
Query Processing and Optimisation in Integrated

Heterogeneous Grid Resources∗

Lucas Zamboulis, Nigel Martin, Alexandra Poulovassilis
School of Computer Science and Information Systems,

Birkbeck, University of London

Abstract

The performance of Grid computing technologies for distributed data
access and query processing has been investigated in a number of studies.
However, different Grid data sources may have schema conflicts which re-
quire fine-grained resolution through the use of data integration technolo-
gies that are not supported by the current generation of Grid data access
and querying middleware. This is particularly the case with distributed
querying and analysis of complex data sources as found in Life Sciences
applications. The query performance of architectures that combine Grid
data access and query processing capabilities with data integration tech-
nologies has not been investigated to date.

In this paper, we investigate architectural, optimisation and perfor-
mance issues arising from the coupling of Grid data access and distributed
querying together with data integration technologies. Specifically, we in-
vestigate these issues for the OGSA-DAI and OGSA-DQP open-source
Grid access and querying middleware combined with the AutoMed het-
erogeneous data transformation/integration system. We present an archi-
tectural framework we have developed for investigating the combination
of these technologies, and the results of a query performance study we
have undertaken. The significance of our results for further development
of query processing technology over heterogeneous Grid data sources is
discussed.

Our performance analysis had been carried out using a representative
integrated data resource developed as part of the ISPIDER (In Silico Pro-
teome Integrated Data Environment Resource) project. This project has
developed a platform of proteome-related resources using existing Grid
middleware, and leveraging standards from the application areas of pro-
teomics and bioinformatics.

1 Introduction

Grid computing technologies are becoming increasingly important, as they en-
able distributed computational and data resources to be accessed in a service-
based environment. This is particularly of value for applications requiring access
to complex combinations of computational and data resources, as is often the
case in the analysis of Life Sciences data.

∗Research funded by the ISPIDER project, BBSRC Grant No. BBSB17220.

1

To realise the potential of Grid computing, standardisation is important both
for the Grid middleware technologies and for the application areas in which dis-
tributed access to computational and data resources is required. For example,
OGSA-DAI [3] is an open-source, standard Grid data access middleware, with
an additional component OGSA-DQP [1] providing distributed query processing
capabilities over OGSA-DAI enabled data sources. In parallel, initiatives have
been taken in application areas such as the Life Sciences to provide standardised
data formats and nomenclatures. For example, the FuGE object model [22] sup-
ports the standardised modelling and exchange of data related to experiments
in functional genomics, while the Gene Ontology [39] defines a controlled vo-
cabulary of terms relating to genes and gene products.

While the combination of standardisation in Grid middleware and in the
application areas themselves goes some way towards easing the development of
applications requiring distributed querying and analysis of Grid data sources,
significant problems remain. Many data sources do not follow application area
standards, and even for those that do the plethora of different standards for
different sub-areas within a general application area means that a data source
designed in the context of one sub-area may be incompatible at the schema
and/or instance level with the requirements of an application designed for a dif-
ferent sub-area. Data integration technology supporting fine-grained resolution
of schema and instance level conflicts can provide an effective approach to tack-
ling such problems. Hence, a promising area for investigation is the combination
of Grid middleware and data integration technologies.

Given a set of data sources, data integration is the process of creating an
integrated resource combining data from the data sources, in order to support
queries and analyses that could not be supported by the individual data sources
alone. The data integration process may create and maintain a materialised
integrated resource (i.e. a data warehouse) or a virtual integrated resource.
The materialised approach is usually chosen for query performance reasons:
distributed access to remote data sources is avoided and sophisticated query
optimisation techniques can be applied to queries submitted to the data ware-
house. However, maintaining a data warehouse can be very complex and costly,
and virtual integration is the preferred option if these maintenance costs are
prohibitively high; virtual integration is also the only option if access to the
latest versions of the data sources is required. In this paper, we address the
virtual integration of heterogeneous Grid-enabled data sources, with particular
focus on biological data sources.

Many systems have been developed which create and maintain virtual inte-
grated resources in the Life Sciences domain: examples of significant systems are
DiscoveryLink [19], K2/Kleisli [8], Tambis [18], SRS [44]. The aim of these early
systems was to provide users with the ability to formulate queries on the inte-
grated resource which would be very complex or very costly if performed directly
on the individual data sources, sometimes prohibitively so. The technologies for
doing so differ between systems: DiscoveryLink and Kleisli utilise views over
“wrapped” data sources, Tambis incorporates biological ontologies that serve as
a global schema over heterogeneous data sources, while SRS adopts a portal-
based approach rather than supporting a global integrated schema. More recent
work [40; 34; 36; 25; 6] has focussed on querying distributed resources, or vir-
tual integrated resources, explicitly within a Grid environment. The technolo-
gies supporting this are based on distributed querying processing over wrapped

2

data sources with, in some cases, modelling of ontology-based metadata. None
of this work on querying heterogeneous distributed Grid-enabled data sources
has so far supported fine-grained data transformation and integration of the
source data — by “fine-grained” we mean transforming the values of individual
attributes of data source entities and combining them to form the extent of a
new attribute in the virtual global schema.

In our own recent work [41], we have developed an architecture for vir-
tual integration of Grid-enabled data sources that leverages the functionalities
of the AutoMed heterogeneous data integration system and the OGSA-DQP
service-based distributed query processor. AutoMed provides fine-grained data
transformation and integration functionality, while OGSA-DQP complements
AutoMed’s centralised query processor by providing efficient distributed query
processing over Grid-enabled data sources. This work has been undertaken
as part of the ISPIDER (In Silico Proteome Integrated Data Environment Re-
source) project1, which has developed a platform of proteomics-related resources
using existing Grid middleware, and leveraging standards from the application
areas of proteomics and bioinformatics. While our work has been motivated by
ISPIDER, the architecture we have developed is generic. To our knowledge, ours
is the first investigation of extending Grid data access and querying middleware
with fine-grained data transformation/integration functionality.

In this paper we investigate the architectural, optimisation and performance
issues arising from the coupling of Grid distributed querying and data integra-
tion technologies. Specifically, we investigate these issues for the OGSA-DAI
and OGSA-DQP Grid data access and querying middleware, combined with
the AutoMed data transformation/integration system. We present an archi-
tectural framework that we have developed for investigating the combination
of these technologies and the results of the performance study undertaken. We
also discuss the significance of these results for the further development of query
processing capabilities over integrated heterogeneous Grid resources.

Sections 2 and 3 of the paper discuss the OGSA-DAI/DQP and AutoMed
middleware, respectively, to the level of detail necessary for this paper. Section 4
presents our architecture, from [41], for combining the respective capabilities
of these middleware systems, and also two variant architectures that we have
used for comparison with this in our evaluation. Section 5 presents the query
performance evaluation we have conducted over the three architectures. This
evaluation has been carried out using a representative Grid integrated resource
that has been developed as part of the the ISPIDER project, which is discussed
in Section 5.1. All three of our architectures are assessed through benchmarking
against a suite of queries posed on the integrated ISPIDER resource. Some of
the queries have been provided by proteomics domain experts as representative
of queries which would be of value to their research community, while additional
queries have been developed by us in order to benchmark particular aspects of
our architectures. Section 6 gives our conclusions and directions of future work.

2 OGSA-DAI and OGSA-DQP

The Open Grid Services Architecture (OGSA) [15] defines a set of capa-
bilities that address the key concerns of Grid computing systems, and provides a

1http://www.ispider.man.ac.uk

3

basis for standardisation in the provision of such capabilities through a service-
oriented architecture.

OGSA-DAI (OGSA - Data Access and Integration)2 is an open-source mid-
dleware product for wrapping data resources within the OGSA service-oriented
architecture [3]. OGSA-DAI supports a variety of relational and XML DBMSs
and text data sources, and its objective is to standardise data access, trans-
port, integration and metadata services for the Grid (other OGSA initiatives
are focussing on data derivation, consistency and replication services).

OGSA-DQP (OGSA - Distributed Query Processor)3 is a service-based dis-
tributed query processor over OGSA-DAI enabled resources [1]. OGSA-DQP
aims to support efficient query processing over OGSA-DAI enabled resources
by offering parallel and distributed query execution. OGSA-DQP offers two
services, the Grid Distributed Query Service (GDQS), or Coordinator,
and the Query Evaluation Service (GQES), or Evaluator. The Coordina-
tor uses resource metadata and computational resource information to compile,
optimise and partition an input query into a distributed query execution plan,
and each one of the partitions of this plan is scheduled for execution on one of
the Grid’s nodes [38; 14]. The Evaluator implements a physical algebra over
OGSA-DAI data services and is able to evaluate a partition of the query execu-
tion plan assigned to it by a Coordinator. The set of Evaluators participating
in a query form a tree through which data flows from the leaf Evaluators, which
interact with OGSA-DAI services, up the tree of Evaluators towards its root —
the Coordinator.

The motivation for OGSA-DAI and OGSA-DQP is to develop middleware
that interfaces between existing existing DBMSs and the OGSA architecture,
with the expectation that over time vendors will embed this functionality within
their DBMS products, thus simplifying application structure and improving
performance. Thus, one of the motivations for OGSA-DAI/DQP is to expose
and formulate requirements for integrating data management functionality into
a Grid, and our work here can be seen as an extension of this aim in application
scenarios where sophisticated data transformation and integration capabilities
are required.

Performance studies of OGSA-DAI and OGSA-DQP have focussed on the
impact of alternative data transfer formats and query processing models. [10]
presents a performance evaluation of executing SQL queries using OGSA-DAI
Version 2.2 (also the version used for our performance evaluation here), and
using two different data formats for transferring results to the client, WebRowSet
(XML) and CSV (comma-separated values). Although the less verbose CSV data
format is likely to have better performance due to lower data transfer costs [10],
we have used the WebRowSet data format in our architecture and performance
evaluation here since this supports more metadata information and will thus
be advantageous in the longer term within architectures supporting cost-based
query optimisation.

[24] presents a more extensive performance evaluation of OGSA-DAI Version
2.2. Of particular interest are the experiments comparing JDBC performance
with OGSA-DAI in terms of instant and incremental evaluation of SQL queries.
In particular, OGSA-DAI instant evaluation results in a slightly higher data

2http://www.ogsadai.org.uk
3http://www.ogsadai.org.uk/about/ogsa-dqp

4

throughput compared to incremental evaluation, but JDBC outperforms both.
[2] presents a performance evaluation of OGSA-DQP Version 2, but without

investigating the effect of network speed on performance, even though OGSA-
DQP does take account of data transfer costs in its query planning. Of particu-
lar interest is the comparison between instant and incremental query processing,
with the latter being outperformed by the former. In our performance evalu-
ation, we use the later OGSA-DQP Version 3.1, due to the lack of support of
Version 2 for a number of ISPIDER requirements, such as some relational data
types and newer versions of Linux OSs supporting newer hardware. OGSA-
DQP Version 3 recommends the use of incremental evaluation, and indeed does
not support instant evaluation.

