
DL-Lite with Attributes, Datatypes and Sub-Roles
(Full Version)

A. Artale and V. Ryzhikov
KRDB Research Centre

Free University of Bozen-Bolzano, Italy
{lastname}@inf.unibz.it

R. Kontchakov
Dept. of Comp. Science and Inf. Sys.
Birkbeck, University of London, UK

roman@dcs.bbk.ac.uk

June 18, 2012

Abstract

We extend the tractable DL-Lite languages by (i) relaxing the restriction on the allowed
interaction between cardinality constraints and role inclusions; (ii) extending the languages
with attributes and datatypes. On the one hand, we push the limits of the use of cardinality
constraints over role hierarchies and also show effects of the ABox on allowed cardinality
constraints. On the other hand, attributes—a notion borrowed from data models—associate
concrete values from datatypes to abstract objects and in this way complement DL-Lite roles,
which describe relationships between abstract objects. We present complexity results for two
most important reasoning problems in DL-Lite: combined complexity of knowledge base
satisfiability and data complexity of positive existential query answering.

1 Introduction
The DL-Lite family of description logics has recently been proposed and investigated by (Calvanese et al.,
2005, 2006, 2007) and later extended by (Artale et al., 2007b; Poggi et al., 2008; Artale et al., 2009). The
relevance of the DL-Lite family is witnessed by the fact that it forms the basis of OWL 2 QL, one of the
three profiles of the Web Ontology Language OWL 2 (www.w3.org/TR/owl2-profiles). According
to the official W3C profiles document, the purpose of OWL 2 QL is to be the language of choice for
applications that use very large amounts of data.

This paper extends the DL-Lite languages of (Artale et al., 2009) by (i) relaxing the restriction on
the interaction between cardinality constraints (or number restrictions, N) and role inclusions (or hier-
archies, H); (ii) attributes (A), i.e., the possibility to associate concrete values from datatypes to ab-
stract objects. These extensions will be formalized in a new family of languages, DL-LiteHNAα , with
α ∈ {core, krom, horn, bool}. Original and tight complexity results for both knowledge base satisfiability
and query answering will be presented in this paper.

Role inclusions were introduced in DL-Lite by (Calvanese et al., 2006). The possibility to combine
them with cardinality constraints on roles has been studied by (Artale et al., 2009): the obtained results
show the dramatic impact of role inclusions, when combined with cardinality (or even functionality) con-
straints, on the computational complexity of reasoning. In particular, query answering becomes CONP-
complete in data complexity even for the simplest, core, languages and PTIME-complete for the core and
Horn languages with functionality constraints only; moreover, KB satisfiability, which is NLOGSPACE-
complete in combined complexity for the simplest, core, language when role inclusions and cardinality
constraints are used separately, becomes EXPTIME-complete when they both are present and interact. The
DL-Lite logic DL-LiteA, introduced by (Poggi et al., 2008), retains role inclusions and functionality con-
straints but limits the interaction between them in order to regain nice computational properties. A similar
restriction is also used by (Artale et al., 2009) for limiting this kind of interaction and thus enjoying the
computational properties of the DL-Lite fragments with only role inclusions or only cardinality constraints.

1

Employee

Researcher

Professor

salary (Real)

salary ({35K–70K})

salary ({55K–100K})

Figure 1: Salary example

The restriction—called (inter)—essentially forbids the use of cardinality constraints on roles that are spe-
cialized. In this paper we push the limits by relaxing this restriction and allowing specialization of roles
even when cardinalities are specified on them. We present two new restrictions, (interT) and (interKB),
whose difference lies in the fact that the latter takes account of the number of R-successors in the ABox
while the former does not. We show that (interKB) does not lead to an increase in the complexity of knowl-
edge base satisfiability, whereas adopting (interT) brings the computational complexity up to EXPTIME.

The notion of attributes, borrowed from conceptual modelling formalisms, introduces a distinction
between (abstract) objects and concrete values (integers, reals, strings, etc.) and, consequently, between
concepts (sets of objects) and datatypes (sets of values), and between roles (relating objects to objects)
and attributes (relating objects to values). The language DL-LiteA (Poggi et al., 2008) was introduced
with the aim of capturing the notion of attributes in DL-Lite in the setting of ontology-based data access
(OBDA). The datatypes of DL-LiteA are pairwise disjoint sets of values and a similar choice is made by
various DLs encoding conceptual models (Calvanese et al., 1999; Berardi et al., 2005; Artale et al., 2007a).
Furthermore, datatypes of DL-LiteA are used for typing attributes globally: e.g., the concept inclusion
∃salary− v Real can be used to constrain the range of attribute salary to the type Real. However, this
means that even if associated with different concepts, attributes sharing the same name must have the same
range restriction.

We consider a more expressive language for attributes and datatypes in DL-Lite. We present two main
extensions of the original DL-LiteA: (i) datatypes are not necessarily disjoint; instead, Horn clauses define
relations between them (in particular, disjointness and subtype relationships); (ii) range restrictions for
attributes are local (rather than global), i.e., concept inclusion axioms of the form C v ∀U.T can be used
to specify that all values of the attribute U of instances of concept C belong to datatype T . In this way,
we capture a wider range of datatypes (e.g., intervals over the reals) and allow re-use of the very same
attribute associated to different concepts, but with different range restrictions. As an example, consider the
Entity-Relationship diagram in Fig. 1, which says, in particular, that

• employees’ salary is of type Real, i.e., Employee v ∀salary.Real;

• researchers’ salary is in the range 35K–70K, which is an interval type, a subset of Real,
i.e., Researcher v ∀salary.{35K–70K};

• and professors’ salary in the range 55K–100K,
i.e., Professor v ∀salary.{55K–100K};

• with researchers and professors being employees,
i.e., Researcher v Employee and Professor v Employee.

Local attributes are strictly more expressive than global ones: e.g., the concept inclusion> v ∀salary.Real
is equivalent to ∃salary− v Real mentioned above and implies that every value of salary is a Real, in-
dependently of the type of the employee. Using local attributes we can infer concept disjointness from
datatype disjointness for the same (existentially qualified) attribute. For example, assume that in the sce-
nario of Fig. 1 we add the concept of ForeignEmployee as having at-least one salary that must be a String
(to take account of the currency). Then Employee and ForeignEmployee become disjoint concepts—i.e.,

2

Employee u ForeignEmployee v ⊥ will be implied—because of disjointness of the respective datatypes
and restrictions on the salary attribute. We also allow more general datatype inclusions, which, for instance,
can express that the intersection of a number of datatypes is empty.

Our work lies between the DL-LiteA proposal and the extensions of DLs with concrete domains
(see (Lutz, 2003) for an overview). According to the concrete domain terminology, we consider a path-
free extension with unary predicates—predicates coincide with datatypes with a fixed interpretation, as
in DL-LiteA. Differently from the concrete domain approach, we do not require attributes to be func-
tional; instead, we can specify generic number restrictions over them, similarly to extensions of EL with
datatypes (Baader et al., 2005; Despoina et al., 2011) and the notion of datatype properties in OWL 2 (Pan
and Horrocks, 2011; Cuenca Grau et al., 2008). Our approach works as far as datatypes are safe, i.e.,
unbounded and no covering constraints hold between them: query answering becomes CONP-hard in pres-
ence of datatypes of specific cardinalities (Franconi et al., 2011; Savković, 2011) or in the presence of a
datatype, whose extension is a subset of (is covered by) the union of two other datatypes (cf. Theorem 5).

We provide tight complexity results showing that addition of local and safe range restrictions on at-
tributes to the Bool, Horn and core languages does not change the complexity of knowledge base satisfia-
bility. On the other hand, surprisingly, for the Krom language complexity increases from NLOGSPACE to
NP. These results reflect the intuition that universal restrictions on attributes—as studied in this paper—
cannot introduce cyclic dependencies between concepts (datatypes); on the other hand, unrestricted use
of universal restrictions (∀R.C) together with sub-roles, by which qualified existential restrictions (∃R.C)
can be encoded, results in EXPTIME-completeness (Calvanese et al., 2007).

We complete our complexity results by showing that positive existential query answering (and so,
conjunctive query answering) over core and Horn knowledge bases with attributes, local range restrictions
and safe datatypes is still FO-rewritable and so, is in AC0 in data complexity.

The paper is organized as follows. Section 2 presents DL-Lite and its fragments. In Section 3 we
investigate the complexity of deciding knowledge base satisfiability when relaxing the restriction on the
interaction between cardinality constraints and role inclusions. In Section 4 we consider the languages
with attributes and datatypes and study combined complexity of knowledge base satisfiability and data
complexity of answering positive existential queries. Section 5 concludes this paper.

2 The Description Logic DL-LiteHNAbool

The language of DL-LiteHNAbool contains object names a0, a1, . . ., value names v0, v1, . . ., concept names
A0, A1, . . ., role names P0, P1, . . ., attribute names U0, U1, . . ., and datatype names T0, T1, Complex
roles R, datatypes T and concepts C are defined as follows:

R := Pi | P−i ,
T := ⊥D | Ti,
B := > | ⊥ | Ai | ≥ q R | ≥ q Ui,
C := B | ¬C | C1 u C2,

where q is a positive integer. Concepts of the form B are called basic concepts. A DL-LiteHNAbool TBox, T ,
is a finite set of concept, role and attribute inclusions of the form:

C1 v C2 and C v ∀U. T, R1 v R2, U1 v U2,

and an ABox, A, is a finite set of assertions of the form:

Ak(ai), ¬Ak(ai), Pk(ai, aj), ¬Pk(ai, aj), Uk(ai, vj).

