
uWIRES: a Software Framework for the Rapid
Development of Web-Related Tools

Petros A. Demetriadesa,b
a
King’s College London

The Strand, London WC2R 2LS, UK

petros@dcs.bbk.ac.uk

Alexandra Poulovassilisb

b
Birkbeck, University of London

Malet Street, London WC1 7HX, UK

ap@dcs.bbk.ac.uk

ABSTRACT

This paper presents uWIRES, a framework that aims to facilitate

the rapid design and development of web-related tools by

providing an architectural layout, a set of design and development

guidelines, an information model and a comprehensive class

library. uWIRES has been used to develop a number of tools to

support our research into visualisation of the web, including

WebIR2, an end-user meta-search tool evaluated in a real-world

context by 25 evaluation participants over a period of 4 months.

We discuss our experiences of using uWIRES for the

development of these tools and present evidence indicating that

uWIRES can indeed meet its design goals and objectives of

enabling the rapid development of production-quality web-related

tools.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures–domain-

specific architectures; D.3.3 [Programming Languages]:

Language Constructs and Features–frameworks; D.2.13 [Software

Engineering]: Reusable Software–reusable libraries, Java.

General Terms

Design, Experimentation, Standardisation, Performance.

Keywords

Component Architecture, Software Framework, Web Tools.

1. INTRODUCTION
The World Wide Web has become a ubiquitous information

dissemination, communication, entertainment and commerce

resource with an ever growing user base. These users (the number

of which is currently estimated to be greater than one billion, with

the two billion milestone expected in 2011 [1]), depend on the

web to satisfy a wide variety of daily information needs. An

integral task of much current research into web technologies is the

development of software tools to prototype some new technique

(e.g. web visualisation, web search, web data mining), or to

determine web-related metrics (e.g. size and growth of the web,

overlap of search engine indexes, extent of coverage of search

engines, freshness and age of web documents), or more generally

to test and evaluate new web-related algorithms and hypotheses.

Many such tools have similar functional needs including:

collection of the required data; temporary, and possibly persistent,

storage of data collected; processing of the data collected (for

example analysis, synthesis, aggregation and derivation of new

data, frequently with multiple dependent processing stages);

display and visualisation of the data; and interaction with users.

Furthermore, especially if they are end-user tools, tools are likely

to have significant non-functional requirements such as

portability, high performance, highly responsive user interfaces,

robust error-handling, adequate logging of errors, comprehensive

instrumentation to record data that (after appropriate analysis)

would enable conclusions relating to the research for which they

are developed to be reached, and so on. Not only are such non-

functional requirements non-trivial and do they demand

substantial design and development effort, but they are also likely

to be so similar across tools that they could be satisfied by

identical code.

A final, possible common characteristic, is that the experimental

nature of many of these tools could require a certain degree of

―trial and error‖ with different approaches to implementing some

new algorithm or paradigm of interacting with the web. To

complicate matters further, such different approaches may only

become apparent after an initial working version of the tool is

produced rather than at the outset when the tool is being designed.

We encountered such a situation while undertaking research on

visualisation of the web: we required a number of tools to use as

test-beds for our research, including a production-quality end-user

tool to be used for formal evaluation of our proposed techniques.

At the outset of our research, there were many unknown details

such as the nature of the components that our tools would require,

the data that they would need, what the sources of the data would

be, effective ways of visualising the data and which type of data

model (e.g. relational, graph-based, object-oriented, hierarchical)

would be best suited for modelling the web and persisting the

appropriate data. These uncertainties presented two main

challenges: Firstly, each component could not be developed in

isolation without considering the other potentially necessary

components and, therefore, thought needed to be given to an

overall system architecture. Secondly, the amount of work that

would be required to design, build and test each component and

different implementations of similar components would have been

substantial and could have exceeded the time available to

undertake the research and possibly affected the currency and

timeliness of conclusions drawn.

In order to resolve these issues, we investigated the availability of

existing frameworks and code libraries to use as a starting point.

We searched for frameworks that could help resolve these two

issues, that provided a suitable ―best practice‖ architecture, and

that satisfied if not all at least the majority of the non-functional

requirements described above. We found an abundance of general

approaches to component-based architectures, frameworks and

class libraries for facilitating user interface development and for

building systems that target specific aspects of interaction with the

web. These include: FLAIR [2], one of the earliest frameworks

for building general user interfaces; FIRE [3], an IR framework

that focuses on providing re-usable indexing and retrieval

facilities; InfoGrid [4], a framework for building IR applications

that provides a UI design and an interaction model; and Terrier

[5], a framework for building high performance and scalable IR

systems which focuses on providing indexing and retrieval

facilities with associated features such as pseudo-relevance

Copyright is held by the author/owner(s).

feedback. However, none of these were suitable for our purposes,

for a number of reasons, including:

 they were not sufficiently general and thus not well-suited or

applicable to our needs;

 many were no longer available (i.e. it was not possible to

obtain a copy of the compiled frameworks or source code for

most of the ones referred to in the literature);

 they were developed in non-readily portable languages that

do not support ―compile-once-run-anywhere‖ as Java does

(for example Lisp or C++);

 they focussed on very specific areas such as user interface

creation or web indexing and querying.

The apparent lack of an appropriate and readily available

framework motivated the design and development of our End-user

Web Information REtrieval Support 1 (uWIRES) framework.

Features of uWIRES are that it:

 specifies an application architecture;

 meets all the functional requirements stated above;

 is based on a class hierarchy that promotes re-use and

enables changes to be easily propagated to the entire

hierarchy;

 specifies interfaces between components and decouples

components as much as possible, in order to minimise the

ripple effects of change and to enable the use of components

or services that cannot be statically linked into a tool;

 provides comprehensive data management facilities, and

models the data entities that a typical web-related tool

requires;

 incorporates a broad range of architectural and infrastructural

services;

 makes use of existing ―off-the-shelf‖ components and code

libraries to minimise development effort;

 is readily available and aims to be of use to researchers and

developers working on a wide range of web-related topics.

