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Abstract 

The purpose of this thesis is to determine how evolution has resulted in self-

control through precommitment behaviour. Empirical data in psychology 

suggest that we recognize we have self-control problems and attempt to 

overcome them by exercising precommmitment, which bias our future choices 

to a larger, later reward. The behavioral model of self-control as an internal 

process is taken from psychology and implemented, using a top-down 

approach, as a computational model of the human brain. This is a novel 

approach to modeling the brain, but is appropriate given the complexity of the 

behaviour.  The higher and lower brain systems, represented by two Artificial 

Neural Networks (ANNs) using reinforcement learning, are viewed as 

cooperating for the benefit of the organism. This is a departure from the 

classical view of the higher brain, associated with planning and control, 

overriding the lower brain. The ANNs are implemented as two players, 

learning simultaneously, but independently, competing in games, where the 

payoffs are neither wholly adverse nor wholly competitive. This departs from 

the traditional framework for multi-agent reinforcement learning, removing 

the limitation of centralized learning and widening the scope for the learner’s 

behaviour. Psychological studies suggest that the structure of the self-control 

problem can be likened to the Iterated Prisoner’s Dilemma game in that 

cooperation is to defection what self-control is to impulsiveness. In this thesis 

it is proposed that increasing precommitment increases the probability of 

cooperating with oneself in the future. To this aim, a bias towards future 

rewards is implemented. The results suggest that this bias enhances 
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cooperation, which could be interpreted as precommitment. The model is then 

subjected to simulation of evolutionary adaptation using genetic algorithms. 

The results show an evolutionary basis for this complex behaviour and 

suggest that evolutionary factors, as opposed to learning alone, play a crucial 

role in its formation.  
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 It’s the way a man chooses to limit himself that determines his character. 

Luke Rhinehart, The Dice Man   
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Chapter 1   

1 Introduction 

1.1 Overview 

In this thesis we investigate how evolution has resulted in self-control such 

that people must use precommitment behaviour to control their future actions. 

We begin by attempting to gain a greater understanding of self-control 

through precommitment through simulation of the brain as a functionally 

decomposed parallel system. Unlike a serial system, a functionally 

decomposed parallel system can have internal conflicts, as different processes 

exhibit different behaviours. Self-control through precommitment behaviour 

is an example of such an internal conflict. People exercise self-control when 

they choose a larger, but later reward over a smaller, but sooner reward. 

Precommitment is a mechanism for doing this, by making a choice now that 

will make it impossible, or at least difficult to change our minds later, and if 

we do change our minds the change is costly. If individuals were fully 

rational, precommitment would be unnecessary, as any later temptation that 

would jeopardise their true preference would be rejected (Nesse, 2001). 

 

The research begins by simulating self-control through precommitment 

behaviour in a computational model, the architecture of which comprises of 

two ANNs, one representing the higher brain functions and the other the lower 

brain functions. The higher brain functions are associated with rational 

thought and the lower brain functions are associated with instinctive 

behaviour. The model is representative of the higher versus lower brain 
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functions. This is based on the theoretical premise that the human brain is a 

modular system, and that the higher and the lower systems of the brain are 

largely independent and are competing for control of the organism. This thesis 

presents a novel view of the higher and lower brain regions cooperating, i.e., 

working together, as opposed to the classical view of the higher brain as the 

controller overriding the lower brain. In this thesis the new model of the 

higher and lower brains cooperating is referred to as the Cooperating Model 

and the traditional view of the higher brain assuming the role of controller is 

referred to as the Control Model. In the Cooperating Model of this thesis 

(presented in Chapter 3), the higher and lower brain functions have to learn to 

collaborate, leading to cooperation. In the traditional Control model the higher 

brain system, associated with planning and control, overrides the lower brain 

system. In the Cooperating model the higher and lower brain systems work 

together for the benefit of the organism. In this thesis, the word “cooperation” 

has a non-conventional meaning: only cooperate for the larger later reward. 

Cooperation as defined in the Oxford dictionary, is to “work together for a 

common end” in which case if both the higher and lower brain defect, i.e., go 

for the smaller sooner reward, this could be viewed as cooperation.  In this 

thesis this is not exactly the case; here cooperation means cooperating in order 

to gain the larger later payoff, hence the situation where both players defect is 

not seen as cooperation. 

 

This model of the neural cognitive system of self-control through 

precommitment behaviour presented in Chapter 3 is simple, but also 

sufficiently detailed to explain in computational terms how the brain generates 
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the apparently inconsistent behaviour of self-control through precommitment. 

The model encompasses a cognitive architecture that provides a general 

explanation of self-control. The ANN representing the higher brain region is 

implemented with a weight update rule that simulates far-sightedness, i.e., 

placing greater value on future rewards. Similarly the ANN representing the 

lower brain region is implemented with a weight update rule that simulates 

myopia. This thesis is concerned with the evolutionary basis of self-control 

through precommitment behaviour, but not to the exclusion of learning. For 

example what is the role of learning and the effect of learning on this complex 

behaviour? For this reason the model also explores the role of learning during 

an individual’s lifetime on self-control behaviour, by incorporating a 

continuous learning process and by interacting with the environment through 

its sensors, i.e., it has minimal pre-programmed knowledge. Learning from 

interaction with the environment is the fundamental idea underlying 

reinforcement learning and for this reason an ANN with reinforcement 

learning is used. In this thesis, a number of experiments are conducted to 

examine what interdependencies exist, and what internal conflicts exist in this 

functionally decomposed neural system. The model takes into consideration 

the complexity of the environment. The variables defining the ANN are 

parameterised to enable control of the model. These include the form of 

learning, the learning rate and the number of hidden neurons in each ANN. 

The model is compared to other models of related behaviour, for example, 

Carver’s and Scheier’s model of self-regulation (1998).  
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The resulting model is developed and tested by playing games, in particular 

games that have a real world application. For example, pollution can be 

regarded as a game of Prisoner’s Dilemma (Hamburger, 1979); war can be 

regarded as another dilemma game called Chicken (Binmore, 1992), where 

two players compete for a piece of territory. If one player chickens out he 

looses, if both players chicken out the situation remains the same, and if 

neither player chickens out the consequences are unpleasant for both. The two 

artificial neural networks, representing the higher and lower centres of the 

brain, compete against each other in two general-sum games:  the 

Rubinstein’s Bargaining game (Rubinstein, 1982), and the Iterated Prisoner’s 

Dilemma game (Axelrod and Hamilton, 1981). A general-sum game is where 

the players’ payoff are neither totally positively correlated nor totally 

negatively correlated (refer to section 2.3 for a more detailed explanation). 

The Rubinstein’s Bargaining Game (RBG) is viewed as a simple general-sum 

game and has many of the characteristics of the self-control problem, i.e., 

discounting of future rewards, myopic versus far-sighted behaviour, and 

learning to cooperate with the other player.  For these reasons the RBG is an 

appropriate game to use in the early stages of developing and testing the 

model. The Iterated Prisoner’s Dilemma (IPD) game is appropriate since it 

has been suggested there is a relationship between self-control and social 

cooperation (Brown and Rachlin, 1999). Brown and Rachlin (1999) used a 

version of the IPD game in experiments on self-control with human subjects. 

The empirical results of these experiments are used to validate the neural 

model.  The effect of reward and punishment on the behaviour of the two 

neural networks is observed in various game-theoretical situations. The results 
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of these tournaments are compared to the available data in psychology and 

economics on how people play games.  

 
 
In the final stage of this thesis the two artificial neural network system 

undergoes evolutionary adaptation. The parameters defining the networks are 

subjected to simulated genetic evolution using genetic algorithms (Holland, 

1992). The aim of this phase of the study is to find an explanation for the way 

self-control through precommitment evolved. The investigation focuses on the 

functional decomposition of the brain and attempts to explain such behaviour 

as a by-product of some internal mechanism.  The role of reinforcement and 

reinforcement history is also examined to explain variances in an individual’s 

behaviour.  Finally, the simulation explores the theory that such behaviour is 

adaptive. Following on from Sozou (2003), possible evolutionary 

explanations for the existence of self-control through precommitment 

behaviour that are explored in this thesis are: 

 
1. The behaviour results from an internal conflict, between the higher and 

lower centres of the brain, which may be due to: (i) the animal evolving 

optimal low-level (i.e., instinctive) behaviours in response to certain cues 

in an ancestral environment; (ii) the animal being moved to a novel 

environment where these low-level behaviours are inappropriate to its 

higher goals; (iii) the animal learning cognitively in the "higher" part of 

the brain that the low-level behaviours are inappropriate; (iv) the animal 

trying to devise a way in the higher centre of the brain to bypass the low-

level behaviours. As such, standard psychological self-control problems 

can be understood as part of a spectrum of phenomena involving 
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overcoming behaviours, which cognition can directly control only 

partially or not at all. In this explanation the theoretical premise is made 

that the functions associated with the higher brain system (i.e., rational 

thought) and the functions associated with the lower brain system (i.e., 

instinctive behaviour), are locked in some form of internal conflict for 

control of the organism and therefore its behaviour. 

 
2. The behaviour is a side effect of the evolution of commitment mechanisms 

for game-theoretical situations where precommitment is useful, e.g., anger 

and self-deception (Nesse, 2001). 

 
3. The behaviour results from a best evolutionary compromise to 

environmental complexity and variability. It is not feasible for evolution to 

program the brain with a direct hard-wired response to every situation it 

could meet. Instead, there is goal-directed behaviour and a capacity for 

learning. However, these goals cannot perfectly correspond to fitness. 

Hence, natural selection has allowed low-level behaviours to effectively 

take control when cues are strong enough to reliably reflect fitness 

consequences. This gives rise to the multiple personalities theory; for 

example, the person that wakes up in the morning is different from the 

person who went to sleep the previous night. This theory is supported by 

Trivers (2000) in the evolution of self-deception and Samuelson and 

Swinkels (2002).  

 
 

These explanations are neither mutually exclusive nor exhaustive. In 

summary, the model aims to answer the question whether self-control through 
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precommitment behaviour is  (i) an internal conflict, (ii) a biological by-

product, or (iii) an adaptation to enhance the survival of the species.  

 
 
Although there has been much research in psychology and economics in the 

area of self-control, to the best of our knowledge this is the first time that self-

control through precommitment behaviour is simulated in a computational 

neural model, in a competitive interaction. For verification of the model, the 

results from the simulation are compared with the empirical data of self-

control and precommitment in psychology and economics, and are found to 

compare favourably. This contributes to bridging the gap between the 

modelling community and the experimentalists. In addition, the extent to 

which reinforcement learning can be realised in games that model real life 

situations is of considerable interest to game theorists and economists and it is 

currently the subject of intense research activity (Kaebling et al., 1996; 

Littman, 2001; Shoham et al., 2003).  

 

1.2 Outline of this Thesis 

The thesis is divided in to two parts. The first part (Chapters 2 – 5) provides 

the groundwork for the latter. It begins with a critical literature review and 

analysis of the ideas for the neural modeling of the behaviour self-control 

through precommitment. The computational model is then presented and 

compared with alternative models. Finally this section concludes with the 

principles relevant for the evolutionary adaptation of the resulting neural 

model. The second part of the thesis (Chapters 6 - 8) is concerned with the 

development of the evolutionary system through simulations and empirical 

analysis. The first phase is concerned with building and testing of the neural 
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model. In the final phase the resulting neural model is subject to evolutionary 

adaptation using Genetic Algorithms. Table 1.1 lists the experiments that were 

carried out and the motivation for doing that experiment in order of 

appearance. In summary, experiments 1 to 5 are concerned with developing 

and testing the neural model of Figure 3.3, experiments 6 to 8 investigate the 

effect of implementing a bias towards future rewards on the behaviour of the 

neural model and experiments 9 and 10 subject the neural model to 

evolutionary adaptation through Genetic Algorithms. 

 
Ref. Description Scenario of Simulation Section 
1. Selective Bootstrap feed forward 

network (SB-FFWD) playing an 
Artificial Opponent in the RBG 

Simulation of the behaviours 
associated with the lower brain 
functions modeled as a feed 
forward MLP network 
implemented with the Selective 
Bootstrap weight update rule 

6.4.1 

2. Temporal Difference feed forward 
network (TD-FFWD) playing an 
Artificial Opponent in the RBG 

Simulation of the behaviours 
associated with the higher brain 
functions modeled as a feed 
forward MLP network 
implemented with the Temporal 
Difference weight update rule 

6.4.2 

3. 2-ANNs (TD-FFWD vs. SB-FFWD) 
playing the RBG 

Simulation of the novel 
computational model of self-
control presented in Section 3.3 of 
the higher versus lower brain in a 
game theoretical situation 

6.4.3 

4. 2-ANNs (TD-FFWD vs. SB-FFWD) 
playing the IPD game with local 
rewards 

Simulation of the computational 
model of self-control presented in 
Section 3.3 with both networks 
implemented as feed forward MLP 
networks with the novel view of 
the higher and lower brain 
cooperating, i.e., working together 
as opposed to the classical view of 
the higher brain as the controller 
overriding the lower brain. In this 
case each ANN receives an 
individual reward 

6.5.1 

5 2-ANNs (TD-FFWD vs. SB-FFWD) 
playing the IPD game with global 
rewards 

Simulation of the computational 
model of self-control presented in 
Section 3.3 with both ANNs 
implemented as feed forward MLP 
networks with the novel view of 
the higher and lower brain 
cooperating, i.e., working together 
as opposed to the classical view of 
the higher brain as the controller 
overriding the lower brain where 

6.5.2 
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both ANNs receive the same 
reward 

6 2-ANNs (TD-FFWD vs. SB-FFWD) 
playing the IPD game with bias 
towards future reward implemented 
by varying the bias to the ANN 
between a value between 0 and 1. 
This is referred to as a variable bias. 