We standardly abbreviate ≥ 1R and ≥ 1U by ∃R and ∃U , respectively. Taken together, a TBox T and an
ABox A constitute the knowledge base (KB) K = (T ,A).
Semantics. As usual in description logic, an interpretation, I = (∆I , ·I), consists of a nonempty domain
∆I and an interpretation function ·I . The interpretation domain ∆I is the union of two nonempty disjoint

3

sets: the domain of objects ∆IO and the domain of values ∆IV . We assume that all interpretations agree on
the semantics of each datatype Ti and of each value vj . In particular, ⊥ID = ∅ and T Ii = val(Ti) ⊆ ∆IV
is the set of values of the datatype Ti (which does not depend on the particular interpretation), and each
vj is interpreted by one specific value, denoted val(vj), i.e., vIj = val(vj) ∈ ∆IV (which, again, does not
depend on I). Note that the datatypes do not have to be mutually disjoint—instead, we assume that datatype
constraints are defined by Horn clauses (expressing, in particular, disjointness and subtype relationships)—
we will clarify the assumptions in Section 4.

The interpretation function ·I assigns an element aIi ∈ ∆IO to each object name ai, a subset AIk ⊆ ∆IO
of the domain of objects to each concept name Ak, a binary relation P Ik ⊆ ∆IO × ∆IO over the domain
of objects to each role name Pk, and a binary relation UIk ⊆ ∆IO × ∆IV to each attribute name Uk. We
adopt the unique name assumption (UNA): aIi 6= aIj , for all i 6= j. It is known (Artale et al., 2009) that
not adopting the UNA in DL-Lite languages with cardinality constraints leads to a significant increase in
the complexity of reasoning: KB satisfiability goes from NLOGSPACE to PTIME-hard with functionality
constraints and even to NP-hard with arbitrary cardinality constraints; query answering loses the AC0 data
complexity. The role and concept constructs are interpreted in I in the standard way:

(P−k)I = {(w′, w) ∈ ∆IO ×∆IO | (w,w′) ∈ P Ik },
>I = ∆IO, ⊥I = ∅,

(C1 u C2)I = CI1 ∩ CI2 , (¬C)I = ∆IO \ CI ,
(≥q R)I =

{
w ∈ ∆IO |]{w′ | (w,w′) ∈ RI} ≥ q

}
,

(≥q U)I =
{
w ∈ ∆IO |]{v | (w, v) ∈ UI} ≥ q

}
,

(∀U. T)I =
{
w ∈ ∆IO | v ∈ T I , for all v with (w, v) ∈ UI

}
,

where]X is the cardinality of X . The satisfaction relation |= is also standard:

I |= C1 v C2 iff CI1 ⊆ CI2 , I |= R1 v R2 iff RI1 ⊆ RI2 ,
I |= U1 v U2 iff UI1 ⊆ UI2 ,
I |= Ak(ai) iff aIi ∈ AIk , I |= ¬Ak(ai) iff aIi /∈ AIk ,

I |= Pk(ai, aj) iff (aIi , a
I
j) ∈ P Ik , I |= ¬Pk(ai, aj) iff (aIi , a

I
j) /∈ P Ik ,

I |= Uk(ai, vj) iff (aIi , v
I
j) ∈ UIk .

A KB K = (T ,A) is said to be satisfiable (or consistent) if there is an interpretation, I, satisfying all the
members of T and A. In this case we write I |= K (as well as I |= T and I |= A) and say that I is a
model of K (T and A).

A positive existential query q(x1, . . . , xn) is a first-order formula ϕ(x1, . . . , xn) constructed by means
of conjunction, disjunction and existential quantification starting from atoms of the from Ak(t1), Tk(t1),
Pk(t1, t2) and Uk(t1, t2), where Ak is a concept name, Tk a datatype name, Pk a role name, Uk an at-
tribute name, and t1, t2 are terms taken from the list of variables y0, y1, . . . , object names a0, a1, . . . and
value names v0, v1, . . . ; object and value names are called constants. We write q(~x) for a query with free
variables ~x = x1, . . . , xn and q(~a) for the result of replacing every occurrence of xi in ϕ(~x) with the ith
component ai of a vector of constants ~a = a1, . . . , an. A conjunctive query is a positive existential query
that contains no disjunction.

For a KB K = (T ,A), we say that a tuple ~a of constants from A is a certain answer to q(~x) with
respect to K, and write K |= q(~a), if I |= q(~a) whenever I |= K. The query answering problem is: given
a KB K = (T ,A), a query q(~x) and a tuple ~a of constants from A, decide whether K |= q(~a).
Fragments of DL-LiteHNAbool . We consider syntactical restrictions on the language of DL-LiteHNAbool along
two axes: (i) the Boolean operators (bool) on concepts and (ii) the attributes (A). Similarly to classical logic,
we adopt the following definitions. A TBox T will be called a Krom TBox—from the Krom fragment of
first-order logic— if only negation is allowed in the construction of its complex concepts, i.e., if

C ::= B | ¬B (Krom)

4

combined complexity of KB satisfiability data compl.
language (inter)∗ (interT) (interKB) no restrict. QA

DL-LiteHNcore NLOGSPACE∗ ≥NP [Th.1] NLOGSPACE [Th.3] in AC0∗

DL-LiteHNhorn PTIME∗ EXPTIME [Th.1] PTIME [Th.3] in AC0∗

DL-LiteHNkrom NLOGSPACE∗ ≥NP [Th.1] NLOGSPACE [Th.3] EXPTIME∗ CONP∗

DL-LiteHNbool NP∗ EXPTIME [Th.1] NP [Th.3] CONP∗

DL-LiteHNAcore NLOGSPACE [Th.7] ≥NP [Th.1] NLOGSPACE [Th.7] in AC0 [Th.11]

DL-LiteHNAhorn PTIME [Th.7] EXPTIME [Th.1] PTIME [Th.7] in AC0 [Th.11]

DL-LiteHNAkrom NP [Th.9] ≥NP [Th.1] NP [Th.9] EXPTIME CONP
DL-LiteHNAbool NP [Th.7] EXPTIME [Th.1] NP [Th.7] CONP

Table 1: Complexity of DL-Lite logics; ∗ = (Artale et al., 2009).

(here and below the B are basic concepts). A TBox T will be called a Horn TBox if its complex concepts
are constructed by using only intersection:

C ::= B1 u · · · uBk. (Horn)

Finally, we call T a core TBox if its concept inclusions are of the form:

B1 v B2, B1 v ∀U.T, B1 uB2 v ⊥. (core)

Note that all the above fragments allow for positive occurrences of ∀U.T on the right-hand side of concept
inclusions. As B1 v ¬B2 is equivalent to B1 u B2 v ⊥, core TBoxes can be regarded as sitting in the
intersection of Krom and Horn TBoxes. In this paper, in addition to the full language of DL-LiteHNAbool , we
study the following logics:
DL-LiteHNA

krom , DL-LiteHNA
horn , DL-LiteHNA

core are the fragments of DL-LiteHNAbool with Krom, Horn, and
core TBoxes, respectively;
DL-LiteHN

α , for α ∈ {core, krom, horn, bool}, is the fragment of DL-LiteHNAα without attributes and
datatypes.

Table 1 summarizes the obtained complexity results (with numbers q coded in binary) for KB satisfia-
bility (combined complexity) and positive existential query answering (data complexity).

3 Complexity of Reasoning in DL-LiteHNα
As shown by (Artale et al., 2009), reasoning in DL-LiteHNα is already rather costly (EXPTIME-complete)
due to the interaction between role inclusions and cardinality constraints. However, both of these con-
structs turn out to be useful for the purposes of conceptual modelling. By limiting their interplay one can
get languages with better computational properties. In this section we formulate and study two syntactic
restrictions that are weaker than the ones known in the literature (Poggi et al., 2008; Artale et al., 2009).

In the following, we denote by role±(K) the set of roles Pk in K with their inverses P−k . For a role
R, let inv(R) = P−k if R = Pk and inv(R) = Pk if R = P−k . Given a TBox T we denote by v∗T the
reflexive and transitive closure of the relation {(R,R′), (inv(R), inv(R′)) | R v R′ ∈ T }.We say thatR′

is a proper sub-role of R in T if R′ v∗T R and R 6v∗T R′. A proper sub-role R′ of R is a direct sub-role of
R if there is no other proper sub-role R′′ of R such that R′ is a proper sub-role of R′′; dsubT (R) denotes
the set of direct sub-roles of R in T . An occurrence of a concept on the right-hand (left-hand) side of a
concept inclusion is called negative if it is in the scope of an odd (even) number of negations ¬; otherwise
it is called positive.

3.1 Counting Successors in Hierarchies

The languages DL-Lite(HN)
α of (Artale et al., 2009) are the result of imposing the following syntactic

restriction on DL-LiteHNα TBoxes T :

5

(inter) if R ∈ role±(T) has a proper sub-role in T then T contains no negative occurrences of number
restrictions ≥ q R or ≥ q inv(R) with q ≥ 2.

To formulate our subtler restrictions, we need the following parameters, for a TBox T and a role R ∈
role±(T):

ub(R, T) = min
(
{∞} ∪ {q − 1 | q ≥ 2 and ≥ q R occurs negatively in T }

)
,

lb(R, T) = max
(
{0} ∪ {q | ≥ q R occurs positively in T }

)
,

rank(R, T) = max
(
lb(R, T),

∑
R′∈dsubT (R)

rank(R′, T)
)
.

Consider first the languages obtained from DL-LiteHNα by imposing the following restriction:

(interT) if R ∈ role±(T) has a proper sub-role in T then

ub(R, T) ≥ rank(R, T).

It turns out, however, that these languages are too expressive to keep the same complexity of the satisfia-
bility problem as their basic counterparts:

THEOREM 1. Under (interT), KB satisfiability is NP-hard for DL-LiteHNcore and DL-LiteHNkrom and EXPTIME-
complete for DL-LiteHNhorn and DL-LiteHNbool .

