

Procedural-Functional Programming
Research Aims
The aim is to design, formalise and (prototypically) implement a

general-purpose programming language and machine. The goal for

the language is to provide a clean syntax for capturing programm-

ing ideas within a semantic framework about which it is relatively

easy to reason. The proposal is to deliver a procedural-functional

language-machine with multiple, communicating processes.

Research Methodology
The functional (declarative, deterministic) core is to be provided by

an extended, impure lambda calculus. There is to be support for

pure first-class functions and recursion; normal-order evaluation and

referential integrity are to be exhibited.

coutdown n :=

 Zero n?

 0:

 countdown (decrement (n)).

Figure 1, a function defined (:=) by a boolean conditional disjunc-

tion (?:)

The procedural (imperative, non-deterministic) wrapping is to be

provided by a simple syntactic-semantic extension to the core and

the provision of assignable arguments (out-variables). The out-

variables provide the procedures with a mechanism to return (non-

deterministic) values.

echo :=

 read string!

 write string:

 error.

Figure 2, a procedure defined by a void-or-other-valued conditional
disjunction (!:) and using an out-variable (string)

Multiple, communicating processes are to be supported by providing

functionality to spawn, send messages to and receive messages

from other threads.

Research Approach
The approach is to develop confidence in a minimalistic subset of

the language that is prepared in such a way as to be readily

extensible with secondary features and amenable to optimisation.

The minimal language is to be equipped with Boolean values,

natural numbers, characters, strings, pairs and lists. In-built func-

tions are to provide core functionality such as for constructing and

accessing pairs.

ns :=

 nns n := (n, nns (increment (n)));

 nns 0.

show ns :=

 write (concatenation (string (left ns)) " ")!

 show (right ns):

 error.

> show ns

0 1 2 3 4 5 6 ...

Figure 3, an execution demonstrating nested function definition,

pairs and normal-order evaluation

A further value is introduced, thought of as void or okay, to indicate

the successful execution of a procedure. In-built procedures are to

be provided for reading from stdin and writing to stdout and for

spawning and communicating with other processes.

receiveToWrite := recv msg! write msg: error.

sendString string :=

 spawn receiveToWrite [] pid! send pid string: error.

Figure 4, a program utilizing multiple, communicating processes

The syntax presented in the figures has been slightly idealized as

the combined functionality is currently spread across several pro-

jects. Please see the links below.

Web
 http://www.dcs.bbk.ac.uk/~rik/gallery

 https://bitbucket.org/rik_howard

Research Student

Rik Howard

Supervisors

Keith Mannock

Trevor Fenner

Department of Computer

Science and Information

Systems

	Research Aims

