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Abstract

The recently introduced series of description logics under the common moniker ‘DL-
Lite’ has attracted attention of the description logic and semantic web communities due
to the low computational complexity of inference, on the one hand, and the ability to rep-
resent conceptual modeling formalisms, on the other. The main aim of this article is to
carry out a thorough and systematic investigation of inference in the logics of the ‘extended
DL-Lite family,’ under a variety of combinations of constructs and under different seman-
tic assumptions. Specifically, we extend the original DL-Lite logics along five axes: by
(i) adding the Boolean connectives, (ii) adding number restrictions to concept constructs,
(iii) allowing role hierarchies, (iv) allowing role disjointness, symmetry, asymmetry, reflex-
ivity, irreflexivity and transitivity constraints, and (v) adopting or dropping the unique
name assumption. We analyze the combined complexity of satisfiability for the resulting
logics, as well as the data complexity of instance checking and answering positive existen-
tial queries. Our approach is based on considering DL-Lite logics as suitable fragments
of first-order logic, which provides useful insights into their properties and, in particular,
computational behavior.
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1. Introduction

Description Logic (cf. Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider, 2003 and
references therein) is a family of knowledge representation formalisms developed over the
past three decades and, in recent years, widely used in various application areas such as:

• conceptual modeling (Bergamaschi & Sartori, 1992; Calvanese et al., 1998b, 1999;
McGuinness & Wright, 1998; Franconi & Ng, 2000; Borgida & Brachman, 2003; Be-
rardi et al., 2005; Artale et al., 1996, 2007, 2007b),

• information and data integration (Beeri et al., 1997; Levy & Rousset, 1998; Goasdoue
et al., 2000; Calvanese et al., 1998a, 2002a, 2002b, 2008; Noy, 2004; Meyer et al.,
2005),

• ontology-based data access (Dolby et al., 2008; Poggi et al., 2008a; Heymans et al.,
2008),

• the Semantic Web (Heflin & Hendler, 2001; Horrocks et al., 2003).

Description logics (DLs, for short) are underlying the standard Web Ontology Language
OWL,1 which is now in the process of being standardized by the W3C in its second edition,
OWL 2.

The widespread use of DLs as flexible modeling languages stems from the fact that,
similarly to more traditional modeling formalisms, they structure the domain of interest
into classes (or concepts, in the DL parlance) of objects with common properties. Proper-
ties are associated to objects by means of binary relationships (or roles) to other objects.
Constraints available in standard DLs also resemble those used in conceptual modeling
formalisms for structuring information: is-a hierarchies (i.e., inclusions) and disjointness
for concepts and roles, domain and range constraints for roles, mandatory participation to
roles, functionality and more general numeric restrictions for roles, covering within concept
hierarchies, etc. In a DL knowledge base (KB), these constraints are combined to form a
TBox asserting intensional knowledge, while an ABox collects extensional knowledge about
individual objects, such as whether an object is an instance of a concept, or two objects are
connected by a role. The standard reasoning services over a DL KB include checking its
consistency (or satisfiability), instance checking (whether a certain individual is an instance
of a concept), and logic entailment (whether a certain constraint is logically implied by the
KB). More sophisticated services are emerging that can support modular development of
ontologies by checking, for example, whether one ontology is a conservative extension of
another one w.r.t. a certain vocabulary (see, e.g., Ghilardi, Lutz, & Wolter, 2006; Cuenca
Grau, Horrocks, Kazakov, & Sattler, 2008; Kontchakov, Wolter, & Zakharyaschev, 2008).

Description logics have recently been used to provide access to large amounts of data
through a high-level conceptual interface, which is of relevance to both data integration and
ontology-based data access. In this setting, the TBox constitutes the conceptual, high-level
view of the information managed by the system, and the ABox is physically stored in an
external relational database and accessed using the standard relational database technology
(Poggi et al., 2008a; Calvanese et al., 2008). The fundamental inference service in this case

1. http://www.w3.org/2007/OWL/
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is answering queries by taking into account the constraints in the TBox and the data stored
in the (external) ABox. The kind of queries that have most often been considered are
first-order conjunctive queries, which correspond to the commonly used Select-Project-
Join SQL queries. The key properties for such an approach to be viable in practice are
(i) efficiency of query evaluation, with the ideal target being traditional database query
processing, and (ii) that query evaluation can be done by leveraging the relational technology
already used for storing the data.

With these objectives in mind, a series of description logics—the DL-Lite family—has
recently been proposed and investigated by Calvanese, De Giacomo, Lembo, Lenzerini,
and Rosati (2005, 2006, 2008a), and later extended by Artale, Calvanese, Kontchakov,
and Zakharyaschev (2007a), Poggi, Lembo, Calvanese, De Giacomo, Lenzerini, and Rosati
(2008a). Most logics of the family meet the requirements above and, at the same time, are
capable of representing many important types of constraints used in conceptual modeling.
In particular, inference in various DL-Lite logics can be done efficiently both in the size
of the data (data complexity) and in the overall size of the KB (combined complexity):
KB satisfiability for those logics was shown to be polynomial for combined complexity,
while answering queries in AC0 for data complexity—which, roughly, means that, given a
conjunctive query over a KB, the query and the TBox can be rewritten (independently of
the ABox) into a union of conjunctive queries over the ABox alone. (It is to be emphasized
that the data complexity measure is very important in the application context of the DL-
Lite logics, since one can reasonably assume that the size of the data largely dominates the
size of the TBox.) This query rewriting technique has been implemented in various systems,
notably QuOnto2 (Acciarri, Calvanese, De Giacomo, Lembo, Lenzerini, Palmieri, & Rosati,
2005; Poggi, Rodriguez, & Ruzzi, 2008b). It has also been demonstrated (Kontchakov et al.,
2008) that developing, analyzing and re-using DL-Lite ontologies (TBoxes) can be supported
by efficient tools capable of checking various types of entailment between such ontologies
w.r.t. given vocabularies, in particular, by minimal module extraction tools (Kontchakov,
Pulina, Sattler, Selmer, Schneider, Wolter, & Zakharyaschev, 2009)—which do not yet exist
for richer languages.

The significance of the DL-Lite family is testified by the fact that it forms the basis
of OWL 2 QL, one of the three profiles of OWL 2.3 The OWL 2 profiles are fragments of
the full OWL 2 language that have been designed and standardized for specific application
requirements. According to (the current version of) the official W3C profiles document, the
purpose of OWL 2 QL is to be the language of choice for applications that use very large
amounts of data and where query answering is the most important reasoning task.

The common denominator of the DL-Lite logics constructed so far is as follows: (i)
quantification over roles and their inverses is not qualified (in other words, in concepts of
the form ∃R.C we must have C = >) and (ii) the TBox constraints are concept inclusions
that cannot represent any kind of disjunctive information (say, that two concepts cover the
whole domain). The other DL-Lite dialects were designed—with the aim of capturing more
conceptual modeling constraints, but in a somewhat ad hoc manner—by extending this
‘core’ language with a number of constructs such as global functionality constraints, role
inclusions and restricted Boolean operators on concepts (see Section 4 for details). Although

2. http://www.dis.uniroma1.it/quonto/

3. http://www.w3.org/TR/owl2-profiles/
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some attempts have been made (Calvanese et al., 2006; Artale et al., 2007a; Kontchakov
& Zakharyaschev, 2008) to put the original DL-Lite logics into a more general perspective
and investigate their extensions with a variety of DL constructs required for conceptual
modeling, the resulting picture still remains rather fragmentary and far from comprehensive.
A proper systematic investigation of the DL-Lite family and relatives has become even
more urgent and challenging in view of the choice of the constructs to be included in the
specification of the OWL 2 QL profile4 (in particular, because OWL drops the unique name
assumption, UNA, usually adopted in DL, and uses equalities and inequalities between
object names instead).

The main aim of this article is to fill in this gap and provide a thorough and comprehen-
sive understanding of the interaction between various DL-Lite constructs and their impact
on the computational complexity of reasoning. To achieve this goal, we consider a spectrum
of logics, classified according to five mutually orthogonal features:

(1) the presence or absence of role inclusion assertions;

(2) the form of the allowed concept inclusion assertions, where we consider four classes,
called core, Krom, Horn, and Bool, that show different computational properties;

(3) the form of the allowed numeric constraints, ranging from none, to global functionality
constraints only, and to arbitrary number restrictions;

(4) the presence or absence of the unique name assumption (and the equalities and in-
equalities between object names, if this assumption is dropped); and

(5) the presence or absence of standard role constraints such as disjointness, symmetry,
asymmetry, reflexivity, irreflexivity, and transitivity.

For all the resulting cases, we characterize the combined and data complexity of KB sat-
isfiability and instance checking, as well as the data complexity of query answering. The
obtained tight complexity results are summarized in Section 3.4 (Table 2 and Remark 3.1).

As already mentioned, the original motivation and distinguishing feature for the logics in
the DL-Lite family was their ‘lite’-ness in the sense of low computational complexity of the
reasoning tasks (query answering in AC0 for data complexity and tractable KB satisfiability
for combined complexity). In the broader perspective we take here, not all of our logics
meet this requirement, in particular, those with Krom or Bool concept inclusions.5 However,
we identify another distinguishing feature that can be regarded as the natural logic-based
characterization of the DL-Lite family: embeddability into the one-variable fragment of first-
order logic without equality and function symbols. This allows us to relate the complexity
of DL-Lite logics to the complexity of the corresponding fragments of first-order logic, and
thus to get a deep insight into the underlying logical properties of each DL-Lite variant.
For example, most upper bound results obtained below follow from this embedding and
well-known results on the classical decision problem (see, e.g., Börger, Grädel, & Gurevich,
1997) and descriptive complexity (see, e.g., Immerman, 1999).

4. http://www.w3.org/TR/owl2-profiles/#OWL_2_QL

5. Note, by the way, that logics with Bool concept inclusions turn out to be quite useful in conceptual
modeling and reasonably manageable computationally (Kontchakov et al., 2008).
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One of the most interesting findings in this article is that number restrictions, even
expressed locally, instead of global role functionality, can be added to the original DL-Lite
logics (under the UNA and without role inclusions) ‘for free,’ that is, without changing their
computational complexity. The first-order approach shows that in most cases we can also
extend the DL-Lite logics with the role constraints mentioned above, again keeping the same
complexity. It also gives a framework to analyze the effect of adopting or dropping the UNA
and using (in)equalities between object names. For example, we observe that if equality is
allowed in the language of DL-Lite (which only makes sense without the UNA) then the AC0

data complexity results for query answering transform into LogSpace-completeness results,
with the property of first-order rewritability being lost. It also turns out that dropping the
UNA results in P-hardness of reasoning (for both combined and data complexity) in the
presence of functionality constraints (NLogSpace-hardness was shown by Calvanese et al.,
2008), and NP-hardness if arbitrary number restrictions are allowed.

Another interesting finding is the dramatic impact of role inclusions, when combined
with number restrictions (or even functionality constraints), on the computational complex-
ity of reasoning. As was already observed in (Calvanese et al., 2006), such a combination
increases the data complexity of instance checking from LogSpace to NLogSpace. We
show here that the situation is actually even worse: for data complexity, instance checking
turns out to be P-complete in the case of core and Horn logics and coNP-complete in the
case of Krom and Bool logics; moreover, KB satisfiability, which is NLogSpace-complete
for the simplest ‘core’ case—i.e., efficiently tractable, when role inclusions or number re-
strictions are used separately—becomes ExpTime-complete for combined complexity—i.e.,
provably intractable, when they are used together.

To retain both role inclusions and functionality constraints in the language and keep
complexity within the required limits, (Poggi et al., 2008a) introduced another DL-Lite
dialect, called DL-LiteA, which restricts the interaction between role inclusions and func-
tionality constraints. Here we extend this result by showing that the DL-Lite logics with
such a limited interaction between role inclusions and number restrictions can still be em-
bedded into the one-variable fragment of first-order logic, and so exhibit the same behavior
as their fragments with only role inclusions or only number restrictions.

The article is structured in the following way. In Section 2, we introduce the logics
of the DL-Lite family and illustrate their features as conceptual modeling formalisms. In
Section 3, we discuss the reasoning services and the complexity measures we analyze in
what follows, and give an overview of the obtained complexity results. In Section 4, we
place the introduced DL-Lite family in the context of previous DL-Lite logics, and discuss
its relationship with OWL 2. In Section 5, we study the combined complexity of KB
satisfiability and instance checking, while in Section 6, we consider the data complexity for
these problems. In Section 7, we study the data complexity of query answering. In Section 8,
we analyze the impact of dropping the UNA and adding equalities between object names
on the complexity of reasoning. Section 9 concludes the article.

2. The Extended DL-Lite Family of Description Logics

Description Logic (Baader et al., 2003) is a family of logics that have been studied and
used in knowledge representation and reasoning since the 1980s. In DLs, the elements of

6
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the domain of interest are structured into concepts (unary predicates) and their properties
are specified by means of roles (binary predicates). Complex concept and role expressions
(or simply concepts and roles) are constructed, starting from a set of concept and role
names, by applying suitable constructs, where the set of available constructs depends on
the specific description logic. Concepts and roles can then be used in a knowledge base to
assert knowledge, both at the intensional level, in a so-called TBox (‘T’ for terminological),
and at the extensional level, in a so-called ABox (‘A’ for assertional). A TBox typically
consists of a set of axioms stating the inclusion between pairs of concepts or roles. In an
ABox, one can assert membership of objects (i.e., constants) in concepts, or that a pair of
objects is connected by a role. DLs are supported by reasoning services, such as satisfiability
checking and query answering, that rely on their logic-based semantics.

2.1 Syntax and Semantics of the Logics in the DL-Lite Family

We introduce now the (extended) DL-Lite family of description logics, which was initially
proposed with the aim of capturing typical conceptual modeling formalisms, such as UML
class diagrams and ER models (see Section 2.2 for details), while maintaining good compu-
tational properties of standard DL reasoning tasks (Calvanese et al., 2005). We begin by
defining the description logic DL-LiteR,Nbool , which can be regarded as the supremum of the
original DL-Lite family (Calvanese et al., 2005, 2006, 2007b) in the lattice of description
logics.

The language of DL-LiteR,Nbool contains object names a0, a1, . . . , concept names A0, A1, . . . ,
and role names P0, P1, . . . . Complex roles R and concepts C of this language are defined
as follows:

R ::= Pi | P−i ,

B ::= ⊥ | Ai | ≥ q R,
C ::= B | ¬C | C1 u C2,

where q is a positive integer. The concepts of the form B will be called basic.
A DL-LiteR,Nbool TBox, T , is a finite set of concept and role inclusion axioms (or simply

concept and role inclusions) of the form:

C1 v C2 and R1 v R2,

and an ABox, A, is a finite set of assertions of the form:

Ak(ai), ¬Ak(ai), Pk(ai, aj) and ¬Pk(ai, aj).

Taken together, T and A constitute the DL-LiteR,Nbool knowledge base K = (T ,A). In the
following, we denote by role(K) the set of role names occurring in T and A, by role±(K)
the set {Pk, P−k | Pk ∈ role(K)}, and by ob(A) the set of object names in A. For a role R,
we set:

inv(R) =

{
P−k , if R = Pk,

Pk, if R = P−k .

As usual in description logic, an interpretation, I = (∆I , ·I), consists of a nonempty
domain ∆I and an interpretation function ·I that assigns to each object name ai an element

7
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aIi ∈ ∆I , to each concept name Ai a subset AIi ⊆ ∆I of the domain, and to each role name
Pi a binary relation P Ii ⊆ ∆I × ∆I over the domain. Unless otherwise stated, we adopt
here the unique name assumption (UNA):

aIi 6= aIj for all i 6= j. (UNA)

However, we shall always indicate which of our results depend on the UNA and which do
not, and when they do depend on this assumption, we discuss also the consequences of
dropping it (see also Sections 4 and 8).

The role and concept constructs are interpreted in I in the standard way:

(P−k )I = {(y, x) ∈ ∆I ×∆I | (x, y) ∈ P Ik }, (inverse role)

⊥I = ∅, (the empty set)

(≥q R)I =
{
x ∈ ∆I | ]{y ∈ ∆I | (x, y) ∈ RI} ≥ q

}
, (at least q R-successors)

(¬C)I = ∆I \ CI , (not in C)

(C1 u C2)I = CI1 ∩ CI2 , (both in C1 and in C2)

where ]X denotes the cardinality of X. We will use standard abbreviations such as

C1 t C2 = ¬(¬C1 u ¬C2), > = ¬⊥, ∃R = (≥ 1R), ≤ q R = ¬(≥ q + 1R).

Concepts of the form ≤ q R and ≥ q R are called number restrictions, and those of the form
∃R are called existential concepts.

The satisfaction relation |= is also standard:

I |= C1 v C2 iff CI1 ⊆ CI2 , I |= R1 v R2 iff RI1 ⊆ RI2 ,
I |= Ak(ai) iff aIi ∈ AIk , I |= Pk(ai, aj) iff (aIi , a

I
j ) ∈ P Ik ,

I |= ¬Ak(ai) iff aIi /∈ AIk , I |= ¬Pk(ai, aj) iff (aIi , a
I
j ) /∈ P Ik .

A knowledge base K = (T ,A) is said to be satisfiable (or consistent) if there is an interpre-
tation, I, satisfying all the members of T and A. In this case we write I |= K (as well as
I |= T and I |= A) and say that I is a model of K (and of T and A).

The languages of the DL-Lite family we investigate in this article are obtained by re-
stricting the language of DL-LiteR,Nbool along three axes: (i) the Boolean operators (bool ) on
concepts, (ii) the number restrictions (N ) and (iii) the role inclusions (R).

Similarly to classical logic, we adopt the following definitions. A DL-LiteR,Nbool TBox T
will be called a Krom TBox 6 if its concept inclusions are restricted to:

B1 v B2, B1 v ¬B2 or ¬B1 v B2 (Krom)

(here and below all the Bi and B are basic concepts). T will be called a Horn TBox if its
concept inclusions are restricted to:

l

k

Bk v B (Horn)

6. The Krom fragment of first-order logic consists of all formulas in prenex normal form whose quantifier-free
part is a conjunction of binary clauses.

8
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(by definition, the empty conjunction is >). Finally, we will call T a core TBox if its
concept inclusions are restricted to:

B1 v B2 or B1 v ¬B2. (core)

As B1 v ¬B2 is equivalent to B1 u B2 v ⊥, core TBoxes can be regarded as sitting in the
intersection of Krom and Horn TBoxes.

Remark 2.1 We will sometimes use conjunctions on the right-hand side of concept inclu-
sions in these restricted languages: C v

d
k Bk. Clearly, this ‘syntactic sugar’ does not add

any extra expressive power.

The fragments of DL-LiteR,Nbool with Krom, Horn and core TBoxes will be denoted by
DL-LiteR,Nkrom, DL-LiteR,Nhorn and DL-LiteR,Ncore , respectively. Other fragments are obtained by
limiting the use of number restrictions and role inclusions. Let α ∈ {core, krom, horn, bool}.

• The fragment of DL-LiteR,Nα without number restrictions ≥q R, for q ≥ 2, but with
role inclusions will be denoted by DL-LiteRα . Note that, in DL-LiteRα , we can still use
existential concepts ∃R (that is, ≥1R).

• Next, denote by DL-LiteR,Fα the fragment of DL-LiteR,Nα in which of all number
restrictions ≥q R, we have existential concepts (with q = 1) and only those with
q = 2 that occur in concept inclusions of the form ≥ 2R v ⊥. Such an inclusion is
called a global functionality constraint because it states that role R is functional (more
precisely, if I |= (≥ 2R v ⊥) and both (x, y) ∈ RI and (x, z) ∈ RI , then y = z).

• Finally, if role inclusions are excluded from the language, then (for each α) we ob-
tain three fragments: DL-LiteNα (with arbitrary number restrictions), DL-LiteFα (with
functionality constraints and existential concepts ∃R), and DL-Liteα (without number
restrictions different from ∃R).

Thus DL-Litecore is the minimum of all our languages.
As we shall see later on in this paper, the logics of the form DL-LiteR,Fα and DL-LiteR,Nα ,

even for α = core, turn out to be computationally rather costly because of the interaction
between role inclusions and functionality constraints (or, more generally, number restric-
tions). On the other hand, for the purpose of conceptual modeling one may need both of
these constructs; cf. the example in Section 2.2. A compromise can be found by artificially
limiting the interplay between role inclusions and number restrictions in a way similar to
(Poggi et al., 2008a).

For a TBox T , let v∗T denote the reflexive and transitive closure of the relation{
(R,R′), (inv(R), inv(R′)) | R v R′ ∈ T

}
and let R ≡∗T R′ iff R v∗T R′ and R′ v∗T R. Say that R′ is a proper sub-role of R in T if
R′ v∗T R and R′ 6≡∗T R.

Consider the language obtained from DL-LiteR,Nbool by imposing the following syntactic
restriction on DL-LiteR,Nbool TBoxes T :

9
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(inter) if R has a proper sub-role in T then T contains no negative occurrences7 of number
restrictions ≥ q R or ≥ q inv(R) with q ≥ 2.

Moreover, in this language we can allow positive occurrences of qualified number restrictions
≥ q R.C in TBoxes T provided that the following condition is satisfied:

(exists) if ≥ q R.C occurs in T then T does not contain negative occurrences of ≥ q′R or
≥ q′ inv(R), for q′ ≥ 2.

We remind the reader of the semantics of qualified number restrictions: for an interpretation
I = (∆I , ·I),

(≥q R.C)I =
{
x ∈ ∆I | ]{y ∈ CI | (x, y) ∈ RI} ≥ q

}
.

Note that, by (exists), no such TBox can contain both a functionality constraint ≥ 2R v ⊥
and an occurrence of ≥ q R.C, for any q ≥ 1.

Finally, we can also allow TBoxes T to contain role constraints (or axioms) of the form:

Dis(R1, R2), Asym(Pk), Sym(Pk), Irr(Pk), and Ref(Pk).

The meaning of these constraints is defined as follows: for an interpretation I = (∆I , ·I),

• I |= Dis(R1, R2) iff RI1 ∩RI2 = ∅ (roles R1 and R2 are disjoint);

• I |= Asym(Pk) iff P Ik ∩ (P−k )I = ∅ (role Pk is asymmetric);

• I |= Sym(Pk) iff P Ik = (P−k )I (Pk is symmetric);

• I |= Irr(Pk) iff (x, x) /∈ P Ik for all x ∈ ∆I (Pk is irreflexive);

• I |= Ref(Pk) iff (x, x) ∈ P Ik for all x ∈ ∆I (Pk is reflexive).

The resulting language containing both role inclusions and (qualified) number restrictions,
controlled by conditions (inter) and (exists), as well as the above types of role constraints
will be denoted by DL-Lite

(RN )
bool . It is to be emphasized that these extra constructs are

used in conceptual modeling and also belong to the OWL 2 proposal; moreover, as we shall
see later, they do not affect the computational complexity of the members of the DL-Lite
family.

The languages DL-Lite
(RN )
horn , DL-Lite

(RN )
krom and DL-Lite

(RN )
core are defined as the corre-

sponding fragments of DL-Lite
(RN )
bool ; cf. Table 1. We only note that a concept C occurring

in some ≥ q R.C can be any concept allowed on the right-hand side of concept inclusions
in the respective language (or a conjunction thereof).

