
Temporal Conceptual Modelling with DL-Lite

A. Artale,1 R. Kontchakov,2 V. Ryzhikov,1 and M. Zakharyaschev2

1 KRDB Research Centre
Free University of Bozen-Bolzano

I-39100 Bolzano, Italy
lastname @inf.unibz.it

2 Dept. of Comp. Science and Inf. Sys.
Birkbeck College

London WC1E 7HX, UK
{roman,michael}@dcs.bbk.ac.uk

1 Introduction

Conceptual modelling formalisms such as the Entity-Relationship model (ER)
and Unified Modelling Language (UML) have become a de facto standard in
database design by providing visual means to describe application domains in a
declarative and reusable way. On the other hand, both ER and UML turned out
to be closely connected with description logics that are underpinned by formal
semantics and thus capable of providing services for effective reasoning over
conceptual models; see, e.g., [11, 4].

Temporal conceptual data models (TCMs) [18, 25] have been introduced in
the context of temporal databases [20, 15, 13]. In this case, apart from the classi-
cal constructs—such as inheritance between classes and relationships, cardinality
constraints restricting participation in relationships, and disjointness and cover-
ing constraints—temporal constructs are used to capture the temporal behaviour
of various components of conceptual schemas. Such constructs can be grouped
into 3 categories. Timestamping constraints discriminate between those classes,
relationships and attributes that change over time and those that are time-
invariant [28, 18, 16, 6, 25]. Evolution constraints control how domain elements
evolve over time by ‘migrating’ from one class to another [19, 23, 26, 25, 3]. We
distinguish between qualitative evolution constraints describing generic tempo-
ral behaviour, and quantitative ones specifying the exact moment of migration.
Temporal cardinality constraints restrict the number of times an instance of a
class participates in a relationship. Snapshot cardinality constraints do it at each
moment of time, while lifespan cardinality constraints impose restrictions over
the entire existence of the instance as a member of the class [27, 22].

Temporal conceptual data models can be encoded in various temporal de-
scription logics (TDLs), which have been designed and investigated since the
seminal paper [24] with the aim of understanding the computational price of
introducing a temporal dimension in DLs; see [21] for a recent survey. A general
conclusion one can draw from the obtained results is that—as far as there is
nontrivial interaction between the temporal and DL components—TDLs based
on full-fledged DLs like ALC turn out to be too complex for effective reasoning
(see the end of the introduction for details).

The aim of this paper is to tailor ‘minimal’ TDLs that are capable of repre-
senting various aspects of TCMs and investigate their computational behaviour.
First of all, as the DL component we choose the ‘light-weight’ DL-Lite logic

DL-LiteNbool, which was shown to be adequate for capturing conceptual models
without relationship inheritance1 [4], and its fragment DL-LiteNcore with most
primitive concept inclusions, which are nevertheless enough to represent almost
all types of constraints (apart from covering). To discuss our choice of the tem-
poral constructs, consider a toy TCM describing a company.

For the timestamping constraint ‘employee is a snapshot class’ (by the stan-
dard TCM terminology, such a class never changes in time) one can use the
axiom Employee v 2∗ Employee with the temporal operator 2∗ ‘always.’ Likewise,
the constraint ‘manager is a temporary class’ in the sense that each of its in-
stances must leave the class, the axiom Manager v 3∗ ¬Manager is required, where
3∗ means ‘some time.’ Both of these axioms are regarded as global, i.e., applicable
to all time points. Note that to express 3∗ using more standard temporal con-
structs, we need both ‘some time in the past’ 3P and ‘some time in the future’
3F : e.g., 3∗ = 3P3F . To encode a snapshot n-ary relationship, one can reify it
into a snapshot class with n auxiliary rigid—i.e., time-independent—roles; for a
temporary relationship, the reifying class is temporary and the roles are local [9,
7]. The qualitative evolution constraints ‘each manager was once an employee’
and ‘a manager will always remain a manager’ can be expressed by the axioms
Manager v 3PEmployee and Manager v 2FManager, while ‘an approved project
keeps its status until a later date when it actually starts’ can be expressed using
the ‘until’ operator: ApprovedProject v ApprovedProjectU Project. The quantita-
tive evolution constraint ‘each project must be finished in 3 years’ requires the
next-time operator ©F : Project v ©F©F©FFinishedProject. The snapshot cardi-
nality constraint ‘an employee can work on at most 2 projects at each moment of
time’ can be expressed as Employee v ≤ 2worksOn, while the lifespan constraint
‘over the whole career, an employee can work on at most 5 projects’ requires tem-
poral operators on roles: Employee v ≤ 53∗ worksOn. Note that ‘temporalised’
roles of the form 3∗ R and 2∗ R are always rigid. To represent a temporal database
instance of a TCM, we use assertions like ©PManager(bob) for ‘Bob was a man-
ager last year’ and ©Fmanages(bob, cronos) for ‘Bob will manage project Cronos
next year.’ As usual, n-ary tables are represented via reification.

These considerations lead us to TDLs based on DL-LiteNbool and DL-LiteNcore
and interpreted over the flow of time (Z, <), in which (1) the future and past
temporal operators can be applied to concepts; (2) roles can be declared local
or rigid; (3) the ‘undirected’ temporal operators ‘always’ and ‘some time’ can
be applied to roles; (4) the concept inclusions (TBox axioms) are global and the
database (ABox) assertions are specified to hold at particular moments of time.

To our surprise, the most expressive TDL based on DL-LiteNbool and featuring
all of (1)–(4) turns out to be undecidable. As follows from the proof of Theorem 5
below, it is a subtle interaction of functionality constraints on temporalised roles
with the next-time operator and full Booleans on concepts that causes undecid-
ability. This ‘negative’ result motivates consideration of various fragments of our
full TDL by restricting not only the DL but also the temporal component. The
table below illustrates the expressive power of the resulting fragments in the con-
text of TCMs. We also note that both DL-LiteNbool and DL-LiteNcore with global

1 DL-LiteNbool with relationship inclusions regains the full expressive power of ALC.

axioms can capture snapshot cardinality constraints, while lifespan cardinality
constraints require temporalised roles of the form 3∗ R and 2∗ R.

concept
temporal
operators

timestamping
evolution

qualitative quantitative
U/S + + +
2F/P ,©F/P + + +
2F/P + + −
2∗ ,©F/P + − +
2∗ + − −

The next table summarises the complexity results obtained in this paper for
satisfiability of temporal knowledge bases formulated in our TDLs.

concept
temporal
operators

local & rigid roles only temporalised
roles

DL-LiteNbool DL-LiteNcore DL-LiteNbool
U/S PSpace Thm. 1 PSpace [8] undec. Thm. 5

2F/P ,©F/P PSpace Thm. 2 (ii) NP Thm. 3 undec. Thm. 5

2F/P NP Thm. 2 (i) NP [8] ?
2∗ ,©F/P PSpace Thm. 2 (ii) NP Thm. 3 undec. Thm. 5

2∗ NP Thm. 2 (i) NLogSpace Thm. 4 NP Thm. 6

Apart from the undecidability result of Theorem 5, quite surprising is NP-
completeness of the temporal extension of DL-LiteNcore with the operators 2F
and ©F (and their past counterparts) on concepts provided by Theorem 3. In-
deed, if full Booleans are available, even the propositional temporal logic with
these operators is PSpace-complete. Moreover, if the ‘until’ operator U is avail-
able in the temporal component, disjunction is expressible even with DL-LiteNcore
as the underlying DL, and the logic becomes PSpace-complete [8]. In all other
cases, the complexity of TDL reasoning coincides with the maximal complex-
ity of reasoning in the component logics (despite nontrivial interaction between
them, as none of our TDLs is a fusion of its components). It is also of interest
to observe the dramatic increase of complexity caused by the addition of ©F to
the logic in the lower right corner of the table (from NP to undecidability).

To put this paper in the more general context of temporal description logics,
we note first that our TDLs extend those in [8] with the past-time operators S,
2P , 3P , ©P over Z (which are essential for capturing timestamping constraints),
universal modalities 2∗ and 3∗ , and temporalised roles. Temporal operators on
DL-Lite axioms and concepts in the presence of rigid roles were investigated
in [7], where it was shown that the resulting temporalisations of DL-LiteNbool
and DL-LiteNhorn are ExpSpace-complete. Temporal extensions of the standard
DL ALC feature the following computational behaviour: ALC with temporal
operators on axioms, rigid concepts and roles is 2ExpTime-complete [10]. It is
ExpSpace-complete if temporal operators on concepts and axioms are allowed
but no rigid or temporalised roles are available [17], and ExpTime-complete if
the language allows only temporalised concepts and global axioms [24, 2]. Finally,
the ‘undirected’ temporal operators 2∗ and 3∗ on concepts and roles together with
global axioms result in a 2ExpTime-complete extension of ALC [9].