3 AutoMed

AutoMed4 is a system supporting the transformation and integration of het-
erogeneous data, offering the capability to handle virtual, materialised, and
indeed hybrid data integration across multiple data models. It supports a low-
level hypergraph-based data model (HDM) and provides facilities for specifying
higher-level modelling languages in terms of this HDM [28]. For any modelling
language, M, specified in this way (via the API of AutoMed’s Model Definitions
Repository), AutoMed provides a set of primitive schema transformations that
can be applied to schema constructs expressed in M. In particular, for every
construct of M there is an add and a delete primitive transformation which
add to/delete from a schema an instance of that construct. For those constructs
ofM which have textual names, there is also a rename primitive transformation.

Instances of modelling constructs within a particular schema are identified by
means of their scheme enclosed within double chevrons 〈〈. . .〉〉 AutoMed schemas
can be incrementally transformed by applying to them a sequence of primitive
transformations, each adding, deleting or renaming just one schema construct.
A sequence of primitive transformations from one schema S1 to another schema
S2 is termed a pathway from S1 to S2. All source, intermediate, and integrated
schemas, and the pathways between them, are stored in AutoMed’s Schemas &
Transformations Repository (STR).

Each add and delete transformation is accompanied by a query specifying
the extent of the added or deleted construct in terms of the rest of the constructs
in the schema. This query is expressed in a comprehensions-based functional
query language, IQL5. Also available are extend and contract primitive trans-
formations which behave in the same way as add and delete except that they
state that the extent of the new/removed construct cannot be precisely derived
from the other constructs present in the schema. More specifically, each extend
and contract transformation takes a pair of queries that specify a lower and an
upper bound on the extent of the construct. The lower bound may be Void and
the upper bound may be Any, which respectively indicate no known information
about the lower or upper bound of the extent of the new construct.

4http://www.doc.ic.ac.uk/automed
5Comprehension-based languages subsume query languages such as SQL-92 and OQL in

their expressiveness [4]. The purpose of IQL within the AutoMed system is to provide a
common query language that queries written in various high-level query languages (e.g. SQL,
XQuery, OQL) can be translated into and out of.

5

The queries supplied with primitive transformations can be used to translate
queries or data along a transformation pathway by means of query unfolding —
we refer the interested reader to [29; 30; 31] for details of this process. The
queries supplied with primitive transformations also provide the necessary in-
formation for transformation pathways to be automatically reversible, in that
each add/extend transformation is reversed by a delete/contract transforma-
tion with the same arguments, while each rename is reversed by a rename with
the two arguments swapped.

As discussed in [29], this means that AutoMed is a both-as-view (BAV)
data integration system: the add/extend steps in a transformation pathway
correspond to Global-As-View (GAV) rules [26] as they incrementally define
target schema constructs in terms of source schema constructs; while the delete
and contract steps correspond to Local-As-View (LAV) rules [11; 27] since they
define source schema constructs in terms of target schema constructs. An in-
depth comparison of BAV with other data integration approaches can be found
in [29; 30; 31].

3.1 The IQL Query Language

We now give a brief overview of IQL, to the level of detail required for Section 5.
IQL supports string, boolean, number, date and tuple data types, and set,

bag and list collection types. There are several polymorphic primitive operators
for manipulating sets, bags and lists. In particular, the binary operator ++
appends two lists, and performs bag union and set union on bags and sets,
respectively. The operator flatmap applies a collection-valued function f to each
element of a collection and applies ++ to the resulting collections.

The operator flatmap can be used to specify comprehensions over collections.
These are of the form [h | Q1; . . . ; Qn] where h is an expression termed the
head of the comprehension, and Q1, . . . , Qn are qualifiers, with n ≥ 0. Each
qualifier is either a filter or a generator. A generator has syntax p ← e where e
is a collection-valued expression and p is a pattern i.e. an expression involving
variables and tuple constructors only. The variables of p are successively bound
by iterating through e. Any variables appearing in the head, h, inherit these
bindings. A filter is a boolean-valued expression, which must be satisfied by
the values generated by the generators in order for these values to contribute to
the final result of the comprehension. Comprehensions are a convenient high-
level syntax and add no extra expressiveness to languages such as IQL (because
they can be translated into successive applications of flatmap). Comprehension
syntax can be used to express projection, selection, cartesian product and join
operations.

IQL supports unification of variables appearing in the patterns of genera-
tors within the same comprehension. For example, the following IQL query
undertakes a join of tables r and s over their a and b attributes6:

[{x, y} | {x, z} ← 〈〈r, a〉〉; {y, z} ← 〈〈s, b〉〉]
6Here, 〈〈r, a〉〉 and 〈〈s, b〉〉 are schemes identifying two constructs of an AutoMed relational

schema, namely the attribute a of table r and the attribute b of table s. We note that the
standard AutoMed encoding of relational schemas decomposes each table R(a1, . . . , an) into n
binary relationships, R(k̄, a1), . . . , R(k̄, an), where k̄ is the subset of the a1, . . . , an comprising
the primary key of R. Thus, the extent of an AutoMed scheme 〈〈r, a〉〉 is the projection of table
r onto its primary key attributes plus its attribute a. See [29] for details.

6

and is equivalent to the following query:

[{x, y} | {x, z1} ← 〈〈r, a〉〉; {y, z2} ← 〈〈s, b〉〉; z1 = z2]

3.2 Query Optimisation

AutoMed’s QueryOptimiser component (see Section 4.1) serves as a “policy”
class, by coordinating the application of a number of individual optimisers.
Below, we briefly discuss three of these optimisers as we will be referring to
them again in our performance study later. In general, AutoMed users are
free to create their own custom optimisation components and their own own
custom optimisers. We refer the interested reader to [21] for details of query
optimisation in AutoMed and to [4; 13; 33; 9] for more general discussions of
query optimisation in comprehension languages.

The three optimisers presented below operate in tandem, as will become
apparent in Sections 5.3 and 5.4. In particular, it is common after the refor-
mulation stage for comprehensions to contain generators that iterate over an
expression that appends a number of further comprehensions. Optimiser 2 be-
low can split these into a number of simpler comprehensions. Optimiser 3 can
then be applied to prune the number of comprehensions output. Optimiser 1
is necessary since often the output of Opt. 2 contains nested comprehensions,
whereas Opt. 3 operates on unnested ones. An example of the optimisation
process is given in Section 5.3.

Optimiser 1 This optimiser unnests nested comprehensions. It does this by
repeatedly applying the following rule to the query tree until there are no more
matching instances of the left-hand side of the rule in the tree:

[h|e1; p1 ← [p2|Q1; . . . ;Qn]; e2] ⇒ [h|e1; Q
′
1; . . . ; Q

′
n; e2]

There is a proviso to applying this rule, in that the patterns p1 and p2 must
match i.e. p1 can be obtained from p2 by variable renaming. Each Q′i is obtained
from Qi by applying the same renaming.

Optimiser 2 This optimiser rewrites comprehensions containing generators
that iterate over an expression appending a number of further expressions, into a
set of simpler comprehensions. It does this by repeatedly applying the following
rule to the query tree, until there are no more matching instances of the left-
hand side:

[h|e; p ← e1 + +... + +en; e
′] ⇒ [h|e; p ← e1; e

′] + +... + +[h|e; p ← en; e
′]

(we note that this is the equivalent of distributing selections and projections over
the union operation in the relational algebra). The benefit of this optimisation
is that some of the resulting simpler comprehensions may refer only to a single
data source, and therefore can be sent for full evaluation at that data source.
The disadvantage of this optimisation is that the number of comprehensions
output for a given input comprehension is

∏n
i=1 mi, where mi is the number of

sub-expressions of the ith generator.

7

Optimiser 3 This optimiser eliminates comprehensions for which it can infer
that they will return empty results because they are undertaking a join over
non-overlapping attributes. In particular, this optimisation can applied over
attributes that are known to have globally unique values over the data sources
being integrated:

[h|e; p1 ← e1; e
′; p2 ← e2; e

′′] ⇒ []

Here, the patterns p1 and p2 need to have one or more variables in common, and
the values within e1 and e2 corresponding to these variables need to be known
to be non-overlapping.

4 Our Architectures

We have developed an architecture, first presented in [41], for the semantic in-
tegration of OGSA-DAI enabled data sources, using AutoMed to produce the
schema of the virtual integrated resource and to reconcile the semantic het-
erogeneities between the data source schemas and this integrated schema, and
using OGSA-DQP to undertake distributed query processing. We describe this
architecture again here, for completeness, and we then describe also two variants
of it that firstly drop the OGSA-DQP middleware, and secondly drop also the
OGSA-DAI services. The purpose of these two variants is to enable investiga-
tion of the performance impact of each component of our overall architecture.
In particular, Section 5 describes a range of experiments conducted on all three
architectures and comparison between them leads to significant conclusions on
the performance impact of OGSA-DQP versus the centralised AutoMed query
processor, and of accessing data sources using OGSA-DAI services versus direct
access through JDBC.

4.1 Complete Architecture

Figure 1 illustrates our complete architecture. Each data source is wrapped by
an OGSA-DAI service allowing retrieval of schema metadata and submission of
queries to the associated data source. Each AutoMed-DAI Wrapper interfaces
between an OGSA-DAI data source and AutoMed’s Schemas & Transforma-
tions Repository (STR), using XML request/response documents to automat-
ically retrieve schema metadata from a data source, via the OGSA-DAI ser-
vice, and create the respective AutoMed schema in the STR. These data source
schemas are then transformed into an integrated schema either by manual sub-
mission of the appropriate transformation pathways (via the API of AutoMed’s
STR) or by schema matching [35] or schema transformation tools [42] that semi-
automatically generate transformation pathways. The integrated schema may
be defined a priori, or may be created incrementally e.g. by starting off with
one of the data source schemas and extending this as necessary.

An OGSA-DQP Evaluator service (QES) is deployed over each OGSA-DAI
service. The OGSA-DQP Coordinator service (GDQS) can be deployed on any
one of the available Grid nodes, but preferably on the same node as the AutoMed
Query Processor to avoid data transfer costs between them.

