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Abstract

Complexity science has seen increasing interest in the
recent years. Many engineers have discovered that
traditional methods come to their limits when cop-
ing with complex adaptive systems or autonomous
agents. To find alternatives, complexity science can
be applied to engineering, resulting in a quickly grow-
ing field, referred to as complexity engineering. Most
current efforts come either from scientists who are in-
terested in bio-inspired methods and working in com-
puter science or mobile robots, or they come from the
area of systems engineering. This article reviews the
definitions of the most important concepts such as
emergence and self-organisation from an engineer’s
perspective, and analyses different types of nature-
inspired technology. It provides an survey of the cur-
rently existing approaches to complexity engineering.
Finally, challenges ahead are indicated.

1 Introduction

Traditional engineering methods cope well with re-
ducible systems [1], i.e. those systems which can be
decomposed without loss and which are made of parts
or sub-systems which are well known, which interact
in predefined and well-understood ways and mostly
stay the same during the system’s life time. For re-
ducible systems, the sum of their parts makes the
whole. Systems with emergence, at the contrary, are
more (or less?) than the sum of their parts. For in-
stance, swarming birds only follow very simple local
rules, but as a whole the swarm exhibits sophisticated

dynamic formations. In manufacturing, robotic mod-
ules may function perfectly in a certain arrangement,
but not in another one. GPS-based mobile services
may show good performance at locations where diffi-
culties were expected, and bad performance in areas
of good reception because of the interference of other
devices.

An increasing number of modern systems do not
correspond to the description of a reducible system;
their composition as well as the user requirements
and the environment dynamically change, and often,
their behaviour or some of their characteristics are
emergent.

Complexity is omnipresent [2], and there are two
main directions of research: (1) complexity as an
emerging phenomenon (in natural or engineered sys-
tems) to be understood and (2) complexity as an en-
gineering problem to be tackled, mostly by reducing
the environmental complexity, or by augmenting the
system’s capabilities of coping with complexity [3].

Complexity engineering [4] can be considered
as a third direction, which currently attracts the at-
tention of an increasing number of researchers: using
complexity for engineering - not fighting against it,
but using it to the engineer’s favour. This is the
topic of this article. Under the name of emergent en-
gineering [5] argues for the same paradigm change as
we suggest with complexity engineering.

Despite a lot of knowledge about complex sys-
tems, the application of this knowledge to the en-
gineering domain remains difficult. Efforts are scat-
tered over many scientific and engineering disciplines
such as software engineering, social sciences, econ-
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omy, physics, chemistry, biotechnology, and others.
Only few of the projects cited in this article have

a systematic approach which could be applied to
other problems. This lack of general methodologies
may have various reasons. Compared to other engi-
neering branches, complexity science is quite recent,
and complexity engineering even more so. While re-
searchers observe the typical characteristics of com-
plexity in many different areas, the way of treat-
ing them or using them is mostly very individually
tailored for the specific system at hand. Further-
more, there is probably a lack of incentives for unify-
ing complexity-related methods, as researchers often
rather consider themselves as experts for their area
than as complexity engineers.

There is clearly a need for systematic approaches
and generally valid methods. The focus of this article
is therefore on how to use the findings of complexity
science for engineering, with the most prominent in-
gredients’ being self-organisation and emergence.

Complexity related research areas: Figure 1
illustrates the situation of the complexity researcher;
many different areas are related and relevant for
many different types of complex systems in nature
and engineering. A multi-disciplinary approach and
the ability to communicate with specialists from
many different domains are required. How can this
overwhelming richness of concepts be managed? Are
there useful principles?

First of all, it is necessary to very well understand
the characteristics of the system being studied, or
the requirements of the systems being engineered [6].
Second, the key concepts for success have to be identi-
fied. Most of them cannot be found in traditional en-
gineering disciplines. Third, the concepts and meth-
ods taken from non-engineering domains have to be
adapted in order to comply with engineering princi-
ples.

The inherent multi-disciplinarity requires re-
searchers able of understanding a broad range of con-
cepts, methods and principles. An example of such
multi-disciplinarity is natural computing [7], where
natural sciences meet computer science and all kinds
of bio-inspired methods are applied to engineering
issues. Another example are self-organising assem-
bly systems [8, 9], where agile manufacturing comes

together with software engineering and complexity
science. It is an area that is used for illustrative ex-
amples throughout this article.

1.1 Scope and organisation

The topic of this article is engineering, not the sole
study of complex systems. We therefore do not dis-
cuss natural complex systems, but rather consider
how to engineer artificial complex systems, and how
to use the findings of complexity science. Different
complexity disciplines are explained in section 2.

Researchers such as Lucas [10], Wolfram [11], Hol-
land [12, 13, 14, 15], De Wolf [16] and Gershenson
[17] have studied the various definitions for complex
systems and their characteristics. We therefore only
briefly consider complex systems definitions in sec-
tion 3 and lay the focus on various notions which
are important for this article, like self-organisation
and emergence. The controversies between emer-
gence, surprise, unpredictability, (non-)determinism
and others are discussed as well as the differences be-
tween distributed and decentralised control.

The survey in section 4 covers work done under
the names of emergence engineering, complexity engi-
neering and other related terms because they mostly
address the same type of system and use similar ap-
proaches. Typical application areas and concrete
cases of complexity engineering are:

• Systems engineering: systems of systems in
health care, military defense and transportation
including pedestrians, bikes, cars, buses, trains
and planes.
• Mobile robotics: swarms for maintenance and

safety.
• Manufacturing automation: agile and evolvable

production systems.
• Software engineering: peer-2-peer, multi-agent

systems, safety-critical applications.
• Communication systems: persuasive computing.
• Business / finance / economy: prediction and

influencing.
• Nanotechnology and biotechnology: cell engi-

neering, nano-robotics for medical applications.
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Figure 1: Complexity related research areas

Individual systems Systems of systems
Reducible systems Classical engineering Classical systems engineering
Systems with emergence Complexity engineering Complex systems engineering

Table 1: System types and engineering types

In section 5, we reflect on the complexity engineer-
ing approach, draw conclusions and give directions
for future work.

2 Engineering types

Complex and unconventional systems require differ-
ent mind-sets than offered by classical engineering.
This is why general and complexity-related engineer-
ing comes in various flavours. It is important for the
reader to understand the different types of engineer-
ing, some of which are only currently emerging, and
have not been established as proper disciplines yet.
This does, however, not reduce their importance and
relevance.

Table 1 gives an overview of the engineering types
and the systems which they respectively address;
these engineering types are discussed in sections 2.2
to 2.5.

2.1 Preliminary discussion

This section addresses relevant aspects and notions
which are required to understand the subsequent clas-
sification.

2.1.1 Systems of systems

Systems of Systems (SoS) are very large and complex
systems [18], composed of complex subsystems. The
entwined nature of the systems’ multiple components
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limits the success of a standard divide-and-conquer
approach [19]. Classical methodological approaches
neglect or are unable to fully capture the sources of
emergence and evolvability in distributed networks.

2.1.2 Modularity and its limitations

Modularity is a well-known way to divide a large sys-
tem into parts which can be individually designed
and modified. The modules can then be assembled
stepwise, and the system’s functionality verified ac-
cordingly [20]. This works very well for reducible
systems. Modularity is closely related to reduction-
ism, which reduces the system to the sum of its parts,
and goes contrary to the principle of emergence. Re-
ductionism is only valid if the parts are unrelated
(which is rarely the case). Nevertheless, analysing
the parts can be helpful: they are easier to under-
stand, and their sum gives an idea of the whole, even
if incomplete [21]. Also, modules are useful as build-
ing blocks to create systems which may or may not
exhibit emergent behaviour.

However, in the case of complex systems, it is
wrong to assume that the behaviour of the whole
system could be reduced to the sum of its parts [22].
The parts are often strongly dependent on each other
and interact in multiple ways. Therefore, one of the
challenges of complexity engineering is how to inte-
grate modularity into a framework which can cope
with emergent behaviour (if this should be possible).
The effects of composition arise where many, in them-
selves often simple, entities interact to form a system,
the resulting behaviour is usually not simply the lin-
ear sum of the behaviour of the individual compo-
nents [23].

2.1.3 Trade-off: creative freedom versus
specification

One of the challenges in engineering is the trade-off
between the system specification1 by the designer and

1In this section, the term specification is not used with its
meaning in computer science, but rather its meaning in man-
ufacturing engineering; a specification is a description of the
identified requirements.

the creative freedom of the system [4, 24]. More free-
dom means less control over the system’s behaviour.

Engineers need to find ways to delimit the sys-
tem’s behaviour while still allowing it sufficient cre-
ative freedom to localise solutions in an adaptive way.
Indeed, most systems exhibit certain patterns of be-
haviour, which is enough to make predictions about
system behaviour. Consequently, any state belong-
ing to the delimited patterns are acceptable. In other
words: to assure that the system will not show un-
desired behaviour, the system can be bound to a vir-
tual box 2. Inside this box, the system is free, but it
may not leave the box (Figure 2, for further discus-
sion see also [26]). While the behaviour is inside the
range specified by the desired box, no actions need
to be taken. If the system leaves this area and re-
mains inside the allowed area, no drastic measures
need to be taken, but the system should eventually
steer itself back towards the desired area. In case a
system should diverge take states which are possible,
but not allowed, immediate actions are necessary to
bring the system back on save grounds. The fact that
a system even reached this non-allowed area already
means that the working parameters or policies need
to be adjusted. The difficulties here are:

• Finding the box or pattern which corresponds
to the acceptable system behaviour. This means
that the designer has to define the limits of what
is acceptable, and then somehow relate one bor-
derline to another.
• Describing the box or pattern in a coherent

way. Besides a description in natural lan-
guage, in most cases also a computer-readable/-
understandable version is necessary.
• Agreeing a compromise between the normally

acceptable system behaviour and the additional
freedom we can concede to the system. For in-
stance, normally a mobile robot may not be al-
lowed to enter a certain area of the shopfloor.
Nevertheless, allowing it to do so under cer-

2Another way of expressing this is: ‘The behaviour of a
complex system will be a combination of pre-set objectives
and constraints as defined by the system developer, and adap-
tive islands where the system is allowed to make its own deci-
sions’ [25].
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tain circumstances may enable the other mobile
robots to execute their task in a more efficient
way, and thus it may improve the overall sys-
tem performance. This is why the designer must
find a balance between the benefits and poten-
tial dangers of crossing the border of acceptable
system behaviour.
• Staying inside the box.

To conclude, the trade-off between creative free-
dom and specification is an important issue, and fur-
ther investigation is necessary.

Figure 2: Desired, allowed and possible areas (boxes)
of system behaviour

2.1.4 Complexity science versus complexity
engineering

Complexity science, the study of complex systems,
has seen an increasing interest in the last decades,
pioneered by the Santa Fé Institute in New Mex-
ico, USA [27]. Ever since, characteristics of com-
plex systems in diverse areas have been thoroughly
studied. Only few authors, however, take an engi-
neer’s perspective towards using the findings of com-
plexity science for designing systems, even though
the term complexity engineering appeared already in
1986 in the context of pattern recognition in cellular
automata [11].

As we use it today, complexity engineering aims
at the concrete use of complexity-inspired methods
for engineering. ‘In complexity science, one looks for
underlying and unifying principles among many sys-
tems. In complexity engineering, we look into these
different systems and their underlying principles from
the point of view of application’ [4].

Complexity engineering has not been established as
a proper discipline yet. Literature about methods or
frameworks is still scarce. One of the reasons may be
basic misunderstandings over common terms such as
emergence, for instance. The seeming contradiction
between engineering and emergence may arise be-
cause engineers freely move from so-called predictive
definitions, in which emergence is equated to surprise,
towards definitions of strong emergence where higher-
level patterns can be used as design templates [28].
To overcome such problems, the broader dissemina-
tion of clear definitions (see section 3.4) is important.

The techniques and concepts from complexity sci-
ence need to be formalised in order to be usable in
engineering [4]. Most complexity research is still in
an early stage of development, in the ‘trial and error
intuitive engineering phase’. So far there are almost
no methodologies, no common language and no com-
mon body of experience. Only a collection of exam-
ples, methods and metaphors for modelling complex,
self-organising systems exist. Integrated theoretical
foundations are still lacking [29].

This situation is a strong motivation to our endeav-
our to establish complexity engineering as a broadly
known discipline, to deliver useful definitions, and
to give an overview of the existing methods and ap-
proaches.

2.2 Classical engineering

Classical engineering is what is taught in most com-
mon engineering courses at universities, and what
most scholarly books transmit. The engineering sci-
ences have centuries old traditions, and in compari-
son, complexity science is relatively recent. It is still
mostly considered as somewhat alternative, and we
therefore refer to the ‘old’ school as classical or tra-
ditional.

Such engineering is essentially applying methods
and tools to solve problems using a reductionist ap-
proach, be it top-down or bottom-up. This means
that ‘what you see is what you get’, and there is no
space to consider concepts like emergence.

Classical engineering, the majority of scientific
models as well as our intuitive understanding are
based on reductionism or analysis, predictability and
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objectivity, determinism, correspondence theory of
knowledge and rationality [17]. An example could
be the divide and conquer strategy of software devel-
opment strategies and Newtonian mechanics [29]: a
problem is cut into its simplest components, and each
of them is treated separately. They are described in a
complete, objective and deterministic manner. Once
each of them is resolved individually, then they are
joined and, voilà, the entire problem is solved. Most
engineers would indeed make the (often reasonable)
hypothesis that the parts interact in some well-known
and predefined ways without further influencing each
other. Modularity then works at its perfection.