Simulation of the computational 
model of self-control as in 
experiment 4, but with bias 
towards future rewards 
implemented as a variable bias in 
place of the ANN’s bias 

6.6.1 

7 2-ANNs (TD-FFWD vs. SB-FFWD) 
playing the IPD game with a bias 
towards future reward implemented 
as an extra node to the ANN 

Simulation of the computational 
model of self-control as in 
experiment 5, but with bias 
towards future rewards added. 
Modeled as an extra input to the 
ANN  

6.6.2 

8 2-ANNs (TD-FFWD vs. SB-FFWD) 
playing the IPD game with a bias 
towards future reward implemented 
as a differential bias applied to the 
payoff matrix 

Simulation of the computational 
model of self-control as in 
experiment 5, but with a 
differential bias added to the 
global reward payoff matrix as 
differential bias 

6.6.3 

9 Evolutionary adaptation of the 2-
ANNs model with a bias towards 
future rewards modeled as the 
differential bias from experiment 8 

Simulation of the computational 
model implemented as in 
experiment 8 subject to 
evolutionary adaptation of the bias 
through Genetic Algorithms to 
investigate what value for the bias 
works best when 

7.2 

10 Evolutionary adaptation of the 2-
ANNs model with bias towards 
future rewards modeled as a 
differential bias and with evolution 
of the learning parameters 

Simulation of the computational 
model implemented as in 
experiment 8 subject to 
evolutionary adaptation of the 
number of hidden nodes and 
learning rules for the best bias  

7.3 

 
 
Figure 1.1 List of experiments carried out in this thesis in order of appearance. 
Experiments 1 to 5 are concerned with developing and testing the neural model of 
Figure 3.3. Experiments 6 to 8 investigate the effect of implementing a bias towards 
future rewards on the behaviour of the 2-ANNs model. Experiments 9 and 10 subject 
the neural model to evolutionary adaptation through Genetic Algorithms.  
  

The remainder of this thesis is organized as follows. Chapter 2 - Literature 

Review of Self-Control and Games reviews the literature on self-control 

through precommitment behaviour from the perspective of psychology and 

economics. It then examines self-control through precommitment in the 

context of games, specifically games that model real-world applications. It 

also includes a critical review of the literature on games with no clear winner 

(general-sum games) and concludes by examining the role of nature and 
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learning in self-control through precommitment behaviour. Chapter 3 - 

Review of the Concepts for the Neural Modelling of Self-control through 

Precommitment begins by a review and analysis of relevant neural models, 

i.e., models of related behaviours. A cognitive model of self-control through 

precommitment is presented with an explanation of how this translates into a 

computational neural model. Chapter 4 - Review of Reinforcement Learning 

in the context of Self-Control introduces reinforcement learning in the context 

of self-control and reviews the literature on reinforcement learning methods 

including a description of reinforcement learning as applied to Artificial 

Neural Networks. The chapter concludes by examining what role 

reinforcement learning and Artificial Neural Networks play in this thesis. 

Chapter 5 - Review of the Concepts for Evolutionary Adaptation of the 

Neural Model starts with a critical review of the main evolutionary 

computation techniques of Genetic Algorithms, Evolutionary Programming 

and Evolutionary Strategies. The chapter concludes with an explanation why 

Genetic Algorithms are the evolutionary computation technique of choice for 

this thesis.  In Chapter 6 - Explaining Self-Control by Playing Games the 

computational neural model is developed and tested by running experiments 

using general-sum games, which model real-world situations. In the first set of 

experiments the general-sum game Rubinstein’s Bargaining game (1982) is 

used. In the second set of experiments the results of the Rubinstein’s 

Bargaining Game are verified in a similar neural architecture with the Iterated 

Prisoner’s Dilemma game. The results are presented and discussed. Chapter 

7 -  Evolutionary Adaptation of the Neural Model is concerned with the design 

and testing of the evolutionary system. It concludes with a presentation of the 
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results and discussion. Chapter 8 - Can Self-Control through Precommitment 

be explained by evolutionary game theory?  critically examines the work of 

this thesis and, in particular, it considers whether a plausible explanation for 

the evolution of self-control through precommitment behaviour has been 

found. It discusses the contribution of this thesis to computational 

neuroscience and related fields most notably reinforcement learning, 

evolutionary computation and game theory. The chapter concludes with 

possible future directions for this work. 
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Chapter 2  

2 Literature Review of Self-Control and Games 

2.1 Chapter Outline 

This chapter builds the theoretical foundation on which this thesis is based. It 

starts with a review of the literature on self-control through precommitment 

from psychology, economics and neuroscience. It then discusses self-control 

in the context of games specifically the Iterated Prisoner’s Dilemma’s game. 

A rudimentary review of the necessary game theory concepts is given. The 

chapter concludes by examining the question whether we are born with the 

capacity to precommit or whether we learn self-control through 

precommitment as part of socialization? 

2.2 Self-Control through Precommitment: the problem and its 

importance 

2.2.1 Defining self-control behaviour  

Self-control arises out of a desire to control one’s behaviour. Taken literally 

self-control is to control one’s self, where self, as defined by the Oxford 

Dictionary, is one’s “nature and individuality”, which is displayed to the 

world by our behaviour (actions). Behaviour is just one aspect of the human 

situation. We have feelings, skills, and conscious and unconscious thoughts, 

but whatever thoughts or feelings we have, it is on our behaviour that we are 

judged. In psychology, to exercise self-control is to inhibit an impulse to 

engage in a behaviour that violates a moral standard (Morgan et al., 1979). 

Problems in exercising self-control occur when there is a lack of willingness 
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or motivation to carry out this inhibition. This suggests a cognitive versus a 

motivational conflict. Problems in exercising self-control suggest a 

motivational problem: we know what is good for us (cognition), but we do not 

do it (motivation).  There is often a discrepancy between our verbal and non-

verbal behaviour. The distinction between cognition and motivation has been 

likened to the distinction between the higher and lower brain functions. This 

suggests that self-control involves a conflict between cognition and 

motivation (Rachlin, 1995), a far-sighted planner and a myopic doer (Shefrin 

and Thaler, 1981), reason and passion, and is not just a case of changing 

tastes. Self-control problems stem from a conflict at any single point in time 

of the choices we have available now and our future choices, and occur 

because our preferences for available choices are inconsistent across time 

(Ainslie, 1975; Loewenstein, 1996).   

 

Figure 2.1 illustrates the view of self-control, where there is a choice between 

a smaller-sooner (SS) reward, available at time t2 and a larger-later (LL) 

reward, available at t3. The lines of the graph in Figure 2.1 show the 

discounted value functions over time for the rewards SS and LL. Studies in 

self-control have found that increasing the delay of the reward, referred to as 

the delay of gratification, decreases the discounted value of the reward 

(Mischel et al., 1989).  Delay of gratification is defined in psychology as 

waiting for a more appropriate time and place to gain a reward. In Figure 2.1 

at time t1 the discounted value of LL is greater than the discounted value of 

SS, so the person prefers the reward LL over the reward SS. At a later time 

just before t2, when the reward SS is imminent, the discounted value of SS is 

                                                                       31                                                                            
  
 



greater than the discounted value of LL, so the person prefers the reward SS 

over the reward LL thus we have reversal of preferences.     

 
SS 
Reward 

t3 t2 

time (t)  
t1 

 
 

 

)  

 

 

 

 

  
Figure 2.1 Illustration of Self-Control as a choice b
reward and a larger, later reward. 
Illustration of self-control defined as the choice of a la
available at t3 over a sooner, but smaller reward (SS) at 
the discounted value function of the reward indicating ho
value with increasing delay. At an earlier time t1 the valu
exceeds that of the smaller-sooner reward. The crossi
reversal of preferences when the value of the reward SS
reward LL (adapted from Rachlin, 1995). 
 

In self-control problems the conflict arises out of th

between those choices available immediately (SS) an

time later (LL). The crossing of the discounted valu

depicts this reversal of preferences. Reversal of

experiments on human subjects (Solnick et al., 19

1984). Note that the lines of the graph get steeper a

time of the reward (Rachlin, personal communicati

the graphs in Figure 2.1 have roughly the shape of a

2.1) and also roughly the shape of an exponential fu
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and Eq. 2.2 give the current discounted value v, which is the height of the 

graph at any point in time:  

(1 )
Vv

kd
=

+
  (2.1) 

 
  

 

      (2.2) 
kdv Ve−=

In these equations V is the undiscounted value of the reward (the height of the 

lines SS or LL), d is the delay of the reward (the difference between the time 

of reward and the time now), and k is the discount rate representing the degree 

of discounting of future rewards, (for example, k=0 implies there is no 

discounting of future rewards). Two hyperbolic discount functions with the 

same discount rate (k) may cross, but two exponential discount functions with 

the same discount rate cannot cross. As Mazur (1987) suggests, assuming that 

a person uses the same discounted value function (with the same discount 

rate) for all the person’s rewards, if the discounted value function is 

exponential then there can be no reversal of preferences, but if it is hyperbolic 

then there can be.  

 

Rubinstein (2003) offers an alternative to hyperbolic discounting for the 

explanation of the crossing of the discounted value functions. Rubinstein’s 

method (2003) is procedural. The approach contains a set of rules, which 

examine the available choices for dominance and similarities, and attempts to 

rank them. If this set of rules fails to rank the available choices, then another 

set of criteria is applied. In this thesis, the hyperbolic discount function as 

shown in Eq. 2.1 is the preferred explanation as it is simple to understand, 
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simple to apply and encapsulates the key psychological phenomena of the 

self-control problem in that the present is given preferential treatment.  It is 

also well supported in the literature (Ainslie and Haslam, 1992; Rachlin, 

1995; Laibson, 1997). However, in this thesis, hyperbolic discounting is not 

implemented and the effect of alternative discounted value functions are 

explored. 

 

2.2.2 Exercising Self-Control 

To give an example where self-control behaviour is exercised, with reference 

to Figure 2.1, consider the student, let the LL represent obtaining good grades 

and SS going to the pub. Let t1 indicate the start of an academic year. At this 

time for most students the value of getting good grades exceeds that of going 

to the pub. When invited to the pub at t2  however, the value of SS is higher 

than their long term goal of getting good grades (LL). If the student exercises 

self-control then he or she will choose study (LL) over the pub (SS). Self-

control behaviour encompasses a resistance to temptation, in this case to go to 

the pub (SS).  

 

Figure 2.1 illustrates the traditional view of self-control in that the SS reward 

resulted from a single act (a single choice). In more complicated self-control 

problems the LL reward could result from a pattern of acts (a pattern of 

choices) and the LL reward could be distributed, part of it received after each 

act. For example, forgoing the cupcake once does not mean that the dieter will 

immediately wakeup with a supermodel body. In order that the dieter 

succeeds in her diet, she needs to forgo several cupcakes. The illustration in 
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Figure 2.1 of self-control has been criticized as being a too simplistic 

representation of self-control in real life, as it models the situation only where 

the rewards are mutually exclusive and discrete (Mele, 1995; Plaud, 1995). 

For example, in the case of the recovering addict there is a long-term pattern 

to stay clean versus a smaller-sooner reward of a fix, which is better explained 

in terms of a pattern of behaviour (to stay clean) versus a single act (a fix). 

Ainslie (1992) explains the self-control problem of an addict by thinking in 

terms of a series of choices, seen as a pattern of acts, as opposed to a single 

act. To illustrate what is meant by a pattern of acts, Rachlin (1995) says that 

an act is to a pattern, as a note is to a song. From this viewpoint of self-

control, if we exercise self-control we are choosing a pattern of behaviour, 

which is composed of one or more acts, over an alternative single act.  Within 

the literature on self-control this view is either supported unequivocally 

(Rachlin, 1995; Eisenberger, 1995), or dismissed entirely (Kanekar, 1995), or 

accepted, but with reservation (Kane, 1995; Plaud, 1995). Kane (1995) 

suggests that the definition of a pattern has two meanings: a pattern can either 

be a form of behaviour (habit), or an internal plan. Kane suggests that 

Rachlin’s view of self-control is appropriate only to the habit type of pattern.  

 

Critical Observation. In this thesis we are not going to discuss the 

complications of self-control from the viewpoint of an act versus a pattern of 

acts, but we will assume that the person will have a single choice to make, as 

in Figure 2.1. Figure 2.1 illustrates the simple self-control problems where 

there is a clear preference for one alternative to another. Even the more 

complicated self-control problems such as the addict can still be viewed in the 
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context of Figure 2.1, if we consider it in terms of a larger, more delayed 

reinforcer (staying clean – the LL in Figure 2.1), over a smaller, less delayed 

reinforcer (a fix – the SS in Figure 2.1). Figure 2.1 encapsulates the key things 

that are relevant to this thesis: (i) the discounted values increase with time, (ii) 

initially the larger-later reward (LL) is preferred over that of the smaller-

sooner reward (SS), and (iii) at some time before SS there is a reversal of 

preferences, with the value of SS overtaking and exceeding that of the LL 

reward. In this thesis we limit self-control behaviour to choosing a large 

delayed reward over a small immediate reward (Rachlin, 1995) as illustrated 

in Figure 2.1. The situation of refraining from going to the pub (the small 

immediate reward) in order to study to obtain good grades (the large delayed 

reward), and the situation of not stealing a bike (as an example of a small 

immediate reward) for loss of face or reputation (the larger delayed reward), 

are both self-control problems, and in this thesis are dealt with in the same 

way.   

2.2.3 Defining Precommitment behaviour 

Research by Ariely (2002) and Rachlin (2000) suggests that we recognize that 

we have self-control problems and try to solve them by precommitment 

behaviour. Precommitment behaviour can be seen as a desire for people to 

protect themselves against a future lack of willpower. Results by Ariely 

(2002) from a series of experiments on college students, showed that we 

recognize that we have self-control problems, and attempt to control them by 

setting costly deadlines. These deadlines help to control procrastination, but 

are not as effective as externally imposed deadlines, i.e., deadlines imposed by 

others. Precommitment is defined as making a choice with the specific aim of 
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denying oneself future choices (Rachlin, 1995). Schelling (1992) used the 

term binding to define precommitment behaviour. Examples are:  

1. putting an alarm clock away from your bed, to force you to get up to 

turn it off. 

2. saving part of your monthly pay cheque into an investment fund, to 

prevent you from spending it. 

3. removing chocolate biscuits from your house to prevent late-night 

binges. 

4. disconnecting the internet connection to your computer when you have 

a deadline. 