In Section 2 we discuss the design goals of uWIRES, outline its

architecture and the facilities it provides, and describe a set of

development and design guidelines which informed the design

and development of the framework and which we recommend to

others wishing to develop tools using uWIRES. In Section 3 we

detail the uWIRES class library and some of the more significant

technical and implementation details. In Section 4 we discuss to

what extent uWIRES meets its intended design goals and

objectives and can assist the rapid development of web-related

tools. Section 5 concludes and briefly describes future plans and

research directions.

2. THE uWIRES FRAMEWORK
The uWIRES framework consists of:

 an architectural layout, which the framework itself follows,

and which should be followed by tools built using the

framework;

 a set of design and development guidelines for developers;

 a class library (containing a total of 7,776 lines of code, 58

classes and 843 methods);

 an extensible information model that provides

1 The name of the framework reflects the fact that it was

developed as part of a research project that was investigating

visualisation of the web in the context of meta-search. However

the framework is more generally applicable to web-related tools.

comprehensive data management facilities and a default set

of data entities.

We begin our description of uWIRES by first discussing, in

Section 2.1, the design goals that guided its development.

Section 2.2 then describes the architectural layout, Section 2.3 the

design and development guidelines, Section 2.4 the class library

and Section 2.5 the information model.

2.1 Design Goals
The framework was designed with the following goals in mind, so

as to meet the objectives discussed in Section 1 and to ensure that

it can be applied to other situations where the rapid development

of web-related tools is required:

1. Minimise development and maintenance time: Given the

potentially substantial amount of functionality that a tool

may require and the typically limited amount of time

available, the framework should serve to decrease the overall

amount of development by, among other things, facilitating

the use of existing code that offers desired functionality,

enabling the development of constituent system components

by more than one person, and minimising the ripple effects of

change.

2. Facilitate experimentation: The architecture should facilitate

experimentation with different approaches for achieving

some objective.

3. Deliver high performance: In order to avoid a situation

where the positive effects of proposed solutions or novel

ways of achieving some goal are masked by slow-performing

software, the architecture should encourage practices that

promote high performance and should simplify multi-

threading and multi-processing.

4. Facilitate incremental visualisation of data: In order to

improve performance and reduce users’ ―idle waiting time‖,

the framework should facilitate the incremental visualisation

of data so that users can start to view output and interact with

tools as soon as some data is available (as opposed to being

forced to wait until all processing stages are entirely

completed on the whole dataset).

5. Be scalable: The framework should be able to cope with

large amounts of data so that tools could be put to use in real-

world scenarios.

6. Support development of both interactive and non-interactive

tools: The framework should be applicable to the

development of interactive user tools but also to non-

interactive tools, e.g. data gathering and analysis tools.

7. Be portable: The framework should be portable to other

platforms so that it could be used irrespective of platform

choice, and that tools developed using it could be deployed to

multiple types of platforms.

2.2 Architectural Layout
In order to meet design goals 1 and 2 above, the framework

needed to be modular, to encourage the development of systems

with a modular architecture, and to provide clearly defined types

of components and interfaces between them so that components

could be decoupled and made independent as necessary.

By analysing the targeted functional requirements discussed

earlier, it was evident that the framework should provide four

classes of components specifically tailored to (i) data collection,

(ii) data processing, (iii) temporary and persistent data storage,

and (iv) data visualisation or user interaction. This led to the

architectural layout shown in Figure 1.

In this architecture, Collectors are components that gather

required data such as search results, webpage contents, website

maps, and so on. Datastores are components that store data

temporarily in transient in-memory structures, persistently in

appropriate databases conforming to defined models and schemas,

or both. Processors are components that process the data

gathered by collectors in ways that help achieve the objectives of

a tool, e.g. ranking search results. Views can be visible

components that display data and serve as user interfaces, or non-

visible control execution components that guide a tool through an

automated series of data collection and processing steps.

Multiple such components can exist in a tool, all operating

simultaneously. In the case of datastores they can be

implementations of entirely different data models (e.g. relational,

graph-based, object-oriented, etc) and can store the same data

simultaneously in the different data models. In the case of views,

they can display different visualisations of the same data and can

be synchronised.

As its name suggests, the Core component is central to the

uWIRES framework and to tools built using it. The core can be

thought of as the middleware that binds together all the other

components. It was introduced in order to meet design goals 3

and 6 and to further facilitate design goals 1 and 2. The core

provides the following services:

 Tool composition: The components comprising a tool are

registered with the core, which then fully takes over their

control.

 Tool start-up and shutdown: Once components have been

registered, the core performs the appropriate system start-up

sequence. At the request of a view (e.g. user chooses to exit

the tool) or if a fatal system error occurs, the core shuts down

the system.

 Inter-component interaction and communication: Acts as a

hub through which components can interact and

communicate with other components. This interaction is

either via events or via Application Programming Interface

(API) calls.

 Standard control flow for commonly used operations:

Incorporates functions that implement the standard control

flow for web-related operations that may be commonly used

by more than one component or different experimental

implementations of particular components. For example,

downloading the contents of Uniform Resource Locators

(URLs).

 Tool and component preferences repository: Provides a

centralised repository of preferences and settings.

 Deployment control: Incorporates functions that enforce

expiry of tools (e.g. by a certain date) in order to prevent

widespread distribution of superseded experimental or

prototypical versions of tools and to ensure that users are

always using the latest versions.

The uWIRES architectural layout borrows from the Model-View-

Controller (MVC) [6] classic design pattern which is often used to

guide the design of interactive applications. MVC partitions

applications into three separate components: models for

maintaining and storing data, views for displaying the data and

accepting user input, and controllers either for handling events or

for dispatching events and controlling execution flow. In some

respects, uWIRES can be considered a specialisation of MVC.

uWIRES differs from MVC however in that it is not just a design

pattern but a concrete application framework targeted specifically

to the development of web-related tools that are fast, scalable,

portable, and highly-interactive and responsive.

