from R by replacing some occurrences of P by
Q, then R ≡ R′.

We will say that an expression Γ is consistent relative to a given set of axioms
if Γ ≡ ⊥ is not derivable. An expression Γ is provably equivalent to ∆ relative
to a given set of axioms if Γ ≡ ∆ is derivable from these axioms.

Lemma 2. All equivalences in Table 3 can be derived from those in Table 2.

Proof. See Appendix. ut

In the remainder of this section, derivability, consistency and provable equiv-
alence will be considered relative to axioms in Table 2, unless stated otherwise.
Also, when these notions are mentioned in the context of Core XPath(a) for any
a, axioms involving axes other than a and “.” are not allowed in the derivations.

2.3 Completeness for Core XPath(↓+)

We prove the following completeness results:

Theorem 3 (Node Completeness for Core XPath(↓+)). A Core XPath(↓+)
node equivalence is valid iff it is derivable from the axioms in Table 2.

Theorem 4 (Path Completeness for Core XPath(↓+)). A Core XPath(↓+)
path equivalence is valid iff it is derivable from the axioms in Table 2.

Table 3. Some Examples of Derivable Equivalences

Der1 φ ∨ ψ ≡ ψ ∨ φ
Der2 φ ∨ (ψ ∨ χ) ≡ (φ ∨ ψ) ∨ χ
Der3 A [φ] ≡ A/. [φ]
Der4 A [true] ≡ A
Der5 A [false] ≡ ⊥
Der6 (A ∪ B) [φ] ≡ A [φ] ∪ B [φ]
Der7 φ ≤ true
Der8 φ ∨ ¬φ ≡ true
Der9 A ≡ A [φ] ∪ A [¬φ]
Der10 A [φ] /. [¬φ] ≡ ⊥

Der11{ A/⊥ ≡ ⊥
⊥/A ≡ ⊥

Der12 A [φ] [¬φ] ≡ ⊥
Der13 A [φ ∧ ψ] [¬φ] ≡ ⊥
Der14 A [φ] [ψ] [¬φ ∨ ¬ψ] ≡ ⊥
Der15 A [φ] [ψ] ≡ A [φ ∧ ψ]
Der16 A [φ ∧ ψ] ≡ A [φ] /. [ψ]
Der17 . [〈A〉] /A ≡ A

Throughout this section, we keep the number of labels fixed as m, that is,
we assume all expressions use only the labels among v1, . . . , vm. Also, we will
represent XML trees as tuples T = (D,R↓+ , L), where R↓+ is the descendant
axis. This convention allows to phrase some lemmas more conveniently. Note
that, since Core XPath(↓+) does not provide means to refer to the sibling order,
the latter may be chosen arbitrarily.

We begin with a definition of a subclass of the Core XPath(↓+) node expres-
sion, which we call simple node expressions:

siNode := true | v |
〈
↓+ [siNode]

〉
| ¬siNode | siNode ∨ siNode

where v ∈ lab. Readers familiar with modal logic will realize that our
〈
↓+ [v]

〉
is just the modal formula ♦v, where ♦ is interpreted by R↓+ . For more on the
connection with modal logic, see Section 4.

Lemma 5. Every Core XPath(↓+) node expression is provably equivalent to a
simple node expression.

Proof. See Appendix. ut

Recall that by “provably equivalent” we mean derivability from the axioms
in Table 2.

We define the degree of a simple node expression as the maximal number
of nested occurrences of

〈
↓+ [·]

〉
; i.e., the degree of a label is 0, the degree of a

Boolean expression is the maximum of degrees of its Boolean components and
the degree of

〈
↓+ [φ]

〉
is the degree of φ plus one. The set of all simple node

expressions of degree at most n is denoted by degn.
For any finite set s ⊆ {1, . . . , k}, define k \ s to be {1, . . . , k} − s. Let

NFN0 =
{∧
i∈s

vi ∧
∧

i∈m\s

¬vi
∣∣ s ⊆ {1, . . . ,m}}.

Assume NFNi are defined for all i smaller than n ≥ 1. Let f(n) be the
cardinality of

⋃
i<n NFNi. Fix an enumeration of this set α1, . . . αf(n) and define

the auxiliary set NFN′n of all elements of the form

β ∧
∧
i∈s

〈
↓+ [αi]

〉
∧

∧
i∈f(n)\s

¬
〈
↓+ [αi]

〉
for arbitrary β ∈ NFN0 and s ⊆ {1, . . . , f(n)}. For any φ of the above form

and for any αi ∈
⋃
i<n NFNi, we say that αi is positive in φ if i ∈ s, and otherwise

αi is negative in φ.
We define NFNn as the set of consistent node expressions in NFN′n (relative

to axioms in Table 2). Lemma 7 below shows that elements of NFNn can be
thought of as normal forms for node expressions of degree n. For φ, φ′ ∈ NFNn,
we write φ �↓+ φ′ if φ ∧

〈
↓+ [φ′]

〉
is consistent.

Lemma 6. If φ, φ′ ∈ NFNn and φ �↓+ φ′ then every χ ∈
⋃
i<n NFNi positive in

φ′ is also positive in φ.