Proof. To prove NP-hardness, we show that graph 3-colorability can be reduced to DL-LiteHNcore KB satis-
fiability. Let G = (V,E) be a graph with vertices V and edges E and {r, g, b} be three colors. Consider
the following KB K = (T ,A) with a role name S and its sub-roles Ri, for each vertex vi ∈ V , and object
names o, r, g, b and vi, for each vertex vi ∈ V :

T ={≥ (|V |+ 4)S v ⊥} ∪
{Ri v S, B1 v ∃Ri, B2 u ∃R−i v ⊥ | vi ∈ V } ∪
{∃R−i u ∃R

−
j v ⊥ | (vi, vj) ∈ E},

A ={B1(o), S(o, r), S(o, g), S(o, b)} ∪ {S(o, vi), B2(vi) | vi ∈ V }.

Clearly, K enjoys (interT). It can be shown that K is satisfiable iff G is 3-colorable. Indeed, for every
vertex vi, the individual vi is an S-successor of o, which has another three S-successors: r, g and b. On
the other hand, for each vertex vi, o must have an Ri-successor (which is also an S-successor) but the total
number of S-successors of o is bounded by |V | + 3. Since the vj cannot be Ri-successors (for any pair
i, j), all theRi-successors of omust be among r, g and b, which by the range disjointness axiom forRi and
Rj (provided that (vi, vj) ∈ E) is possible iff the graph is 3-colorable.

EXPTIME-hardness can be proved by reduction of the complement of the state reachability problem
for alternating Turing machines (ATMs). We only give an idea of the proof here. Suppose we are given
an ATM that, on every input, requires only a polynomial number of cells on the tape. Without loss of
generality we may assume that each state has exactly two successor states on each input symbol. Let n be
the length of the input and ` the number of cells required. Then we need the following 3 sets of roles, for
0 ≤ k < 3,

• Skai, for each symbol a ∈ Σ and position 1 ≤ i ≤ `, so that ∃S−kai says ‘the symbol a is written at
the position i’;

• Hkqi, for each state q ∈ Q and head position 1 ≤ i ≤ `, so that ∃H−kqi says ‘the current state is q and
the head is over the position i’;

(the three sets are required for the disjointness constraints below). Since each state has two successors, we
also need two sub-roles (left and right) of each Skai:

LSkai v Skai, RSkai v Skai

6

and sub-roles LHkqi and RHkqi for each Hkqi. With the help of these pairs of roles we can encode
transitions of the form δ(a, q) = {(a1, q1, d1), (a2, q2, d2)} in a natural way:

∃S−kai u ∃H
−
kqi v ∃LHbk+1cq1(i+d1) u ∃LSbk+1ca1i u

∃RHbk+1cq2(i+d2) u ∃RSbk+1ca2i,

where bkc denotes the value of k modulo 3. We also need to say that cells that are not under the current
position of the head do not change their symbols: for all j 6= i,

∃S−kaj u ∃H
−
kqi v ∃LSbk+1caj u ∃RSbk+1caj .

But now the main difficulty is to enforce that all the LSbk+1caj- and LHbk+1cq1i1 -successors coincide (and
similarly, their right counterparts). We could introduce a new functional super-role for all of them but then
the restriction (interT) would be violated. Instead, we will employ a role Tk and its two subroles Lk and
Rk, for each 0 ≤ k < 3, and super-roles L̂Skai, R̂Skai, L̂Hkqi and R̂Hkqi. Each of these super-roles
contains its title role, Lk and T−bk−1c as its sub-roles and has not more than 2 successors, e.g.:

LSkai v L̂Skai, Lk v L̂Skai, T−bk−1c v L̂Skai, ≥ 3 L̂Skai v ⊥.

With the help of disjointness constraints of the form ∃Tbk−1c u ∃T−k v ⊥ and ∃Tbk−1c u ∃S−kai v ⊥ and
an ABox, modelling the initial configuration and containing H0q01(z, a), S0a11(z, a), . . . , S0a``(z, a) and
T0(z, a), we can ensure that in all models of this TBox each point (but z) has a single Tbk−1c-predecessor
and a single Lk-successor, which is a Tk-successor, and, by the cardinality constraints above, is also the
LSbk+1caj- and LHbk+1cq1i1 -successor for the respective combination of subscripts. It is easily seen that
the TBox enjoys (interT) and encodes the tree of computations of the ATM. In a similar way one can
encode the condition that a certain state is never reached.

Both the NP- and EXPTIME-hardness proofs use the fact that the restriction (interT) does not impose
any bounds on the number of R-successors in the ABox. And the EXPTIME-hardness proof also reveals
that if we are to maintain the low complexity of reasoning, we have to take into account not only the number
of R-successors in the ABox, but also the number of R−-predecessors (i.e., R-successors) that come to
the unnamed individuals outside the ABox. In the next section, this intuition will drive our next attempt to
weaken the restrictions on the interaction of role inclusions and cardinality constraints.

3.2 Taking the ABox into Account
In this section, we formulate our second restriction, (interKB), and show that the complexity of KB sat-
isfiability remains low under it. We need the following additional parameters, for an ABox A, a TBox T
and R ∈ role±(T):

rank(R,A) = max
(
{0}∪{n | Ri(a, ai) ∈ A, Ri v∗T R, for distinct a1, . . . , an}

)
,

pred(R, T) =

{
1, if lb(R′, T) ≥ 1, for some R′ v∗T R−,
0, otherwise.

Then our second restriction on role inclusions and cardinality constraints is as follows:

(interKB) if R ∈ role±(T) has a proper sub-role in T then

ub(R, T) ≥ rank(R, T) + max
(
pred(R, T), rank(R,A)

)
.

Both (interT) and (interKB) are weaker than (inter) and, for example, allow for the specialization of
functional roles: T = {≥ 2R v ⊥, R1 v R2, R2 v R} and A = {R(a, b), R1(a1, b1), R2(a2, b2)} do
not satisfy (inter), but do satisfy both (interT) and (interKB). The above restrictions will also be applied
to sub-attributes in the languages DL-LiteHNAα .

7

To show that (interKB) matches the complexity of KB satisfiability of the basic languages, we adapt
the proof presented in (Artale et al., 2009), where a DL-LiteHNbool KB K = (T ,A) is encoded into a first-
order sentence K‡e with one variable. Every ai ∈ ob(A) is associated with the individual constant ai, and
every concept name Ai with the unary predicate Ai(x). For each concept ≥ q R in K we introduce a fresh
unary predicate EqR(x). We also introduce the set

dr(K) = {dpk, dp−k | Pk is a role name in K}

of individual constants, as representatives of the objects in the domain (dpk) and the range (dp−k) of each
role Pk, respectively. The encoding C∗ of a concept C is defined inductively:

⊥∗ = ⊥, (Ai)
∗ = Ai(x),

>∗ = >, (¬C)∗ = ¬C∗(x),

(≥ q R)∗ = EqR(x), (C1 u C2)∗ = C∗1 (x) ∧ C∗2 (x).

The following sentence encodes the knowledge base K:

K‡e = ∀x
[
T ∗(x) ∧ T R(x) ∧

∧
R∈role±(K)

(
εR(x) ∧ δR(x)

)]
∧ A‡e ,

where

T ∗(x) =
∧

C1vC2∈T

(
C∗1 (x)→ C∗2 (x)

)
,

δR(x) =
∧

q,q′∈QR
T , q

′>q

(
Eq′R(x)→ EqR(x)

)
,

T R(x) =
∧

Rv∗T R
′

∧
q∈QR

T

(
EqR(x)→ EqR

′(x)
)
,

and QRT contains 1, all q such that ≥ q R occurs in T and all QR
′

T , for R′ v∗T R. Sentence A‡e encodes
the ABox A:

A‡e =
∧

Ak(ai)∈A

Ak(ai) ∧
∧

¬Ak(ai)∈A

¬Ak(ai) ∧
∧

R(ai,aj)∈A

EqeR,ai
R(ai) ∧

∧
¬Pk(ai,aj)∈A

R(ai,aj)∈A, Rv∗T Pk

⊥,

where qeR,a is the maximum number in QRT such that there are qeR,a many distinct ai with1 Ri(a, ai) ∈ A
and Ri v∗T R. For each R ∈ role±(K), we also need a formula expressing the fact that the range of R is
not empty whenever its domain is nonempty:

εR(x) = E1R(x)→ inv(E1R(dr)),

with inv(E1R(dr)) denoting E1P
−
k (dp−k) if R = Pk and E1Pk(dpk) if R = P−k .

LEMMA 2. A DL-LiteHNbool KB K under (interKB) is satisfiable iff the one-variable sentence K‡e is satis-
fiable.

Proof. The only challenging direction is (⇐). To prove it, we adapt the proofs of Theorem 5.2 and
Lemma 5.14 of (Artale et al., 2009). The idea of the proof is to construct a DL-LiteHNbool model I of K from
the minimal Herbrand model M ofK‡e with domainD = ob(A)∪dr(K). The interpretation I = (∆I , ·I)
is defined inductively: ∆I =

⋃∞
m=0Wm, such that W0 is the set ob(A), and each set Wm+1, m ≥ 0, is

constructed by adding to Wm fresh copies of elements of dr(K). We write cp(w) for the element d ∈ D
1We slightly abuse notation and write R(ai, aj) ∈ A instead of Pk(ai, aj) ∈ A if R = Pk and Pk(aj , ai) ∈ A if R = P−k .

8

of which w is a copy, with cp(a) = a for a ∈ ob(A) = W0. We define aIi = aMi = ai, for all individuals
ai ∈ ob(A), and, for all concept names Ak,

AIk = {w ∈ ∆I |M |= A∗k[cp(w)]},

The interpretation of each role Pk, is defined inductively as P Ik =
⋃∞
m=0 P

m
k , where Pmk ⊆ Wm ×Wm,

along with the construction of ∆I . The initial interpretation of Pk is

P 0
k = {(aMi , aMj) ∈W0 ×W0 | R(ai, aj) ∈ A and R v∗T Pk}.