Although some of the research into uWIRES predates them,

uWIRES also borrows from other component technologies, such

as Enterprise JavaBeans (EJB) [7] and Component Object Model

(COM) [8], in that it enables independently developed

components to be integrated into a single system through

registration with the core, which then proceeds to initialise, bind

them and begin executing them as a single system. Unlike EJB,

and COM technologies, however, uWIRES is specifically targeted

towards research and development of web-related tools. The

uWIRES components can only be one of the five specific types

described above and must be derived from one of the uWIRES

component templates.

2.3 Design and Development Guidelines
In addition to adhering to the architectural layout depicted in

Figure 1, we recommend that tools developed using the uWIRES

framework should follow, as much as possible, the design and

development guidelines described below. The design and

development of the framework’s class library itself followed these

guidelines, and adherence to these guidelines will increase the

degree to which the framework’s design goals are met.

1. Java as the programming language: To the extent possible,

Java should be used for development of all parts of a tool

(although this is not absolutely compulsory as components

written in other languages can be integrated via the use of

Java wrappers and JNI).

2. Components should be independently executing entities:

Each instance of a component should be able to execute in its

own thread as a stand-alone executing entity and should not

assume execution within the thread of some other component

or the core.

3. Concurrency synchronisation at the data level: As multiple

threads will be accessing and acting upon the same data,

access to this data must be controlled to ensure that no two

threads attempt to modify the same data simultaneously and

no thread attempts to read some data that is being updated by

some other thread.

4. Inter-component communication only through the core: As

indicated by the architectural layout, there should be no

direct data or control flow communication between

components except through the core. The core’s public API

and the inter-component messaging and data exchange

facilities provided should be used for this purpose.

5. The functional segregation of components in the

architectural layout should not be violated: The architectural

Figure 1: uWIRES Architectural Layout

Views

Views

Store 1
DataStores

Collectors
Collectors

Processors
The Core

Collectors
Collectors

Collectors

Legend

Data flow

Execution control flow

layout implies that each component must perform a specific

type of function. Although the framework encourages this

functional segregation, it does not include any controls to

enforce it and a tool developer could choose to disregard it.

Violation of this functional segregation should be avoided as

it can negate some of the benefits of using this framework to

build a tool (see discussion below).

6. Avoidance of platform-specific functions, services, and

components: No platform-specific functions and services

should be used if possible. Where this cannot be avoided, a

Java wrapper to the native functions, services or components

should be created.

7. Incorporate instrumentation: Comprehensive

instrumentation should be incorporated to facilitate testing,

debugging and effectiveness evaluation of tools.

We now summarise some of the ways in which the above

guidelines help meet the design goals of Section 2.1:

1. Java as the programming language: Java is arguably the

most portable software development language available

today, and comes with a very rich class library which can

reduce development effort and thus timescales. There are a

vast number of free and open-source code libraries which can

be used to further reduce development times.

2. Components should be independently executing entities:

This allows components to be executed in separate threads or

processes, thus enabling different tasks to be performed

concurrently. Since many of the delays of a web-related tool

are likely to be with network access (e.g. waiting for a

website to respond or a page to download), rather than long

computations, multi-threading increases performance.

3. Concurrency synchronisation at the data level: This is not

only dictated by the fact that the framework promotes multi-

threading, but can also prevent obscure concurrency-related

defects and significantly increases performance. One

approach to concurrency synchronisation is to use database

concurrency control mechanisms, such as locking. But this

would reduce flexibility as it would require a datastore that

supported locking. Another way would be to ensure that all

functions that access or modify data reside in a single class

and are all synchronised. However, this would be rather

crude as the entire object in which these functions reside

would be locked whenever any single function executed and

only one such function would be able to execute at any time.

For a heavily multi-threaded tool, this could decrease

performance as the multiple threads would compete for

access to the object lock. An alternative approach that

eliminates these issues is to use synchronised blocks of code

within the functions that read and modify data, at the precise

locations where such reads and modifications occur, using

different lock objects (i.e. objects on which the locks should

be acquired) for each distinct data entity. This approach

increases performance and also facilitates incremental data

visualisation as it prevents the display of data that is in the

process of being updated.

4. Inter-component communication only through the core: This

prevents tight coupling between components, which in turn

minimises the ripple effects of change and allows entire

components to be easily replaced by other experimental

components (e.g. alternative processor or view components).

It also facilitates the incremental visualisation of data by

enabling the core to intercept data updates (irrespective of

which component initiated them) and to issue appropriate

―data update events‖ to other components as and when new

data is available. This arrangement also increases scalability

by enabling components to be executed on a different

physical machine, with the core component taking care of all

the necessary inter-process and inter-machine

communications. Finally, it also facilitates portability as

unavoidable platform-specific code could be isolated within

one or more components (with an appropriate wrapper to act

as the interface with the core), thus eliminating the need for

other components to have any knowledge of where a

component is executing or the type of platform on which it is

executing.

5. The functional segregation of components in the

architectural layout should not be violated: The proposed

functional segregation encourages decoupling, which in turn

can minimise the ripple effects of change. It can simplify

experimentation (e.g. alternative ways of collecting,

processing, storing, or visualising data) as each of these

―functional groups‖ exist in separate ―modules‖ and are thus

easily replaced by new experimental modules. Furthermore,

as the user interface exists in a separate module (a view

component), this could easily be replaced by a non-

interactive view component which simply instructs the

system to perform certain actions through appropriate

command events. Such a view could, for example, be used

to perform an analysis of the overlap of search results by

different engines by executing, without any user intervention,

several hundred or thousand queries and determining the

number of common results. Similarly, a non-interactive non-

visible view could be used to automatically test a tool by

simulating the actions of a user issuing commands and

interacting with the tool.

6. Avoidance of platform-specific functions, services, and

components: Greater portability can be achieved by using

Java functions, services and components, and avoiding

platform-specific equivalents.

7. Incorporate instrumentation: Comprehensive debugging

instrumentation (e.g. logging and tracing) can reduce the

time needed to troubleshoot and correct defects and other

issues.

2.4 Class Library
The uWIRES class library is one possible implementation of the

architectural layout described in Section 2.2. It was implemented

in Java and follows the guidelines described in Section 2.3. Figure

2 lists all the classes in the uWIRES class library as well as the

hierarchical relationships between them.