For application examples of classical engineering
see Table 2.

2.3 Classical systems engineering

Systems engineering, as described by the interna-
tional council on systems engineering (INCOSE), is
an interdisciplinary approach focusing on all aspects
of systems. It considers all phases of a product, from
its concept to production, operation and disposal,
as well as all the involved parties, such as suppliers,
manufacturers and customers. Although systems en-
gineering attempts to consider the entire system in-
stead of only parts of them, it is indeed a classical
engineering approach because it ignores emergence
and related concepts.

Systems engineering emphasises the importance of
managing the whole as well as its parts, of seeing the
interconnectedness of decisions, of taking a collective
view.

For application examples of classical systems engi-
neering see Table 3.

2.4 Complexity engineering

Complexity engineering is the creation of systems us-
ing tools originating from complexity science. The
question is not so much in which ways complexity
engineering would be better than classical engineer-
ing, but rather, in which situations classical engineer-
ing comes to its limits, and complexity engineering
can help. This is mostly the case with complex sys-
tems (discussed in section 3.1): systems which are

composed of many interacting components, where
the interactions are multiple and changing in time;
open systems; systems which have to function in a
dynamic environment and strongly interact with it.
Complex systems use adaptation, anticipation and
robustness to cope with their often unpredictable en-
vironment [17], and complexity engineering therefore
requires tools which take these issues into account.

Such systems, said to have emergent functional-
ity [30], are useful in cases where there is a lot of
dependence on the environment and it is difficult or
impossible to foresee all possible circumstances in ad-
vance. Traditional systems are therefore unlikely to
be able to cope with such conditions. Systems with
emergent functionality can be seen as a contrast to
reducible systems and usually hierarchical function-
ality; the latter means that a function is not achieved
directly by a component or a hierarchical system
of components, but indirectly by the interaction of
lower-level components among themselves and with
the world. Careful design at micro-level leads to be-
haviours at macro-level which are within the desired
range.

Typically, no single entity within the system knows
how to solve the entire problem. The knowledge for
solving local problems is distributed across the sys-
tem [17], and together, the entities achieve an emerg-
ing global solution. The right interactions need to
be carefully engineered into the system, so that the
systems self-organising capabilities serve our purpose,
i.e. they do satisfy and support the requirements [4].

Complexity engineering will not lead to systems
which are unpredictable, non-deterministic or uncon-
trolled. The output (i.e. certain aspects) may be
predicted and controlled - it is how the system ar-
rived to that output that can not be known, complex
or not computationally reproducible [4]. However, it
remains an open question if the latter is acceptable
for all application domains. The system’s develop-
ment cannot be completely separated from the sys-
tem’s operation in the case of a complex system [1].

For application examples of complexity engineering
see Table 4.

6



Engineering area Application example
Software engineering planning algorithms
Mechanical engineering construction of a crane
Electrical engineering hierarchical control of a machine
Production engineering dedicated assembly station
Biotechnology fruit fly breeding

Table 2: Application examples of classical engineering

Engineering area Application example
Software engineering large database systems with several subsystems
Mechanical and electrical engineering cars, trains, ships, air planes
Production engineering dedicated assembly line
Biotechnology production of vaccines

Table 3: Application examples of classical systems engineering

Engineering area Application example
Software engineering peer to peer systems, grid
Mechanical and machines made of intelligent’ materials, which
materials engineering recognise when parts undergo too much strain
Electrical engineering traffic control
Production engineering individual evolvable assembly systems
Biotechnology tissue engineering, growing organs in the test tube

Table 4: Application examples of complexity engineering
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2.5 Complex systems engineering

In contrast to classical systems engineering, which
treats reducible systems, complex systems engineer-
ing will apply the methods from complexity engineer-
ing to systems of systems. Complex systems engi-
neering [31] is appropriate to address problems which
are continually changing or which require concepts at
multiple scales or levels to be fully understood. The
notion of higher and lower scales of conceptualisa-
tion give rise to the metaphor of a ladder of scales,
in contrast to the often-used concept of a hierarchy
of scales.

Complex systems engineering is typical for cases
where systems of systems constantly evolve, where
different parts integrate or compositions dissolve at
any instant. There is both internal competition and
collaboration which stimulates evolution. Specific
outcomes of complex-system development cannot be
specified in advance. But they can be shaped (i.e.
strongly and persistently influenced) [32], for instance
by guiding policies as used in MetaSelf [33].

For application examples of complex systems engi-
neering see Table 5.

2.6 Inspiration from nature

Not only complex systems, but also nature in gen-
eral inspires many researchers and engineers. The fol-
lowing classification attempts to structure this broad
field.

Bio-inspiration in technology can take various
forms. Each of them has particular goals and strate-
gies, and researchers should be aware of them. The
items 1, 2a and 2b on the following list correspond
to the three research phases of inspiration by nature
described in [6]. The last three items are additional.
Table 6 gives an overview of inspirations and appli-
cations.

(1) Using technology to understand natural
systems: Biologists, chemists and physicists have
for a long time been using technological tools to help
them investigate natural systems and to verify the
established models. The palette of such tools in-
cludes oscilloscopes, gyroscopes as well as compound
pendulums. More recently, computers allowed re-

searchers to run large-scale simulations with thou-
sands of iterations. Even more sophisticated, nowa-
days researchers use robots to emulate natural sys-
tems, and they even succeed in incorporating robotic
’cockroaches’ into real cockroach swarms [35, 36].

(2a) Using ideas from natural systems to
make lab experiments and find usable mecha-
nisms: This refers to the experimental phase of bion-
ics. Researchers understood long ago that they can
learn from nature and use mechanisms discovered in
natural systems to solve engineering problems. How-
ever, most mechanisms need to be adapted in order
to be usable, and this can only happen through an ex-
perimentation phase in the lab. Different versions are
often discovered by changing the initial mechanisms,
and the researchers can let their creativity play.

(2b) Using ideas from natural systems to
build industrial technology: The final goal of
most bionic developments is using them in real-world
applications. This means that they have to com-
ply with industrial standards. It has been achieved
for many technologies, such as ultrasound, radar
and sonar systems, dolphin-shaped boats, ultra-
hydrophobic and self-cleaning surfaces based on the
Lotus effect, and cat-eye reflectors. Researchers now
increasingly approach distributed and autonomous
adaptive systems, which are more difficult to build
than other bionic applications.

(3) Using the ‘engineering toolbox’3 on nat-
ural systems: Denominated biotechnology, bio-
medical engineering, genetic engineering or similar,
these disciplines use engineering technology on natu-
ral substrates such as living cells, bacteria and some-
times higher animals. Researchers grow virus cells in
tanks to produce vaccines, they try reproducing epi-
dermic tissue and inner organs or genetically modified
animals. Many different technologies are being used
to diverse purposes. As a specific example, when a
certain gene is implanted and then inherited to future
generations, cancerigenous cells can become fluores-
cent, which facilitates their identification under the
microscope4.

3Safe synthetic biology, see http://www.synbiosafe.eu
4Explanations from the Biotechnology lectures (academic

year 2004-2005) by Prof. Florian Wurm at the Swiss Federal
Institute in Lausanne, Switzerland
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Engineering area Application example
Software engineering self-organising displays [34]
Electrical engineering large scale traffic management
Production engineering evolvable assembly systems including their supply networks and customers
Biotechnology man-made biological ecosystems
Robotics open mobile robots coalitions

Table 5: Application examples of complex systems engineering

(4) Using biotechnology methods for soft-
ware engineering: Researchers in computer sci-
ence now often take inspiration from methods used
in biotechnology, in particular in cell engineering.
Methods which work for living cells supposedly also
work for software agents.

(5) Using ideas from engineering to build
new models for understanding natural sys-
tems: Probably the most recently initiated discipline
considers architectures and mechanisms used by en-
gineers to create technological systems which have
nothing to do with natural systems. Natural scien-
tists then use such ideas to build new models for un-
derstanding natural systems [37], in the sense that if
engineers have come up with ideas, maybe nature has
invented them long ago.

Complexity engineering, as treated in this article,
belongs to the class 2a / 2b in the sense that it uses
inspiration from nature for engineering.

3 Definitions and terms

Many of the terms discussed in this article are of-
ten used with an intuitive understanding in colloquial
speech. Also in scientific work, they take varying
meanings. The following subsections discuss the def-
initions of these terms in scientific use.

Agents: By agent we refer to an entity which is
able to act in a fairly autonomous way, according
to norms / rules / policies and in order to achieve a
goal. An agent can be something like an ant, a human
person, a robot or a software agent. It consists of
some kind of brain or computational power and often
also has some kind of embodiment.

Systems: As a working definition, a system may be
considered as a set of entities (often agents), which
interact with each other as well as with the environ-
ment, and some infrastructure or passive components
/ entities.

3.1 Introduction to complexity

Complexity issues have been studied within various
contexts, for instance: physical phenomena [38], cel-
lular automata [11, 39], ICT systems [19], supply
chain networks [24], management [40], networks [3,
41], modelling [42], the laws of diversity [43], natural
disasters such as earthquakes [44] and epidemics [45],
adaptation in [12, 13, 14, 15], the dynamics of com-
plex systems [46], chaos theory [47], and engineer-
ing aspects [48, 49, 50, 51, 22, 52, 53, 54]. The
search of the mechanisms behind emergence and self-
organisation has also been approached by many com-
plexity researchers, such as [55, 56, 57, 30].

In some way, many open questions are related to
each other, and common characteristics can be identi-
fied when investigating, for instance, how often earth-
quakes of a certain strength happen, why certain
neighbourhoods become dangerous, how and why epi-
demics spread, through how many degrees of separa-
tion we are linked to any other person in the world,
etc. The study of non-linear systems, dynamic sys-
tems, differential equations, non-determinism is inti-
mately related to the nature of intelligence, the cre-
ation of structure and organisation, the creation of
life, emergence, self-organisation, the micro- and the
macro-scale etc. Table 7 places complexity between
deterministic and statistical science, in terms of the
scope in time and numbers of entities considered.

CALResCo [10] is a valuable source for all kinds
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Phase Inspiration / assisting tools Application / goal
(1) Technological tools Understanding natural systems
(2a) Natural systems Lab experimentation
(2b) Natural systems Industrial engineering, technology
(3) Engineering methods Biotechnology on living substrates
(4) Biotechnological methods Software engineering
(5) Software engineering methods Building artificial models to understand natural systems

Table 6: Engineering and natural systems

of question concerning complexity science, which
searches the laws that apply at all scales, the inherent
constraints on visible order. Typical systems may be
described as: ‘Critically interacting components self-
organise to form potentially evolving structures ex-
hibiting a hierarchy of emergent system properties.’
This is a confirmation that the study of complexity
science may prove to be useful for agile manufactur-
ing.

The study of complex systems requires a concep-
tual framework which should include three different
perspectives [58]: non-linear dynamics and chaos the-
ory, statistical physics including discrete modelling,
and network theory, which is especially useful for un-
derstanding the Internet and other communication
networks, the structure of natural ecosystems, the
spread of diseases and information, the structure of
cellular signalling networks, and infrastructure ro-
bustness.

Some authors’ strategy is to avoid complexity as
far as possible, and they use metrics to determine
the degree of complexity of a given configuration [59].
Most researchers, however, aim at gaining a better
understanding of complexity before dismissing it as
assumingly being disturbing or useless.

The assumption that principles and mechanisms
which are successful in nature will also work in tech-
nology / engineering is not undoubted. Besides the
numerous similarities they share [6], there are also
important differences between nature and engineer-
ing [60]. Namely:

• In nature, there is time and space for failures. In
engineering, we must get it right the first time
(or at least very soon after a test phase), and we
must avoid failures.

• The main goal is (supposedly) only survival of
the species. In technology, we have very specific
goals.

Taking these differences into consideration is cer-
tainly sensible.

3.1.1 Complexity definitions

For instance, industrial assembly systems are com-
plex; there is a plentitude of often conflicting inter-
ests and objectives being pursued, and the overall
behaviour of the system results from the behaviour
of many individual components which mutually and
multi-laterally5 influence each other. Complexity sci-
ence is an area of research which studies exactly this
kind of systems, and is therefore potentially a use-
ful tool for assembly engineers. To understand how
complexity might help, it is necessary to understand
complexity itself - which is not evident, especially
as it comes in many different flavours, depending on
both the field of research and the researcher.

Complexity can be defined as ‘the name given to
the emerging field of research that explores systems
in which a great many independent agents are inter-
acting with each other in many ways’ [27]. Examples
of such systems [21] could be electrons and molecules,
which require cohesive and disruptive forces to work
the way they do. Instantiations of this principle are
ordering and disordering forces, kinetic energy and
binding energy, coherence and disruption, transac-
tion cost and administrative cost, etc.

Quite different sounds this definition:

5Multi-lateral describes a relationship with several peers at
the same time.
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Short term Mid term Long term
1, 2, 3, ... a few Thousands, ten-thousands, ... Millions, billions, ...
Deterministic Science Complexity Theory: Statistical Science,

anything having interacting parts Quantum Theory
and undergoing continuous change

Table 7: Complexity

[Complexity is] ‘that property of a lan-
guage expression which makes it difficult to
formulate its overall behaviour, even when
given almost complete information about
its atomic components and their interrela-
tions’ [61].