The required R-rank r(R, d) of d ∈ D is defined as:

r(R, d) = max
(
{0} ∪ {q ∈ QR+

T |M |= EqR[d]}
)
,

where QR+
T contains all q such that ≥ q R occurs positively in T . Note that:

r(R, d) ≤ lb(R, T). (1)

The actual R-rank rm(R,w) of a point w ∈ ∆I at step m is defined as follows:

rm(R,w) =]{w′ | (w,w′) ∈ Pmk ∪ Pm+1
j , Pj ∈ dsubT (Pk)},

if R = Pk; replace (w,w′) by (w′, w) if R = P−k . Assume that Wm and Pmk , m ≥ 0, have been already
defined. Let Wm+1 \Wm = ∅. If the actual rank of some points is smaller than the required rank, then,
we cure these defects by adding R-successors for them. For each role name Pk, we consider two sets of
defects in Pmk :

Λmk = {w ∈Wm \Wm−1 | rm(Pk, w) < r(Pk, cp(w))},
Λm−k = {w ∈Wm \Wm−1 | rm(P−k , w) < r(P−k , cp(w))}.

In each equivalence class [R] = {S | S v∗T R, R v∗T S} we select a single role, a representative. Let
G = (RepT , E) be a directed graph such that RepT is the set of representatives and (R,R′) ∈ E iff R is
a proper sub-role of R′. We use an ascending total order induced on G when choosing an element [Pk] in
RepT , and extend in that way Wm and Pmk to Wm+1 and Pm+1

k , respectively.

(Λmk) Let w ∈ Λmk , q = r(Pk, d) − rm(Pk, w), d = cp(w). There is q′ ≥ q > 0 with M |= Eq′Pk[d]
and so, M |= E1Pk[d] and M |= E1P

−
k [dp−k]. We take q fresh copies w′1, . . . , w

′
q of dp−k , add them

to Wm+1 and for each 1 ≤ i ≤ q, set cp(w′i) = dp−k , add the pairs (w,w′i) to each Pm+1
j with

Pk v∗T Pj and the pairs (w′i, w) to each Pm+1
j with P−k v∗T Pj ;

(Λm−k) This rule is the mirror image of (Λmk): Pk and dp−k are replaced with P−k and dpk, respectively.

We now show that I |= ϕ for each ϕ ∈ T ∪A. From the construction ofRI , it immediately follows that the
interpretation of roles respects role inclusions, i.e., RI1 ⊆ RI2 whenever R1 v R2 ∈ T . For ϕ = Ak(ai)
and ϕ = ¬Ak(ai), the claim follows from the definition of AIk . For ϕ = Pk(ai, aj) and ϕ = ¬Pk(ai, aj),
we have (ai, aj) ∈ P Ik iff (ai, aj) ∈ P 0

k iffR(ai, aj) ∈ A andR v∗T Pk. The challenging part is, however,
to show that I |= C1 v C2 whenever M |= ∀x (C∗1 (x) → C∗2 (x)), for each ϕ = C1 v C2. We need to
prove that, for all w ∈ ∆I and all ≥ q R in T ,

(a1) M |= EqR[cp(w)] implies w ∈ (≥ q R)I , for all ≥ q R that occur positively in T ;

(a2) w ∈ (≥ q R)I implies M |= EqR[cp(w)], for all ≥ q R that occur negatively in T .

In order to do that, we demonstrate the following property of the unravelling construction, for all w ∈Wm:

rm(R,w) ≤
∑

Ri∈dsubT (R)

rank(Ri, T) +

{
rank(R,A), if m = 0,

pred(R, T), if m > 0.
(2)

9

First, note that we have, for all w ∈Wm:

rm(R,w) = sRw +]{w′ ∈Wm | (w,w′) ∈ Rm} ≤ sRw +

{
rank(R,A), if m = 0,

pred(R, T), if m > 0,

where
sRw =]{w′ ∈Wm+1 \Wm | (w,w′) ∈ Rm+1

i , Ri ∈ dsubT (R)}.

Indeed, the case m = 0 is immediate from the definition of the P 0
k ; if m > 0 then the second component

of the sum does not exceed 1 because every such w is introduced to cure a defect of another w′ ∈ Wm−1

and can be 1 only if an R1-defect of w′ was cured, for R1 v∗T R− and lb(R1, T) ≥ 1. Now, by induction
on the topological order in G = (RepT , E), we show that sRw ≤

∑
Ri∈dsubT (R) rank(Ri, T). For the

basis of induction, dsubT (R) = ∅ and so, by definition, sRw = 0 and the inequality trivially holds. For
the inductive step, let R1, . . . , Rk be the direct sub-roles of R. If w has an Ri-successor w′ that does
not belong to any of its sub-roles, i.e., (w,w′) ∈ Rm+1

i \
⋃
Rij∈dsubT (Ri)

Rm+1
ij , then Ri had a defect

on w, which was cured, and therefore, sRi
w ≤ r(Ri, cp(w)). Then, by (1) and the definition of rank,

r(Ri, cp(w)) ≤ lb(Ri, T) ≤ rank(Ri, T), whence sRi
w ≤ rank(Ri, T). Otherwise, all Ri-successors

of w come from its direct sub-roles, in which case sRi
w =

∑
Rij∈dsubT (Ri)

s
Rij
w , whence, by the induction

hypothesis, sRi
w ≤

∑
Rij∈dsubT (Ri)

rank(Rij , T) and, by the definition of rank , sRi
w ≤ rank(Ri, T). In

either case, sRw =
∑
Ri∈dsubT (R) s

Ri
w ≤

∑
Ri∈dsubT (R) rank(Ri, T) and so, (2) holds.

We then proceed by showing (a1) and (a2) as follows:

(a1) If ≥ q R occurs positively in T and M |= EqR[cp(w)] then, by the definition of the required rank,
q ≤ r(R, cp(w)) and so, the construction ensures that w ∈ (≥ q R)I .

(a2) We consider the following three subcases:

• Let dsubT (R) = ∅. Suppose w ∈ (≥ q R)I . If w ∈ W0 and there are w1, . . . , wq′ ∈ W0 with
q′ ≥ q and (w,w1), . . . , (w,wq′) ∈ RI then, by A‡e , M |= Eq′R[cp(w)] whence, by δR(x),
M |= EqR[cp(w)]. Otherwise, some w′ ∈ ∆I \W0 with (w,w′) ∈ RI was introduced to cure
an R-defect of w and so q ≤ r(R, cp(w)). Let q′ = r(R, cp(w)). Then M |= Eq′R[cp(w)]
and, by δR(x), we obtain M |= EqR[cp(w)].

• Let dsubT (R) 6= ∅ and ub(R, T) =∞. Since≥ q R occurs negatively in T then, by definition,
q = 1. Suppose w ∈ (∃R)I . If w ∈ W0 and there is w′ with w′ ∈ W0 and (w,w′) ∈ RI

then, by A‡e and δR(x), M |= E1R[cp(w)]. Otherwise, some w′ ∈ ∆I \W0 was introduced
to cure an R1-defect of w for some R1 v∗T R. It follows then that r(R1, cp(w)) ≥ 1 and so,
M |= E1R1[cp(w)] whence, by T R(x), M |= E1R[cp(w)].

• Let dsubT (R) 6= ∅ and ub(R, T) 6= ∞. We show (≥ q R)I = ∅. Assume, to the contrary,
there isw ∈ (≥ q R)I . Since≥ q R occurs negatively in T and ub(R, T) 6=∞, q > ub(R, T).
By (interKB) and the definition of the required rank, ub(R, T) ≥ lb(R, T) ≥ r(R, cp(w)),
whence q > r(R, cp(w)). On the other hand, w ∈ Wm, for some m ≥ 0, and, by (interKB)
and (2), ub(R, T) ≥ rm(R,w), whence q > rm(R,w). Then, since w ∈ (≥ q R)I , an
R-defect was cured on w, and so, as the procedure (if applied) does not create more than
r(R, cp(w))-many R-successors, we have q ≤ r(R, cp(w)), contrary to q > r(R, cp(w)).

Finally, we can prove that, for all C1 v C2 ∈ T ,

M |= ∀x
(
C∗1 (x)→ C∗2 (x)

)
implies I |= C1 v C2.

It should be clear that each C1 v C2 is equivalent to a set of concept inclusions in the following normal
form

> v D1 t · · · tDk,

10

where each Di is either ⊥, A, ¬A, ≥ q R or ¬(≥ q R). It is to be noted that ≥ q R occurs positively in
such concept inclusion if it occurs positively in C1 v C2 and negatively if negatively in C1 v C2. So,
suffice it to prove that, for each concept inclusion,

M |= ∀x
(
D∗1(x) ∨ · · · ∨D∗k(x)

)
implies I |= > v D1 t · · · tDk.

Let w ∈ ∆I . Then, we have M |= D∗i [cp(w)], for some 1 ≤ i ≤ k. Obviously, Di is not ⊥. If Di is
A or ¬A then we clearly have w ∈ DIi . If Di is ≥ q R then ≥ q R occurs positively in T and, by (a1),
w ∈ (≥ q R)I . If Di is ¬(≥ q R) then ≥ q R occurs negatively in T and, by (a2), w /∈ (≥ q R)I . In any
case w ∈ DIi and so, I |= > v D1 t · · · tDk.

THEOREM 3. Under (interKB), KB satisfiability is NP-complete in DL-LiteHNbool , PTIME-complete in
DL-LiteHNhorn and NLOGSPACE-complete inDL-LiteHNkrom and DL-LiteHNcore .

4 Extending with Attributes
In this section we define the notion of safe datatypes and show that such restrictions are required for preserv-
ing data complexity of query answering; restriction (i) has been independently introduced by (Savković,
2011; Savkovic and Calvanese, 2012).