The services and functions provided by these classes are grouped

into six categories:

1. Component templates: These are either concrete classes

which implement components that can be instantiated, or

abstract classes and interfaces which provide the templates

(and specify the methods that must be implemented) from

which component classes can be derived.

2. Inter-component messaging and communication: Classes

that enable communication between components even if

these components are running in separate threads or

processes.

3. Data management and default web-related data entities:

Classes providing data management functions that tools may

typically require (such as reading, inserting, updating,

caching, looking-up, bulk loading, sorting, filtering and so

on). They also model a set of default data entities that a

typical web-related tool would require.

4. Common web-related services: Classes which provide

services such as HTTP clients and HTML Parsers.

5. Infrastructural services: Classes which provide fundamental

infrastructural services such as error handling, logging,

thread management and other convenience functions.

6. Utility classes: Classes implementing frequently needed

functions not available in the standard Java libraries, for

example calculation of MD5 digests and some advanced

string manipulation functions.

2.5 Information Model
uWIRES incorporates a comprehensive architecture for data

management as well as a set of default data entities that web-

related tools are likely to require. The internal model that

uWIRES employs to store and manage data can be regarded as

object-oriented. Each primitive data entity is modelled as a single

class. Complex entities can be composed from primitive entities

and treated as individual entities (rather than as a collection of

separate primitive entities). Where this is done, the primitive

entities that form the complex entity may be linked to the complex

entity via entity id referencing, or they may be fully embedded

within the complex entity – it is up to a tool developer to

determine which approach is best suited to a given purpose. The

linked approach is advantageous as it means that the primitive

entities may be cached in memory (irrespective of whether the

complex entity is cached) thus helping to meet design goal 3 by

improving performance; memory utilisation would also be lower

as the proliferation of identical copies (object instances) of the

same entity is avoided thus helping to meet design goal 5.

3. CLASS DETAILS
This section describes the purpose of the main classes in the

uWIRES framework, the services provided by them and some

significant technical implementation details. We begin by

describing the ancestor of all classes (the UWObject class) in

Section 3.1. Section 3.2 describes the Component Template

classes which either implement concrete components that can be

instantiated ―as is‖ or abstract classes from which each of the five

component types in the framework must be derived. Section 3.3

describes the classes that implement the Inter-component

Messaging and Communication facilities. Section 3.4 describes

the classes that provide Data Management facilities and a set of

Default Web-Related Data Entities that implement the uWIRES

information model. Section 3.5 describes the classes that

implement a number of commonly needed web-related services.

Finally, Section 3.6 describes the classes that implement the

Infrastructural Services and Utility functions.

A comprehensive description of all the classes, attributes, methods

and facilities provided by uWIRES can be found in the API

documentation accompanying uWIRES available from

http://www.dcs.bbk.ac.uk/~petros.

3.1 UWObject Class
The UWObject class is the abstract parent class of all classes in

the framework. It enables the propagation of attributes and

methods to the entire class hierarchy and to every custom class of

a tool that is derived from UWObject. Some of the services it

provides are for logging, error handling, abnormal termination,

and many convenience methods for object comparisons.

Comprehensive logging services are provided that simplify

debugging by supporting global, class-specific and log-level or

keyword-based 2 logging. Three conceptual logs are made

available to each object: a global log, a class log, and an

evaluation log. The class and global logs are intended for error

and general debugging messages while the evaluation log is

reserved for data related to the evaluation of a tool3 or for metrics

collected by a tool. The presence and logging level for the class

and global logs are at the control of developers. Irrespective of

the number of objects in a tool, all log output is written to two

files, one for entries related to evaluation of a tool and one for

everything else. Both logs have a consistent format and can easily

be loaded into a spreadsheet or database application for analysis.

2 Keyword-based logging is very helpful when debugging issues

or defects that are specific to one area of functionality as only

log entries with a keyword matching globally registered ―log

keywords‖ will be stored in a log file.

3 Storing evaluation-related data in this log rather than a persistent

datastore, facilitates harvesting of these logs especially if the

tool is distributed to many remote evaluation users.

Figure 2: The uWIRES class library

UWObject

UWComponent

UWCollector

UWSearchServiceWrapperCollector

UWCore

UWDataStore

UWProcessor

Component Templates:

UWDataStoreFacilities

UWEvent

Inter-component messaging
and communication:

UWDisplayUtilities

UWInstrumentationFormatter

Infrastructural services:
UWView

UWEntity

Data management and default web-related data entities:

UWResultSource

UWResultTopLevelDomain

UWUrl
Common web-related services:

UWHTTPClient

UWHTMLLexer

UWPersistentDataStore

UWComponentCharacteristics

UWEventQueue

UWEntityCache

UWFormatter

UWLogging

UWHTTPClientResourceReaper

UWHTTPClientThreadControl

UWTagSpecification

UWCollection

UWCollectionItem

UWCollectorRegistration

UWDomainBase

UWDomain

UWTopLevelDomain

UWResultCounts

UWPreviouslyFoundInformation

UWProcessingStage

UWProgressData

UWSearch

UWResult

UWResultDomain

UWCompoundKey

UWKeyCharacteristic

UWKeyCharacteristics

UWMarkupMetadata

UWException

UWInterruptible

UWInterruptedException

UWSwingEventControl

UWSwingMenuHelper

UWTextWrapper

UWCFRStringBoolean

UWMD5Digest

UWStringUtilities

Legend

Concrete class

Abstract class or Interface

Utility classes:

3.2 Component Templates
The UWComponent class is the abstract parent of all classes that

implement the five architectural components of the framework,

namely the core, views, collectors, processors, and datastores.

This class provides the following three common facilities to all

components that extend it.

(i) Component identification

Encapsulation of data elements that identify the component type

(collector, store, view, etc), its name, and its group. Each

component must be given a unique name and must belong to one

group. Both are used primarily to facilitate communication and

interaction with components (e.g. for sending events to a specific

component or a group of components at once).