Queries can be submitted to AutoMed for evaluation against an integrated
schema. Such queries can be expressed directly in IQL, or can be expressed in

8

AutoMed
Schemas and

Transformations
Repository (STR)

OGSA-DQP
QES

OGSA-DQP
QES

OGSA-DQP
GDQS

Integrated
AutoMed Schema

AutoMed
schema for

DB3

AutoMed
schema for

DB4

AutoMed
Query Processor

 IQL
 query

 OQL
 query

OGSA-DAI OGSA-DAI

DB4DB3

AutoMed-DQP
wrapper

 OQL
 result

 IQL
 result

 IQL
 query

 IQL
 result

OGSA-DQP
QES

AutoMed
schema for

DB2

OGSA-DAI

DB2

schema
request

response
document

schema
request

response
document

schema
request

response
document

transformation pathways

OGSA-DQP
QES

AutoMed
schema for

DB1

OGSA-DAI

DB1

schema
request

response
document

AutoMed-DAI
wrapper

AutoMed-DAI
wrapper

AutoMed-DAI
wrapper

AutoMed-DAI
wrapper

Figure 1: OGSA-DAI/OGSA-DQP/AutoMed Architecture

a high-level query language — SQL and XQuery are currently supported — in
which case they are first translated by AutoMed into IQL7.

An IQL query, Q, on an integrated schema is processed by AutoMed’s
Query Processor (AQP) as follows (as illustrated in Figure 2). First, the
AQP’s QueryReformulator component reformulates Q, using the transforma-
tion pathways stored in the STR, into an equivalent query, Qref , referencing
only data source schema constructs8. The VariableUnification component
then makes variable equality explicit within Qref , as discussed in Section 3.1.
Next, the QueryOptimiser component optimises Qref by applying a number of
query equivalences — as discussed in Section 3.2 — and by aiming to generate
the largest possible subqueries that can be submitted to the data source wrap-
pers for evaluation at the data sources. This results in an optimised query Qopt.
The QueryAnnotator component then annotates subqueries with details of the
appropriate wrapper object, creating a single query plan, Qann, which is passed
to the QueryEvaluator component for evaluation.

We note that in the context of the specific architecture of Figure 1, there
is only one kind of wrapper available to the AQP, namely the AutoMed-DQP
wrapper, as we are aiming to deploy the distributed and parallel query process-
ing capabilities of OGSA-DQP over the integrated resource: the AQP does not

7The SQL-to-IQL translator supports nested Select-Project-Join-Union queries, aggrega-
tion functions, and GROUP BY. The XQuery-to-IQL translator supports FLWR queries.

8The AQP currently supports GAV, LAV and combined GAV+LAV query reformulation
[31]. The ISPIDER integrated schema is defined using GAV rules only, and thus in our
performance study below only GAV query reformulation (i.e. query unfolding) is deployed.

9

AutoMed Query Processor

Query
Annotator

Query
Optimiser

IQL
result

Query
Evaluator

Variable
Unification

XML
data source

...

AutoMed Metadata
Repository

STR

MDR

IQL
query

relational
data source

Query
Reformulator

Wrapper Architecture

Figure 2: The AutoMed Query Processor Pipeline

directly interact with the data sources, only OGSA-DQP does.
Each subquery submitted to an AutoMed-DQP wrapper object is first trans-

lated by it into OQL (the query language supported by OGSA-DQP) and is then
submitted to OGSA-DQP for evaluation. In particular, OGSA-DQP’s GDQS
processes the input OQL query and produces a query plan, which is evaluated
using one or more GQES services. The result of this OQL query is translated
into an IQL result by the AutoMed-DQP wrapper and this is returned to the
QueryEvaluator. This is responsible for any necessary post-processing of the
wrapper results to produce the overall query result returned to the client ap-
plication. As OGSA-DQP supports a subset of the OQL query language, and
IQL is moreover more expressive than OQL, the original query Q submitted to
AutoMed’s AQP may not be fully translatable into a single OQL query, hence
the possible need for such post-processing. In particular, the current release
of OGSA-DQP only supports equijoins and one level of nesting, and does not
support set operators, functions in the SELECT clause, or self-joins over tables.

We finally note that the AQP undertakes centralised query processing, in-
teracting with the data sources as necessary, whereas OGSA-DQP offers de-
centralised query processing. Thus, subqueries within a query plan produced
by the AQP’s QueryAnnotator component are evaluated by AutoMed wrapper
objects, located within AutoMed, which then return results to the AQP. In con-
trast, OGSA-DQP evaluates query execution plans produced by the GDQS in a
decentralised manner, since each query partition is evaluated by a GQES service
and these services are able to interact with each other and with the GDQS.

4.2 Architecture using AutoMed and OGSA-DAI

This architecture is similar to the previous one, but without the OGSA-DQP
GDQS and GQES services — see Figure 3. Thus, the integration process is the
same, but query processing is performed solely by AutoMed. In particular, an
IQL query submitted to an integrated schema is processed by the AQP in the
same way as before, producing queries Qref , Qopt and Qann. But each subquery
within Qann is now submitted to an AutoMed-DAI wrapper, rather than an
AutoMed-DQP wrapper. The AutoMed-DAI wrapper translates the subquery

10

DB4DB3DB2DB1

OGSA-DAI OGSA-DAI OGSA-DAI OGSA-DAI

SQL
query

SQL
result

SQL
query

SQL
result

SQL
query

SQL
result

SQL
query

SQL
result

AutoMed
Schemas and

Transformations
Repository (STR)

Integrated
AutoMed Schema

AutoMed
schema for

DB3

AutoMed
schema for

DB4

AutoMed
Query Processor

 IQL
 query

 IQL
 result

AutoMed
schema for

DB2

transformation pathways

AutoMed
schema for

DB1

AutoMed-DAI
wrapper

AutoMed-DAI
wrapper

AutoMed-DAI
wrapper

AutoMed-DAI
wrapper

Figure 3: OGSA DAI/AutoMed Architecture

into an SQL query, and submits it to an OGSA-DAI service for evaluation9.
As before, AutoMed’s QueryEvaluator component post-processes the results
returned by the wrappers and produces the overall query result.

OGSA-DAI services simply pass on SQL queries to the data source DBMSs
and do not impose any constraints on these queries — so query language transla-
tion only depends on the translation capabilities of the AutoMed-DAI wrapper.
This is able to translate IQL comprehensions that are arbitrarily nested, and
the ++ IQL operator, and so outputs possibly nested SPJU SQL queries.

To utilise these greater translation capabilities of the AutoMed-DAI wrap-
pers (compared to OGSA-DQP), AutoMed’s QueryOptimiser component uses
a different optimisation policy in this architecture, and so may produce a differ-
ent Qopt query for the same reformulated query Qref compared to the previous
architecture. This in turn allows the QueryAnnotator to produce a different
annotated query Qann, which may wrap larger subqueries than in the previous
architecture.

4.3 Architecture using only AutoMed

This architecture is similar to the previous one, but accesses the data sources
directly, rather than through OGSA-DAI services — see Figure 4. The integra-
tion process is the same as before, and the difference in query processing is that
the appropriate AutoMed wrappers for the data sources are deployed, rather
than AutoMed-DAI wrappers.

AutoMed currently supports relational data sources via JDBC, XML data
sources via the XML:DB API, OWL-Lite and RDF/S documents, and struc-

9For simplicity, we assume in our discussion here that the data sources are relational
databases. This is indeed the case in the ISPIDER project, but need not be the case in
general. All three of our architectural variants are able to handle non-relational data sources.

11

DB4DB3DB2DB1

AutoMed
Schemas and

Transformations
Repository (STR)

Integrated
AutoMed Schema

AutoMed
schema for

DB3

AutoMed
schema for

DB4

AutoMed
Query Processor

 IQL
 query

 IQL
 result

AutoMed
schema for

DB2

transformation pathways

AutoMed
schema for

DB1

AutoMed
wrapper

AutoMed
wrapper

AutoMed
wrapper

AutoMed
wrapper

Figure 4: AutoMed-only Architecture

tured text files (e.g. CSV files). In particular, the AutoMed-JDBC wrapper is
able to translate possibly nested SPJU IQL queries into possibly nested SPJU
SQL queries (but it could also be extended support additional SQL extensions
for particular DBMSs). We therefore note that the AutoMed-JDBC wrapper
and the AutoMed-DAI wrapper discussed in Section 4.2 have the same trans-
lation capabilities. Since OGSA-DAI services encapsulate JDBC functionality,
the only notable difference between these two architectures (as we will see below)
is in performance, due to the overhead introduced by OGSA-DAI services.

5 Performance Evaluation

This section presents our performance evaluation of the three architectures dis-
cussed above in the context of a real-world biological data integration project,
namely ISPIDER. We first describe the ISPIDER integration setting and then
discuss the experiments performed and results obtained.

In the following, A1 refers to the AutoMed-only architecture of Section 4.3,
A2 to the architecture of Section 4.2 combining AutoMed and OGSA-DAI, and
A3 to the full architecture of Section 4.1.

5.1 Case Study: The ISPIDER Integrated Resource

The In Silico Proteome Integrated Data Environment Resource (ISPIDER)
project has developed an integrated platform of proteome-related resources,
using existing standards from proteomics, bioinformatics and e-Science [37]. As
part of this Grid platform, we have developed an integrated resource of four
data sources containing experimental proteomics data. As discussed in [41],
the integration of these data sources is beneficial for proteomics researchers for
a number of reasons: having access to more data leads to more reliable analyses,
e.g. by reducing the chances of false negatives in user queries; bringing together
data sources containing different but closely related data increases the breadth

12

of information the biologist has access to; and finally the virtual integration of
these data sources, as opposed to merely providing a common interface for ac-
cessing them, enables data from a range of experiments, tissues, or different cell
states to be brought together in a form which may be analysed by a biologist
in spite of the widely varying coverage and underlying technology of each data
source.

The four autonomous proteomics databases (all MySQL) that we have inte-
grated are as follows:

• PEDRo [17] provides descriptions of experimental data sets in proteomics.
The PEDRo version used for ISPIDER contains a modest number of ex-
periments (2.5Mb of data), but was significant in the ISPIDER project
because of its comprehensive schema, which served as a starting point for
the integration process.

More generally, PEDRo is also used as a format for exchanging proteomics
data, and in this respect has influenced the standardisation activities of
the PSI (Proteomics Standards Initiative, http://psidev.sourceforge.
net).

• gpmDB [7] provides a wealth of peptide/protein identifications from a
range of different laboratories and instruments. For ISPIDER, the research
version of gpmDB was used, which contains over 41,000,000/7,000,000
peptide/protein hits (over 1,000,000/330,000 distinct ones) within a total
of 5.6Gb of data.

• PepSeeker [32] captures identification allied to peptide sequence data, cou-
pled with the underlying ion series. ISPIDER used the first version of
PepSeeker, containining over 185,000/135,000 peptide/protein hits (over
49,000/47,000 distinct ones) within a total of 4.2Gb of data.