Various researchers have tried to classify complex-
ity types:

• Random complexity, probabilistic complexity,
deterministic chaos, emergent complexity and
Newtonian dissipative structures [62].
• Effective complexity versus underlying simplic-

ity with a certain amount of logical depth, which
may also seem complex [23].
• Complexity can also be classified by the follow-

ing characteristics [63]:

– Time-related: static or dynamic.
– Organisational: process-related or struc-

tural.
– Systemic: internal or external.

• The external complexity [64] is the amount of
input, information, or energy obtained from the
environment which the system is capable of han-
dling. The internal complexity is the complexity
of the input representation which the system re-
ceives. Complex systems often increase their ex-
ternal complexity to reduce their internal com-
plexity.

Complexity is characterised by non-linear relation-
ships between parts, openness, feedback loops, emer-
gence, pattern formation, and self-organisation [65].
In linear systems, effect is directly proportional to
cause, whereas in non-linear systems, the effect may
be any. Non-linearity comes in many flavours,

tending to occur when a system’s interactions are
multiple, ecologically embedded, non-additive, in-
separable, heterogeneous, interactive, asynchronous,
lagged, or delayed [19].

3.1.2 Complex systems

Complex Systems (CS) can be defined in various
ways. Most scientists consider CS as being com-
posed of a large number of relatively simple hetero-
geneous components, which interact multi-laterally
and in changing ways; collective behaviour emerges.
The interactions sometimes result in non-linear be-
haviour, and there are multiple feedback loops. Com-
plex systems often evolve, adapt, and exhibit learning
behaviours. They typically exhibit emergence and
are often self-organised.

The original Latin word complexus signifies en-
twined or twisted together [66]. A complex system
is thus made of more than one part, and the parts
are at the same time distinct and connected. It is
therefore inherently difficult to model them. Often,
there are circular causal relationships: one part in-
fluences the other, which in turn influences the first,
and so on.

Complex systems refer to ‘a set of systems which
share some common behavioural and structural prop-
erties’, where the meaning of structure can be spatial,
temporal or functional [65].

The micro-level interactions between parts of the
system may either be independent or coherent, re-
sulting in different collective behaviours [65]:

• Coherent interactions: coordination at micro
scale only.
• Independent interactions: random behaviour at

micro scale, coordination at macro scale.
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• Correlated behaviours: coordination at micro
and macro scale.

3.1.3 Complex Adaptive Systems

Systems which emerge over time into a coherent
form, and adapt and organise themselves without
any singular entity deliberately managing or control-
ling it, belong to the class of Complex Adaptive Sys-
tems (CAS) [14]. CAS are many-body systems, com-
posed of numerous elements of varying sophistication,
which interact in a multi-directional way to give rise
to the systems global behaviour. The system is em-
bedded in a changing environment, with which it ex-
changes energy and information. Variables mostly
change at the same time with others and in non-linear
manner, which is the reason why it is so difficult to
characterize the system’s dynamical behaviour.

CAS often generate ‘more of their kind’ [23], which
means that one CAS may generate another. To char-
acterise them, researchers describe their components,
environment, internal interactions and interactions
with the environment.

It remains open if there are complex systems which
are not adaptive. Some researchers agree, as, depend-
ing on its definition, adaptivity may require diversity
and natural selection, as shown in ecosystems [65].

3.2 Self-organisation

A well-known definition was suggested by Camazine
et al. [57]:

‘Self-organisation is a process in which
patterns at the global system emerges
solely from numerous interactions among
the lower-level components. Moreover the
rules specifying interactions among the sys-
tem’s components are executed using only
local information without reference to the
global pattern.’

The following definition is a few years more recent:

Self-organisation is the dynamical and
adaptive mechanism or process en-
abling a system to acquire, maintain and

change its organisation without explicit ex-
ternal command during its execution time;
there is no centralised or hierarchical con-
trol. It is essentially a spontaneous, dynam-
ical (re-)organisation of the system struc-
ture or composition’ [67, 68].

The identification of a boundary of the system is
extremely important when deciding if a system is self-
organising or not: defining an entity with controlling
influence as external disqualifies a system from being
self-organised, whereas the situation is different if the
entity is considered as being internal.

By some researchers, self-organisation may also be
seen as the spontaneous creation of globally coherent
pattern out of local interactions [56] (although this
is usually considered as the definition of emergence,
see section 3.4). This shows how controversial the
research area still is.

Preconditions for having self-organisation in en-
gineered systems, based on characteristics discussed
in [69, 70, 68, 56], are:

• Autonomous and interacting units.
• No external control; the question of correspond-

ing system boundary definition arises.
• Positive and negative feedback. For instance

monetary rewards / punishments for successful
collaboration and achievement of tasks respec-
tively contract breaching or failures.
• Fluctuations / variations which lead to the

typical far-from-equilibrium state, which is in
manufacturing systems given by disturbances
and changing production requirements, such as
changing volumes and fluctuating part deliveries
or equipment down-times.
• Safety measures in case the system should drift

towards undesired or harmful behaviour.
• A flat internal architecture, as opposed to a hi-

erarchical one, with dynamically changeable or-
ganisation of the interacting agents.

Adaptation means achieving a fit between system
and environment; thus every self-organising system
adapts to its environment [56].

Mechanisms which lead to self-organisation in
engineered systems include stigmergy (known from

12



social insects, such as ants releasing pheromones
in the environment), gossip, trust, collabora-
tion/competition, swarms (as seen in schools of fish
or flocks of birds), and chemical reactions. Most of
these mechanisms happen according to a set of rules
which can be identified. For instance, the entities
in swarms respect three principles, such as (1) ad-
vance, (2) stay close to your peers, and (3) avoid col-
lisions. Depending on the case and the mechanism,
the rules can be more numerous, more complicated,
and more complex. For engineering purposes, they
may be adapted and extended.

A working definition for self-organisation seen from
an engineering perspective is given in section 3.2.2.

3.2.1 Weak and strong self-organisation

When it comes to concrete applications, it makes of-
ten sense to differentiate between weak and strong
self-organisation. Not all cases do fully comply with
the rules’ of strong self-organisation, but still, there
is some form of self-organisation.

In the strong case, the self-organisation happens
without any centralised control, whereas in the weak
case, there may be some internal (centralised) control
or planning [71].

3.2.2 Working definition of self-organisation

After studying the existing definitions in literature
as well as an engineering perspective on complexity
concepts, we suggest the following working definition,
based on the research done and experience gained in
the scope of our work [8]:

Self-organisation: Systems which self-organise
are typically composed of many, at least partially
autonomous components. These components have
certain characteristics and skills, and have at least
one way of communicating with their peers and the
environment. The environment dynamically changes
and influences the system. The components engage
in interactions with their peers; they may collabo-
rate, compete, negotiate, gossip, and establish vary-
ing levels of trust between each other. This depends
on the mechanism which leads to self-organisation.

The components may have individual goals, but also
shared or global goals. The system is not under any
type of external or central control, although in en-
gineered systems, the self-organisation process hap-
pens according to certain rules which were defined
by the system designer. These rules may be dynam-
ically changed, even at run-time, and thus allow the
designer to influence the system at any time. Self-
organisation is scalable, robust, and fault-tolerant,
i.e. insensitive to small perturbations and local errors
as well as component failure, thanks to redundancy.
Self-organising systems exhibit graceful degradation,
meaning that there is no total break-down because
of minor local errors. Self-organisation is a dynamic
process in many-body systems and may occur with
or without emergence.

3.3 Self-* properties

In literature, diverse interpretations of self-
organisation, self-adaptation, self-healing, self-
management, self-(re)configuration and emergence
can be found. Many of them focus on one single
term; only few mention the links between the
concepts. For instance, self-adaptation is included
in self-managed systems, and self-management
is included in self-organisation, according to the
classification in [72].

One important differentiation to be made is the
direction of the property: self-organisation and self-
healing are bottom-up, whereas self-adaptation, self-
management and self-healing are top-down, as illus-
trated in Figure 3.

Besides the differences in the orientation (bottom-
up or top-down), most often the name given to the
property is a question of the focus: the behaviours
can sometimes not even be clearly classified as ‘pure
organisation’ or ‘pure healing’ etc., and most often
self-* properties have an emergent character. As
an example, when a system re-organises its inter-
nal structure to recover from a failure, is this self-
organisation or self-healing? Is self-organisation used
for self-healing? Or is it emergence, because the pro-
cess is based on local rules and produces a new, global
result? It depends on the rules which define the be-
haviour, but an observer may not know them.
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Figure 3: Bottom-up and top-down self-* properties

De Wolf suggested a taxonomy of self-* proper-
ties [73] which focuses on decentralised autonomic
computing and discusses characteristics of self-* prop-
erties and implications for their engineering. Among
other criteria, the taxonomy considers if a self-* prop-
erty is achieved on macroscopic or microscopic level,
if it is on-going or one-shot, if it is time/history de-
pendent or independent, if it evolves in a continuous
or abrupt way, and it is adaptation-related or not.
The taxonomy gives examples of mechanisms leading
to self-* properties and classifies application exam-
ples according to the considered characteristics, but
it does not indicate to which kind of self-* property
a mechanism or application belongs.

Even though the following classification is general,
the following non-exhaustive list of working defini-
tions is influenced by the domain of robotics and ar-
tificial intelligence. These working definitions [6] are
not conclusive, but they give indications and con-
tribute to a base for further research: they intend to
trigger other researchers to reflect about them. The
term self generally refers to the absence of external
control. After a general description, an application
to assembly systems follows.

Self-adaptation: a system adjusts itself to chang-
ing conditions without major physical modifications.
� For instance, in the case of an industrial assembly
system [8], when more urgent orders arrive, a robot
can increase its working speed.

Self-configuration: a system prepares itself for
functioning, including the adjustment of parameters
and calibration. � A robot adjusts its movement
accuracy to the desired value.

Self-reconfiguration: mostly encompasses self-
adaptation and self-configuration, but also some
physical change (including software and hardware).
� When a conveyor module fails, and there is an
alternative conveyor path to reach the affected des-
tination, the modules adapt their behaviour and use
the alternative path until the module has recovered
from the failure. Alternatively, a new conveyor mod-
ule is requested from the user and integrated into the
existing system.

Self-organisation: a system creates or adapts its
own structure to reach a goal. �Modules form coali-
tions to provide the requested skills.

Self-assembly: sub-systems or modules connect
with each other to form the whole. � A robot self-
assembles with a gripper which it can autonomously
pick up from its toolwarehouse.

Self-disassembly: a system decomposes itself
into sub-systems or modules. � A coalition which is
not necessary any more disassembles. For instance, a
robot will place its gripper back in the toolwarehouse.

Self-diagnosis: modules can find out and state
what is wrong with themselves. � A feeder which
cannot provide parts will check if there are no ready
parts inside, or if there is a blockage, or if there is
any other problem preventing normal functioning.

Self-repair / self-healing: a system can treat its
problems and maintain or re-establish functionality.
� A blocked feeder will restart its software, execute
calibration movements, and if still blocked, ask the
user for help.

Self-reproduction / self-replication: a system
can create a copy of itself. � A module coalition
incentivises suitable modules to form the same type
of coalition.

Self-protection: a system can protect itself from
intruders or attacks. � In case an assembly system
was open enough for strangers to gain access to it, for
instance over the Internet, it would need to protect
itself from harm.

Self-control: the system steers itself. � The
modules control their own behaviour, for instance
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guided by policies.
Self-management: a system can take care of it-

self. This may include self-protection, self-healing,
self-configuration, self-optimisation, self-adaptation
etc. � At production time, the modules maintain
themselves as well as their neighbours in good condi-
tions. They manage their multi-lateral interactions,
provide the requested services, schedule maintenance
etc.

3.4 Emergence

Emergence describes how order appears out of
chaos [15]. Both emergence and self-organisation
(section 3.2) are concepts which first appeared in
physics (phase transitions) and chemistry (molecules
and material properties), and were then also observed
in other domains, including biology (cells, DNA,
brain, etc.), game theory, social science, economics
and engineering. A general theory of emergence is
still missing [74].

Most systems which exhibit emergence can be
modelled in terms of the interaction of agents. Build-
ing blocks are combined to form a higher level system.
Emergent phenomena are often hierarchical: complex
ones are composed of simpler ones [14].

Definitions found in literature include:
Emergence is a bottom-up effect, which generates

order from randomness [75]. It results in a self-
organised increase of order, in space or time. A
global behaviour arises from the interactions of its
local parts; cannot be traced back to the individual
parts [70]. Desirable and undesirable emergent be-
haviour in distributed systems results from the non-
linear interaction of completely deterministic pro-
cesses [76]. None of the entities composing the system
knows how to achieve the emergent phenomenon [68].

Although controversial, emergence does not only
exist in the eye of the observer; it is intrinsic to the
system [15]. Novelty does not depend on the experi-
ence of the observer, neither. It refers to the new class
of words used to describe the global phenomenon,
new in the sense of different from those used for the
local level description. However, novelty is not the
same as surprise, as surprise is related to the prepa-
ration of the observer, and novelty is not.