 
All of the above are examples of the self-imposition of a behavioural 

constraint that limits a future choice. With reference to Figure 2.1, note that 

time t1 is the ideal time to exercise self-control through precommitment, as the 

discounted value of the SS reward is low relative to the discounted value of 

the LL reward. Exercising self-control denies one’s self the choice of the SS at 

time t2.  Precommitment is illustrated in Figure 2.2, which is based on 

experiments by Rachlin and Green (1972) on precommitment behaviour by 

pigeons. Self-control through precommitment behaviour can be illustrated by 

Figure 2.1 and Figure 2.2 in the following way. The discounted values of SS 

and LL in Figure 2.2. are the same as those shown in Figure 2.1.  If we do not 

precommit, then in Figure 2.1 at time t2, we can choose between a small 

immediate reward, SS, and a large delayed reward, LL, this situation is 

represented by the upper arm in Figure 2.2. If we precommit to LL at a prior 

point in time while the discounted value of SS is still low relative to LL, i.e., 
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any time between time t1 and t2, then that restricts choosing SS at a later time 

t2, this situation is represented by the lower arm in Figure 2.2. 

 
 
 

t2 

time 

Choice X

Choice Y

 
 
 
 
 
 
 
 
 t1  
 
 
 
 
Figure 2.2 Illustration of precommitment beha
At choice X the smaller-sooner reward (SS) is p
(LL). If precommitment behaviour is exercised
preferred that restricts the choice to LL only, 
Rachlin, 1995). 
 
 

Figure 2.2 illustrates the available choices.

Choice Y means taking the lower arm, whic

(i.e., there are no chocolate biscuits in the h

Choice Y). 

 

There are different levels of precommitment,

the precommitment will be. According to 

either (i) conditional, e.g., a threat, or (ii) unc

states, the carrying out of precommitmen

enforced. If the precommitment behaviour is

situation or a third party, then there is a gr

behaviour will be carried out. If the precom
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i.e., it depends on the individual’s emotion or reputation, then it is less certain 

that the precommitment behaviour will be carried out.  

 

Precommitment behaviour by physical restraint is less often adaptable to a 

changing environment and is difficult to implement. In real life 

precommitment is more often enforced by some sort of punishment (P). 

Schelling (1992) gives an example where addicts are invited to write a self-

incriminating letter confessing their addiction. This letter will be sent to the 

addressee if any evidence of drug taking is found. At Choice Y, while the 

value of SS is still low relative to LL, the addict puts into place a punishment 

contingency, (e.g., the self-incriminating letter), for choosing SS at time t2 that 

reduces the value of SS. The value of SS is now the original value of SS less 

the cost of the punishment P. This brings the net value of SS below that of the 

discounted value of LL at Choice X. Another example of precommitment by 

punishment is the case of alcoholics willingly taking the drug Antabuse before 

a social event where alcohol is available. The drug Antabuse causes severe 

pain if alcohol is consumed after taking it. Even though the drug does not stop 

alcoholics from drinking, it does act as a strong deterrent. 

 

It is not necessary to enforce this level of precommitment for self-control in 

everyday life. In fact, most problems of self-control are managed without the 

explicit examples of precommitment as described above. Mischel at al. (1989) 

showed that as we grow older we become better at controlling our behaviour, 

i.e., we become better at choosing the LL reward over the SS reward. One 

explanation is that precommitment is internalized as we get older and our 
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emotions, such as guilt, function as an internal precommitment for exercising 

self-control. There is much support for this argument (Hoch and Loewenstein 

1991; Frank, 1995; Muraven and Baumeister 2000). However, not all 

emotions make us better in choosing the LL over the SS. Baumeister (1995) 

believes emotions such as anger reduce higher-level cognitive processing and 

produce myopia, (i.e., the discounted value of LL is reduced). Alcohol has a 

similar effect. Baumeister (1995) likens emotions to a muscle that gets 

stronger with use, which could explain the development of self-control, as we 

get older. Rachlin (1995) opposes the view that precommitment can be 

internalized. He argues that if precommitment is internalized then how do we 

internalize punishment so that it has the same effect as the precommitment by 

external punishment described earlier? Rachlin (1995) suggests that people 

achieve self-control by restructuring behaviour to create a pattern of behaviour 

rather than by internalizing precommitment. The longer a pattern of behaviour 

continues, the more costly it becomes to stop (Rachlin, 2000). This suggests 

that self-control arises through the development of patterns of overt 

behaviour, which becomes a habit. Frank (1995) agrees that this habit forming 

is a means to greater self-control. Mosterin (1995) criticises Rachlin’s view of 

the act versus pattern of behaviour, as being insufficient to explain the 

increase of self-control with age. 

 

Critical Observation. In my view, guilt provides a powerful mechanism for 

self-punishment. Loss of reputation or loss of respect from significant others 

is also a powerful incentive. Baumeister (1995) supports this view citing guilt 

as a sufficient motivation to change one’s behaviour. Frank (1995) also 
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believes that guilt acts as a form of self-punishment by focusing our attention 

on the future. It may be difficult to identify internal precommitment. If a 

person refuses a cake, is it because she or he is not hungry, or through guilt 

because she or he is on a diet? In this thesis it is argued that although it may 

be difficult to measure a behaviour, this does not mean that the behaviour did 

not happen. For example, to the dieter, the action (refusing the cake – the SS 

in Figure 2.1), results in the same outcome (the dieter consumes less calories 

in line with the long term reward, i.e., the supermodel body – the LL in Figure 

2.1). In this thesis, although the reason may be different (not hungry or on a 

diet), the fact that the action resulted in the right outcome is the important 

factor in self-control problems. What seems to be lacking from Rachlin’s 

model of self-control is an explanation of the internal mechanism that 

motivates one to choose the LL over the SS.  One of the aims of this thesis is 

to address this. 

2.2.4 Precommitment behaviour and games 

Precommitment behaviour features both in game theory and psychology. In 

game theory precommitment is simply called commitment. Von Neumann and 

Morgenstern (1944) mention commitment in their text, which established 

game theory. Although in game theory it is assumed that people interact in a 

rational manner (Binmore, 1992), it is still a powerful tool for studying human 

behaviour through simulation. The differences between game theory and what 

happens in the real world can be highlighted by comparing what people really 

do, with what is defined in game theory as the optimal thing to do. For 

example, in the Iterated Prisoner’s Dilemma game, game theory states that the 

optimal thing to do is to defect; this is not actually what people do. 
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Experiments by Axelrod (1984) suggest that most people will cooperate early 

on, and will stop cooperating only if the other player defects, or when an end 

point is near. Another example is the Ultimatum game (Nesse, 2001), where 

one player proposes to divide a resource and the second player then accepts or 

turns all the resource back to the game. In game theory the optimal thing to do 

is to accept anything. Roth et al. (1991) showed that if the offer is not close to 

50:50, then the offer is rejected.  

 

Critical Observation. One difference between precommitment, as defined in 

game theory, and what in this thesis is referred to as personal precommitment, 

is that personal precommitment may only be an announcement of plans 

(Nesse, 2001). Another difference is that in personal precommitment one has 

moral and other dilemmas. For the purpose of this thesis precommitment is 

defined in the same way as in game theory, i.e., once precommitment is 

announced, it must be irrevocable. 

2.3 Explaining Self-control through games 

Game theory (von Neumann and Morgenstern, 1944) is a powerful tool for 

studying human behaviour, if it is assumed that humans behave rationally, i.e., 

that a player is playing to win, which in real life is not always the case. In 

game theory there are two types of games: (i) zero-sum games are strictly 

competitive games where one player’s payoff is the negative of the other, 

hence the payoff functions sum up to zero and (ii) general-sum games that 

look for a pattern of coalition consistent with rational behaviour and do not 

have any restriction on the players’ payoff (Binmore, 1992). Zero-sum games 

can be viewed as a subset of general-sum games. Zero-sum games are simpler 
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in that they converge to a unique Nash equilibrium (Nash, 1950a), where each 

player’s strategy choice is the player’s best response to the strategy choice of 

other players (Nash, 1950a). This is not necessarily the case with general-sum 

games. General-sum games might have many equilibria (Nash, 1950a). A 

strategy or policy can be defined as the decision-making function, which 

specifies what action a player will take in any situation (state). An action is 

the behaviour that is performed. The state-action relationship is referred to in 

psychology as a stimulus-response. An optimal strategy is defined in terms of 

Nash’s Equilibrium (Nash, 1950a). A game is said to be symmetric when the 

players start in the same situation, have the same choices of strategies and the 

same payoffs1.  

 

 
The Prisoner’s Dilemma (PD) game is a symmetric general-sum game that 

has been used to model cooperation behaviour (Axelrod, and Hamilton, 1981).  

There has been much research on the PD game. Many researchers feel this 

simple game holds the key to problems ranging from strategic defence 

planning, to an explanation for animal behaviour in biology. Some biologists 

feel that many animals and plants are engaged in ceaseless games of PD 

played out in evolution (Dawkins, 1989). In the PD game there is a banker 

and two players. Each player has two cards one labelled cooperate (C) and 

one labelled defect (D). Each player chooses one of the cards and lays it face 

down without the other player knowing what choice he or she has made. The 

banker turns over the cards and rewards the players based on a payoff matrix 

                                                           
1 The games deployed in this thesis are all symmetric general-sum games. 
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like the one in Figure 2.3. The payoffs to the row player are listed first. A 

negative payoff implies that the player pays the banker. 

 
                                                            Column Player 
 

 Cooperate  Defect  

Cooperate  1,1 -1,2 

Defect  2, -1 0,0 

 
 
 
 
Row Player 
 
 
 
 
 
Figure 2.3 A payoff matrix for the Prisoner's Dilemma game 
The payoffs to the row player are listed first. It pays a player to defect whatever his 
opponent does; yet both players would be better off if they both cooperate. 
 

The Prisoner’s Dilemma game is defined in Figure 2.4.  

 
 Cooperate  Defect  
Cooperate  R S 

Defect  T P 

Rules: 
1. T>R>P>S 
2. 2R>T+S 

 

 

Figure 2.4 The Prisoner's Dilemma Game 
Defined by: Temptation to Defect (T) must be better than the Reward for Mutual 
Cooperation (R), which must be better than the Punishment for Mutual Defection (P), 
which must be better than the Sucker’s payoff (S) (Rule 1: T>R>P>S); the average of 
the Temptation to Defect (T) and the Sucker’s Payoffs (S) must not exceed the 
Reward for Mutual Cooperation (R) (Rule 2: 2R>T+S). The rewards are shown for 
the row player. 
 

For the game to qualify as a PD it must satisfy two rules: (i) there must exist a 

rank order in the play, (i.e., Temptation to defect (T) must be better than the 

Reward for mutual cooperation (R); the Reward for mutual cooperation (R) 

must be better than the Punishment for mutual defection (P); the Punishment 

for mutual defection (P) must be better than the Sucker’s payoff (S)) (Rule 1: 

T>R>P>S), and (ii) the average of the Temptation to defect (T) and the 

Sucker’s payoff (S) must not exceed the Reward for mutual cooperation (R) 
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(Rule 2: 2R>T+S). Nesse (2001) suggests the four situations defined by the 

four boxes in Figure 2.3 have shaped emotions specific to the situation (trust 

and friendship, suspicion and anger, anxiety and guilt, and rejection).  The 

dilemma in the Prisoner’s Dilemma game is derived from trying to guess what 

card the other player has played. Each player has two choices: to defect (D) or 

to cooperate (C). With reference to Figures 2.3 and 2.4, if the other player 

played a D, the best card to play would also be a D and the player would 

receive a Punishment for mutual defection (P); to play a C would mean the 

player would receive a Sucker’s payoff (S), which is even worse. If the other 

player played a C, then to play a C as well would mean a Reward for mutual 

cooperation (R); to play a D would give the player an even higher score for 

Temptation to defect (T). Therefore, whatever the other player does, the best 

move is always to play a D and thus the player’s best response is to defect. 

Yet both players know that if they had both played a C for cooperation, they 

would both have benefited by the higher reward for mutual cooperation (R), 

instead of the punishment for mutual defection (P) and hence the dilemma.  

 

Research into the original human version of PD has its origins in North 

America (Dawkins, 1989). The name Prisoner’s Dilemma originates from the 

scenario of two prisoners who are in jail suspected of collaborating in a crime. 

The police have already got them on a lesser charge. Each one is invited to 

betray the other (defect). The outcome depends on what both prisoners do, 

and neither knows whether the other prisoner has remained silent (cooperate) 

or blabbed (defect). If the first prisoner blames the other (defects), whilst the 

second prisoner remains silent, cooperating with his treacherous friend, then 
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the second prisoner receives a heavy jail sentence and the first prisoner walks 

away free, having yielded to the temptation to defect.  If each prisoner betrays 

the other both are convicted, but their sentence is reduced for mutual 

defection. If both refuse to speak to the authorities, they both get off with the 

lesser charge, i.e., they receive a reward for mutual cooperation. As neither 

prisoner can determine the action of the other, the prisoner’s best response 

would be to betray the other and defect.  

 

The Iterated Prisoner’s Dilemma game (IPD) is more complicated. IPD is 

simply the PD game repeated an indefinite number of times with the same 

players. The successive rounds of the game give the players the opportunity to 

build up trust or mistrust, to reciprocate or placate, forgive or avenge. It is 

possible for a player to guess from the other player’s past moves whether the 

other player is to be trusted. The iterated game offers plenty of strategic scope. 

In the standard iterated game neither player knows when the game will end. In 

the case of the IPD game, a strategy can be defined as a decision rule for each 

scenario of the game. A strategy could be a program whose input is comprised 

of the history of all moves up to the present and whose output is the move to 

make now. For example, a program could have a simple strategy such as Tit-

for-Tat. The Tit-for-Tat strategy cooperates on the first move and thereafter 

copies the previous move of the other player.  

 

Axelrod, working partly in collaboration with Hamilton (Axelrod and 

Hamilton, 1981), devised an evolutionary system to breed strategies for the 

IPD game. The Axelrod and Hamilton (1981) experiment is discussed in 
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Chapter 7. A brief discussion of Axelrod’s findings is given here. In Axelrod 

and Hamilton (1981) evolutionary system, the success of a strategy is a 

measurement of how well it fares against the other strategies; they found that 

most of the strategies that evolved resembled the Tit-for-Tat strategy, which 

cooperates on the first move and then copies its opponent on the preceding 

move. Thus the Tit-for-Tat is a strategy of cooperation based on reciprocation. 

Their results showed that in evolution there is a conflict between the 

immediate reward of defection and the larger delayed reward of mutual 

cooperation that can be resolved by the probability of reciprocation. Defection 

yields the highest immediate reward (the SS reward in Figure 2.1). However, 

in the IPD game there is scope to build up trust between the players leading to 

the higher long term reward of mutual cooperation (the LL reward in Figure 

2.1). There is also the conflict of exploration versus exploitation. If only the 

most successful individuals are allowed to breed, i.e., exploiting what is 

known, then this might be the best in the immediate future, by maximizing the 

performance of the next generation, but not necessarily the best in the long 

term. To achieve the optimal solution other possibilities need to be explored.  