Proof. Assume the contrary, i.e., some χ is positive in φ′ but negative in φ. No
formula of the form

γ ∧ ¬
〈
↓+ [χ]

〉
∧
〈
↓+
[〈
↓+ [χ]

〉
∧ γ′

]〉
is consistent with axioms in Table 2 (recall they include TransAx2). Details of the
derivation are left to the reader. It follows that φ∧

〈
↓+ [φ′]

〉
must be inconsistent,

which contradicts φ �↓+ φ′. ut

Incidentally, this argument relies on the transitivity of the ↓+ axis.
If for φ, φ′ ∈ NFNn, we have φ �↓+ φ′ and some χ ∈

⋃
i<n NFNi is positive in

φ but negative in φ′, then we write φ ≺↓+ ψ. It follows from the definition that
≺↓+ is well-founded: there is no infinite descending chain of NFNn expressions.

Lemma 7.
– Every simple node expression in degn is provably equivalent to a disjunction

of (zero or more) elements of NFNn.
– For every pair of distinct elements φ, ψ ∈ NFNn, φ ∧ ψ is inconsistent.
– Every element of NFNn is satisfiable.

Proof. (sketch) We only sketch a proof of the third item. Take any φ ∈ NFNn.
We construct an XML tree satisfying φ at the root as follows. The domain
D of our XML tree consists of all sequences of elements of NFNn of the form
(β1, . . . , βk), with β1 = φ and for any j < k, βj ≺↓+ βj+1. Note that there are
only finitely many such sequences. For x, y ∈ D, we say xR↓+y if the sequence
x is an initial segment of the sequence y (recall the convention about trees in
the present proof). Finally, the labelling function L labels the node (β1, . . . , βk)
with v if v is positive in βk. It can be shown by induction that the root of the
XML tree obtained this way, i.e., (φ), indeed satisfies φ. We call this tree the
canonical tree of φ. ut

Theorem 3 now follows:

Proof (of Theorem 3). We restrict ourselves to the difficult direction. Suppose
that φ ≡ ψ is valid, where φ, ψ are arbitrary Core XPath(↓+) node expressions.
By Lemma 5 and the first item of Lemma 7, for large enough n, φ is provably
equivalent to some disjunction φ′ of NFNn expressions, and ψ is equivalent to
some disjunction ψ′ of NFNn expressions. It follows by the remaining items of
Lemma 7 that φ′ and ψ′ must be identical (up to the ordering of the disjuncts):
if one contains a disjunct which does not appear in the other, this disjunct is
satisfiable and wherever it is satisfied, no other disjunct may hold, a contradic-
tion. Hence, φ′ and ψ′ are provably equivalent, and therefore so are φ and ψ. ut

Next, we will proceed to prove Theorem 4

Definition 8. NFPn is the set of path expressions of the form

S = . [β1] /↓+ [β2] / . . . /↓+ [β`] ,

where ` ≥ 1, each βi ∈ NFNn, and βi �↓+ βj for i < j.

Note that we use the weak order �↓+ here, not the strict order ≺↓+ used in
the construction of the models in the node completeness proof.

Lemma 9. For every path expression A, there exists suitably large n s.t. for
every n′ ≥ n, A is equivalent to a disjunction of elements of NFPn′ .

Proof. Repeated use of Lemma 7, Der3, Der16, Der17 and TransAx2. ut

Definition 10. Given two XML trees T1 = (D,R↓+ , L) and T2 = (D′, R′↓+ , L
′)

with roots r and r′, respectively, and D,D′ disjoint, we define their transitive
root union T1 . T2 as the XML tree (D ∪ D′, R↓+ ∪ R′↓+ ∪ ({r} × D′), L ∪ L′).
That is, the root of the second becomes a child of the root of the first.

For any S ∈ NFPn of the form

S = . [β1] /↓+ [β2] / . . . /↓+ [β`] ,

we define the canonical tree of S as the structure

T = T1 . (T2 . (. . . . T`) . . .),

where each Ti is the canonical tree of βi as defined in the proof of Theorem 3.

Lemma 11. Let S ∈ NFPn and its canonical tree T be as in Definition 10 above
and for each i ≤ `, let ri be the root of the tree Ti. Then (r1, r`) ∈ [[S]]PExpr.
Moreover, for any S′ = .[β′1]/↓+[β′2]/ . . . /↓+[β′`′] ∈ NFPn, (r1, r`) ∈ [[S′]]PExpr iff
(β′1, . . . , β

′
`′) is a subsequence of (β1, . . . , β

′
`′) s.t. β1 = β′1 and β′`′ = β`.

Proof. It is enough to prove the “moreover” part. The “if” direction is by
direct verification (recall that if βi �↓+ βj , then every formula negative in
βi is also negative in βj). For the converse, recall that by Lemma 7, no two
distinct elements of NFNn can be true at the same point. If β′1 is distinct
from β1, there is nothing to prove. Let i ≥ 2 be the smallest number s.t.
(β′1 = β1, β

′
2, . . . , β

′
i) is not a subsequence of (β1, β2, . . . , βl). That is, (β′1 =

β1, β
′
2, . . . , β

′
i−1) = (β1, βg(2), . . . , βg(i−1)) for some strictly increasing g, but

β′i = βr for no r s.t. g(i− 1) < r ≤ k. Note that we can always assume that g(i)
is chosen to be minimal, that is, e.g., that for no i properly contained between 1
and g(2), βi was equal to β′2, for no i properly contained between g(2) and g(3),
βi was equal to β′2 etc.