• PRIDE [23] is a publicly available repository for proteomics data, con-
taining protein and peptide identifications and post-translational modi-
fications identified on individual peptides. The PRIDE version used in
ISPIDER currently contains a modest number of experiments (2.5Mb of
data), but it is ultimately expected to mirror all public data of the Eu-
ropean Bioinformatics Institutes’s PRIDE database, as well as data from
the University of Manchester.

Figure 5 illustrates the schema, IS, of the ISPIDER virtual integrated re-
source. Design of this schema started off with the PEDRo schema as a first ver-
sion, extending this with constructs from the other three data source schemas as
necessary. The ISPIDER project’s proteomics experts guided us in deriving the
correspondences between the data source schema constructs and the constructs
of IS. These correspondences were then used to encode the necessary AutoMed
transformation pathways.

A long-standing problem in the Life Sciences is the absence of commonly
agreed identifiers for instances of biological entities. The common practice
is to use integers which are unique only within the specific resource, and in-
deed this is the case with the four ISPIDER data sources. To identify en-
tity instances in our virtual integrated schema IS, we have therefore gener-
ated life science identifiers, or LSIDs [5], from the resource-specific identifiers.

13

UDBSearchParam

PK lsid

program
database
database_date
parameters_file
taxonomical_filter
fixed_modification
variable_modification
max_missed_cleavages
mass_value_type
fragment_ion_tolerance
peptide_mass_tolerance
accurate_mass_mode
mass_error_type
mass_error
protonated
icat_option
TOLU
ITOLU
ICAT
instrument

USpectrum

PK lsid

spectrum_identifier
ms_level
mz_range_start
mz_range_stop

UPeptideHitToProteinHit_mm

PK,FK1 pepID
PK,FK2 protID

UPeptideModification

PK lsid

FK1 peptide_id
accession
mod_database
mod_database_version

UAA

PK lsid

type
at
modified
pm

FK1 peptidehit
sequence

UPrecursor

PK,FK1 lsid_parent
PK,FK2 lsid_child

UPeak

PK lsid

m_to_z
abundance
multiplicity

FK1 spectrum

UProteinHit

PK lsid

all_peptides_matched
expect
score
threshold

FK1 dbsearch
accession_number
gene_name
synonyms
organism
protein
orf_number
description
sequence
modifications
predicted_mass
predicted_pi
rf

UDBSearch

PK lsid

username
id_date
n_terminal_aa
c_terminal_aa
count_of_specific_aa
name_of_counted_aa
regex_pattern
usermail
CLE

FK1 dbsearchparam
FK2 spectrum

UPeptideHit

PK lsid

score
score_type
sequence
information
probability
mh
charge
pep_start
pep_end
delta
MassNo
MissCleav
MrExpct

FK1 dbsearch

UIonTable

PK lsid

Immon
A
AStar
B
Bstar
Bstarplusplus
Bzero
BZeroplusplus
Y
Yplusplus
Ystar
Ystarplusplus
YZero
YZeroplusplus
Bplusplus
Aplusplus
Astarplusplus
Azero
matches

FK1 peptidehit
sequence

Figure 5: The ISPIDER Integrated Schema

LSID is a uniform resource name (URN) specification providing a standard-
ised naming scheme for entities in the life sciences domain. For example, the
LSID URN:LSID:ispider.man.ac.uk:pedro.proteinhit:99 refers to the row with pri-
mary key value 99 in the table proteinhit of the PEDRo database, where
ispider.man.ac.uk denotes the LSID issuing authority.

A consequence of using LSIDs for preventing conflicts at the level of the
integrated schema is that joins over the primary key attributes of integrated
schema tables can only result in matches within data sources — and not across
data sources. Thus, the conditions for applying Optimiser 3 above hold for such
joins, which is significant in terms of query processing and query optimisation,
as will be discussed shortly.

14

5.2 Experimental Set-Up

We have conducted an evaluation of the query performance of all three archi-
tectures presented in Section 4. Table 1 summarises the hardware and soft-
ware characteristics of the Grid used for our evaluation. Each of the MySQL
databases is hosted on a different node, and is accessed via JDBC for A1, and
via OGSA-DAI hosted on Apache Tomcat for A2 and A3. Each of the Grid
nodes is provided with enough memory to avoid paging during query execution,
whose effects would otherwise dominate the performance impact of the archi-
tectural differences we wish to evaluate. AutoMed and OGSA-DQP are hosted
on the same Grid node, although this is not mandatory in general. This node
is equipped with a dual core processor and 4Gb of RAM. Due to the software
requirements imposed by OGSA-DQP, Java 1.4.2 has been used, which comes
only in a 32-bit version, and so it has not been possible to exploit the full power
of the 64-bit processor. Throughout the performance study, each pair of Grid
nodes is linked with a 100Mbps connection, apart from our study of the impact
of network speed, which is reported in Section 5.7.

Table 1: Evaluation PCs: Hardware, Software and Operating System Charac-
teristics

OS Hardware Software

Linux Athlon Dual Core AutoMed toolkit (Java 1.4.2, 32-bit)
(Fedora (64-bit, 2.2GHz/ AutoMed Repository (PostgreSQL 8)

Core 4) 4Gb RAM) OGSA-DQP 3.1 (Apache Tomcat 5)

MS Windows Pentium 4 Dual Core gpmDB (MySQL 4.1)
(XP prof.) (3GHz/2Gb RAM) OGSA-DAI 2.2 (Apache Tomcat 5)

MS Windows Pentium 4 PepSeeker (MySQL 4.1)
(XP prof.) (2.4GHz/1.5Gb RAM) OGSA-DAI 2.2 (Apache Tomcat 5)

MS Windows Pentium 4 PRIDE (MySQL 4.1)
(XP prof.) (2.4GHz/1.5Gb RAM) OGSA-DAI 2.2 (Apache Tomcat 5)

MS Windows Pentium 3 PEDRo (MySQL 4.1)
(XP prof.) (864MHz/256Mb RAM) OGSA-DAI 2.2 (Apache Tomcat 5)

Our performance evaluation has been conducted using three different sets of
queries, and investigating one performance factor at a time. For each query, we
measure the time taken by: (i) set-up, (ii) optimisation, (iii) evaluation and (iv)
the wrappers. The set-up time includes the time spent initialising the AQP,
establishing connections with the data sources, and reformulating the query.
The optimisation time includes the time spent by the QueryOptimiser and
QueryAnnotator components of the AQP. The evaluation and wrappers times
include the time spent by the QueryEvaluator and AutoMedWrapper compo-
nents, respectively.

Each query is executed 10 times, and the medians of the times (i) - (iv)
are computed. Prior to these 10 executions, a “warm-up” query is first run,
allowing the initialisation of several internal caches, including those of the
QueryReformulator (retrieving and caching the transformation pathways from
the AutoMed STR) and the AutoMedWrapper instances (creating connections
with the data sources used for connection pooling), but not precomputing
or caching any query results. As a result of this warm-up query, the set-up

15

time for all the evaluation queries is close to zero and the time spent in the
QueryAnnotator component does not include any creation of AutoMedWrapper
instances. After each of the 10 query executions, all AQP objects are marked for
deletion and the JVM garbage collector is invoked. As a result, only the trans-
formation pathways and the connections to the data sources remain cached
between successive query executions.

In the remainder of this section, Section 5.3 presents our performance eval-
uation using a set of biologically meaningful queries provided by the ISPIDER
domain experts. These user queries do not require any distributed join pro-
cessing and so in Section 5.4 we present experimental results using a second
set of queries that do require joins across different data sources. Section 5.5
then repeats the experiments with these two query sets but this time using the
incremental query processing capabilities of AutoMed, OGSA-DAI and OGSA-
DQP. Section 5.6 next evaluates the effect of parallel query processing using
the two query sets as well as a third set of queries that are more suitable for
investigating the impact of parallel execution. Finally, Section 5.7 investigates
the impact of network speed on query processing in all three architectures.

5.3 User-Provided Queries

Our first set of experiments was with a set of queries provided by our biologist
and bioinformatician partners over the ISPIDER integrated resource:

Q1 Retrieve all protein identifications for a given protein accession number

Q2 Retrieve all protein identifications for a given group of proteins

Q3 Retrieve all protein identifications for a given organism

Q4 Retrieve all protein identifications given a certain peptide

Q5 Retrieve all identifications of a given protein given a certain peptide

Q6 Retrieve all peptide-related information for a given protein identification

The IQL encodings of these queries are listed in Table 2. Queries Q2 and
Q3 could have been written more simply using a join rather than checking for
membership. However, reformulation of those versions of Q2 and Q3 would
have resulted in self-joins in some of the data sources and, as discussed in Sec-
tion 4, the current release of OGSA-DQP does not support self-joins in queries
submitted to it.

To illustrate query processing over the integrated ISPIDER resource, con-
sider query Q1. After reformulation, this becomes query Q1

ref below10:

[{an, lsid}|{lsid, an} ← ([{{′pride′, k}, x}|{k, x} ← pride : 〈〈identification, accession number〉〉]
+ + [{{′gpmdb′, pid}, x}|{pid, proseqid} ← gpmdb : 〈〈protein, proseqid〉〉;

{$proseqid1, x} ← gpmdb : 〈〈proseq, label〉〉;
proseqid = $proseqid1])

+ + [{{′pedro′, phid}, x}|{phid, pid} ← pedro : 〈〈proteinhit, protein〉〉;
{$pid1, x} ← pedro : 〈〈protein, accession num〉〉;
pid = $pid1])

+ + [{{′pepseeker′, d}, x}|{d, x} ← pepseeker : 〈〈proteinhit, ProteinID〉〉]);
an = ’ENSP00000339074’]

10Here, we use the shorthand ′pride′ rather than the full LSID ′URN : LSID :
ispider.man.ac.uk.pride′ for presentational clarity, and similarly for the other data sources.