 

Rachlin (2000) suggests that the structure of the behaviour self-control can be 

likened to the IPD game in that cooperation is to defection what self-control is 

to impulsiveness. To illustrate this, consider the real world example of the 

self-control problem of the student faced with the temptation of going to the 

pub, discussed in Section 2.2.2. With reference to Figure 2.1, the LL 

represents getting good grades. At some point later in time the student 

receives an invitation to go to the pub and it is at this time that his temptation 
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(SS) becomes known, i.e. going to the pub. When invited to the pub, the 

student is faced with the self-control problem of staying at home and studying 

(the LL reward) or going to the pub and socializing (the SS reward). In Figure 

2.3, the (C,C) is the LL  reward of staying at home and studying leading to 

good grades and the (D,D) is the SS reward of going to the pub and 

socializing. If it is assumed that C is staying at home and D is going to the 

pub, then (C,D) could represent the middling situation of when asked to the 

pub you decide to stay at home, but do not study as effectively because you 

wish you had gone to the pub, and (D,C) could represent the situation of going 

to the pub, but having a miserable time because you feel guilty about not 

studying.  

 

An experiment by Brown and Rachlin (1999) explored the relationship 

between self-control and cooperation, using human subjects playing a version 

of the IPD game. A game was played either by a single player to simulate 

self-control, or by a pair of players to simulate cooperation. In the experiment 

they had four trays to represent the four cells of the payoff matrix for the PD 

game. For the purpose of this illustration let us assume that each cell is in fact 

a box and the boxes are made of glass. The player knows what is in each box. 

The payoff matrix is shown in Figure 2.5.  Let us assume each box has a door, 

which is opened by a red or green key. Inside the box there are some nickels 

(the reward) and another green or red key. There are two boxes with red doors 

and two boxes with green doors. The red key can open a red door, and the 

green key a green door. Each box has a number of nickels. After each round 

the box is refilled.  
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Red Door 
3 
Red Key   

Red Door 
4   
Green Key 

Green Door 
1   
Red Key 

Green Door 
2 
Green Key   

 
Figure 2.5 The payoff matrix for the game of self-control or social cooperation 
The payoff matrix used in the self-control game and the social-cooperation game. A 
red or green door opens a box. In the box there is another red or green key, and a 
number representing the number of nickels (the reward). This is a game of self-
control as the player has to choose between defecting and choosing the higher current 
reward, (either of the right hand boxes with 2 or 4), or cooperating and choosing the 
long term reward, (either of the left hand boxes with 3 or 1),  (adapted from Brown 
and Rachlin, 1999)  
 

In the Self-Control game there is just one player. The rules for the self-control 

game are: at the start of the game the player is given a red key, he or she can 

open one of the red doors and then surrender the key and take the nickels (the 

reward) and the key in the box. On the next round the key is used to open the 

box with the same colour. The aim is to maximize the number of nickels.  If 

the player selects the top right hand box, then a green key is used on the next 

trial to open either one of the green doors resulting in a smaller reward (the 

punishment for taking the SS on the previous round).  To maximize the total 

payoff, the strategy is to always choose the top left hand box and get three 

nickels, and only choose the top right hand box if it is the last round. The 

game is a self-control problem, as choosing the top right hand box has the 

highest immediate reward (SS), but it conflicts with the behaviour that 

maximizes the accumulated payoff in the long term (LL), i.e., choosing the top 

left hand box.  The current choice is dependent upon the degree on which the 

next trial the higher future reward (top right hand box) is discounted. This is 
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referred to as probabilistic discounting. Rachlin (2000) defines probabilistic 

discounting as the case when: 

 
“a player may currently discount higher future reward by the probability that 

she herself will fail to choose the lower reward on subsequent trials” (Rachlin, 

2000, p.171)  

 
For example, if the dieter by past experience thinks that it is highly 

improbable that she can resist calorific food tomorrow or the next day, why 

then resist it today.  

 

In the Cooperation game there are two players. The rules for the Cooperation 

game are the same as with the Self-Control game except that each player took 

alternate trials. One player uses the key and then passes it to the next one. 

Hence, which key the player received, depended upon the other player’s 

choice.  

 
The results showed that the distinguishing feature between cooperation and 

self-control is the probability of reciprocation. Rachlin (2000) defines the 

probability of reciprocation, in terms of one’s current action based upon what 

one believes one will do in the future: 

 
“The important question is not, Will others cooperate (or will I cooperate) in 

the future? But If I cooperate now, will others cooperate (or will I cooperate) 

in the future?” (Rachlin, 2000, p.179) 

 

Thus, with reference to Figure 2.5, this means the conditional probability that 

the player will continue to select the top left hand box (cooperate). This is 
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expressed as the number of times the top left hand box is selected over the 

total number times that both the top left hand box (cooperate) and the top right 

hand box (defect) are selected. When exercising self-control, the question 

becomes if I cooperate with myself now, will I continue to cooperate with 

myself in the future? For example, for the dieter the question is “if I refuse 

that cake now, will I continue to refuse it tomorrow?” The probability of 

reciprocation may be high in self-control situations where one is dealing with 

oneself.  

 

An experiment by Baker (2001) showed that there is a direct relationship 

between the probability of reciprocation and cooperation. In Baker’s 

experiment the game was played on a computer, with the computer taking the 

place of the second player.  On the computer screen there was a diagram with 

four boxes as in Figure 2.5. In Baker’s experiment the probability of 

reciprocation (pr) was explicitly stated. If the first player cooperated on the 

previous trial, then the computer on the next trial would cooperate with a 

probability of pr and defect with a probability of (1-pr). If the first player 

defected on the first trial then the computer on the next trial would defect with 

a probability of pr and cooperate with a probability of (1-pr). Thus, the 

probability of reciprocation of cooperation is signaled by the behaviour of the 

player on the first trial. The first player’s move is known in psychology as the 

discriminative stimuli. This move signals when a reinforcer, in this case 

cooperation, is likely to be forthcoming. The results of Baker (2001) are 

summarized in Figure 2.6.  
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Figure 2.6 Baker's results (2001) showing cooperation as a function of 
reciprocation 
The average results of the last fifteen of one hundred trials of Baker’s experiment 
(2001) showing that the tendency to cooperate is directly related to the probability of 
reciprocation. The self-control problem can be stated as: if I cooperate with myself 
now, will I continue to cooperate with myself in the future? (Rachlin, 2000). 
 

The results show a positive correlation between the probability of 

reciprocation and the tendency to cooperate, i.e., as the probability of 

reciprocation increases so does the percentage of cooperation. When problems 

of self-control occur, the probability of reciprocation decreases (Rachlin, 

2000). The smoker, who has stopped several times, must have started several 

times. There is no reason to cooperate today, if the smoker believes that he or 

she will begin again tomorrow. 

 

There is much support in the literature for this link between self-control and 

cooperation. The philosopher Plato wrote in his piece Phaedon (written in 360 

B.C) of a metaphor for the human soul as a two-horse chariot. The charioteer 

represents the higher brain functions such as planning and reason, and the 

horses represent immediate gratification. The horses are myopic and the 
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charioteer is far-sighted, because the charioteer has control of the horses.  

More recently, Schelling (1971), Platt (1973) and Ainslie (1992) have also 

claimed that there is a relationship between self-control and cooperation. It is 

only when inconsistencies between the short term (the smaller-sooner reward) 

and the long term (the larger-later reward) arise, that conformity to the 

preferred long-term is labeled self-control.   

 

What is new and overview? In this thesis it is proposed that increasing the 

level of precommitment increases the probability of cooperating with oneself 

in the future, i.e., the probability of reciprocation. Hence, in this thesis the 

theoretical premise is made that as the level of precommitment increases, so to 

does the tendency to cooperate, as suggested by the results of Baker (2001) 

and Brown and Rachlin (1999). The word “cooperation” has a non-

conventional meaning in this thesis (only cooperate for the high-payoff 

decision). Cooperation as defined in the Oxford dictionary, is to “work 

together for a common end”, in which case (D,D) could be viewed as 

cooperation.  In this thesis and also in the IPD game, cooperation means 

cooperating in order to gain the larger later payoff, hence the situation where 

both players defect (D,D) is not seen as cooperation. 

2.4 Physiological evidence for Self-Control 

It is has been suggested that there is already a neurobiological explanation for 

self-control (Hughes and Churchland, 1995). However, from a review of the 

literature, it would seem that there is still much to be learned about the 

physiological basis for self-control. It follows that if consensus has not been 
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reached on a definitive functional model, then how can there exist a 

neurobiological model encapsulating the psychological phenomena?  

 

The earlier neurobiological data on self-control was observed from brain 

lesion patients. Brain lesion data is problematic, as it is difficult to determine 

the exact role of the lesion in the breakdown of the behaviour (Churchland 

and Sejnowski, 1992). It is only recently that brain-imaging data has been 

made available.  Early explanations for the neurobiological basis for self-

control were based on data from studies on brain-lesion patients such as the 

patient, referred to simply as, EVR (Damasio et al., 1990). Damasio (1994) 

found that lesions in the orbital and lower medial frontal lesions resulted in 

deterioration of social conduct and judgment. Further experiments showed 

that the frontal ventromedial has a role in the decision-making process for 

long term costs and benefits. Recent studies by O’Doherty et al. (2002), using 

brain-imaging techniques, have confirmed this. MRI studies have located the 

area that anticipates reward. This is believed to be the ventral striatum centred 

at the base of the brain (Knutson et al., 2001). A MRI study carried out by 

Bjork et al. (2004) on adolescents and young adults found that there was less 

activity in this area for adolescents as compared to adults when faced with the 

anticipation of future gain. They also found that the anticipation of a potential 

reward showed activity in right insula, dorsal thalamus and dorsal midbrain.  

 

Critical Observation. From a review of the literature, summarized above, it 

would seem that there is still much to be gleamed from a detail analysis of the 

physiological basis for self-control behaviour. What is needed is a model that 
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provides both a neurobiological and a behavioral explanation to avoid past 

mistakes, e.g., the procedure for frontal lobotomies and medical blunders such 

as the patient EVR. This research aims to bridge the gap, between the 

neurobiological and behavioral data.  

2.5 Evolution of Self-Control through Precommitment 

Precommitment behaviour can be viewed as an indicator of the internal 

conflicts that arise in our brain (Nesse, 2001). If we were truly rational, our 

preferences would not change over time: if it is in our interest to get up when 

the alarm clock goes off, then we should not want to go back to sleep when it 

wakes us up (Samuelson and Swinkels, 2002). Are we born with this 

capacity? A survey of the literature would seem to suggest that there is an 

evolutionary basis for this complex behaviour, and that our genes have been 

shaped through natural evolution to provide us with this capacity of 

precommitment even when there is a cost (Samuelson and Swinkels, 2002). 

Experiments on college students by Ariely (2002) show that we commit to 

less than optimum deadlines. Gibbard (1990) proposes that natural selection 

has evolved our emotions to create a  “normative control system” to achieve 

our long term goals through constraint of the immediate reward. Frank (1988) 

also suggests that our emotions have evolved to act as an internal self-control 

mechanism, which kick in when required. This suggests a conscious versus 

unconscious mind or, as suggested in the literature, a multiple selves theorem 

(Schelling, 1992; Trivers, 2000; Samuelson and Swinkels, 2002). In the two-

self model, the current self, concerned with the present, might wish to restrict 

the choice of the future self, even though it makes its future self unhappy. It 

does this, because it is aware that it will make other future selves happier. 
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Nesse (2001) suggests that precommitment is so important to our survival that 

evolution has evolved “specialized capacities” to do this. Cosmides and 

Tooby (1989) support this view. They propose that evolution has given us a 

“cheater detection module”, which enables us to inhibit short term pleasure in 

order to fulfill commitments in pursuit of long term goals. Have we through 

evolution, as suggested by Burnham and Phelan (2000), tamed our “primal 

instincts” to give us this capacity to precommit, which overrules our short 

term pleasures (primal desires) to achieve our long term goals? Metcalfe and 

Mischel (1999) suggest that a higher process curtails our intrinsic, reactive 

behaviour. Metcalfe and Mischel (1999) account for the differences in the 

development of self-control in individuals by suggesting that there are two 

processing systems which govern our development of self-control. They 

propose a “hot” system that is emotive and reactive, and a “cool” system that 

is cognitive and reflective. The interconnection of these two systems 

determines the development of self-control.  The prefrontal cortex is the 

newest part of our brain, and is the part of our brain, which has been subjected 

to the majority of changes under natural evolution (Greenfield, 1997). From 

studies of brain-damaged patients such as Phineas Gage and the brain-lesion 

patient known simply as EVR (Damasio, 1994), the prefrontal cortex has been 

shown to be crucial in performing a cost-benefit analysis of the short-term 

choices versus the long-term choices.  

 

Alternatively, there may be no evolutionary basis for self-control through 

precommitment and this behaviour is learned as part of socialization alone. A 

review of the psychological literature on how to achieve greater self-control 
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would seem to support this theory. For example, the way operant conditioning 

is applied to human behaviour to achieve greater self-control, suggests that 

once a target behaviour is selected then one should plan a course of action and 

make a record of each occurrence of the target behaviour; then he or she 

should change the environment and use positive reinforcement each time 

temptation is avoided. Strotz (1956) proposes that a strategy of 

precommitment techniques is learned from an external self-control device to 

manage the internal conflict of short-term pleasure versus long-term gain. The 

rules learned then become habits. As a child, a parental voice might suffice as 

an external self-control device. This is supported by the results of Kochanska 

et al. (2000), which demonstrated that children of mothers, who were more 

sensitive and supportive, were more advanced in their development of self-

control. However by early adolescence, parental influences make way for 

peers, films, computer games etc.; do these influences act as self-control 

devices?  