So it means that β′1 = β1, β′2 = βg(2), . . . , β′i−1 = βg(i−1) are true at,
respectively, r1, rg(2), . . . , rg(i−1) but for no j > g(i− 1), β′i does hold at ri. But
this means that (r1, rk) 6∈ [[S′]]PExpr. ut

Lemma 12. For any

S′ = . [β′1] /↓+ [β′2] / . . . /↓+ [β′`′]

S1 = .
[
β1

1

]
/↓+

[
β1

2

]
/ . . . /↓+

[
β1
`(1)

]
∈ NFPn,

. . .

Sk = .
[
βk1
]
/↓+

[
βk2
]
/ . . . /↓+

[
βk`(k)

]
,

S′ is contained in S1 ∪ · · · ∪ Sk iff for some i ≤ k, (βi1, . . . , β
i
`(i)) is a subse-

quence of (β′1, . . . , β
′
`′) s.t. β′1 = βi1 and β′`′ = βi`(i).

Proof. The “if” direction follows by a direct calculation. The “only if” is a
consequence of Lemma 11, the validity of TransAx2 and soundness of the axioms:
if S′ 6= Si for every i, then (r1, r`′) in the canonical tree belongs to [[S′]]PExpr ,
but not to [[S1]]PExpr ∪ · · · ∪ [[Sk]]PExpr. ut

Finally, we prove Theorem 4:

Proof (of Theorem 4). Follows from Lemma 9 and Lemma 12. See the proof of
Theorem 3 above for an analogous reasoning. ut

2.4 Completeness for Core XPath(↓)

Similar results can be proved for Core XPath(↓):

Theorem 13 (Node Completeness for Core XPath(↓)). A Core XPath(↓)
node equivalence is valid iff it is derivable from the axioms in Table 2.

Theorem 14 (Path Completeness for Core XPath(↓)). A Core XPath(↓) path
equivalence is valid iff it is derivable from the axioms in Table 2.

Recall that derivations for Core XPath(↓) are not allowed to contain expres-
sions involving other axes than ↓ and “.”. Hence, this time the axioms for tran-
sitive axes are not included. As these were the only axioms in Table 2 involving
specific axes, we obtain

Corollary 15. A valid Core XPath(↓) equivalence remains valid after ↓ is uni-
formly replaced by an arbitrary path expression A.

In other words, there are no Core XPath(↓)-specific validities.

Proof (of Theorems 13 and 14, sketch). We only highlight the most important
differences with the proofs of Theorems 3 and 4. We define an ordering ≺↓
not just on NFNn, but on the whole set

⋃
i≤n NFNi, relating normal form node

expressions of degree i to ones of degree i−1. More precisely, we say that φ ≺↓ φ′
if for some i ≤ n, φ ∈ NFNi, φ′ ∈ NFNi−1 and φ′ is positive in φ. Canonical
trees based on this order are defined similarly as in the proof of Lemma 7,
this time using the child relation rather than the descendant relation. That is,
we make (β1, . . . , βk) a parent of (β1, . . . , βk, βk+1) in the canonical tree. In the
normal form for path expressions, the degree of node expressions in the sequence
decreases. The definition of canonical trees for normal form path expressions does
not require essential changes. The proof of the analogue of Lemma 11, finally,
even becomes a bit simpler. ut

2.5 Comments and Further Work

We conjecture that complete axiomatizations for the six remaining single axis
fragments can be obtained by adding instances of the following axiom schemes,
where s ranges over {→,←, ↑}:

– For intransitive axes: s [¬φ] ≡ . [¬ 〈s [φ]〉] /s.
– For transitive ones: . [〈s+ [φ]〉] /s+ ≡ s+ [φ] ∪ s+ [φ] /s+ ∪ s+ [〈s+ [φ]〉].

We are presently working on proofs of these results, and on extensions to
some restricted combinations of axes.

We note that some of the equivalences proved above would cease to be XPath
validities if path or node expressions are allowed to contain subexpressions which
do not belong to Core XPath. Take the following two queries:

– A = following-sibling::*[child::v][position()=1] and
– B = following-sibling::*[child::v and position()=1].

A ≡ B is not a valid equivalence, even though it can be thought of as an
instance of Der15. It is because position()=1 is not a Core XPath expression,
although some expressions containing it can be simulated.

Table 4. Additional Axioms for Core XPath

TreeAx1{ s+/s ∪ s ≡ s+

s/s+ ∪ s ≡ s+

TreeAx2 s [φ] /s−1 ≡ . [〈s [φ]〉] for s ∈ {←,→, ↓}
TreeAx3 ↑ [φ] /↓ ≡ (←+ ∪→+ ∪ .) [〈↑ [φ]〉]

TreeAx4{ ←+ ≡ ←+ [〈↑〉]
→+ ≡ →+ [〈↑〉]

Table 5. Equivalences of Blackburn, Meyer-Viol, de Rijke [3]

LOFT0 (boolean axioms)

LOFT1{ 〈s [false]〉 ≡ false
〈s [φ ∨ ψ]〉 ≡ 〈s [φ]〉 ∨ 〈s [ψ]〉

LOFT2 φ ≤ ¬
˙
s

ˆ
¬

˙
s−1 [φ]

¸˜¸
LOFT3 〈s [¬φ]〉 ∧ 〈s [φ]〉 ≡ false for s ∈ {↑,←,→}
LOFT4 〈s [φ]〉 ∨

˙
s

ˆ˙
s+ [φ]