For α ∈ {bool, horn, krom, core}, denote by DL-Lite
(RN )+

α the extension of DL-Lite
(RN )
α

with role transitivity constraints of the form Tra(Pk), the meaning of which is as expected:

• I |= Tra(Pk) iff (x, y) ∈ P Ik and (y, z) ∈ P Ik imply (x, z) ∈ P Ik , for all x, y, z ∈ ∆I

(Pk is transitive).

7. An occurrence of a concept on the right-hand (left-hand) side of a concept inclusion is called negative if
it is in the scope of an odd (even) number of negations ¬; otherwise the occurrence is called positive.
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We remind the reader of the standard restriction limiting the use of transitive roles in DLs
(see, e.g., Horrocks, Sattler, & Tobies, 2000): namely, only simple roles R are allowed in
concepts of the form ≥ q R, for q ≥ 2, where by a simple role in a given TBox T we
understand a role without transitive sub-roles (including itself). In particular, if T contains
Tra(P ) then P and P− are not simple, and so T cannot contain occurrences of concepts of
the form ≥ q P and ≥ q P−, for q ≥ 2.

We also define languages DL-Lite
(RF)
α as sub-languages of DL-Lite

(RN )
α , in which only

number restrictions of the form ∃R, ∃R.C and functionality constraints ≥ 2R v ⊥ are
allowed—provided, of course, that they satisfy (inter) and (exists); in particular, ∃R.C is
not allowed if R is functional. As before, DL-Lite

(RF)+

α are the extensions of DL-Lite
(RF)
α

with role transitivity constraints.

role role number concept inclusions
constraints inclusions restrictions core Krom Horn Bool

∃R DL-Litecore DL-Litekrom DL-Litehorn DL-Litebool

no no ∃R/funct. DL-LiteFcore DL-LiteFkrom DL-LiteFhorn DL-LiteFbool
≥ q R DL-LiteNcore DL-LiteNkrom DL-LiteNhorn DL-LiteNbool
∃R DL-LiteRcore DL-LiteRkrom DL-LiteRhorn DL-LiteRbool

no yes ∃R/funct. DL-LiteR,Fcore DL-LiteR,Fkrom DL-LiteR,Fhorn DL-LiteR,Fbool

≥ q R DL-LiteR,Ncore DL-LiteR,Nkrom DL-LiteR,Nhorn DL-LiteR,Nbool

disj.
(a)sym.
(ir)ref.

yes
∃R.C/funct.a) DL-Lite(RF)

core DL-Lite
(RF)
krom DL-Lite

(RF)
horn DL-Lite

(RF)
bool

≥ q R.C a) DL-Lite(RN )
core DL-Lite

(RN )
krom DL-Lite

(RN )
horn DL-Lite

(RN )
bool

disj.
(a)sym.
(ir)ref.
tran.

yes
∃R.C/funct.a) DL-Lite(RF)+

core DL-Lite
(RF)+

krom DL-Lite
(RF)+

horn DL-Lite
(RF)+

bool

≥ q R.C a) DL-Lite(RN )+

core DL-Lite
(RN )+

krom DL-Lite
(RN )+

horn DL-Lite
(RN )+

bool

a) restricted by (inter) and (exists).

Table 1: The extended DL-Lite family.

Thus, the DL-Lite family we consider in this article consists of 40 different logics col-
lected in Table 1; the inclusions between the languages are shown in Figure 1.

The position of these logics relative to other DL-Lite logics known in the literature and
the OWL 2 QL profile will be discussed in Section 4. And starting from Section 5, we begin
a thorough investigation of the computational properties of the logics in the DL-Lite family,
both with and without the UNA. But before that we illustrate the expressive power of the
DL-Lite logics by a concrete example.

2.2 DL-Lite for Conceptual Modeling

A tight correspondence between conceptual modeling formalisms, such as the ER model
and UML class diagrams, and various description logics has been pointed out in various
papers, e.g., (Calvanese et al., 1998b, 1999; Borgida & Brachman, 2003; Berardi et al.,
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Figure 1: Language inclusions in the extended DL-Lite family.

2005). Here we give an example showing how DL-Lite logics can be used for conceptual
modeling purposes; for more details see (Artale et al., 2007b).

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 
 
TopManager

1..1

1..*

boss

 
projectName: String

Project
3..*

1..1

1..1

worksOn

manages

1..*

{disjoint, complete}

Figure 2: A UML class diagram.

Let us consider the UML class diagram depicted in Figure 2 and representing (a portion
of) a company information system. According to the diagram, all managers are employees
and partitioned into area managers and top managers. This information can be represented
by means of the following concept inclusions (where in brackets we specify the minimal
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DL-Lite language the inclusion belongs to):

Manager v Employee (DL-Litecore)
AreaManager v Manager (DL-Litecore)
TopManager v Manager (DL-Litecore)

AreaManager v ¬TopManager (DL-Litecore)
Manager v AreaManager t TopManager (DL-Litebool)

Each employee has two functional attributes, empCode and salary, with integer values; here
we only represent the latter:

Employee v ∃salary (DL-Litecore)
∃salary− v Integer (DL-Litecore)

≥ 2 salary v ⊥ (DL-LiteFcore)

The binary relationship worksOn has Employee as its domain and Project as its range:

∃worksOn v Employee (DL-Litecore)
∃worksOn− v Project (DL-Litecore)

(similarly for boss with Employee and Manager). Each employee works on a project and
has exactly one boss, while a project must involve at least three employees:

Employee v ∃worksOn (DL-Litecore)
Employee v ∃boss (DL-Litecore)

≥ 2 boss v ⊥ (DL-LiteFcore)

Project v ≥ 3 worksOn− (DL-LiteNcore)

A top manager manages exactly one project and also works on that project, while a project
is managed by exactly one top manager:

∃manages v TopManager (DL-Litecore)
∃manages− v Project (DL-Litecore)

TopManager v ∃manages (DL-Litecore)
Project v ∃manages− (DL-Litecore)

≥ 2 manages v ⊥ (DL-LiteFcore)

≥ 2 manages− v ⊥ (DL-LiteFcore)

manages v worksOn (DL-LiteRcore)

All in all, the only languages in the DL-Lite family capable of representing the UML class
diagram in Figure 2 are DL-LiteR,Nbool and DL-Lite

(RN )
bool . Note, however, that except for the

covering constraint, Manager v AreaManager t TopManager , all other concept inclusions

13
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in the DL-Lite translation of the UML class diagram belong to variants of the ‘core’ frag-
ments DL-LiteR,Ncore and DL-Lite

(RN )
core . It is not hard to imagine a situation where one needs

DL-Litehorn concept inclusions to represent integrity constraints over UML class diagrams,
for example, to express that ‘no chief executive officer may work on five projects and be a
manager of one of them:’

CEO u (≥ 5 worksOn) u ∃manages v ⊥ (DL-LiteNhorn)

In the context of UML class diagrams, the Krom fragment DL-Litekrom (with its variants)
seems to be useless: it extends DL-Litecore with concept inclusions of the form ¬B1 v B2

or, equivalently, > v B1 t B2, which are rarely used in conceptual modeling. On the
other hand, the Krom fragments are important for pinpointing the borderlines of various
complexity classes over the DL-Lite family of description logics; see Table 2.

3. Reasoning in the DL-Lite Family

We discuss now the reasoning problems we consider for the logics of the DL-Lite family,
their mutual relationships, and the complexity measures we adopt. We also provide an
overview of the complexity results obtained in this article.

3.1 Reasoning Problems

We will concentrate on three fundamental reasoning tasks for the logics L of the DL-Lite
family: satisfiability (or consistency), instance checking and query answering.

For a DL L in our DL-Lite family, we define an L-concept inclusion as any concept
inclusion allowed in L. Similarly, we define the notions of L-KB and L-TBox. Finally,
define an L-concept as any concept that can occur on the right-hand side of an L-concept
inclusion or a conjunction of such concepts.

Satisfiability. The KB satisfiability problem is to check, given an L-KB K, whether there
is a model of K. Clearly, satisfiability is the minimal requirement for any ontology as the
consistency test is run quite often at the ontology development stage. As is well known in
DL (Baader et al., 2003), many other reasoning tasks for description logics are reducible
to the satisfiability problem. Consider, for example, the subsumption problem: given an
L-TBox T and an L-concept inclusion C1 v C2, decide whether T |= C1 v C2, that is, for
every model I of T , we have CI1 ⊆ CI2 . To reduce this problem to (un)satisfiability, take a
fresh concept name A, a fresh object name a, and set K = (T ′,A), where

T ′ = T ∪ {A v C1, A v ¬C2} and A = {A(a)}.

It is easy to see that T |= C1 v C2 iff K is not satisfiable. For core, Krom and Horn KBs, if
C2 =

d
kDk, where each Dk is a (possibly negated) basic concept, checking unsatisfiability

of K amounts to checking unsatisfiability of each of the KBs Kk = (Tk,A), where Tk =
T ∪ {A v C1, A v ¬Dk} (for Horn KBs, replace A v ¬B with the equivalent A uB v ⊥).

The concept satisfiability problem—given an L-TBox T and an L-concept C, decide
whether CI 6= ∅ in a model I of T—is also easily reducible to KB satisfiability. Indeed,
take a fresh concept name A, a fresh object name a, and set K = (T ′,A), where

T ′ = T ∪ {A v C} and A = {A(a)}.
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Then C is satisfiable w.r.t. T iff K is satisfiable.

Instance checking. The instance checking problem is to decide, given an object name a,
an L-concept C and an L-KB K = (T ,A), whether K |= C(a), that is, aI ∈ CI , for every
model I of K. Instance checking is also reducible to (un)satisfiability: an object a is an
instance of an L-concept C in every model of K = (T ,A) iff the KB K′ = (T ′,A′), with

T ′ = T ∪ {A v ¬C} and A′ = A ∪ {A(a)},

is not satisfiable, where A is a fresh concept name. For core, Krom and Horn KBs, if
C =

d
kDk, where each Dk is a (possibly negated) basic concept, we can proceed as for

subsumption: checking the unsatisfiability of K′ amounts to checking the unsatisfiability of
each KB K′k = (T ′k ,A′) with T ′k = T ∪ {A v ¬Dk}.

Conversely, KB satisfiability is reducible to the complement of instance checking: K is
satisfiable iff K 6|= A(a), for a fresh concept name A and a fresh object a.

Query answering. A positive existential query q(x1, . . . , xn) is any first-order formula
ϕ(x1, . . . , xn) constructed by means of conjunction, disjunction and existential quantifica-
tion starting from atoms of the from A(t) and P (t1, t2), where A is a concept name, P a
role name, and t, t1, t2 are terms taken from the list of variables y0, y1, . . . and the list of
object names a0, a1, . . . (i.e., ϕ is a positive existential formula). More precisely,

t ::= yi | ai,

ϕ ::= Ak(t) | Pk(t1, t2) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ∃yi ϕ.

The free variables of ϕ are called distinguished variables of q and the bound ones are non-
distinguished variables of q. We write q(x1, . . . , xn) for a query with distinguished variables
x1, . . . , xn. A conjunctive query is a positive existential query that contains no disjunction
(it is constructed from atoms by means of conjunction and existential quantification only).

Given a query q(~x) = ϕ(~x) with ~x = x1, . . . , xn and an n-tuple ~a of object names, we
write q(~a) for the result of replacing every occurrence of xi in ϕ(~x) with the ith member of
~a. Queries containing no distinguished variables will be called ground (they are also known
as Boolean).

Let I = (∆I , ·I) be an interpretation. An assignment a in ∆I is a function associating
with every variable y an element a(y) of ∆I . We will use the following notation: aI,ai = aIi
and yI,a = a(y). The satisfaction relation for positive existential formulas with respect to
a given assignment a is defined inductively by taking:

I |=a Ak(t) iff tI,a ∈ AIk ,

I |=a Pk(t1, t2) iff (tI,a1 , tI,a2 ) ∈ P Ik ,
I |=a ϕ1 ∧ ϕ2 iff I |=a ϕ1 and I |=a ϕ2,

I |=a ϕ1 ∨ ϕ2 iff I |=a ϕ1 or I |=a ϕ2,

I |=a ∃yi ϕ iff I |=b ϕ, for some assignment b in ∆I that may differ from a on yi.

For a ground query q(~a), the satisfaction relation does not depend on the assignment a, and
so we write I |= q(~a) instead of I |=a q(~a). The answer to such a query is either ‘yes’ or
‘no.’
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For a KB K = (T ,A), we say that a tuple ~a of object names from A is a certain answer
to q(~x) with respect to K, and write K |= q(~a), if I |= q(~a) whenever I |= K. The query
answering problem can be formulated as follows: given an L-KB K = (T ,A), a query q(~x),
and a tuple ~a of object names from A, decide whether K |= q(~a).

Note that the instance checking problem is a special case of query answering: an object
a is an instance of an L-concept C w.r.t. a KB K iff the answer to the query A(a) w.r.t.
K′ is ‘yes’, where K′ = (T ′,A) and T ′ = T ∪ {C v A}, with A a fresh concept name. For
Horn-concepts B1 u · · · u Bk, we consider the query A1(a) ∧ · · · ∧ Ak(a) w.r.t. K′, where
K′ = (T ′,A) and T ′ = T ∪ {B1 v A1, . . . , Bk v Ak}, with the Ai fresh concept names.
Similarly, we deal with Krom-concepts D1 u · · · uDk, where each Di is a possibly negated
basic concept. For core-concepts, the reduction holds just for conjunctions of basic concepts.

3.2 Complexity Measures: Data and Combined Complexity

The computational complexity of the reasoning problems discussed above can be analyzed
with respect to different complexity measures, which depend on those parameters of the
problem that are regarded to be the input (i.e., can vary) and those that are regarded to
be fixed. For satisfiability and instance checking, the parameters to consider are the size
of the TBox T and the size of the ABox A, that is the number of symbols in T and A,
denoted |T | and |A|, respectively. The size |K| of the knowledge K = (T ,A) is simply given
by |T | + |A|. For query answering, one more parameter to consider would be the size of
the query. However, in our analysis we adopt the standard database assumption that the
size of queries is always bounded by some reasonable constant and, in any case, negligible
w.r.t. both the size of the TBox and the size of the ABox. Thus we do not count the query
as part of the input.

Hence, we consider our reasoning problems under two complexity measures. If the whole
KB K is regarded as an input, then we deal with combined complexity. If, however, only the
ABox A is counted as an input, while the TBox T (and the query) is regarded to be fixed,
then our concern is data complexity (Vardi, 1982). Combined complexity is of interest, e.g.,
when we are still designing and testing the ontology. On the other hand, data complexity
is preferable in all those cases where the TBox is fixed or its size (and the size of the
query) is negligible compared to the size of the ABox, which is the case, for instance, in the
context of querying data through ontologies (Calvanese, De Giacomo, Lembo, Lenzerini,
Poggi, & Rosati, 2007) and other data intensive applications (Decker, Erdmann, Fensel, &
Studer, 1999; Noy, 2004; Lenzerini, 2002; Calvanese et al., 2008). Since the logics of the
DL-Lite family were tailored to deal with large data sets stored in relational databases,
data complexity of both instance checking and query answering is of particular interest to
us.

3.3 Remarks on the Complexity Classes LogSpace and AC0

In this paper, we deal with the following complexity classes:

AC0 ⊆ LogSpace ⊆ NLogSpace ⊆ P ⊆ NP ⊆ ExpTime.
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Their definitions can be found in the standard textbooks like (Garey & Johnson, 1979;
Papadimitriou, 1994; Vollmer, 1999; Kozen, 2006). Here we only remind the reader of the
two smallest classes LogSpace and AC0.

A problem belongs to LogSpace if there is a two-tape Turing machine M such that,
starting with an input of length n written on the read-only input tape,M stops in an accept-
ing or rejecting state having used at most log n cells of the (initially blank) read/write work
tape. A LogSpace transducer is a three-tape Turing machine that, having started with an
input of length n written on the read-only input tape, writes the result (of polynomial size)
on the write-only output tape using at most log n cells of the (initially blank) read/write
work tape. A LogSpace reduction is a reduction computable by a LogSpace transducer;
the composition of two LogSpace transducers is also a LogSpace transducer (Kozen,
2006, Lemma 5.1).

The formal definition of the complexity class AC0 (see, e.g., Boppana & Sipser, 1990;
Vollmer, 1999 and references therein) is based on the circuit model, where functions are
represented as directed acyclic graphs built from unbounded fan-in And, Or and Not
gates (i.e., And and Or gates may have an unbounded number of incoming edges). For
this definition we assume that decision problems are encoded in the alphabet {0, 1} and so
can be regarded as Boolean functions. AC0 is the class of problems definable using a family
of circuits of constant depth and polynomial size, which can be generated by a deterministic
Turing machine in logarithmic time (in the size of the input); the latter condition is called
LogTime-uniformity. Intuitively, AC0 allows us to use polynomially many processors but
the run-time must be constant. A typical example of an AC0 problem is the evaluation
of first-order queries over databases (or model checking of first-order sentences over finite
models), where only the database (first-order model) is regarded as the input and the query
(first-order sentence) is assumed to be fixed (Abiteboul, Hull, & Vianu, 1995; Vollmer,
1999). The undirected graph reachability problem is known to be in LogSpace (Reingold,
2008) but not in AC0. A Boolean function f : {0, 1}n → {0, 1} is called AC0-reducible (or
constant-depth reducible) to a function g : {0, 1}n → {0, 1} if there is a (LogTime-uniform)
family of constant-depth circuits built from And, Or, Not and g gates that computes f .
In this case we say that there is an AC0-reduction. Note that all the reductions considered
in Section 3.1 are AC0-reductions. Unless otherwise indicated, in what follows we write
‘reduction’ for ‘AC0-reduction.’

3.4 Summary of Complexity Results

In this article, our aim is to investigate (i) the combined and data complexity of the satisfi-
ability and instance checking problems and (ii) the data complexity of the query answering
problem for the logics of our DL-Lite family, both with and without the UNA. The obtained
and known results for the first 32 logics from Table 1 (the DL-Lite

(RF)+

α and DL-Lite
(RN )+

α

are not included) are summarized in Table 2 (we remind the reader that satisfiability and
instance checking are reducible to the complements of each other). In fact, all of the results
in the table follow from the lower and upper bounds marked with [≥] and [≤], respectively
(by taking into account the hierarchy of languages of the DL-Lite family): for example, the
NLogSpace upper bound for DL-LiteNkrom in Theorem 5.7 implies the same upper bound
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Complexity

Languages UNA Combined complexity Data complexity

Satisfiability Instance checking Query answering

DL-Lite[ |R]
core NLogSpace ≥ [A] in AC0 in AC0

DL-Lite
[ |R]
horn yes/no

P ≤ [Th.5.13] ≥ [A] in AC0 in AC0 ≤ [C]

DL-Lite
[ |R]
krom NLogSpace ≤ [Th.5.13] in AC0 coNP ≥ [B]

DL-Lite
[ |R]
bool NP ≤ [Th.5.13] ≥ [A] in AC0 ≤ [Cor.6.2] coNP

DL-Lite[F|N|(RN )]
core NLogSpace in AC0 in AC0

DL-Lite
[F|N|(RN )]
horn yes

P ≤ [Th.5.8, 5.13] in AC0 in AC0 ≤ [Th.7.1]

DL-Lite
[F|N|(RN )]
krom NLogSpace ≤ [Th.5.7, 5.13] in AC0 coNP

DL-Lite
[F|N|(RN )]
bool NP ≤ [Th.5.6, 5.13] in AC0 ≤ [Cor.6.2] coNP

DL-Lite
[F|(RF)]
core/horn P ≤ [Cor.8.6] ≥ [Th.8.5] P ≥ [Th.8.5] P

DL-Lite
[F|(RF)]
krom P ≤ [Cor.8.6] P coNP

DL-Lite
[F|(RF)]
bool no NP P ≤ [Cor.8.6] coNP

DL-Lite
[N|(RN )]
core/horn NP ≥ [Th.8.2] coNP ≥ [Th.8.2] coNP

DL-Lite
[N|(RN )]
krom/bool NP ≤ [Th.8.3] coNP coNP

DL-LiteR,Fcore/horn ExpTime ≥ [Th.5.10] P ≥ [Th.6.7] P ≤ [D]

DL-LiteR,Fkrom/bool yes/no
ExpTime coNP ≥ [Th.6.5] coNP

DL-LiteR,Ncore/horn ExpTime coNP ≥ [Th.6.6] coNP

DL-LiteR,Nkrom/bool ExpTime coNP coNP ≤ [E]

[A] complexity of the respective fragment of propositional Boolean logic
[B] follows from (Schaerf, 1993)
[C] (Calvanese et al., 2006)
[D] follows from (Hustadt, Motik, & Sattler, 2005; Eiter, Gottlob, Ortiz, & Šimkus, 2008)
[E] follows from (Ortiz, Calvanese, & Eiter, 2006, 2008; Glimm, Horrocks, Lutz, & Sattler, 2007)

Table 2: Complexity of DL-Lite logics.
DL-Lite[β1|...|βn]

α means any of DL-Liteβ1
α , . . . , DL-Liteβn

α

(in particular, DL-Lite[ |R]
α is either DL-Liteα or DL-LiteRα )

DL-Liteβcore/horn means DL-Liteβcore or DL-Liteβhorn (likewise for DL-Liteβkrom/bool)

for DL-LiteFkrom, DL-Litekrom, DL-LiteNcore, DL-LiteFcore and DL-Litecore because all of them
are sub-languages of DL-LiteNkrom.

Remark 3.1 Two further complexity results are to be noted (they are not included in
Table 2):

(i) If equality between object names is allowed in the language of DL-Lite, which only
makes sense if the UNA is dropped, then the AC0 data complexity results in Table 2
transform into LogSpace-completeness results (see Section 8); inequality constraints
do not affect the complexity.
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(ii) If we extend any of our languages with role transitivity constraints then the com-
bined complexity of satisfiability remains the same, while for data complexity, instance
checking and query answering become NLogSpace-hard (see Lemma 6.3), i.e., the
AC0 data complexity results transform into NLogSpace-completeness while all other
complexities remain the same.

In either case, the property of first-order rewritability—that is, the possibility of rewriting a
given query q with the help of a given TBox T into a single first-order query q′ returning the
certain answers to q over (T ,A) for every ABox A, which ensures that the query answering
problem is in AC0 for data complexity—becomes unfeasible.

Detailed proofs of our results will be given in Sections 5–8. For the variants of logics
involving number restrictions, all upper bounds hold also under the assumption that the
numbers q in concepts of the form ≥ q R are given in binary. (Intuitively, this follows from
the fact that in our proofs we only use those numbers that explicitly occur in the KB.) All
lower bounds remain the same also for the unary coding, since in the corresponding proofs
we only use numbers that are smaller than or equal to 4.

In the next section we consider our DL-Lite family in a more general context by identi-
fying its place among other DL-Lite-related logics, in particular the OWL 2 profiles.

4. The Landscape of DL-Lite Logics

The original family of DL-Lite logics was created with two goals in mind: to identify
description logics that, on the one hand, are capable of representing some basic features
of conceptual modeling formalisms (such as UML class diagrams and ER diagrams) and,
on the other hand, are computationally tractable, in particular, matching the AC0 data
complexity of database query answering.