According to Holland [15], for engineered systems,
emergence happens according to rules. The design-
ers have to find the level of detail where they can
set the rules and therefore control emergence. No-
tice that also this is a very controversial statement,
as for most other researchers, this describes self-
organisation, and not emergence.

It is mostly agreed that an emergent property [21]:

1. of a whole is not the sum of the characters of its
parts.

2. is of a type which is totally different from the
character types of its constituents.

3. is not deducible or predictable from the be-
haviours of the constituents investigated sepa-
rately.

A resultant is different from an emergent [21]: A
resultant is closely tied to the material content of
the constituents. Linear systems have resultant be-
haviours and are traceable. The principles of super-
position, aggregation and additivity apply. An emer-
gent has a structural aspect, there is novelty and non-
additivity. For instance, conductivity is resultant,
whereas superconductivity is emergent. Neverthe-
less, both properties involve the same ’ingredients’.
Emergent properties can in principle be predicted by
analysing the lower levels; in practice, we are not al-
ways capable of doing it [10].

Different forms of emergence [77] exist: Di-
achronic: develops in time. This may happen when
new technologies are introduced and they combine
with previously existing modules. Synchronic: dif-
ferent ways of looking at a given info from one level
to another, e.g. emergence of a significant pattern,
structure or form from the point of view of a given ob-
server. Descriptive: synchronic, but not related just
to the observer’s conceptualisation and description;
objective emergence if causal effect on environment.
May occur when new system behaviours cause the
user to take previously not necessary actions. Cog-
nitive: becoming aware of previously ignored knowl-
edge. A system designer or user may experience this.

Some authors consider that not only system char-
acteristics may emerge, but also goals [78] and func-
tionalities [79, 30]. In the context of engineering, this
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may be interpreted as systems which can do things
they were not made for.

A working definition for emergence seen from an
engineering perspective is given in section 3.4.2.

3.4.1 Weak and strong emergence

To bring the classical notions of emergence, discussed
before, closer to the reality of engineered systems, two
classes of emergence are proposed [16, 80]:

For strong emergence, the global level must show
further development. There is non-linear dependence
of the global functionality on the components and
their interactions between themselves and the envi-
ronment.

Weak emergence means that the local-to-global de-
pendence may be quasi-linear - but still, the appear-
ance of the global phenomenon is not self-evident and
needs some kind of inspiration.

‘A macrostate is weakly emergent if it
can be derived from micro-states and micro-
dynamics but only by simulation’ [81].

3.4.2 Working definition of emergence

After studying the existing definitions in literature
as well as an engineering perspective on complexity
concepts, we suggest the following working definition,
based on the research done and experience gained in
the scope of our work [8]:

Emergence: Systems exhibiting emergence most
often consist of at least two different levels: the
macro-level, considering the system as a whole, and
the micro-level, considering the system from the point
of view of the local components. Local components
behave according to local rules and based on local
knowledge; a representation of the entire system or
knowledge about the global system functionality is
neither provided by a central authority nor reachable
for the components themselves. They communicate,
locally interact with each other and exchange infor-
mation with the environment. From the interaction
in this local world emerge global phenomena, which
are more than a straight-forward composition of the

local components’ behaviours and capabilities. Typ-
ically, there is a two-way interdependence: not only
is the global behaviour dependent on the local parts,
but their behaviour is also influenced by the system as
a whole. Nobody in the system knows how to achieve
the emergent phenomenon, and nobody has complete
knowledge of the system or a global observer’s per-
spective. An emergent phenomenon is a structure
or pattern, visible at global level.

3.5 Chaos

A system may be viewed as deterministic if the
current state(s) of the system determine its future
state(s) in the presence of random noise, environmen-
tal inputs and unknown initial conditions; a deter-
ministic dynamic system whose behaviour is hard to
predict is called a chaotic system [65].

Chaos in common language means confusion or the
lack of fixed principles, whereas chaos in mathemat-
ics is behaviour according to certain rules [21]. The
methods for mathematically describing chaotic be-
haviour founded by Poincaré and Lorentz bring struc-
ture into seemingly random behaviour [27].

Chaos is different from randomness: chaotic sys-
tems behave according to strange attractors. This
means that under a set of conditions (i.e. within the
attractor basin), a system will always move towards a
certain state or set of states. To leave them, the sys-
tem requires a certain energy input (disturbance). In
mathematical terms, chaotic systems are determinis-
tic, whereas randomness has no structure at all.

In complexity terms, entropy is the tendency of
systems to create chaos from order, while extropy is
the tendency of systems to create order from chaos
(that is, emergence) [10].

Chaotic systems have been discovered in domains
as diverse as mathematics, physics, biology, chem-
istry, meteorology, fluid dynamics, astronomy and
statistical mechanics and logistics [82]. Also indus-
trial assembly systems exhibit chaotic behaviour:

• cause and effect are not always in a linear rela-
tion, as a small perturbation may cause a total
system breakdown;
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• a successful assembly system will tend towards
an attractor which stands for the correctly as-
sembled product, although it may assume differ-
ent states on the way there;
• assembly system behaviour is bound to certain

limits (robots cannot suddenly start doing crazy
things), although within the given boundaries,
the behaviours may vary (different robots may
dynamically take over the insertion of a bolt, ac-
cording to their availability and performance).

3.5.1 Sensitivity to initial conditions

The butterfly effect stands for sensitive dependence
on initial conditions. Little causes do not necessarily
lead to little effects, and big causes to big effects. Fu-
ture outcomes are arbitrarily sensitive to tiny changes
in conditions [23]. Simple mechanisms may cause
considerable complexity, as well as complex sources
may lead to simple phenomena. In the same sense,
complex systems can give rise to turbulence and co-
herence at the same time. Brought to a simple for-
mula, we may say: ‘In the middle of chaos, there is
order. In the middle of order, there is chaos’ [83].

Manufacturing systems often exhibit sensitivity to
specific conditions and to disturbances. Certain fac-
tors, like energy disruptions or an abnormal increase
of temperature and humidity may lead to system
breakdown, while others have no significant effect (for
instance, the occurrence of extreme noise would dis-
turb human operators, but not bother robots). Some
disturbances may have consequences in some cases,
but lack any effect in others. For example a robot
using optical sensors reacts sensitively to changing
light conditions, whereas a robot working with tac-
tile sensors remains unaffected.

3.5.2 Edge-of-chaos

Various terms are being used for the state somewhere
between stable order and chaos (see Figure 4), among
others: dynamic order, instability in order, and self-
organised criticality [44, 45].

Constantly stable equilibrium states would block
evolution. Dynamic systems get again and again into
states where a little stimulus can trigger a major re-

action. This gives the systems energy to evolve and
makes new phenomena emerge. ‘The edge of chaos
is a point between chaos and order when creativity
and stability fuse, where living systems are at their
most inventive, where there is the highest chance that
something distinct and unique will emerge’ [84].

Figure 4: Somewhere between order and chaos

Analogies may be drawn between sand piles, earth
quakes, wars, extinctions of species and revolu-
tions [85]. The world organises itself into a criti-
cal state at the edge-of-chaos: small events can stay
small or grow to enormous importance and have
heavy consequences. The power law describes such
phenomena. It expresses that if we double the energy
(or any other quantity being studied), the probability
of the phenomenon to appear is half, a quarter, etc.
For instance, if the probability of an earthquake of
strength x to happen is y, the probability of an earth-
quake of 2x to appear is y

2 . All events can have the
same kind of trigger. There is no fundamental differ-
ence between small and big events. No-one knows if
the next event falls onto a finger of instability, which
leads to its propagation, or if it will stay small and
not propagate. When building models of such events,
it is often possible to greatly simplify. Researchers
will find the same power laws in their models as in
reality, if the fundamentals of the models are correct.
It is at the edge-of-chaos that epidemics do or do not
spread [45].

Failures and perturbations in manufacturing sys-
tems often follow power laws as well. This is why
the systems must be able to cope with frequent small
failures as well as with big rare ones.

3.5.3 Phase space / state space

Phase space or state space diagrams are used to rep-
resent the behaviour of systems, with all the states
which are reachable for a system, and the transitions
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in-between, as a function of system parameters. The
bifurcation diagram shows where the previously uni-
form behaviour of a system separates into different
directions, and possibly diffuses into an unlimited
number of different behaviours.

An attractor is a state towards which a system will
always tend, as long as it is under a set of initial
conditions. The Lorentz attractor and other strange
attractors describe systems which never quite settle
into a state, but eternally oscillate within a certain
range of states, never taking the same state twice [86].
If we know a system’s strange attractor and its di-
mensionality (the number of dimensions of the corre-
sponding state space), we can make predictions about
the systems behaviour, for instance the performance
of an automated production line [86].

3.5.4 Noise, perturbations and local maxima

Perturbations are a challenge and a chance at the
same time. Systems must cope with perturbations
and not let themselves drift away from their nor-
mal functioning. However, perturbations can also be
helpful: systems which require some kind of optimi-
sation may tend to be stuck in local minima and thus
not be able to evolve towards better solutions without
the system being disturbed or otherwise stimulated.

The cybernetic law of requisite variety by Ashby
[43] teaches that the greater the variety of possible
perturbations, the greater the variety of controlling
actions it needs. This means that a system which is
always perturbed in the same way, will always require
the same corrective measures. However, if there is a
plenitude of different influences on the system, it will
need a correspondingly varied set of ways of reacting.

Complexity engineers should try to use perturba-
tions to their benefit. For instance, when a robot fails
and other robots resolve to collaborate in an unusual
way to cope with the failure of their peer, this new
collaboration may be discovered as an efficient way of
executing the task, and thus be retained for further
use even after the peer’s reparation.

3.5.5 Further concepts

The concepts described in this subsection have not
been explained yet but are important for the general
understanding of complexity science and chaos the-
ory.

Fractals: Inspiration for fractal manufacturing sys-
tems [87]. Fractals have a self-similar structure at ar-
bitrarily small scale, meaning that new similar struc-
tures appear when zooming in; self-similarity may
also be stochastic or approximate.

Attractors basin: Like a river has a watershed
basin that drains to it, every attractor has a basin.
Of particular interest are the basin boundaries, which
are often fractal.

Fitness function/landscape: Organisms must
be fit for survival and thus react to the requirements
of the ever-changing environment. These require-
ments can be described by a fitness function. The
closer an organism matches the fitness function, the
better adapted it is to the current life condition. The
criteria for endurance or elimination of new charac-
teristics are most often multiple and form a fitness
landscape.

Spontaneous order: Complex systems can spon-
taneously organise themselves into coherent patterns.
Conflicting constraints lead to a rugged fitness land-
scape, which means that the fitness parameters do
not evolve linearly/smoothly. The ruggedness is de-
termined by the internal organisation of the organ-
ism.

Convergence: Happens when a system tends to-
wards the desired state / solution. If the system can-
not reach it, no matter how long it runs (it may os-
cillate endlessly, or tend towards an undesired state,
such as a chaotic attractor), the system does not con-
verge. The speed of convergence [26] describes
how quickly a system reaches the desired state.
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Downward causation: Influence of the global
/ macro system on its components / the mi-
cro elements, derived from the constituents’ self-
organisation. Also an emergent phenomenon can ex-
hibit downward causation, that is, the emergent phe-
nomenon influences the elements which lead to the
emergence.

Equilibrium: Self-maintained state of a (partially)
isolated system. Equilibria can be stable, meta-
stable, unstable quasi-stable, local / relative or global
/ absolute.

3.6 Dependability, robustness and
similar terms

The terms robustness, dependability, resilience, re-
dundancy, degeneracy and graceful degradation are
often used in the same context: they all refer to how
a system copes with failures and perturbations.

Dependability is the ability of a system to de-
liver a service that can justifiably be trusted [88].
For instance, a cash machine must always provide the
same service, and we must be sure that nothing else
happens when we are requesting a certain amount of
cash. Central to this definition is the notion that it is
possible to provide a justification for placing trust in
a system. In practice this justification often takes the
form of a dependability case which may include test
evidence, development process arguments and math-
ematical or formal proof.

The original meaning of resilience refers to the
maximal elastic deformation of a material. In the
context of computer science and robotics [89, 90], re-
silience means dependability when facing changes, or
in other words, its ability to maintain dependability
while assimilating change without dysfunction. In
the case of MetaSelf [33], a key feature for dynamic
resilience is the availability of dependability meta-
data at runtime. For instance, for dynamically at-
tributing a new server, it is necessary to know the
dependability values of the servers in question.

Dynamic resilience is a system’s capacity to re-
spond dynamically by adaptation in order to main-
tain an acceptable level of service in the presence of

impairments’ [90], whereas predictable dynamic re-
silience refers to the capacity to deliver dynamic re-
silience within bounds that can be predicted at design
time. Accordingly, for MetaSelf, resilience metadata
is information about system components, sufficient
to govern decision-making about dynamic reconfig-
uration. Resilience policies serve as guidelines for
reconfiguration.

Stability means in manufacturing that a process
always delivers the same result, as long as the condi-
tions are within a certain specified range. A system
must continuously deliver correctly assembled prod-
ucts and cope with perturbations or failures.

Robustness means that a system does not eas-
ily get disturbed in its normal functioning. It can
cope with failures, changing conditions and is able to
remain usable.

Redundancy means that there are more than
one elements with the same functionalities in a sys-
tem. It is the standard solution of engineers to cope
with failures, and it involves structurally identical el-
ements. Redundancy is costly, because the redundant
resources remain unused, and therefore redundancy is
often avoided as far as possible. Self-organising sys-
tems have typically a lot of redundancy, which leads
to an inherent robustness against many failures.