¸˜¸
≡

˙
s+ [φ]

¸
LOFT5 ¬ 〈s [φ]〉 ∧

˙
s+ [φ]

¸
≤

˙
s+ [¬φ ∧ 〈s [φ]〉]

¸
LOFT6 〈s [true]〉 ≤

˙
s+ [¬ 〈s [true]〉]

¸
LOFT7 (TransAx1 for ↓+ and →+)

LOFT8 ¬ 〈↓ [φ]〉 ≥
˙
↓

ˆ
¬ 〈←〉 ∧ ¬φ ∧ ¬

˙
→+ [φ]

¸˜¸
LOFT9 〈↓ [φ]〉 ≤ 〈↓ [¬ 〈←〉]〉 ∧ 〈↓ [¬ 〈→〉]〉
LOFT10 ¬ 〈↑〉 ≤ ¬ 〈←〉 ∧ ¬ 〈→〉

3 Full Core XPath

We will now extend the axiomatization to full Core XPath. Table 4 presents a new
group of axioms governing interactions between axes; the symbol s−1 denotes the
converse of s. As in the previous cases, we focus first on completeness for node
expressions. Using the same notion of derivability as before (cf. Section 2), we
have:

Theorem 16 (Node Completeness for Full Core XPath). A Core XPath
node equivalence is valid iff it is derivable from the axioms given in Tables 2
and 4.

Proof (sketch). As before, we first reduce all node expressions to simple ones.
Next, we observe that these simple Core XPath node expressions can be seen as
notational variants of formulas of the logic of finite trees (LOFT) [3]. Finally, we
show that equivalences axiomatizing LOFT are derivable when written as simple
node expressions. They are given in Table 5; the reader is asked to recall that
both φ ≤ ψ and ψ ≥ φ abbreviate φ ∨ ψ ≡ ψ. See Appendix for the derivations.
Completeness follows now from the completeness result in [3]. ut

In fact, the proof given in [3] could be rewritten in the present setting, replac-
ing everywhere modal formulas with simple node expressions. There is, however,
little point of doing so as the proof is rather long and except for this syntactic
transformation, no changes would be required. See also the comment at the end
of Section 4.

The node completeness result can be lifted to path expressions by introducing
an extra inference rule with syntactic side conditions, which we call the Sep rule,
and which is closely related to the separability rule in [16].

(Sep) If 〈A [v]〉 ≡ 〈B [v]〉 and v does not occur in A and B, then A ≡ B.

Corollary 17 (Non-orthodox Path Completeness for Full Core XPath).
A Core XPath path equivalence is valid iff it is derivable from the axioms in
Tables 2 and 4 using the standard rules of equational logic plus the Sep rule.

Proof. Suppose A ≡ B. Pick any v not occurring in A and B. Then the node
expressions 〈A [v]〉 and 〈B [v]〉 are also equivalent. Hence, by Theorem 16, their
equivalence is derivable (in the standard sense) from the axioms in Tables 2 and
4. A single application of the Sep rule now yields a derivation of A ≡ B. ut

Such an axiomatization, however, is not very satisfactory as an axiomatiza-
tion for path expressions. A purely equational one would be preferable both from
the mathematical point of view (see, e.g., [17] and [21] for a justification) and
from the point of view of potential applications for query optimization.

We should also point out that the rule Sep as formulated here is not sound
when used in combination with the axiom scheme v ∧ v′ ≡ ⊥ discussed in Sec-
tion 2.1. The problem can be solved, but every available solution requires some
additional complications, e.g., in the formulation of the Sep rule. This is one
more reason why a purely equational axiomatization would be of interest.

4 Discussion

We have given complete axiomatizations for Core XPath(↓+), Core XPath(↓) and
full Core XPath. We hope that these axiomatization will be of help in obtaining
sets of effective rewrite rules for query optimization in these fragments. The
query equivalence problem is known to be PSpace-complete for Core XPath(↓+)
and Core XPath(↓), and ExpTime-complete for full Core XPath. Even the latter
is considerably better than the non-elementary complexity of query equivalence
for Core XPath 2.0 [4], which was previously axiomatized in [5].

As we already noted, our results and techniques are closely connected to
ones in modal logic. In particular, the simple node expressions of Core XPath(↓)
and Core XPath(↓+) correspond to formulas of the modal logics K and GL [2],
respectively, and the simple node expressions of Core XPath correspond to for-
mulas of the modal logic LOFT [3]. Consequently, Theorem 3 and 13 can also
be derived from known completeness results for these logics. The main reason
why we have given an explicit proof of Theorem 3 is that it provides the basis
for the proof of the more interesting Theorem 4. The normal forms we use are
inspired by [6, 15]. Theorem 14 is closely related to a completeness result for
dynamic relation algebras in [9]. As for the full Core XPath language, we proved
completeness by a direct reduction to a known completeness result for LOFT [3].
The proof in [3] was based on a constructive variant of the filtration technique,

in general more popular in modal logic than normal forms. We believe the first
step to obtain an equational axiomatization for path equivalences of full Core
XPath would be to find a normal form completeness proof for node equivalences,
analogous to those for single axis fragments given in this paper.

References

1. M. Benedikt, W. Fan, and G. Kuper. Structural properties of XPath fragments.
Theoretical Computer Science, 336(1):3–31, 2005.

2. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University
Press, 2001.

3. P. Blackburn, W. Meyer-Viol, and M. de Rijke. A proof system for finite trees. In
H. Kleine Büning, editor, Computer Science Logic, volume 1092 of LNCS, pages
86–105. Springer, 1996.

4. B. ten Cate and C. Lutz. The complexity of query containment in expressive
fragments of XPath 2.0. In Proceedings of PODS’07, pages 73–82, New York, NY,
USA, 2007. ACM.

5. B. ten Cate and M. Marx. Axiomatizing the logical core of XPath 2.0. In Database
Theory - ICDT 2007, Proceedings, volume 4353 of LNCS, pages 134–148. Springer,
2007.

6. K. Fine. Normal forms in modal logic. Notre Dame Journal of Formal Logic,
16(2):229–234, 1975.

7. G. Gottlob and C. Koch. Monadic queries over tree-structured data. In Proceedings
of LICS’02, pages 189–202, Los Alamitos, California, 2002. IEEE Computer Society
Press.

8. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath
queries. ACM Transactions on Database Systems, 30(2):444–491, 2005.

9. M. Hollenberg. An equational axiomatization of dynamic negation and relational
composition. Journal of Logic, Language and Information, 6(4):381–401, 1997.

10. E. V. Huntington. Boolean algebra. A correction. Transactions of AMS, 35(2):557–
558, 1933.

11. E. V. Huntington. New sets of independent postulates for the algebra of logic, with
special reference to Whitehead and Russell’s “Principia Mathematica”. Transac-
tions of AMS, 35(1):274–304, 1933.

12. S. Kleene. Representation of events in nerve nets and finite automata. In C. Shan-
non and J. McCarthy, editors, Automata Studies, pages 3–42. Princeton University
Press, Princeton, N.J., 1956.

13. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation, 110(2):366–390, 1994.

14. W. McCune. Solution of the Robbins problem. Journal of Automated Reasoning,
19(3):263–276, 1997.

15. L. S. Moss. Finite models constructed from canonical formulas. Journal of Philo-
sophical Logic, 36(6):605–640, 2007.

16. V. Pratt. Dynamic algebras: Examples, constructions, applications. Studia Logica,
50(3–4):571–605, 1991.

17. M. Reynolds. An axiomatization for Until and Since over the reals without the
IRR rule. Studia Logica, 51(2):165–193, 1992.

18. A. Tarski. On the calculus of relations. Journal of Symbolic Logic, 6(3):73–89,
1941.

19. A. Tarski and S. Givant. A Formalization of Set Theory without Variables, vol-
ume 41. AMS Colloquium Publications, Providence, Rhode Island, 1987.

20. J. van Benthem. Modal frame correspondence and fixed-points. Studia Logica,
83(1):133–155, 2006.

21. Y. Venema. Completeness via completeness: Since and Until. In M. de Rijke,
editor, Diamonds and Defaults, Synthese Library vol. 229, pages 279–286. Kluwer
Academic Publishers, 1993.

Appendix

4.1 Proof of Lemma 2

– Der1 Use NdAx2, NdAx3, ISAx2.
– Der2 Use NdAx2, NdAx3, ISAx1. As was observed in the main paper, from

this moment on we can use all the boolean equivalences for ¬ and ∨.
– Der3

A [φ] ≡ (A/.) [φ] by ISAx5
≡ A/. [φ] by PrAx4

– Der4

A [true] ≡ A/. [true] by Der3
≡ A/. by PrAx2
≡ A by ISAx5

– Der5

A [false] ≡ A [false] /. by ISAx5
≡ ⊥ by PrAx1

– Der6

(A ∪B) [φ] ≡ ((A ∪B)/.) [φ] by ISAx5
≡ (A ∪B)/. [φ] by PrAx4
≡ A/. [φ] ∪B/. [φ] by ISAx6
≡ (A/.) [φ] ∪ (B/.) [φ] by PrAx4
≡ A [φ] ∪B [φ] by ISAx5

One of consequences we will use particularly often is monotonicity :

A ⊆ B implies

{
A [φ] ⊆ B [ψ] for any φ, ψ ∈ NodeEx by Der6
〈A〉 ≤ 〈B〉 by NdAx3

φ ≤ ψ implies A [φ] ⊆ A [ψ] for any A ∈ PathEx by PrAx3

– Der7. . [¬ 〈.〉] ⊆ . [φ] is an instance of ISAx7. Monotonicity yields 〈. [¬ 〈.〉]〉 ≤
〈. [φ]〉. An application of NdAx2 on both sides yields the dual form of Der7.

– Der8. Follows from Der7 by boolean laws.