As we saw in Section 2.2, to represent UML class diagrams one does not need the typi-
cal quantification constructs of the basic description logic ALC (Schmidt-Schauß & Smolka,
1991), namely, universal restriction ∀R.C and qualified existential quantification ∃R.C: one
can always take the role filler C to be >. Indeed, domain and range restrictions for a
relationship P can be expressed by the concepts inclusions ∃P v B1 and ∃P− v B2, re-
spectively. Thus, almost all concept inclusions required for capturing UML class diagrams
are of the form B1 v B2 or B1 v ¬B2. These observations motivated the introduction of the
first DL-Lite logic in (Calvanese et al., 2005), which in our new nomenclature corresponds
to DL-LiteFcore. The main results of (Calvanese et al., 2005) were a polynomial-time upper
bound for the combined complexity of KB satisfiability and a LogSpace upper bound for
the data complexity of conjunctive query answering (under the UNA). These results were
extended in (Calvanese et al., 2006) to two larger languages: DL-LiteFhorn and DL-LiteRhorn,
which were originally called DL-Liteu,F and DL-Liteu,R, respectively. In (Calvanese et al.,
2007b), another member of the DL-Lite family (named DL-LiteR) was introduced: it ex-
tended DL-LiteRcore with role disjointness axioms of the form Dis(R1, R2). The computa-
tional behavior of the new logic turned out to be the same as that of DL-LiteRcore. It may
be worth mentioning that DL-LiteRcore covers the DL fragment of RDFS (Klyne & Carroll,
2004; Hayes, 2004). Note also that (Calvanese et al., 2006) considered the variants of both
DL-Liteu,F and DL-Liteu,R with arbitrary n-ary relations (not only the usual binary roles)
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and showed that they are still in LogSpace for data complexity. In (Artale et al., 2007b)
we showed how n-ary relations can be represented in DL-LiteFcore by means of reification.
We conjecture that similar results can be obtained for the other DL-Lite logics introduced
in this paper.

A further variant of DL-Lite, called DL-LiteA (‘A’ for attributes), was introduced in
(Poggi et al., 2008a) with the aim of capturing as many features of conceptual modeling
formalisms as possible, while still maintaining the computational properties of the basic
variants of DL-Lite. One of the features in DL-LiteA, borrowed from conceptual modeling
formalisms, is the distinction between (abstract) objects and domain values, and conse-
quently, between concepts (sets of objects) and domains (sets of values), and between roles
(relating objects with objects) and attributes (relating object with values). However, the
distinction between concepts and domains, and between roles and attributes has no impact
on reasoning whatsoever, since domains can simply be treated in the same way as con-
cepts (that are disjoint from the proper concepts), and similarly for attributes. Instead,
more relevant for reasoning is the possibility to express in DL-LiteA both role inclusions and
functionality, i.e., DL-LiteA includes both DL-LiteRcore and DL-LiteFcore, but not DL-LiteR,Fcore .

As we have already mentioned, role inclusions and functionality constraints cannot be
combined in an unrestricted way without losing the good computational properties: in
Theorems 5.10 and 6.7, we prove that satisfiability of DL-LiteR,Fcore KBs is ExpTime-hard
for combined complexity, while instance checking is data-hard for P (NLogSpace-hardness
was shown by Calvanese et al., 2006). In DL-LiteA, to keep query answering in AC0 for
data complexity and satisfiability in NLogSpace for combined complexity, functional roles
(and attributes) are not allowed to be specialized, i.e., used positively on the right-hand side
of role (and attribute) inclusion axioms. So condition (inter) is a slight generalization of
this restriction. DL-LiteA also allows axioms of the form B v ∃R.C for non-functional roles
R, which is covered by condition (exists). Thus, DL-LiteA is a proper fragment of both
DL-Lite

(RF)
core and DL-Lite

(RN )
horn . We show in Sections 5.3 and 7 that these three languages

enjoy very similar computational properties under the UNA: tractable satisfiability and
query answering in AC0.

4.1 The DL-Lite Family and OWL 2

The upcoming version 2 of the Web Ontology Language OWL8 defines several profiles,9 that
is, restricted versions of the language that suit specific needs. The DL-Lite family, notably
DL-LiteRcore (or the original DL-LiteR), is at the basis of one of these OWL 2 profiles, called
OWL 2 QL. According to http://www.w3.org/TR/owl2-profiles/, ‘OWL 2 QL is aimed
at applications that use very large volumes of instance data, and where query answering
is the most important reasoning task. In OWL 2 QL, [. . . ] sound and complete query
answering can be performed in LogSpace with respect to the size of the data (assertions)
[and] there are polynomial-time algorithms for consistency, subsumption, and classification
reasoning. The expressive power of the profile is necessarily quite limited, although it does
include most of the main features of conceptual models such as UML class diagrams and

8. http://www.w3.org/2007/OWL/

9. The proper term for what in W3C jargon is called a profile would be fragment. In OWL 2, profiles are
defined by placing restrictions on the OWL 2 syntax only.
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ER diagrams.’ In this section, we briefly discuss the results obtained in this article in the
context of additional constructs that are present in OWL 2.

A very important difference between description logics and OWL is the status of the
unique name assumption (UNA): this assumption is commonly made in DL but not adopted
in OWL. Instead, the OWL syntax provides explicit means for stating that object names,
say a and b, are supposed to denote the same individual, a ≈ b, or that they should be inter-
preted differently, a 6≈ b (in OWL, these constructs are called sameAs and differentFrom).

The complexity results we obtain for logics of the form DL-LiteRα do not depend on
whether or not we adopt the UNA. However, this is not the case for the logics DL-LiteFα and
DL-LiteNα , where there is an obvious interaction between the UNA and number restrictions
(cf. Table 2). For example, under the UNA, instance checking for DL-LiteFcore is in AC0 for
data complexity, whereas dropping this assumption results in a much higher complexity:
in Section 8, we prove that it is P-complete. The addition of the equality construct ≈
to DL-LiteRcore and DL-LiteRhorn slightly changes the data complexity of query answering
and instance checking, as it rises from AC0 to LogSpace; see Section 8. What is more
important, however, is that in this case we loose first-order rewritability of queries, and as
a result cannot use the standard database query engines in a straightforward manner.

Since the OWL 2 profiles are defined as syntactic restrictions without changing the
basic semantic assumptions, it was chosen not to include in the OWL 2 QL profile any
construct that interferes with the UNA and which, in the absence of the UNA, would cause
higher complexity. That is why OWL 2 QL does not include number restrictions, not even
functionality constraints. Also, keys (the mechanism of identifying objects by means of
the values of their properties) are not supported, although they are an important notion
in conceptual modeling. Indeed, keys can be considered as a generalization of functionality
constraints (Toman & Weddell, 2005, 2008; Calvanese, De Giacomo, Lembo, Lenzerini, &
Rosati, 2007a, 2008b), since asserting a unary key, i.e., one involving only a single role R,
is equivalent to asserting the functionality of the inverse of R. Hence, in the absence of the
UNA, allowing keys would change the computational properties.

As we have already mentioned, some other standard OWL constructs, such as role dis-
jointness, (a)symmetry and (ir)reflexivity constraints, can be added to the DL-Lite logics
without changing their computational behavior. Role transitivity constraints, Tra(R), as-
serting that R must be interpreted as a transitive role, can also be added to DL-Lite

(RN )
horn but

this leads to the increase of the data complexity for all reasoning problems to NLogSpace,
although the combined complexity remains in P. These results can be found in Section 5.3.

Of other constructs of OWL 2 that so far are not supported by the DL-Lite logics we
mention nominals (i.e., singleton concepts), Boolean operators on roles, and role chains.

5. Satisfiability: Combined Complexity

DL-LiteR,Nbool is clearly a sub-logic of the description logic SHIQ, the satisfiability problem
for which is known to be ExpTime-complete (Tobies, 2001).

In Section 5.1 we show, however, that the satisfiability problem for DL-LiteNbool KBs is
reducible to the satisfiability problem for the one-variable fragment, QL1, of first-order logic
without equality and function symbols. As satisfiability of QL1-formulas is NP-complete
(see, e.g., Börger et al., 1997) and the logics under consideration contain full Booleans on
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concepts, satisfiability of DL-LiteNbool KBs is NP-complete as well. We shall also see that the
translations of Horn and Krom KBs into QL1 belong to the Horn and Krom fragments of
QL1, respectively, which are known to be P- and NLogSpace-complete (see, e.g., Papadim-
itriou, 1994; Börger et al., 1997). In Section 5.2, we will show how to simulate the behavior of
polynomial-space-bounded alternating Turing machines by means of DL-LiteR,Fcore KBs. This
will give the (optimal) ExpTime lower bound for satisfiability of KBs in all the languages
of our family containing unrestricted occurrences of both functionality constraints and role
inclusions. In Section 5.3, we extend the embedding into QL1, defined in Section 5.1, to the
logic DL-Lite

(RN )
bool , thereby establishing the same upper bounds as for DL-LiteNbool and its

fragments. Finally, in Section 5.4 we investigate the impact of role transitivity constraints.

5.1 DL-LiteNbool and its Fragments: First-Order Perspective

Our aim in this section is to construct a reduction of the satisfiability problem for DL-LiteNbool
KBs to satisfiability of QL1-formulas. We will do this in two steps: first we present a lengthy
yet quite ‘natural’ and transparent (yet exponential) reduction ·†, and then we shall see from
the proof that this reduction can be substantially optimized to a linear reduction ·‡.

Let K = (T ,A) be a DL-LiteNbool KB. Recall that role±(K) denotes the set of direct
and inverse role names occurring in K and ob(A) the set of object names occurring in A.
For R ∈ role±(K), let QRT be the set of natural numbers containing 1 and all the numerical
parameters q for which the concept ≥ q R occurs in T (recall that the ABox does not contain
numerical parameters). Note that |QRT | ≥ 2 if T contains a functionality constraint for R.

With every object name ai ∈ ob(A) we associate the individual constant ai of QL1 and
with every concept name Ai the unary predicate Ai(x) from the signature of QL1. For each
role R ∈ role±(K), we introduce |QRT |-many fresh unary predicates

EqR(x), for q ∈ QRT .

The intended meaning of these predicates is as follows: for a role name Pk,

• E1Pk(x) and E1P
−
k (x) represent the domain and range of Pk, respectively; in other

words, E1Pk(x) and E1P
−
k (x) are the sets of points with at least one Pk-successor and

at least one Pk-predecessor, respectively;

• EqPk(x) and EqP−k (x) represent the sets of points with at least q distinct Pk-successors
and at least q distinct Pk-predecessors, respectively.

Additionally, for every pair of roles Pk, P−k ∈ role±(K), we take two fresh individual con-
stants

dpk and dp−k

of QL1, which will serve as ‘representatives’ of the points from the domains of Pk and
P−k , respectively (provided that they are not empty). Let dr(K) =

{
dr | R ∈ role±(K)

}
.

Furthermore, for each pair of object names ai, aj ∈ ob(A) and each R ∈ role±(K), we take
a fresh propositional variable Raiaj of QL1 to encode the ABox assertion R(ai, aj).10

10. In what follows, we slightly abuse notation and write R(ai, aj) ∈ A to indicate that Pk(ai, aj) ∈ A if
R = Pk, or Pk(aj , ai) ∈ A if R = P−k .
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By induction on the construction of a DL-LiteNbool concept C we define the QL1-formula
C∗:

⊥∗ = ⊥, (Ai)∗ = Ai(x), (≥q R)∗ = EqR(x),
(¬C)∗ = ¬C∗(x), (C1 u C2)∗ = C∗1 (x) ∧ C∗2 (x).

The DL-LiteNbool TBox T corresponds then to the QL1-sentence ∀x T ∗(x), where

T ∗(x) =
∧

C1vC2∈T

(
C∗1 (x)→ C∗2 (x)

)
. (1)

The ABox A is translated into the following pair of QL1-sentences

A†1 =
∧

Ak(ai)∈A

Ak(ai) ∧
∧

¬Ak(ai)∈A

¬Ak(ai), (2)

A†2 =
∧

Pk(ai,aj)∈A

Pkaiaj ∧
∧

¬Pk(ai,aj)∈A

¬Pkaiaj . (3)

For every role R ∈ role±(K), we need two QL1-formulas:

εR(x) = E1R(x)→ inv(E1R)(inv(dr)), (4)

δR(x) =
∧

q,q′∈QR
T , q′>q

q′>q′′>q for no q′′∈QR
T

(
Eq′R(x)→ EqR(x)

)
, (5)

where (by overloading the inv operator),

inv(EqR) =

{
EqP

−
k , if R = Pk,

EqPk, if R = P−k ,
and inv(dr) =

{
dp−k , if R = Pk,

dpk, if R = P−k .

Formula (4) says that if the domain of R is not empty then its range is not empty either:
it contains the constant inv(dr), the ‘representative’ of the domain of inv(R). The meaning
of (5) should be obvious.

We also need formulas representing the relationship of the propositional variables Raiaj
with the unary predicates for the role domain and range: for a role R ∈ role±(K), let R† be
the following QL1-sentence∧
ai∈ob(A)

∧
q∈QR

T

∧
aj1

,...,ajq∈ob(A)

jk 6=jk′ for k 6=k′

( q∧
k=1

Raiajk → EqR(ai)
)
∧

∧
ai,aj∈ob(A)

(
Raiaj → inv(R)ajai

)
, (6)

where inv(R)ajai is the propositional variable P−k ajai if R = Pk and Pkajai if R = P−k .
Note that the first conjunct of (6) is the only part of the translation that relies on the UNA.

Finally, for the DL-LiteNbool knowledge base K = (T ,A), we set

K† = ∀x
[
T ∗(x) ∧

∧
R∈role±(K)

(
εR(x) ∧ δR(x)

) ]
∧

[
A†1 ∧ A†2 ∧

∧
R∈role±(K)

R†
]
.

Thus, K† is a universal sentence of QL1.
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Example 5.1 Consider, for example, the KB K = (T ,A) with

T =
{
A v ∃P−, ∃P− v A, A v ≥ 2P, > v ≤ 1P−, ∃P v A

}
and A = {A(a), P (a, a′)}. Then we obtain the following first-order translation:

K† = ∀xχ(x) ∧ A(a) ∧ Paa′ ∧(
Paa′ → E1P (a)

)
∧
(
Paa→ E1P (a)

)
∧(

Pa′a→ E1P (a′)
)
∧
(
Pa′a′ → E1P (a′)

)
∧(

P−aa′ → E1P
−(a)

)
∧
(
P−aa→ E1P

−(a)
)
∧(

P−a′a→ E1P
−(a′)

)
∧
(
P−a′a′ → E1P

−(a′)
)
∧(

Paa′ ∧ Paa→ E2P (a)
)
∧
(
Pa′a ∧ Pa′a′ → E2P (a′)

)
∧(

P−aa′ ∧ P−aa→ E2P
−(a)

)
∧
(
P−a′a ∧ P−a′a′ → E2P

−(a′)
)
∧(

Paa′ ↔ P−a′a
)
∧
(
Pa′a↔ P−aa′

)
∧
(
Paa↔ P−aa

)
∧
(
Pa′a′ ↔ P−a′a′

)
.

where

χ(x) =
(
A(x)→ E1P

−(x)
)
∧
(
E1P

−(x)→ A(x)
)
∧
(
A(x)→ E2P (x)

)
∧(

> → ¬E2P
−(x)

)
∧
(
E1P (x)→ A(x)

)
∧(

E1P (x)→ E1P
−(dp−)

)
∧
(
E1P

−(x)→ E1P (dp)
)
∧(

E2P (x)→ E1P (x)
)
∧
(
E2P

−(x)→ E1P
−(x)

)
. (7)

Theorem 5.2 A DL-LiteNbool knowledge base K = (T ,A) is satisfiable iff the QL1-sentence
K† is satisfiable.

Proof (⇐) If K† is satisfiable then there is a model M of K† whose domain consists of
all the constants occurring in K†—i.e., ob(A) ∪ dr(K) (say, an Herbrand model of K†). We
denote this domain by D and the interpretations of the (unary) predicates P , propositional
variables p and constants a of QL1 in M by PM, pM and aM, respectively. Thus, for every
constant a, we have aM = a. Let D0 be the set of all constants a, a ∈ ob(A). Without loss
of generality we may assume that D0 6= ∅.

We construct an interpretation I for DL-LiteNbool based on some domain ∆I ⊇ D0 that
will be inductively defined as the union

∆I =
∞⋃
m=0

Wm, where W0 = D0.

The interpretations of the object names ai in I are given by their interpretations in M,
namely, aIi = aM

i ∈ W0. Each set Wm+1, for m ≥ 0, is constructed by adding to Wm some
new elements that are fresh copies of certain elements from D \D0. If such a new element
w′ is a copy of w ∈ D \D0 then we write cp(w′) = w, while for w ∈ D0 we let cp(w) = w.
The set Wm \Wm−1, for m ≥ 0, will be denoted by Vm (for convenience, let W−1 = ∅, so
that V0 = D0).

The interpretations AIk of concept names Ak in I are defined by taking

AIk =
{
w ∈ ∆I | M |= A∗k[cp(w)]

}
. (8)
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The interpretation P Ik of a role name Pk in I will be defined inductively as the union

P Ik =
∞⋃
m=0

Pmk , where Pmk ⊆Wm ×Wm,

along with the construction of ∆I . First, for a role R ∈ role±(K), we define the required
R-rank r(R, d) of a point d ∈ D by taking

r(R, d) = max
(
{0} ∪ { q ∈ QRT | M |= EqR[d] }

)
.

It follows from (5) that if r(R, d) = q then, for every q′ ∈ QRT , we have M |= Eq′R[d]
whenever q′ ≤ q, and M |= ¬Eq′R[d] whenever q < q′. We also define the actual R-rank
rm(R,w) of a point w ∈ ∆I at step m by taking

rm(R,w) =

{
]{w′ ∈Wm | (w,w′) ∈ Pmk }, if R = Pk,

]{w′ ∈Wm | (w′, w) ∈ Pmk }, if R = P−k .

For the basis of induction we set, for each role name Pk ∈ role(K),

P 0
k =

{
(aM
i , a

M
j ) ∈W0 ×W0 | M |= Pkaiaj

}
. (9)

Observe that, by (6), for all R ∈ role±(K) and w ∈W0,

r0(R,w) ≤ r(R, cp(w)). (10)

Suppose now that Wm and the Pmk , for m ≥ 0, have already been defined. If we had
rm(R,w) = r(R, cp(w)), for all roles R ∈ role±(K) and points w ∈ Wm, then the interpre-
tation I we need would be constructed. However, in general this is not the case because
there may be some ‘defects’ in the sense that the actual rank of some points is smaller than
the required rank.

For a role name Pk ∈ role(K), consider the following two sets of defects in Pmk :

Λmk =
{
w ∈ Vm | rm(Pk, w) < r(Pk, cp(w))

}
,

Λm−k =
{
w ∈ Vm | rm(P−k , w) < r(P−k , cp(w))

}
.

The purpose of, say, Λmk is to identify those ‘defective’ points w ∈ Vm from which precisely
r(Pk, cp(w)) distinct Pk-arrows should start (according to M), but some arrows are still
missing (only rm(Pk, w) many arrows exist). To ‘cure’ these defects, we extend Wm and
Pmk respectively to Wm+1 and Pm+1

k according to the following rules:

(Λmk ) Let w ∈ Λmk , q = r(Pk, cp(w)) − rm(Pk, w) and d = cp(w). We have M |= Eq′Pk[d]
for some q′ ∈ QRT with q′ ≥ q > 0. Then, by (5), M |= E1Pk[d] and, by (4),
M |= E1P

−
k [dp−k ]. In this case we take q fresh copies w′1, . . . , w

′
q of dp−k (and set

cp(w′i) = dp−k , for 1 ≤ i ≤ q), add them to Wm+1 and add the pairs (w,w′i), 1 ≤ i ≤ q,
to Pm+1

k .

(Λm−k ) Let w ∈ Λm−k , q = r(P−k , cp(w))− rm(P−k , w) and d = cp(w). Then M |= Eq′P
−
k [d]

for some q′ ∈ QRT with q′ ≥ q > 0. So, by (5), we have M |= E1P
−
k [d] and, by (4),

M |= E1Pk[dpk]. Take q fresh copies w′1, . . . , w
′
q of dpk (and set cp(w′i) = dpk, for

1 ≤ i ≤ q), add them to Wm+1 and add the pairs (w′i, w), 1 ≤ i ≤ q, to Pm+1
k .
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a′

dp

dp−
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V1 V2

Figure 3: Unraveling model M (first three steps).

Example 5.3 Consider again the KBK and its first-order translationK† from Example 5.1.
Consider also a model M of K† with the domain D = {a, a′, dp, dp−}, where

AM = (E1P )M = (E1P
−)M = (E2P )M = D, (E2P

−)M = ∅,
(Paa′)M = (P−a′a)M = t.

We begin the construction of the interpretation I of K by setting W0 = V0 = D0 = {a, a′}
and P 0 = {(a, a′)}. Then we compute the required and actual ranks r(R,w) and r0(R,w),
for R ∈ {P, P−} and w ∈ V0:

(i) r(P, a) = 2 and r0(P, a) = 1, (ii) r(P, a′) = 2 and r0(P, a′) = 0,
(iii) r(P−, a) = 1 and r0(P−, a) = 0, (iv) r(P−, a′) = 1 and r0(P−, a′) = 1.

At the next step, we draw a P -arrow from a to a fresh copy of dp− to cure defect (i), draw
two P -arrows from a′ to two more fresh copies of dp− in order to cure defects (ii), and finally
we take a fresh copy of dp and connect it to a by a P -arrow, thereby curing defect (iii).

One more step of this ‘unraveling’ construction is shown in Figure 3.

Observe the following important property of the construction: for all m,m0 ≥ 0, w ∈
Vm0 and R ∈ role±(K),

rm(R,w) =


0, if m < m0,

q, if m = m0, for some q ≤ r(R, cp(w)),
r(R, cp(w)), if m > m0.

(11)

To prove this property, consider all possible cases:

• If m < m0 then the point w has not been added to Wm yet, i.e., w /∈Wm, and so we
have rm(R,w) = 0.
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• If m = m0 and m0 = 0 then rm(R,w) ≤ r(R, cp(w)) follows from (10).

• If m = m0 and m0 > 0 then w was added at step m0 to cure a defect of some point
w′ ∈ Wm0−1. This means that there is Pk ∈ role(K) such that either (w′, w) ∈ Pm0

k

and w′ ∈ Λm0−1
k or (w,w′) ∈ Pm0

k and w′ ∈ Λ(m0−1)−
k . Consider the former case. We

have cp(w) = dp−k . Since fresh witnesses are picked up every time the rule (Λm0−1
k )

is applied, rm0(P−k , w) = 1, rm0(Pk, w) = 0 and rm0(R,w) = 0, for every R 6= Pk, P
−
k .

So it suffices to show that r(P−k , dp
−
k ) ≥ 1. Indeed, as M |= EqPk[cp(w′)] for some

q ∈ QRT , we have, by (5), M |= E1Pk[cp(w′)], and so, by (4), M |= E1P
−
k [dp−k ]. By the

definition of r, we have r(P−k , dp
−
k ) ≥ 1. The latter case is considered analogously.

• If m = m0 + 1 then, for each role name Pk, all defects of w are cured at step m0 + 1
by applying the rules (Λm0

k ) and (Λm0−
k ). Therefore, rm0+1(R,w) = r(R, cp(w)).