(ii) Component events infrastructure

This class furnishes each component (via use of the

UWEventQueue class) with a thread-safe, FIFO event queue, and

appropriate methods for event submission and retrieval. This

enables components to communicate with other components

through events that broadcast commands, state information, or

information relating to data updates to all components, a group of

components or a specific component. Furthermore, it provides a

full implementation of an event loop method, the run() method,

which continuously checks for new events and dispatches them to

appropriate (abstract) event handling methods. This arrangement

means that derived classes must implement each of the event

handling methods but they need not worry about the event

retrieval and dispatching mechanisms—this is taken care of by the

framework.

(iii) Component execution control

In order to facilitate control of multiple independently executing

components and to simplify component development, components

can be in one of five execution states at any one time. Figure 3

shows these five states and the legal state transitions between

them. State transitions are either automatic (i.e. dictated by the

core or triggered by events received) or explicitly triggered by

components. State transitions and the determination of

component states is done exclusively by the framework: although

components can issue events that can alter their state, they do not

have direct control over the value of their state. This approach not

only reduces the amount of code in derived components but also

reduces the possibility of programming errors thus helping to

meet design goal 1. The meaning of the five states is as follows:

 Initialising: This is the state that a component enters when it

is constructed, while initialising and before it is instructed to

begin executing its main event loop.

 Active: A component is in this state if it is performing its

primary function. For example, a collector component would

be in the active state while performing collection of the data

it was designed to collect, but not while performing any other

task such as event processing.

 Paused: A component is in this state when it has been

instructed not to enter the active state even if events that

would normally cause such a transition are received.

Transition from the paused to the active state can only occur

if an explicit ―continue‖ command event is received.

 Inactive: A component is in this state whenever it is

performing a task other than its primary function, for

example, while it is idle waiting for events.

 Terminated: A component is in this state if it has exited its

event loop and can no longer accept or process events.

The UWCollector class is the abstract class from which all

collector components must be derived. It extends UWComponent

by including collector-specific attributes and methods. These are:

 Component type definition: Definition of the component as a

collector, thus avoiding repetition of this in every derived

collector class;

 Registration with a datastore: Collectors must be registered

with datastores before attempting to store any data. This is

so that the datastore can create the appropriate data structures

required to accommodate data from all collectors, but also so

that the datastore can assign a unique identifier to each

collector which is used to identify the originator of some data

to the datastore in a more efficient way than using

component names. This class performs this on behalf of all

derived collector classes. (The UWCollectorRegistration

data entity class encapsulates the data of these registrations).

The UWSearchServiceWrapperCollector class is the abstract

parent class of all search result collectors (i.e. wrappers to search

services). It provides several facilities that simplify the

development of wrappers, such as URL generation (generation of

the URL to obtain a specific page of results for some search),

HTTP handling, search control flow (performing in the correct

order all the steps required to obtain a page of results), and so on.

The UWCore class is a concrete class that implements the core

component. Tools can either directly instantiate and use this class

or they can extend it and override its non-final methods to create

customised cores. The core provides the facilities discussed in (i)

to (vi) below:

(i) Tool composition

In order to serve its function as a communications hub between

components, the core must be aware of all the components

comprising a tool. Therefore, a tool is essentially created by

instantiating objects for each of its components and registering

them with the core. That is all the explicit initialisation that a tool

needs to do: all the rest is done by the core component using

events and direct calls to methods inherited from UWComponent

or more specific abstract sub-classes such as UWCollector.

When registering a component, a tool also specifies whether or

not the component should run in its own thread. If a component

should run in its own thread then a thread is automatically created

by the core and added to an appropriate thread group. Once

initialisation of a component is complete, it enters the paused state

and awaits the appropriate signal to begin execution.

Figure 3: Component state transition diagram

Initialising

Terminated

Paused

ActiveInactive

Legend

Terminal states

State transitions

(ii) Tool start-up and shutdown

At the request of the tool’s initialisation routine, the core starts-up

the tool by instructing all components to enter their main event

loop and begin to respond to events. The tool does this by calling

the core’s startApplication() method and does not need

to worry about threads or thread invocation. Once a tool’s

initialisation routine calls startApplication(), it exits and

execution control is transferred to the core. The tool is terminated

by the core upon receipt of a ―terminate‖ system control event or a

―system fatal‖ error event. Termination is achieved by gracefully

stopping all threads after calling appropriate thread termination

preparation methods inherited from UWComponent (or more

specific sub-classes). In the case of abnormal termination, caused

by a fatal error for example, appropriate debugging information is

also automatically written by the core to the global log.

(iii) Inter-component interaction and communication

The core enables inter-component interaction and communication

via a number of methods that act as interfaces to the components

attached to the core. The core performs the required interaction or

communication on behalf of the requesting component either by

broadcasting events to the appropriate components (if they have

subscribed to the appropriate event type) or through direct method

calls. In general, when the interaction is implemented as events,

the requisite processing is performed by each component’s thread;

when the interaction is implemented as direct method calls, the

requisite processing is performed by the thread of the component

requesting the interaction. Therefore, interaction implemented as

events is asynchronous (except for components not executing in

their own threads) whereas interaction implemented as direct

method calls is synchronous.

(iv) Tool and component preferences repository

The core provides a number of methods that enable components to

set and retrieve preferences and other settings either associated

with the entire tool or specific to each component. Doing this in

the core instead of in each individual component serves two

purposes: firstly, it avoids the need for preferences and settings to

be stored independently by each component, thus helping meet

design goals 1 and 6. Secondly, it also allows different

components (including experimental versions of similar

components) to access preferences and settings created by other

components thus helping meet design goals 1, 2, and 6.

(v) Standard control flow for commonly used operations

Many web operations require a number of steps to be performed

by components in an identical sequence. For example performing

a new search (a request typically initiated by a view component)

requires the following steps to be performed by the specified

components:

a) All collectors must be instructed to gracefully stop any active

data collection, submit all pending data to a datastore, and

reset themselves;

b) All processors must be instructed to complete processing of

the current data unit, submit all pending data to a datastore

and reset themselves;

c) Once (a) and (b) have completed successfully, the datastore

must be instructed to accept data related to a new query;

d) Once the datastore is ready, all components can be instructed

to continue with their primary activity: all search result

collectors will immediately proceed to obtain the data related

to the new search and start performing the search.