Degeneracy [91] is an alternative which can be
observed in natural systems such as the brain. In
case of a lesion, structurally different brain regions
can adapt to take over the tasks of the damaged area.
The same can also be achieved in technological sys-
tems: for instance a robot may request new coalition
partners to form composite skills, which allow them
to take over the task of a failing original robot.

With graceful degradation, a damaged or per-
turbed system does not totally break down. It main-
tains at least part of its functionality, even if with
reduced performance.

4 Complexity engineering ap-
proaches

This section is organised as follows: Concepts and
principles are reported in section 4.1. Section 4.2 de-
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tails mechanisms and patterns. Modelling and anal-
ysis are the subjects of section 4.3, and section 4.4
considers design approaches. Section 4.5 details ar-
chitectures. Methods to develop and implement the
designed systems are presented in section 4.6. Sec-
tion 4.7 treats validation and verification. Finally,
section 4.8 explains applied approaches.

4.1 Concepts and principles

This section reports a set of concepts and principles
which are generally important when creating complex
systems. They represent different perspectives which
lead to different approaches.

4.1.1 Emergent functionality

Steels [30] defined emergent functionality (EF) as a
function which is not achieved directly by a compo-
nent or a hierarchical system of components, but in-
directly by the interaction of more primitive compo-
nents among themselves and with the environment.
Each component’s behaviour has side effects, and the
sum of these gives rise to the EF. In order to achieve
the desired effect, all the components need to be to-
gether and operate simultaneously. Systems with
emergent functionality are useful when the depen-
dence on the environment is important, and when
it is difficult to foresee all possible circumstances
in advance. Remark: what Steels called emergent
functionality is nowadays often referred to as self-
organisation; the arguments have mostly stayed the
same.

4.1.2 Synthetic ecosystems

Creating systems based on the concept of synthetic
ecosystems [74, 92] or digital ecosystems [93] is very
useful for complexity engineering. Systems are con-
sidered ‘alife’ or ‘life-like’ and the integration of
nature-inspired mechanisms follows almost automat-
ically. The behaviour of species (often insects) and
their interactions with each other as well as with the
available resources serve as models for with multi-
agent systems. The following design principles are
suggested [74]:

1. Things, not functions: avoid functional decom-
position, take real-world units instead.

2. Small agents: prefer many simple agents to a few
complicated ones.

3. Diversity, heterogeneity: create agents with dif-
fering capabilities and characteristics.

4. Redundancy: the same capabilities should exist
more than once, and there should be more than
one way to solve a specific problem.

5. Decentralisation: create proactive agents and
avoid centralised services.

6. Modularity: it should be possible to compose
the system’s functionalities stepwise, in layers.
(Nevertheless, do not forget the limitations of
modularity, discussed in section 2.1.2.)

7. Parallelism: solve problems in parallel and allow
agents to participate in several coalitions at once.

8. Bottom-up control: local interactions lead to a
global result, with no entity executing control
from the top.

9. Locality: sensor-motor interaction is local, as
well as the interactions between the agents.

10. Indirect communication: as far as possible, ab-
stain from direct agent-to-agent communication.
Passing messages through a shared environment
allows communication to be decoupled in time.

11. Recursion, self-similarity: re-use successful
structures and strategies at various levels.

12. Feedback, reinforcement: take into account the
result of earlier actions.

13. Randomisation: introduce a random factor in
agent decisions to avoid negative synchronism
(e.g. all agents heading for the shortest queue
at the same instant).

14. Evolutionary change: prefer gradual and evo-
lutionary change to abrupt and revolutionary
change.

15. Information sharing: inform other agents. Learn
as individuals or as a society.

16. Forgetting: outdated information must disap-
pear automatically.

17. Multiple goals: include maintenance-goals and
achievement-goals. Design the system to be able
to pursue various goals at once.
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An additional design principle, added by the au-
thors of this article, is the use of positive and negative
feedback. Their interplay contributes to the system’s
convergence, oscillations or divergence.

These design rules summarise the most important
principles which should always be applied when de-
signing nature-inspired systems. In some cases, there
may be reasons for making exceptions, such as hav-
ing direct communication between the agents. The
designer should be aware of the reasons and know
that the choice to make an exception may cause dif-
ficulties under certain circumstances.

4.1.3 Distributed autonomic computing

De Wolf and Holvoet suggest that decentralised auto-
nomic computing (DAC) can realise autonomic com-
puting in a decentralised way, using emergence. Self-*
properties are thus achieved collectively. They pro-
pose a taxonomy for self-* properties.

DAC is achieved when a system is con-
structed as a group of locally interacting au-
tonomous entities that cooperate to adap-
tively maintain the desired system-wide be-
haviour without any external or centralised
control [73] .

DAC is achieved mainly through the implementation
of collectively achieved self-* properties, which can
be classified according to the following taxonomy cri-
teria [73]:

• ‘Micro versus macro’ or ‘local versus global’:
Self-* properties can be of microscopic (local,
concerning a single agent and its immediate
vicinity), or macroscopic (global, concerning sev-
eral agents / the entire system) scope. The way
how locality is defined is determining for judging
if a property is local or global. Additionally, a
self-* property can be macroscopic in one system
and microscopic in another: it depends on how
it is implemented.
• Ongoing versus one-shot: most self-* properties

are required over an extended time (e.g. main-
taining the system protected from malicious in-
trusion), but there may also be one-shot proper-

ties which are triggered from time to time (e.g.
self-reconfiguration after major failures).

• Time/history dependent versus time/history in-
dependent: behaviour which can be objectively
measured at any time is time/history indepen-
dent. Time/history dependent behaviour needs
to be seen in relation to the system’s evolution
over a certain period (e.g. number of packets
delivered per hour).

• Continuous or smooth evolution: properties
which evolve in a smooth way are rather rare.
Most of them jump from one state to another.

• Adaptation related: properties which show how
well a system adapts to change.

• Spatial versus non-spatial: some self-* properties
require a spacial structure, while others are not
space-related.

• Resource allocation: in certain cases the system
is required to allocate limited resources to ser-
vices, or tasks to resources, etc.

• Group formation: coalitions or teams may be
formed, and also clustering of items or data can
be included here.

• Role-based organisations: some self-* properties
form organisations based on roles and interac-
tions.

• Self-protection: some systems need to protect
themselves from malicious attacks. This includes
defence actions and in certain cases also counter-
attack.

4.2 Mechanisms

According to Bar-Yam [52], complex systems should
be built with strategies modelled after biological evo-
lution or market economics. Planning mostly does
not work in such systems, and design is often done in
parallels (concurrent engineering). Modularity, ab-
straction, hierarchy and layering are useful methods,
but at some degree of interdependence they become
ineffective, as discussed in section 1.

Other suitable mechanisms include:

• Trust: An efficient method for agents to know
with whom to collaborate, and whom to avoid,
is managing their levels of trust towards their
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peers. Trust can be established through direct
interaction as well as through recommendation
from peers who know the agent in question.
• Gossip: A difficulty of direct communication is

that the receiver of the message must be known
in advance. Gossip avoids this, and allows mes-
sages to randomly spread across a community.
• Swarm rules: Different variants of swarm rules

(such as seen in flocks of birds or schools of fish)
exist, but they mostly consist of three parts: e.g.
(1) keep close to your peers, (2) avoid collisions,
(3) move forward. Such simple, local rules allow
any number of agents to act in a coordinated
way without requiring any form of centralised
control.
• Stigmergy: The deposition of markers in the en-

vironment is a way of indirect communication
often used by social insects, such as ants depos-
ing pheromones. This leads to collective intelli-
gence [94, 95].

Mechanisms generally describe how a process
works; patterns (described in 4.2.2) can serve as a
more concrete guidance. They define mechanisms
in a more systematic way, saying what to do under
which conditions.

4.2.1 Friction reduction

Gershenson [17] proposes that friction between inter-
acting agents should be reduced. This will result in
a higher satisfaction of the system, i.e. better per-
formance. To achieve this, mediators can arbitrate
among the elements of a system. The goal is to min-
imise conflict, interferences and frictions as well as
to maximise cooperation and synergy. See Table 8
for the possible interactions between two agents A
and B, where the upper part of the table presents
strategies for friction reduction, and the lower part
strategies for higher satisfaction.

4.2.2 Patterns

Most mechanisms have been expressed as design pat-
terns, which is a way of referencing mechanisms sim-
ilar to how it is done in software engineering by
Gamma et al. [96].

De Wolf and Holvoet [73] give some guidance for
the design of self-* mechanisms under the form of
patterns, including a catalogue of coordination mech-
anisms which allow the emergence of macroscopic
properties. Proposed coordination patterns are:

• Stigmergy: indirect communication means com-
munication through the environment. Agents
depose for example digital pheromones on their
current location, and their peers read the infor-
mation when passing there. In certain cases, in-
direct communication is more complicated and
less specific than the direct exchange of mes-
sages. The main advantage is that communica-
tion is decoupled. Agents do not need to respond
immediately, or wait for a peer to respond.

• Gradient-field (also called computational field):
similar to electric or magnetic fields, computa-
tional fields can be sensed by agents who are
looking for information or orientation. Notice
that gradient-fields can be used to implement
other mechanisms, such as stigmergy for task as-
signment [97] and motion coordination [98].

• Market-based: resource allocation is often done
by using virtual marketplaces. Agent needing a
service make a call for proposals, those offering
the service in question answer, and the best offer
is selected. This can be done by direct commu-
nication, but also works through stigmergy.

• Tag-based: tags are observable labels, markings
or social cues. They help agents recognise mem-
bers of a certain group, or agents with a certain
characteristic, etc. Tags are especially useful for
coordination and group formation.

• Token-based: a token is an object which repre-
sents the control over a resource or the fulfilling
of a role. Token thus exist in limited numbers
and are handed from one agent to another when
appropriate.

Moreover, Babaoglu et al. [99] recommend the use
of basic biological processes as design patterns in dis-
tributed computing:

• Diffusion: loose entities tend to naturally spread
over a free space. They are transported from
an area of high concentration to an area of
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lower concentration. This mechanism can for
instance be exploited to let mobile robots dis-
tribute themselves over an area.
• Replication: cells, viruses or software programs

may create a copy of themselves for various rea-
sons. In computer science, replication refers to
the use of redundant resources to improve relia-
bility, fault-tolerance or performance.
• Chemotaxis: bacteria and other small living or-

ganisms coordinate their movement according to
the concentration of chemicals in their environ-
ment, i.e. they move towards food sources or
away from toxic substances. This concept is re-
lated to gradient-fields discussed above.

4.3 Modelling and analysis

The analysis of complex systems is particularly chal-
lenging because of the multiple interactions between
the components. It is often difficult to detect which
components influence each other, and in which ways.
There are a few analysis approaches which are specif-
ically made for complex systems, but this does not
mean that other approaches may not be suitable as
well, if applied with the appropriate care.

Different ways of modelling complex systems take
different approaches to solve the problems and have a
different focus [50]. The following list is not exhaus-
tive.

• Hierarchical mappings refer to the hierarchical
decomposition of systems or tasks into simpler
sub-units. The focus is on modularisation, which
is typically used in the classical engineering ap-
proach, and referred to as divide and conquer.
As an example, hierarchical mappings could be
used to design a car, but they are not very well
suited for complex adaptive systems.
• The use of state equations or differential equa-

tions is a formal method which considers the
states in which a system can be. The focus is on
how the system gets from one state to another.
This is important for cases where the dynamic
systems must be controlled in a stable and opti-
mised way, e.g. motors.

• Non-linear / discontinuous mechanics focus on
simple behaviours which can have chaotic effects.
For instance fluid turbulences can be modelled
by non-linear mathematics.

• Autonomous agents are naturally suited to
model distributed systems where many entities
interact in diverse ways. The focus is on the
activities of each agent as well as the agents in-
teractions with each other and the environment.

• Ecosystems are typical examples of complex sys-
tems (see discussion in section 4.1.2). When us-
ing ecosystems as a model, engineers often re-
fer to them as being digital, synthetic or vir-
tual. The processes in ecosystems ‘take advan-
tage of emergence and deliberately mimic evolu-
tion to accomplish and manage the engineering
outcomes desired’ [1].

• Finite element analysis is a type of numerical
analysis, which is typically used to model com-
plicated geometrical structures. Also flows can
be modelled with finite elements, e.g. the be-
haviour of water in a turbine. The focus is on
dynamics.

• Schuh et al. [3] suggest that collaborative sys-
tems be modelled as networks, and that there is
a difference between guided networks, which are
explicitly managed by a focal entity, and self-
organised emergent networks, which are implic-
itly managed by the context.

4.3.1 Requirements

Design structure networks (DSN) [53] are a struc-
tured approach to linking requirements with design
features. DSN help the designer assess the cost of
design changes in complex systems. Woodard fur-
thermore suggests system design games and a set
of agent-based models (the Palm-Handspring model,
the value network model and the platform compe-
tition model) to analyse design decisions and their
consequences. The method is based on the theory of
design evolution by Baldwin and Clark [100], which
builds on the theory of CAS by Holland [13]. A de-
tailed explanation of Woodard’s work would go be-
yond the scope of this article.
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Concept Explanation
Tolerance A shares its resources with B
Courtesy B searches for alternative resources
Compromise a combination of tolerance and courtesy
Imposition forced courtesy
Eradication A eliminates B
Apoptosis B eliminates itself
Cooperation A and B work together for the benefit of the whole
Individualism for the benefit of the whole, A can increase its own benefit
Altruism A can reduce its benefit to the benefit of the whole
Exploitation forced altruism

Table 8: Ways to reduce friction / to increase synergy between the elements A and B.