• If m > m0 +1 then (11) follows from the observation that new arrows involving w can
only be added at step m0 + 1, that is, for all m ≥ 0 and each role name Pk ∈ role(K),

Pm+1
k \ Pmk ⊆ Vm × Vm+1 ∪ Vm+1 × Vm. (12)

It follows that, for all R ∈ role±(K), q ∈ QRT and w ∈ ∆I , we have:

M |= EqR[cp(w)] iff w ∈ (≥ q R)I . (13)

Indeed, if M |= EqR[cp(w)] then, by definition, r(R, cp(w)) ≥ q. Let w ∈ Vm0 . Then,
by (11), rm(R,w) = r(R, cp(w)) ≥ q, for all m > m0. It follows from the definition of
rm(R,w) and RI that w ∈ (≥ q R)I . Conversely, let w ∈ (≥ q R)I and w ∈ Vm0 . Then,
by (11), q ≤ rm(R,w) = r(R, cp(w)), for all m > m0. So, by the definition of r(R, cp(w))
and (5), M |= EqR[cp(w)].

By induction on the construction of concepts C in K one can readily see that, for every
w ∈ ∆I , we have

M |= C∗[cp(w)] iff w ∈ CI . (14)

Indeed, the basis is trivial for B = ⊥ and follows from (8) for B = Ai and from (13)
for B = ≥ q R, while the induction step for the Booleans (C = ¬C1 and C = C1 u C2)
immediately follows from the induction hypothesis.

Finally, we show that for each ψ ∈ T ∪ A,

M |= ψ† iff I |= ψ.

The case ψ = C1 v C2 follows from (14); for ψ = Ak(ai) and ψ = ¬Ak(ai) from the
definition of AIk . For ψ = Pk(ai, aj) and ψ = ¬Pk(ai, aj), we have (aIi , a

I
j ) ∈ P Ik iff, by (12),

(aIi , a
I
j ) ∈ P 0

k iff, by (9), M |= Pkaiaj .
Thus, we have established that I |= K.

(⇒) Conversely, suppose that I |= K is an interpretation with domain ∆I . We construct
a model M of K† based on the same ∆I . For every ai ∈ ob(A), we let aM

i = aIi and, for
every R ∈ role±(K), we take some d ∈ (≥ 1R)I if (≥ 1R)I 6= ∅ and an arbitrary element
d ∈ ∆I otherwise, and let drM = d. Next, for every concept name Ak, we let AM

k = AIk
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and, for every role R ∈ role±(K) and q ∈ QRT , we set EqRM = (≥ q R)I . Finally, for every
role R ∈ role±(K) and every pair of objects ai, aj ∈ ob(A), we define (Raiaj)M to be true
iff I |= R(ai, aj). One can readily check that M |= K†. Details are left to the reader. q

The first-order translation K† of K is obviously too lengthy to provide us with reasonably
low complexity results: |K†| ≤ |K|+ (2+ q2

T ) · |role(K)|+ 2 · |role(K)| · |ob(A)|qT . However, it
follows from the proof above that a lot of information in this translation is redundant and
can be safely omitted.

Now we define a more concise translation K‡ of K = (T ,A) into QL1 by taking:

K‡ = ∀x
[
T ∗(x) ∧

∧
R∈role±(K)

(
εR(x) ∧ δR(x)

)]
∧ A†1 ∧ A‡2 ,

where T ∗(x), εR(x), δR(x) and A†1 are defined as before by means of (1), (4), (5) and (2),
respectively, and

A‡2 =
∧

a∈ob(A)

∧
R∈role±(K)

∃a′∈ob(A) R(a,a′)∈A

EqR,aR(a) ∧
∧

¬Pk(ai,aj)∈A

(¬Pk(ai, aj))⊥, (15)

where qR,a is the maximum number in QRT such that there are qR,a many distinct ai with
R(a, ai) ∈ A (here we use the UNA) and (¬Pk(ai, aj))⊥ = ⊥ if Pk(ai, aj) ∈ A and >
otherwise. Now both the size of A‡2 and the size of K‡ are linear in the size of A and K,
respectively, no matter whether the numerical parameters are coded in unary or in binary.

More importantly, the translation ·‡ can actually be done in LogSpace. Indeed, this
is trivially the case for T ∗(x), εR(x), δR(x), A†1 and the last conjunct of A‡2 . As for
the first conjunct of A‡2 then, for R ∈ role±(K) and a ∈ ob(A), the maximum qR,a in
QRT such that there are qR,a many distinct ai with R(a, ai) ∈ A, can be computed using
log min(maxQRT , |ob(A)|) + log |ob(A)| cells. Initially we set q = 0, and then enumerate all
object names ai in A incrementing the current q each time we find R(a, ai) ∈ A. We stop if
q = maxQRT or we reach the end of the object name list. The resulting qR,a is the maximum
number in QRT not exceeding q. Note that log |role±(K)|+ 2 log |ob(A)| cells are required to
enumerate all those pairs (a,R) for which there is a′ ∈ ob(A) with R(a, a′) ∈ A.

Example 5.4 The translation K‡ of the KB K from Example 5.1 looks as follows:

K‡ = ∀xχ(x) ∧ A(a) ∧ E1P (a) ∧ E1P
−(a′),

where χ(x) is defined by (7).

Corollary 5.5 A DL-LiteNbool KB K is satisfiable iff the QL1-sentence K‡ is satisfiable.

Proof The claim follows from the fact that K† is satisfiable iff K‡ is satisfiable. Indeed, if
M |= K† then clearly M |= K‡. Conversely, if M |= K‡ then one can construct a new model
M′ based on the same domain D as M by taking:

• AM′
k = AM

k , for all concept names Ak;
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• EqRM′ = EqR
M, for all R ∈ role±(K) and q ∈ QRT ;

• (Raiaj)M′ = t iff R(ai, aj) ∈ A;

• aM′
i = aM

i , for all ai ∈ ob(A);

• drM′ = drM, for all R ∈ role±(K).

We claim that M′ |= K†. Indeed, EqRM′ = EqR
M, for every R ∈ role±(K) and q ∈ QRT . It

follows then that M′ |= ∀x T ∗(x) and M′ |= ∀x εR(x). By definition, M′ |= A†1 , M′ |= A†2

and M′ |= ∀x δR(x). It remains to show that M′ |= R†. Suppose M′ |=
∧q
i=1Raaji , that

is R(a, aji) ∈ A, for distinct aj1 , . . . , ajq , and q ∈ QRT . Clearly, we have q ≤ qR,a and
M |= EqR(a) and thus M′ |= EqR(a). q

As an immediate consequence of Corollary 5.5, the facts that the translation ·‡ can be
done in LogSpace, that the satisfiability problem for QL1-formulas is NP-complete and
that DL-Litebool contains all the Booleans—and so can encode full propositional logic—we
obtain the following result:

Theorem 5.6 The satisfiability problem for DL-LiteNbool, DL-LiteFbool and DL-Litebool knowl-
edge bases is NP-complete.

Observe now that if K is a Krom KB then K‡ belongs to the Krom fragment of QL1.

Theorem 5.7 The satisfiability problem for DL-LiteNkrom, DL-LiteFkrom, DL-Litekrom, as well
as for DL-LiteNcore, DL-LiteFcore and DL-Litecore knowledge bases, is NLogSpace-complete.

Proof As the satisfiability problem for Krom formulas with the prefix of the form ∀x (as
in K‡) is NLogSpace-complete (see, e.g., Börger et al., 1997, Exercise 8.3.7) and ·‡ is
a LogSpace reduction, we obtain the NLogSpace-completeness result for DL-LiteNkrom.
As for DL-Litecore, it suffices to recall that the lower bound for satisfiability of proposi-
tional Krom formulas is proved in (Börger et al., 1997) by reduction of the directed graph
reachability problem using only ‘core’ propositional formulas. q

If K is a Horn KB then K‡ belongs to the universal Horn fragment of QL1.

Theorem 5.8 The satisfiability problem for DL-LiteNhorn, DL-LiteFhorn and DL-Litehorn KBs
is P-complete.

Proof As QL1 contains no function symbols and K‡ is universal, satisfiability of K‡ is
LogSpace-reducible to satisfiability of a set of propositional Horn formulas, namely, the
formulas that are obtained from K‡ by replacing x with each of the constants occurring in
K‡. It remains to recall that the satisfiability problem for propositional Horn formulas is
P-complete; see, e.g., (Papadimitriou, 1994). q
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5.2 DL-LiteR,Fcore is ExpTime-hard

Unfortunately, the translation ·‡ constructed in the previous section cannot be extended to
logics of the form DL-LiteR,Nα with both number restrictions and role inclusions. In this
section we show that the satisfiability problem for DL-LiteR,Fcore KBs is ExpTime-hard, which
matches the upper bound for satisfiability of DL-LiteR,Nbool KBs even under binary coding of
the numerical parameters (Tobies, 2001).

Note first that, although intersection is not allowed on the left-hand side of DL-LiteR,Fcore

concept inclusions, in certain cases we can ‘simulate’ it by using role inclusions and func-
tionality constraints. Suppose that a knowledge base K contains a concept inclusion of the
form A1 uA2 v C. Define a new KB K′ by replacing this axiom in K with the following set
of new axioms, where R1, R2, R3, R12, R23 are fresh role names:

A1 v ∃R1 A2 v ∃R2, (16)
R1 v R12, R2 v R12, (17)

≥ 2R12 v ⊥, (18)
∃R−1 v ∃R

−
3 , (19)

∃R3 v C, (20)
R3 v R23, R2 v R23, (21)

≥ 2R−23 v ⊥. (22)

Lemma 5.9 (i) If I |= K′ then I |= K, for every interpretation I.
(ii) If I |= K and CI 6= ∅ then there is a model I ′ of K′ which has the same domain as

I and agrees with it on every symbol from K.

Proof (i) Suppose that I |= K′ and x ∈ AI1 ∩ AI2 . By (16), there is y with (x, y) ∈ RI1 ,
and so y ∈ (∃R−1 )I , and there is z with (x, z) ∈ RI2 . By (17), {(x, y), (x, z)} ⊆ RI12, whence
y = z in view of (18). By (19), y ∈ (∃R−3 )I and hence there is u with (u, y) ∈ RI3 and
u ∈ (∃R3)I . By (20), u ∈ CI . By (21), (u, y) ∈ RI23 and (x, y) ∈ RI23. Finally, it follows
from (22) that u = x, and so x ∈ CI . Thus, I |= K.

(ii) Take some point c ∈ CI and define an extension I ′ of I to the new role names by
setting:

• RI′1 = {(x, x) | x ∈ AI1},

• RI′2 = {(x, x) | x ∈ AI2},

• RI′3 = {(x, x) | x ∈ (A1 uA2)I} ∪ {(c, x) | x ∈ (A1 u ¬A2)I},

• RI′12 = RI
′

1 ∪RI
′

2 and RI
′

23 = RI
′

2 ∪RI
′

3 .

It is readily seen that I ′ satisfies all the axioms (16)–(22), and so I ′ |= K′. q

We are now in a position to prove the following:

Theorem 5.10 The satisfiability problem for DL-LiteR,Fcore KBs is ExpTime-hard.
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Proof We will prove this theorem in two steps. First we consider the logic DL-LiteR,Fhorn

and show how to encode the behavior of polynomial-space-bounded alternating Turing ma-
chines (ATMs, for short) by means of DL-LiteR,Fhorn KBs. As APSpace = ExpTime, where
APSpace is the class of problems recognized by polynomial-space-bounded ATMs (see, e.g.,
Kozen, 2006), this will establish ExpTime-hardness of satisfiability for DL-LiteR,Fhorn. Then
we will show how, using Lemma 5.9, to get rid of conjunctions on the left-hand side of the
concept inclusions involved in this encoding of ATMs and thus establish ExpTime-hardness
of DL-LiteR,Fcore .

Without loss of generality, we can consider only ATMs M with binary computational
trees. This means that, for every non-halting state q and every symbol a from the tape
alphabet, M has precisely two instructions of the form

(q, a) ;0
M (q′, a′, d′) and (q, a) ;1

M (q′′, a′′, d′′), (23)

where d′, d′′ ∈ {→,←} and → (resp., ←) means ‘move the head right (resp., left) one cell’.
We remind the reader that each non-halting state ofM is either an and-state or an or-state.

Given such an ATMM, a polynomial function p(n) such that every run ofM on every
input of length n does not use more than p(n) tape cells, and an input word ~a = a1, . . . , an,
we construct a DL-LiteR,Fhorn knowledge base KM,~a with the following properties: (i) the size
of KM,~a is polynomial in the size of M, ~a, and (ii) M accepts ~a iff KM,~a is not satisfiable.
Denote by Q the set of states and by Σ the tape alphabet of M.

To encode the instructions of M, we need the following roles:

• Sq, S0
q , S

1
q , for each q ∈ Q: informally, x ∈ (∃S−q )I , for some interpretation I, means

that x represents a configuration of M with the state q, and x ∈ (∃Skq )I means that
the next state, according to the transition ;k

M, is q, where k ∈ {0, 1};

• Hi, H
0
i , H

1
i , for each i ≤ p(n): x ∈ (∃H−i )I means that x represents a configuration of

M where the head scans the ith cell, and x ∈ (∃Hk
i )I that, according to the transition

;k
M, k ∈ {0, 1}, in the next configuration the head scans the ith cell;

• Cia, C0
ia, C

1
ia, for each i ≤ p(n) and each a ∈ Σ: x ∈ (∃C−ia)I means that x represents

a configuration of M where the ith cell contains a, and x ∈ (∃Ckia)I that, according
to ;k

M, k ∈ {0, 1}, in the next configuration the ith cell contains a.

This intended meaning can be encoded using the following concept inclusions: for every
instruction (q, a) ;k

M (q′, a′,→) of M and every i < p(n),

∃S−q u ∃H−i u ∃C
−
ia v ∃H

k
i+1 u ∃Skq′ u ∃Ckia′ , (24)

and for every instruction (q, a) ;k
M (q′, a′,←) of M and every i, 1 < i ≤ p(n),

∃S−q u ∃H−i u ∃C
−
ia v ∃H

k
i−1 u ∃Skq′ u ∃Ckia′ . (25)

To preserve the symbols on the tape that are not in the active cell, we use the following
concept inclusions, for k ∈ {0, 1}, i, j ≤ p(n) with j 6= i, and a ∈ Σ:

∃H−j u ∃C
−
ia v ∃C

k
ia. (26)
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To ‘synchronize’ our roles, we need two more (functional) roles Tk and a number of role
inclusions to be added to the TBox: for all k ∈ {0, 1}, i ≤ p(n), q ∈ Q, and a ∈ Σ,

Ckia v Cia, Hk
i v Hi, Skq v Sq, (27)

Ckia v Tk, Hk
i v Tk, Skq v Tk, (28)

≥ 2Tk v ⊥. (29)

It remains to encode the acceptance conditions forM on ~a. This can be done with the help
of the role names Yk, for k ∈ {0, 1}, and the concept name A:

∃S−q v A, q an accepting state, (30)

Yk v Tk, (31)
≥ 2T−k v ⊥, (32)
∃T−k uA v ∃Y

−
k , (33)

∃S−q u ∃Yk v A, q an or-state, (34)

∃S−q u ∃Y0 u ∃Y1 v A, q an and-state. (35)

The TBox T of the DL-LiteR,Fhorn knowledge base KM,~a we are constructing consists of the
axioms (24)–(35) together with the auxiliary axiom

A uD v ⊥, (36)

where D is a fresh concept name. The ABox A of KM,~a is comprised of the following
assertions, for some object names s and u:

Sq0(u, s), q0 the initial state, (37)
H1(u, s), (38)
Ciai(u, s), i ≤ p(n), ai the ith symbol on the input tape, (39)
D(s). (40)

Clearly, KM,~a = (T ,A) is a DL-LiteR,Fhorn KB and its size is polynomial in the size of M, ~a.

Lemma 5.11 The ATM M accepts ~a iff the KB KM,~a is not satisfiable.

Proof (⇒) Suppose that M accepts ~a but I |= KM,~a for some interpretation I. Then we
can reconstruct the full computation tree for M on ~a by induction in the following way.

Let the root of the tree be the point sI . By (37)–(39), s represents the initial config-
uration of M on ~a in accordance with the intended meaning of the roles Sq0 , H1 and Ciai

explained above (it does not matter if, for instance, we also have sI ∈ (∃H−5 )I).
Assume now that we have already found a point x ∈ ∆I representing some configuration

c = b1, . . . , bi−1, (q, bi), bi+1, . . . , bp(n), (41)

where q is the current non-halting state and the head scans the ith cell containing bi. This
means that we have

x ∈ (∃S−q )I ∩ (∃H−i )I and x ∈ (∃C−jbj )I , for all j ≤ p(n).
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Assume also that M contains two instructions of the form (23) for (q, bi), that is q is non-
halting. If we have (q, bi) ;k

M (q′, b′,→), for k = 0 or 1, then, by (24) and (26), there are
points ys, yh and yj , for j ≤ p(n), in ∆I such that

(x, ys) ∈ (Skq′)
I , (x, yh) ∈ (Hk

i+1)I , (x, yi) ∈ (Ckib′)
I , (x, yj) ∈ (Ckjbj )I , for j 6= i.

By (28)–(29), S0
q′ , H

0
i+1, C0

ib′i
and the C0

jbj
, j 6= i, are all sub-roles of the functional role Tk,

and so all the points ys, yh and yj coincide; we denote this point by xk. By (27), we then
have:

(x, xk) ∈ T Ik , xk ∈ (∃S−q′ )
I ∩ (∃H−i+1)I ∩ (∃C−ib′)

I and xk ∈ (∃C−jbj )I , for j 6= i.

Similarly, if we have (q, bi) ;k
M (q′′, b′′,←), for k = 0 or 1, then, by (25) and (26), there is

a point xk ∈ ∆I such that

(x, xk) ∈ T Ik , xk ∈ (∃S−q′′)
I ∩ (∃H−i−1)I ∩ (∃C−ib′′)

I and xk ∈ (∃C−jbj )I , for j 6= i.

Thus, for k = 0, 1, xk is a Tk-successor of x representing the configuration ck of M after it
has executed (q, bi) ;k

M (q′′, b′′, d) in c; in this case ck is called the k-successor of c.
According to (30), every point in the constructed computation tree for M on ~a repre-

senting a configuration with an accepting state is in AI . Suppose now, inductively, that
x represents some configuration c of the form (41), q is an or-state, xk represents the k-
successor of c and (x, xk) ∈ T Ik , for k = 0, 1, and one of the xk, say x0, is in AI . In view of
(33), we have x0 ∈ (∃Y −0 )I . As T−0 is functional by (32) and Y0 is a sub-role of T0 by (31),
(x, x0) ∈ Y I0 , and so, by (34), x ∈ AI . The case of x being an and-state is considered
analogously with the help of (35).

Since M accepts ~a, we then conclude that sI ∈ AI , contrary to (36) and (40).
(⇐) Conversely, suppose now thatM does not accept ~a. Consider the full computation

tree (∆, <0 ∪ <1) with nodes labeled with configurations ofM in such a way that the root
is labeled with the initial configuration

(q0, a1), a2, . . . , an, an+1, . . . , ap(n),

(where the ai, for n+1 ≤ i ≤ p(n), are all ‘blank’), and if some node x in the tree is labeled
with a non-halting c of the form (41) andM contains two instructions of the form (23), then
x has one <0-successor labeled with the 0-successor of c and one <1-successor labeled with
the 1-successor of c. (It should be emphasized that (∆, <0 ∪ <1) is a tree, where different
nodes may be labeled with the same configuration.)

We use this tree to construct an interpretation I = (∆I , ·I) as follows:

• ∆I = ∆ ∪ {u}, for some u /∈ ∆;

• sI is the root of ∆ and uI = u;

• DI = {sI};

• (x, xk) ∈ (Skq′)
I , (x, xk) ∈ (Hk

i+1)I , (x, xk) ∈ (Ckib′)
I , and (x, xk) ∈ (Ckjbj )I , for j 6= i,

iff x is labeled with c of the form (41), (q, bi) ;k
M (q′, b′,→) and x <k xk, for k = 0, 1;
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• (x, xk) ∈ (Skq′)
I , (x, xk) ∈ (Hk

i−1)I , (x, xk) ∈ (Ckib′)
I , and (x, xk) ∈ (Ckjbj )I , for j 6= i,

iff x is labeled with c of the form (41), (q, bi) ;k
M (q′, b′,←) and x <k xk, for k = 0, 1;

• (u, sI) ∈ (Sq0)I , (u, sI) ∈ (H1)I , (u, sI) ∈ (Ciai)
I , i ≤ p(n) and over ∆ the extensions

for the roles Sq, Hi and Cia are defined according to (27);

• T Ik = <k, for k = 0, 1;

• Y I0 , Y I1 and AI are defined inductively:

– Induction basis: if x ∈ ∆ is labeled with an accepting configuration, then x ∈ AI .

– Induction step: (i) if x <k xk, for k = 0, 1, and xk ∈ AI , then (x, xk) ∈ Y Ik ;
(ii) if x is an or-state (resp., and-state) and (x, xk) ∈ Y Ik for some (resp., all)
k ∈ {0, 1}, then x ∈ AI .

It follows from the given definition that I |= KM,~a. Details are left to the reader. q

The lemma we have just proved establishes that satisfiability of DL-LiteR,Fhorn KBs is
ExpTime-hard. Our next aim is to show how one can eliminate the conjunctions in the
left-hand side of the TBox axioms (24)–(26), (33)–(35). We will do this with the help of
Lemma 5.9. Before applying it, we check first that if KM,~a is satisfiable then it is satisfiable
in an interpretation I such that I |= KM,~a and CI 6= ∅, for every C occurring in an
axiom of the form A1 u A2 v C in K. Consider, for instance, axiom (24) and assume that
I |= KM,~a, but (∃Skq′)I = ∅. Then, we can construct a new interpretation I ′ by adding two
new points, say x and y, to the domain of I, and setting (x, y) ∈ (Skq′)

I′ , (x, y) ∈ (Sq′)I
′
,

(x, y) ∈ (Tk)I
′
. Furthermore, if q′ is an accepting state, we also set y ∈ AI′ and (x, y) ∈ Y I′k .

One can readily check that I ′ is still a model for KM,~a. The other conjuncts of (24) and
the remaining axioms are considered analogously.

After an application of Lemma 5.9 to an axiom of the form A1 u (A2 u A3) v C we
obtain, by (16)–(22), a new KB K′ with the concept inclusion of the form A2 u A3 v ∃R1,
which also requires treatment by means of the same lemma. To be able to do this, we again
have to check that K′ is satisfiable in some interpretation I ′′ with (∃R1)I

′′ 6= ∅. Suppose
that I ′ |= K′ and (∃R1)I

′
= ∅. Then we can construct I ′′ by adding two new points, say x

and y, to the domain of I ′, adding x to CI
′

and (x, y) to each of RI
′

1 , RI
′

12, RI
′

23 and RI
′

3 . It
is readily seen that I ′′ |= K′.

This completes the proof of Theorem 5.10. q

It is to be noted that the proof of Theorem 5.10 does not depend on whether the unique
name assumption (UNA) is adopted or not. As an immediate consequence we obtain:

Corollary 5.12 The satisfiability problem is ExpTime-complete for any logic of the form
DL-LiteR,Fα or DL-LiteR,Nα with or without the UNA, where α ∈ {core, krom, horn, bool}.
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5.3 Reconciling Number Restrictions and Role Inclusions

As we have seen in the previous section, the unrestricted interaction between number re-
strictions and role inclusions allowed in the logics of the form DL-LiteR,Nα results in high
combined complexity of satisfiability. In Section 6.2, we shall see that the data complexity
of instance checking and query answering also becomes unacceptably high for these logics.
A quick look at the proof of Theorem 5.10 reveals the ‘culprit:’ the interplay between role
inclusions R1 v R, R2 v R and functionality constraints ≥ 2R v ⊥, which effectively mean
that if R1(x, y) and R2(x, z) then y = z. In this section we study the case when such an
interplay is not allowed.