2 Temporal DLs based on DL-LiteNbool

The TDL TUSDL-LiteNbool is based on DL-LiteNbool [1, 5], which, in turn, extends
DL-Liteu,F [12] with full Booleans over concepts and cardinality restrictions over
roles. The language of TUSDL-LiteNbool contains object names a0, a1, . . . , concept
names A0, A1, . . . , local role names P0, P1, . . . and rigid role names G0, G1,
Roles R, basic concepts B and concepts C are defined as follows:

S ::= Pi | Gi, R ::= S | S−,

B ::= ⊥ | Ai | ≥ q R,
C ::= B | ¬C | C1 u C2 | C1 U C2 | C1 S C2,

where q ≥ 1 is a natural number (the results obtained below do not depend
on whether q is given in unary or binary). A TUSDL-LiteNbool interpretation is a
function I on the integers Z (the intended flow of time):

I(n) =
(
∆I , aI0 , . . . , A

I(n)
0 , . . . , P

I(n)
0 , . . . , G

I(n)
0 , . . .

)
,

where ∆I is a nonempty set, the (constant) domain of I, aIi ∈ ∆I , A
I(n)
i ⊆ ∆I

and P
I(n)
i , G

I(n)
i ⊆ ∆I × ∆I with G

I(n)
i = G

I(m)
i , for i ∈ N and n,m ∈ Z.

We adopt the unique name assumption according to which aIi 6= aIj , for i 6= j,
although our complexity results would not change if we dropped it, apart from
the NLogSpace bound of Theorem 4, which would increase to NP [5]. The role
and concept constructs are interpreted in I as follows:

(S−)I(n) = {(y, x) | (x, y) ∈ SI(n)}, ⊥I(n) = ∅, (¬C)I(n) = ∆I \ CI(n),

(C1 u C2)I(n) = C
I(n)
1 ∩ CI(n)2 , (≥ q R)I(n) =

{
x |]{y | (x, y) ∈ RI(n)} ≥ q

}
,

(C1 U C2)I(n) =
⋃
k>n

(
C
I(k)
2 ∩

⋂
n<m<k C

I(m)
1

)
,

(C1 S C2)I(n) =
⋃
k<n

(
C
I(k)
2 ∩

⋂
n>m>k C

I(m)
1

)
.

Note that our until and since operators are ‘strict’ (i.e., do not include the
current moment). We also use the temporal operators 3F (‘some time in the
future’), 3P (‘some time in the past’), 3∗ (‘some time’), their duals 2F , 2P and 2∗ ,
©F (‘next time’) and ©P (‘previous time’), which are all expressible by means of
U and S, e.g., 3FC = ¬⊥UC, 2FC = ¬3F¬C,©FC = ⊥UC, 3∗ C = 3F3PC and
2∗ C = 2F2PC. (Other standard abbreviations we use include C1 t C2, ∃R and
> = ¬⊥.) Apart from full TUSDL-LiteNbool, we consider a few of its sublanguages
allowing only some of the (definable) temporal operators mentioned above:

– TFPDL-LiteNbool, which allows only 3FC, 3PC and their duals (but no ©FC
or C1 U C2), and its extension TFPXDL-LiteNbool with ©FC and ©PC;

– TUDL-LiteNbool, allowing only 3∗ C and 2∗ C, and its extension TUXDL-LiteNbool
with ©FC and ©PC.

A TBox, T , in any of our languages L is a finite set of concept inclusions
(CIs) of the form C1 v C2, where the Ci are L-concepts. An ABox, A, consists

of assertions of the form ©nB(a) and ©nS(a, b), where B is a basic concept, S
a (local or rigid) role name, a,b object names and ©n, for n ∈ Z, is a sequence
of n operators ©F if n ≥ 0 and |n| operators ©P if n < 0. Taken together, the
TBox T and ABox A form the knowledge base (KB) K = (T ,A) in L.

The truth-relation is defined as usual: I |= C1 v C2 iff C
I(n)
1 ⊆ C

I(n)
2 , for

all n ∈ Z, that is, we interpret concept inclusions globally, I |= ©nB(a) iff
aI ∈ BI(n), and I |= ©nS(a, b) iff (aI , bI) ∈ SI(n). We call I a model of a KB
K and write I |= K if I |= α for all α in K. If K has a model then it is said to be
satisfiable. A concept C (role R) is satisfiable w.r.t. K if there are a model I of
K and n ∈ Z such that CI(n) 6= ∅ (respectively, RI(n) 6= ∅). Clearly, the concept
and role satisfiability problems are equivalent to KB satisfiability.

Our first result states that the satisfiability problem for TUSDL-LiteNbool KBs
is as complex as satisfiability in propositional temporal logic LTL.

Theorem 1. Satisfiability of TUSDL-LiteNbool KBs is PSpace-complete.

The proof is by a two-step (non-deterministic polynomial) reduction to LTL.
First, we reduce satisfiability of a TUSDL-LiteNbool KB K = (T ,A) to satisfiability
in the one-variable first-order temporal logic in a way similar to [8]. For each
basic concept B (6= ⊥), we take a fresh unary predicate B∗(x) and encode T as

T † =
∧

C1vC2∈T

2∗ ∀x
(
C∗1 (x)→ C∗2 (x)

)
,

where the C∗i are the results of replacing each B with B∗(x) (u with ∧, etc.).
We assume that T contains CIs of the form ≥ q R v ≥ q′R, for ≥ q R, ≥ q′R in
T such that q > q′ and there is no q′′ with q > q′′ > q′ and ≥ q′′R in T . We also
assume that T contains ≥ q R ≡ 2∗ ≥ q R if ≥ q R occurs in T , for a rigid role R
(i.e., for Gi or G−i). To take account of the fact that roles are binary relations,
we add to T † the following formula, for each role name S:

εS = 2∗
(
∃x (∃S)∗(x)↔ ∃x (∃S−)∗(x)

)
(which says that at each moment of time the domain of S is nonempty iff its
range is nonempty). The ABox A is encoded by a conjunction A† of ground
atoms of the form ©mB∗(a) and ©n(≥ q R)∗(a) in the same way as in [8]. Thus,
K is satisfiable iff the formula

K† = T † ∧
∧
S

εS ∧ A†

is satisfiable. The second step of our reduction is based on the observation that
if K† is satisfiable then it can be satisfied in a model such that

(R) if (∃S)∗(x) is true at some moment (on some domain element) then it is
true at all moments of time (perhaps on different domain elements).

Indeed, if K† is satisfied in I then it is satisfied in the disjoint union I∗ of all In,
n ∈ Z, obtained from I by shifting its time line n moments forward. It follows

from (R) that K† is satisfiable iff there is a set Σ of role names such that

K†Σ = T † ∧
∧
S∈Σ

(
(∃S)∗(dS) ∧ (∃S−)∗(dS−)

)
∧∧

S/∈Σ

2∗ ∀x¬
(
(∃S)∗(x) ∨ (∃S−)∗(x)

)
∧ A†

is satisfiable, where the dS are fresh constants (informally, the roles in Σ are
nonempty at some moment, whereas all other roles are always empty). Finally,
as K†Σ contains no existential quantifiers, it can be regarded as an LTL-formula
because all the universal quantifiers can be instantiated by all the constants in
the formula, which results only in a polynomial blow-up of K†Σ .

This reduction can also be used to obtain complexity results for the fragments
of TUSDL-LiteNbool mentioned above. Using the well-known facts that satisfiabil-
ity in the fragments of LTL with 3F /3P and with 3∗ is NP-complete, and that
the extension of any of these fragments with ©F /©P becomes PSpace-complete
again, we obtain:

Theorem 2. (i) Satisfiability of TFPDL-LiteNbool and TUDL-LiteNbool KBs is NP-
complete. (ii) For TFPXDL-LiteNbool and TUXDL-LiteNbool KBs, satisfiability is
PSpace-complete.