 

Figure 2.7 shows the key milestones in the development of self-control 

(Morgan et al., 1979).  The child begins by complying, i.e., the child 

voluntarily obeys requests and commands. By the age of two, the child has an 

ability to wait for a reward. At the age of 6 the child has acquired the 

cognitive ability to inhibit the pleasure of short term rewards, e.g., to think of 

marshmallows as clouds (Mischel and Mischel, 1983) and has the capacity for 

moral self-regulation, i.e., the ability to monitor one’s conduct. At this stage 

the child is beginning to learn to think in an abstract way. To achieve these 

milestones a child must have the necessary cognitive processes in place. A 
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child must have memory skills to recall a mother’s directive in order to apply 

it to its own behaviour. For a child to apply self-regulation she or he must be 

able to think of him or her self as separate beings that can control their own 

actions and emotions. The child must have cognitive inhibition in order to be 

able to inhibit short term pleasures  (Mischel et al., 1989).  

 
Age          Self -Control Behaviour 

 
12-18mths Beginning of compliance, i.e., voluntary obedience to request 

and commands 
 

18-30mths Ability to wait increases, i.e., delay of gratification 
To 5yrs Compliance and delay of gratification improve 

 
6 to 11 yrs Strategies for self-control expand  

Awareness of ideas to gain rewards 
Capacity for moral self regulation, i.e., the ability to monitor 
one’s conduct  
 

12-20yrs Moral self regulation improves 
 

 
Figure 2.7 Milestones in the development of self-control 
These milestones represent overall age trends; individual differences exist in the 
precise age grouping (adapted from Morgan et al., 1979). 
 

Critical Observation. The review of the literature on self-control behaviour 

suggests a dual-process system. Gibbard (1990) suggests a “controller”, Frank 

(1988) suggests an emotive system that kicks in when required and Metcalfe 

and Mischel (1999) suggest a hot and cold system. In this thesis it is proposed 

that the interconnection of these two processes alluded to by Gibbard (1990), 

Frank (1988), Cosmides and Tooby (1989) and Metcalfe and Mischel (1999), 

is representative of the competition between the higher centre of the brain, 

(i.e., rational thought) and the low-level centre, (i.e., instinctive behaviour). If 

this is the case, is it that self-control stems from a genetic conflict between the 

maternal genes congregated in the neocortex versus the paternal genes 

congregated in the hypothalamus as suggested by Haig (1997) and Trivers and 
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Burt (1999)? If self-control through precommitment has been shaped by 

natural evolution, then there must be a fitness benefit for the gene or it will be 

eliminated through natural selection. Natural evolution works at the gene 

level: it benefits genes and their phenotypes, not the group or species 

(Maynard Smith 1982; Dawkin, 1989). Is it the case that the capacity for 

precommitment has increased fitness, which in turn has shaped higher 

intelligence, which has then reinforced precommitment behaviour?2     

 

The evidence would seem to imply that as our brains have evolved, so too has 

our capacity to precommit. The empirical and theoretical data on self-control 

implies that there is an evolutionary heritage to self-control through 

precommitment behaviour. When our environment was less predictable and 

our basic needs were less likely to be met, then the present was weighted more 

heavily. As nature has evolved however, so too did our capacity to precommit. 

Fantino (1995) summarises this in the title of his article on the evolutionary 

reasons for impulsiveness, “The future is uncertain, eat desert first”. 

2.6 Summary 

For the purpose of this thesis, self-control is defined as choosing a larger-later 

reward over a smaller-sooner reward as shown in Figure 2.1. The key points 

in Figure 2.1 that are relevant to this thesis are:  (i) the discounted values of 

both rewards increases with time, (ii) initially the value of the larger-later 

reward (LL) exceeds that of the smaller-sooner reward (SS) allowing us to 

precommit to LL, and (iii) at some time before SS there is a reversal of 

                                                           
2 In this thesis, an answer to this question will be investigated in the context of the explanation 

(2) in Chapter 1, Section 1.1 (p. 23). 
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preferences, with the value of SS reward overtaking and exceeding that of the 

LL reward. Precommitment is a mechanism for managing self-control 

problems. Precommitment is defined as making a choice with the specific aim 

of denying or limiting ones future choices. When LL is the preferred option at 

t1 we precommit to LL by carrying out an action that limits our later choice to 

LL only. Exercising self-control can be viewed as the tendency to cooperate 

with one’s self (Brown and Rachlin, 1999). In this thesis the word 

cooperation has a non-conventional meaning; more specifically it means 

cooperating in order to gain the larger later payoff, hence the situation where 

both players defect is, in this thesis, not considered to be cooperation. The 

problem of self-control then becomes:  “if I cooperate now with myself will I 

continue to cooperate with myself in the future?” This can be interpreted as in 

the probability of reciprocation. Baker (2001) showed increasing the 

probability of reciprocation increases the tendency to cooperate.  The premise 

made in this thesis is that by increasing the level of precommitment, the 

probability of reciprocation increases, and as a result the tendency to 

cooperate.  

 

For there to be an evolutionary basis for self-control through precommitment 

behaviour, there has to be a fitness benefit. The literature seems to suggest 

that this is the case, but studies of children on delay of gratification and 

internalization of precommitment would suggest that learning plays some role 

in the development of self-control. In this thesis, the role of both learning and 

evolution in self-control through precommitment behaviour is investigated.  
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From a review of the literature there is much support for a multiple-self model 

of self-control. Cosmides and Tooby (1989) propose a two-process model 

where there is a cheater module. Metcalfe and Mischel (1999) propose a hot 

and cold two-process system.  In the next chapter, a simple neural model for 

self-control through precommitment is introduced. In this simple neural 

model, which is developed and tested in this thesis, the higher and lower brain 

regions are represented as two ANNs, locked in competition for control of the 

organism. 
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Chapter 3 

3 Review of the concepts for the Neural Modelling of Self-Control 

through Precommitment 

3.1 Chapter Outline 

This chapter is a critical literature review of relevant neural models of self-

control and related behaviours. Each model is discussed in the context of self-

control behaviour and the pros and cons highlighted. The chapter concludes 

by presenting the computational model of self-control that is developed and 

tested in this thesis. 

3.2 Support for the dual-process model 

We have described self-control as a dilemma between a future self, concerned 

with long-term benefits, and the present self, concerned with immediate 

gratification, see Chapter 2, Section 2.2.1. Support for this conflict goes as far 

back to Plato and his metaphor for the human soul, a two-horse chariot. The 

charioteer is reason and the horses stand for immediate pleasure. Adam 

Smith’s 2-self model in his book “Theory of moral sentiments” (1759) talks 

about a conflict between reason and passion for control of the moral sentiment 

of the person. Recent research also supports this conflict within one’s self. 

Thaler and Shefrin (1981) propose a two-self model of myopic doer versus 

far-sighted planner. Smolensky (1988) suggests a top-level conscious 

processor for effortful reasoning and an intuitive processor for heuristics, 

intuitive problem solving. The common theme in these approaches is that 

influences can come from both top downward and bottom upward. The 
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religious view of self-control is illustrated in Figure 3.1. It encapsulates this 

view of two processes, which are largely independent locked in some form of 

internal conflict for optimal control of the organism. The circle represents the 

body of a person. The thick black arrow represents the person’s emergent 

behaviour, which is the result of a continuous battle between the good (the 

angel) and the bad (the devil). Self-control is concerned with keeping that 

arrow facing upward; temptation or impulsiveness is concerned in keeping the 

arrow facing downward. In this religious model a person exercises self-control 

as a result of good external influences, for example, parents, school, and the 

church.  
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the way for dualism, where the mind and brain are viewed as radically 

different kinds of things.   

3.3 Alternative abstract models 

Carvier and Scheier (1998) propose a model of self-control based on self-

regulation of behaviour through feedback. Self-control in this model is seen as 

maintaining conformity to a standard. The model is shown in Figure 3.2.  
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Effect on 
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Figure 3.2 A model of self-control that uses self-regulation 
An abstract behavioural model of self-regulation, which can be used to exercise self-
control. In this model self-control can break down in several ways: (i) when there 
does not exist a standard for a behaviour, e.g., being on time for work; (ii) we fail to 
carry out any monitoring on our behaviour, e.g., setting the alarm clock; (iii) we 
simply fail to follow through, e.g., we switch the alarm clock off and go back to sleep 
(adapted from Carver and Scheier, 1998).  
 

In this model problems of self-control can occur where there is a break down 

through, a lack of standard for a behaviour, or a lack of monitoring, or a 

failure to follow through on a behaviour. This model can be illustrated in 

terms of a thermostat control system. The standard is the thermostat; the 

sensory information is the thermostat control. The comparator matches the 

temperature to some desired level and the temperature is adjusted accordingly. 

Disturbances may be the sun, the wind, or the number of people in the room.  

This model explains self-control behaviour in terms of maintaining some 
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standard be it moral or otherwise. This standard has got to be stable. It is 

important that the reference value is held rigid, as fluctuations in this will lead 

to erratic behaviour. Error detection compares the standard and behaviour. 

The level of error detection determines self-regulation hence self-control. For 

example, a low error detection would result in sloppy or careless behaviour. 

 

Critical Observation. In this abstract model, behaviour is explained in the 

context of personality and social psychology. It does not attempt to explain 

how messages are passed between our brains and our bodies, and where in our 

brains messages go to or come from. In a sense it fails in the same way as the 

religious model of Figure 3.1, as it ignores the biophysical mechanisms that 

underlie the behaviour, i.e., the how. In the next section neurobiological 

models will be presented, which attempt to address this issue.  

 

3.4 Neurological support for the dual-process model 

From a review of the neurophysiological literature on the structure and 

function of the brain, it seems that there is much support for a dual-process 

model (Bjork et al., 2004; Frank et al., 2001; Sporns et al., 2000; Beiser and 

Houk, 1998). The dual-process model has a planner type function, located in 

the prefrontal cortex, and a doer type function, located elsewhere in the brain 

possibly the midbrain or upper brain stem. Frank et al. (2001), describe the 

division of labour between prefrontal cortex and basal ganglia in the context 

of reinforcement learning. The basal ganglia (more specifically the ventral 

limbic and the striatum regions) is involved in the assignment of a reinforcer 

signal to a sequence of actions and the prefrontal cortex acts as the critic in the 
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creation of the reinforcement signal. Beiser and Houk, (1998) support this in 

their model of serial ordering of events. The ordering of events is an important 

cognitive function of self-control problems. Beiser and Houk (1998) show that 

messages pass via a loop, starting from the prefrontal cortex through to the 

basal ganglia and thalamus, and then back to the prefrontal cortex. This model 

is a departure from the traditional role of the basal ganglia. Traditionally the 

basal ganglia has been associated with motor skills. Sporns et al., (2000) in 

their discussion of the processes needed when facing complex, dynamic 

environments identify two opposing functions: extraction and response. These 

two functions are dealt with in two seemingly independent, but cooperating 

areas of the brain. The first is located in the cortical area, and the second 

within and across the cortical area. More recently Bjork et al. (2004) have 

shown the division of motivation and gain in reward-directed behaviour can 

be mapped to the limbic and frontal cortex regions respectively. Finally, 

Damasio (1994) proposes a neural basis of self, as two representations: (i) the 

individual’s autobiography, based on memory and (ii) an imagery of a future 

self, which is subjective.   

 

Critical Observation. These models all attempt to explain how self-control 

behaviour occurs in terms of biological processes (to the best of my 

knowledge, precommitment has not been explained in a neurological model). 

However, (with the possible exception of Damasio) the models ignore why 

this behaviour occurs, i.e., the motivation for the behaviour that was addressed 

by both the religious model of self-control (Figure 3.1) and the abstract model 

of self-control (Figure 3.2).  
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3.5  A model of self-control 

In the viewpoint of modern cognitive neuroscience, self-control as an internal 

process can be represented in a highly schematic way as in Figure 3.3 

(Rachlin, 2000). Arrow 1 in Figure 3.3 denotes information coming into the 

cognitive system located in the higher centre of the brain, which represents the 

frontal lobes associated with rational behaviour such as planning and control. 

This information combines with messages from the lower brain, representing 

the limbic system (including memory from the hippocampus) that is 

associated with emotion and action selection (O’Reilly and Munakata, 2000; 

Rachlin, 2000). This travels back down to the lower brain and finally results 

in behaviour (arrow 2 in Figure 3.3), which is rewarded or punished by stimuli 

entering the lower brain (arrow 3 in Figure 3.3).   
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The model, as depicted in Figure 3.3, is accepted in modern physiological and 

cognitive psychology as a model of self-control. To illustrate this, with 

reference Figure 2.1, self-control is defined as the choice of a larger, but later 

reward (LL) available at t3 over a sooner, but smaller reward (SS) at time t2. 

Information about an earlier time t1, i.e., the value of the larger-later reward is 

stored away elsewhere in our brain possibly memory this combines with 

information coming into our brain about the immediate environment, i.e., the 

sooner-smaller reward at t2 represented by Arrow 1. This results in an action 

denoted by Arrow 2, either to defect and succumb to temptation and receive 

the immediate reward at t2 denoted by Arrow 3, i.e., SS, or to cooperate and to 

not give way to temptation and receive the larger later reward at t3 denoted 

again by Arrow 3. The model explains where in the brain messages go to and 

come from and how the behaviour emerges. With reference to Figure 2.1, we 

are made aware of the temptations (the SS in Figure 2.1) by information 

coming into the cognitive system (Arrow 1 in Figure 3.3) This information 

combines with messages from the lower brain, and other information stored 

elsewhere (possibly memory) of our long term goals (the LL in Figure 2.1). A 

choice is made, either the LL or the SS, which finally results in behaviour 

(Arrow 2 in Figure 3.3). We are then rewarded with the SS or LL (Arrow 3 in 

Figure 3.3).  

 
Critical Observation. The model of self-control in Figure 3.3 aims to explain 

the biological mechanisms underlying self-control behaviour by showing at an 

abstract level where in our brain messages originate and are sent to. It also 

attempts to explain why self-control behaviour occurs, but not how greater 
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self-control can be achieved, which both the religious model of Figure 3.1 and 

the abstract model of Figure 3.2 attempted to address.   