– Der9

A ≡ A [true] by Der4
≡ A [φ ∨ ¬φ] by Der8
≡ A [φ] ∪A [¬φ] by PrAx3

– Der10

A [φ] /. [¬φ] ≡ A [¬¬φ] /. [¬φ] boolean
≡ A [¬ 〈. [¬φ]〉] /. [¬φ] by NdAx2
≡ ⊥ by PrAx1

– Der11

A/⊥ ≡ A [〈.〉] /. [¬ 〈.〉] by Der4
≡ ⊥ by Der10

⊥/A ≡ A [false] /A by Der5
⊆ A [¬ 〈A〉] /A by Der7 and monotonicity
≡ ⊥ by PrAx2

– Der12

A [φ] [¬φ] ≡ A [φ] /. [¬φ] by Der3
≡ ⊥ by Der10

– Der13

A [φ ∧ ψ] [¬φ] ⊆ A [φ] [¬φ] monotonicity
≡ ⊥ by Der12

– Der14

A [φ] [ψ] [¬φ ∨ ¬ψ] ≡ A [φ] [ψ] [¬φ] ∪A [φ] [ψ] [¬ψ] by PrAx3
⊆ A [φ] [true] [¬φ] ∪A [true] [ψ] [¬ψ] by Der7 and monotonicity
≡ A [φ] [¬φ] ∪A [ψ] [¬ψ] by Der4
≡ ⊥ by Der12

– Der15
First, let us derive

A [φ ∧ ψ] ≡ A [φ ∧ ψ] [φ] ∪A [φ ∧ ψ] [¬φ] by Der9
≡ A [φ ∧ ψ] [φ] ∪ ⊥ by Der13
≡ A [φ ∧ ψ] [φ] by ISAx7

A [φ ∧ ψ] ≡ A [φ ∧ ψ] [ψ] is derived analogously. Thus, using monotonicity
we get A [φ ∧ ψ] ⊆ A [φ] [ψ]. Conversely,

A [φ] [ψ] ≡ A [φ] [ψ] [φ ∧ ψ] ∪A [φ] [ψ] [¬φ ∨ ¬ψ] by Der9
≡ A [φ] [ψ] [φ ∧ ψ] ∪ ⊥ by Der14
≡ A [φ] [ψ] [φ ∧ ψ] by ISAx7

Using Der7, monotonicity and Der4 we get that A [φ] [ψ] ⊆ A [φ ∧ ψ] and
Der15 is proved.

– Der16

A [φ ∧ ψ] ≡ A [φ] [ψ] by Der15
≡ A [φ] /. [ψ] by Der3

– Der17

A ≡ ./A by ISAx5
≡ (. [〈A〉] ∪ . [¬ 〈A〉])/A by Der9
≡ . [〈A〉] /A ∪ . [¬ 〈A〉] /A by ISAx6
≡ . [〈A〉] /A ∪ ⊥ by PrAx1
≡ . [〈A〉] /A by ISAx7

4.2 Proof of Lemma 5

We provide a translation (·)s : NodeEx 7→ siNode which is constant for elements
of siNode. This mapping uses an auxiliary mapping (·)s : PathEx 7→ (siNode 7→
siNode) assigning to every path expression a unary function defined on simple
node expressions. As domains of both mappings are disjoint, we use the same
symbol with no risk of confusion. Their definitions are given in Table 6. It is
easy to show from the axioms that this translation always yields a provably
equivalent node expression. Moreover, the axioms proving equivalence are only
those occurring in Table 2 and thus not dependent on a chosen a.

Hence, the Lemma can be reformulated as follows:

For every A ∈ PathEx and for every φ ∈ NodeEx, 〈A〉 ≡ As(true) and
φ ≡ φs are provable.

Table 6. Translation of Core XPath(a) node expressions into simple node expressions

vs := v .s(φ) := φ
(¬φ)s := ¬φs as(φ) := 〈a [φ]〉
(φ ∨ ψ)s := φs ∨ ψs (A ∪ B)s(φ) := As(φ) ∨ Bs(φ)
〈A〉s := As(〈.〉) (A [ψ])s(φ) := As(ψs ∧ φ)

(A/B)s(φ) := As(Bs(φ))

By Der4, this in turn is implied by the following

For every A ∈ PathEx and for every φ ∈ NodeEx, 〈A [φ]〉 ≡ As(φ) and
φ ≡ φs are provable.

Inductive steps for node expressions are obvious, hence we focus only on
inductive steps for path expressions.

– A = .: by NdAx2.
– A = a ∈ siAxis: by definition of (·)s.
– A = B ∪ C:

〈(B ∪ C) [φ]〉 ≡ 〈B [φ] ∪ C [φ]〉 by Der6
≡ 〈B [φ]〉 ∨ 〈C [φ]〉 by NdAx3
≡ Bs(φ) ∨ Cs(φ) by IH
≡ (B ∪ C)s(φ) by definition of (·)s

– A = B/C:

〈(B/C) [φ]〉 ≡ 〈B/C [φ]〉 by PrAx4
≡ 〈B [〈C [φ]〉]〉 by NdAx4
≡ Bs(Cs(φ)) by IH
≡ (B/C)s(φ) by definition of (·)s

– A = B [ψ]:

〈B [ψ] [φ]〉 ≡ 〈B [ψs] [φ]〉 by IH on NodeEx

≡ 〈B [ψs ∧ φ]〉 by Der15
≡ Bs(ψs ∧ φ) by IH on PathEx

≡ (B [ψ])s(φ) by definition of (·)s

Proof of Theorem 16

We begin by deriving a number of auxiliary references shown in Table 7. We use
an additional abbreviation: s∗ = . ∪ s+.