3 Temporal DLs based on DL-LiteNcore

So far, to decrease complexity we have restricted the expressive power of the
temporal component of TUSDL-LiteNbool. But the underlying DL DL-LiteNbool also
has some natural fragments of lower complexity [5]. In this section, we consider
the simplest of them known as DL-LiteNcore and containing only CIs of the form
B1 v B2 and B1 u B2 v ⊥, where the Bi are basic concepts. Satisfiability of
DL-LiteNcore KBs is NLogSpace-complete.

Let TUSDL-LiteNcore be the fragment of TUSDL-LiteNbool with CIs of the form
D1 v D2 and D1 uD2 v ⊥, where the Di are defined by the rule:

D ::= B | B1 U B2 | B1 S B2.

By restricting D1 and D2 to concepts of the form

D ::= B | 3FB | 3PB | 2FB | 2PB

we obtain TFPDL-LiteNcore. These restrictions do not improve the complexity of
reasoning: satisfiability of TUSDL-LiteNcore KBs is PSpace-complete, while for
TFPDL-LiteNcore it is NP-complete [8].

What is really surprising and nontrivial is that extending TFPDL-LiteNcore
with the next- and previous-time operators does not increase the complexity;
cf. Theorem 2 (ii). More formally, define TFPXDL-LiteNcore by restricting D1 and
D2 to concepts of the form:

D ::= B | 3FB | 3PB | 2FB | 2PB | ©FB | ©PB,

and let TUXDL-LiteNcore be the logic with the Di of the form:

D ::= B | 3∗ B | 2∗ B | ©FB | ©PB.

Theorem 3. Satisfiability of TFPXDL-LiteNcore and TUXDL-LiteNcore KBs is NP-
complete.

We present only a sketch of the proof here; the full proof can be found in
Section A of the Appendix.

In a way similar to the proof of Theorem 1, one can (non-deterministically
and polynomially) reduce satisfiability of a TFPXDL-LiteNcore KB to satisfiability
of an LTL-formula ϕ =

∧
i2∗ (Ei ∨E′i) ∧ ψ, where the Ei and E′i are of the form

p, 3F p, 3P p, 2F p, 2P p, ©F p, ©P p or a negation thereof, and ψ is a conjunction
of formulas of the form ©np, p a propositional variable. Let Γ be the set of all
subformulas of ϕ of the form 3F p, 3P p, 2F p or 2P p. It should be clear that
if ϕ is satisfied in an interpretation then the flow of time can be partitioned
into |Γ | + 1 intervals I0, . . . , I|Γ | such that, for each γ ∈ Γ and each Ii, γ is
true at some point in Ii iff γ is true at every point in Ii. The existence of such
intervals can be expressed by certain syntactic conditions on their ‘states,’ the
most crucial of which is satisfiability of a formula of the form

χ = Ψ ∧2≤mΦ ∧©m(Ψ ′ ∧©Ψ ′′),

for Φ =
∧
i(Di∨D′i), with each of the Di and D′i being a literal L (a propositional

variable or its negation) or ©L, conjunctions Ψ , Ψ ′ and Ψ ′′ of literals, and m ≥ 0,
where ©nΨ is the result of attaching n operators © to each literal in Ψ and
2≤mΦ =

∧
0≤i≤m©

iΦ. Intuitively, m is the number of distinct states in an

interval Ii, Ψ and Ψ ′ are the first and the last states in Ii, Ψ
′′ is the first state

of the next interval Ii+1, and Φ a set of binary clauses that describe possible
transitions between the states. Let consmΦ (Ψ) be the set of all literals L that are
true at the moment m ≥ 0 in every model of Ψ∧2≤mΦ. As the formula Ψ∧2≤mΦ
is essentially a 2CNF, one can compute consmΦ (Ψ) inductively as follows:

cons0Φ(Ψ) = {L | Φ ∪ Ψ |= L},
consmΦ (Ψ) = {L | Φ |= L′ → ©L,L′ ∈ consm−1Φ (Ψ)} ∪ {L | Φ |= L}.

For each L, construct a non-deterministic finite automaton AL = (Q,Q0, σ, FL)
over the alphabet {0} that accepts 0m iff L ∈ consmΦ (Ψ). Define the states in Q
to be all the literals from χ, the set of initial states Q0 = cons0Φ(Ψ), the accepting
states FL = {L}, and the transition relation

σ = {(L′′, L′) | Φ |= L′′ → ©L′} ∪ {(L′, L′) | Φ |= L′}.

Then a state L is reachable in m σ-steps from a state in Q0 iff L ∈ consmΦ (Ψ),
and so AL is as required. Every such AL can be converted into an equivalent
automaton in the Chrobak normal form [14] using Martinez’s algorithm [29],
which gives rise to ML-many arithmetic progressions aL1 +bL1N, . . . , aLML

+bLML
N,

where a+ bN = {a+ bn | n ∈ N}, such that

(A1) ML, a
L
i , b

L
i ≤ |Φ ∪ Ψ |2, for 1 ≤ i ≤ML, and

(A2) L ∈ consmΦ (Ψ) iff m ∈
⋃ML

i=1(aLi + bLi N).

Satisfiability of χ can now be established by a polynomial-time algorithm which
checks whether the following three conditions hold:

1. p,¬p ∈ consnΦ(Ψ), for no variable p and no 0 ≤ n ≤ m+ 1;
2. ¬L /∈ consmΦ (Ψ), for all literals L ∈ Ψ ′;
3. ¬L /∈ consm+1

Φ (Ψ), for all literals L ∈ Ψ ′′.

To verify 1, we check, for each variable p, whether the linear Diophantine equa-
tions api + bpi x = a¬pj + b¬pj y, for 1 ≤ i ≤ Mp and 1 ≤ j ≤ M¬p, have a solution

(x0, y0) such that 0 ≤ api + bpi x0 ≤ m+ 1. Set a = bpi , b = −b¬pj and c = a¬pj − a
p
i ,

which gives us the equation ax + by = c. If a 6= 0 and b 6= 0 then, by Bézout’s
lemma, it has a solution iff c is a multiple of the greatest common divisor d of a
and b, which can be checked in polynomial time using the Euclidean algorithm
(provided that the numbers are encoded in unary, which can be assumed in view
of (A1)). Moreover, if the equation has a solution, then the Euclidean algorithm
also gives us a pair (u0, v0) such that d = au0 + bv0, in which case all the solu-
tions of the above equation form the set

{(
(cu0 + bk)/d, (cv0 − ak)/d

)
| k ∈ Z

}
.

Thus, it remains to check whether a number between 0 and m+ 1 is contained
in api +bpi (a

¬p
j −a

p
i)u0/d+bpi b

¬p
j /dN. The case a = 0 or b = 0 is left to the reader.

To verify condition 2, we check, for each L ∈ Ψ ′, whether m belongs to one of
a¬Li +b¬Li N, for 1 ≤ i ≤ML, which can be done in polynomial time. Condition 3
is analogous. This gives us the NP upper bound for the logics mentioned in
Theorem 3. The lower bound can be proved by reduction of the 3-colourability
problem to satisfiability of TUXDL-LiteNcore KBs.

Theorem 3 shows that TFPXDL-LiteNcore can be regarded as a good candi-
date for representing temporal conceptual data models. Although not able to
express covering constraints, TFPXDL-LiteNcore still appears to be a reasonable
compromise compared to the full PSpace-complete logic TFPXDL-LiteNbool.

By restricting the temporal constructs to the undirected universal modalities
2∗ and 3∗ , we obtain an even simpler logic:

Theorem 4. Satisfiability of TUDL-LiteNcore KBs is NLogSpace-complete.

The proof of the upper bound is by embedding into the universal Krom
fragment of first-order logic.

4 Temporal DLs with Temporalised Roles

As we have seen before, in order to express lifespan cardinalities, temporal op-
erators on roles are required. Modalised roles are known to be ‘dangerous’ and
very difficult to deal with when temporalising expressive DLs such as ALC [17,
Section 14.2]. To our surprise, even in the case of DL-Lite, temporal operators on
roles may cause undecidability (while rigid roles are ‘mostly harmless’). Denote
by TRXDL-LiteNbool the fragment of TUSDL-LiteNbool with ©F as the only temporal
operator over concepts and with roles R of the form

R ::= S | S− | 3∗ R | 2∗ R.

The extensions of 3∗ R and 2∗ R in an interpretation I are defined as follows:

(3∗ R)I(n) =
⋃

k∈Z
RI(k) and (2∗ R)I(n) =

⋂
k∈Z

RI(k).