16

Table 2: User-provided Queries
Q1: [{an, lsid}|{lsid, an} ← 〈〈UProteinHit, accession number〉〉; an = ’ENSP00000339074’]

Q2: [{an, lsid}|{lsid, an} ← 〈〈UProteinHit, accession number〉〉;
member [lsid|{lsid, d} ← 〈〈UProteinHit, description〉〉; like d ’%Actin%’] lsid]

Q3: [{an, lsid}|{lsid, an} ← 〈〈UProteinHit, accession number〉〉;
member [lsid|{lsid, o} ← 〈〈UProteinHit, organism〉〉; like o ’%sapiens%’] lsid]

Q4: [{pr, sc}|{lsid1, pr} ← 〈〈UProteinHit, protein〉〉;
{lsid2, seq} ← 〈〈UPeptideHit, sequence〉〉; seq = ’ATLTSDK’;
{pepID, protID} ← 〈〈UPeptideHitToProteinHit mm〉〉;
lsid2 = pepID; lsid1 = protID;
{lsid2, sc} ← 〈〈UPeptideHit, score〉〉]

Q5: [{an, lsid1, sc}|{lsid2, seq} ← 〈〈UPeptideHit, sequence〉〉; seq = ’LVNELTEFAK’;
{lsid1, an} ← 〈〈UProteinHit, accession number〉〉; an = ’gi—229552’;
{pepID, protID} ← 〈〈UPeptideHitToProteinHit mm〉〉;
lsid2 = pepID; lsid1 = protID;
{lsid2, sc} ← 〈〈UPeptideHit, score〉〉]

Q6 : [{an, seq, sc, pr, dbs}|{lsid1, an} ← 〈〈UProteinHit, accession number〉〉;
lsid1 = {’URN:LSID:ispider.man.ac.uk:pedro’, 1069};
{pepID, protID} ← 〈〈UPeptideHitToProteinHit mm〉〉;
lsid1 = protID;
{lsid2, seq} ← 〈〈UPeptideHit, sequence〉〉; lsid2 = pepID;
{lsid2, sc} ← 〈〈UPeptideHit, score〉〉;
{lsid2, pr} ← 〈〈UPeptideHit, probability〉〉;
{lsid1, dbs} ← 〈〈UProteinHit, dbsearch〉〉]

We notice that the reformulated query contains a union of four compre-
hensions, each of which undertakes a Select-Project-Join query on one of the
data sources. This is because, in the case of ISPIDER, the queries within the
transformation pathways that populate the (virtual) global schema constructs
from source schema constructs are themselves Select-Project-Join queries (there
are no instances of grouping or aggregating, even though this is supported by
AutoMed and IQL).

After optimisation, query Q1
ref becomes Q1

opt below. The QueryOptimiser

component has simplified Q1
ref using the optimisers discussed in Section 3.2.

The IQL variables starting with a dollar character are system-generated vari-
ables generated by the optimisers:

[{$x2, {′pride′, $k1}}|{$k1, $x2} ← pride : 〈〈identification, accession number〉〉;
$x2 = ’ENSP00000339074’] + +

[{$x6, {′gpmdb′, $pid3}}|{$pid3, $proseqid4} ← gpmdb : 〈〈protein, proseqid〉〉;
{$proseqid5, $x6} ← gpmdb : 〈〈proseq, label〉〉;
$proseqid4 = $proseqid5; $x6 = ’ENSP00000339074’] + +

[{$x10, {′pedro′, $phid7}}|{$phid7, $phid8} ← pedro : 〈〈proteinhit, protein〉〉;
{$pid9, $x10} ← pedro : 〈〈protein, accession num〉〉;
$phid8 = $pid9; $x10 = ’ENSP00000339074’] + +

[{$x12, {′pepseeker′, $d11}}|{$d11, $x12} ← pepseeker : 〈〈proteinhit, ProteinID〉〉;
$x12 = ’ENSP00000339074’]

The QueryAnnotator then traverses Q1
opt and identifies the largest sub-

queries that can be evaluated by AutoMedWrapper instances. The annotated
query Q1

ann is then submitted to the QueryEvaluator. For architectures A1

and A2, this annotated query contains four wrapper objects, one for each of
the comprehensions above, since each comprehension refers to a different data
source. For architecture A3 the annotated query similarly has four instances of
the OGSA-DQP wrapper: even though OGSA-DQP does have access to all four
data sources concurrently, the current version does not support UNION and thus
four separate queries need to be submitted to AutoMed-DAI wrapper instances
by AutoMed’s QueryEvaluator.

The other user-provided queries result in similarly annotated queries, i.e.
containing up to four comprehensions being appended. Some queries contain

17

fewer comprehensions because some data sources do not contribute to cer-
tain integrated schema constructs specified in the query. For example, Q2

results in a single comprehension since only PEDRo contributes to construct
〈〈UProteinHit, description〉〉.

Figure 6 shows the running times for the user-provided queries using all three
architectures, and splitting the execution times into the four parts discussed
earlier. We see that architecture A2 is slightly slower than A1, which is to be
expected since the only difference between them is that A2 is service-based and
wraps JDBC functionality using OGSA-DAI, whereas A1 uses JDBC directly to
access the data sources. Architecture A3 is significantly slower than the other
two. This can be attributed to the relatively inefficient performance of OGSA-
DQP Version 3.1’s incremental query processing, as noted in Section 2. This
set of user-supplied queries do not require distributed join processing and thus
cannot exploit this significant aspect of DQP’s capabilities.

We finally note that optimisation for query Q6 takes more than 7 seconds.
This query is a join involving half the tables of the integrated schema and
containing 6 generators. After reformulation, these generators are sourced from
4, 3, 4, 2, 3 and 2 data sources respectively. As a result, after the application
of Opt. 2 of Section 3.2, the query contains

∏
(4 ∗ 3 ∗ 4 ∗ 2 ∗ 3 ∗ 2) = 576

comprehensions. Opt. 1 and Opt. 3 greatly simplify this output of Opt. 2, but
this requires a significant amount of time. Note that if optimisation were not
performed on Q6, then all the source data encompassed by its generators would
need to be retrieved, incurring a huge data transfer and evaluation cost (much
greater than 7 seconds).

This last finding, combined with the fact that this issue is not uncommon
in data integration settings and also with the non-negligible optimisation times
for Q4 and Q5, points to the need for more work on improving query optimi-
sation performance in AutoMed, e.g. by caching previous costly optimisation
results, caching intermediate optimisation results, as well as re-implementing in
a parallel fashion those optimisers that repeatedly traverse and rewrite queries.

5.4 Distributed Join Queries

The first set of queries above suggests that all three architectures are suitable for
evaluating SPJU queries on the global schema, but that using OGSA-DQP does
introduce a performance penalty. However, apart from identifying a number of
improvements needed, such as support for the UNION operator and improvement
of the communication between its GDQS and GQES services, this set of queries
is not appropriate for fully evaluating the query performance of OGSA-DQP
because none of the user-provided queries requires distributed joins between the
data sources.

For the purposes of our performance evaluation, we have therefore devised
a second set of queries, shown in Table 3, which, after reformulation and opti-
misation, do require the evaluation of equijoins between different data sources
(however, this second set of queries do not have an actual biological meaning).

Figure 7 illustrates the join pattern between the Q7, Q8 and Q9 subsets of
queries, after they have been reformulated and optimised. For example, query
Q7a results in a query performing an equijoin over the PRIDE and PepSeeker
data sources, whereas query Q8a results in a query performing an equijoin over
gpmDB and PEDRo. Query Q9a results in an equijoin over queries Q7a and

18

0

1

2

3

4

5

6

7

8

9

wrappers 0.20.4 8.4 0 0.3 6.7 0 0.3 6.6 0.1 0.2 2.9 0 0.2 3.5 0 0.1 1.2

evaluation 0.10.1 0.1 0.1 0.1 0.1 0.10.1 0.1 0.1 0.1 0.1 0.10.1 0.1 0.1 0.1 0.1

optimisation 0.10.2 0.2 0.1 0.2 0.2 0.10.2 0.2 0.6 0.8 0.8 0.80.9 0.9 7.3 7.3 7.3

setup 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

e
xe

cu
tio

n
 t

im
e

 in
 s

e
co

n
ds

Q1 Q2 Q3 Q4 Q5 Q6

Figure 6: Evaluation of User Queries for Architectures A1 (left), A2 (middle)
and A3 (right).

PEDRo Pepseeker PRIDE gpmDB

peptidehit
.dbsearch

aa
.position

peptidehit
.MassNo

modification
.location

Q7 Q8

Q9

Figure 7: Queries Q7-Q9 Perform Joins Across Data Sources

Q8a. Queries Q7b/Q7c, Q8b/Q8c and Q9b/Q9c are similar to Q7a, Q8a and Q9b,
respectively, but the number of tuples that are input to the join operator after
the application of the filters within the comprehensions is larger, as illustrated
in Table 4. For example, the join operation in query Q7a is passed 4 tuples
from PRIDE, after the application of filter spi = 1645, and 559 tuples from
PepSeeker, after the application of filter m > 1600. The number of tuples input
to each join operation is significant because, as discussed below, a bottleneck in
processing this set of queries is observed with architectures A1 and A2 when the
joins are evaluated by AutoMed’s AQP (not OGSA-DQP, as in the complete
architecture A3). The AQP only supports the nested loops join algorithm, which
is dependent on the size of its input arguments.

The annotated queries for architectures A1 and A2 will contain 2 wrapper
objects for queries Q7a −Q7c and Q8a −Q8c and 4 wrapper objects for queries

19

Table 3: Distributed Join Queries
Q7a: [{m}|{sp, spi} ← 〈〈USpectrum, spectrum identifier〉〉; spi = 1645;

{{peph1, peph2}, m} ← 〈〈UPeptideHit, MassNo〉〉; m > 1600; m = spi]

Q7b: [{m}|{sp, spi} ← 〈〈USpectrum, spectrum identifier〉〉; spi > 1600; spi < 2365
{{peph1, peph2}, m} ← 〈〈UPeptideHit, MassNo〉〉; m > 1600; m = spi]

Q7c: [{m}|{sp, spi} ← 〈〈USpectrum, spectrum identifier〉〉; spi > 1600; spi < 3740
{{peph1, peph2}, m} ← 〈〈UPeptideHit, MassNo〉〉; m > 1600; m = spi]

Q8a: [{at}|{{aa1, aa2}, at} ← 〈〈UAA, at〉〉; aa2 < 50000; at > 1600; at < 1650;
{{peph1, peph2}, {d1, d2}} ← 〈〈UPeptideHit, dbsearch〉〉;
d2 > 1600; d2 < 1700; at = d2; peph2 > 6200; peph2 < 6251]

Q8b: [{at}|{{aa1, aa2}, at} ← 〈〈UAA, at〉〉; aa2 < 50000; at > 1600; at < 2100
{{peph1, peph2}, {d1, d2}} ← 〈〈UPeptideHit, dbsearch〉〉;
d2 > 1600; d2 < 1700; at = d2; peph2 > 6200; peph2 < 6376]

Q8c: [{at}|{{aa1, aa2}, at} ← 〈〈UAA, at〉〉; aa2 < 50000; at > 1600;
{{peph1, peph2}, {d1, d2}} ← 〈〈UPeptideHit, dbsearch〉〉;
d2 > 1600; d2 < 1700; at = d2; peph2 > 6200; peph2 < 6501]

Q9a: [{k}|{k} ← [{m}|{sp, spi} ← 〈〈USpectrum, spectrum identifier〉〉; spi = 1645;
{{peph1, peph2}, m} ← 〈〈UPeptideHit, MassNo〉〉; m > 1600; m = spi];