DEFINITION 4. A set of datatypes D = {T1, . . . , Tn} is called safe if (i) the difference between an
arbitrary intersection of datatypes and an arbitrary union of datatypes is either empty or unbounded;
(ii) all constraints between datatypes are in the form of Horn clauses Ti1 ∩ · · · ∩ Tik ⊆D Ti0 .

A set of datatypes D is called weakly safe if (i′) arbitrary intersections of datatypes are either empty
or unbounded and (ii) holds.

It follows, in particular, that if D is (weakly) safe we can assume that each non-empty datatype Ti is
unbounded (note that query answering becomes CONP-hard in presence of datatypes of specific cardinali-
ties (Franconi et al., 2011)); and if D is safe then also arbitrary intersections of datatypes are either empty
or unbounded. Thus, ifD is safe then it is also weakly safe. Condition (ii) ensures that datatype constraints
inD have the form of Horn clauses, T1∩· · ·∩Tk ⊆D T , and thus computable in PTIME; we further restrict
datatype constraints to T1 ⊆D T2 and T1 ∩ · · · ∩ Tk ⊆D ⊥D when dealing with the core language. Indeed,
allowing covering constraints between datatypes leads to CONP-hardness of conjunctive query answering:

THEOREM 5. Conjunctive query answering in DL-LiteHNAcore with covering constraints on datatypes is
CONP-hard, even without role and attribute inclusions and number restrictions (and so, under (interKB)).

Proof. We prove the result by reduction of the complement of 2+2CNF (similar to instance checking in
ALE (Schaerf, 1993)). Suppose we are given a CNF ψ in which every clause contains two positive and two
negative literals (including the constants true, false). Let T be a datatype covered by non-empty disjoint T0

and T1. Let T contain the following concept inclusions for an attribute U and conceptsB and C: B v ∃U ,
B v ∀U.T , C v ∀U.T0, and consider the following conjunctive query

q = ∃y,~t, ~u
(
P1(y, t1) ∧ P2(y, t2) ∧N1(y, t3) ∧N2(y, t4)

∧ U(t1, u1) ∧ U(t2, u2) ∧ U(t3, u3) ∧ U(t4, u4)

∧ T0(u1) ∧ T0(u2) ∧ T1(u3) ∧ T1(u4)
)

with roles P1, P2, N1 and N2. We construct an ABox Aψ with individuals true and false for the propo-
sitional constants, an individual xi, for each propositional variable xi in ψ, and an individual ci, for
each clause of ψ. Let Aψ contain assertion B(xi), for each propositional variable xi in ψ, assertions
C(false), U(true, v1), for a value v1 of datatype T1, and the following assertions, for each clause xji1 ∨
xji2 ∨ ¬xji3 ∨ ¬xji4 of ψ:

P1(ci, xji1), P2(ci, xji2), N1(ci, xji3), N2(ci, xji4)

11

(here the xj may include propositional constants). It is readily checked that (T ,Aψ) 6|= q iffψ is satisfiable.
Indeed, if ψ is satisfiable we construct I by ‘extending’ Aψ by U(xi, v0) if xi is false in the satisfying
assignment and by U(xi, v1) otherwise, where v0 is in T0 and v1 in T1 (recall that these datatypes are
non-empty and disjoint). Conversely, if (T ,Aψ) 6|= q then there is a model I of (T ,Aψ) in which q is
false. Then the satisfying assignment can be defined as follows: a propositional variable xi is true if one of
the attribute U values of xi belongs to datatype T1—it does not matter whether other values belong to T0

or not, the negative answer to the query q guarantees that ψ is true under such an assignment.

To illustrate condition (i), let us consider two datatypes: T1 = (> 0 Int), positive integers, and
T2 = (> 1 Int), integers greater than 1. Let T = {C v ∀U.T1, C v ∃U, D v (≥ 2 U)}. Then
the query q1 = ∃y

(
U(a, y) ∧ T2(y)

)
has a positive answer over T and A1 = {C(a), D(a)} due to

T1 \ T2 containing a single element and a having at least 2 U -attributes in T1. On the other hand, both
q2 = ∃x, y

(
U(x, y) ∧ T2(y)

)
and q3 = ∃y

(
U(a1, y) ∧ U(a2, y)

)
have a negative answer over T and

A2 = {C(a1), C(a2)} albeit for two different reasons—the former is false in a model where both a1, a2

share integer 1 as their U -attribute, while the latter is false in a model with different U -attributes for a1, a2.
These examples show that the construction of the canonical model when difference between datatypes is
bounded—if it exists at all—should handle datatypes in an ad hoc way. The following theorem shows that
without condition (i) we lose FO-rewritability of conjunctive queries in the presence of number restrictions.

THEOREM 6. Conjunctive query answering in DL-LiteHNAcore KBs with datatypes not respecting condi-
tion (i) of Definition 4 is CONP-hard, even without role and attribute inclusions (and so, under (interKB)).

Proof. We modify the proof of Theorem 5. Assume that the difference between a datatype, T , and a union
of two datatypes, T0 and T1, has a finite cardinality, say k. We replace the concept inclusion B v ∃U with
B v ≥ (k + 1)U , which forces a choice of at least one U attribute value to be in either T0 or T1. In the
former case, as before, we assume that the propositional variable gets value false, while in the latter case it
gets value true.

Thus, the safe condition essentially disallows the use of enumerations and any datatype whose non-
empty intersection or difference has a finite number of elements. From now on we consider only (weakly)
safe datatypes.

4.1 Combined Complexity of KB Satisfiability
We start by showing that addition of attributes to the Bool, Horn and core languages does not change the
complexity of KB satisfiability.

THEOREM 7. Under restriction (interKB), checking KB satisfiability with weakly safe datatypes is NP-
complete in DL-LiteHNAbool , PTIME-complete in DL-LiteHNAhorn and NLOGSPACE-complete in DL-LiteHNAcore .

Proof. We encode a DL-LiteHNAα KB K = (T ,A) in a first-order sentence K‡a with one variable in a
way similar to the translation of Lemma 2. Denote by att(K) the set of all attribute names in K and by
val(A) the set of all value names in A. Similarly to roles, we define the sets QUT containing 1 and all q for
occurrences of ≥ q U (including sub-attributes). The set of all datatype names in K is denoted dt(K).

We take a unary predicate EqU(x), for each attribute name U and q ∈ QUT , denoting the set of objects
with at least q values for the attribute U . We also take, for each attribute name U and each datatype name T ,
a unary predicate UT (x), denoting the objects such that all their U attribute values belong to the datatype
T (if they have attribute U values at all). Following this intuition, we extend ·∗ by the following statements:

(≥ q U)∗ = EqU(x), (∀U.⊥D)∗ = ¬(∃U)∗ and (∀U.Ti)∗ = UTi(x).

The following sentence encodes the knowledge base K:

K‡a = K‡e ∧ ∀x
[
T U (x) ∧ β(x) ∧

∧
U∈att(K)

(
δU (x) ∧ θU (x)

)]
∧ A‡a ,

12

where K‡e is as in Section 3.2, T U (x) and δU (x) are similar to T R(x) and δR(x), but rephrased for
attributes and their inclusions.

Attributes are involved in both existential and universal quantification. So, T U reflects the fact that if
an object has an attribute U value (existential quantifier ∃U) then it also has a U ′ value, for each U ′ with
U v∗T U ′; universal quantification propagates the datatypes in the opposite direction:

β(x) =
∧

U ′vU∈T

∧
T∈dt(K)

((∀U.T)∗ → (∀U ′.T)∗).

We also need a formula that captures the relationships between datatypes, as defined by the Horn clauses
in D, for all attributes U :

θU (x) =
∧

T1∩···∩Tk⊆DT

(
(∀U.T1)∗ ∧ · · · ∧ (∀U.Tk)∗ → (∀U.T)∗

)
.

We note that the formula θU (x), in particular for disjoint datatypes, e.g., with T1∩T2 ⊆D ⊥D, demonstrates
a subtle interaction between attribute range constraints, ∀U.T , and minimal cardinality constraints, ∃U (see
Theorem 9).

The attribute assertions in the ABox require the following formula:

A‡a =
∧

U(ai,vj)∈A

[
EqaU,ai

U(ai) ∧
∧

T∈dt(K)
val(vj)/∈val(T)

¬(∀U.T)∗(ai)
]
,

where qaU,ai is defined similarly to qeR,ai .

LEMMA 8. K is satisfiable iff the QL1-sentence K‡a is satisfiable.

Proof. (⇐) Let M |= K‡a , we construct a model I = (∆IO ∪ ∆IV , ·I) of K similarly to the way we
proved Lemma 2 but this time datatypes will have to be taken into account. Let ∆IO be defined inductively
as before. Then, for each datatype T , let T I = val(T) and let ∆IV =

⋃
T∈dt(K) val(T). We define

vIj = val(vj), for all value names vj ∈ val(A). For each attribute name U , to ‘cure’ its defects we begin
with

U0 = {(aM, val(v)) | U ′(a, v) ∈ A, U ′ v∗T U}.