Theorem 5. Satisfiability of TRXDL-LiteNbool KBs is undecidable.

The proof is by reduction of the N × N-tiling problem: given a finite set T
of tile types t = (up(t), down(t), left(t), right(t)), decide whether T can tile the
N× N-grid. We assume that the tiles use k colours numbered from 1 to k.

We construct a TRXDL-LiteNbool KB KT such that KT is satisfiable iff T tiles
N× N. The temporal dimension clearly provides us with one of the two axes of
the grid. The other axis is constructed from the domain elements: let R be a
role such that ≥ 23∗ R v ⊥ and ≥ 23∗ R− v ⊥. In other words, if xRy at some
moment of time then there is no y′ 6= y with xRy′ at any moment of time (and
the same for R−). We can generate an infinite sequence of the domain elements
by saying that ∃R− u ©F∃R− is nonempty and ∃R− u ©F∃R− v ∃R u ©F∃R.
(The reason for generating the R-arrows at two consecutive moments of time will
become apparent below.) It should be also noted that the produced sequence may
in fact be either a finite loop or an infinite sequence of distinct elements.

Now, let t be a fresh concept name, for each t ∈ T , and let tile types be
disjoint, i.e., t u t′ v ⊥ for t 6= t′. After the double R-arrows we place the first
column of tiles, and every k + 1 moments afterwards we place a column of tiles
that matches the colours of the previous column:

∃R− u©F∃R− v
⊔
t∈T ©F©F t, t v

⊔
right(t)=left(t′)

©k+1
F t′, for each t ∈ T.

It remains to ensure that the tiles are arranged in a proper grid and have match-
ing top-bottom colours. It is for this purpose that we have (i) used the dou-
ble R-arrows to generate the sequence of domain elements, and (ii) placed the
columns of tiles every k+ 1 moments of time (not every moment). Consider the
following CIs, for t ∈ T and 1 ≤ i ≤ k:

t v ¬∃R−, t v ¬©iF∃R− (if i 6= down(t)) and t v ©up(t)
F ∃R.

The first two CIs ensure that between any two tiles k + 1 moments apart there
may be only one incoming R-arrow. This, in particular, means that after the
double R-arrows no other two consecutive R-arrows are possible, and thus the
proper N × N-grid is ensured. Moreover, the exact position of the incoming R-
arrow is uniquely determined by the down-colour of the tile, which in conjunction
with the last CI guarantees that this colour matches the tile below. The following
picture illustrates the construction:

| | | |

...

...

...

t′

t

R

0 1 2 k + 3

time

up(t)

up(t′) = down(t)

Note that the next-time operator ©F is heavily used in the encoding above.
If we replace it with 3∗ and 2∗ on concepts, then reasoning in the resulting logic
TRUDL-LiteNbool becomes much simpler:

Theorem 6. Satisfiability of TRUDL-LiteNbool KBs is NP-complete.

This result is proved using a modification of the quasimodel construction
from [7, 8]: we show that a KB is satisfiable iff there exists a quasimodel of
polynomial size. In the types of our quasimodels, concepts ≥ q R, ≥ q3∗ R and
≥ q2∗ R reflect the number of R-successors of the element required, respectively,
in the current moment of time, ‘sometime’ (3∗ R-successors) and ‘always’ (2∗ R-
successors). In order to deal with temporalised roles, we have to introduce the
following conditions on quasimodels: (i) the numbers of 3∗ R-successors and 2∗ R-
successors in types do not change along a run (in other words, temporalised roles
are rigid roles); (ii) the number of R-successors in every type is sandwiched
between the number of 2∗ R- and the number of 3∗ R-successors; (iii) if there is
a run with more 3∗ R-successors than 2∗ R-successors, then there is a run with
more 3∗ R−-successors than 2∗ R−-successors; (iv) in each run with more 3∗ R-
successors than 2∗ R-successors, not all R-successors are 2∗ R-successors, and not
all 3∗ R-successors are R-successors at all moments of time. Special conditions
are also required for the runs on the objects in the ABox. Full details can be
found in Section B in the Appendix.

5 Conclusion

From the complexity-theoretic point of view, the best candidates for reasoning
about TCMs appear to be TFPXDL-LiteNcore and TFPXDL-LiteNbool: the former
is NP-complete and the latter PSpace-complete. Moreover, we believe that the
reduction of TFPXDL-LiteNcore to LTL in the proof of Theorem 3 can be done
deterministically, in which case one can use standard LTL provers for TCM
reasoning. We also believe that TFPXDL-LiteNcore extended with temporalised
roles can be decidable, which remains one of the most challenging open problems.
But it seems to be next to impossible to reason in an effective way about all
TCM constraints without any restrictions.

References

1. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. DL-Lite in the
light of first-order logic. In Proc. of AAAI, 2007.

2. A. Artale, E. Franconi, F. Wolter, and M. Zakharyaschev. A temporal description
logic for reasoning about conceptual schemas and queries. In Proc. of JELIA, 2002.

3. A. Artale, C. Parent, and S. Spaccapietra. Evolving objects in temporal informa-
tion systems. Annals of Mathematics and Artificial Intelligence, 50:5–38, 2007.

4. A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev.
Reasoning over extended ER models. In Proc. of ER, 2007.

5. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite
family and relations. J. of Artificial Intelligence Research (JAIR), 36:1–69, 2009.

6. A. Artale and E. Franconi. Foundations of temporal conceptual data models. In
Conceptual Modeling: Foundations and Applications, vol. 5600 of LNCS. 2009.

7. A. Artale, R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev. Temporal-
ising tractable description logics. In Proc. of TIME, 2007.

8. A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. DL-Lite with
temporalised concepts, rigid axioms and roles. In Proc. of FroCoS, 2009.

9. A. Artale, C. Lutz, and D. Toman. A description logic of change. In Proc. of
IJCAI, 2007.

10. F. Baader, S. Ghilardi, and C. Lutz. LTL over description logic axioms. In Proc.
of KR, 2008.

11. D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams.
Artificial Intelligence, 168:70–118, 2005.

12. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning, 39:385–429, 2007.

13. J. Chomicki and D. Toman. Temporal relational calculus. In Encyclopedia of
Database Systems, pages 3015–3016. Springer, 2009.

14. M. Chrobak. Finite automata and unary languages. Theor. Comput. Sci., 47:149–
158, 1986.

15. C. Date, H. Darwen, and N. Lorentzos. Temporal Data and the Relational Model.
Morgan Kaufmann, 2002.

16. M. Finger and P. McBrien. Temporal conceptual-level databases. In Temporal
Logics—Mathematical Foundations and Computational Aspects. Oxford University
Press, 2000.

17. D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional
Modal Logics: Theory and Applications. Elsevier, 2003.

18. H. Gregersen and J. Jensen. Temporal Entity-Relationship models—a survey.
IEEE TKDE, 11, 1999.

19. G. Hall and R. Gupta. Modeling transition. In Proc. of ICDE, 1991.
20. C. Jensen and R. Snodgrass. Temporally enhanced database design. In Advances

in Object-Oriented Data Modeling. MIT Press, 2000.
21. C. Lutz, F. Wolter, and M. Zakharyaschev. Temporal description logics: A survey.

In Proc. of TIME, 2008.
22. P. McBrien, A. Seltveit, and B. Wangler. An Entity-Relationship model extended

to describe historical information. In Proc. of CISMOD, 1992.
23. A. Mendelzon, T. Milo, and E. Waller. Object migration. In Proc. of PODS, 1994.
24. K. Schild. Combining terminological logics with tense logic. Proc. of EPIA, 1993.
25. S. Spaccapietra, C. Parent, and E. Zimanyi. Conceptual Modeling for Traditional

and Spatio-Temporal Applications—The MADS Approach. Springer, 2006.
26. J. Su. Dynamic constraints and object migration. Theoretical Computer Science,

184:195–236, 1997.
27. B. Tauzovich. Towards temporal extensions to the entity-relationship model. In

Proc. of ER. Springer, 1991.
28. C. Theodoulidis, P. Loucopoulos, and B. Wangler. A conceptual modelling formal-

ism for temporal database applications. Information Systems, 16:401–416, 1991.
29. A. To. Unary finite automata vs. arithmetic progressions. Inf. Process. Lett.,

109:1010–1014, 2009.