Table 7. Additional auxiliary equivalences

Der18 . [〈A〉] /. [φ] /A ≡ . [φ] /A
Der19 〈A/B〉 ≤ 〈A〉
Der20 φ ∧ ψ ≡ 〈. [φ] /. [ψ]〉
Der21 〈A [false]〉 ≡ false
Der22 〈A [φ ∨ ψ]〉 ≡ 〈A [φ]〉 ∨ 〈A [ψ]〉
Der23 〈A [φ ∧ ψ]〉 ∧ ¬ 〈A [ψ]〉 ≡ false
Der24 〈A [φ]〉 ∧ ¬ 〈A [ψ]〉 ≤ 〈A [φ ∧ ¬ψ]〉
Der25 . [〈s [φ]〉] ⊆ s [φ] /s−1

Der26 s/s−1 ≡ . [〈s〉] for s ∈ {←,→, ↓}
Der27 ↑/↓ ≡ (←+ ∪→+ ∪ .) [〈↑〉]
Der28 〈s〉 ≡

˙
s+

¸
Der29 〈s [φ]〉 ≡

˙
s+ [φ ∧ ¬ 〈s [φ]〉]

¸
Der30 〈s∗ [¬ 〈s [true]〉]〉 ≡ true

– Der18—from Der16, commutativity of boolean ∧ and Der17.
– Der19

〈A/B〉 ≡ 〈A [〈B〉]〉 by NdAx4
≤ 〈A [true]〉 monotonicity
≡ 〈A〉 by Der4

– Der20—from NdAx2 and Der16.
– Der21—from monotonicity and NdAx2.
– Der22—from NdAx3 and PrAx3.
– Der23

〈A [φ ∧ ψ]〉 ∧ ¬ 〈A [ψ]〉 ≤ 〈A [φ ∧ ψ]〉 ∧ ¬ 〈A [ψ ∧ ψ]〉 monotonicity
≡ false by dual of Der8

– Der24

〈A [φ]〉 ∧ ¬ 〈A [ψ]〉 ≡
≡ 〈A [(φ ∧ ¬ψ) ∨ (φ ∧ ψ)]〉 ∧ ¬ 〈A [ψ]〉 boolean

≡ (〈A [φ ∧ ¬ψ]〉 ∨ 〈A [φ ∧ ψ]〉) ∧ ¬ 〈A [ψ]〉 by Der22
≡ (〈A [φ ∧ ¬ψ]〉 ∧ ¬ 〈A [ψ]〉) ∨ (〈A [φ ∧ ψ]〉 ∧ ¬ 〈A [ψ]〉) boolean

≡ 〈A [φ ∧ ¬ψ]〉 ∧ ¬ 〈A [ψ]〉 by Der23
≤ 〈A [φ ∧ ¬ψ]〉 boolean

– Der25 For s ∈ {←,→, ↓} by TreeAx2 (⊆ can be even replaced by ≡ then).
For s = ↑ by TreeAx3.

– Der26 and Der27—from TreeAx2 and TreeAx3, respectively, using Der4.

– Der28 〈
s+
〉
≡
〈
s ∪ s/s+

〉
by TreeAx1

≡ 〈s〉 ∨
〈
s/s+

〉
by NdAx3

≡ 〈s〉 by Der19

– Der29

〈s [φ]〉 ≤
〈
s+ [φ]

〉
by LOFT4

≤
〈
s+
[
φ ∧ ¬

〈
s+ [φ]

〉]〉
by TransAx1

≤
〈
s+ [φ ∧ ¬ 〈s [φ]〉]

〉
by LOFT4.

The use of LOFT4 does not lead to a vicious circle, see its derivation below.
– Der30—follows from Der29 and boolean axioms. Recall that s∗ = . ∪ s+.

Now we can derive the LOFT axioms themselves.

– LOFT0. See the remark on Der2 above.
– LOFT1—already proved, as an instance of Der21 and Der22.
– LOFT2. By boolean reasoning, it is equivalent to〈

s
[
¬
〈
s−1 [φ]

〉]〉
∧ φ ≡ false.

This in turn follows from

〈
s
[
¬
〈
s−1 [φ]

〉]〉
∧ φ ≡

〈
.
[〈
.
[〈

s
[
¬
〈
s−1 [φ]

〉]〉]
/. [φ]

〉]〉
by Der20

≤
〈
.
[〈

s
[
¬
〈
s−1 [φ]

〉]
/s−1/. [φ]

〉]〉
by Der25

≡
〈
.
[〈

s
[
¬
〈
s−1 [φ]

〉]
/s−1 [φ]

〉]〉
by Der3

≡ false by PrAx1

– LOFT3

〈s [¬φ]〉 ∧ 〈s [φ]〉 ≡ 〈. [〈s [¬φ]〉] /. [〈s [φ]〉]〉 by Der20

≤
〈
.
[〈

s [¬φ] /s−1/s [φ] /s−1
〉]〉

by Der25

≡
〈
.
[〈

s [¬φ] /.
[〈

s−1
〉]
/. [φ] /s−1

〉]〉
by Der26

≡
〈
.
[〈

s [¬φ] /. [φ] /s−1
〉]〉

by Der17

≡
〈
.
[〈

s [false] /s−1
〉]〉

by Der16
≡ false by Der5

– LOFT4

〈
s+ [φ]

〉
≡
〈
(s ∪ s/s+) [φ]

〉
by TreeAx1

≡
〈
s [φ] ∪ (s/s+) [φ]

〉
by Der6

≡
〈
s [φ] ∪ s/s+ [φ]

〉
by PrAx4

≡ 〈s [φ]〉 ∨
〈
s/s+ [φ]

〉
by NdAx3

≡ 〈s [φ]〉 ∨
〈
s
[〈

s+ [φ]
〉]〉

by NdAx4

– LOFT5 (see [20]). By boolean reasoning, it boils down to proving that

t:=¬ 〈s [φ]〉 ∧
〈
s+ [φ]

〉
∧ ¬

〈
s+ [¬φ ∧ 〈s [φ]〉]

〉
≡ false.