3.5.1 What is new and overview?  

In this thesis, the simple model of Figure 3.3 is implemented as an 

architecture of two interacting networks of neurons. This follows on from the 

ideas proposed in Section 3.1 and supported by the neurophysiological data in 

Section 3.2 that the two hemispheres of the brain engage in a competition for 

control of the organism. In this thesis we make the theoretical premise that the 

higher and lower brain functions cooperate, i.e. work together, which is in 

contrast to the traditional view of the higher brain functioning as a controller 

overriding the lower brain. From this viewpoint, a computational model of the 

neural cognitive system of self-control behaviour is developed. The schematic 

model of Figure 3.3 is implemented as two Artificial Neural Networks 

(ANNs) simulating two players, representing the higher and lower centers of 

the brain, competing against each other in general-sum games using 

reinforcement-learning. It is a network architecture of two networks 

exhibiting different behaviours to represent the higher versus lower cognitive 

functions, as depicted in Figure 3.3. The State (corresponding to arrow 1 in 

Figure 3.3) summarizes information both past and current about the 

environment; the Action (corresponding to arrow 2 in Figure 3.3) is the 

emergent behaviour of the combined networks and the reinforcer 

(corresponding to arrow 3 in Figure 3.3) is a global reward or penalty signal 

as appropriate to the action. From this model of self-control behaviour, 

precommitment behaviour can be viewed as resolving some internal conflict 

between the functions of the lower and the higher centres of the brain by 
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restricting or denying future choices and hence can be thought of as resolving 

an internal conflict by prevention. It does this by biasing future choices to the 

larger, but later reward (the lower arm leading to LL in Figure 2.2). This is 

simulated in this computational model in one of three ways: (i) as a variable 

bias in place of the ANN’s bias, (ii) as an extra input implemented on one or 

both ANNs or (iii) as a differential bias applied to the payoff matrix.   

 

The computational model implemented in this thesis explains in 

computational terms how the brain generates self-control behaviour, based on 

the known neurophysiology of the brain, from a top-down modelling 

approach. Complex processes like self-control cannot be understood simply 

by the operations of individual neurons, it requires an understanding of the 

interaction of multiple components, i.e., networks of neurons responsible for 

specific functions (Fodor, 1983; Jacobs, 1999). Current research indicates that 

the higher cognitive functions are not based on the action of individual 

neurons in a limited area, but are based on the outcome of the integrated 

action of the brain as a whole (O’Reilly and Munakata, 2000). For this reason, 

a holistic approach to modeling the brain as a functionally decomposed 

system from a top down perspective is adopted, which is appropriate given the 

complexity and scope of the behaviour. In this thesis, the model explores the 

neural competition between modules (Jacobs, 1999). The model also takes 

into consideration the complexity of the environment as well as behaviour. 

The variables that define the ANN are parameterized to enable control of the 

model. These include the form of learning, the learning rate and the number of 

neurons in the each module.  
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3.6 Concluding Remarks 

In this chapter we considered three models. The first is a model from the 

spiritual viewpoint of self-control; this model provided an explanation of why 

we may achieve self-control, but it did not provide an explanation of what is 

happening in our brain when we engage in self-control behaviour. The second 

model by Carver and Scheier (1988) provides an alternative explanation of the 

reasons why we exercise self-control and attempts to explain the how, but it 

fails to explain where in our brain messages go to and come from. The 

computational model developed in this thesis, depicted in Figure 3.3, bridges 

this gap by providing an explanation of both the how and the why. It does this 

by translating abstract purpose (modelled as a bias to LL or SS) into a specific 

action (precommitment), for self-control through precommitment behaviour. 

  

In the next chapter reinforcement learning is introduced, firstly in the context 

of self-control, followed by an explanation of how reinforcement learning is 

to be used in this thesis.  
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Chapter 4  

4 Review of Reinforcement learning in the context of Self-Control  

4.1 Chapter Outline  

This chapter introduces reinforcement learning in the context of self-control. 

It presents an overview of reinforcement learning and how reinforcement 

learning is implemented in an artificial neural network. The chapter concludes 

by explaining how reinforcement learning and artificial neural networks are 

used in this thesis.  

4.2 A novel approach to the self-control problem 

In this thesis the aim is to achieve a greater understanding of self-control 

through precommitment behaviour by simulating the processes in the brain 

that are executed when we exercise this behaviour. Reinforcement learning 

(RL) supports this aim, as it is concerned with algorithms and processes going 

on inside an agent as it learns.  In RL, the agent’s goal is to maximize its 

rewards in the long term. This means being able to represent the value of 

future rewards now. In order to do this, there is an additional concept of 

discounting. The discount rate determines the present value of future rewards. 

A discount rate of zero is myopic. Myopic refers to maximizing the immediate 

reward. As the discount rate approaches one, the agent becomes more far-

sighted and takes future rewards into account more strongly. The discount rate 

can be viewed as the relative value of a delayed reward versus an immediate 

reward. In many life situations we apply the concept of discounting where we 

prefer the reward sooner rather than later. We have defined self-control as the 
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dilemma of choosing a large delayed reward over a small immediate reward 

(Rachlin, 1995). Increasing the delay of the later reward, increases our 

discounting of the reward (Mischel et al., 1989). The greater the discounting 

of the larger-later reward, the sooner its current value sinks below the value of 

the smaller-sooner reward. As we become more far-sighted we discount future 

rewards less; this is modelled as an increase in the discount rate in RL. 

4.3  A Brief History of Reinforcement Learning 

Reinforcement Learning (RL) was born from three separate, but related areas 

of research. The first has its roots in psychology “Learning by Trial and 

Error” (TE), which can be summarized by Edward Thorndike’s Law of 

Effect:  

 
  “Of several responses made to the same situation, those which are 

accompanied or closely followed by satisfaction to the animal will, other 

things being equal, be more firmly connected with the situation, so that, when 

it recurs, they will be more likely to recur; those which are accompanied or 

closely followed by discomfort to the animal will, other things being equal, 

have their connections with that situation weakened, so that, when it recurs, 

they will be less likely to occur. The greater the satisfaction or discomfort, the 

greater the strengthening or weakening of the bond” (Thorndike, 1911, p.244).  

 
From this we can gleam two mental processes: selecting an appropriate action 

for a situation (search) and then associating that action with that situation to 

determine when and what actions work best (memory). These are the basic 

processes of RL. The second area of research that contributes to RL is 

Temporal Difference learning (TD). TD is linked with classical (or Pavlovian) 
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conditioning in psychology (Sutton and Barto, 1987). TD works on the notion 

of a secondary reinforcer that takes on similar reinforcing properties as a 

primary reinforcer. The main contributors to TD are Minsky (1954) who saw 

the relevance of this form of learning to artificial intelligence, and Samuel 

(1959) in his Checkers program, which is the first known implementation of 

the TD method. The final research area to contribute to RL is that of Optimal 

Control founded on the work by Bellman (1956). This has been the basis for 

dynamic programming  (Bellman, 1957a) and the mathematical framework 

for single agent RL, the Markov decision process (Bellman, 1957b). 

 
The 1960s and 1970s were the Dark Ages for RL. RL was confused with 

Supervised learning. There were some exceptions like Narendra and 

Thathachar (1974) who developed a learning algorithm for solving non-

associative problems such as slot machines, and Widrow, Gupta and Maitra 

(1973) who modified the least mean squares algorithm (LMS training rule) of 

Widrow and Hoff (1960) to produce the Selective Bootstrap adaptation rule 

otherwise known as “learning with a critic”. The 1980s saw a renewed interest 

in RL with psychological models of classical conditioning learning, which 

combined the learning approaches of TD and TE (Sutton and Barto, 1987; 

Klopf, 1988). During this period Holland (1986) developed classifier systems, 

which combined TE learning with Genetic Algorithms. The Actor-Critic 

architecture (Barto et al., 1983) and TD(λ) (Sutton, 1988) combined TE and 

TD. Watkins (1989) with Q-learning finally brought together the three 

research areas: TD, TE and DP. Q-learning is the RL algorithm of choice of 

many of the researchers in this field today. 
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4.4 Elements of Reinforcement Learning 

Reinforcement learning is learning how to behave in any given situation. 

Reinforcement learning can be described as learning by experience as the 

learner is not told which actions to take but, instead must discover which 

actions yield the most reward by trying them. This learning by experience 

may be over the entire lifetime of the learner. The learner or decision-maker, 

e.g., the player or robot, is defined as the agent. An action defines what the 

learner can do in a given situation, e.g., what moves to play on a Chess board.  

A play or an episode can be defined as an instance of selecting an action. The 

goal is to maximize the expected total reward over some time period, for 

example, to gain the maximum payoff over 100 action selections, i.e., plays. 

The agent cannot change or influence the goal. For example, in a game of 

Chess the goal is to check mate the other player and win the game. Whether 

the agent achieves this, is determined by how well or badly the other player 

plays.  Each action has an expected reward if selected, which is called the 

value of that action. There are many ways to estimate the value of an action. 

In RL the aim is to learn to estimate or to predict the value of an action 

accurately. The learning can be described as nonassociative, defined as 

learning how to act in one situation, or associative in which there is a 

requirement to associate different actions with different situations. Action-

selection is defined as the problem of selecting the action that is appropriate 

for the present situation.  

 

One of the distinguishing features of RL is the dilemma of when to exploit 

current knowledge of actions that will gain an immediate reward, and when to 
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explore new actions, that might gain a reward.  The greedy action is the action 

whose estimated value is the greatest at any one time. To select the greedy 

action is to exploit current knowledge. To select a nongreedy action is to 

explore new actions. Exploitation will maximize the immediate reward, but 

exploration may produce the greater total reward in the long term. There are 

many methods concerned with the problem of action-selection. Greedy 

selection exploits current knowledge and always selects the action with the 

highest value. The near-greedy selection performs the greedy selection in the 

majority of cases, but will select a non-greedy action at random. A variation 

on this is the softmax action-selection, where all actions are ranked according 

to their estimated value. The above describes action-value methods for action 

selection, where an estimate of the value of a particular action is maintained.  

Alternatively the comparison methods for action-selection maintain an overall 

rating of an action as compared to other actions. The choice of method 

depends on the task. Where the true values of the actions change little over 

time, there is no need to explore further than just trying each action once. 

Where the true values of the actions change over time for each situation, it 

would take more exploration to find the optimal action at any one time. The 

RL framework for a single agent is summarized in Figure 4.1. The 

environment is everything outside the agent. The limit between agent and 

environment can be fuzzy. For example, the sensory input connections on a 

robot would be considered as part of the environment. The agent is not 

defined by the limit of its physical body, but anything that it cannot change 

randomly. That is to say the agent is defined by the limit of its control, but not 

of its knowledge. 
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state and action sets are finite, then the RL task is a finite MDP. The MDP 

framework provides a model for Single Agent Reinforcement Learning 

(SARL) as shown in Figure 4.1. The policy is the mapping from a given state 

to an action. It is a stochastic rule by which an agent selects an action as a 

function of a state (action-selection). The learner or agent is searching for the 

optimal policy where the expected return is greatest. There may be more than 

one optimal policy. The basic RL algorithm is given in Figure 4.2.   

 

Create initial state set; Estimate the value of each state; 

 Repeat (for each episode) 

Initialize current state; 

Repeat (for each time step t of the episode) 

Select an action; 

Take action;  

Observe reward;  

Update the estimated value of the state; 

Retrieve next state; 

Until t is terminal 

Until end of episode 

 

Figure 4.2 The basic reinforcement learning algorithm learning by experience 
The first step is to determine which state to begin in. At every time step, the agent 
selects an action based on the current state; then takes the action and receives a 
reward. Rewards are immediate and are given directly by the environment. What is 
good in the long run, is specified by the value of a state. Roughly speaking, the value 
of a state is the total amount of reward an agent can expect starting from that state. 
The values of the states are updated from observations an agent makes over its 
lifetime, hence an agent learns from experience. Finally the next state is selected 
(adapted from the text of Sutton and Barto, 1998). 
 

The agent’s action is rewarded at each time step with a reinforcement signal 

by the reward function. The reward function is the process that generates an 

immediate reinforcement signal to each action the agent takes from each state. 

This function is out of the agent’s control, hence exists outside the agent. The 

agent is rewarded in terms of its goal. The reinforcement signal defines the 
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agent’s goal, hence the reward must indicate what is to be accomplished, not 

how to achieve it. In RL the agent’s goal is to maximize its rewards in the 

long term. This means being able to represent the value of future rewards 

now. As discussed in Section 4.2, RL uses the discount rate to do this.  A 

discount rate of zero means that the agent is myopic, i.e., the agent chooses an 

action at time t to maximize the reward at time t+1. As the discount rate 

approaches 1, the agent becomes more far-sighted, i.e., the agent chooses an 

action at time t to maximize future rewards at some later time step t+n where 

n>1. The discount rate can be viewed as the relative value of delayed versus 

immediate rewards. Self-control is one of many life situations where we apply 

the concept of discounting.  The expected return of discounted future rewards 

R is given in Eq. 4.1: 

 

                                           1
0

T
k

t k
k

R rγ + +
=

= ∑                    (4.1) 

 
where γ is the discount rate, r is the reward at each time step and T is the 

terminal time step or infinity.  The expected return of future rewards is used in 

the Value Function to enable the agent to estimate or predict what action to 

take. There are two types of Value Functions:  

1. V(S) is the state-value function for a policy, i.e., it gives the expected 

return when starting in a state whilst following a given policy. 

2. Q(s,a) is the action-value function for a policy, i.e., it is the value of 

taking an action a in state s whilst following a given policy.  
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4.5 Reinforcement Learning methods 

RL methods update the agent’s policy as a result of its experience. There are 

three main classes of methods: Dynamic programming (DP), Monte Carlo and 

Temporal Difference learning (TD). Each have its own strengths and 

weaknesses, however they all have the basic processes of: policy evaluation, 

which involves estimation of the Value Function and backing up the values of 

actual or possible states; and policy improvement, which updates the Value 

Function and improves the agent’s policy.  

 
In DP the goal is to compute the optimal policies (action-selection) given a 

perfect model of the environment as an MDP. A model can be defined as a 

representation of the environment, such that from a given state and action the 

learner or agent can predict the resultant next state and next reward. A model 

could be stochastic. A stochastic model has several possible states and 

rewards, each with some probability of occurring. The DP method uses Value 

Functions to organize the search space for good policies. The basic idea is to 

use the Bellman equations (1957a) as update rules for approximating the 

desired Value Functions. DP does this through policy evaluation and policy 

improvement. The aim of the policy evaluation, otherwise known as the 

prediction problem, is how to compute the state-value function (V(S)). In RL 

it is the iterative policy evaluation, i.e., how to produce a successive 

approximation of the state-value function, which is important. The state-value 

function is approximated by bootstrapping, i.e., estimation of the values of 

states based on estimates of successor states. In the DP method this means 

keeping backups of every state, which is computationally expensive. Usually 

the terminating condition is when the difference between the current state-
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value function and the previous state-value function, is small. In the policy 

improvement process, the aim is to determine how to obtain a better policy 

that improves on the original policy, i.e., having a greater expected return. The 

policy iteration combines evaluation and improvement by truncating the two 

separate processes to make it less computationally expensive. The DP method 

is well developed, as it has existed since the late 1950s. The main 

disadvantage of the DP method is that it requires a complete and accurate 

model of the environment, which is not always available. In addition, the DP 

method operates over the entire state set and action set, which despite the fact 

that it can be improved by generalization techniques, is still computationally 

expensive when compared to other RL methods. It is also limited by the curse 

of dimensionality (Bellman, 1957a). This is where the mainly finite number of 

states grows exponentially with the number of state variables. Littman et al. 