Appendix

A Proof of Theorem 3

Theorem 3. Satisfiability for TFPXDL-LiteNcore and TUXDL-LiteNcore KBs is
NP-complete.

Proof. Let ϕ be a propositional temporal formula of the form∧
1≤i≤n

2∗ (Di ∨D′i) ∧
∧

1≤j≤k

2∗ (3Lj ↔ 3Lj) ∧ ψ,

where ψ is a propositional formula containing no temporal operators, the Di and
D′i are temporal literals of the form

D ::= L | ©L,

L is a literal (i.e., a variable p or its negation ¬p) and 3Lj is a variable, called
the surrogate of 3Lj , that can be used in the Di and D′i. It should be clear that
if ϕ is satisfied in a model then the flow of time can be partitioned into k + 1
intervals I0, . . . , Ik such that 3Lj is true at some point in Ii if and only if 3Lj
is true at every point in Ii, for each interval Ii and each subformula 3Lj of ϕ.
Therefore, ϕ is satisfiable if and only if there are k + 2 natural numbers

m0 < m1 < · · · < mk+1,

and k + 3 quadruples

(Ψ0, Ξ0, Θ0, Ψ
′
0), . . . , (Ψk+2, Ξk+2, Θk+2, Ψ

′
k+2)

of sets of literals such that

1. m0, . . . ,mk+1 do not exceed 2|ϕ|;
2. for each 0 ≤ i ≤ k + 2 and

– for each variable p in ϕ, either p ∈ Ψi or ¬p ∈ Ψi and either p ∈ Ψ ′i or
¬p ∈ Ψ ′i ;

– for each 3L in ϕ, either 3L ∈ Ξi or ¬3L ∈ Ξi;
3. for each 0 ≤ i < k + 1 and each 3L in ϕ,

– if 3L ∈ Ξi+1 then 3L ∈ Ξi and
– if 3L ∈ Ξi \Ξi+1 then ©¬L ∈ Θi+1, . . . , Θk+1 and L ∈ Ψi+1;

4. for each 0 ≤ i < k + 2,

Ψi ∧2≤mi(Φ ∧Ξi ∧Θi) ∧©mi
(
Ψ ′i ∧©Ψi+1 ∧©Ξi+1

)
,

is satisfiable, where Φ is the set of Di ∨D′i, 1 ≤ i ≤ n, ©`Ψ is the result of
attaching ` operators © to each literal in Ψ and 2≤mΨ =

∧
0≤i≤m©

iΨ ;
5. ψ ∧ Ψi0 is consistent, for some 0 ≤ i0 ≤ k + 2;
6. Ψ ′k+1 = Ψk+1 and the last two quadruples coincide.

The intuition behind the quadruples is as follows: Ψi and Ψ ′i are the first and
the last state on the ith interval, respectively, Ξi are the surrogate literals (3L
or ¬3L) that are true throughout the ith interval and Θi are the literals that
are true in the model starting from the second state of the ith interval (these
sets are related to false subformulas 3L). So, Condition 2 ensures that the sets
of literals are saturated. Condition 3 guarantees that the surrogates 3L behave
exactly as the respective 3L subformulas. Condition 4 means that, for each i,
there exists a snippet of the model of length mi + 1 such that Ψi, Ψ

′
i and Ψi+1

hold at 0, mi and mi + 1, respectively, the snippet satisfies Φ throughout its
length and has the required surrogates, Ξi and Ξi+1, and literals Θi true. It
then follows that the last state of the ith snippet coincides with the first state
of the (i + 1)th snippet and thus, they can be glued together in a sequence.
Condition 5 guarantees that ψ is true somewhere in the resulting sequence and
Condition 6 allows us to repeat the last snippet infinitely many times and thus
to construct a model satisfying ϕ. It should be clear that Conditions 2, 3, 5 and
6 can be checked in non-deterministic polynomial time. So, it remains to show
that Condition 4 can also be checked in polynomial time.

Thus, the problem is as follows: given a set Φ of formulas of the form Di∨D′i,
sets of literals Ψ , Ψ ′ and Ψ ′′ and m ≥ 0, decide whether there is an interpretation
satisfying

Ψ ∧2≤mΦ ∧©m(Ψ ′ ∧©Ψ ′′). (1)

First, we find a compact representation of the set consmΦ (Ψ) of all literal conse-
quences of Ψ with respect to 2≤mΦ at moment m ≥ 0, i.e., L ∈ consmΦ (Ψ) if and
only if L is true at m in any interpretation satisfying Ψ ∧2≤mΦ.

Lemma 1. cons0Φ(Ψ) = {L | Φ ∪ Ψ |= L} and consmΦ (Ψ) = {L | Φ |= L′ →
©L, L′ ∈ consm−1Φ (Ψ)} ∪ {L | Φ |= L}, for m ≥ 1.

Proof. The formula Ψ ∧ 2≤mΦ may be regarded as a 2CNF (by treating each
©nL as a fresh propositional variable). Clearly, for each L ∈ consmΦ (Ψ), ©mL is a
logical consequence of this 2CNF. Conversely, let ©mL be a logical consequence
of the 2CNF. We prove by induction on m that L ∈ consmΦ (Ψ). The base of
induction (m = 0) is clear. Suppose m > 1. Take a minimal set of binary
clauses that implies ©mL. If it involves only clauses from ©mΦ then we are
done. Otherwise, it must involve a clause of the form L′ → ©L such that Φ |=
L′ → ©L and ©m−1L′ is a logical consequence of Ψ ∧ 2≤m−1Φ, which by IH,
means L′ ∈ consm−1Φ (Ψ).

Now, for each literal L, we construct a non-deterministic finite automaton
AL = (Q,Q0, σ, FL) over the alphabet {0} that accepts 0m if and only if L ∈
consmΦ (Ψ). Define the states in Q to be all the literals, the set of initial states
Q0 = cons0Φ(Ψ), the accepting states FL = {L} and

σ = {(L′′, L′) | Φ |= L′′ → ©L′} ∪ {(L′, L′) | Φ |= L′}.

By Lemma 1, a state L is reachable in m σ-steps from Q0 if and only if
L ∈ consmΦ (Ψ), and so the automaton AL is as requited. Every such AL can

be converted into an equivalent automaton in the Chrobak normal form [14]
using Martinez’s algorithm [29]. The automaton in the Chrobak normal form
gives rise to ML arithmetic progressions

aL1 + bL1N, . . . , aLML
+ bLML

N,

where a+ bN = {a+ bn | n ∈ N}, such that

(A1) ML ≤ |Φ ∪ Ψ |2 and aLi , b
L
i ≤ |Φ ∪ Ψ |2, for 1 ≤ i ≤ML, and

(A2) L ∈ consmΦ (Ψ) if and only if m ∈
⋃ML

i=1(aLi + bLi N).

We are now in a position to present a non-deterministic polynomial-time
algorithm that checks whether (1) is consistent. Clearly, (1) is satisfiable if and
only if there is

– no variable p and no number n with 0 ≤ n ≤ m+ 1 and p,¬p ∈ consnΦ(Ψ),
– no literal L ∈ Ψ ′ with ¬L ∈ consmΦ (Ψ) and
– no literal L ∈ Ψ ′′ with ¬L ∈ consm+1

Φ (Ψ).

To verify the first condition, we check, for each variable p, whether the linear
Diophantine equations

api + bpi x = a¬pj + b¬pj y,

for 1 ≤ i ≤ Mp and 1 ≤ j ≤ M¬p, have a solution (x, y) such that api + bpi x ≤
m + 1. Let a = bpi , b = −b¬pj and c = a¬pj − a

p
i . We then have the following

equation
ax+ by = c.

If a 6= 0 and b 6= 0 then, by Bézout’s lemma, the equation has a solution if and
only if c is a multiple of the greatest common divisor d of a and b. The latter
condition can be checked in polynomial time using the Euclidean algorithm
(provided that the numbers are encoded in unary, which we can assume in view
of (A1)). Moreover, if the equation has a solution, then the Euclidean algorithm
also gives us a pair (u0, v0) such that d = au0+bv0, in which case all the solutions
of the above equation form the set{(

(cu0 + bk)/d, (cv0 − ak)/d
)
| k ∈ Z

}
.

Thus, it remains to check whether a number between 0 and m+ 1 is contained
in api + bpi (a

¬p
j − a

p
i)u0/d+ bpi b

¬p
j /dN. Clearly, the above operations can be done

in polynomial time.
To verify the second condition, we check whether, for each L ∈ Ψ ′, m belongs

to one of the sets aLi + bLi N, for 1 ≤ i ≤ ML, which can clearly be done in
polynomial time. The last condition is checked analogously.