{k} ← [{at}|{{aa1, aa2}, at} ← 〈〈UAA, at〉〉; aa2 < 50000; at > 1600; at < 1650;
{{peph1, peph2}, {d1, d2}} ← 〈〈UPeptideHit, dbsearch〉〉;
d2 > 1600; d2 < 1700; at = d2; peph2 > 6200; peph2 < 6251]]

Q9b: [{k}|{k} ← [{m}|{sp, spi} ← 〈〈USpectrum, spectrum identifier〉〉; spi > 1600; spi < 2365
{{peph1, peph2}, m} ← 〈〈UPeptideHit, MassNo〉〉; m > 1600; m = spi];

{k} ← [{at}|{{aa1, aa2}, at} ← 〈〈UAA, at〉〉; aa2 < 50000; at > 1600; at < 2100
{{peph1, peph2}, {d1, d2}} ← 〈〈UPeptideHit, dbsearch〉〉;
d2 > 1600; d2 < 1700; at = d2; peph2 > 6200; peph2 < 6376]]

Q9c: [{k}|{k} ← [{m}|{sp, spi} ← 〈〈USpectrum, spectrum identifier〉〉; spi > 1600; spi < 3740
{{peph1, peph2}, m} ← 〈〈UPeptideHit, MassNo〉〉; m > 1600; m = spi];

{k} ← [{at}|{{aa1, aa2}, at} ← 〈〈UAA, at〉〉; aa2 < 50000; at > 1600;
{{peph1, peph2}, {d1, d2}} ← 〈〈UPeptideHit, dbsearch〉〉;
d2 > 1600; d2 < 1700; at = d2; peph2 > 6200; peph2 < 6501]]

Table 4: Data Source Tuples Retrieved From Each Data Source and Tuples
Produced, for Queries in Table 3

Data Source Q7a Q7b Q7c Q8a Q8b Q8c Q9a Q9b Q9c

PRIDE 4 1,374 2,750 4 1,374 2,750
PepSeeker 559 559 559 559 559 559
gpmDB 37 430 968 37 430 968
PEDRo 50 175 300 50 175 300

Tuples output 2,236 2,236 2,236 28 112 194 15,652 15,652 15,652

Q9a −Q9b — one for each data source involved. However, for architecture A3,
all the annotated queries will contain just a single wrapper object (because for
this set of queries there is no UNION operation to prevent this, as was the case
in the user-provided first set of queries earlier).

The running times for this second set of queries using the three different
architectures are shown in Figure 8. We see that while architectures A1 and
A2 are faster for queries that join a very small amount of data, A3 outperforms
them when more data is involved, and is able to yield a result in a reasonable
amount of time for queries Q9a, Q9b and Q9c compared to architectures A1 and
A2. This is because (unlike AutoMed’s AQP), OGSA-DQP supports distributed
join processing, via its deployment of multiple GQES services on different Grid
nodes, and also supports a distributed hash-join implementation.

The results of this and the previous section indicate that, although Au-
toMed’s AQP is able to adequately handle all stages of query processing for
SPU queries, plus joins within data sources, its QueryEvaluator component
cannot efficiently evaluate queries which contain joins across data sources.

This finding validates the design of our overall architecture A3, which com-

20

0510

15

20

25

30

w
ra

p
p

e
rs

0

0
.2

2
.2

0

0
.2

3
.4

0

0
.3

4
.6

0

.8

1
2

0
.8

1

2
.4

0

.8
1

.1
3

.1

1
.1

1
.1

9

0
0

1
0

0
0

1
2

e
va

lu
a

tio
n

0

.1
0

.1
0

.1

1
2

1
1

0
.1

2

3
2

3
0

.1

0
.1

0
.1

0
.1

1

.2
1

.3
0

.1

6
6

.2
0

.1

1
0

7
1

0
8

0
.3

0

.3

0.
3

o
p

tim
is

a
ti
o

n
0

.1
0

.2
0

.2

0
.1

0
.2

0
.2

0

.1
0

.2
0

.2

0
.1

0
.2

0
.2

0

.1
0

.2
0

.2

0
.1

0
.2

0.

2

0
.2

0
.2

0
.2

0

0
0

.2

0
0

0.
2

se
tu

p

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

A
1

A

2
A

3

A
1

A

2
A

3

A
1

A

2
A

3

A
1

A

2
A

3

A
1

A

2
A

3

A
1

A

2

A
3

>
1

h

>
1

h

>
1

h

>
1

h

A
1

A

2
A

3

A
1

A

2
A

3

A
1

A

2
A

3

Q
7a

Q

7b

Q
8a

Q

8b

Q
9a

Q

9b

Q
9c

Q

8c

Q
7c

execution time in seconds

Figure 8: Evaluation of Queries Q7a-Q9b for Architectures A1 (left), A2 (middle)
and A3 (right)

bines the respective advantages of AutoMed for fine-grained data transformation
and integration, and OGSA-DQP for Grid-based distributed query processing.

21

5.5 Incremental Query Evaluation

AutoMed’s AQP supports both instant and incremental query evaluation. In
particular, the QueryEvaluator supports incremental evaluation of IQL oper-
ators that take at least one collection-valued argument. With this mode of
evaluation, when evaluating a collection-valued expression, a single call to the
QueryEvaluator will return only n results of the final result set, rather than
the full result; and the full result is evaluated in as many successive calls as are
necessary of the QueryEvaluator, each returning a packet of n results. Both
JDBC and OGSA-DAI also support incremental evaluation, while OGSA-DQP
V3.1 operates in incremental mode only. Thus, the query processing pipelines
of all three architectures are able to support this evaluation mode.

In general, incremental evaluation requires less memory on both the data
source and the query processor Grid nodes, since intermediate and final results
do not need to be stored in memory in full. On the other hand, it does in-
cur additional communication costs between the various query processing com-
ponents. We repeated the performance evaluations described in Sections 5.3
and 5.4 above, this time using incremental evaluation for the AQP, and the
results confirmed our expectations: the running times for all queries and archi-
tectures are only slightly slower than when using instant evaluation in the AQP
(we recall from Section 5.2 that, in our experiments, all Grid nodes are provided
with enough memory to avoid paging during query execution).

This positive finding is critical in data integration settings, where results
from queries on the data sources and/or intermediate results in the AQP or
OGSA-DQP can be of significant size. If the size of such results were larger than
the available memory on a Grid node, then with instant evaluation the result
sets would need to be paged out to disk. This I/O would incur a performance
penalty significantly greater than the minor performance penalty incurred by
incremental evaluation.

To confirm this, we repeated the experiments of Sections 5.3 and 5.4 by suc-
cessively reducing the RAM made available to the OGSA-DAI and OGSA-DQP
Evaluator services (we did not reduce the amount of RAM made available to
the DBMSs as that would require a performance investigation of the particular
DBMS used in the experiments). Architectures A2 and A3 showed significant
slow-down in query execution speeds (up to an order of magnitude slower when
using 10% of the original memory in some cases), that far outweighed the slight
increase caused by incremental evaluation. We note though that the relative
performance of the two architectures, discussed in Sections 5.3 and 5.4, was
unchanged.

Our overall conclusion therefore is that, since the extra cost incurred is small,
incremental query processing should be enabled for all queries submitted to all
three of our architectural variants.

5.6 Parallel Evaluation

Up to now, we have assumed that the AQP evaluates queries serially. This
section investigates the performance of our three architectures if the parallel
version of the QueryEvaluator component of the AQP is used — this version
currently supports parallel instant, but not parallel incremental, evaluation.
This ParallelQueryEvaluator [16] parallelises the evaluation of operators with

22

at least two collection-valued arguments (such as ++).
We first investigated the performance using the two previous sets of queries,

but the results were inconclusive. For most queries, the timings were similar
to those obtained with serial evaluation, if somewhat slower, whereas for a few
queries parallel evaluation showed a marginal speed-up. Therefore, we devised
a set of queries that are amenable to parallel evaluation, in order to investigate
the potential benefit of parallel evaluation within the AQP.

The first of these new queries is:

[{lsid, id}|{lsid, id} ← 〈〈UPeptideHit〉〉; id < 5000]

and the corresponding query after reformulation and optimisation is:

[{$d1, ’URN:LSID:ispider.man.ac.uk:pepseeker’}|$d1 ← pepseeker : 〈〈peptidehit〉〉; $d1 < 5000]
+ + [{$d2, ’URN:LSID:ispider.man.ac.uk:pedro’}|{$d2, $e} ← pedro : 〈〈peptidehit〉〉; $d2 < 5000]
+ + [{$d3, ’URN:LSID:ispider.man.ac.uk:gpmdb’}|$d3 ← gpmdb : 〈〈peptide〉〉; $d3 < 5000]
+ + [{$d4, ’URN:LSID:ispider.man.ac.uk:pride’}|$d4 ← pride : 〈〈pridepeptide〉〉; $d4 < 5000]

Looking at this optimised query, we see that the annotated query will contain
4 wrappers for all three architectures. The other five queries in this new query
set contain a different constant within the filter in the comprehension, using
a step of 5,000 from 5,000 up to 30,000, which has the effect of selecting an
increasing number of tuples from the four data sources.

Figure 9 shows the running times for these six new queries. The results at
first seem contradictory. On the one hand, results for A1 are the same for serial
and parallel evaluation. On the other hand, parallel evaluation results in a small
benefit for A2 and a significant speedup for A3.

Closer examination offers valuable insights on parallel query processing in a
Grid data integration setting. The impressive benefit for A3 is a result of par-
allelising interactions with the wrappers, i.e. the time spent evaluating queries
at the data sources and transmitting the results back to the AQP. As discussed
in Section 5.3 and illustrated in Figure 6, A3 is quite slow compared to A1

for SPU queries, and therefore there is a clear benefit in parallelising calls to
OGSA-DQP. Similarly, A2 uses OGSA-DAI which has a small but noticeable
effect on query evaluation. On the other hand, A1 performs very well for SPU
queries and, for this set of queries any benefit from parallelising calls to JDBC is
roughly offset by the increased costs of thread management and thread related
issues, such as lock acquisition for shared resources.

Given these results, we can conclude that a parallel implementation of the
QueryEvaluator component can safely replace the serial one for all classes of
queries. In some cases there will be no benefit, but we can identify two cases
in which there would be: firstly, if data retrieval in two or more subqueries of
the overall query is costly, e.g. because of the complexity of the subqueries or
because of slow network links at the data sources, in which case parallelisation
of these subqueries will reduce the overall query execution time; secondly, if the
post-processing by the AQP is amenable to parallelisation e.g. a query of the
form Q1 ++Q2, where Q1 and Q2 are subqueries sent to AutoMed wrappers for
evaluation, would benefit significantly by parallel processing of the ++ operator.