(1995) provide an excellent summary on DP methods for RL. 

 

The Monte Carlo method is model free, i.e., there is no need to maintain a 

complete knowledge of the environment. It learns from simulated experience 

based on episodes rather than discrete time steps of a task. As with the DP 

method, the Monte Carlo method is based on estimating the Value Function. 

In the Monte Carlo method the policy evaluation averages the returns 

observed after visits to a given state; over time the average for a state should 

converge, i.e., not change. The Monto Carlo method does not bootstrap as in 

the DP method. The main advantage of the Monte Carlo method, as compared 

to the DP method, is that the Monte Carlo method learns directly from the 

environment and hence it does not need an exact model of the environment. It 
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does this by sampling or approximating the states, as opposed to maintaining a 

complete set of states.  This makes it computationally less demanding than the 

DP method. In order to continue exploring actions, as opposed to exploiting 

known actions that yield rewards, the Monte Carlo method uses either an on-

policy algorithm, which evaluates or improves the policy whilst using it, or an 

off-policy algorithm, which separates the policy into an estimation policy for 

improvement and a behaviour policy to perform the improvement.  Monte 

Carlo methods for RL are still in their infancy. The main criticism arises from 

the fact that they operate in terms of episodes rather than time steps and hence 

they must wait till the end of an episode, which may last many time steps, 

before updating their Value Function. 

 

The TD method brings together the advantages of the Monte Carlo method 

and the DP method. It is model free as with Monte Carlo method and it 

bootstraps like DP, i.e., it bases estimates on previous learned experiences. 

The policy evaluation uses experience to update the estimates of the Value 

Function as shown in Eq. 4.2 (Sutton and Barto, 1998): 

 

( ) ( ) ( ) ( )p p c cV S V S r V S V Sα γ p⎡ ⎤= + + −⎣ ⎦   (4.2) 
 
where V(Sp)  on the right hand side is the state-value function of the state for 

the previous time step, α is the step-size parameter, which is sufficiently 

small, rc is the reward received at the current time step, γ is the discount rate, 

and V(Sc) is the state-value function of the state for the current time step. The 

value of the previous state is updated based on the current state, i.e., it 

bootstraps and it needs only to wait till the next time step to update the Value 

Function, whereas the Monte Carlo method has to wait till end of an episode.   

                                                                       82                                                                            
  
 



 

There are various TD methods. The Q-learning off-policy algorithm 

approximates the optimal action-value function (Q(s,a)) without using the 

policy. Specifically Q-learning learns about the greedy policy while following 

a policy that explores, i.e., it selects nongreedy actions. The actor-critic 

method is an on-policy TD method. The policy is the action-selection process, 

and the critic criticizes the actions of the actor. It is an on-policy method, as 

the critic must learn the reinforcement signal. It is also a reinforcement 

learning comparison method, as each action is ranked. Before the 

development of Q-learning, the actor-critic method was the TD method of 

choice for much of the research in reinforcement learning.  The TD method is 

the most widely used reinforcement learning method as it is simple, it operates 

time step by time step and it is computationally less expensive than other RL 

methods. 

 
The basis of all TD methods is how to distribute credit or blame to the actions, 

which have produced the eventual reward. This is defined as the Temporal 

Credit Assignment problem, i.e., how to distribute credit (or blame) for 

success among the many decisions that may have been involved in producing 

it (Minsky, 1961). In TD methods, the TD error δt is calculated according to 

Eq. 4.3 and then assigned to the states responsible:   

 1 1( ) (t t t tr V S V S )δ γ+ += + −                (4.3) 

 
where time t is the current time step, rt+1 is the reinforcement signal at time 

t+1, γ is the discount rate of future rewards, V(St+1) is the state-value function 

at time t+1 and V(St) the state-value function at time t.  The basic mechanism 
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for temporal credit assignment in RL is the eligibility trace λ.  The basic idea 

is that when a TD error occurs, only the eligible states are assigned credit or 

blame for it; earlier states are given less credit for the TD error. An eligibility 

trace can be accumulating in that it accumulates each time a state is visited 

and then fades away gradually when the state is not visited. Eq. 4.4 calculates 

the eligibility trace for a state et(s). If the state has been visited, then it is 

incremented by a value of 1, otherwise its eligibility decays over time: 

 

 1

1

( )
( )

( ) 1
t

t
t t

e s s s
e s

e s s s
γλ

γλ
−

−

t≠⎧
= ⎨ + =⎩

    (4.4) 

 
where γ is the discount rate, λ is the trace-decay parameter with a value 

between zero (representing pure bootstrapping) to 1 (representing pure 

nonbootstrapping), et(s) is the eligibility trace for state s at time t. Eq. 4.5 

calculates the change to the state-value function V(s) for recently visited 

states: 

 
( ) ( )t tV s e sα δ∆ =   (4.5) 

    
where α is the step-size parameter, δt is the TD error given by Eq. 4.3 and et(s) 

is the eligibility trace for the state s at time t given by Eq. 4.4. Eq. 4.2 is the 

Value Function for a special case of TD(λ), TD(0), where only one state 

preceding the current one is changed by the TD error in contrast to TD(λ), 

which selects all eligible states to be changed by the TD error. From the basic 

RL algorithm presented in Figure 4.2, we derive the complete algorithm for 

TD(λ) as given in Figure 4.3.  Any TD method can use the eligibility trace λ, 

although it has been found that the eligibility trace is not as effective with Q-

learning. This is because cutting off traces at exploratory points, as opposed to 
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the end of an episode, reduces Q-learning’s effectiveness (Rummery, 1995). 

Using eligibility traces requires more computational resources, but has proven 

to result in faster training especially in assigning delayed reward (Sutton, 

1988). 

  
For all states; For all time steps t 

Initialize V(s) and et(s) = 0 

Repeat (for each episode) 

Initialize st;   

Repeat (for each time step t of the episode) 

Select action; 

Take action;  

Observe reward;  

Next state st+1; 

δt =  rt+1+ γV(st+1) - V(st) 

et(st) = et(st) + 1 

For all s:   

     V(s) = V(s) + α δt et(s) 

     et (s) = γ λ e t(s) 

st=st+1; 

Until s is terminal 

Until end of episode 

 
 
Figure 4.3 The TD(λ) reinforcement learning algorithm 
Pseudo-code for TD(λ) RL algorithm. Increments are performed on each time step 
until the end of the task making it an online algorithm. The first step determines 
which state to begin in. At every time step, the agent selects an action based on the 
current state; then takes the action, receives an award, and determines the next state 
st+1. The TD error is calculated using the state-value function of the previous state 
V(st) and the state-value function of the current state V (st+1). The eligibility trace for 
the current state is incremented by 1 to denote that this state has been visited in this 
step. For this time step we need to assign the TD error to each previous state denoted 
by the state’s eligibility trace. This is done by iterating through all states and the TD-
error is then used to update all recently visited states denoted by their nonzero 
eligibility trace et (s). α is the step-size parameter, δt is the TD error given by Eq. 4.3 
and et(s) is the eligibility trace for the state at time t given by Eq. 4.4. The eligibility 
trace for all states decay by γ multiplied by λ. Finally the next state st+1 becomes the 
current state st, and the agent moves onto the next time step. (adapted from Sutton 
and Barto, 1998). 
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4.6 Reinforcement Learning and Function Approximation 

Techniques 

With some tasks/problems it is not feasible to have a table with an entry for 

each state (V(s)), or state-action pair (Q(s,a)). The problems are that firstly 

more memory is required to hold the large tables, secondly more processing 

time is required, and finally the data becomes noisy. It may be impossible to 

have a complete description of all the possible states, or alternatively one may 

have just partially observed information about the states, which can be 

modified through learning over time. Function approximation is a technique 

used to overcome these problems. The function approximation method used 

with RL has to be able to deal with the distinguishing features of RL. These 

are: the delayed reward, the temporal credit assignment problem, the 

exploration versus exploitation problem, the possibility of partially observable 

states, and life long learning. The aim of function approximation for RL is to 

teach a policy to output an action from a given state. Learning in RL is in real 

time, i.e., the function must be able to change during the lifetime of the task. 

In addition, the function needs to learn incrementally. For example, in RL the 

agent is learning the optimal policy while the policy is changing. Even if the 

policy stays the same, the target values of the state may change with 

bootstrapping as in the RL methods TD and DP.  

4.7 Gradient Descent and Artificial Neuron Learning 

The gradient descent method is possibly the most widely used of all function 

approximation methods and is technique well suited to RL due to the fact it 

learns incrementally after each input. The aim of the gradient descent method 
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is to minimize the error between the actual observed output and the target (or 

desired) output, over a set of inputs. The implementation of the gradient 

descent method requires the definition of an error function. The sum of 

squared errors ε (sometimes referred to as mean-squared-error) is usually 

used, given in Eq. 4.6: 

 

2( )i i

i S

t aε
∈

= −∑   (4.6) 

 
 
 
In RL the set of inputs is the set of states S, ti and ai are respectively the target 

and actual output for input state i. 

 
 
An Artificial Neural Network (ANN) is well suited to problems with noisy 

(errors), complex and incomplete data. An ANN is based on a simplified 

version of a biological neuron and its basic functionality is based on the 

workings of neurons in the human brain. The processing is highly parallel 

with distributed representation, i.e., information is distributed over many 

units. Each unit of the ANN receives inputs, which are adjusted by the 

numerical weights connecting them to the other units. The weights represent 

the knowledge of the ANN. These are usually generated randomly and are 

then adjusted during learning. An important feature of the ANN is that it can 

apply what it has learnt to previously unseen examples. This ability is known 

as generalisation and occurs as the ANN detects features of the input that it 

has learnt to be significant and therefore represented in the weights. The 

ability of ANNs to learn through experience means they can generalise to 

situations or experiences, which are similar, but not necessarily identical.  
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An ANN’s Topology. Depending on the nature of the problem, the ANN is 

organized in different arrangements (topologies). Figure 4.4 shows the 

topology to be used in this thesis. Figure 4.4 shows a three layered feed-

forward structure. A typical multi-layer feed forward ANN is composed of 

interconnected nonlinear units called nodes, i.e., the unit’s output is a 

nonlinear function of its input. Typically multi-layer feed forward ANNs are 

interconnected in layers to form a direct acyclic graph with a layer of input 

nodes and one or more layers of hidden nodes, and a layer of output nodes.  

 

 

 

 

 

                                                      

 
Figure 4.4 Topology of ANNs used in this thesis 
This ANN is a three layered feed-forward structure with one input layer of two 
nodes, one hidden layer of 4 nodes and an output layer of two nodes. Trainable 
connections are represented as solid lines. 
 
 
The hidden nodes function as feature detectors, recording the basic inputs so 

that the ANN can learn the required features appropriate to the task. This 

recording or internal representation is critical to the functioning of the ANN. 

The function of the hidden nodes is to form the decision boundaries. With 

enough hidden nodes it should be possible to form internal representations of 

any input pattern so that the output nodes are able to produce an appropriate 

response from a specific input. However, there are no clear rules governing 

the network topology.  The number of inputs and outputs features of the task 
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determines the number of input nodes and output nodes respectively. There is 

no simple solution, as to the number of hidden nodes and how they should be 

arranged in layers. It is up to the user to experiment in order to find the 

optimal configuration. The Kolmogorov theorem  (Kolmogorov, 1957) as 

discussed in Kurkova (1992) proves that two hidden layers are theoretically 

capable of separating any classes, but the topology of hidden nodes within 

those layers must be decided through experimentation and analysis, although 

evolutionary techniques have proved useful in optimizing the topology of 

ANN (refer to Chapter 5 for further details).  

 

 
Activation Functions. An artificial neuron implements a nonlinear mapping 

from a set of input values to its output. Each input to the neuron is associated 

a weight to strengthen or deplete that input. The artificial neuron computes a 

linear function of its inputs and then uses an activation function to compute its 

output. The output is further influenced by a threshold value, also referred to 

as the bias (θ). Every node in each layer calculates its activation as the sum of 

each input multiplied by the weights from the nodes to which it is connected. 

The net input for the node j is given in Eq. 4.7 (McCulloch and Pitts, 1943): 

   
0

n

j
i

net w o
=

= i i∑    (4.7) 

where wi is the weight between nodes i and j, and oi is the output from node i 

to node j (or the input to node j). The activation function determines the 

output for the node from the net input and the bias. There are different types 

of activation functions that can be used. The activation function used in this 

thesis is the Sigmoid function. The total weighted inputs (netj) are fed through 
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the Sigmoid function in Eq. 4.8 to give the Sigmoid output for node j  

(Rumelhart et al., 1986):  

 

  (
1

1 jj neto
e )λ θ− −=

+
   (4.8) 

 
where λ is the slope parameter that controls the steepness of the Sigmoid 

function and is normally given the value of 1. Here the bias θ can be 

considered as having an input of –1 with a weight of θ.  Figure 4.5 shows the 

Sigmoid function for a bias (θ) of zero.  
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Figure 4.5 Sigmoid Function for a bias of zero 
The Sigmoid output,  given by Eq. 4.8, for a node j with a bias of zero  
 

A schematic diagram of an artificial neuron equivalent of a biological neuron 

is shown in Figure 4.6. The artificial neuron computes a weighted sum of its 

inputs from other neurons and then adds its bias. Whether the neuron fires 

depends upon whether the sum is above or below the bias as discussed above. 
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The gradient-descent algorithm in Figure 4.7 uses the stochastic gradient-

descent rule. In the stochastic gradient-descent algorithm the weights are 

updated incrementally after each input as opposed to the end of the complete 

set of inputs.   