For every attribute name U , we can define the required U -rank r(U, d) of d ∈ D and the actual U -rank
rm(R,w) of a point w ∈ Wm ⊆ ∆IO, m ≥ 0, as before, treating U as a role name. We can also consider
the equivalence relation induced by the sub-attribute relation in T , then we can choose representatives and
a linear order on them respecting the sub-attribute relation of T . We can start from the smaller attributes
and ‘cure’ their defects. Let Uk be the smallest attribute name not considered so far. For each w ∈Wm, let
q = r(Uk, cp(w)) − rm(Uk, w). If the datatypes are safe and q > 0, take q fresh values v1, . . . , vq ∈ ∆IV
that belong only to datatypes T with M |= UkT [cp(w)]. To show that it is possible, denote byDw ⊆ D the
set of all datatypes T with M |= UkT [cp(w)]. Consider the difference between the intersection

⋂
Dw of

all Dw and the union
⋃

(D \ Dw) of all datatypes in D \ Dw. We claim that this set always contains fresh
datatype values v1, . . . , vq . By condition (i) of Definition 4, it suffices to show that the difference is not
empty. For the sake of contradiction, assume that (

⋂
Dw)\(

⋃
(D\Dw)) = ∅. Since r(Uk, cp(w)) > 0, we

obtain ⊥D /∈ Dw and so, all the datatypes in Dw are non-empty. Then we have (
⋂
Dw) ⊆ (

⋃
(D \ Dw)),

which by condition (ii) of Definition 4, implies that there is T0 ∈ D \ Dw such that
⋂
Dw ⊆D T0. Since

the formula θU ensures that Dw respects all datatype inclusions T1 ∩ · · · ∩ Tk ⊆D T0, the datatype T0

must belong toDw, contrary to our definition. If the datatypes are weakly safe rather than safe, we still can
take v1, . . . , vn in the intersection of all the datatypes T with M |= UkT [cp(w)] (the values may, however,
belong to additional datatypes, but this is irrelevant for the satisfiability of K). So, for each 1 ≤ j ≤ q, add
the pair (w, vj) to all attribute relations U0 with Uk v∗T U . Denote the relations resulting in applying the
above procedure to all attributes by UI .

Now, it can be shown that if M |= K‡a then I |= ϕ for every ϕ ∈ K. Consider C v ∀U.T ∈ T . Take
any w ∈ CI and suppose (w, v) ∈ UI , for some v ∈ ∆IV . We have M |= ∀x

(
C∗(x) → (∀U.T)∗(x)

)
13

and, by Lemma 2, M |= C∗[cp(w)], whence M |= (∀U.T)∗[cp(w)]. By construction of UI , two cases
are possible. If v ∈ val(A) then w = cp(w) = a ∈ ob(A) and U ′(a, v) ∈ A, for U ′ v∗T U , whence,
by β(x), we have M |= (∀U ′.T)∗[a] and by the second conjunct of A‡a , we have v ∈ val(T) = T I .
Otherwise, w ∈ Wm and v was introduced to cure a defect of w for some U ′ v∗T U , in which case, by
β(x), M |= (∀U ′.T)[cp(w)], and so, by construction of U ′I , we obtain v ∈ T I .

For the other kinds of formulas the proof is similar to that one of Lemma 2.
(⇒) Conversely, if I is a model of K with the domain ∆I = ∆IO ∪ ∆IV we construct a model M =

(D, ·M) of K‡a with D = ∆IO. The only difference with the proof of Lemma 2 is how to define UTM: we
set

UTM =
{
w ∈ ∆IO | v ∈ T I , for all (w, v) ∈ UI

}
,

for every attribute U and every datatype name T . It follows that M |= K‡a

Now, we are in a position to complete the proof of Theorem 7. It can be seen that, for a KB K, the
formula K‡a is of the form:

∀xψ(x) ∧
∧

R∈role±(K)

∀x
(
(∃inv(R))∗(x)→ (∃R)∗(dr)

)
∧ ϕ,

where ψ(x) is a quantifier-free formula with only unary predicates and without constants and ϕ is a con-
junction of ground atoms. So,K‡a is satisfiable iff there is a subset Ξ of role±(K) such that the conjunction
of all

ψ(a) ∧
∧
R∈Ξ

(∃R)∗(dr) ∧
∧

R∈role±(K)\Ξ

¬(∃R)∗(dr) ∧ ϕ,

for constants a from ob(A)∪ val(A)∪ dr(K), is satisfiable. This suggests the following NP-algorithm for
checking satisfiability of K‡a : guess Ξ and then, for each constant a, guess a set of unary predicates Θ (a
type) and check whether this choice is consistent with the above formula in the sense that if the predicates
in Θ are assumed true and those not in Θ false, the formula is true. This consistency check, though, is
not straightforward as the length of ψ is polynomial in the length of K but, due to the θU (x), can be
exponential in the number of datatypes. So, all the conjuncts of ψ(a) but θU (a) can be straightforwardly
checked in time polynomial in |K|, while to check the datatype constraints the following is enough: take
each negative predicate (∀U.T)∗(a) and verify that T is not implied by the intersection of all positive
predicates (∀U.Ti)∗(a) (if it is implied than the guess was incorrect; here we use the fact that datatype
constraints are Horn formulas).

Next, if K is a KB with a Horn TBox, we do not need to guess Ξ and the types Θ: they can be
constructed in a bottom-up fashion as the formula K‡a is a Horn formula, which is satisfiable iff it is
satisfiable in a minimal model.

Finally, if K is a KB with a core TBox then the datatype inclusions can only be of the form T1 ⊆D T2,
and T1 ∩ · · · ∩Tk ⊆D ⊥D. We observe that the clauses of ψ can only be of the form ∀x (B1(x)→ B2(x))
or ∀x (B1(x) ∧ · · · ∧Bk(x)→ ⊥); the latter type of clauses come either from the θU or from disjointness
axioms of the form B1 v ¬B2. As the minimal model construction procedure can make use only of the
former type of clauses, it can be done in NLOGSPACE because all the clauses are binary. The disjointness
clauses ∀x (B1(x) ∧ · · · ∧ Bk(x) → ⊥) can be checked in an on-the-fly manner, which gives us the
NLOGSPACE upper bound.

It is of interest to note that the complexity of KB satisfiability increases in the case of Krom TBoxes:

THEOREM 9. Satisfiability of DL-LiteHNAkrom KBs is NP-hard with a single pair of disjoint datatypes, even
without role and attribute inclusions and number restrictions (and so, under (interKB)).

Proof. The proof is by reduction of 3SAT. It exploits the structure of the formula θU (x) inK‡a : if datatypes
T and T ′ are disjoint then the concept inclusion

∀U.T u ∀U.T ′ u ∃U v ⊥,

although not in the syntax of DL-LiteHNAkrom , is a logical consequence of T . Using such ternary intersections
with the full negation of the Krom fragment one can encode 3SAT. Let ϕ =

∧m
i=1 Ci be a 3CNF, where the

14

Ci are ternary clauses over variables p1, . . . , pn. Now, suppose pi1 ∨ ¬pi2 ∨ pi3 is the ith clause of ϕ. It is
equivalent to ¬pi1 ∧ pi2 ∧ ¬pi3 → ⊥ and so, can be encoded as follows:

¬Ai1 v ∀Ui.T, Ai2 v ∀Ui.T ′, ¬Ai3 v ∃Ui,

where A1, . . . , An are concept names for variables p1, . . . , pn, and Ui is an attribute for the ith clause
(note that Krom concept inclusions of the form ¬B v B′ are required, which is not allowed in the core
TBoxes). Let T consist of all such inclusions for clauses in ϕ. It can be seen that ϕ is satisfiable iff T is
satisfiable.

4.2 Data Complexity of Query Answering
In this section we study the data complexity of answering positive existential queries over a KB expressed
in languages with attributes and datatypes. In the following, we slightly abuse notation and use H for an
attribute name U , a role name P or inverse role P−.

REMARK 10. It follows from the proofs of Theorems 7 and Lemma 2 that, for a DL-LiteHNAbool KB K =
(T ,A) under restriction (interKB), every model M of K‡a induces a forest-shaped model IM of K with
the following properties:

(forest) The ABox constants a ∈ ob(A)∪ val(A) induce a partitioning of ∆IM into disjoint labelled trees
Ta = (Ta, Ea, `a) with nodes Ta, edges Ea, root aIM , and a labelling function `a that assigns a
role or an attribute name to each edge (indicating a minimal, w.r.t. v∗T , role or attribute name that
required a fresh successor due to an existential quantifier); the trees for v ∈ val(A) are degenerate,
i.e., contain a single node, v.

(copy) There is a function, cp : ∆IM → ob(A) ∪ val(A) ∪ dr(K) such that cp(aIM) = a, if a ∈ ob(A) ∪
val(A), and cp(w) = dr, if (w′, w) ∈ Ea and `a(w′, w) = inv(R), for w′ ∈ Ta.

(role) For every role (attribute) name H ,

HIM =
{

(ai, aj) | H ′(ai, aj) ∈ A, H ′ v∗T H
}
∪{

(w,w′) ∈ Ea | `a(w,w′) = H ′, H ′ v∗T H, a ∈ ob(A)
}
.

THEOREM 11. With safe datatypes, the positive existential query answering problem for DL-LiteHNAhorn
and DL-LiteHNAcore , under restriction (interKB), is in AC0 for data complexity.

Proof. Suppose that we are given a consistent DL-LiteHNAhorn KB K = (T ,A) and a positive existential
query in prenex form q(~x) = ∃~y ϕ(~x, ~y) in the signature of K. Since K‡a is a Horn sentence, it is enough
to consider just one special model I0 of K. Let M0 be the minimal Herbrand model of (the universal Horn
sentence) K‡a . We remind the reader (for details consult, e.g., (Apt, 1990; Rautenberg, 2006)) that M0 can
be constructed by taking the intersection of all Herbrand models for K‡a , that is, of all models based on the
domain that consists of the constant symbols from K‡a—i.e., ob(A) ∪ val(A) ∪ dr(K).

Let I0 be the canonical model of K, i.e., the model induced by M0 along the construction presented
in Theorem 7. Denote the domain of I0 by ∆I0 . The following properties follow from the construction of
the canonical model: for all basic concepts B and datatypes T ,

aI0i ∈ B
I0 iff K |= B(ai), for ai ∈ ob(A), (3)

w ∈ BI0 iff T |= ∃R v B, for w ∈ ∆I0O with cp(w) = dr. (4)

vI0i ∈ T
I0 iff val(vi) ∈ val(T), for vi ∈ val(A), (5)

v ∈ T I0 iff there are B1, . . . , Bk such that w ∈ BI01 , . . . , BI0k and T |= B1 u · · · uBk v ∀U.T, (6)
for (w, v) ∈ UI0 with vI0 /∈ val(A).