Since interaction and communication with components is done

either via events or via standardised methods that exist in each

component of the same type (derived from the UWComponent

class or more specific sub-classes), it is possible to define

methods in the core that perform these sequential tasks in the

correct pre-determined order irrespective of how many or what

types of components are attached to the core. Given that

developers can create a customised core by deriving a new core

class from the one in the framework, it is easy to incorporate

many such standard control flows that would be available to all

components in the tool without having to implement them in each

component. This facilitates design goal 2 without negatively

affecting design goal 1.

(vi) Deployment control

It was envisaged that the framework would be particularly useful

for developing experimental and prototypical tools, so it was

important to ensure that no superseded versions of tools were in

use by evaluators or beta-test users. In order to avoid this, the

core incorporates a method of ―expiring‖ tools beyond a certain

date. Instantiation of the core object requires an ―expiry date‖.

The UWDataStore class is the abstract parent from which all in-

memory datastore components must be derived. It extends

UWComponent by including datastore-specific data elements and

methods to enable the components of a tool to interact with the

uWIRES information model. The UWDataStore class specifies

the prototypes (abstract methods) for all the functions that a

datastore component must implement. However, in order to avoid

restricting flexibility or penalising performance, it does not dictate

implementation details such as data model and data structures but

leaves these to the judgment of derived datastore designers as they

are in a better position to decide what best suits a given tool.

The UWPersistentDataStore class is the abstract parent class

from which any persistent storage datastore components must be

derived. It specifies the prototypes for all the methods that must

be implemented in order to create a persistent datastore and

provides facilities that simplify such implementations. Some of

the facilities provided are handling of database connections,

transactions, automatic preparation and caching of database

statements, mapping between DB data types and Java data types,

assignment of parameters to database statements, validity

checking of parameters assigned to database statements, releasing

of database resources, automatic logging of warnings and

exceptions and so on. Similarly to the UWDataStore class, this

class does not dictate the type of data model, DBMS or the

physical schema used, which are all left to tool developers.

The UWProcessor class is the abstract parent class from which

all processor components must be derived. It extends

UWComponent by including processor-specific attributes and

methods and defining derived components as processors.

Processors become aware of new data available that they may be

able to process via events (assuming they have registered interest

for the appropriate event types). A multi-threaded processing

pipeline of multiple concurrent processors can be created by using

the framework-provided UWProcessingStage class. Similarly, a

tool can keep track of overall processing progress (e.g. for

indication of progress to users) by using the UWProgressData

class.

The UWView class is the abstract parent from which all view

components must be derived. It extends UWComponent by

including view-specific attributes and methods and by defining

derived components as views. Views are the only component in

addition to the core that can control execution flow within a tool.

The core is able to control execution flow so that it can perform

initialisation, termination and to perform standard execution

control flows as described earlier. Views are able to control

execution flow so that they can perform user requests or dictate

other required processing. There is no need for the other

components to be able to control execution flow and allowing

them to do so could jeopardise fulfilment of the design goals. We

recall that the primarily event-based approach for inter-component

communication enables multiple views to be attached to a single

core all of which could display different visualisations of the data

and all updated simultaneously to reflect data changes.

The framework makes no assumptions as to the nature of views

and it is up to the designer of a tool to determine their precise

nature. The architectural layout and the design of the framework

allow views to take many different forms including: visible

graphical or textual views displaying data visualisations of data in

the information model in any way required by a tool and

appropriate controls to allow users to interact with the

visualisations and tool components; control execution non-visible

modules that guide a tool through a series of steps that perform

some analytical function (e.g. determining the stability of search

results over time for different search systems); wrappers to

graphical, textual or purely control execution modules written in a

programming language other than Java or executing on a different

physical machine; or interfaces to pre-existing visualisation

systems.

3.3 Inter-component communication
This group of classes is integral to the framework’s inter-thread

communication and event-based paradigm: the UWEventQueue

class, as already described, implements a FIFO event queue; the

UWEvent class encapsulates attributes that model all events that

can be exchanged within the framework and methods to create

and access event data; the UWComponentCharacteristics and

UWDataStoreFacilities are used to communicate certain

characteristics (such as supported facilities) of components to

other components; the UWException class forms part of the

error handling mechanism of the framework and is also used to

communicate errors to the entire framework. Finally, the

UWInterruptible abstract class (in fact a Java interface) and the

UWInterruptedException class provide a mechanism for the

instant interruption of interruptible uWIRES components such as

collectors and processors. The UWInterruptible class is

instrumental in ensuring a highly-responsive user interface as it

can be implemented on any object that belongs to one of the

components that can control execution flow and the methods

provided by it are used by interruptible components to determine

whether they should instantly interrupt their processing.

3.4 Data management and default entities
UWEntity is the abstract parent class of all classes that model

data entities. It extends UWObject by defining an enumeration of

entity types (which is used throughout the framework to identify

the type of data entity a class defines) and abstract methods that

enforce behaviours that all data entities must implement.

Figure 4 shows the primary default entities provided by the

uWIRES information model. Entity attributes and entities that

have multiple composition relationships with almost all of the

entities, such as UWCompoundKey and UWKeyCharacteristic,

are not shown to avoid clutter (the former models and simplifies

working with simple and complex entity keys while the latter

defines the types and other characteristics of entity keys). Tool

developers can create additional entities either by using one of the

default concrete entity classes as a starting point, or by extending

the abstract UWEntity class.

The data management facilities provided by uWIRES (embodied

within the UWDataStore, UWPersistentDataStore and

UWEntity classes) include entity key validation and

management, searching for entities by any of their keys or sub-

keys, bulk loading into memory of all entities that match

specified conditions, persistence of entities, transparent automatic

caching of entities, and facilities for interacting with a DBMS

system via JDBC.