4.3.2 Multi-scale analysis

Multi-scale analysis relates complexity with structure
and function. According to Ashby’s law of requisite
variety [43], at every scale, the variety of the sys-
tem must be larger than the variety necessary for
the task to fulfil. In a generalised form it suggests
that the effectiveness of a system organisation can be
evaluated by its variety at each scale of tasks to be
performed [22]. The limits of this method are given
by the ability of a single agent (human being) to un-
derstand the interdependencies between the compo-
nents.

4.3.3 Equation-free macro-scale analysis

Equation-free macroscopic analysis [16] serves both
analysis and verification. It is mainly usable for
swarms and similar collective phenomena which con-
sist of more than one level or scale. While traditional
methods focus on the micro-scale only, this method
is adapted for macro-scale behaviour.

The equation-free method needs a good micro-
scopic simulation model from which the macroscopic
variables can be measured. The strong points of this
method is that it is more feasible than formal proofs,
founded by dynamical systems theory (which simula-
tions are not), less computationally intensive than a
huge number of begin-to-end simulations, and a mix-
ture between individual-based and aggregate-based
simulations. It consists of short bursts of microscopic

simulations to extract the info which traditional nu-
merical procedures would obtain from direct evalu-
ation of the macroscopic evolution equation, if this
equation was available. It requires time-independent
converging macroscopic variables (very difficult to
find). The method gives statistically relevant info,
not about every run of the system.

4.4 Design

The terms architecture and design are sometimes con-
fused. The architecture (see section 4.5) is the struc-
ture according to which a system is built, whereas
the design refers to the process of creating a system
(including its architecture). Section 4.4.1 explains
design strategies, whereas sections 4.4.2 and 4.4.3 re-
port design abstractions.

4.4.1 Design strategies

Marcus [101] suggests the following design strategies:

• Top-down, which is control-based, with prede-
fined coordination and interactions.

• Bottom-up, which is collaboration-based and
self-organising; collaboration and coordination
emerge from the interactions.

• ‘Middle out’, which is coordination-based. It
combines existing components and collabora-
tions but also drives new requirements, collab-
orations and components. It is a mediation be-
tween a set or requirements and a set of services,
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Figure 5: Final state of the MetaSelf development method

new available capabilities and new needed capa-
bilities.

4.4.2 Information flows

De Wolf [16] suggests that information flows be es-
tablished between the various localities of the system,
which means that the designer focuses on which in-
formation needs to be available at which location, at
which instant, and where it comes from.

4.4.3 Intelligent networks

Rzevski [48] recommends to create intelligent net-
works instead of integrated units. This means that
intelligence is not inside a single unit but rather
emerges from the interactions within the community.
The focus should be on adaptability rather than on
stability. Three steps in running a system are identi-
fied:

1. Sensory perception: detecting and anticipation
changes in the environment.

2. Cognition: reasoning about perceived changes
and deciding about the best action.

3. Execution: controlling the implementation of
cognitive decisions.

4.4.4 BASIC

Schut [95] published a survey on model design for
the simulation of collective intelligence. He sug-
gests several levels of model refinement in the de-
sign phase, which include problem assessment, mod-
elling (generic, specific and computer model), simu-
lation, verification and validation. The so-called BA-

SIC recipe for modelling consists of determining the
following:

1. Action set for all individuals
2. Observation set for all individuals
3. Action → observation methods
4. Costs for individuals for methods from 3
5. Benefits for individuals for methods from 3
6. Observation → action methods for all individu-

als

The basic recipe can then be augmented with suit-
able steps for the actual requirements, such as inter-
nal states, diversity, non-determinism or adaptivity,
as illustrated in [95]. For the specific modelling, di-
verse models - available in literature - are suggested
for typical applications.

4.4.5 Self-made network

Ulieru and Doursat [5] introduce an approach for the
bottom-up evolution of architectures which are based
on a self-grown network of basic cells, similar to what
happens in embryogenesis. This means that the cod-
ing of the behaviours are indirect; they guide the be-
haviour of the components (the cells), and the be-
haviour of the system as a whole emerges from their
interactions.

Concretely, the system consists of self-assembling
nodes which have pairs of attachment nodes and pairs
of gradient values, which keep track of the node’s
position in a chain. The ports can be occupied or free,
and if free they can be enabled or disabled. Chains
are the simplest self-assembled structures, but also
considerably more elaborate ones may emerge.
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All nodes carry the same programme with three
routines for updating the gradient values, port man-
agement and link creation. The parameters given
to these routines determine then the topology of the
self-assembled structures. Depending on the applica-
tion, the nodes (or agents) may be given additional
characteristics, and they may be heterogeneous.

4.4.6 Genetic programming

Genetic programming consists of taking instructions
from programs and mixing them based on evolu-
tionary algorithms. A reference model for genetic
programming was created by Cramer [102] and for-
malised by Koza [103]. Fitness functions indirectly
represent the global goal of the system; so one might
object that the whole process is not emergent in the
proper sense. However, it is not given in the fitness
function HOW the task is to be solved [54]. The
functions only help to evaluate the adequateness of
the solution. The agents finally equipped with the
result of the evolutionary algorithm do not have any
info about the objective functions neither about the
fitness of their current actions. It remains open how
to solve the mentioned co-evolution of different agent
types, or how to deal with heterogeneous agents.

Zapf and Weise propose a solution for what they
call offline emergence engineering [54], based on a
combination of strategies from genetic programming
and agent software engineering. In offline approaches,
once a program is generated, there are no changes
any more. Group behaviour emerges before it is put
into the real environment: simulation is proposed as
a mean to find out if the emerging behaviour is ap-
propriate, and if so, the system is realised. An ad-
vantage is that evolution within a simulated environ-
ment avoids a potentially long learning phase in the
real environment. However, such an approach has
obvious weaknesses: no simulation is ever going to
be complete, and there are always factors influencing
the system in reality which were not completely un-
derstood at simulation time, or which simply cannot
be represented due to their nature.

In the case of online emergence engineering (as
opposed to offline emergence engineering), Zapf and

Weise suggest that emergence is planned6 to occur
during execution. Nevertheless, through thorough
analysis of the components and their multi-lateral
interactions, the range of emergent phenomena can
certainly be limited, and engineers can design ways
for the system to cope with them. For illustration,
consider a mobile robot society based on ant-inspired
mechanisms: If the rules and mechanisms are evolved
beforehand, simulated to be sure that they work, and
only implemented afterwards, this is offline engineer-
ing. In case the engineer takes basic rules, imple-
ments them, and lets them evolve while already run-
ning on the real robots, it is online engineering.

4.4.7 Emergence based engineering

Deguet et al. [104] describe concepts to build systems
that will produce emergent phenomena. Emergence
happens between the design and the observation:
so-called design-to-behaviour emergence. Downward
causation applied to code and behaviour means that
the code / algorithm is determined by the system’s
behaviour, not the programmer / designer. In other
words, the designer gives the machine a description
of the expected behaviour and gets some code in re-
turn. The main idea is to implement or generate the
systems without knowing ‘how it works’. According
to Deguet et al. [104], this can be done by three
approaches (each of which is an issue itself!): by im-
itating phenomena, by using an incremental design
process, or by creating self-adaptive systems (and un-
derstanding how the (meta-) system will be able to
modify itself).

4.5 Architectures

The following architectures are particularly suitable
for complex systems.

4.5.1 MetaSelf architecture

MetaSelf [105] is a service-oriented architecture for
self-organizing and self-adaptive systems, where the
services are provided by components or agents. This

6This might be considered as a contradiction in itself: emer-
gence can hardly be planned.
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architecture exploits metadata to support decision-
making and adaptation, based on the dynamic en-
forcement of explicitly expressed policies. Metadata
and policies are themselves managed by appropriate
services. The components, the metadata and the
policies are all decoupled from each other and can
be dynamically updated or changed.

MetaSelf applications have been made in the area
of dependability explicit computing [106] and evolv-
able assembly systems [107].

4.5.2 The autonomic manager

As software systems become increasingly complex
and difficult to manage, autonomic computing [108]
was proposed as a way of handling this. Software
should actively manage itself instead of passively be-
ing managed by a human administrator. Most self-*
properties can be achieved under the responsibility of
a single autonomous entity (a manager) which con-
trols a hierarchy of other autonomous entities. The
autonomic manager consists of a central loop which
handles all upcoming events within the system. The
autonomic manager follows the MAPE loop [109],
which stands for monitoring, analysis, planning and
execution, supported by a knowledge base.

An alternative to this centralised approach is de-
centralised autonomic computing (see section 4.1.3),
where interacting and fairly autonomous individuals
replace the manager.

4.5.3 The three layer architecture

Kramer and Magee propose a three layer architecture
to realise self-adaptive and self-managing computing
systems [110], where the components configure their
interactions themselves. The lowest layer is the com-
ponent control, which includes sensors, actuators and
control loops. The middle layer takes care of change
management. It is a sequencing layer, to which the
lower layer reports state changes. New control be-
haviours are planned here, and parameters for ex-
isting control behaviours are adapted. Finally, the
highest layer implements the goal management. Time
consuming planning is executed at this level, accord-
ing to the change requests coming from the middle

layer and the high level goals specified by the user.

4.5.4 Controller /observer architecture

Organic computing [111] is a project 7 which com-
bines software engineering with neuroscience and
molecular biology. Within this framework, Schoeler
et al. [112] developed a controller/observer architec-
ture to ‘keep emergent behaviour within predefined
limits’. It allows the system to make free decisions
within so-called adaptive islands, limited by pre-set
objectives and constraints.

The basic structure consists of an execution unit
which receives an input and generates an out-
put. Above the execution unit, there is an ob-
server/controller unit. The observer receives input
from the environment as well as from the execution
unit. The controller compares the situation reported
by the observer to the goals set by the user and reacts
by reconfiguring the execution unit.

4.5.5 Task-based adaptation

Task-based adaptation [113] is performed by self-
adapting computing infrastructures which automate
their configuration and reconfiguration. Dynamic
task selection can be based on an evolving threshold
mechanism and agent stimuli [114]. External stimuli
come from the environment (as it is, not modified by
other agents), from interactions with other agents,
and in the form of stigmergy [94], which is indirect
communication, or communication through the envi-
ronment.

The key ideas in task-based adaptation are:

• Explicit representation of user tasks to deter-
mine the required service qualities.

• Decoupling task and preference specification
from the low level mechanisms; that is a clean
separation between what is needed and how it is
carried out.

• Efficient algorithms to calculate in real-time
near-optimal resource allocations and realloca-
tions.

7http://www.organic-computing.org
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In task-aware systems, the users specify their tasks
and goals, and it is the job of the system to auto-
matically map them into the capabilities available
in the ubiquitous environment. Computing applica-
tions can adapt and reconfigure themselves accord-
ing to the current tasks to be fulfilled [113, 115,
116]. Such systems automate human multiple objec-
tive trade-off, considering situation-dependent pref-
erences (knowledge-based decisions).

4.6 Development and implementation

This section describes methods for development and
implementation of the previously created concepts
and architectures.

4.6.1 The customised unified process

De Wolf [16] proposes a design methodology based
on the unified process (UP) [117], which is an exist-
ing industry-ready software engineering process. The
UP was customised to explicitly focus on engineer-
ing macroscopic behaviour of self-organised emergent
multi-agent systems.

During the Requirement Analysis phase the
problem is structured into functional and non-
functional requirements, using techniques such as use
cases, feature lists and a domain model that reflects
the problem domain. Macroscopic requirements (at
the global level) are identified. The Design phase
is split into Architectural Design and Detailed Design
addressing microscopic issues. Information Flow (a
design abstraction) traverses the system and forms
feedback loops. Locality is ’that limited part of the
system for which the information located there is di-
rectly accessible to the entity’ [16]. Activity diagrams
are used to determine when a certain behaviour starts
and what its inputs are. Information flows are en-
abled by decentralised coordination mechanisms, de-
fined by provided design patterns. During the Im-
plementation phase, the design is realised by using
a specific language. When implementing, the pro-
grammer focuses on the microscopic level of the sys-
tem (agent behaviour). In the Testing and Verifi-
cation phase, agent-based simulations are combined

with numerical analysis algorithms for dynamical sys-
tems verification at macro-level.

The CUP approach has been applied to au-
tonomous guided vehicles and document cluster-
ing [16].

4.6.2 Policies and metadata

A way to guide a system in its development with-
out hard-coding its behaviour is the use of policies,
as suggested by Kephart [118, 119] in the context of
autonomic computing [108]. Policies can express ac-
tions, goals and utility functions. Depending on their
type, they lead one or several agents to directly exe-
cute an action (for instance, if the gripper blocks, try
to re-initialise it), to maintain their behaviour as to
reach a certain goal (e.g., always keep the speed be-
low 3m/s), or to follow a more complicated guideline
and choose appropriate actions (such as: reduce the
effort of reconfiguration).