Formula (3) describes conditions when a named object, ai, belongs to a basic concept, B, in the canonical
model I0—we say it describes the type of ai. Similarly, (4) describes types of unnamed objects, which are

15

copies of the dr, for roles R; it is worth pointing out that those types are determined by a single concept,
∃R. The same two properties were used in the proof of he proof of Theorem 7.1 (Artale et al., 2009). The
other two properties are specific to datatypes: (5) describes the type of a named datatype value and (6) the
type of an unnamed datatype value. We note that (6) holds only for safe datatypes, and even weakly safe
datatypes cannot guarantee that in the process of unravelling it is always possible, for every w ∈ (∃U)I0 ,
to pick a fresh attribute U value of the ‘minimal type’, i.e., a datatype value that belongs only to datatypes
T with w ∈ (∀U.T)I0 . It can be shown that the canonical model I0 provides correct answers to all queries:

LEMMA 12. K |= q(~a) iff I0 |= q(~a), for all ~a.

Proof. Suppose I0 |= K. As q(~a) is a positive existential sentence, it is enough to construct a homo-
morphism h : I0 → I. By property (forest) of Remark 10, the domain ∆I0 of I0 is partitioned into
disjoint trees Ta, for a ∈ ob(A) ∪ val(A). Define the depth of a point w ∈ ∆I0 to be the length of the
shortest path in the respective tree to its root. Denote by Wm the set of points of depth ≤ m (including
also values v ∈ ∆I0V) that were taken to satisfy existential quantifiers for objects in Wm−1; in particular,
W0 = ob(A) ∪ val(A).

We construct h as the union of maps hm, m ≥ 0, where each hm is defined on Wm and has the
following properties: hm+1(w) = hm(w), for all w ∈Wm, and

(am) for all w ∈Wm, if w ∈ BI0 then hm(w) ∈ BI , for each basic concept B;

(bm) for all u,w ∈Wm, if (u,w) ∈ RI0 then (hm(u), hm(w)) ∈ RI , for each R ∈ role±(K);

(tm) for all v ∈Wm, if v ∈ T I0 then hm(v) ∈ T I , for each datatype name T ;

(vm) for all u, v ∈Wm, if (u, v) ∈ UI0k then (hm(u), hm(v)) ∈ UIk , for each Uk ∈ att(K).

For the basis of induction, we set h0(ai) = aIi , for ai ∈ ob(A), and h0(vi) = vIi , for vi ∈ val(A).
Property (a0) follows then from (3), (t0) from (5) and (b0) and (v0) from (role).

For the induction step, suppose that hm has already been defined for Wm, m ≥ 0. Set hm+1(w) =
hm(w) for all w ∈ Wm. Consider an arbitrary w ∈ Wm+1 \Wm. By (forest), there is a unique u ∈ Wm

such that (u,w) ∈ Ea, for some Ta.

• Let `a(u,w) = S ∈ role±(K). Then, by (copy), cp(w) = inv(ds). By (role), u ∈ (∃S)I0 and,
by (am), hm(u) ∈ (∃S)I , which means that there is w1 ∈ ∆I with (hm(u), w1) ∈ SI . Set
hm+1(w) = w1. As cp(w) = inv(ds) and (∃inv(S))I0 6= ∅, it follows from (4) that if w ∈ BI0

then w′ ∈ BI whenever we have w′ ∈ (∃inv(S))I . As w1 ∈ (∃inv(S))I , we obtain (am+1) for w.
To show (bm+1), we notice that, by (role), we have (u,w) ∈ RI0 just when S v∗T R. Thus, since
(u,w) ∈ SI0 and (hm+1(u), hm+1(w)) ∈ SI and, as S v∗T R, then, (hm+1(u), hm+1(w)) ∈ RI .

• Let `a(u,w) = U ∈ att(K), then w = v ∈ Wm+1 ∩ ∆I0V . By (role), u ∈ (∃U)I0 and, by (am),
hm(u) ∈ (∃U)I , which means that there is v1 ∈ ∆IV with (hm(u), v1) ∈ UI . Set hm+1(v) = v1.
To show (vm+1), we notice that, by (role), we have (u, v) ∈ UI0k just when U v∗T Uk; but then
we have (hm+1(u), hm+1(v)) ∈ UI ⊆ UIk . Next, we show (tm+1). By definition, v /∈ val(A). If
v ∈ T I0 then, by (6), there are basic conceptsB1, . . . , Bk such that T |= B1u· · ·uBk v ∀U.T and
u ∈ BI01 , . . . , BI0k . By (am+1), we have hm+1(u) ∈ BI1 , . . . , B

I
k , whence hm+1(u) ∈ (∀U.T)I

and so, as (hm+1(u), hm+1(v)) ∈ UI , we obtain hm+1(v) ∈ T I .

This completes the proof of the lemma.

Our next lemma shows that in this case to check whether I0 |= q(~a) it suffices to consider only the
points of depth ≤ m0 in ∆I0 , for some m0 that does not depend on |A|:

LEMMA 13. If I0 |= ∃~y ϕ(~a, ~y) then there is an assignment a0 in Wm0 such that I0 |=a0 ϕ(~a, ~y) and
a0(yi) ∈Wm0

, for all yi ∈ ~y, where m0 = |~y|+ |role±(T)|+ 1.

Proof. The proof is similar to that one of Lemma 7.4 in (Artale et al., 2009) observing that attributes cannot
be nested and cannot have role successors either.

16

To complete the proof of Theorem 11, we encode the problem ‘I0 |= q(~a)?’ as a model checking
problem for first-order formulas over the ABox A considered as a first-order model, denoted by AA, with
domain ob(A) ∪ val(A); we assume that this first-order model also contains all datatype extensions. Now
we define a first-order formula ϕT ,q(~x) in the signature of T and q such that (i) ϕT ,q(~x) depends on T and
q but not on A, and (ii) AA |= ϕT ,q(~a) iff I0 |= q(~a).

Denote by con(K) the set of basic concepts in K together with all concepts of the form ∀U.T , for
attribute names U and datatypes T from T . We begin by defining formulas ψB(x), for B ∈ con(K), that
describe the types of named objects (cf. (3)): for all ai ∈ ob(A),

AA |= ψB(ai) iff aI0i ∈ B
I0 , if B is a basic concept, (7)

AA |= ψ∀U.T (ai) iff aI0i ∈ B
I0
1 , . . . , BI0k and T |= B1 u · · · uBk v ∀U.T. (8)

These formulas are defined as the ‘fixed-points’ of sequences ψ0
B(x), ψ1

B(x), . . . :

ψ0
B(x) =


A(x), if B = A,

∃y1 . . . ∃yq
(∧
1≤i<j≤q

(yi 6= yj) ∧
∧

1≤i≤q

HT (x, yi)
)
, if B = ≥ q H,

⊥, if B = ∀U.T,

ψiB(x) = ψ0
B(x) ∨

∨
B1u···uBkvB∈ext(T)

(
ψi−1
B1

(x) ∧ · · · ∧ ψi−1
Bk

(x)
)
,

where

HT (x, y) =
∨

H′v∗TH

H ′(x, y),

and ext(T) denotes the extension of T with the following concept inclusions:

• ≥ q′H v ≥ q H , for all q, q′ ∈ QHT with q′ > q and all H ∈ role±(T) ∪ att(T),

• ≥ q H v ≥ q H ′, for all H v∗T H ′ and q ∈ QHT ,

• ∀U.T v ∀U ′.T , for all U ′ v∗T U and T ∈ dt(K),

• ∀U.T1 u · · · u ∀U.Tk v ∀U.T , for all T1 ∩ · · · ∩ Tk ⊆D T .

It should be clear that there is N with ψNB (x) ≡ ψN+1
B (x), for all B at the same time, and that N does not

exceed the cardinality of con(T). We set ψB(x) = ψNB (x).
Next we define sentences θB,dr, for B ∈ con(K) and dr with R ∈ role±(K), that describe types of the

unnamed points, i.e., copies of the dr (cf. (4)): for all w with cp(w) = dr,

AA |= θB,dr iff w ∈ BI0 , if B is a basic concept, (9)
AA |= θ∀U.T,dr iff T |= ∃R v ∀U.T. (10)

Note that the type of copies of dr is determined by a single concept, ∃R, and therefore, there is no need
to consider conjunctions in (10); see also (8). We inductively define a sequence θ0

B,dr, θ
1
B,dr, . . . by taking

θ0
B,dr = >, if B = ∃R, and θ0

B,dr = ⊥, otherwise, and

θiB,dr = θ0
B,dr ∨

∨
B1u···uBkvB∈ext(T)

(
θi−1
B1,dr

∧ · · · ∧ θi−1
Bk,dr

)
.

As with the ψB , we set θB,dr = θNB,dr.
Now, suppose I0 |=a0 ϕ(~a, ~y) and a0(yi) ∈ Wm0

, for every yi ∈ ~y, where m0 is as in Lemma 13.
Recall that our aim is to compute the answer to this query in the first-order model AA representing the
ABox. This model, however, does not contain points in Wm0 \ W0, and to represent them, we use the
following ‘trick.’ By (forest), every w ∈ Wm0 is uniquely determined by a pair (a, σ), where a is the root

17

of the tree Ta containing w and σ is the sequence of labels `a(u, v) on the path from a to w. Not every
such pair, however, corresponds to an element in Wm0 . In order to identify points of Wm0 , we consider the
following directed graph GT = (VT , ET), where VT is the set of equivalence classes [H] = {H ′ | H v∗T
H ′ and H ′ v∗T H} and ET is the set of all pairs ([R], [H]) such that

(p) T |= ∃R− v ∃H and R− 6v∗T H ,

and H has no proper sub-role/attribute satisfying (p). Let ΣT ,m0 be the set of all paths in the graph GT of
length ≤ m0: more precisely,

ΣT ,m0 =
{
ε
}
∪ VT ∪

{
([H1], . . . , [Hn]) | 2 ≤ n ≤ m0 and ([Hj], [Hj+1]) ∈ ET , for 1 ≤ j < n

}
.