We finally note that the AQP does not support combined parallel and in-
cremental evaluation, even though they both support each feature in isolation.
Implementing this additional capability, and evaluating its effect on our three
architectures, would be an area of interesting future work.

23

0

10

20

30

40

50

60

serial 0.26 1.1 11.6 0.42 2.5 23.1 0.522.6632.1 0.84 3.6 40.4 1 3.9250.5 1.174.9460.3

parallel 0.250.937.02 0.391.6611.3 0.491.7216.5 0.6 2.5220.9 1.052.8625.7 1.254.1132.2

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

ex
e

cu
tio

n
 ti

m
e

 i
n

se
co

n
d

s
Q10 Q11 Q12 Q13 Q14 Q15

Figure 9: Serial vs. Parallel Evaluation of Queries Q10-Q15 for Architectures
A1, A2 and A3.

5.7 Network Speed

In all our experiments discussed up to now, the network links between all pairs
of Grid nodes were 100Mbps. Given that such link speeds are typical only in
local data integration scenarios, and that link speeds can have a dramatic effect
on query processing performance, we also connected the Grid nodes to a Layer-3
switch and repeated the user query experiments using different link speeds.

Our initial aim was to use three different link speeds, 1Mbps, 10Mbps and
100Mbps, between pairs of nodes; however the switch only supported two modes
of operation, 10Mbps and 100Mbps. Another solution was to use the 100Mbps
mode with 1%, 10% and 100% rate limiting11 to achieve the desired network
speeds. However, the switch only supported rate limiting between 10% and
100% — not lower. Thus, we have used the following four different link speed
options for the experiments discussed in this section:

L1: 1Mbps, by selecting the 10Mbps mode and setting rate limiting to 10%

L2: 10Mbps, by selecting the 100Mbps mode and setting rate limiting to 10%

L3: 10Mbps, by selecting the 10Mbps mode and setting rate limiting to 100%

L4: 100Mbps, by selecting the 100Mbps mode and setting rate limiting to
100%

We decided to keep both the L2 and L3 methods of obtaining the 10Mbps link
speed in order to determine whether there is a difference between them.

We first evaluated the performance of the user-provided queries, Q1-Q6 for
each of the three architectures, A1, A2 and A3, and for each of the four link speed

11Rate limiting is a method of controlling traffic at a certain switch port. Traffic exceeding
a predefined limit is either delayed or is dropped and has to be retransmitted.

24

options, L1, L2, L3 and L4. Figure 10 shows the timing results. We see that the
performance difference varies from no difference (for query Q6 for architecture
A1 between link speeds L4 and L3 or L2) to 3.7 times slower (queries Q2 and Q3

for architecture A2 between link speeds L4 and L1
12), and so drawing overall

conclusions is not straightforward.
We next evaluated the performance of the second set of queries Q7a-Q9c, for

each of the three architectures, A1, A2 and A3, for each of the four link speed
options, L1, L2, L3 and L4. The results are again shown in Figure 10. We see
that architecture A1 shows no difference of performance for most queries, and
a small but noticeable difference for query Q7c between link speed L1 and the
other link speeds. Taking a closer look at the time spent in each query processing
component (set-up time, optimisation, evaluation and wrappers), we see that
the times for the first three components are the same, but there is a small
but noticeable difference in the time spent in the wrappers, clearly resulting
from the time spent to transmit results from the data sources to the AQP. The
same applies for the running times for architecture A2, but this time the effect
is noticeable for all queries between link speed L1 and the other link speeds.
This can be explained by the extra OGSA-DAI layer and the extra messaging
it incurs which, even though it goes unnoticed for higher link speeds between
Grid nodes, it is evident for the low speed of 1Mbps. Finally, in architecture
A3, where the use of OGSA-DQP incurs yet another layer of (verbose XML)
messaging, the difference in performance is even worse for L1, to the point that
L4 is more than 5 times faster than L1. The link speed is so significant in this
architecture, that there is also a clear difference in performance between the
other link speeds as well for queries Q9a, Q9b and Q9c.

These results highlight the need for any deployed architecture to be able
to determine the speed characteristics of the connections between Grid nodes
and to support cost optimisers that provide alternative query plans based on
these characteristics. A closer examination of this aspect of query optimisation is
outside the scope of this paper and a subject for future work. As a first measure,
however, the verbosity of the messaging of OGSA-DAI and OGSA-DQP services
needs to be addressed, and would significantly increase performance for settings
with low network speed.

Similarly, other issues for future work include an analysis of the effect of
network speed on parallel, incremental, and combined parallel and incremental
query processing.

6 Conclusions and Future Work

In earlier work, we described an architecture for the virtual integration of hetero-
geneous Grid resources that provides complex data transformation and integra-
tion capabilities coupled with distributed query processing over heterogeneous
data sources. To achieve this, we combined state-of-the-art technologies in data
integration, namely the AutoMed system, and in Grid access and query process-

12Note that this slowdown is a result of these queries employing a membership sub-query,
rather than a self-join, due to OGSA-DQP’s inability to handle self-joins — see Section 5.3.
Containment is ultimately evaluated by the AQP, resulting in more messages between AQP
and OGSA-DAI than if a self-join were used, in which case the join would be evaluated
internally by the data sources themselves.

25

05

1
0

1
5

2
0

2
5

3
0

L
1

0
.6

7
1

2
.3

2

4
.4

1
.0

8
2

.3
9

7

.4
2

1

0
8

1
.8

2

1
5

.0
2

8
.3

1
.7

3
3

.8

1
0

1
11

>

1
h

8

.5
7

1
0

.6
1

2
.7

2

.5
9

3

.7

5
.3

6
5

0
.1

5

3
.5

5

6
.9

L
2

0
.2

6
1

1
.8

2

3
.7

1
.0

8
2

.2
1

7
.0

0

1
0

8
0

.5
7

1

2
.2

2
3

.7
1

.3
8

2
.6

3

7
.

7
5

1
10

2

.7
7

3
.9

4
4

.8
7

2
.2

1

2
.6

9
3

.3
5

1
2

.1

1
3

.8

1
5

.5

L
3

0
.2

6
1

1
.6

2

3
.2

1
.0

8
2

.2
1

7
.0

5

1
0

7
0

.5
7

1

2
.2

2
3

.9
1

.3
9

2
.6

5

7
.

4
5

1
10

2

.7
2

3
.6

3
4

.8
1

2
.2

1

2
.7

1
3

.3
4

1
1

.0

1
2

.9

1
4

.2

L
4

0
.2

5
1

1
.7

2

3
.4

1
.0

8
2

.2
0

7
.0

0

1
0

7
0

.4
9

1

1
.9

2
3

.3
1

.3
3

2
.5

6

7
.

4
6

1
09

2

.5
4

3
.6

6
4

.9
3

2
.2

5

2
.6

5
3

.3
5

9
.5

1
1

0
.9

1

2
.6

Q
7a

A
1

A

2

A
3

Q
7

b
Q

7
c

Q
8a

Q

8
b

Q
8

c
Q

9
a

Q
9

b
Q

9c

Q
7

a
Q

7
b

Q
7c

Q

8
a

Q
8b

Q

8c

Q
9

a
Q

9b

Q
9

c
Q

7a

Q
7

b
Q

7
c

Q
8a

Q

8
b

Q
8

c
Q

9
a

Q
9

b
Q

9c

>
1

h

>
1

h

>
1

h

>
1

h

>
1

h

>
1

h

>
1

h

>
1

h

>
1

h

>
1

h

>
1

h
>

1
h

>
1

h

>
1

h

>
1

h

execution time in seconds

02468

10

12

14

L
1

0
.5

2
5

0
.6

6

0
.6

2
9

0

.9
1

3

1
.0

2
5

7
.5

7
8

1.

8
5

1

2
.6

9
6

2

.6
7

3

1
.4

9
9

1
.

7
5

8
7

.9
7

1

1
0

.4
7

1

2
.3

9

1
1

.9
9

4.

4
3

3

5
.4

7
9

9

.0
9

5

L
2

0
.2

7
2

0
.3

9
6

0

.3
6

6

0
.8

9
8

0

.9
7

5
7

.6
0

5

0.
9

2
7

0

.8
7

8

0.
8

7
1

.1
7

2
1

.
2

9
8

7
.6

6

1
0

.2
5

7

.2
9

2

7
.2

3
3

3.

9
3

6

4
.7

3

8
.8

2
9

L
3

0
.2

7
8

0
.3

8
8

0

.3
6

0

.8
9

2

0
.9

6
5

7
.5

4
7

0.

9
1

6

0
.8

8

0
.9

1
2

1

.2

1
.2

9
3

7

.6
9

7

1
0

.1
8

7

.2
8

3

7
.3

2
2

3.

8
9

4

4
.7

7
8

8

.8
5

5

L
4

0
.2

5
3

0
.3

7
1

0

.3
4

8

0
.8

8
0

.9
6

6
7

.5
9

3

0
.9

8

0
.7

4
2

0

.7
2

5

1
.1

5
2

1
.2

8

1
7

.6
4

8

8
.8

5
3

6

.9
1

7

6
.8

9
6

3

.9
3

4

.8
9

9

8
.8

1

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

A
1

A

2

A
3

execution time in seconds

Figure 10: Left: Instant Evaluation of Queries Q1-Q6 for Architectures A1, A2

and A3 and Link Speeds L1-L4. Right: Instant Evaluation of Queries Q7a-Q9c

for Architectures A1, A2 and A3 and Link Speeds L1-L4.

ing, namely OGSA-DAI and OGSA-DQP. There is currently no Grid-enabled
middleware supporting fine-grained data transformation/integration, and hence
our architecture is novel in combining this with distributed query processing
within a Grid environment.

In this paper, we have presented an extensive evaluation of query perfor-

26

mance in our architecture, investigating a number of performance factors and
comparing it with two other architectures that do not use OGSA-DQP and
OGSA-DAI/OGSA-DQP, respectively, in order to ascertain the impact of each
component on query processing performance. To our knowledge, this is the
first such investigation in a Grid-based environment combining data transfor-
mation/integration with distributed query processing, and we believe that our
findings will be of benefit to others wishing to combine these capabilities to
support Grid applications requiring sophisticated data integration and query-
ing over distributed heterogeneous data resources.

Our investigation has demonstrated that our full architecture is able to effi-
ciently evaluate Select-Project-Join-Union queries over Grid-enabled heteroge-
neous data sources. Combining data transformation/integration capabilities, as
exemplified by AutoMed, with the OGSA’s data access and distributed query
processing middleware has thus been demonstrated to be feasible from a query
performance perspective.

Our investigation has also demonstrated that while AutoMed alone can ef-
ficiently evaluate Select-Project-Union queries on the global schema, the full
architecture, including OGSA-DQP, is needed in order to efficiently evaluate
queries that involve distributed joins across data sources. We have also iden-
tified some shortcomings of OGSA-DQP Version 3.1, including the impact on
query performance due to lack of support for the UNION operator and the in-
efficiency of Select-Project queries, and these findings have been communicated
to the OGSA-DQP team.