B Proof of Theorem 6

Let K = (T ,A) be a TRUDL-LiteNbool KB. In what follows, we write (≥ q R)I

instead of (≥ q R)I(x), x ∈ Z, for a temporalised role R because such a role is
always rigid.

Denote by ob(A) the set of all object names occurring in A and by role±(K)
the set of role names in K and their inverses. Let QK ⊆ N be the set consisting
of

– all q such that at least one of ≥ q2∗ R, ≥ q R or ≥ q3∗ R occurs in K, for
R ∈ role±(K), and

– all the integers from 1 to |A|.

Let qK = maxQK.

Lemma 2. If a TRUDL-LiteNbool KB K is satisfiable then it can be satisfied in a
model I such that (≥ qK + 12∗ R)I = ∅, for each R ∈ role±(K).

Proof. Let I |= K. Without loss of generality we will assume that, for each
x ∈ Z, the set {y ∈ Z | I(x) = I(y)} is infinite and that the domain ∆I is at
most countable. Suppose that w ∈ ∆I has (≥ qK + 1) 2∗ R-successors in I, e.g.,
assume that the pairs

(w,w1), . . . , (w,wqK), (w,wqK+1), . . .

are all in (2∗ R)I . We can also assume that if wn = aI , for some object name a
in A, then n ≤ qK.

Construct a new model I∗ as follows. The domain of I∗ is ∆I × N and
aI
∗

= (aI , 0) for all object names a. For a concept name A, role name P and
x ∈ Z, we set

AI
∗(x) = {(u, i) | u ∈ AI(x), i ∈ N},

P I
∗(x) = {((u, i), (v, i)) | (u, v) ∈ P I(x), i ∈ N}.

It should be clear that I∗ |= K. We now remove and redirect some of theR-arrows
of the form ((w, i), (wn, i)), for all moments of time, in the following manner.
First, we remove ((w, i), (wn, i)) from (2∗ R)I

∗
, for all n and i such that n > qK

or i > 0. Note that this removal does not involve arrows to the interpretations of
the ABox elements. To compensate for the loss, we then add new 2∗ R-arrows of
the form ((w, i), (wn, j)) to (2∗ R)I

∗
in such a way that the following conditions

are satisfied:

– for every (wn, j), there is precisely one 2∗ R-arrow of the form ((w, i), (wn, j))
and, moreover, i = j iff i = j = 0 and n ≤ qK;

– for every (w, i), there are precisely qK 2∗ R-arrows of the form ((w, i), (wn, j)).

Such a rearrangement is possible because I∗ contains countably infinitely many
copies of the original model I. We leave it to the reader to check that the resulting
interpretation is still a model of K. The process is repeated for each point in I.

We now define a notion of quasimodel for the KB K. Let Q ⊇ QK be a finite
set of natural numbers such that maxQ = qK,

Q∗ = {q + n > 0 | q ∈ Q and − (|A|+ 1) ≤ n ≤ |A|+ 1},

and let Σ be the set of concepts consisting of

– all subconcepts of concepts occurring in K,
– for R ∈ role±(K), all concepts of the form

≥ q2∗ R and ≥ q3∗ R, for q ∈ Q, and ≥ q R, for q ∈ Q∗,

and all concepts of the form ≥ ωR and ≥ ω3∗ R,2

– the negations of the concepts in the two previous items (we assume that
¬¬C = C).

By a ΣQ-type we mean a subset t ⊆ Σ such that

– C ∈ t iff ¬C /∈ t, for each C ∈ Σ,
– C1 u C2 ∈ t iff C1, C2 ∈ t, for each C1 u C2 ∈ Σ,
– if ≥ q′R ∈ t and q′ > q then ≥ q R ∈ t, for each ≥ q R ∈ Σ,
– for all R ∈ role±(K) and ≥ q R ∈ Σ,
• if ≥ q2∗ R ∈ t then ≥ q R ∈ t,
• if ≥ q R ∈ t and ≥ q3∗ R ∈ Σ then ≥ q3∗ R ∈ t.

Let ZA be the set of all integers m such that ©mB(a) or ©mS(a, b) occurs
in A and let Z ⊇ ZA be a finite set of integers. By a (Z,ΣQ)-run r (or just a
run if Z and ΣQ are clear from the context) we mean a function from Z into
the set of ΣQ-types such that, for all z ∈ Z,

(r2) 2∗ C ∈ r(z) iff C ∈ r(z′), for all z′ ∈ Z,
(r=) ≥ q R ∈ r(z) iff ≥ q R ∈ r(z′), for all z′ ∈ Z and all rigid (in particular

temporalised) roles R.

Let r be a run and R ∈ role±(K). The required R-ranks of r at z ∈ Z for 2∗ R,
R and 3∗ R are, respectively:

%2Rr = max0

{
q ∈ Q | ≥ q2∗ R ∈ r(z), z ∈ Z

}
,

%Rr (z) = max0

{
q ∈ Q∗ ∪ {ω} | ≥ q R ∈ r(z)

}
,

%3Rr = max0

{
q ∈ Q ∪ {ω} | ≥ q3∗ R ∈ r(z), z ∈ Z

}
,

where max0X = max({0} ∪X). It follows from the definition of Σ that %2Rr ∈
Q ∪ {0}, %Rr (z) ∈ Q∗ ∪ {0, ω} and %3Rr ∈ Q ∪ {0, ω}. As both roles 2∗ R and 3∗ R
are rigid and in view of (r=), their ranks do not depend on z, and so we omitted
the argument z.

A run r is said to be R-saturated if %3Rr > %2R implies that

(r+) there is z′ ∈ Z with %Rr (z′) > %2Rr , and
(r−) there is z′′ ∈ Z with %Rr (z′′) < %3Rr whenever %3Rr < ω

(here we use the fact that q + 1, q − 1 ∈ Q∗, for q ∈ Q).
Let A be an ABox extending A with assertions of the form ©zR(a, b), where

z ∈ Z, R ∈ role±(K) and a, b ∈ ob(A). We will require the following numbers:

N2R
A (a) =]{b | ©zR(a, b) ∈ A, for all z ∈ Z},

NR
A (a, z) =]{b | ©zR(a, b) ∈ A},

N3R
A (a) =]{b | ©zR(a, b) ∈ A, for some z ∈ Z}.

The extension of the ABox is required for the following two examples:

2 We use the usual order: 1 < · · · < qK < qK + 1 < · · · < ω.

– Consider K = (T ,A), where

T ={≥ 93∗ R v ⊥},
A ={©(≥ 5R)(a), R(a, b1), R(a, b2), R(a, b3),©R(a, b1)}.

It follows that, in every model I of K, we have either I |= ©R(a, b2) or
I |= ©R(a, b3).

– Consider K = (T ,A), where

T ={≥ 63∗ R v ⊥, > v ≥ 42∗ R},
A ={R(a, b1), R(a, b2)}.

Then in every model I of K, either I |= 2∗ R(a, b1) or I |= 2∗ R(a, b2).

A (Z,ΣQ)-quasimodel Q for K is a pair (R,A), where R is a set of (Z,ΣQ)-
runs that are R-saturated for each R ∈ role±(K) and A a set of ABox assertions
such that

(Q1) A is an extension of A as described above,
(Q2) for each a ∈ ob(A), there is ra ∈ R such that:

(Q2.1) B ∈ ra(z), for all ©zB(a) ∈ A,
(Q2.2) for every z ∈ Z,

– %2Rra ≥ N
2R
A (a),

– %Rra(z) ≥ %2Rra + (NR
A (a, z)−N2R

A (a)),

– %3Rra ≥ %
R
ra(z) + (N3R

A (a)−NR
A (a, z)) whenever %Rra(z) < ω,

(Q2.3) if %2Rra = %3Rra then N2R
A (a) = N3R

A (a),

(Q2.4) if %2Rra + (N3R
A (a)−N2R

A (a)) < %3Rra then

– there is z′ ∈ Z such that %Rra(z′) > %2Rra + (NR
A (a, z′)−N2R

A (a)), and

– there is z′′ ∈ Z such that %Rra(z′′) < %3Rra − (N3R
A (a) − NR

A (a, z′′))

whenever %3Rra < ω;

(Q3) for each R ∈ role±(K),

– if there is r ∈ R with %2Rr ≥ 1 then there is r′ ∈ R with %2R
−

r′ ≥ 1;

– if there is r ∈ R with %2Rr < %3Rr then there is r′ ∈ R with %2R
−

r′ < %3R
−

r′ .