3.5 Common web-related services
This group of classes implement a number of common services

required by web-related tools. The classes UWHTTPClient,

UWHTTPClientResourceReaper and

UWHTTPClientThreadControl implement an HTTP protocol

client that can access and download the contents of URLs. The

UWHTMLLexer and UWTagSpecification classes implement

an HTML lexical analyser and an HTML parser. The

UWMarkupMetadata class provides useful facilities for

handling HTML mark-up, such as separating text from mark-up in

a block of HTML and allowing independent manipulation of both

while maintaining the intended positioning of mark-up.

3.6 Infrastructural services and utility classes
This group of classes provides a number of fundamental

infrastructural and architectural services common to most tools.

For example: the UWDisplayUtilities class facilitates detection

of, manipulation of and interacting with all available screen

displays in a computer system; the UWFormatter,

UWInstrumentationFormatter and the UWLoggingClass

Figure 4: uWIRES default data entities

classes form part of the instrumentation and logging facilities of

the framework by formatting log output to a common standard

and writing it to the appropriate log file; the

UWSwingEventControl and UWSwingMenuHelper classes

facilitate (over and above those provided by the standard Java

libraries) the creation of comprehensive menu structures; the

UWTextWrapper and UWStringUtilities provide a number of

useful string manipulation features not available within the

standard Java library such as wrapping text within a particular

width (taking into account any formatting that will be applied to

the font) so that it can be correctly and appealingly displayed on

the screen; and the UWMD5Digest class provides convenience

methods for calculating an MD5 digest for strings.

4. DISCUSSION
We now discuss to what extent the uWIRES framework meets the

design goals set out in Section 2.1.

Design Goal 1: minimise development and maintenance time

uWIRES was heavily used by the authors between February 2005

and September 2006 to develop a number of tools, including:

WebIR2, a user-centred meta-search tool that prototypes novel

approaches to visualising web search results; several analytical

tools that determine a number of web-related metrics and

investigate certain characteristics of search results (for example a

tool which investigates the incidence of broken links within

search results); and a number of tools that helped us optimise

WebIR2 and some of our visualisation approaches (for example a

tool which determined the number of collector and processor

threads that best balanced performance with memory utilisation).

Our observations during this usage of uWIRES were that we were

able to save considerable development effort and time by:

 being able to focus on the specific algorithms and details of

the functionality required to meet objectives without having

to worry about developing any of the mandatory underlying

infrastructure;

 introducing new facilities and functionality to the WebIR2

tool, as guided by feedback from the tool’s evaluators and the

data collected through instrumentation, simply by adding

these to the appropriate framework classes;

 easily identifying the root causes of defects; this was very

much simplified by the ability to restrict logging to specific

keywords or classes before undertaking analysis. If the

defects resided within the framework itself then fixes needed

to be applied only to the appropriate location in the

framework without the need to, for example, replicate them

within the code for each component;

 using the extensive Java library and many free and open-

source code libraries and classes to provide required

functionality without having to develop it ourselves; some of

the ―off-the-shelf‖ libraries used include: an HTTP client [9],

an HTML lexical analyser [10], an NTP client [11], a class

library that implements a comprehensive set of string

similarity algorithms [12], a relational database system [13],

and a set of classes that facilitated interaction with web

browsers and e-mail clients on Microsoft Windows [14] [15].

The framework approach of uWIRES allowed us to make all

these services available to all components irrespective of the

language they were developed in or the physical system on

which they were executing.

Design Goal 2: facilitate experimentation

We were able to experiment with different visualisation

approaches by easily and quickly developing new view

components within a few hours, as we only needed to focus on

code to display the visualisations. We could also investigate and

interact with the various visualisation techniques side-by-side

simply by registering multiple views with the uWIRES core.

Design Goal 3: deliver high performance

We were able to substantially optimise the performance of the

WebIR2 tool by introducing additional parallelism by registering

multiple identical collectors and processors with the core – the

combination of the architectural layout, event-based paradigm and

the thread-safe data management facilities meant that all that was

necessary to speed up certain tasks was to instantiate more

―workers‖ to perform the tasks in parallel. By using a non-visible

view that simulated a user issuing commands to the tool, and by

taking advantage of the instrumentation facilities within the

framework, we were able to easily determine the number of

collector and processor components (as well as HTTP client

threads) that provided the optimum balance between performance

and memory utilisation. By analysing the logs sent to us by the

WebIR2 evaluation participants (which included data on the

elapsed time for every invocation of operations that were likely to

be performance bottlenecks), we were able to introduce further

performance optimisations during the evaluation period.

Analysing the data collected from the evaluation exercise

indicates that on average WebIR2 was able to retrieve, process

and insert into a persistent database 157 results from three search

engines in less than 6 seconds (including all network-related

delays). The acceptability of the WebIR2 tool to real end-users

was validated by our evaluation group: in response to a post-

evaluation question regarding the performance of the tool, 88% of

the evaluation participants stated that they agreed or agreed

strongly with the statement ―WebIR2 is quick‖.

Design Goal 4: facilitate incremental visualisation of data

The ability to execute multiple tasks concurrently, the event-based

approach to communicating data availability and status to all

WebIR2 components, and the concurrency synchronisation at the

data level, allowed us to display newly acquired search results to

the users as soon as these were available. By analysing the data

collected from the evaluation exercise, we were able to determine

that in practice this meant that users were able to start exploring

search results within, on average, 3 seconds after initiating a

search (by which time the first batch of results, typically 64, was

available and displayed in the views). Meanwhile WebIR2

continued to process the results in the background.

Design Goal 5: be scalable

WebIR2 was evaluated by 25 users over periods ranging from two

weeks and three months. They performed a total of 1,189 web

search sessions and, as can be seen in Table 1, many of them used

the tool for a significant number of their web searches. This

indicates that WebIR2, and by implication the uWIRES

framework that was used to build it, are able to cope with real-

world daily usage scenarios.