Policies always work in conjunction with corre-
sponding metadata, which is data that is not directly
processed in operation. Metadata can describe the
performance of an axis, the interfaces of a gripper,
the preferential partners of a mobile robot or the cur-
rent availability of a GPS module.

4.6.3 MetaSelf design method

The MetaSelf development method [120], which con-
sists of four phases, is illustrated in Figure 5.

The Requirement and Analysis phase iden-
tifies the functionality of the system along with
self-* requirements specifying where and when self-
organisation or self-management is needed or desired.
The required quality of service is determined.

The Design phase consists of two sub-phases.
In the first part, D1, the designer chooses ar-
chitectural patterns (e.g. autonomic manager or
observer/controller architecture) and self-* mecha-
nisms, governing the components’ interactions and
behaviour (e.g. trust, gossip, or stigmergy, that is
indirect coordination through changes in the envi-
ronment [94]). Rules for self-organisation and poli-
cies for self-adaptation are defined. In the second
part, D2, the individual autonomous components
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(services, agents, etc.) are designed. The necessary
metadata and policies are selected and described.
The self-* mechanisms are simulated and possibly
adapted / improved.

The implementation phase produces the run-
time infrastructure including agents or services,
metadata and executable policies.

In the verification phase, the designer makes
sure that agents, the environment, artefacts and
mechanisms work as desired. Potential faults and
their consequences are identified, similar to the way
failure modes and effects analysis (FMEA) [121]
works, and measures to avoid the identified faults are
taken accordingly.

4.6.4 Evolutionary engineering

In Bar-Yam’s evolutionary engineering (EE) / en-
lightened evolutionary engineering (E3) [22, 52], the
advances a system makes are often unanticipated and
not fully understood, but the system does learning
by doing. Evolutionary processes are based on incre-
mental iterative change and cyclical feedback. EE
includes methods which involve rapid parallel explo-
ration and a context designed to promote change
through competition between design / implementa-
tion groups, with field testing of multiple variants.
Examples of evolutionary methods in software en-
gineering are: spiral development, extreme program-
ming and the open source movement. The function-
ing products which are in use at a certain moment in
time are considered as the evolving population which
will be replaced by new generations of products. If
the function of a system needs to change, the system
can adapt because there are many possible variants
of subsystems that can be generated. The focus of E3

is on creating environment and process rather than a
product, and it continually builds on what already ex-
ists. Operational systems include multiple versions of
functional components, and E3 uses multiple parallel
development processes. More effective components
are gradually introduced.

Bar-Yam proposes the following methods:

1. Analysing the environment and temporarily
modifying it to influence the complex system’s

self-directed development. (Complex systems
cannot be completely isolated from their envi-
ronments.)

2. Tailoring developmental methods to specific
scales and regimes (i.e. phases in the life-cycle
of a complex system, such as development and
operation).

3. Identifying or defining a targeted outcome space
at multiple scales and in multiple regimes. (Out-
come spaces are close to specifying ‘require-
ments’ or ‘desired capabilities’ for complex sys-
tems.)

4. Establishing rewards and penalties, including
the explicit formulation of satisfying criteria.
(Not to confound with direction and guidance,
which directly concern agent behaviour; re-
wards and penalties refer to agent generated out-
comes.)

5. Judging actual results and allocate prices. This
is associated with the criteria of rewards but also
involves the explicit consideration of other out-
comes.

6. Formulating and applying developmental stimu-
lants.

7. Characterising continuously, i.e. capturing and
publishing information about the way things are
at every moment in a complex system. Among
others, this helps agents take decisions and al-
lows tracking the evolution of the system.

8. Formulating and enforcing safety regulations
(policing).

Related to evolutionary engineering, and maybe
better-known, is evolutionary computation[122]. It
belongs to the field of artificial intelligence; it is
mostly concerned with optimisation tasks and uses
the mechanisms of evolutionary reproduction and in-
heritance. Evolutionary computation is not to be
confused with genetic programming (section 4.4.6).

4.6.5 The AMAS theory and ADELFE

Engineering systems which generate emergent func-
tionalities is the goal of Gleizes et al. [79, 123]. Their
AMAS (Adaptive Multi-Agent System) theory claims
that for any functionally adequate system, there ex-
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ists at least one cooperative internal medium system
that fulfils an equivalent function in the same envi-
ronment. ADELFE [124] is an engineering method-
ology for adaptive multi-agent systems, based on the
AMAS theory. ADELFE is limited to cooperative
systems and does not provide support for the achieve-
ment of specific goals.

The main ADELFE strategy is to maintain coop-
eration, or in other words, to avoid so-called non-
cooperative situations (NCS). Agents try to antici-
pate these NCS, and act accordingly. This means
that designers have to describe their own specific NCS
set and plan the respective actions for each kind of
agent. Notice that it is certainly not always possible
to preview all the NCS which can occur, and design-
ing corrective actions for them is not easy, neither.

A cooperative agent in the AMAS theory has the
following characteristics: it is autonomous; it is un-
aware of the global function of the system (this
emerges from the agent level towards the multi-agent
level); it can detect NCSs and acts to return in a co-
operative state; it is not altruistic but benevolent (it
seeks to achieve its goal while being cooperative).

4.6.6 A general methodology

The general methodology by Gershenson [17] pro-
vides guidelines for system development. Particular
attention is given to the vocabulary used to describe
self-organising systems. It is composed of five itera-
tive steps or phases: representation, modelling, sim-
ulation, application and evaluation.

In the Representation phase, according to given
constraints and requirements, the designer chooses an
appropriate vocabulary, the abstractions level, gran-
ularity, variables, and interactions that have to be
taken into account during system development. Then
the system is divided into elements by identifying
semi-independent modules, with internal goals and
dynamics, and with interactions with the environ-
ment. The representation of the system should con-
sider different level of abstractions.

In the Modeling phase, a control mechanism is
defined, which should be internal and distributed to
ensure the proper interaction between the elements
of the system, and produce the desired performance.

However, the mechanism cannot have strict control
over a self-organising system; it can only steer it.
To develop such a control mechanism, the designer
should find aspects or constraints that will prevent
the negative interferences between elements (reduce
friction) and promote positive interferences (promote
synergy). The control mechanism needs to be adap-
tive, able to cope with changes within and outside
the system (i.e. be robust) and active in the search of
solutions. It will not necessarily maximise the satis-
faction of the agents, but rather of the system. It can
also act on a system by bounding or promoting ran-
domness, noise, and variability. A mediator should
synchronise the agents to minimise waiting times.

In the Simulation phase, the developed model(s)
are implemented and different scenarios and medi-
ator strategies are tested. Simulation development
proceeds in stages: from abstract to particular. The
models are progressively simulated, and based on the
results, the models are refined and simulated again.
The Application phase is used to develop and test
model(s) in a real system. Finally, in the Evalu-
ation phase, the performances of the new system
are measured and compared with the performances
of previous ones.

This methodology was applied to traffic lights,
self-organising bureaucracies and self-organising arte-
facts [17].

4.6.7 Agents and artefacts meta-model

Gardelli et al. [125] use architectural pattern based
on the agents and artefacts (A&A) metamodel (re-
member section ??) which features agents as proac-
tive goal-driven entities, and artefacts as encapsu-
lated services to be exploited by agents. The envi-
ronment plays an important role in this approach.
It consists of artefacts and environmental agents,
which are incorporated self-organisation mechanisms.
These environmental agents are responsible for sus-
taining feedback loops between the agents and the
environment.

This approach consists of three iterative design
stages: modelling, simulation and tuning. In the
modelling phase, the agents’ behaviour is designed,
and architectural structures are sketched. After-
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wards, simulation is used to verify the suitability of
the agents and the architecture. In the tuning phase,
parameters are adapted in order to optimise the sys-
tem’s performance.

4.7 Validation and Verification

After creating solutions at micro-level, the system
verification mainly aims at giving guarantees that the
resulting macroscopic behaviour meets the require-
ments [16]. This is almost never straight-forward.
For instance, software code cannot proven to be cor-
rect, or to have been exposed to all relevant environ-
mental scenarios. It is thus appropriate to talk about
acceptable behaviour [54], or to give more detailed in-
dications about the verified scenarios.

Most of the approaches which have been proposed
for modelling in section 4.3) can also be used for val-
idation and verification purposes, in particular those
in sections 4.3.2 and 4.3.3. Sometimes, macroscopic
behaviour can only be verified by begin-to-end sim-
ulations; efforts to formalise emergence are typically
limited to rather simple application scenarios [16].
But as simulations are always abstractions of real-
ity, they alone are often not enough to prove that
a complex engineered system will comply with the
requirements. Especially self-organisation and emer-
gence challenge researchers. Different subsystems de-
pend on and interact with each other in many often
very complex, dynamic and unpredictable ways.

Not all verification methods are equally useful for
any case. Most often a combination of different meth-
ods will do best. De Wolf [73] proposes the methods
represented in Table 9, together with their typical
applications.

4.8 Applied approaches

A view of complex systems engineering from the per-
spective of integrated circuit design evolution
was given by Bramlett [126]. It seems that, different
from other perspectives, for CPU design, component
coupling is important, and the systems are consid-
ered as closed and highly optimised. The design pro-
cess can be seen as a series of phase transitions in
convergence towards design requirements, which is

an emergent property. Abstractions at different lev-
els and granularities are used to define convergence
phases, rates and transitions. Often the design pro-
cess itself is far more complex than the artifact it
produces. The author also states that there is a need
for open architectures for cross-disciplinary engineer-
ing, taking the human as part of the system.

Rzevski [48] presents complexity engineering at
the example of an intelligent variable geome-
try compressor and a family of space explo-
ration robots); however, some theoretical back-
ground about the used strategies may be missing. Re-
markably, Rzevski’s strategy for self-repair is isolat-
ing defective parts and thus making them harmless.
Such an approach certainly makes sense in practice,
but it does not correspond to the usual interpretation
of the term reparation as it does not repair the defect
neither consider the consequences of an isolation on
the rest of the system.

5 Discussion, conclusion and
directions

After reviewing numerous existing concepts and
methods in complexity engineering, we now analyse
the general situation. Section 5.1 discusses various
complexity engineering related issues which are im-
portant to consider. The role of the observer is ad-
dressed in section 5.1.1, and challenges as well as limi-
tations of self* systems in 5.1.2. At the end, we draw
conclusions (section 5.2) and indicate directions for
further research (section 5.3).

5.1 Discussion

The methods and approaches cited in this article are
mostly from the area of computer science. This is due
to the nature of complexity engineering: the systems
in question usually need some kind of intelligence and
a corresponding control system, which leads us typi-
cally to computer science. Purely mechanical systems
are rarely complex and adaptive or self-organised.

***
Although this article is directed at promoting com-

plexity engineering, the authors are aware of the fact
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Method Application
Unit-based and integration most useful for one-shot microscopic properties
testing
Formal proof microscopic; not usable for interaction models
Statistical experimental long-term ongoing properties;
verification expensive due to large number of experiments
Equation-based macroscopic adaptation-related; only if the macroscopic property in question
verification can be modelled as a variable in a (partial) differential equation
Equation-free macroscopic long-term ongoing properties with smooth and continuous behaviour,
verification adaptation-related; time-dependent variable reflecting

the property in question has to be found (see section 4.3.3)
Time series analysis adaptation-related long-term behaviour,
based on chaos theory measuring complexity for instance

Table 9: Verification methods

that complexity engineering methods are not always
the most adequate solution. They should be chosen
when classical engineering comes to its limits (com-
pare section 2.2), or when alternative ways of solving
a problem are desired.

***
The claim that decentralised control should be

avoided has been quite prominently uttered in the
last few years. But is it always favourable to build
a system with purely decentralised control? Decen-
tralised systems also have weaknesses. They are often
not optimal, they take longer to solve problems, and
may use more resources to do so. On the positive
side, distributed systems are robuster and they can
better cope with disturbances.

***
Due to their nature, the validation of complex sys-

tems with emergence and self-* properties is difficult.
Formal approaches at agent level do not automati-
cally cover global phenomena. Simulations are an-
other way to verify system behaviour, but there are
the obvious limitations of time requirements and non-
completeness to this approach [123]. Formal mod-
elling techniques can capture important features of
the design choices and enable designers to reason
about them in a useful way [53]. We may have to
accept that we will never be able to completely con-
trol or predict the behaviour of a complex system; we
should rather cope with this by adapting our actions

to the new situations [17]. This indicated that de-
terministic models or predictions are not necessary;
having realistic default expectations with the possi-
bility to correct errors or exceptions after they have
occurred, works quite well in practice.

5.1.1 The role of the observer

The role of the observer in determining whether or
not a system exhibits emergence was treated in sec-
tion 3.4. The discussion here is more general, not
limited to emergence.

What we perceive as an observer (or as many dif-
ferent observers) is often different from what really
exists [17]. The observer mostly has a very limited
perspective. Not everything happening in a system is
visible; the fact that something cannot be seen does
not mean that it does not exist.

From the perspective of the observing designer,
there is always a temptation to suppose that the cre-
ated interactions do indeed take place, even if they
are not visible. The designer should therefore try
not to jump to conclusions which may not be well-
founded. Similarly, an observer who is not the de-
signer is always tempted to make interpretations of
the observed and find explanations which may not
correspond to reality. Also here, caution is appropri-
ate.