Lemma 3. Let K = (T ,A) be a TRUDL-LiteNbool KB.
(i) If K is satisfiable then there is a (Z,ΣQ)-quasimodel Q = (R,A) for K such
that

– |R| ≤ |ob(A)|+ 2|role±(K)|,
– |Q| ≤ |QK|+ |role±(K)|,
– |Σ| ≤ 2(|K|+ 4|role±(K)| · |Q| · (|A|+ 1)),
– |Z| ≤ |ZA|+ |R| · (|K|+ 2|role±(K)|)

+ 2|ob(A)| · |role±(K)| · (|ob(A)|+ 1).

(ii) If there is a quasimodel for K then K is satisfiable.

Proof. (i) Let I be a model of K. By Lemma 2, we may assume that every
point in it has fewer than (qK + 1) 2∗ R-successors, for each R ∈ role±(K). First
we select a set D of elements w ∈ ∆I required to define runs and a set Q of
numerical parameters. Let D0 = ob(K). For w ∈ ∆I , set

ρ2R(w) = max
{

0 ≤ q ≤ qK | w ∈ (≥ q2∗ R)I
}
,

ρ3R(w) =

{
ω, w ∈ (≥ qK + 13∗ R)I ,

max
{

0 ≤ q ≤ qK | w ∈ (≥ q3∗ R)I
}
, otherwise.

We proceed by extending D0. Suppose that we have already defined Dm.

– If there is w ∈ Dm with ρ2R(w) ≥ 1 and there is no w′ ∈ Dm with

ρ2R
−

(w′) ≥ 1, we can find w′ ∈ ∆I such that w′ ∈ (∃2∗ R−)I .
– If there is w ∈ Dm with ρ2R(w) < ρ3R(w) but there is no w′ ∈ Dm with

ρ2R
−

(w′) < ρ3R
−

(w′), we can find w′ ∈ ∆I such that w′ ∈ (≥ q3∗ R−)I \
(≥ q2∗ R−)I , for some q ≥ 0. By Lemma 2, q ≤ qK + 1.

In either case we set Dm+1 = Dm ∪ {w′}. It should be clear that the above
procedure cannot continue for longer than |role±(K)| steps. Denote the resulting
set by D and let Q be the union of QK with all

{ρ2R(w) | w ∈ D} ∪ {ρ3R(w) ≤ qK | w ∈ D},

for R ∈ role±(K). Clearly, |D| ≤ |D0|+ 2|role±(K)| and Q is as required.
We are now in a position to define the set Z of ‘time slices,’ which will be

defined as the following union:

Z = ZA ∪ Z0 ∪ Z1 ∪ Z2 ∪ Z3.

Then the ABox A consists of all the relations between elements of ob(A) at
moments in Z:

A = {©zR(a, b) | (aI , bI) ∈ RI(z) for z ∈ Z},

We need Z0 to satisfy (r2), Z1 to satisfy (r−) and (r+), Z2 to guarantee that the
numbers N2R

A (a) and N3R
A (a) are the true numbers of 2∗ R- and 3∗ R-successors

of a in the ABox A defined on Z (so the notation N2R
A (a) and N3R

A (a) is well-
defined), and Z3 to satisfy (Q2.4):

– Let Z0 be a minimal set containing, for every w ∈ D and every 2∗ C ∈ Σ
with w /∈ (2∗ ¬C)I(x

′), for some (all) x′ ∈ Z, a time point x ∈ Z such that
w ∈ (¬C)I(x) (such an x exists as I |= K).

– Let Z1 be a minimal set containing, for every w ∈ D and every R ∈ role±(K)
with ρ2R(w) < ρ3R(w), time points x′, x′′ ∈ Z such that

– w ∈ (≥ q′ + 1R)I(x
′) with q′ = ρ2R(w);

– w /∈ (≥ q′′R)I(x
′′) with q′′ = ρ3R(w) if ρ3R(w) < ω

(such x′ and x′′ exist because I |= K).

– Let Z2 be a minimal set containing, for all a, b ∈ ob(A) and R ∈ role±(K)
with (aI , bI) ∈ (3∗ R)I , time points x′, x′′ ∈ Z such that

– (aI , bI) ∈ RI(x′);
– (aI , bI) /∈ RI(x′′) whenever (aI , bI) /∈ (2∗ R)I

(such x′ and x′′ exist by definition).
– Let Z3 be a minimal set containing, for all a ∈ ob(A) and R ∈ role±(K) with
ρ2R(a) + (N3R

A (a)−N2R
A (a)) < ρ3R(a), time points x′, x′′ ∈ Z such that

– aI ∈ (≥ q′ + 1R)I(x
′), for q′ = ρ2R(a) + (N(a, x′)−N2R

A (a));

– aI /∈ (≥ q′′R)I(x
′′), for q′′ = ρ3R(a) − (N3R

A (a) − N(a, x′′)), whenever
ρ3R(a) < ω,

where N(a, x) =
{
b ∈ ob(A) | (aI , bI) ∈ RI(x)

}
. We show that such an

x′ exists. Suppose on the contrary that, for all x′ ∈ Z, we have aI /∈
(≥ q′ + 1R)I(x

′), for q′ = ρ2R(a) + (N(x′) − N2R
A (a)). It follows that at

all x′ ∈ Z, aI has at most (ρ2R(a) + (N(x′) − N2R
A (a))) R-successors,

which means that the number of R-successors of aI that are not in the
set A = {bI | b ∈ ob(A)} cannot exceed ρ2R(a)−N2R

A (a). So, at all x′ ∈ Z,
every R-successor of a is either in A or is in fact a 2∗ R-successor, contrary
to ρ2R(a) + (N3R

A (a) − N2R
A (a)) < ρ3R(a). The existence of x′′ is proved

similarly.

Now the set of runs R is {rw | w ∈ D}, where each run rw is defined by taking,
for all z ∈ Z,

– ≥ ωR ∈ rw(z) iff w ∈ (≥ (qK + |A|+ 1)R)I(z), for R ∈ role±(K),
– ≥ ω3∗ R ∈ rw(z) iff w ∈ (≥ qK + 13∗ R)I(z), for R ∈ role±(K),
– C ∈ rw(z) iff w ∈ CI(z), for all other concepts C ∈ Σ.

It can be easily seen that each rw ∈ R is a ΣQ-run (in particular, (r2) holds
because Z0 ⊆ Z). As Z1 ⊆ Z, each rw ∈ R is saturated. Then (Q1) and (Q2.1)
hold because I |= A and ZA ⊆ Z. We have (Q2.2) and (Q2.3) because I |= A.
Since Z3 ⊆ Z, we have (Q2.4). Finally, (Q3) holds by construction of D and the
definition of Q.

(ii) Let Q = (R,A) be a quasimodel for K. We define a model I of K over
a domain ∆I , which will be constructed as a union

⋃∞
m=0∆m. We set aI = a,

for all a ∈ ob(A), and ∆0 = ob(A). Our construction extends each ∆m to ∆m+1

by adding new points created from runs in Q. To keep track of the process
of making copies of runs, we simultaneously construct a function κ : ∆I → R,
which is also a union

⋃∞
m=0 κm of functions κm : ∆m → R. For the initial step,

take κ0(a) = ra provided by (Q2), for each a ∈ ∆0.
We will also need to multiply and rearrange the time instances when creating

a point from a run in R. To keep track of that, we introduce functions νw : Z→ Z,
for w ∈ ∆I , where νw(x) ∈ Z is the time instance of κ(w) in Q that serves as
the original for the time instance x ∈ Z of w in I. For the initial step, take
νw(x) = ν0(x), where ν0 is a function such that (i) ν−10 (z) is infinite for all
z ∈ ZK and (ii) ν0(x) = x, for x ∈ ZA. When the construction is complete, we
will have

AI(x) =
{
w ∈ ∆I | A ∈ r(νw(x)), r = κ0(w)

}
,

for each concept name A. The interpretation of roles names P I(x) will be con-
structed as a union

⋃∞
m=0 P

x
m, where P xm ⊆ ∆m ×∆m. For m = 0, we set

P x0 =
{

(a, b) ∈ ∆0 ×∆0 | ©ν0(x)P (a, b) ∈ A
}

for all role names P and all x ∈ Z. Here, to simplify notation, we do not distin-
guish between P−(b, a) ∈ A and P (a, b) ∈ A.