This is proven by first observing that

t ≡ ¬(〈s [φ]〉 ∨ 〈s [¬φ ∧ 〈s [φ]〉]〉)∧
∧
〈
s/s+ [φ]

〉
∧ ¬

〈
s/s+ [¬φ ∧ 〈s [φ]〉]

〉
by LOFT4

≡ ¬〈s [φ ∨ (¬φ ∧ 〈s [φ]〉)]〉 ∧
〈
s/s+ [φ]

〉
∧

∧ ¬
〈
s/s+ [¬φ ∧ 〈s [φ]〉]

〉
by Der22

≡ ¬〈s [φ ∨ 〈s [φ]〉]〉 ∧
〈
s/s+ [φ]

〉
∧ ¬

〈
s/s+ [¬φ ∧ 〈s [φ]〉]

〉
boolean

≡ ¬〈s [φ ∨ 〈s [φ]〉]〉 ∧
〈
s
[〈

s+ [φ]
〉]〉
∧

∧ ¬
〈
s
[〈

s+ [¬φ ∧ 〈s [φ]〉]
〉]〉

by NdAx4

≤
〈
s
[
¬(φ ∨ 〈s [φ]〉) ∧

〈
s+ [φ]

〉
∧ ¬

〈
s+ [¬φ ∧ 〈s [φ]〉]

〉]〉
by Der24

≤
〈
s
[
¬ 〈s [φ]〉 ∧

〈
s+ [φ]

〉
∧ ¬

〈
s+ [¬φ ∧ 〈s [φ]〉]

〉]〉
monotonicity

= 〈s [t]〉 .

Thus, we get

t ≤ 〈s [t]〉 by the above

≤
〈
s+ [t ∧ ¬ 〈s [t]〉]

〉
Der29

≡ 〈s [false]〉 by the above
≡ false by Der5

– LOFT6—already proved, as an instance of Der29.
– LOFT7 does not need to be proved, being an instance of an axiom.
– LOFT8 By boolean reasoning, it is equivalent to

〈↓ [¬ 〈←〉 ∧ ¬ 〈→∗ [φ]〉]〉 ∧ 〈↓ [φ]〉 ≡ false.

〈↓ [¬ 〈←〉 ∧ ¬ 〈→∗ [φ]〉]〉 ∧ 〈↓ [φ]〉 ≡
≡ 〈. [〈↓ [¬ 〈←〉 ∧ ¬ 〈→∗ [φ]〉]〉] /. [〈↓ [φ]〉]〉 by Der20
≡ 〈↓ [¬ 〈←〉 ∧ ¬ 〈→∗ [φ]〉] /↑/↓ [φ] /↑〉 by Der26

≡
〈
↓ [¬ 〈←〉 ∧ ¬ 〈→∗ [φ]〉] /(←+ ∪→+ ∪ .) [〈↑〉] [φ] /↑

〉
by Der27

≡
〈
↓ [¬ 〈←〉 ∧ ¬ 〈→∗ [φ]〉] /(←+ ∪→+ ∪ .) [φ] /↑

〉
by Der17

≤
〈
(↓ [¬ 〈←〉] /←+/↑) ∪ (↓ [¬ 〈→∗ [φ]〉] /→∗ [φ] /↑

〉
by ISAx6

≡ false by PrAx1

– LOFT9

〈↓ [φ]〉 ≤ 〈↓ [true]〉 monotonicity
≡ 〈↓ [〈←∗ [¬ 〈← [true]〉]〉]〉 by Der30

≡ 〈↓ [¬ 〈←〉]〉 ∨
〈
↓
[〈
←+ [¬ 〈←〉]

〉]〉
by Der22

But now

〈
↓
[〈
←+ [¬ 〈←〉]

〉]〉
≡
〈
↓
[〈
←+ [↑] [¬ 〈←〉]

〉]〉
by TreeAx4

≤ 〈↓ [〈↑/↓ [¬ 〈←〉]〉]〉 by Der27
≡ 〈↓/↑/↓ [¬ 〈←〉]〉 by NdAx4
≡ 〈. [↓] /↓ [¬ 〈←〉]〉 by Der26
≡ 〈↓ [¬ 〈←〉]〉 by Der17.

Thus, we got 〈↓ [φ]〉 ≤ 〈↓ [¬ 〈←〉]〉.
The proof of 〈↓ [φ]〉 ≤ 〈↓ [¬ 〈→〉]〉 is analogous.

– LOFT10. First observe that by boolean reasoning, it is equivalent to

〈←〉 ∨ 〈→〉 ≤ 〈↑〉 .

〈←〉 ∨ 〈→〉 ≡
〈
←+

〉
∨
〈
→+

〉
by Der28

≡
〈
←+ ∪→+

〉
by NdAx3

≡
〈
←+ [〈↑〉] ∪→+ [〈↑〉]

〉
by TreeAx4

≡
〈
(←+ ∪→+) [〈↑〉]

〉
by Der6

≤ 〈↑/↓〉 by Der27
≤ 〈↑〉 by Der19