According to discussions at the 4th Technical Fo-
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rum Group on Self-Organisation (TF4), some re-
searchers think that an emergent phenomenon is
meaningful to the observer (only?), and only if the
observer is also the designer. Only the observer-
designer determine if a phenomenon is indeed emer-
gent because this person knows how the system
works. This means that somebody who does not un-
derstand how a system works cannot correctly judge
what is happening, i.e. cannot say if a phenomenon is
a self-* property, or if it is under centralised control.
In many situations, a system will, however, perform
differently when under centralised control than when
acting in a distributed-autonomous way. A careful
observer may be able to determine the differences and
come to the right conclusions.

As a matter of fact, a system which is made to run
independently from a human observer (i.e. literally
all systems we are considering here), will function
while being observed or not. We therefore argue that
observation can only help the observer to understand
the system, but it does not change anything at the
level of the system.

5.1.2 Challenges and limitations with self-*
systems

Self-* properties (addressed in sections 3.2 and 3.3)
are an important part of complexity engineering.
They allow systems to play active and increasingly
autonomous roles in accomplishing their tasks, but
there are also challenges and limitations to the pos-
sibilities of self-* properties:

• Sensitivity to initial conditions: Systems may ef-
ficiently find a way to accomplish their task un-
der certain initial conditions, but not be able
to do so when the conditions are slightly differ-
ent. Autonomous guided vehicles (AGVs) may
serve as an example: we suppose that their
task is to pick up a variety of finished prod-
ucts from assembly stations and deliver them to
boxes according to customer orders. If the AGVs
start from distributed locations, they may very
quickly settle into an efficient rhythm of picking
up and delivering products. But when the AGVs
start from a single point, it may take them much

longer to coordinate the tasks between them,
and thus their performance is affected. Engi-
neers thus have to consider their system’s sensi-
tivity to initial conditions, and attempt to find
solutions to mitigate the effects.

• Parameter tuning: Many applications depend on
diverse parameters which have to be tuned in
order for the system to run smoothly. Human
operators often supervise the tuning, or do it
manually by trial-and-error. Suitable strategies
need to be developed if the system is to do is
autonomously.

• Latency to find new stable states: Most self-*
systems can eventually find stable states or sta-
ble solutions to achieve their tasks, but it takes
time. This means that the designer and user of
self-* systems must be able to accept delays.

• No solution found / no convergence: In certain
cases, a self-* system may not be able to solve
the task given, or its calculations may never con-
verge. The designer has to preview this and ar-
range for a way out, such as alerting the user
and/or settling for a solution which requires the
relaxation of certain constraints.

• Analysis of self-* properties: It is inherently dif-
ficult to analyse self-* properties. The system
may find ways to fulfil tasks which the designer
did not plan or preview. The other way round,
the designer may intend the system to act in a
certain way, and in reality, it is all different. Also
the interplay between various self-* properties is
difficult to analyse. Further research efforts are
certainly necessary.

• Dependability / resilience: it must be assured
that the system does what it is supposed to do,
independent from the actual situation and cir-
cumstances, and this is challenging, especially
for the type of system considered here. Thanks
to their redundancy, these systems are often in-
herently robust to certain types of failures, and
this robustness comes for free. They may, how-
ever, be fragile when facing other faults. For
further discussion seee [26].
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5.2 Conclusions

The application of complexity engineering methods
should always be accompanied by a reflection on the
reasons why these methods have been chosen. Are
they useful for the actual application? Or might other
methods be more suitable? The engineering method
should always be selected with care.

A fundamental challenge of complexity engineer-
ing is that it touches many different domains; it is
therefore difficult to decide about generally appli-
cable methods. For instance, network models and
statistics may be helpful when creating wireless com-
munication systems but not at all for building manu-
facturing systems. This article tries to structure the
existing methods and thus make it easier for engi-
neers to choose a method which is suitable for their
applications.

Furthermore, we have positioned complexity en-
gineering within other engineering domains, such as
systems engineering and classical engineering. We
reviewed the definitions of important notions such
as self-organisation and emergence, and explained
the controversies between unpredictability, complex-
ity and other related terms.

This article ends with directions for further re-
search which we consider important for the develop-
ment of complexity engineering.

5.3 Further research directions

Complexity engineering has still not been established
as a proper engineering domain. Research remains
scattered and focused on specific examples, which is
the reason why most methodologies are not gener-
ally applicable. We would like to encourage other re-
searchers to make efforts in complexity engineering,
and to coordinate their research with peers. A gen-
eral framework for complexity engineering should be
created, linking existing and new methods with each
other, giving receipts for how to approach which type
of problem. Complexity engineering requires particu-
lar attention concerning the following issues [4]: the-
ory, universal principles, implementation substrates,
designing, programming and controlling methodolo-
gies as well as collecting and sharing of experience.

Although academia increasingly discovers their in-
terest in complexity engineering, industry is reluc-
tant. It is difficult to persuade industrials to give
away total control. Complexity is mostly perceived as
disturbing, annoying or overwhelming. Researchers
should therefore not only develop methodologies for
complexity engineering, but at the same time also
try to persuade industry of the benefits which using
complexity can offer.

Industry requires dependable methods. Self-
organised emergent MAS will only be acceptable in
an industrial application if one can give guarantees
about the macroscopic behaviour [16]. This can be
shown experimentally or proven formally. Both for-
mal prove and experimental evidence have advan-
tages and disadvantages. On one hand, experiments
often provide statistical evidence that the desired re-
sults will often appear under certain circumstances.
But it can also mean that the adverse conditions
which lead to failure have not been encountered yet.
Formal proof, on the other hand, always uses abstrac-
tions, and making the right abstractions is difficult.
Formal proofs are useful for understanding certain
aspects of a system, but they can never express the
complete reality. Additionally, they depend on the
language chosen to describe the system. Every lan-
guage has a certain expressivity. This expressivity
may be suitable for certain aspects of a system, but
limit the model in capturing others.

Methods to provide sufficient evidence of depend-
ability should be developed especially for complexity
engineering methods, given that they are often differ-
ent from traditional engineering methods due to the
use of self-* properties and emergence.
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Swarm intelligence. New York, USA: Oxford
University Press, 1999.

[95] M. Schut, “On model design for simulation of
collective intelligence,” Information Sciences,
vol. 180, pp. 132–155, 2010.

[96] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides, Design Patterns: Elements of Reusable
Object-Oriented Software. Boston, USA: Addi-
son Wesley professional computing series, 1994.

[97] D. Weyns, N. Boucke, and T. Holvoet, “Gradi-
ent field-based task assignment in an agv trans-
portation system,” in Proc. of 5ht Int. Conf. on
Autonomous Agents, (New York, NY, USA),
pp. 842–849, ACM, 2006.

[98] M. Mamei, F. Zambonelli, and L. Leonardi,
“Co-fields: A physically inspired approach to
motion coordination,” IEEE Pervasive Com-
puting, vol. 3, no. 2 April-June, pp. 52–61,
2004.

[99] O. Babaoglu, G. Canright, A. Deutsch,
G. Caro, F. Ducatelle, L. Gambardella, N. Gan-
guly, M. Jelasity, R. Montemanni, A. Montre-
sor, and T. Urnes, “Design patterns from bi-
ology for distributed computing,” ACM Trans-
actions on Autonomous and Adaptive Systems,
vol. 1, no. 1, pp. 26–66, 2006.

[100] C. Baldwin and K. Clark, Design rules, vol. 1:
the power of modularity. Cambridge, MA,
USA: MIT Press, 2000.

[101] R. Marcus, “Complex systems engineer-
ing for the global information grid.”
http://cs.calstatela.edu/wiki/images/
a/a4/Marcus.ppt, 2006.

[102] N. Cramer, “A representation for the adaptive
generation of simple sequential programs,” in
Int Conf. on Genetic Algorithms and their Ap-
plications, (Mahwah, NJ, USA), pp. 183–187,
1985.

[103] J. Koza, Genetic programming, on the program-
ming of computers by means of natural selec-
tion. Cambridge, MA, USA: A Bradford Book,
The MIT Press, 1992.

[104] J. Deguet, L. Magnin, and Y. Demazeau,
“Emergence and software development based
on a survey of emergence definitions,” Studies
in Computational Intelligence, vol. 56, pp. 13–
21, 2007.

[105] G. Di Marzo Serugendo, J. Fitzgerald, A. Ro-
manovsky, and N. Guelfi, “Metaself - a
framework for designing and controlling self-
adaptive and self-organising systems,” tech.
rep., BBKCS-08-08, School of Computer Sci-
ence and Information Systems, Birkbeck Col-
lege, London, UK, 2008.

[106] R. Paes, C. Lucena, and G. Carvalho, “Using
interaction laws to implement dependability ex-
plicit computing in open multi-agent systems,”
in Brasilian Symposium on Software Engineer-
ing (SBES), (Joao Pessoa, Brazil), pp. 59–75,
2007.

[107] R. Frei, G. Di Marzo Serugendo, and J. Barata,
“Designing self-organization for evolvable as-
sembly systems,” in IEEE Int. Conf. on Self-
Adaptive and Self-Organizing Systems (SASO),
(Venice, Italy), pp. 97–106, 2008.

[108] J. Kephart and D. Chess, “The vision of au-
tonomic computing,” IEEE Computer, vol. 36,
no. 1, pp. 41–50, 2003.

[109] IBM, “An architectural blueprint for auto-
nomic computing.,” Tech. Rep. June, 2005.

[110] J. Kramer and J. Magee, “Self-managed sys-
tems: an architectural challenge,” in Future
of software engineering (FOSE), (Washington,
DC, USA), pp. 259–268, IEEE Computer Soci-
ety, 2007.

[111] R. Wuertz, ed., Organic computing. Under-
standing Complex Systems, Berlin Heidelberg:
Springer, 2008.

40



[112] T. Schoeler and C. Mueller-Schloer, “An ob-
server/controller architecture for adaptive re-
configurable stacks,” in Int. Conf. on Archi-
tecture of Computing Systems (ARCS), (Inns-
bruck, Austria), pp. 139–153, 2005.

[113] J. Sousa, V. Poladian, D. Garlan, B. Schmerl,
and M. Shaw, “Task-based adaptation for ubiq-
uitous computing,” IEEE Transactions on Sys-
tems, Man and Cybernetics, Part C: Applica-
tions and Reviews, vol. 36, no. 3, pp. 328–340,
2005.

[114] T. De Wolf and T. Holvoet, “Adaptive be-
haviour based on evolving thresholds with
feedback,” in AISB, 3rd Conf. on Adaptive
Agents and Multi-Agent Systems (AAMAS),
(Melbourne, Australia), pp. 91–96, 2003.

[115] D. Garlan, V. Poladian, B. Schmerl, and
J. Sousa, “Task-based self-adaptation,” in
Workshop on Self-healing systems, 1st ACM
SIGSOFT workshop on Self-managed systems,
(Newport Beach, CA, USA), pp. 54–57, 2004.

[116] S.-W. Cheng, D. Garlan, and B. Schmerl,
“Architecture-based self-adaptation in the
presence of multiple objectives,” in ICSE
Workshop on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS),
(Shanghai, China), pp. 2–8, 2006.

[117] I. Jacobson, G. Booch, and J. Rumbaugh, The
unified software development process. Reading,
MA, USA: Addison Wesley, 1999.

[118] J. Kephart and W. Walsh, “An artificial in-
telligence perspective on autonomic computing
policies,” in Proc. 5th IEEE Int. Workshop on
Policies for Distributed Systems and Networks
(POLICY), (New York, USA), pp. 3– 12, 2004.

[119] J. Kephart and R. Das, “Achieving self-
management via utility functions,” IEEE Inter-
net Computing, vol. 11, no. 1, pp. 40–48, 2007.

[120] G. Di Marzo Serugendo and R. Frei, “Ex-
perience report in developing and applying a

method for self-organisation to agile manufac-
turing,” tech. rep., BBKCS-09-06, School of
Computer Science and Information Systems,
Birbeck College, London, UK, 2009.

[121] R. McDermott, R. Mikulak, and M. Beaure-
gard, The basics of FMEA. New York, USA:
CRC Press, Taylor & Francis Group, 2008.

[122] K. De Jong, Evolutionary computation: a uni-
fied approach. Cambridge, MA, USA: MIT
Press, 2006.

[123] M.-P. Gleizes, V. Camps, J.-P. George, and
D. Capera, “Engineering systems which gen-
erate emergent functionalities,” in Engineer-
ing Environment-Mediated Multiagent Systems
- Satellite Conf. held at The European Conf. on
Complex Systems (EEMMAS 2007), (Dresden,
Germany), 2007.

[124] C. Bernon, V. Camps, M.-P. Gleizes, and G. Pi-
card, “Engineering adaptive multi-agent sys-
tems: The adelfe methodology,” in Agent-
oriented Methodologies, (B. Henderson-Sellers
and P. Giorgini, eds.), pp. 172–202, Hershey,
PA, USA: Idea Group Pub., 2005.

[125] L. Gardelli, M. Viroli, M. Casadei, and
A. Omicini, “Designing self-organising environ-
ments with agents and artifacts: A simulation-
driven approach,” Int. Journal of Agent-
Oriented Software Engineering, vol. 2, no. 2,
pp. 171–195, 2008.

[126] B. Bramlett, “Engineering emergence,” tech.
rep., MIT Media Lab, Cambridge, MA, USA,
2002.

41