For R ∈ role±(K), the actual m-step R-rank of w ∈ ∆I at x ∈ Z, for R = 2∗ P ,
R = P and R = 3∗ P , is defined as follows:

τ2Pw (m) =]{w′ ∈ ∆m | (w,w′) ∈
⋂
x∈Z P

x
m},

τPw (x,m) =]{w′ ∈ ∆m | (w,w′) ∈ P xm},
τ3Pw (m) =]{w′ ∈ ∆m | (w,w′) ∈

⋃
x∈Z P

x
m};

for R = 2∗ P−, R = P− and R = 3∗ P−, (w,w′) should be replaced with (w′, w).
We will use the following properties of the partial model we construct: for

each R ∈ role±(K) and w ∈ ∆m,

(rn) for all x ∈ Z,

0 ≤ %2Rκ(w) − τ
2R
w (m) ≤

%Rκ(w)(νw(x))− τRw (x,m) ≤ %3Rκ(w) − τ
3R
w (m),

(fn) τ3Rκ(w)(m) < ω,

(df) if %3Rκ(w) − τ
3R
w (m) > %2Rκ(w) − τ

2R
w (m) then

(df0) %3Rκ(w) > %2Rκ(w),

(df+) %Rκ(w)(νw(x))− τRw (x,m) > %2Rκ(w)− τ
2R
w (m) for infinitely many x ∈ Z,

(df−) %Rκ(w)(νw(x))− τRw (x,m) < %3Rκ(w)− τ
3R
w (m) for infinitely many x ∈ Z,

whenever %Rκ(w) < ω.

Here ω − n = ω, for all n < ω.
First, we show that these properties hold for a ∈ ∆0. Observe that τ2Ra (0) =

N2R
A (a), τRa (x, 0) = NR

A (νa(x)), for all x ∈ Z, and τ3Ra (0) = N3R
A (a). Then (rn)

follows from (Q2.2), and (fn) is trivial. To show (df0), suppose %3Rκ(a) ≤ %2Rκ(a).

Then, by (Q2.3), τ
3R
a (0) = τ2Ra (0) contrary to %3Rκ(a)− τ

3R
a (0) > %2Rκ(a)− τ

2R
a (0).

Then (df+) and (df−) follow directly from (Q2.4) and the fact that the pre-
image ν−1a (z) is infinite, for each z ∈ Z.

As follows from (rn), for all w ∈ ∆m, we have

τ2Rw (m) ≤ %2Rκ(w),

τRw (x,m) ≤ %Rκ(w)(νw(x)), for all x ∈ Z,

and τ3Rw (m) ≤ %3Rκ(w).

If these inequalities are in fact equalities, then we are done. If this is not the
case, let w ∈ ∆m, for some m ≥ 0.

(1) If τ2Pw (m) < %2Pκ(w), we have %2Pκ(w) ≥ 1. By (Q3), there is r′ ∈ R such

that %2P
−

r′ . We add n = %2Pκ(w) − τ2Pw (m) copies w1, . . . , wn of the run r′ to

∆m+1, set κm+1(wi) = r′, add the pairs (w,wi) to P xm+1, for all x ∈ Z, and
let νwi : Z → Z be such that the pre-image ν−1wi (z) is infinite, for each z ∈ Z.

Observe that, for all wi and R ∈ role±(K),

τ2Rwi (m+ 1) = τRwi(z,m+ 1) = τ3Rwi (m+ 1)

with τ2Rwi (m+1) = 1 if R = P−, and τ2Rwi (m+1) = 0 otherwise. So, (rn) follows,

by the last item in the definition of ΣQ-type, from %2P
−

κ(wi)
≥ 1 and %2Rκ(wi) ≥ 0,

for all other roles R. By definition, (fn); (df0) is immediate from the above
equalities, whereas (df+) and (df−) follow from (r+) and (r−), respectively,
and the fact that the pre-image ν−1wi (z) is infinite, for each z ∈ Z.

(2) If %3Pκ(w)− τ
3P
w (m) = %2Pκ(w)− τ

2P
w (m) we do not need to do anything for

this w; otherwise let

K =
{
i ∈ N | i < (%3Pκ(w) − τ

3P
w (m))− (%2Pκ(w) − τ

2P
w (m))

}
.

Note that, by (fn), τ3Pw (m) < ω, and thus the expression is well-defined (it
contains at most one ω). Note also that K is infinite in case %3Pκ(w) = ω. We have

to ‘connect’ |K| new 3∗ P -successors to w in such a way that the required ranks
%2Pκ(w), %

P
κ(w)(x) and %3Pκ(w) are respected. By (rn) and (df), there is a function

τ : Z→ 2K such that

– for all x ∈ Z, |τ(x)| = (%Pκ(w)(νw(x)) − τPw (x,m)) − (%2Pκ(w) − τ
2P
w (m)) (this

expression is also well-defined as it contains at most one ω);
– for every i ∈ K, there are infinitely many x ∈ Z with i ∈ τ(x), and infinitely

many x ∈ Z with i /∈ τ(x).

By (df0), we have %3Pκ(w) > %2Pκ(w), and so, by (Q3), there exists r′ ∈ R with

%3P
−

r′ > %2P
−

r′ . We add |K| fresh copies w1, . . . w|K| of r′ to∆m+1, set κm+1(wi) =
r′ and add (w,wi) to P xm+1 iff i ∈ τ(x). It remains to define the νwi . By (r+),

Z>2 =
{
z ∈ Z | ≥ (%2P

−

r′ + 1)P− ∈ r′(z)
}
6= ∅.

If %3P
−

r′ = ω then we take Z<3 = Z, in which case, clearly, Z>2 ∪ Z<3 = Z.

Otherwise, as %3P
−

r′ + 1 ∈ Q∗, by (r−),

Z<3 =
{
z ∈ Z | ¬(≥ %3P

−

r′ P−) ∈ r′(z)
}
6= ∅.

It follows that %3P
−

r′ ≥ %2P−r′ + 1, and so Z>2 ∪ Z<3 = ZK.
For each i ∈ K, we take a function νwi such that the pre-image ν−1wi (z) is

infinite, for all z ∈ Z, and

– if z ∈ Z<3 \ Z>2 then (w,wi) /∈ P xm+1, for x ∈ ν−1wi (z),
– if z ∈ Z>2 \ Z<3 then (w,wi) ∈ P xm+1, for x ∈ ν−1wi (z),

– if z ∈ Z>2 ∩ Z<3 then (w,wi) /∈ P xm+1, for infinitely many x ∈ ν−1wi (z), and
(w,wi) ∈ P xm+1, for infinitely many x ∈ ν−1wi (z).

Observe that, for each wi, we have:

– τ2Rwi (m+ 1) = τRwi(z,m+ 1) = τ3Rwi (m+ 1) = 0, for all R 6= P−;

– τ2P
−

wi (m+ 1) = 0 and τ3P
−

wi (m+ 1) = 1;

It remains to show that conditions (rn), (fn) and (df) hold. Indeed, each x ∈ Z
falls into one of the three groups:
(a) if νwi(x) ∈ Z<3 \ Z>2 then

%2P
−

κ(wi)
= %P

−

κ(wi)
(νwi(x)) < %3P

−

κ(wi)
and τP

−

wi (x,m+ 1) = 0;

(b) if νwi(x) ∈ Z>2 \X<3 then

%2P
−

κ(wi)
< %P

−

κ(wi)
(νwi(x)) = %3P

−

κ(wi)
and τP

−

wi (x,m+ 1) = 1;

(c) otherwise, νwi(x) ∈ Z>2 ∩ Z<3, from which %3P
−

κ(wi)
> %2P

−

κ(wi)
and there are

infinitely many x′ ∈ ν−1wi (νwi(x)) with

%2P
−

κ(wi)
< %P

−

κ(wi)
(νwi(x

′)) = %3P
−

κ(wi)
and τP

−

wi (x′,m+ 1) = 1,

as well as infinitely many x′′ ∈ ν−1wi (νwi(x)) with

%2P
−

κ(wi)
= %P

−

κ(wi)
(νwi(x

′′)) < %3P
−

κ(wi)
and τP

−

wi (x′′,m+ 1) = 0.

This completes the inductive step in the construction of the model.