Recall that the logic DL-Lite
(RN )
bool is obtained from DL-LiteR,Nbool by imposing the following

syntactic restrictions on DL-LiteR,Nbool KBs K = (T ,A):

(inter) if R has a proper sub-role in T , then T contains no negative occurrences of number
restrictions ≥ q R or ≥ q inv(R) with q ≥ 2.

Additionally, the TBox T may contain positive occurrences of qualified number restrictions
≥ q R.C provided that the following condition is satisfied:

(exists) if ≥ q R.C occurs in T , then T does not contain negative occurrences of ≥ q′R or
≥ q′ inv(R), for q′ ≥ 2,

as well as role constraints of the form Dis(R1, R2), Asym(Pk), Sym(Pk), Irr(Pk), and Ref(Pk).
The languages DL-Lite

(RN )
horn , DL-Lite

(RN )
krom and DL-Lite

(RN )
core are defined as the corresponding

fragments of DL-Lite
(RN )
bool .

Conditions (inter) and (exists) are generalizations of the restrictions imposed on the
logic DL-LiteA in (Poggi et al., 2008a); in fact, DL-LiteA can be regarded as a fragment of
DL-Lite

(RN )
core .

Our main aim in this section is to prove the following theorem and develop the technical
tools we need to investigate the data complexity of reasoning with DL-Lite

(RN )
bool and its

sublogics later on in the paper.

Theorem 5.13 (i) Satisfiability of DL-Lite
(RN )
bool KBs is NP-complete; (ii) satisfiability of

DL-Lite
(RN )
horn KBs is P-complete; and (iii) satisfiability of DL-Lite

(RN )
krom and DL-Lite

(RN )
core

KBs is NLogSpace-complete.

Let us consider first the sub-language of DL-Lite
(RN )
bool without qualified number re-

strictions and the role constraints mentioned above; we denote it by DL-Lite
(RN )−

bool . This
sub-language is required only for purely technical reasons. In Section 7, we will also use
DL-Lite

(RN )−

horn , but we do not need the core or Krom fragments.

Suppose we are given a DL-Lite
(RN )−

bool KB K = (T ,A). Let Id be a distinguished
role name. We will use it to simulate the identity relation required for encoding the role
constraints. We assume that either K does not contain Id at all or satisfies the following
conditions:

(Id1) Id(ai, aj) ∈ A iff i = j, for all ai, aj ∈ ob(A),
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(Id2)
{
> v ∃Id, Id− v Id

}
⊆ T , and QId

T = QId−

T = {1},

(Id3) Id is only allowed in role inclusions of the form Id− v Id and Id v R.

In what follows, without loss of generality, we will assume that

(Q) QRT ⊆ QR
′
T whenever R v∗T R′

(for if this is not the case we can always add the missing numbers to QR
′
T , e.g., by introducing

fictitious concept inclusions of the form ⊥ v ≥ q R′).
Now, in the same way as in Section 5.1 we define two translations ·†e and ·‡e of K into

the one-variable fragment QL1 of first-order logic. The former translation, ·†e , retains the
information about the relationships between ABox objects, and we show that every model
of K†e can again be ‘unraveled’ into a model of K. We define ·†e by taking:

K†e = ∀x
[
T ∗(x) ∧ T R(x) ∧

∧
R∈role±(K)

(
εR(x) ∧ δR(x)

) ]
∧

[
A†1 ∧ A†2 ∧

∧
R∈role±(K)

R† ∧
∧

RvR′∈T
ai,aj∈ob(A)

(
Raiaj → R′aiaj

)]
,

where T ∗(x), A†1 , A†2 , εR(x), δR(x) and R† are as in (1)–(6) and

T R(x) =
∧

RvR′∈T or
inv(R)vinv(R′)∈T

∧
q∈QR

T

(
EqR(x)→ EqR

′(x)
)

(42)

(by (Q), if R v R′ ∈ T or inv(R) v inv(R′) ∈ T then QRT ⊆ QR
′
T ).

The following lemma is an analogue of Theorem 5.2:

Lemma 5.14 A DL-Lite
(RN )−

bool KB K is satisfiable iff the QL1-sentence K†e is satisfiable.

Proof The proof basically follows the lines of the proof of Theorem 5.2 with some modifica-
tions. We present a modified unraveling construction here; the converse direction is exactly
the same as in Theorem 5.2.

In each equivalence class [Ri] = {Rj | Ri ≡∗T Rj} we select a single role (a representative
of that class) and denote it by rep∗T (Ri). When extending Pmk to Pm+1

k , we use the following
modified ‘curing’ rules:

(Λmk ) If Pk 6= rep∗T (Pk) do nothing: the defects are cured for rep∗T (Pk). Otherwise, let
w ∈ Λmk , q = r(Pk, cp(w)) − rm(Pk, w) and d = cp(w). We have M |= Eq′Pk[d] for
some q′ ≥ q > 0. Then, by (5), M |= E1Pk[d] and, by (4), M |= E1P

−
k [dp−k ]. In this

case we take q fresh copies w′1, . . . , w
′
q of dp−k (and set cp(w′i) = dp−k , for 1 ≤ i ≤ q),

add them to Wm+1 and

• add the pairs (w,w′i), 1 ≤ i ≤ q, to each Pm+1
j with Pk v∗T Pj (including

Pj = Pk);

• add the pairs (w′i, w), 1 ≤ i ≤ q, to each Pm+1
j with P−k v

∗
T Pj ;
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• if Id occurs in K, add the pairs (w′i, w
′
i), 1 ≤ i ≤ q, to each Pm+1

j with Id v∗T Pj .

(Λm−k ) This rule is the mirror image of (Λmk ): Pk and dp−k are replaced everywhere with
P−k and dpk, respectively; see the proof of Theorem 5.2.

It follows from this definition that Id never has any defects and is interpreted in the resulting
interpretation I by the identity relation IdI =

{
(w,w) | w ∈ ∆I

}
; the interpretations of

roles respect all the role inclusions, i.e., RI1 ⊆ RI2 whenever R1 v∗T R2.
It remains to show that the constructed interpretation I is indeed a model of K.

First, (11) trivially holds for Id as both the required and actual ranks are equal to 1. Sec-
ond, (11) holds for R such that R 6= Id and R has no proper sub-roles: the proof is exactly
the same as in Theorem 5.2, taking into account that we cure defects only for a single role in
each equivalence class and that, by (42), for all R′ ∈ [R], we have r(R′, cp(w)) = r(R, cp(w))
and r(inv(R), cp(w)) = r(inv(R′), cp(w)). It follows that (13) holds for Id and any role R
without proper sub-roles. However, (13) does not necessarily hold for roles R with proper
sub-roles: as follows from the construction, the actual rank may be greater than the required
rank, in which case we only have the following:

if M |= EqR[cp(w)] then w ∈ (≥ q R)I .

However, this is enough for our purposes. By induction on the structure of concepts and
using (inter), one can show that I |= C1 v C2 whenever M |= ∀x (C∗1 (x) → C∗2 (x)), for
each concept inclusion C1 v C2 ∈ T , and therefore, I |= T . We also have I |= A (see the
proof of Theorem 5.2) and thus I |= K. q

Remark 5.15 It follows from the proofs of Theorem 5.2 and Lemma 5.14 that, for the
DL-Lite

(RN )−

bool KB K = (T ,A), every model M of K‡e induces a model IM of K with the
following properties:

(ABox) For all ai, aj ∈ ob(A), we have (aIM
i , aIM

j ) ∈ RIM iff R(ai, aj) ∈ CleT (A), where

CleT (A) =
{
R2(ai, aj) | R1(ai, aj) ∈ A, R1 v∗T R2

}
.

(forest) The object names a ∈ ob(A) induce a partitioning of ∆IM into disjoint labeled
trees Ta = (Ta, Ea, `a) with nodes Ta, edges Ea, root aIM , and a labeling function
`a : Ea → role±(K) \ {Id, Id−}.

(copy) There is a function cp : ∆IM → ob(A) ∪ dr(K) such that

• cp(aIM) = a for a ∈ ob(A), and

• cp(w) = dr if, for some a and w′ ∈ Ta, (w′, w) ∈ Ea and `a(w′, w) = inv(R).

(iso) All labeled subtrees generated by elements w ∈ ∆IM with cp(w) = dr, R ∈ role±(K),
are isomorphic.

(concept) w ∈ BIM iff M |= B∗[cp(w)], for each basic concept B in K and each w ∈ ∆IM .
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(role) IdIM =
{

(w,w)
∣∣ w ∈ ∆IM

}
and, for every other role name Pk,

P IM
k =

{
(aIM
i , aIM

j ) | R(ai, aj) ∈ A, R v∗T Pk
}
∪

{
(w,w) | Id v∗T Pk

}
∪⋃

a∈ob(A)

{
(w,w′) ∈ Ea | `a(w,w′) = R, R v∗T Pk

}
.

Such a model will be called an untangled model of K (the untangled model of K induced by
M, to me more precise).

The translation ·†e generalizes ·† and thus suffers from the same exponential blowup. So
we define an optimized translation, ·‡e , which is linear in the size of K, by taking:

K‡e = ∀x
[
T ∗(x) ∧ T R(x) ∧

∧
R∈role±(K)

(
εR(x) ∧ δR(x)

) ]
∧ A†1 ∧ A‡2e ,

where T ∗(x), T R(x), εR(x), δR(x) and A†1 are defined by (1), (42), (4), (5) and (2),
respectively, and

A‡2e =
∧

a∈ob(A)

∧
R∈role±(K)

∃a′∈ob(A) R(a,a′)∈CleT (A)

EqeR,a
R(a) ∧

∧
¬Pk(ai,aj)∈A

(¬Pk(ai, aj))⊥e , (43)

where qeR,a is the maximum number in QRT such that there are qeR,a many distinct ai with
R(a, ai) ∈ CleT (A) (here we use the UNA) and (¬Pk(ai, aj))⊥e = ⊥ if Pk(ai, aj) ∈ CleT (A)
and > otherwise; cf. (15). We note again that if QRT = {1}, for all roles R ∈ role±(K), then
the translation does not depend on whether the UNA is adopted or not.

The following corollary is proved similarly to Corollary 5.5:

Corollary 5.16 A DL-Lite
(RN )−

bool KB K is satisfiable iff the QL1-sentence K‡e is satisfiable.

It should be clear that the translation ·‡e can be computed in NLogSpace (for combined
complexity): this is trivial for T ∗(x), T R(x), εR(x), δR(x) and A†1 . In order to compute
A‡2e , we need to be able to check whether R(ai, aj) ∈ CleT (A): this test can be performed
by a non-deterministic algorithm using logarithmic space in |role±(K)| (it is basically the
same as the standard directed graph reachability problem, which is NLogSpace-complete;
see, e.g., Kozen, 2006); it can be done using N · log |role±(K)| + 2 log |ob(A)| cells on the
work tape, where N is a constant (in fact, N = 3 is enough: one has to store R, the current
role R′ and the path length for the graph reachability subroutine, which is also bounded
by log |role±(K)|). Therefore, the translation ·‡e can be computed by an NLogSpace
transducer.

Now we show how satisfiability of DL-Lite
(RN )
bool KBs can be easily reduced to satisfiability

of DL-Lite
(RN )−

bool KBs. First, we assume that DL-Lite
(RN )
bool KBs contain no role symmetry

and asymmetry constraints because Asym(Pk) can be equivalently replaced with Dis(Pk, P−k )
and Sym(Pk) with P−k v Pk (it should be noted that the introduction of P−k v Pk in the
TBox does not violate (inter)). The following lemma allows us to get rid of qualified
number restrictions as well as role disjointness, reflexivity and irreflexivity constraints:
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Lemma 5.17 For every DL-Lite
(RN )
bool KB K′ = (T ′,A′), one can construct a DL-Lite

(RN )−

bool

KB K = (T ,A) such that

• every untangled model IM of K is a model of K′, provided that

there are no R1(ai, aj), R2(ai, aj) ∈ CleT (A) with Dis(R1, R2) ∈ T ′,
there is no R(ai, ai) ∈ CleT (A) with Irr(R) ∈ T ′;

(44)

• every model I ′ of K′ gives rise to a model I of K based on the same domain as I ′ and
such that I agrees with I ′ on all symbols from K′.

If K′ is a DL-Lite
(RN )
horn KB then K is a DL-Lite

(RN )−

horn KB.

Proof First, for every pair R, C such that ≥ q R.C occurs in T ′, we introduce a fresh role
name RC . Then we replace each (positive) occurrence of ≥ q R.C in T ′ with ≥ q RC and
add the following concept and role inclusions to the TBox:

∃R−C v C and RC v R.

We repeat this procedure until all the occurrences of qualified number restrictions are elim-
inated. Denote by T ′′ the resulting TBox. Observe that (exists) ensures that T ′′ satisfies
(inter). We also notice that C occurs only on the right-hand side of those extra axioms
and thus T ′′ belongs to the same fragment as T ′. It should be clear that, since the ≥ q R.C
occur only positively, every model of T ′′ is a model of T ′. Conversely, for every model I ′ of
T ′, there is a model I ′′ of T ′′ based on the same domain such that I ′′ coincides with I ′ on
all symbols in T ′ and RI

′′
C = {(w, u) ∈ RI′ | u ∈ CI′}, for each new role RC . So, without

loss of generality we may assume that T ′ = T ′′.
Let

T ′ = T ′0 ∪ T ′ref ∪ T ′irref ∪ T ′disj,

where T ′ref, T ′irref and T ′disj are the sets of role reflexivity, irreflexivity and disjointness con-

straints in T ′ and T ′0 is the remaining DL-Lite
(RN )−

bool TBox. Let

T ′1 =
{
> v ∃Id, Id− v Id

}
∪
{

Id v P | Ref(P ) ∈ T ′
}
,

A′1 =
{

Id(ai, ai) | ai ∈ ob(A′)
}
.

We construct K by modifying the DL-Lite
(RN )−

bool KB K0 = (T ′0 ∪ T ′1 ,A′ ∪ A′1) in two steps:
Step 1. For every reflexivity constraint Ref(P ) ∈ T ′, take a fresh role name SP and

• add a new role inclusions SP v P to the TBox;

• replace every basic concept B in T ′0 with BSP , which is defined inductively as follows:

– ASP = A, for each concept name A,

– (≥ q R)SP = ≥ q R, for each role R, R 6= P, P−,

– (≥ q P )SP = ≥ (q − 1)SP and (≥ q P−)SP = ≥ (q − 1)S−P , for q ≥ 2,

– (∃P )SP = > and (∃P−)SP = >;
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• replace R(ai, aj) ∈ A′ such that R ≡∗T ′ P with SP (ai, aj) whenever i 6= j.

Let (T1,A) be the resulting DL-Lite
(RN )−

bool KB. Clearly, (T1,A) satisfies (Id1)–(Id3). Ob-
serve that

CleT1(A) �role(K′) = CleT ′0∪T ′1
(A′), (45)

where �role(K′) means the restriction to the role names in K′.
Let IM be an untangled model of (T1,A). We show that IM |= T ′0 . Consider a role P

with Ref(P ) ∈ T ′. Notice that SP has no proper sub-roles in T1 and IdIM is disjoint with
SIM
P . Thus, SIM

P ∪ IdIM ⊆ P IM and

(*) (BSP )IM ⊆ BIM , for B = ≥ q R with q ≥ 2, whenever Ref(P ) ∈ T ′, R ∈ {P, P−} and
P has a proper sub-role in T ′0 .

If P has no proper sub-roles in T ′ (i.e., no proper sub-roles in T1 different from SP and Id)
then we have SIM

P ∪ IdIM = P IM . So, for all basic concepts B in T ′0 not covered by (*), we
have BIM = (BSP )IM . It follows from (inter) that IM |= T ′0 .

Step 2. Next we take into account the set D = T ′disj ∪ {Dis(Pk, Id) | Irr(Pk) ∈ T ′} of
disjointness constraints by modifying the KB (T1,A) constructed at the previous step.
Observe that ∃R1 v ⊥ is a logical consequence of any T ∪{Dis(R1, R2)} whenever R1 v∗T R2.
Let T = T1 ∪ T2, where T2 is defined by taking

T2 =
{
∃R1 v ⊥

∣∣ R1 v∗T1 R2 and either Dis(R1, R2) ∈ D or Dis(R2, R1) ∈ D
}
.

By (role), for any untangled model IM of (T ,A) and R1, R2 ∈ role±(K), IM |= Dis(R1, R2)
if there are no R1(ai, aj), R2(ai, aj) ∈ CleT1(A), which, by (45), means that there are no
R1(ai, aj), R2(ai, aj) ∈ CleT ′0∪T ′1

(A′). So, if (44) holds then every untangled model IM of

(T ,A) is also a model of T1 ∪ D and thus, IM |= T ′disj. As IdIM is the identity relation,
we have IM |= T ′ref ∪ T ′irref. By (45), IM |= A′ and as we have shown above, IM |= T ′0 .
Therefore, IM |= K′.

Conversely, suppose I ′ is a model of K′. Let I be an interpretation such that IdI

is the identity relation, SIP = P I
′ \ IdI

′
, for all P with Ref(P ) ∈ T ′, and AI = AI

′
,

P I = P I
′

and aI = aI
′
, for all concept, role and object names A, P and a in K′. Clearly,

I |= (T ′0 ∪ T ′1 ,A′ ∪ A′1). By the definition of the SP , I |= T1 and, since I |= D, we obtain
I |= T2 and thus I |= T . By (45), I |= A, whence I |= K. q

Now, as follows from Lemma 5.17, given a DL-Lite
(R,N )
α KB K′, for α ∈ {krom, horn,

bool}, we can compute the DL-Lite
(RN )−

bool KB K using a LogSpace transducer (which is
essentially required for checking whether R ≡∗T ′ P ). We immediately obtain Theorem 5.13
from Lemma 5.14 by observing that, for each α ∈ {krom, horn, bool}, K‡e belongs to the
respective first-order fragment and that condition (44) can be checked in NLogSpace

(computing CleT (A) requires directed graph accessibility checks). The result for DL-Lite
(RN )
core

follows from the corresponding result for DL-Lite
(RN )
krom .
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5.4 Role Transitivity Constraints

Let us now extend the language DL-Lite
(RN )
bool with role transitivity constraints of the form

Tra(Pk) to ensure that the role Pk is interpreted by a transitive relation. Denote the
resulting language by DL-Lite

(RN )+

bool . We remind the reader that a role is called simple (see,
e.g., Horrocks et al., 2000) if it has no transitive sub-roles (including itself) and that only
simple roles R are allowed in concepts of the form ≥ q R, for q ≥ 2. In particular, if T
contains Tra(P ) then P and P− are not simple, and so T cannot contain occurrences of
concepts of the form ≥ q P and ≥ q P−, for q ≥ 2.

For a DL-Lite
(RN )+

bool KB K = (T ,A), define the transitive closure TraT (A) of A by
taking

TraT (A) = A ∪
{
P (ai1 , ain) | ∃ai2 . . . ain−1 P (ai1 , aij+1) ∈ A, 1 ≤ j < n, Tra(P ) ∈ T

}
.

Clearly, TraT (A) can be computed in NLogSpace: for each pair (ai, aj) of objects in ob(A),
we add P (ai, aj) to TraT (A) iff there is a P -path of length < |ob(A)| between ai and aj in
A (recall that the directed graph reachability problem is NLogSpace-complete).

Lemma 5.18 A DL-Lite
(RN )+

bool KB (T ,A) is satisfiable iff the DL-Lite
(RN )
bool KB (T ′,A′) is

satisfiable, where T ′ results from T by removing all the transitivity axioms and

A′ = CleT (TraT (CleT (A))).

Proof Indeed, if the KB (T ′,A′) is satisfiable then we construct a model I for it as described
in the proofs of Lemmas 5.14 and 5.17 and then take the transitive closure of P I for every P
with Tra(P ) ∈ T (and update each RI with P v∗T R). As P and P− are simple, T contains
no axioms imposing upper bounds on the number of P -successors and predecessors, and so
the resulting interpretation must be a model of (T ,A). The converse direction is trivial. q

We note that an analogue of Remark 5.15 also holds in this case: just replace CleT (A)
with CleT (TraT (CleT (A))) in (ABox) and take the transitive closure for each transitive sub-
role in (role).

Remark 5.19 It should be noted that there are two different reasons for the reduction in
Lemma 5.18 to be in NLogSpace rather than in LogSpace (as the reduction ·‡ is). First,
in order to compute CleT (A), for each pair of ai, aj , one has to find a path in the directed
graph induced by the role inclusion axioms. Second, in order to compute TraT (CleT (A)), one
has to find a path in the graph induced by the ABox A itself. So, if we are concerned with
the data complexity, CleT (A) can be computed in LogSpace (in fact, in AC0, as we shall
see in Section 6.1) because the role inclusion graph (and hence its size) does not depend on
A. The second reason, however, is more ‘dangerous’ for data complexity as we shall see in
Section 6.1.

As a consequence of Lemma 5.18 and Theorem 5.13 we obtain the following:

Corollary 5.20 (i) Satisfiability of DL-Lite
(RN )+

bool KBs is NP-complete; (ii) satisfiability of

DL-Lite
(RN )+

horn KBs is P-complete; and (iii) satisfiability of DL-Lite
(RN )+

krom and DL-Lite
(RN )+

core

KBs is NLogSpace-complete.
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Note again that if the KBs do not contain number restrictions of the form ≥ q R, for
q ≥ 2, (as in the extensions of the DL-LiteRα languages) then the result does not depend on
the UNA.

Remark 5.21 It should be noted that role disjointness, symmetry, asymmetry and tran-
sitivity role constraints can be added to any of the logics DL-LiteR,Fα and DL-LiteR,Nα , for
α ∈ {core, krom, horn, bool}, without changing their complexity (by Corollary 5.12, the sat-
isfiability problem for each of them is ExpTime-complete). As follows from (Glimm et al.,
2007, Theorem 10), KB satisfiability in the extension of SHIQ with role conjunction is
in ExpTime if the length of role conjunctions is bounded by some constant (in our case,
this constant is 2 because Dis(R1, R2) can be encoded by ∃(R1 u R2).> v ⊥; Asym(R) is
dealt with similarly). We conjecture that role reflexivity and irreflexivity constraints do not
change complexity either.

6. Instance Checking: Data Complexity

So far we have assumed the whole KB K = (T ,A) to be the input for the satisfiability prob-
lem. According to the classification suggested by Vardi (1982), we have been considering
its combined complexity. Two other types of complexity for knowledge bases are:

• the schema (or TBox ) complexity, where only the TBox T is regarded to be the input,
while the ABox A is assumed to be fixed; and

• the data (or ABox ) complexity, where only the ABox A is regarded to be the input.

It is easy to see that the schema complexity of the satisfiability problem for DL-LiteR,Nbool

and its fragments considered above coincides with the corresponding combined complexity.
In this section, we analyze the data complexity of satisfiability and instance checking.

6.1 DL-LiteNbool, DL-LiteRbool and DL-Lite
(RN )
bool are in AC0

In what follows, without loss of generality we assume that all role and concept names of a
given knowledge base K = (T ,A) occur in its TBox and write role±(T ) instead of role±(K)
and dr(T ) instead of dr(K); the set of concept names in T is denoted by con(T ). In this
section we reduce satisfiability of DL-Lite

(RN )
bool KBs to model checking in first-order logic.