For the future, there are two possible ways forward to further improve query
performance in our architecture: either extend OGSA-DQP with these addi-
tional capabilities, or extend the AutoMed query processor with more sophis-
ticated query processing functionality, including a physical algebra for IQL,
cost-based optimisation and query planning, and distributed query processing.
OGSA-DAI itself also requires further extension so as to export additional meta-
data from data sources (if this is available) in order support more effective
cost-based optimisation (e.g. information about dataset sizes, distributions and
access paths) — and again, we have communicated this recommendation to the
OGSA-DAI team.

Our future work includes: providing JDBC and OGSA-DAI interfaces over
the AutoMed Query Processor, in order to promote interoperability between
AutoMed and other Grid middleware, such as Taverna [20]; investigating and
handling the impact of evolutions of the integrated and data source schemas c.f.
[12]; and extending our architecture to leverage the benefits of ontology-based
data integration [43]. The ISPIDER integrated resource itself will shortly be
made publicly available by deploying AutoMed as a service within the ISPIDER
Central website [37].

Acknowledgements
The authors would like to thank the following people: Dimitris Fourkio-

tis and Jamie Walters for providing the initial implementations of AutoMed’s
parallel evaluator and SQL-to-IQL translator, respectively; our ISPIDER col-
laborators from the University of Manchester for providing the initial set of
queries; and Steven Lynden, Arijit Mukherjee and Ally Hume for their help
with OGSA-DAI and OGSA-DQP.

27

References

[1] M. N. Alpdemir et al. Service-based distributed querying on the Grid.
In Proc. Int. Conference on Service Oriented Computing, pages 467–482,
2003.

[2] M. N. Alpdemir et al. Experience on performance evaluation with OGSA-
DQP. In Proc. U.K. e-Science All Hands Meeting (AHM’05), 2005.

[3] M. Antonioletti et al. The design and implementation of Grid database ser-
vices in OGSA-DAI. Concurrency - Practice and Experience, 17(2–4):357–
376, 2005.

[4] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension
syntax. SIGMOD Record, 23(1):87–96, 1994.

[5] T. Clark, S. Martin, and T. Liefeld. Globally distributed object identifica-
tion for biological knowledgebases. Briefings in Bioinformatics, 5(1):59–70,
2004.

[6] C. Comito and D. Talia. XML data integration in OGSA Grids. In Proc.
Data Management in Grids (DMG at VLDB’05), pages 4–15, 2005.

[7] R. Craig, J. P. Cortens, and R. C. Beavis. Open source system for analyzing,
validating, and storing protein identification data. Journal of Proteome
Research, 3(6), 2004.

[8] S. B. Davidson et al. K2/Kleisli and GUS: Experiments in integrated access
to genomic data sources. IBM Systems Journal, 40(2):512–531, 2001.

[9] S. B. Davidson, C. Overton, V. Tannen, and L. Wong. BioKleisli: A digital
library for biomedical researchers. Int. J. on Digital Libraries, 1(1):36–53,
1997.

[10] B. Dobrzelecki et al. Profiling OGSA-DAI performance for common use
patterns. In Proc. U.K. e-Science All Hands Meeting (AHM’06), 2006.

[11] O. M. Duschka and M. R. Genesereth. Answering recursive queries us-
ing views. In Proc. ACM Symposium on Principles of Database Systems
(PODS97), pages 109–116, 1997.

[12] H. Fan and A. Poulovassilis. Schema evolution in data warehousing environ-
ments — a schema transformation-based approach. In Proc. International
Conference on Conceptual Modeling (ER’04), pages 639–653, 2004.

[13] L. Fegaras and D. Maier. Towards an effective calculus for object query lan-
guages. In Proc. ACM SIGMOD International Conference on Management
of Data (SIGMOD’95), pages 47–58, 1995.

[14] L. Fegaras and D. Maier. Optimizing object queries using an effective
calculus. ACM Trans. Database Syst., 25(4):457–516, 2000.

[15] I. Foster et al. The Open Grid Services Architecture, Version 1.5. Technical
Report GFD-I.080, Open Grid Forum, September 2006. Available at http:
//www.ogf.org/documents/GFD.80.pdf.

28

[16] D. Fourkiotis. Implementation of parallel and distributed query pro-
cessing in the AutoMed heterogeneous data integration toolkit. Mas-
ter’s thesis, Birkbeck College, University of London, 2007. Available at
http://www.dcs.bbk.ac.uk/ lucas/msc/Fou07.pdf.

[17] K. Garwood et al. Pedro: A database for storing, searching and dissemi-
nating experimental proteomics data. BMC Genomics, 5(1), 2004.

[18] C. A. Goble et al. Transparent access to multiple bioinformatics information
sources. IBM Systems Journal, 40(2):532–551, 2001.

[19] L. M. Haas et al. Discoverylink: A system for integrated access to life
sciences data sources. IBM Systems Journal, 40(2):489–511, 2001.

[20] D. Hull, K. Wolstencroft, R. Stevens, C. A. Goble, M. R. Pocock, P. Li,
and T. M. Oinn. Taverna: a tool for building and running workflows of
services. Nucleic Acids Research, 34(2):729–732, 2006.

[21] E. Jasper, A. Poulovassilis, L. Zamboulis, and Hao Fan. Processing IQL
queries and migrating data in the AutoMed toolkit. AutoMed Technical
Report 20, July 2006.

[22] A. R. Jones et al. The Functional Genomics Experiment model (FuGE): an
extensible framework for standards in functional genomics. Nature Biotech.,
25(10):1127–1133, 2007.

[23] P. Jones et al. PRIDE: a public repository of protein and peptide identifica-
tions for the proteomics community. Nucleic Acids Research, 1(34):659–663,
2006.

[24] S. Kottha, K. Abhinav, R. Müller-Pfefferkorn, and H. Mix. Accessing bio-
databases with OGSA-DAI - a performance analysis. In Proc. Int. Work-
shop on Distributed, High-Performance and Grid Computing in Computa-
tional Biology (GCCB’06), pages 141–156, 2006.

[25] A. Langegger, W. Wöß, and M. Blöchl. A Semantic Web middleware for
virtual data integration on the Web. In Proc. European Semantic Web
Conference (ESWC’08), pages 493–507, 2008.

[26] M. Lenzerini. Data integration: A theoretical perspective. In Proc. ACM
Symposium on Principles of Database Systems (PODS02), pages 233–246,
2002.

[27] A. Levy, A. Rajamaran, and J. Ordille. Querying heterogeneous informa-
tion sources using source description. In Proc. Int. Conf. on Very Large
Data Bases (VLDB’96), pages 252–262, 1996.

[28] P. J. McBrien and A. Poulovassilis. A uniform approach to inter-model
transformations. In Proc. International Conference on Advanced Informa-
tion Systems Engineering (CAiSE’99), pages 333–348, 1999.

[29] P. J. McBrien and A. Poulovassilis. Data integration by bi-directional
schema transformation rules. In Proc. International Conference on Data
Engineering (ICDE’03), pages 227–238, 2003.

29

[30] P. J. McBrien and A. Poulovassilis. Defining Peer-to-Peer Data Integration
using Both as View Rules. In Proc. Workshop on Databases, Information
Systems and Peer-to-Peer Computing (DBISP2P’03 at VLDB’03), pages
91–107, 2003.

[31] P. J. McBrien and A. Poulovassilis. P2P query reformulation over Both-as-
View data transformation rules. In Proc. Workshop on Databases, Informa-
tion Systems and Peer-to-Peer Computing (at VLDB’06), pages 310–322,
2006.

[32] T. McLaughlin et al. Pepseeker: a database of proteome peptide identifi-
cations for investigating fragmentation patterns. Nucleic Acids Research,
34(1), 2006.

[33] A. Poulovassilis and C. Small. Algebraic query optimisation for database
programming languages. VLDB J., 5(2):119–132, 1996.

[34] C. Quix. Quality-oriented and metadata-driven integration in information
grids. In Proc. IST Workshop on Metadata Management in Grid and P2P
Systems - Models, Services, Architectures (MMGPS’04), pages 493–507,
2004.

[35] N. Rizopoulos. Automatic discovery of semantic relationships between
schema elements. In Proc. International Conference on Enterprise Infor-
mation Systems (ICEIS’04), pages 3–8, 2004.

[36] J. Saltz et al. caGrid: design and implementation of the core architecture of
the cancer biomedical informatics grid. Bioinformatics, 22(15):1910–1916,
2006.

[37] J. A. Siepen, K. Belhajjame, J. N. Selley, S. Embury, N. W. Paton, C. A.
Goble, S. G. Oliver, R. Stevens, L. Zamboulis, N. J. Martin, A. Poulovassil-
lis, P. Jones, R. Cote, H. Hermjakob, M. Pentony, D. T. Jones, C. Orengo,
and S. J. Hubbard. ISPIDER Central: an integrated database web-server
for proteomics. Nucleic Acids Research, 36(2):485–490, 2008.

[38] J. Smith, A. Gounaris, P. Watson, N. W. Paton, A. A. A. Fernandes, and
R. Sakellariou. Distributed query processing on the Grid. In Proc. Grid
Computing, pages 279–290, 2002.

[39] The Gene Ontology Consortium. Gene Ontology: tool for the unification
of biology. Nature Genet., 25:25–29, 2000.

[40] G. G. Trevisol et al. A distributed query execution engine in a grid en-
vironment. In IEEE International Symposium on Cluster Computing and
the Grid (CCGrid’07), pages 418–425, 2007.

[41] L. Zamboulis, H. Fan, K. Belhajjame, J. A. Siepen, A. Jones, N. J. Martin,
A. Poulovassilis, S. Hubbard, S. M. Embury, and N. W. Paton. Data access
and integration in the ISPIDER proteomics Grid. In Proc. Data Integration
in the Life Sciences (DILS’06), pages 3–18, 2006.

30

[42] L. Zamboulis and A. Poulovassilis. Information sharing for the Semantic
Web - a schema transformation approach. In Proc. International Workshop
Data Integration and the Semantic Web (at CAiSE’06), pages 275–289,
2006.

[43] L. Zamboulis, A. Poulovassilis, and J. Wang. Ontology-assisted data trans-
formation and integration. In Proc. Ontologies-Based Databases and Infor-
mation Systems (ODBIS at VLDB’08), page TBC, 2008.

[44] E. M. Zdobnov, R. Lopez, R. Apweiler, and T. Etzold. The EBI SRS server
— recent developments. Bioinformatics, 18(2):368–373, 2002.

31