By the unravelling procedure, σ ∈ ΣT ,m0 , for all pairs (a, σ) representing elements of Wm0 . We note,
however, that a pair (a, σ) with σ = ([H], . . .) ∈ ΣT ,m0 corresponds to a w ∈ Wm0 only if a has not
enough H-witnesses in AA (see the last conjunct of (11) below).

In the first-order rewriting ϕT ,q we are about to define we assume that the bound variables yi range
over W0 and represent the first component of the pairs (a, σ) (these yi should not be confused with the
yi in the original query q, which range over Wm0

), whereas the second component is encoded in the ith
member σi of a vector ~σ. Note that constants and free variables do not need a second component, σ, and,
to unify the notation, for each term t we denote its σ-component by t~σ , which is defined as follows: t~σ = ε
if t is a constant or free variable and t~σ = σi if t = yi.

Let k be the number of bound variables yi and let ΣkT ,m0
be the set of k-tuples ~σ = (σ1, . . . , σk) with

σi ∈ ΣT ,m0
. Given an assignment a0 inWm0

, we denote by split(a0) the pair (a, ~σ) made of an assignment
a in A and ~σ ∈ ΣkT ,m0

such that t~σ = ([H1], . . . , [Hn]), for a sequence H1, . . . ,Hn of `a-labels on the
path from a to a0(t). We define now, for every ~σ ∈ ΣkT ,m0

, concept name A, role or attribute name H and
datatype name T :

A~σ(t) =

{
ψA(t), if t~σ = ε,

θA,inv(ds), if t~σ = σ′.[S],

H~σ(t1, t2) =


HT(t1, t2), if t~σ1 = t~σ2 = ε,

(t1 = t2), if t~σ1 .[S]= t~σ2 , or t~σ2 = t~σ1 .[S
−], for S v∗T H,

⊥, otherwise,

T ~σ(t) =


T (t), if t~σ = ε,

ψ∀U.T (t), if t~σ = [U],

θ∀U.T,ds− , if t~σ = σ′.[S].[U].

LEMMA 14. For each assignment a0 in Wm0
with split(a0) = (a, σ),

I0 |=a0 A(t) iff A |=a A~σ(t), for concept names A,

I0 |=a0 H(t1, t2) iff A |=a H~σ(t1, t2), for roles and attribute names H ,

I0 |=a0 T (t) iff A |=a T ~σ(t), for datatype names T .

Proof. For atoms of the form A(a), A(xi) and A(yi) with σi = ε the claim follows from (7). For A(yi)
with σi = σ′.[S], by (copy), we have cp(a0(yi)) = inv(dr), for R ∈ [S]; the claim then follows from (9).

For atoms of the form T (v), T (xi) and T (yi) with σi = ε the claim follows from the fact that the
interpretation of datatypes is fixed and independent from the particular interpretation I (recall that AA
includes all datatypes extensions). Consider T (yi) with σi 6= ε. Let v = a0(yi). Then v /∈ W0 and,
by (role), there is w ∈ ∆I0 such that w and v are in the same tree Ta, for some a ∈ ob(A), with
(w, v) ∈ Ea and `a(w, v) = Ui, for some Ui v U , i.e., σi = σ′.[U], and (w, v) ∈ UI0 . By (6), v ∈ T I0
iff w ∈ BI01 , . . . , BI0k such that T |= B1 u · · · u Bk v ∀U.T , which is equivalent to AA |=a T ~σ(yi).
Indeed, if w = a ∈ ob(A), then, by (8), this is equivalent to AA |= ψ∀U.T (ai); otherwise, cp(w) = dr−

and σ = σ′.[S].[U] for some R ∈ [S] and then, by (4) and (10), it is equivalent to AA |= θ∀U.T,inv(ds) .

18

Finally, for atoms of the form H(yi1 , yi2) with σi1 = σi2 = ε, the claim follows from (role). Consider
now the case of H(yi1 , yi2) with σi2 6= ε: we have a0(yi2) /∈ W0 and thus, by (role), I0 |=a0 H(yi1 , yi2)
iff

• a0(yi1), a0(yi2) are in the same tree Ta, for a ∈ ob(A), i.e., AA |=a (yi1 = yi2),

• and either (a0(yi1), a0(yi2)) ∈ Ea and then `a(a0(yi1), a0(yi2)) = S for some S v∗T H , or
(a0(yi2), a0(yi1)) ∈ Ea and then `a(a0(yi2), a0(yi1)) = S for some inv(S) v∗T H .

Other cases are similar and left to the reader.

Finally, we define the first-order rewriting of q(~x) = ∃~y ϕ(~x, ~y) with ~y = y1, . . . , yk and T by taking:

ϕT ,q(~x) = ∃~y
∨

~σ∈Σk
T ,m0

(
ϕ~σ(~x, ~y) ∧

∧
1≤i≤|~y|

σi=([Hi],...) 6=ε

(
¬ψ0
∃Hi

(yi) ∧ ψ∃Hi(yi)
))
, (11)

where ϕ~σ(~x, ~y) is the result of attaching the superscript ~σ to each atom of ϕ; the last conjunct ensures that
each pair (a, σi) corresponds an element of w ∈ Wm0 . By Lemma 14, for every assignment a0 in Wm0 ,
we have I0 |=a0 ϕ(~x, ~y) iff AA |=a ϕ~σ(~x, ~y) for (a, σ) = split(a0). For the converse direction observe
that if the second conjunct of ϕT ,q(~x) is true in AA under an assignment a then there is an assignment a0

in Wm0
with split(a0) = (a, ~σ).

5 Conclusions
We studied two different extensions of the DL-Lite languages. First, we considered the interaction between
cardinality constraints and role inclusions and their impact on the complexity of satisfiability. We presented
two alternative restrictions both relaxing the one analyzed by (Artale et al., 2009), where roles with sub-
roles cannot have maximum cardinality constraints. Our results imply that if the complexity of the KB
satisfiability problem is to remain low, the number ofR-successors in the ABox has to be taken into account
(e.g., (interKB)); otherwise, under the condition (interT), complexity of KB satisfiability becomes NP-
hard, even for the core fragment, and EXPTIME-complete even for the Horn fragment.

Then we considered local attributes that allow the use of the same attribute associated to different con-
cepts with different datatype range restrictions (with Horn clauses defining relationship between datatypes).
Notably, this is the first time that DL-Lite is equipped with a form of the universal restriction ∀U.T . We
showed that such an extension is harmless with the only exception of the Krom fragment, where the com-
plexity rises from NLOGSPACE to NP. We studied also the problem of answering positive existential
queries and showed that for the Horn and core languages the problem remains in AC0(i.e., FO-rewritable).

As a future work, given the encouraging results obtained here, we aim at better clarifying the connection
of this work with the literature on concrete domains and analyzing the influence of different concrete
domains on the complexity of the logics.

References
K. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science,

Volume B: Formal Models and Sematics, pages 493–574. Elsevier and MIT Press, 1990.

A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. Reasoning over extended
ER models. In Proc. of the 26th Int. Conf. on Conceptual Modeling (ER 2007), volume 4801 of Lecture
Notes in Computer Science, pages 277–292. Springer, 2007.

A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. DL-Lite in the light of first-order logic.
In Proc. of the 22nd Nat. Conf. on Artificial Intelligence (AAAI 2007), pages 361–366, 2007.

A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and relations. Journal
of Artificial Intelligence Research, 36:1–69, 2009.

19

F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of the 19th Int. Joint Conf. on
Artificial Intelligence, IJCAI-05. Morgan-Kaufmann Publishers, 2005.

D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams. Artificial Intelligence,
168(1–2):70–118, 2005.

D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-based representation formalisms. Journal of
Artificial Intelligence Research, 11:199–240, 1999.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite: Tractable description
logics for ontologies. In Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI), pages 602–607,
2005.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data complexity of query answer-
ing in description logics. In Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2006), pages 260–270, 2006.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning and efficient
query answering in description logics: The DL-Lite family. Journal of Automated Reasoning, 39(3):385–
429, 2007.

B. Cuenca Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and U. Sattler. OWL 2: The next step
for OWL. Journal of Web Semantics: Science, Services and Agents on the World Wide Web, 6(4):309–
322, 2008.

M. Despoina, Y. Kazakov, and I. Horrocks. Tractable extensions of the description logic EL with numerical
datatypes. Journal of Automated Reasoning, 2011.

E. Franconi, Y. A. Ibáñez-Garcı́a, and I. Seylan. Query answering with DBoxes is hard. Electr. Notes
Theor. Comput. Sci., 278:71–84, 2011.

C. Lutz. Description logics with concrete domains—a survey. In Advances in Modal Logics Volume 4.
King’s College Publications, 2003.

J. Pan and I. Horrocks. OWL-Eu: Adding customised datatypes into OWL. Web Semantics: Science,
Services and Agents on the World Wide Web, 4(1), 2011.

A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking Data to Ontolo-
gies. Journal on Data Semantics, X:133–173, 2008.

W. Rautenberg. A Concise Introduction to Mathematical Logic. Springer, 2006.

O. Savkovic and D. Calvanese. Introducing datatypes in DL-Lite. In Proc. of the 20th European Conf. on
Artificial Intelligence (ECAI 2012), 2012.

O. Savković. Managing Datatypes in Ontology-Based Data Access. MSc dissertation, European Master in
Computational Logic, Faculty of Computer Science, Free University of Bozen-Bolzano, October 2011.

A. Schaerf. On the complexity of the instance checking problem in concept languages with existential
quantification. Journal of Intelligent Information Systems, 2:265–278, 1993.

20