To this end, we fix a signature containing two unary predicates A and A, for each concept
name A, and two binary predicates P and P , for each role name P .

Consider first the case of a DL-Lite
(RN )−

bool KB K. We represent the ABox A of K as
a first-order model AA of the above signature. The domain of AA is ob(A) and, for all
ai, aj ∈ ob(A) and all predicates A, A, P and P in the signature,

AA |= A[ai] iff A(ai) ∈ A, AA |= A[ai] iff ¬A(ai) ∈ A,
AA |= P [ai, aj ] iff P (ai, aj) ∈ A, AA |= P [ai, aj ] iff ¬P (ai, aj) ∈ A.

Now we construct a first-order sentence ϕT in the same signature such that (i) ϕT depends
on T but does not depend on A, and (ii) AA |= ϕT iff K‡e is satisfiable.

To simplify presentation, we denote by ext(T ) the extension of T with the following
concept inclusions:
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• ≥ q′R v ≥ q R, for all q, q′ ∈ QRT such that q′ > q and q′ > q′′ > q for no q′′ ∈ QRT
and R ∈ role±(T ), and

• ≥ q R v ≥ q R′, for all q ∈ QRT and R v R′ ∈ T or inv(R) v inv(R′) ∈ T .

Clearly, (ext(T ))∗(x) is equivalent (in first-order logic) to T ∗(x)∧T R(x)∧
∧
R∈role±(T ) δR(x);

see (1), (5) and (42).
Let Bcon(T ) be the set of basic concepts occurring in T (i.e., concepts of the form A

and ≥ q R, for A ∈ con(T ), R ∈ role±(T ) and q ∈ QRT ). To indicate which basic concepts
hold or do not hold on a domain element of a first-order model of K‡e , we use functions
ξ : Bcon(T ) → {>,⊥}, which will be called types. Denote by Tp the set of all such types
(there are 2|Bcon(T )| of them). For a complex concept C, we define ξ(C) by induction:
ξ(¬C) = ¬ξ(C) and ξ(C1 u C2) = ξ(C1) ∧ ξ(C2). The propositional variable-free formula

ξT =
∧

C1vC2∈ext(T )

(
ξ(C1)→ ξ(C2)

)
ensures that the type ξ is consistent with concept and role inclusions in T . The following
formula is true if a given element of AA is of type ξ (see A†1 and A‡2e ; (2) and (43),
respectively):

ξ∗(x) =
∧

A∈con(T )

(
(A(x)→ ξ(A)) ∧ (Ā(x)→ ¬ξ(A))

)
∧

∧
R∈role±(T )

∧
q∈QR

T

(
EqR

T (x)→ ξ(≥ q R)
)
∧

∧
P∈role(T )

∀x∀y
(
P T (x, y) ∧ P̄ (x, y)→ ⊥

)
,

where EqRT (x) and RT (x, y) are abbreviations defined by

EqR
T (x) = ∃y1 . . . ∃yq

( ∧
1≤i<j≤q

(yi 6= yj) ∧
∧

1≤i≤q
RT (x, yi)

)
, (46)

RT (x, y) =
∨

Pkv∗T R
Pk(x, y) ∨

∨
P−k v

∗
T R

Pk(y, x). (47)

Clearly, we have R(ai, aj) ∈ CleT (A) iff AA |= RT [ai, aj ] and AA |= EqR
T [a] iff a has at

least q distinct R-successors in CleT (A) (and thus in every model of K).
Without loss of generality we may assume that role±(T ) = {R1, . . . , Rk} 6= ∅. We then

set
ϕT =

∨
~ξ=(ξdr1

,...,ξdrk
)

ξdri
∈Tp, 1≤i≤k

∀xϑ~ξT (x),

where

ϑ
~ξ
T (x) =

∨
ξ∈Tp

(
ξ∗(x) ∧ ξT ∧

∧
S∈role±(T )

ξTds ∧

∧
R∈role±(T )

((
ξ(∃R) ∨

∨
S∈role±(T )

ξds(∃R)
)
→ ξinv(dr)(∃inv(R))

))
.
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To explain the meaning of the subformulas of ϕT , assume that (T ,A) is satisfiable. In order
to construct a model M for K‡e from the first-order model AA, we have to specify the basic
concepts that contain a given constant of K‡e . In other words, we have to select a type for
each dri ∈ dr(T ) and each a ∈ ob(A). The formula ϕT says that one can select a k-tuple
of types (ξdr1 , . . . , ξdrk) such that one of its disjuncts is true in AA. Such a k-tuple fixes
the ‘witness’ part of the model M, consisting of the dri, and determines the basic concepts
these dri belong to. Then each disjunct of ϕT says that (having fixed the ‘witness’ part of
the model), for every a ∈ ob(A), there is a type ξ (determining the basic concepts a belongs
to) such that

• ξ is consistent with the information about a in A (cf. ξ∗(x));

• ξ is also consistent with the concept and role inclusions of T (cf. ξT );

• each of the ξdr1 , . . . , ξdrk is consistent with the concept and role inclusions of T (cf. ξTds);

• each role R with a nonempty domain (i.e., either ξ or any of ξds is > on ∃R) has a
nonempty range, in particular, ξinv(dr)(∃inv(R)) = >; see also εR(x) as defined by (4).

Lemma 6.1 AA |= ϕT iff K‡e is satisfiable.

Proof (⇒) Fix some ~ξ = (ξdr1 , . . . , ξdrk), ξdri ∈ Tp, such that AA |= ∀xϑ
~ξ
T (x). Then, for

each a ∈ ob(A), fix some type such that the respective disjunct of ϑ
~ξ
T (x) holds on a in AA

and denote it by ξa. Define a first-order model M over the domain ob(A)∪dr(T ) by taking:

• M |= B∗[dri] iff ξdri(B) = >, for all dri ∈ dr(T ) and B ∈ Bcon(T ),

• M |= B∗[a] iff ξa(B) = >, for all a ∈ ob(A) and B ∈ Bcon(T )

(B∗ is the unary predicate for B as defined on p. 23). It is easy to check that M |= K‡e .
(⇐) Suppose now that K‡e is satisfiable. Then there is a model M of K‡e with domain

ob(A) ∪ dr(T ). To see that AA |= ϕT , it suffices to take the functions ξdri and ξa defined
by:

• ξdri(B) = > iff M |= B∗[dri], for dri ∈ dr(T ) and B ∈ Bcon(T ),

• ξa(B) = > iff M |= B∗[a], for a ∈ ob(A) and B ∈ Bcon(T ).

Details are left to the reader. q

It follows from Lemmas 6.1 and 5.17 and Corollary 5.16 that we have:

Corollary 6.2 The satisfiability and instance checking problems for DL-LiteNbool, DL-LiteRbool
and DL-Lite

(RN )
bool KBs are in AC0 for data complexity.

Proof DL-LiteNbool and DL-LiteRbool are sub-languages of DL-Lite
(RN )−

bool , and for them the
result immediately follows from Lemma 6.1 and Corollary 5.16. For a DL-Lite

(RN )
bool KB

K′ = (T ′,A′), by Lemma 5.17, we construct a DL-Lite
(RN )−

bool KB K = (T ,A) such that
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K′ is satisfiable iff K is satisfiable and (44) holds. The latter condition corresponds to the
following first-order sentence

γT ′ =
∧

Dis(R1,R2)∈T ′
∀x∀y

(
RT1 (x, y) ∧RT2 (x, y)→ ⊥

)
∧

∧
Irr(Pk)∈T ′

∀x
(
P Tk (x, x)→ ⊥

)
,

evaluated in AA. Therefore, K′ is satisfiable iff AA |= ϕT ∧ γT ′ . Let ψ = ϕT ∧ γT ′ and ψ′

be the result of replacing each SP (t1, t2), for Ref(P ) ∈ T ′, with P (t1, t2)∧ (t1 6= t2); see the
proof of Lemma 5.17. It remains to observe that AA |= ψ iff AA′ |= ψ′. q

As before, this result does not depend on the UNA for any member of the DL-Lite family
that has no number restrictions of the form ≥ q R, for q ≥ 2 (in particular, for DL-LiteRbool
and its fragments).

We also note that transitive roles cannot be included in our languages for free if we are
concerned with the data complexity:

Lemma 6.3 Satisfiability and instance checking of DL-Litecore KBs extended with role tran-
sitivity constraints are NLogSpace-hard for data complexity.

Proof Suppose we are given a directed graph. Define an ABox A by taking P (ai, aj) ∈ A
iff there is an edge (ai, aj) in the graph. Then a node an is reachable from a node a0 iff
the DL-Litecore ABox A∪ {¬P (a0, an)} is not satisfiable in models with transitive P . This
encoding immediately gives the claim of the lemma because the directed graph reachability
problem is NLogSpace-complete, NLogSpace is closed under the complement (see, e.g.,
Kozen, 2006) and the TBox does not depend on the input. q

On the other hand, as the reduction of Lemma 5.18 is computable in NLogSpace, we
obtain the following:

Corollary 6.4 Satisfiability and instance checking of DL-Lite
(RN )+

bool KBs are NLogSpace-
complete for data complexity.

Proof The upper bound is obtained by applying the NLogSpace reduction of Lemma 5.18
and using Corollary 6.2. The lower bound follows from Lemma 6.3. q

6.2 P- and coNP-hardness for Data Complexity

Let us now turn to the data complexity of instance checking for the DL-Lite logics with arbi-
trary number restrictions and role inclusions. As follows from (Ortiz et al., 2006), instance
checking (and in fact query answering) for DL-LiteR,Nbool is in coNP for data complexity,
while (Hustadt et al., 2005; Eiter et al., 2008) imply a polynomial-time upper bound for
DL-LiteR,Fhorn.

Here we show that these upper bounds are optimal in the following sense: on the one
hand, instance checking in DL-LiteR,Fcore is P-hard for data complexity; on the other hand, it
becomes coNP-hard for DL-LiteR,Ncore (that is, if we allow arbitrary number restrictions—in
fact, ≥ 2R is enough). Note that the results of this section do not depend on whether we
adopt the UNA or not.
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Theorem 6.5 The instance checking (and query answering) problem for DL-LiteR,Fkrom KBs
is data hard for coNP.

Proof The proof is by reduction of the non-satisfiability problem for 2+2CNF, which is
known to be coNP-complete (Schaerf, 1993). Given a 2+2CNF formula

ϕ =
n∧
k=1

(ak,1 ∨ ak,2 ∨ ¬ak,3 ∨ ¬ak,4),

where each ak,j is one of the propositional variables a1, . . . , am, we construct a KB (T ,Aϕ)
whose TBox T does not depend on ϕ. We will use the object names f , ck, for 1 ≤ k ≤ n,
and ai, for 1 ≤ i ≤ m, role names S, Sf and Pj , Pj,t, Pj,f, for 1 ≤ j ≤ 4, and concept names
A, D.

Define Aϕ to be the set of the following assertions, for 1 ≤ k ≤ n:

S(f, ck), P1(ck, ak,1), P2(ck, ak,2), P3(ck, ak,3), P4(ck, ak,4),

and let T consist of the axioms

≥ 2Pj v ⊥, for1 ≤ j ≤ 4, (48)
Pj,f v Pj , Pj,t v Pj , for 1 ≤ j ≤ 4, (49)

¬∃Pj,t v ∃Pj,f, for 1 ≤ j ≤ 4, (50)
∃P−j,f v ¬A, ∃P−j,t v A, for 1 ≤ j ≤ 4, (51)

∃P1,f u ∃P2,f u ∃P3,t u ∃P4,t v ∃S−f , (52)
≥ 2S− v ⊥, (53)

Sf v S, (54)
∃Sf v D. (55)

Note that axiom (52) does not belong to DL-LiteR,Fkrom because of the conjunctions in its
left-hand side. However, it can be eliminated with the help of Lemma 5.9. So let us prove
that (T ,Aϕ) |= D(f) iff ϕ is not satisfiable.

Suppose first that ϕ is satisfiable. Then there is an assignment a of the truth-values
t and f to propositional variables such that a(ak,1) = t or a(ak,2) = t or a(ak,3) = f or
a(ak,4) = f, for 1 ≤ k ≤ n. Define I by taking

• ∆I =
{
xi | 1 ≤ i ≤ m

}
∪
{
yk | 1 ≤ k ≤ n

}
∪
{
z
}

,

• aIi = xi, for 1 ≤ i ≤ m, cIk = yk, for 1 ≤ k ≤ n, fI = z,

• AI =
{
xi | a(ai) = t

}
∪
{
yk | 1 ≤ k ≤ n

}
∪
{
z
}

,

• P Ij,t =
{

(yk, aIk,j) | 1 ≤ k ≤ n, a(ak,j) = t
}
∪
{

(xi, xi) | a(ai) = t
}
∪
{

(z, z)
}

,

• P Ij,f =
{

(yk, aIk,j) | 1 ≤ k ≤ n, a(ak,j) = f
}
∪
{

(xi, xi) | a(ai) = f
}

,

• P Ij = P Ij,t ∪ P Ij,f, for 1 ≤ j ≤ 4,
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• SIf =
{

(z, yk) | a(ak,1 ∨ ak,2 ∨ ¬ak,3 ∨ ¬ak,4) = f
}

= ∅,

• SI =
{

(z, yk) | 1 ≤ k ≤ n
}

,

• DI =
{
z | a(ϕ) = f

}
= ∅.

It is not hard to check that I |= (T ,Aϕ), and clearly I 6|= D(f).
Assume now that ϕ is not satisfiable and I |= (T ,Aϕ). Define an assignment a by

taking a(ai) = t iff aIi ∈ AI . As ϕ is not satisfiable, there is k, 1 ≤ k ≤ n, such that
a(ak,1) = a(ak,2) = f, a(ak,3) = a(ak,4) = t.

In view of (50), for each j, 1 ≤ j ≤ 4, we have cIk ∈ (∃Pj,t)I ∪ (∃Pj,f)I , and by (49),
cIk ∈ (∃Pj)I . Therefore, by (48) and (51), cIk ∈ (∃Pj,t)I if a(ak,j) = t and cIk ∈ (∃Pj,f)I if
a(ak,j) = f, and hence, by (52), cIk ∈ (∃S−f )I . Then by (53) and (54), we have fI ∈ (∃Sf)I ,
from which, by (55), fI ∈ DI . It follows that (T ,Aϕ) |= D(f). q

Theorem 6.6 The instance checking (and the query answering) problem for DL-LiteR,Ncore

KBs is data hard for coNP.

Proof The proof is again by reduction of the non-satisfiability problem for 2+2CNF. The
main difference from the previous one is that DL-LiteR,Ncore , unlike DL-LiteR,Fkrom, cannot ex-
press ‘covering conditions’ like (50). It turns out, however, that we can use number re-
strictions to represent constraints of this kind. Given a 2+2CNF formula ϕ, we take the
same ABox Aϕ constructed in the proof of Theorem 6.5. The (ϕ independent) TBox T ,
describing the meaning of any such representation of ϕ in terms of Aϕ, is also defined in
the same way as in that proof, except that the axiom (50) is now replaced by the following
set of axioms:

Tj,1 v Tj , Tj,2 v Tj , Tj,3 v Tj , (56)
≥ 2T−j v ⊥, (57)

∃Pj v ∃Tj,1, ∃Pj v ∃Tj,2, (58)
∃T−j,1 u ∃T

−
j,2 v ∃T

−
j,3, (59)

≥ 2Tj v ∃Pj,t ∃Tj,3 v ∃Pj,f, (60)

where Tj , Tj,1, Tj,2, Tj,3 are fresh role names, for each j, 1 ≤ j ≤ 4. Note that axioms (52)
and (59) do not belong to DL-LiteR,Ncore because of the conjunctions in their left-hand side, but
we can easily eliminate them using Lemma 5.9. So it remains to prove that (T ,Aϕ) |= D(f)
iff ϕ is not satisfiable.

Suppose first that ϕ is satisfiable. Then there is an assignment a of the truth-values
t and f to propositional variables such that a(ak,1) = t or a(ak,2) = t or a(ak,3) = f or
a(ak,4) = f, for all k, 1 ≤ k ≤ n. Define I by taking

• ∆I =
{
xi | 1 ≤ i ≤ m

}
∪
{
yk | 1 ≤ k ≤ n

}
∪
{
uk,j,1, uk,j,2 | 1 ≤ j ≤ 4, 1 ≤ k ≤ n

}
∪
{
z
}

,

• aIi = xi, for 1 ≤ i ≤ m, cIk = yk, for 1 ≤ k ≤ n, fI = z,

• AI = {xi | a(ai) = t},

47



Artale, Calvanese, Kontchakov & Zakharyaschev

• P Ij,t =
{

(yk, aIk,j) | 1 ≤ k ≤ n, a(ak,j) = t
}

, for 1 ≤ j ≤ 4,

• P Ij,f =
{

(yk, aIk,j) | 1 ≤ k ≤ n, a(ak,j) = f
}

, for 1 ≤ j ≤ 4,

• P Ij = P Ij,t ∪ P Ij,f, for 1 ≤ j ≤ 4,

• T Ij,1 =
{

(yk, uk,j,1) | 1 ≤ k ≤ n
}

, for 1 ≤ j ≤ 4,

• T Ij,2 =
{

(yk, uk,j,2) | 1 ≤ k ≤ n, a(ak,j) = t
}
∪{

(yk, uk,j,1) | 1 ≤ k ≤ n, a(ak,j) = f
}

, for 1 ≤ j ≤ 4,

• T Ij,3 =
{

(yi, uk,j,1) | 1 ≤ k ≤ n, a(ak,j) = f
}

, for 1 ≤ j ≤ 4,

• T Ij = T Ij,1 ∪ T Ij,2,

• SIf =
{

(z, yk) | a(ak,1 ∨ ak,2 ∨ ¬ak,3 ∨ ¬ak,4) = f
}

= ∅,

• SI =
{

(z, yk) | 1 ≤ k ≤ n
}

,

• DI =
{
z | a(ϕ) = f

}
= ∅.

It is not hard to check that I |= (T ,Aϕ), and clearly I 6|= D(f).
Assume now that ϕ is not satisfiable and I |= (T ,Aϕ). Define an assignment a by

taking a(ai) = t iff aIi ∈ AI . As ϕ is not satisfiable, there is k, 1 ≤ k ≤ n, such that
a(ak,1) = a(ak,2) = f, a(ak,3) = a(ak,4) = t.

For each j, 1 ≤ j ≤ 4, we have cIk ∈ (∃Pj)I ; by (58), cIk ∈ (∃Tj,1)I , (∃Tj,2)I . So there
are v1, v2 such that (cIk , v1) ∈ T Ij,1 and (cIk , v2) ∈ T Ij,2. If v1 6= v2 then cIk ∈ (≥ 2Tj)I

and, by (60), cIk ∈ (Pj,t)I . Otherwise, if v1 = v2 = v, we have v ∈ (∃T−j,3)I by (59),
and so by (56) and (57), cIk ∈ (∃Tj,3)I , from which, by (60), cIk ∈ (Pj,f)I . Therefore,
cIk ∈ (∃Pj,t)I ∪ (∃Pj,f)I , and by (49), cIk ∈ (∃Pj)I . Thus, by (48) and (51), cIk ∈ (∃Pj,t)I
if a(ak,j) = t and cIk ∈ (∃Pj,f)I if a(ak,j) = f, and hence, by (52), cIk ∈ (∃S−f )I . Then
by (53) and (54), we have fI ∈ (∃Sf)I , from which, by (55), fI ∈ DI . It follows that
(T ,Aϕ) |= D(f). q

Our next lower bound would follow from (Calvanese et al., 2006, Theorem 6, item 2);
unfortunately, the proof of that result is incorrect and cannot be repaired.

Theorem 6.7 The instance checking (and query answering) problem for DL-LiteR,Fcore KBs
is data hard for P.

Proof The proof is by reduction of the entailment problem for Horn-CNF, which is known
to be P-complete (see, e.g., Börger et al., 1997, Exercise 2.2.4). Given a Horn-CNF formula

ϕ =
n∧
k=1

(¬ak,1 ∨ ¬ak,2 ∨ ak,3) ∧
p∧
l=1

al,0,

where each ak,j and each al,0 is one of the propositional variables a1, . . . , am, we construct a
KB (T ,Aϕ) whose TBox T does not depend on ϕ. We will need the object names c1, . . . , cn
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and vk,j,i, for 1 ≤ k ≤ n, 1 ≤ j ≤ 3, 1 ≤ i ≤ m (for each variable, we take one object name
for each possible occurrence of this variable in each non-unit clause), role names S, St and
Pj , Pj,t, for 1 ≤ j ≤ 3, and a concept name A.

Define Aϕ to be the set containing the assertions:

S(v1,1,i, v1,2,i), S(v1,2,i, v1,3,i), S(v1,3,i, v2,1,i), S(v2,1,i, v2,2,i), S(v2,2,i, v2,3,i), . . .
. . . , S(vn,2,i, vn,3,i), S(vn,3,i, v1,1,i), for 1 ≤ i ≤ m,

Pj(vk,j,i, ck) iff ak,j = ai, for 1 ≤ i ≤ m, 1 ≤ k ≤ n, 1 ≤ j ≤ 3,
A(v1,1,i) iff al,0 = ai, for 1 ≤ i ≤ m, 1 ≤ l ≤ p

(all objects for each variable are organized in an S-cycle and Pj(vk,j,i, ck) ∈ Aϕ iff the
variable ai occurs in the kth non-unit clause of ϕ in the jth position). Let T consist of the
following concept and role inclusions:

St v S, (61)
≥ 2S v ⊥, (62)

A v ∃St, (63)
∃S−t v A, (64)
≥ 2P1 v ⊥ ≥ 2P2 v ⊥, (65)
P1,t v P1, P2,t v P2, (66)
A v ∃P1,t, A v ∃P2,t, (67)

≥ 2P−3 v ⊥, (68)
P3,t v P3, (69)

∃P−1,t u ∃P
−
2,t v ∃P

−
3,t, (70)

∃P3,t v A. (71)

As before, here we have an axiom, namely (70), that does not belong to DL-LiteR,Fcore because
of the conjunction in its left-hand side, but again it can be eliminated with the help of
Lemma 5.9. Our aim is to show that (T ,Aϕ) |= A(v1,1,i0) iff ϕ |= ai0 .

Suppose first that ϕ 6|= ai0 . Then there is an assignment a with a(ϕ) = t and a(ai0) = f.
We construct a model I for (T ,Aϕ) such that I 6|= A(v1,1,i0). Define I by taking

• ∆I =
{
xk,j,i, zk,j,i | 1 ≤ k ≤ n, 1 ≤ j ≤ 3, 1 ≤ i ≤ m

}
∪
{
yk | 1 ≤ k ≤ n

}
,

• cIk = yk, for 1 ≤ k ≤ n,

• vIk,j,i = xk,j,i, for 1 ≤ k ≤ n, 1 ≤ j ≤ 3, 1 ≤ i ≤ m,

• AI =
{
xk,j,i | 1 ≤ k ≤ n, 1 ≤ j ≤ 3, a(ai) = t

}
,

• SI =
⋃

1≤i≤m
Si, where Si =

{
(xk,1,i, xk,2,i), (xk,2,i, xk,3,i), (xk,3,i, xk⊕1,1,i) | 1 ≤ k ≤ n

}
and k ⊕ 1 = k + 1 if k < n, and k ⊕ 1 = 1 if k = n,

• SIt =
⋃

1≤i≤m
a(ai)=t

Si,
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.