Design Goal 6: support both interactive and non-interactive tools

76% of the WebIR2 evaluation participants stated that they agreed

or agreed strongly with the statement ―I would like to continue

using WebIR2 for searching the web after the evaluation study is

completed‖. This suggests that uWIRES is well-suited to the

development of interactive tools. We showed that it is also

suitable for non-interactive tools by using it in a number of our

automated experiments including, as discussed earlier,

determination of the number of collector and processor

component ―worker‖ threads required to achieve an optimum

balance of performance and memory utilisation, and an

experiment to determine the incidence of broken links in search

engines’ results.

Design Goal 7: be portable

Since uWIRES is entirely written in Java it is portable to any

platform for which a Java Runtime Environment exists. We

designed and tested the WebIR2 tool on Windows XP and all the

evaluation participants used it on either Windows XP or Windows

2000. We showed its portability to other platforms by porting the

Windows-specific portions (all of which were isolated in a single

package) to Linux and executing this on Suse and Ubuntu Linux

flavours.

5. CONCLUSIONS
In this paper we have described uWIRES, a software framework

that aims to facilitate the rapid development of high-performance,

portable, production-quality web-related tools. We discussed how

the framework meets its design goals and its use in the

development of a number of research tools. One of these tools,

WebIR2, was a substantial user-centred meta-search application

that prototyped a novel approach to visualising search results and

which was evaluated in a real-world context by 25 users over a

period of four months.

uWIRES is related to other frameworks and code libraries (such

EJB, COM, FLAIR, FIRE, InfoGrid and Terrier) in that it

provides an architectural layout, enforces certain design and

coding disciplines, and furnishes developers with a number of

classes that meet some functional and non-functional

requirements. Unlike these other frameworks and code libraries

however, uWIRES does not just provide a general architectural

layout and the services needed to support that layout (as is the

case for EJB and COM). Nor does it just provide classes that

meet certain very specific functional or non-functional

requirements, such as user interfaces or indexing and searching

the web (as is the case for FLAIR, FIRE, InfoGrid and Terrier).

Instead, uWIRES is a fully-fledged framework, applicable to a

wide range of web-related tools and it provides, in an ―off the

shelf‖ manner, most of the non-functional and many of the

functional requirements that such tools need.

The WebIR2 tool developed using uWIRES was of sufficient

quality that, after a trial period of a few weeks, an investor

consortium offered funding for its commercialisation, and this

activity is ongoing. Future work on uWIRES itself includes (i) to

further optimise the performance of uWIRES, e.g. reduce object

creation and destruction overheads by incorporating more

extensive caching and pooling of very frequently used objects;

and (ii) to increase its applicability to the development of tools for

evaluating new web-related algorithms, interaction techniques or

paradigms e.g. by enabling the near real-time submission of

evaluation data and metrics to a central repository when a

connection to the repository over an appropriate network is

detected, and a feature to ―auto-update‖ evaluation tools when

new versions become available.

6. REFERENCES
[1] Computer Industry Almanac Inc.. Worldwide Internet Users

Top 1 Billion in 2005 (Press Release). Available at

http://www.c-i-a.com/pr0106.htm, Jan 2006.

[2] Peter C. S. Wong, Eric R. Reid. FLAIR - User Interface

Dialog Design tool. In proceedings of the 9th Annual

conference on Computer Graphics and Interactive

Techniques, 1982.

[3] Gabriele Sonnenberger, Hans-Peter Frei. Design of a

Reusable IR Framework. In proceedings of the 18th

International ACM SIGIR conference on research and

development in information retrieval, 1995.

[4] Ramana Rao, Stuart K. Card, Herbert D. Jellinek, Jock D.

Mackinlay, George G. Robertson. The Information Grid: A

Framework for Information Retrieval and Retrieval-Centered

Applications. In proceedings of the 5th Annual ACM

symposium on User interface software and technology, Dec

1992.

[5] Iadh Ounis, Gianni Amati, Vassilis Plachouras, Ben He,

Craig Macdonald, Christina Lioma. Terrier: A High

Performance and Scalable Information Retrieval Platform. In

proceedings of the 2006 Workshop on Open Source

Information Retrieval Systems.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M.

Stal. Pattern-Oriented Software Architecture - A System of

Patterns. John Wiley & Sons, 1996.

[7] David Blevins. Overview of the Enterprise JavaBeans

Component Model. In Component-based software

engineering: putting the pieces together, 2001.

[8] Tim Ewald. Overview of COM+. In Component-based

software engineering: putting the pieces together, 2001.

[9] Apache Jakarta commons HTTP client library. Available at

http://jakarta.apache.org/commons/httpclient/.

[10] Open source HTML Lexer and Parser library. Available at

http://htmlparser.sourceforge.net/.

[11] Apache Jakarta commons net library. Available at

http://jakarta.apache.org/commons/net/.

[12] Sam Chapman. simMetrics Similarity Metrics Library.

Available at http://sourceforge.net/projects/simmetrics/.

[13] Apache Derby, Open-Source relational Database

Implemented Entirely in Java. At http://db.apache.org/derby/.

[14] JACOB Java to COM Bridge. Available at

http://sourceforge.net/projects/jacob-project/.

[15] JDesktop Integration Components (JDIC). Available at

https://jdic.dev.java.net/.

Table 1: Extent of utilisation of WebIR2 by evaluation users

Participant

Search sessions per

week

(from pre-eval

questionnaire)

Tool Usage

period

(weeks)

Expected

sessions

given pre-eval

response

Sessions

performed

using Tool

% of

expected

sessions

1 14 13.0 182 208 114%

4 21 2.0 42 48 114%

7 3 11.7 35 57 162%

11 21 9.4 198 48 24%

13 14 12.1 170 121 71%

14 14 12.3 172 78 45%

18 14 10.6 148 49 33%

27 14 12.1 170 33 19%

	INTRODUCTION
	THE uWIRES FRAMEWORK
	Design Goals
	Architectural Layout
	Design and Development Guidelines
	Class Library
	Information Model

	CLASS DETAILS
	UWObject Class
	Component Templates
	Inter-component communication
	Data management and default entities
	Common web-related services
	Infrastructural services and utility classes

	DISCUSSION
	CONCLUSIONS
	REFERENCES