.

a1 a2 a3 a4 a5

¬a1 ∨ ¬a2 ∨ a3 ¬a2 ∨ ¬a4 ∨ a5

zk,j,i

xk,j,i

y1 y2
St, S
S
Pj,t, Pj
Pj

¬A
A

Figure 4: The model I satisfying (T ,Aϕ), for ϕ = (¬a1 ∨ ¬a2 ∨ a3) ∧ (¬a2 ∨ ¬a4 ∨ a5).

• P Ij =
{

(xk,j,i, yk) | 1 ≤ k ≤ n, ai = ak,j
}
∪{

(xk,j,i, zk,j,i) | 1 ≤ k ≤ n, ai 6= ak,j
}
, for 1 ≤ j ≤ 2,

• P I3 =
{

(xk,3,i, yk) | 1 ≤ k ≤ n, ai = ak,3
}

,

• P Ij,t =
{

(xk,j,i, yk) | 1 ≤ k ≤ n, ai = ak,j , a(ai) = t
}
∪{

(xk,j,i, zk,j,i) | 1 ≤ k ≤ n, ai 6= ak,j
}
, for 1 ≤ j ≤ 2,

• P I3,t =
{

(xk,3,i, yk) | 1 ≤ k ≤ n, ai = ak,3, a(ai) = t
}

.

It is routine to check that we indeed have I |= (T ,Aϕ) and I 6|= A(v1,1,i0). (See Figure 4
for an example.)

Conversely, assume now that ϕ |= ai0 . Consider an arbitrary interpretation I |= (T ,Aϕ)
and define a to be the assignment such that a(ai) = t iff vI1,1,i ∈ AI , for 1 ≤ i ≤ m. By (61)–
(64), for each i, 1 ≤ i ≤ m, we have either vIk,j,i ∈ AI , for all k, j with 1 ≤ k ≤ n, 1 ≤ j ≤ 3,
or vIk,j,i /∈ AI , for all k, j with 1 ≤ k ≤ n, 1 ≤ j ≤ 3.

Now, if we have a(ak,1) = t and a(ak,2) = t, for 1 ≤ k ≤ n then, by (65)–(67),
cIk ∈ (∃P−1,t)I , (∃P

−
2,t)
I . By (70), cIk ∈ (∃P−3,t)I and hence, by (68) and (69), vIk,3,i ∈ (∃P3,t)I ,

where ak,3 = ai, which means, by (71), that vIk,3,i ∈ AI , and so vI1,1,i ∈ AI and a(ai) = t. It
follows that a(ϕ) = t, and hence a(ai0) = t, which, by definition, means that vI1,1,i0 ∈ A

I .
As I was an arbitrary model of (T ,Aϕ), we can conclude that (T ,Aϕ) |= A(v1,1,i0). q

7. Query Answering: Data Complexity

The positive existential query answering problem is known to be data complete for coNP
in the case of DL-LiteR,Nbool : the upper bound follows from (Ortiz et al., 2006) and the lower
one was established in (Calvanese et al., 2006; Schaerf, 1993) for DL-Litekrom. In the case of
DL-LiteR,Fhorn, query answering is data complete for P, as follows from (Hustadt et al., 2005;
Eiter et al., 2008), while for DL-LiteRhorn it is in AC0 (Calvanese et al., 2006).

In fact, the coNP upper bound holds for the extension of DL-LiteR,Nbool with role dis-
jointness and (a)symmetry constraints (this follows from (Glimm et al., 2007, Theorem 10);
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cf. Remark 5.21). We conjecture that the same result holds for role (ir)reflexivity con-
straints.

Our main result in this section is the following:

Theorem 7.1 The positive existential query answering problem for the logics DL-LiteNhorn,
DL-LiteRhorn and DL-Lite

(RN )
horn KBs is in AC0 for data complexity.

Proof Suppose that we are given a consistent DL-Lite
(RN )
horn KB K′ = (T ′,A′) (with all its

concept and role names occurring in the TBox T ′) and a positive existential query in prenex
form q(~x) = ∃~y ϕ(~x, ~y) in the signature of K′. Consider the DL-Lite

(RN )−

horn KB K = (T ,A)
provided by Lemma 5.17.

Lemma 7.2 For every tuple ~a of object names in K′, we have K′ |= q(~a) iff I |= q(~a) for
all untangled models I of K.

Proof (⇒) Suppose that K′ |= q(~a) and I is an untangled model I of K. By Lemma 5.17
and in view of consistency of K′, which ensures that (44) holds, we then have I |= K′ and
therefore, I |= q(~a).

(⇐) Suppose I ′ |= K′. By Lemma 5.17, there is a model I of K with the same domain
as I ′ that coincides with I ′ on all symbols in K′. As I |= q(~a), we must then have I ′ |= q(~a),
and so K′ |= q(~a) as required. q

Next we show that, as K‡e is a Horn sentence, it is enough to consider just one special
model I0 of K in the formulation of Lemma 7.2. Let M0 be the minimal Herbrand model of
(the universal Horn sentence) K‡e . We remind the reader (for details consult, e.g., Apt, 1990;
Rautenberg, 2006) that M0 can be constructed by taking the intersection of all Herbrand
models for K‡e , that is, of all models based on the domain that consists of constant symbols
from K‡e—i.e., Λ = ob(A) ∪ dr(T ); cf. Remark 5.15. For all c ∈ Λ and B ∈ Bcon(T ), we
then have the following:

M0 |= B∗[c] iff K‡e |= B∗(c).

Let I0 be the untangled model of K induced by M0. Denote the domain of I0 by ∆I0 .
Property (copy) of Remark 5.15 provides us with a function cp : ∆I0 → Λ.

There are two consequences of Lemma 5.14. First, for all ai ∈ ob(A), we have

aI0i ∈ B
I0 iff K |= B(ai). (72)

Second, for every R ∈ role±(T ), if RI0 6= ∅ then RI 6= ∅, for all models I of K. Indeed,
if RI0 6= ∅ then M0 |= (∃R)∗[dr]. Therefore, (T ∪ {∃R v ⊥},A) is not satisfiable, and
thus RI 6= ∅, for all I with I |= K. Moreover, if RI0 6= ∅ then, for every w ∈ ∆I0 with
cp(w) = dr, we have

w ∈ BI0 iff K |= ∃R v B. (73)

Lemma 7.3 If I0 |= q(~a) then I |= q(~a) for all untangled models I of K.
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Proof Suppose I |= K. As q(~a) is a positive existential sentence, it is enough to construct a
homomorphism h : I0 → I. We remind the reader that, by (forest), the domain ∆I0 of I0

is partitioned into disjoint trees Ta, for a ∈ ob(A). Define the depth of a point w ∈ ∆I0 to
be the length of the shortest path in the respective tree to its root. Denote by Wm the set
of points of depth ≤ m; in particular, W0 = {aI0 | a ∈ ob(A)}. We construct h as the union
of maps hm, m ≥ 0, where each hm is defined on Wm and has the following properties:
hm+1(w) = hm(w), for all w ∈Wm, and

(am) for every w ∈Wm, if w ∈ BI0 then hm(w) ∈ BI , for each B ∈ Bcon(T );

(bm) for all u, v ∈Wm, if (u, v) ∈ RI0 then (hm(u), hm(v)) ∈ RI , for each R ∈ role±(T ).

For the basis of induction, we set h0(aI0i ) = aIi , for ai ∈ ob(A). Property (a0) follows then
from (72) and (b0) from (ABox) of Remark 5.15.

For the induction step, suppose that hm has already been defined for Wm, m ≥ 0. Set
hm+1(w) = hm(w) for all w ∈ Wm. Consider an arbitrary v ∈ Wm+1 \Wm. By (forest),
there is a unique u ∈ Wm such that (u, v) ∈ Ea, for some Ta. Let `a(u, v) = S. Then,
by (copy), cp(v) = inv(ds). By (role), u ∈ (∃S)I0 and, by (am), hm(u) ∈ (∃S)I , which
means that there is w ∈ ∆I with (hm(u), w) ∈ SI . Set hm+1(v) = w. As cp(v) = inv(ds)
and (∃inv(S))I0 6= ∅, it follows from (73) that if v ∈ BI0 then w′ ∈ BI whenever we have
w′ ∈ (∃inv(S))I . As w ∈ (∃inv(S))I , we obtain (am+1) for v. To show (bm+1), we notice
that, by (role), we have (w, v) ∈ RI0 , for some w ∈ Wm+1, just in two cases: either
w ∈Wm+1 \Wm, and then w = v and Id v∗T R, or w ∈Wm, and then w = u and S v∗T R.
In the former case, (hm+1(v), hm+1(v)) ∈ RI because IdI is the identity relation by (role).
In the latter case, we have (u, v) ∈ SI0 ; hence (hm+1(u), hm+1(v)) ∈ SI and, as S v∗T R,
(hm+1(u), hm+1(v)) ∈ RI . q

Assume now that, in the query q(~x) = ∃~y ϕ(~x, ~y), we have ~y = y1, . . . , yk. Our next
lemma shows that in this case to check whether I0 |= q(~a) it suffices to consider only the
points of depth ≤ m0 in ∆I0 , for m0 = k + |role±(T )| (m0 does not depend on A).

Lemma 7.4 If I0 |= ∃~y ϕ(~a, ~y) then there is an assignment a0 in Wm0 (i.e., a0(yi) ∈Wm0

for all i) such that I0 |=a0 ϕ(~a, ~y).

Proof Suppose that I0 |=a ϕ(~a, ~y), for some assignment a in ∆I0 , and that there is yi,
1 ≤ i ≤ k, with a(yi) /∈ Wm0 . Let Y be the minimal subset of ~y that contains yi and
every y such that either P (y′, y) or P (y, y′) is a subformula of ϕ, for some y′ ∈ Y and
some role name P . Let yj ∈ Y be such that there is m > |role±(T )| with a(yj) ∈ Wm and
a(y) /∈Wm−1 for all y ∈ Y (for convenience, W−1 = ∅ as before). Clearly, such an m exists:
a(yi) /∈Wm0 , Y has at most k variables and, by (forest), relations P I0 can connect a point
in Wn \Wn−1 only with a point in Wn+1 \Wn−2, for n ≥ 1. Let w = a(yj) be a point in
Ta. As w ∈Wm \Wm−1, we have cp(w) = dr, for some R ∈ role±(T ). As there are at most
|role±(T )| distinct labels in each labeled tree Ta and in view of (copy), for each point u
of depth > |role±(T )|, there is a point u′ of depth ≤ |role±(T )| in the same Ta such that
cp(u) = cp(u′); by (iso), the trees generated by u and u′ are isomorphic. So, there is an
isomorphism g from the labeled tree generated by w (which contains all a(y), for y ∈ Y )
onto the labeled tree generated by some point of depth ≤ |role±(T )| in Ta. Define a new
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assignment aY by taking aY (y) = g(a(y)) if y ∈ Y and aY (y) = a(y) otherwise. By (copy),
(concept) and (role) we then have I0 |=aY ϕ(~a, ~y) and aY (y) ∈ Wm0 , for each y ∈ Y . If
aY (yj) /∈Wm0 for some j, we repeat the described construction. After at most k iterations
we shall obtain an assignment a0 required by the lemma. q

To complete the proof of Theorem 7.1, we encode the problem ‘K |= q(~a)?’ as a model
checking problem for first-order formulas. In precisely the same way as in Section 6.1, we
fix a signature that contains unary predicates A, A, for each concept name A, and binary
predicates P , P , for each role name P , and then represent the ABox A of K as a first-order
model AA with domain ob(A). Now we define a first-order formula ϕT ,q(~x) in the above
signature such that (i) ϕT ,q(~x) depends on T and q but not on A, and (ii) AA |= ϕT ,q(~a)
iff I0 |= q(~a).

We begin by defining formulas ψB(x), B a basic concept in T , that describe the types
of the elements of ob(A) in the model I0 in the following sense: for every B ∈ Bcon(T ) and
every ai ∈ ob(A),

AA |= ψB[ai] iff aI0i ∈ B
I0 ; (74)

see also (72). These formulas are defined as the ‘fixed-points’ of sequences ψ0
B(x), ψ1

B(x), . . .
of formulas with one free variable, where ψ0

A(x) = A(x), for a concept name A, and
ψ0
≥qR(x) = EqR

T (x) with EqR
T (x) given by (46), for R ∈ role±(T ), q ∈ QRT , and, for

i ≥ 1,
ψiB(x) = ψ0

B(x) ∨
∨

B1u···uBkvB∈ext(T )

(
ψi−1
B1

(x) ∧ · · · ∧ ψi−1
Bk

(x)
)
.

(As in Section 6.1, to simplify the formulas, we use ext(T ) instead of T .) It should be clear
that if there is some i such that, for all B ∈ Bcon(T ), ψiB(x) ≡ ψi+1

B (x) (i.e., every ψiB(x) is
equivalent to ψi+1

B (x) in first-order logic), then ψiB(x) ≡ ψjB(x) for every B ∈ Bcon(T ) and
j ≥ i. So the minimum such i does not exceed N = |Bcon(T )|, and we set ψB(x) = ψNB (x).

Next we introduce sentences θB,dr, for B ∈ Bcon(T ) and dr ∈ dr(T ), that describe the
types of elements in dr(T ) in the following sense (see also (73)):

AA |= θB,dr iff w ∈ BI0 , for each (some) w ∈ ∆I0 with cp(w) = dr. (75)

(By (concept), this definition is correct.) These sentences are defined similarly to ψB(x).
Namely, for each B ∈ Bcon(T ) and each dr ∈ dr(T ), we inductively define a sequence
θ0
B,dr, θ

1
B,dr, . . . by taking θ0

B,dr = ρ0
B,dr and, for i ≥ 1,

θiB,dr = ρiB,dr ∨
∨

B1u···uBkvB∈ext(T )

(
θi−1
B1,dr

∧ · · · ∧ θi−1
Bk,dr

)
,

where ρiB,dr = ⊥, for all i ≥ 0, whenever B 6= ∃R and

ρ0
∃R,dr = ∃x

(
ψ∃R(x) ∨ ψ∃inv(R)(x)

)
,

ρi∃R,dr =
∨

ds∈dr(T )

(
θi−1
∃R,ds ∨ θ

i−1
∃inv(R),ds

)
, for i ≥ 1.

It should be clear that θiB,dr ≡ θ
i+1
B,dr for some i ≤M = |role±(T )|·N . So we set θB,dr = θMB,dr.
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Now, for a TBox T , we consider the directed graph GT = (VT , ET ), where

VT =
{

[R]
∣∣ R ∈ role±(T ), ∃R is satisfiable in a model of T

}
(as before, [R] = {R′ | R ≡∗T R′}) and ET consists of all those pairs ([Ri], [Rj ]) for which
one of the following conditions holds:

(path)1 T |= ∃inv(Ri) v ∃Rj and inv(Ri) 6v∗T Rj ,

(path)2 T |= ∃inv(Ri) v ≥ q Rj , for q ≥ 2,

and Rj does not have a proper sub-role satisfying (path)1 or (path)2. These two conditions
are necessary and sufficient in the following sense: ([Ri], [Rj ]) ∈ ET iff, for any ABox A,
whenever the minimal untangled model I0 of (T ,A) contains a copy w of inv(dr′i), for
R′i ∈ [Ri], then w is connected to a copy of inv(dr′j), for some R′j ∈ [Rj ], by all relations S
with Rj v∗T S.

Recall now that we are given a query q(~x) = ∃~y ϕ(~x, ~y), where ϕ is a quantifier-free
positive formula and ~y = y1, . . . , yk. Let ΣT ,m0 be the set of all paths in the graph GT of
length ≤ m0. More precisely,

ΣT ,m0 =
{
ε
}
∪
{

([R1], [R2], . . . , [Rn]) | 1 ≤ n ≤ m0, ([Rj ], [Rj+1]) ∈ ET , for 1 ≤ j < n
}
.

For σ, σ′ ∈ ΣT ,m0 and a role R ∈ role±(T ), we write σ R→ σ′ if one of the following three
conditions is satisfied: (i) σ = σ′ and Id v∗T R, (ii) σ.[S] = σ′ or (iii) σ = σ′.[inv(S)], for
some role S with S v∗T R.

Let Σk
T ,m0

be the set of all k-tuples of the form ~σ = (σ1, . . . , σk) with σi ∈ ΣT ,m0 .
Intuitively, when evaluating the query over I0, each bound, or non-distinguished, variable
yi is mapped to a point w in Wm0 . However, the first-order model AA does not contain the
points from Wm0 \W0. To represent these points, we use the following ‘trick.’ By (forest),
every point w in Wm0 is uniquely determined by the pair (a, σ), where aI0 is the root of the
tree Ta containing w, and σ is the sequence of labels `a(u, v) on the path from aI0 to w.
It follows from the unraveling procedure and (path)1, (path)2 that σ ∈ ΣT ,m0 . So, in the
formula we are about to define, we assume that the yi range over W0 and represent the first
component of the pairs (a, σ), whereas the second one is encoded in the i-th component of
~σ (these yi should not be confused with the yi in the original query, which range over Wm0).
In order to treat arbitrary terms t occurring in q in a uniform way, we set:

t~σ =


ε, if t = a ∈ ob(A),
ε, if t = xi,

σi, if t = yi

(the distinguished variables xi and the object names a are mapped to W0 and do not require
the second component of the pairs).

Given an assignment a0 in Wm0 we denote by split(a0) the pair (a, ~σ), where a is an
assignment in AA and ~σ = (σ1, . . . , σk) ∈ Σk

T ,m0
satisfying the following conditions:

• a(xi) = a with aI0 = a0(xi), for each distinguished variable xi, and

54



The DL-Lite Family and Relations

• a(yi) = a where aI0 is the root of the tree containing a0(yi) and σi = ([R1], . . . , [Rn])
where R1, . . . , Rn is the sequence of labels `a(u, v) on the path from aI0 to a0(yi), for
each bound variable yi.

Not every pair (a, ~σ), however, corresponds to an assignment in Wm0 because some paths
in ~σ may not exist in our I0 (the graph GT represents possible paths in all models for
the fixed T and varying A). It follows from the unraveling procedure that a ∈ ob(A) and
σ ∈ ΣT ,m0 \{ε}, σ = ([R1], . . . , [Rn]), correspond to a point in Wm0 \W0 iff a does not have
enough R1-witnesses in the ABox. The following formula ησ(y) selects precisely such pairs

ησ(y) =
∨

q∈QR1
T

(
¬EqRT1 (y) ∧ ψ≥q R1(y)

)
.

Thus, for every pair (a, ~σ), there is an assignment a0 in Wm0 with split(a0) = (a, ~σ)

AA |=a η~σ(~y), where η~σ(~y) =
∧

1≤i≤k
σi 6=ε

ησi(yi). (76)

We define now, for a concept name A,

A~σ(t) =

{
ψA(t), if t~σ = ε,

θA,inv(ds), if t~σ = σ′.[S], for some σ′ ∈ ΣT ,m0 .

It should be clear that, for each assignment a0 in Wm0 ,

I0 |=a0 A(t) iff AA |=a A~σ(t), where (a, σ) = split(a0). (77)

For A(a), A(xi) or A(yi) with σi = ε this follows from (74). For A(yi) with σi = σ′.[S],
by (copy), we have cp(a(yi)) = inv(dr), for some R ∈ [S]; the claim then follows from (75).

Next, for a role R, we set

R~σ(t1, t2) =


RT (t1, t2), if t~σ1 = t~σ2 = ε,

(t1 = t2), if t~σ1
R→ t~σ2 and either t~σ1 6= ε or t~σ2 6= ε,

⊥, otherwise,

where RT (t1, t2) is defined by (47). We claim that, for each assignment a0 in Wm0 ,

I0 |=a0 R(t1, t2) iff AA |=a R~σ(t1, t2), where (a, σ) = split(a0). (78)

For R(yi1 , yi2) with σi1 = σi2 = ε, the claim follows from (ABox). Let us consider the case
of R(yi1 , yi2) with σi2 6= ε: we have a0(yi2) /∈W0 and thus, by (role), I0 |=a0 R(yi1 , yi2) iff

• a0(yi1) and a0(yi2) are in the same tree Ta, for some a ∈ ob(A), i.e., AA |=a (yi1 = yi2),
and

• either (a0(yi1), a0(yi2)) ∈ Ea and then `a(a0(yi1), a0(yi2)) = S for some S v∗T R, or
(a0(yi2), a0(yi1)) ∈ Ea and then `a(a0(yi2), a0(yi1)) = S for some inv(S) v∗T R, or

a0(yi1) = a0(yi2) and then Id v∗T R, i.e., σi1
R→ σi2 .
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The case of σi1 6= ε is similar and left to the reader. The cases of object names and
distinguished variables xi are treated as yi with σi = ε.

Finally, we set
ϕT ,q(~x) = ∃~y

∨
~σ∈Σk

T ,m0

(
ϕ~σ(~x, ~y) ∧ η~σ(~y)

)
,

where ϕ~σ(~x, ~y) is the result of attaching the superscript ~σ to each atom of ϕ. As follows
from (77)–(78), for every assignment a0 in Wm0 , we have I0 |=a0 ϕ(~x, ~y) iff AA |=a ϕ~σ(~x, ~y),
where (a, σ) = split(a0). On the other hand, if AA |=a η~σ(~y) then there is an assignment a0

in Wm0 such that split(a0) = (a, ~σ).
It is then clearly the case that AA |= ϕT ,q(~a) iff I0 |= q(~a), for every tuple ~a. q

8. DL-Lite without the Unique Name Assumption

As we have already seen, the logics of the form DL-LiteRα do not ‘feel’ whether we adopt
the UNA or not. On the other hand, our complexity results (Corollary 5.12, Theorems 6.5,
6.6 and 6.7) for the logics DL-LiteR,Fα and DL-LiteR,Fα do not depend on the UNA either.
In this section, we analyze the combined and data complexity of reasoning in the logics of
the form DL-Lite

(RF)
α and DL-Lite

(RN )
α (as well as their fragments) without the UNA. The

obtained and known results are summarized in Table 2 on page 18.
Unless otherwise stated, in what follows we assume that the interpretations do not

respect the UNA, that is, we may have aIi = aIj for distinct object names ai and aj . The
consequence relation |=noUNA refers to the class of such interpretations.

Description logics without the UNA are usually extended with additional equality and
inequality constraints of the form:

ai ≈ aj and ai 6≈ aj ,

where ai, aj are object names. Their semantics is quite obvious: we have I |= ai ≈ aj iff
aIi = aIj , and I |= ai 6≈ aj iff aIi 6= aIj . The equality and inequality constraints are supposed
to belong to the ABox part of a knowledge base. It is to be noted, however, that reasoning
with equalities is LogSpace-reducible to reasoning without them:

Lemma 8.1 For every KB K = (T ,A), one can construct in LogSpace in the size of
A a KB K′ = (T ,A′) without equality constraints such that I |= K iff I |= K′, for every
interpretation I.

Proof Let G = (V,E) be the symmetric graph with

V = ob(A), E =
{

(ai, aj) | ai ≈ aj ∈ A or aj ≈ ai ∈ A
}

and [ai] the set of all vertices of G that are reachable from ai. Define A′ by removing all
the equality constraints from A and replacing every ai with aj ∈ [ai] with minimal j. Note
that this minimal j can be computed in LogSpace: just enumerate the object names ak
w.r.t. the order of their indexes k and check whether the current aj is reachable from ai in
G. It remains to recall that reachability in undirected graphs is SLogSpace-complete and
that SLogSpace = LogSpace (Reingold, 2008). q
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8.1 DL-Lite
(RN )
α : Arbitrary Number Restrictions

The following theorem shows that the interaction between number restrictions and the
possibility of identifying objects in the ABox results in a higher complexity.

Theorem 8.2 Without the UNA, satisfiability of DL-LiteNcore KBs (even without inequality
constraints) is NP-hard for both combined and data complexity.

Proof The proof is by reduction of the following variant of the 3SAT problem—called
monotone one-in-three 3SAT—which is known to be NP-complete (Garey & Johnson, 1979):
given a positive 3CNF formula

ϕ =
n∧
k=1

(
ak,1 ∨ ak,2 ∨ ak,3

)
,

where each ak,j is one of the propositional variables a1, . . . , am, decide whether there is an
assignment for the variables aj such that exactly one variable is true in each of the clauses
in ϕ. To encode this problem in the language of DL-LiteNcore, we need object names aki , for
1 ≤ k ≤ n, 1 ≤ i ≤ m, and ck and tk, for 1 ≤ k ≤ n, role names S and P , and concept
names A1, A2, A3. Let Aϕ be the ABox containing the following assertions:

S(a1
i , a

2
i ), . . . , S(an−1

i , ani ), S(ani , a
1
i ), for 1 ≤ i ≤ m,

S(t1, t2), . . . , S(tn−1, tn), S(tn, t1),

P (ck, tk), for 1 ≤ k ≤ n,
P (ck, akk,j), Aj(akk,j), for 1 ≤ k ≤ n, 1 ≤ j ≤ 3,

and let T be the TBox with the axioms:

A1 v ¬A2, A2 v ¬A3, A3 v ¬A1, ≥ 2S v ⊥, ≥ 4P v ⊥.

Clearly, (T ,Aϕ) is a DL-LiteNcore KB and T does not depend on ϕ (so that we cover both
combined and data complexity). We claim that the answer to the monotone one-in-three
3SAT problem is positive iff (T ,Aϕ) is satisfiable without the UNA.

(⇒) Let a be an assignment satisfying the requirements of the problem. Take some
ai0 with a(ai0) = t (clearly, such an i0 exists, for otherwise a(ϕ) = f) and construct an
interpretation I = (∆I , ·I) by taking:

• ∆I =
{
yk, z

k | 1 ≤ k ≤ n
}
∪
{
xki | a(ai) = f, 1 ≤ i ≤ m, 1 ≤ k ≤ n

}
,

• cIk = yk and (tk)I = zk, for 1 ≤ k ≤ n,

• (aki )
I =

{
xki , if a(ai) = f,
zk, if a(ai) = t,

for 1 ≤ i ≤ m, 1 ≤ k ≤ n,

• SI =
{

((a1
i )
I , (a2

i )
I), . . . , ((an−1

i )I , (ani )I), ((ani )I , (a1
i )
I) | 1 ≤ i ≤ m

}
,

• P I =
{

(cIk , (t
k)I) | 1 ≤ k ≤ n

}
∪
{

(cIk , (a
k
k,j)
I) | 1 ≤ k ≤ n, 1 ≤ j ≤ 3

}
.
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It is readily checked that I |= (T ,Aϕ).
(⇐) Suppose I |= K. Define an assignment a by taking a(ai) = t iff (a1

i )
I = (t1)I . Our

aim is to show that a(ak,j) = t for exactly one j ∈ {1, 2, 3}, for each k, 1 ≤ k ≤ n. We have
P I(cIk , (a

k
k,j)
I) for all j = 1, 2, 3. Moreover, (akk,i)

I 6= (akk,j)
I for i 6= j. As cIk ∈ (≤ 3P )I

and P I(cIk , (t
k)I), we then must have (akk,j)

I = (tk)I for some unique j ∈ {1, 2, 3}. It
follows from functionality of S that, for each 1 ≤ k ≤ n, we have (a1

k,j)
I = (t1)I for exactly

one j ∈ {1, 2, 3}. q

In fact, the above lower bound matches the NP upper bound provided by the following
reduction:

Theorem 8.3 Without the UNA, satisfiability of DL-LiteNα , DL-Lite
(RN )
α and DL-Lite

(RN )+

α

KBs with equality and inequality constraints is NP-complete for both combined and data
complexity and any α ∈ {core, krom, horn, bool}.

Proof The upper bound can proved by the following non-deterministic algorithm. Given
a DL-Lite

(RN )+

bool KB K = (T ,A), we

• guess an equivalence relation ∼ over ob(A);

• select in each equivalence class ai/∼ a representative, say ai, and replace every occur-
rence of ai′ ∈ ai/∼ in A with ai;

• fail if the equalities and inequalities are violated in the resulting ABox—i.e., if it
contains ai 6≈ ai or ai ≈ aj , for i 6= j;

• otherwise, remove the equality and inequality constraints from the ABox and denote
the result by A′;

• use the NP satisfiability checking algorithm for DL-Lite
(RN )+

bool to decide whether the
KB K′ = (T ,A′) is consistent under the UNA.

Clearly, if the algorithm returns ‘yes,’ then I ′ |= K′, for some I ′ respecting the UNA, and
we can construct a model I of K (not necessarily respecting the UNA) by extending I ′ with
the following interpretation of object names: aI = aI

′
i , whenever ai is the representative

of a/∼ (I coincides with I ′ on all other symbols). Conversely, if I |= K then we take
the equivalence relation ∼ defined by ai ∼ aj iff aIi = aIj . Let I ′ be constructed from
I by removing the interpretations of all object names that are not representatives of the
equivalence classes for ∼. It follows that I ′ respects the UNA and is a model of K′, so the
algorithm returns ‘yes.’ q

8.2 DL-Lite
(RF)
α : Functionality Constraints

Let us consider now DL-Lite
(RF)+

bool and its fragments. The following lemma shows that for
these logics reasoning without the UNA can be reduced in polynomial time in the size of
the ABox to reasoning under the UNA.
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Lemma 8.4 For every DL-Lite
(RF)+

bool KB K = (T ,A) with equality and inequality con-

straints, one can construct in polynomial time in |A| a DL-Lite
(RF)+

bool KB K′ = (T ,A′) such
that A′ contains no equalities and inequalities and K is satisfiable without the UNA iff K′
is satisfiable under the UNA.

Proof In what follows by identifying aj with ak in A we mean replacing each occurrence
of ak in A with aj . We construct A′ by first identifying aj with ak, for each aj ≈ ak ∈ A,
and removing the equality from A, and then exhaustively applying the following procedure
to A:

• if ≥ 2R v ⊥ ∈ T and R(ai, aj), R(ai, ak) ∈ CleT (A), for distinct aj and ak, then
identify aj with ak (recall that a functional R cannot have transitive sub-roles and
thus CleT (A) is enough).

If the resulting ABox contains ai 6≈ ai, for some ai, then, clearly, K is not satisfiable, so
we add A(ai) and ¬A(ai) to the ABox, for some concept name A. Finally, we remove
all inequalities from the ABox and denote the result by A′. It should be clear that A′ is
computed from A in polynomial time and that, without the UNA, K is satisfiable iff K′ is
satisfiable. So it suffices to show that K′ is satisfiable without the UNA iff it is satisfiable
under the UNA. The implication (⇐) is trivial.

(⇒) Observe that the above procedure ensures that (see page 38 for definitions)

qeR,a ≤ 1, for each R with ≥ 2R v ⊥ ∈ T and a ∈ ob(A′).

Let K′′ be the DL-Lite
(RN )−

bool KB provided by Lemma 5.17 for K′. It follows from the above
property and the proofs of Lemma 5.14 and Corollary 5.16 that if K′′ is satisfiable without
the UNA then (K′′)‡e is satisfied in a first-order model with some constants interpreted
by the same domain element. As (K′′)‡e is a universal first-order sentence containing no
equality, it is satisfiable in a first-order model such that all constants are interpreted by
distinct elements. It follows from the proofs of Lemma 5.14 and Corollary 5.16 that this first-
order model can be unraveled into a model J for K′′ respecting the UNA. By Lemma 5.17,
J is a model of K′. q

The reduction above cannot be done better than in P, as shown by the next theorem:

Theorem 8.5 Without the UNA, satisfiability of DL-LiteFcore KBs (even without inequality
constraints) is P-hard for both combined and data complexity.

Proof The proof is by reduction of the entailment problem for Horn-CNF (as in the proof
of Theorem 6.7).

Let

ϕ =
n∧
k=1

(
ak,1 ∧ ak,2 → ak,3

)
∧

p∧
l=1

al,0

be a Horn-CNF formula, where each ak,j and each al,0 is one of the propositional variables
a1, . . . , am and ak,1, ak,2, ak,3 are all distinct, for each k, 1 ≤ k ≤ n. To encode the P-
complete problem ‘ϕ |= ai?’ in the language of DL-LiteFcore we need object names aki , for
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1 ≤ k ≤ n, 1 ≤ i ≤ m, fk and gk, for 1 ≤ k ≤ n and t and role names P , Q, S and T . The
ABox A contains the following assertions

S(a1
i , a

2
i ), . . . , S(an−1

i , ani ), S(ani , a
1
i ), for 1 ≤ i ≤ m,

P (akk,1, fk), P (akk,2, gk), Q(gk, akk,3), Q(fk, akk,1), for 1 ≤ k ≤ n,
T (t, a1

l,0), for 1 ≤ l ≤ p,

and the TBox T asserts that all of the roles are functional:

≥ 2P v ⊥, ≥ 2Q v ⊥, ≥ 2S v ⊥ and ≥ 2T v ⊥.

Clearly, K = (T ,A) is a DL-LiteFcore KB and T does not depend on ϕ. We claim that
ϕ |= aj iff K′ = (T ,A ∪ {¬T (t, a1

j )}) is not satisfiable without the UNA. To show this, it
suffices to prove that ϕ |= aj iff K |=noUNA T (t, a1

j ).
(⇒) Suppose ϕ |= aj . Then we can derive aj from ϕ using the following inference rules:

• ϕ |= al,0 for each l, 1 ≤ l ≤ p;

• if ϕ |= ak,1 and ϕ |= ak,2, for some k, 1 ≤ k ≤ n, then ϕ |= ak,3.

We show that K |=noUNA T (t, a1
j ) by induction on the length of the derivation of aj from ϕ.

The basis of induction is trivial. So assume that aj = ak,3, ϕ |= ak,1, ϕ |= ak,2, for some k,
1 ≤ k ≤ n, and that K |=noUNA T (t, a1

k,1) ∧ T (t, a1
k,2). Suppose also that I |= K. Since T

is functional, we have (a1
k,1)I = (a1

k,2)I . Since S is functional, (ak
′
k,1)I = (ak

′
k,2)I , for all k′,

1 ≤ k′ ≤ n, and in particular, for k′ = k. Then, since P is functional, fIk = gIk , from which,
by functionality of Q, (akk,3)I = (akk,1)I . Finally, since S is functional, (ak

′
k,3)I = (ak

′
k,1)I ,

for all k′, 1 ≤ k′ ≤ n, and in particular, for k′ = 1. Thus, I |= T (t, a1
j ) and therefore

K |=noUNA T (t, a1
j ).

(⇐) Suppose that ϕ 6|= aj . Then there is an assignment a such that a(ϕ) = t and
a(aj) = f. Construct an interpretation I by taking

• ∆I =
{
xki | a(ai) = f, 1 ≤ k ≤ n, 1 ≤ i ≤ m

}
∪
{
zk, uk, vk | 1 ≤ k ≤ n

}
∪
{
w
}

,

• (aki )
I =

{
xki , if a(ai) = f,
zk, if a(ai) = t,

for 1 ≤ k ≤ n and 1 ≤ i ≤ m,

• tI = w, T I =
{

(w, z1)
}

,

• SI =
{

((a1
i )
I , (a2

i )
I), . . . , ((an−1

i )I , (ani )I), ((ani )I , (a1
i )
I) | 1 ≤ i ≤ m

}
,

• fIk = uk and gIk =

{
vk, if a(ak,2) = f,
uk, if a(ak,2) = t,

for 1 ≤ k ≤ n,

• P I =
{

((akk,1)I , fIk ), ((akk,2)I , gIk ) | 1 ≤ k ≤ n
}

,

• QI =
{

(gIk , (a
k
k,3)I), (fIk , (a

k
k,1)I) | 1 ≤ k ≤ n

}
.
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It is readily checked that I |= K and I 6|= T (t, a1
j ), and so K 6|=noUNA T (t, a1

j ). q

The above result strengthens the NLogSpace lower bound for instance checking in
DL-LiteFcore given in (Calvanese et al., 2008).

Corollary 8.6 Without the UNA, the satisfiability problems for DL-LiteFα , DL-Lite
(RF)
α

and DL-Lite
(RF)+

α KBs, α ∈ {core, krom, horn}, with equalities and inequalities are P-
complete for both combined and data complexity.

Without the UNA, satisfiability of DL-LiteFbool, DL-Lite
(RF)
bool and DL-Lite

(RF)+

bool KBs with
equalities and inequalities is NP-complete for combined complexity and P-complete for data
complexity.

Proof The upper bounds follow from Lemma 8.4 and the corresponding upper bounds for
the UNA case. The NP lower bound for combined complexity is obvious and the polynomial
lower bounds follow from Theorem 8.5. q

8.3 Query Answering: Data Complexity

The P and coNP upper bounds for query answering without the UNA follow immediately
from (Hustadt et al., 2005; Eiter et al., 2008) and (Ortiz et al., 2006, 2008; Glimm et al.,
2007), respectively. We present here the following result:

Theorem 8.7 Without the UNA, positive existential query answering for DL-LiteRhorn KBs
with disjoint, (a)symmetric, (ir)reflexive role constraints and inequalities is in AC0 for data
complexity.

Proof The proof follows the lines of the proof of Theorem 7.1 and uses the observation
that models without the UNA give fewer answers than their untangled counterparts. More
precisely, let KB K′ = (T ′,A′) be as above. Suppose that it is consistent. Let q(~x) be a
positive existential query in the signature of K′. Given K′, Lemma 5.17 provides us with a
KB K. It is easy to see that K is a DL-LiteRhorn KB extended with inequality constraints. The
following is an analogue of Lemma 7.2, which also allows us to get rid of those inequalities:

Lemma 8.8 For every tuple ~a of object names in K′, we have K′ |=noUNA q(~a) iff I |= q(~a)
for all untangled models I of K (respecting the UNA).

Proof (⇒) Suppose that K′ |= q(~a) and I is an untangled model of K. As I respects the
UNA, by Lemma 5.17 and in view of satisfiability of K′, which ensures that (44) holds, we
then have I |= K′ and therefore, I |= q(~a).

(⇐) Suppose I ′ |= K′. We construct an interpretation J ′ respecting the UNA as follows.
Let ∆J

′
be the disjoint union of ∆I

′
and ob(A). Define a function h : ∆J

′ → ∆I
′

by taking
h(a) = aI

′
, for each a ∈ ob(A), and h(w) = w, for each w ∈ ∆I

′
, and let

aJ
′

= a, AJ
′

=
{
u | h(u) ∈ AI′

}
and PJ

′
=
{

(u, v) | (h(x), h(v)) ∈ P I′
}
,

for each object, concept and role name a, A, P . Clearly, J ′ respects the UNA and J ′ |= K′.
It also follows that h is a homomorphism.
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Figure 5: Complexity of basic DL-Lite logics.

By Lemma 5.17, there is a model I of K with the same domain as J ′ that coincides
with J ′ on all symbols in K′. As I |= q(~a), we must then have J ′ |= q(~a), and since h is a
homomorphism, I ′ |=noUNA q(~a). Therefore, K′ |=noUNA q(~a) as required. q

The remaining part of the proof is exactly as in the proof of Theorem 7.1 (as now we
may assume that K is a DL-LiteRhorn KB containing no inequality constraints). q

9. Conclusion

In this paper, we investigated the boundaries of the ‘extended DL-Lite family’ of description
logics by providing a thorough and comprehensive understanding of the interaction between
various DL-Lite constructs and their impact on the computational complexity of reasoning.
We studied 40 different logics, classified according to five mutually orthogonal features:
(1) the presence or absence of role inclusion assertions, (2) the form of the allowed concept
inclusion assertions, distinguishing four main logical groups called core, Krom, Horn, and
Bool, (3) the form of the allowed numeric constraints, ranging from none, to global func-
tionality constraints only, and to arbitrary number restrictions, (4) the presence or absence
of the unique name assumption (and equalities and inequalities between object names, if
this assumption is dropped), and (5) the presence or absence of standard role constraints
such as role disjointness, role symmetry, asymmetry, reflexivity, irreflexivity and transitiv-
ity. For all of the resulting logics, we studied the combined and data complexity of KB
satisfiability and instance checking, as well as the data complexity of answering positive
existential queries.
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The obtained tight complexity results are illustrated in Figure 5, where the combined
complexity of satisfiability is represented by vertical dashed lines, while the data complexity
of instance checking by the size and color of the circle on top of these lines (recall that
satisfiability and instance checking are reducible to the complement of each other). The
data complexity of query answering for the core and Horn logics, shown on the left-hand
side of the separating vertical plane, coincides with the data complexity of instance checking;
for the Krom and Bool logics, shown on the right-hand side of the plane, query answering is
always data-complete for coNP. The upper layer shows the complexity of logics with role
inclusions, in which case it does not depend on whether we adopt the UNA or not. The
middle and the lower layers deal with the logics without role inclusions when the UNA is
dropped or adopted, respectively. In each of these layers, the twelve languages are arranged
in the 4×3 grid: one axis shows the type of concepts inclusions allowed (Horn, core, Krom,
Bool), while the other the type of number restrictions (none, global functionality F or
arbitrary N ). Some observations are in order:

• Under the UNA but without role inclusions, number restrictions do not increase the
complexity of reasoning, which depends only on the form of concept inclusions allowed.

• On the other hand, without any form of number restrictions, the logics can have role
inclusions and are insensitive to the UNA; again, the complexity is determined by the
shape of concept inclusions only.

• In either of the above cases, instance checking is in AC0 for data complexity, which
means that the problems are first-order reducible.

• With the UNA dropped and without either disjunctions or role inclusions, function-
ality leads to P-complete instance checking for data complexity, which suggests re-
ducibility to Datalog.

• For data complexity, there is no difference between the core and Horn logics, and
between the Krom and Bool ones.

Finally, for the logics DL-Lite
(RF)
α and DL-Lite

(RN )
α with both (qualified) number restric-

tions and role inclusions, whose interaction is restricted by conditions (inter) and (exists),
the complexity of reasoning always coincides with the complexity of the fragments DL-LiteFα
and, respectively, DL-LiteNα without role inclusions, no matter whether we adopt the UNA
or not.

Role disjointness, symmetry and asymmetry constraints can be added to any of the lan-
guages without changing their complexity. In fact, the DL-Lite

(RN )
α contain these types of

constraints together with role reflexivity and irreflexivity. We conjecture that (ir)reflexivity
constraints can be added to all other logics without affecting their complexity. However, if
we extend any DL-Lite logics with role transitivity constraints, then the combined complex-
ity of satisfiability remains the same, while instance checking and query answering become
data-hard for NLogSpace. And the addition of equality between object names—which
only makes sense if the UNA is dropped—increases AC0 to LogSpace for data complexity;
all other results remain unchanged.

The list of DL constructs considered in this paper is far from being complete. For
example, it would be of interest to analyze the impact of nominals, role chains and Boolean
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operators on roles on the computational behavior of the DL-Lite logics. Another interesting
and practically important problem is to investigate in depth the interaction between various
constructs with the aim of pushing restrictions like (inter) and (exists) as far as possible.

One of the main ideas behind the DL-Lite logics was to provide efficient access to large
amounts of data through a high-level conceptual interface. This is supposed to be achieved
by representing the high-level view of the information managed by the system as a DL-
Lite TBox T , the data stored in a relational database as an ABox A, and then rewriting
positive existential queries to the knowledge base (T ,A) as standard first-order queries to
the database represented by A. Such an approach is believed to be viable because, for
a number of DL-Lite logics, the query answering problem is in AC0 for data complexity;
cf. Theorems 7.1, 8.7 and Figure 5. The first-order rewriting technique has been imple-
mented in various system, notably in QuOnto (Acciarri et al., 2005; Poggi et al., 2008b),
which can query, relying on ontology-to-relational mappings, data stored in any standard
relational database management system, and in Owlgres,11 which can access an ABox stored
in a Postgres database (though, to the best of our knowledge, the latter implementation is
incomplete for conjuctive query answering). It is to be noted, however, that the size of the
rewritten query can be substantially larger than the size of the original query, which can
cause problems even for a very efficient database query engine.

For a DL query q and TBox T , there are two major sources of high complexity of the
first-order formula ϕT ,q in the proof of Theorem 7.1: (i) the formulas ψB(x) computing
whether an ABox object is an instance of a concept B (and the formulas θR,dr computing
whether objects with outgoing R-arrows are instances of B), and (ii) the disjunction over the
paths ~σ in the graph GT . In the case of DL-Lite

(RN )
core , the size of ψB(x) is linear in |T |, while

for DL-Lite
(RN )
horn it can become exponential (however, various optimizations are possible).

The size of the disjunction in (ii) is exponential in the number of non-distinguished variables
in q. One way of removing source (i) would be to extend the given database (ABox) A by
precomputing the Horn closure of the ABox w.r.t. the TBox and storing the resulting data
in a supplementary database. This approach is advocated in (Lutz, Toman, & Wolter,
2008) for querying databases via the description logic EL. It could also be promising for
the Horn fragments of expressive description logics such as SHIQ (Hustadt et al., 2005;
Hustadt, Motik, & Sattler, 2007)—containing DL-LiteR,Fhorn as a sub-language—for which
the data complexity of instance checking (Hustadt et al., 2005, 2007) and conjunctive query
answering is polynomial (Eiter et al., 2008). The disadvantage of using a supplementary
database is the necessity to update it every time the ABox is changed. It would be interesting
to investigate this alternative approach for DL-Lite logics and compare it with the approach
described above. Another important problem is to characterize those queries for which the
disjunction in (ii) can be represented by a polynomial size formula.

As the unique name assumption is replaced in OWL by the constructs sameAs and
differentFrom (i.e., ≈ and 6≈), a challenging problem is to investigate possible ways of
dealing with equality (inequality does not require any special treatment as shown in the
proof of Lemma 8.8). Although reasoning with equality is LogSpace reducible to reasoning
without it (cf. Lemma 8.1), we lose the property of first-order rewritability, and computing
equivalence classes under ≈ may be too costly for real-world applications.

11. http://pellet.owldl.com/owlgres
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DL-Lite logics are among those few examples of DLs for which usually very complex
‘non-standard’ reasoning problems—such as checking whether one ontology is a conservative
extension of another one w.r.t. a given signature Σ (Kontchakov et al., 2008), computing
minimal modules of ontologies w.r.t. Σ (Kontchakov et al., 2009) or uniform interpolants
(Wang, Wang, Topor, & Pan, 2008)—can be supported by practical reasoning tools. How-
ever, only first steps have been made in this direction, and more research is needed in
order to include these reasoning problems and tools into the standard OWL toolkit. It
would be also interesting to investigate the unification problem for DL-Lite logics (Baader
& Narendran, 2001).

Finally, there exist certain parallels between the Horn logics of the DL-Lite family, EL,
Horn-SHIQ and the first-order language of tuple and equality generating dependencies,
TGDs and EGDs, used in the theory of databases; see, e.g., (Gottlob & Nash, 2008). Further
investigations of the relationships between these logics may lead to a deeper understanding
of the role description logics can play in the database framework.
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