 
 

Initialize each weight wi to some small random value 

Repeat  

Initialize ∆wi to zero 

For each input do 

  Present input xi

Compute actual output oa 

wi  = wi + η(ot – oa)xi

 
until termination condition is met 

 
Figure 4.7 The gradient descent algorithm 
The stochastic or incremental gradient descent algorithm updates weights after every 
input as opposed to the end of the input set; η is the learning rate,  ot  is the target 
output,  oa  is the actual output and xi  is the ith input. The weights are updated using 
the Widrow-Hoff rule (Widrow and Hoff, 1960).  
 
The aim of the gradient descent method is to adjust the weights by a small 

amount in the direction that would most reduce the error  (ε in Eq. 4.6), i.e. 

the global minimum, as opposed to  a local minimum. This is illustrated in 

Figure 4.8. 

 

Local 
Minimum Global Minimum 

ε 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.8 Gradient Descent method illustrated 
The aim of the gradient descent method is to find the weight v
error ε (Eq. 4.6), i.e., to find the global minimum, as oppose
shown above. 
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The values for the weights wi and the bias (θ )3 are derived through learning. 

The backpropagation is a non-linear gradient-descent method, which trains the 

multi-layer perceptron artificial neural network. The backpropagation 

learning algorithm (Werbos, 1994; Rumelhart et al., 1986) is the most 

common ANN learning technique. Backpropagation, as used in training a 

multi-layer neural network, consists of two passes through the whole network. 

In the forward pass, a set of input data is presented to the network and the 

output of the neurons calculated, from input layer to output layer, without 

changing the weights. The resulting output is compared to an expected output 

and an error value calculated. This is used in the second pass, the backward 

pass, which sends information about the error back through the same neuron 

connections that sent the activation forward. Figure 4.9 shows the stochastic 

gradient-descent version of the backpropagation algorithm for a feed forward 

network, as described above with one layer of hidden nodes. Following steps 

1 to 5 in Figure 4.9 is called an epoch.  A number of epochs are required for 

training the ANN. The ANN is said to be trained when some performance 

criteria is met. The backpropagation learning algorithm (Rumelhart et al., 

1986), as used in supervised learning, requires a “teaching output” that has to 

be supplied by an external “teacher”. An error is calculated based on the 

difference between the actual output and the teaching output referred to as the 

target output. This is the propagated backward through the ANN as per Figure 

4.9.  

 
 
                                                           
3 The bias could be implemented as an extra input having  always an input of –1 and a weight 

w that is modified like all the others  
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Create a FeedForward network with ni inputs, nh hidden units, and 
no output units;  

Initialize all networks weights to some small random value, where 
the weight wij  denotes the weight from unit i to unit j; 

Repeat  

For each input x do 

1. Present input x to the network  

2. Compute actual output ou of every unit u in the 
network  

3. For each output unit k calculate its error term δk  using 
the target output tk 

δk = ok(1- ok)(tk- ok) 

4. For each hidden unit h calculate its error term δh as 
there is no target output use the error term δo of each 
output unit h feeds into 

δh = oh(1- oh)Σwk δk

5. Update each network weight  wji  = wji + ηδjxi  

until termination condition is met 

 

Figure 4.9 Backpropagation with the gradient descent algorithm 
The stochastic gradient-descent version of the backpropagation algorithm for a 
feedforward network. An integer is assigned to each unit of the network. xi  denotes 
the input from node i to node j,  wji denotes the weight from unit i to unit j.  δj denotes 
the error term associated with the input unit j, δh denotes the error term associated 
with unit h, δo denotes the error term associated with the output unit o. Steps 1 and 2 
propagate the input forward, steps 3, 4, and 5 propagate the error backwards through 
the network  (adapted from Rumelhart, 1989). 
 
 
The fact that RL is goal directed with no explicit target output would seem to 

limit the applicability of the backpropagation algorithm as a training method 

for RL. However in Chapter 6, which is concerned with implementing RL in 

an ANN, we see how the error signal is constructed using the reinforcement 

signal.   

4.8 Reinforcement Learning and Neuroscience 

Reinforcement Learning is not a term used in psychology. The terms of  

“reinforcement” and “reinforcement learning” were first introduced in the 

engineering literature in the 1960s (Waltz and Fu, 1965; Mendel, 1966). Klopf 
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(1972, 1975, 1988) would seem to be the first to link the ideas in RL such as 

trial and error learning with animal learning in psychology.  There have been 

many recent neuroscience models that use the actor-critic TD method in RL as 

a psychological model for classical conditioning learning in animals (Barto, 

1995; Suri and Schultz, 1999; Holroyd and Cole, 2002). Some researchers 

argue that the actor-critic model is too simplistic (Brown et al., 1999). Barto 

(1995) himself warns of relating abstract systems to the animal nervous 

system. The criticism aside, much of the concepts in the actor-critic model can 

be related to conditioning in animal learning. For example, the state-value 

function (V(s)) provides a mechanism for predicting future rewards, and the 

TD error refines this prediction. In order to be able to calculate V(s) and the 

TD error, the model uses approximation; these are then refined and updated 

with each time step of the trial. Research to date suggests that this is exactly 

what happens in classical conditioning learning in animals. For example, 

Cohen et al. (2002) have found that dopamine activity serves as reinforcement 

signal that indicates a mismatch between prediction and the delivery. This 

then updates the associative (Hebbian) synaptic connections to reduce 

subsequent prediction errors.  

 

Before describing RL in the context of animal learning, it is relevant at this 

point that we review some definitions from animal learning in psychology 

(based on Morgan et al., 1979). There are two types of conditioning learning: 

classical (pavlovian) conditioning where the temporal reinforcers are 

delivered independently of the animal’s actions and instrumental conditioning 

where the actions of the animal determines the reward or punishment. The 
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essential operation in classical conditioning is the pairing of the two stimuli. 

One stimulus is called the conditioned stimulus (CS). This is also referred to 

as the neutral stimulus because it does not specifically produce a response in 

the animal. The second stimulus is called the unconditioned stimulus (US). 

This stimulus produces a response known as the unconditioned response 

(UR). The time between the CS and the US is known as the interstimulus 

interval. As a result of being paired with the US a number of times and with 

the right interstimulus interval, the CS produces a response similar to the UR, 

which is called the conditioned response (CR). The experiments of Ivan 

Pavlov formed the basis of classical conditioning learning. Pavlov (1927) 

designed an experiment for measuring how much a dog’s mouth waters 

(salivates) in response to food. The dog was placed in a soundproof room. 

Pavlov sounded a bell (the CS), and then shortly afterwards presented the food 

(the US), and the amount of saliva secreted (the UR) by the dog was 

measured. After presenting the food and bell a few more times he then 

presented just the bell. The saliva secreted (CR) increased as more 

conditioning took place (Morgan et al., 1979). TD learning explains the 

association of the CS with the reward (US) by the expected return of future 

rewards (Eq. 4.1). The effect of the interstimulus interval (the delay) on the 

association of the CS to the US is modelled by the discount rate in TD 

learning. The TD error in RL is associated with the activity of dopamine cells 

in the midbrain  (Doya, 2000; Cohen et al, 2002; Dayan and Abbot, 2002; 

Dayan and Balleine, 2002).  This is verified by evidence from studies on drug 

addiction and self-stimulation experiments on rats. A controversial area of 

research is the exact region of the brain affected by dopamine, and the role 
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dopamine plays in animal conditioning learning. Dayan and Balleine (2002) 

suggest that too much emphasis has been placed on dopamine and the TD 

error and research needs to focus attention elsewhere, if we are to understand 

what biological mechanisms are involved in classical conditioning learning. In 

addition, the role dopamine plays in motivation and habit behaviour is 

unclear. It has been suggested that dopamine is concerned with motivation 

behaviour and not with enjoyment (Brown et al., 1999). Motivation and habit 

both play a part in sequential decision-making, but to what extent is still 

disputable (Cohen et al., 2002; Dayan and Balleine, 2002; Brown et al., 1999).  

Figure 4.10, adapted from Doya (2000), summarizes what is currently known 

in relating RL to the central nervous system. Figure 4.10 highlights the fact 

that the Basal Ganglia, previously associated with motor control, is now 

believed to play a part in reinforcement learning, as suggested in studies by 

Holroyd and Coles (2002), Cohen et al. (2002) and Beiser and Houk (1998).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.10 Neural model for reinforcement learning 
Illustrating the role of the Basal Ganglia, (previously associated with motor control), 
in reinforcement learning. There is no explicit target output, but a reward signal that 
notifies how good or bad the output, (or a sequence of outputs) is (adapted from 
Doya, 2000). 
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Figure 4.10 also serves to suggest that further progress still needs to be made 

if a more comprehensive and neurologically plausible model is to be 

formulated. 

4.8.1 Summary 

Although RL is an engineering term, it has more recently been linked with 

classical conditioning learning in psychology. Specifically the actor-critic 

model, a TD method, has been used as an abstract model of the concepts in 

classical conditioning learning, which stems from the research by Pavlov 

(1927). In summary, a conditioned stimuli (the bell in Pavlov’s experiment) 

produces a conditioned response similar to the unconditioned stimuli (food).  

Relating this abstract model to the neurological mechanisms that drive these 

responses is an active area of research in neuroscience with general consensus, 

that the TD error is associated with the dopamine activity in the midbrain, but 

the exact level and the role dopamine plays in animal conditioning learning is 

still questionable. What we do know is that dopamine activity plays a role in 

motivation and habit, both associated with self-control behaviour. RL and 

self-control have the same characteristics of goal directed behaviour and 

discounting. For example, in self-control greater discounting of future rewards 

implies that one becomes more myopic, which is reflected in a discount rate 

approaching zero in RL. 

4.9 Concluding Remarks 

The RL method to be used in this thesis is TD learning as it combines the 

benefits of both DP and TE learning. TD does not require a complete model of 
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the environment. TD deals with discounting of future rewards, by using the 

discount rate, and can assign blame to pass actions, i.e., the temporal credit 

assignment problem using the eligibility trace TD(λ). In this thesis, TD is 

implemented as TD(0), as only one state preceding the current one is changed 

by the TD error. The general-sum games used in this thesis are particularly 

simple and each state and action pair can be represented in a lookup table. 

ANNs are used in this thesis to learn the action-selection function. ANNs are 

appropriate as they learn throughout the lifetime of the task and learn 

incrementally, i.e., they reward or penalize at each time step (round). ANNs 

can generalize to new situations similar to states presented previously. ANNs 

in this thesis are implemented as a multi-layer perceptron-like, i.e., non-linear 

nodes, feed forward networks. The ANNs are trained with backpropagation, 

which traditionally is used in supervised learning with a target or desired 

output. In RL, the reinforcement signal is used to construct this desired output. 

On a final note, RL as presented in this chapter, falls neatly into the 

framework of single agent reinforcement learning. In Chapter 6 we will 

extend RL to multi-agent learning, which is the framework for our 2-ANNs 

model presented in Figure 3.3 in Chapter 3. The next chapter presents Genetic 

Algorithms, which is the final technique to be used in this thesis. 
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Chapter 5  

5 Review of the Concepts for Evolutionary Adaptation of the 

Neural Model 

5.1 Chapter Outline 

This chapter brings together the three main techniques: Reinforcement 

Learning, Artificial Neural Networks and Genetic Algorithms. It starts with a 

review of evolutionary computation techniques. It then goes on to explain 

why the Genetic Algorithm is the evolutionary computation technique of 

choice for this thesis. It concludes by combining all three techniques and 

describes how they will be used in this thesis. 

5.2 An Overview of Evolutionary Computation  

Evolutionary Computation, sometimes referred to as Evolutionary 

Algorithms, consists of three main techniques: Genetic Algorithms, 

Evolutionary Programming and Evolutionary Strategies. Each method 

emphasizes a different facet of natural evolution. Genetic Algorithms 

emphasize the genetic changes to the individual. In Genetic Algorithms the 

individual is typically represented as a bit string. Evolutionary Programming 

focuses on the processes that yield behavioural changes within a group. 

Evolutionary Strategies focus on the behavioral changes of the individual.  All 

of the techniques begin with a population of individuals. In natural evolution, 

the DNA provides a set of instructions on how to make an individual. The 

DNA can be thought of as a string of genes. This genetic information is called 

the genotype of the individual in contrast to the phenotype, which is the 
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physical manifestation (physical embodiment) of the individual. The genotype 

sets the individual apart from other individuals. The process of natural 

evolution frequently involves sexual reproduction, which is basically a mixing 

and shuffling of genes. Before this, some sort of selection process must have 

occurred. In evolutionary computation selection is much simpler than sexual 

selection. Usually an evolutionary computational method weeds out the worse 

performing algorithms by selecting the fittest for further breeding, where 

fitness is defined by how successfully the individual performs a particular 

task, e.g., finding the optimal value of a function. The fittest individuals are 

selected to become parents of offspring that form a new generation through 

recombination (the exchange of genes). Recombination is the process that 

takes the genetic information from the parents for the offspring.  

 

All Evolutionary Computation methods have two critical design decisions: (i) 

how to represent the individuals in the population, and (ii) what evolutionary 

process to use?   

 
The Genetic Algorithm (GA) is an evolutionary algorithm technique 

developed by Holland (1975), which is modelled on genetic evolution. It 

works on a population of individuals represented as strings of genes. A gene 

can be represented as a bit string. Selection of those individuals to go on to the 

next generation is by a fitness function. Conceptually, how well an individual 

performs in a task can be thought of as the fitness function. Selection of 

individuals for reproduction is based on the individual’s fitness. Generally the 

individuals that perform better produce more offspring. The offspring for the 

next generation are produced when two individuals of the population come 
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together. Reproduction involves taking bits from each parent to form a new 

individual (generally referred to as crossover).  Mutation is then applied to the 

resulting population. This is infrequent; one in one thousand individuals will 

be mutated, i.e., one of his genes has been randomly altered. The combined 

effects of crossover and mutation mean that GAs can produce offspring that 

are very different from their parents. Because each offspring is different this 

makes for a diverse population and hence a diverse generation. This diversity 

in the populations and generations reduces the likelihood of the usual sort of 

problems associated with premature convergence such as the local minima 

problem (LMP), where a minimum error is not necessarily the global 

minimum.  

 

Evolutionary Programming (EP) was developed by Fogel et al. (1966). The 

aim is to solve a problem through simulated phenotypic evolution. The 

representation of the individual is problem domain dependent. For example, in 

the travelling salesman problem, the individuals of the population are ordered 

lists and for optimisation problems the individuals of the population are real 

values. Thus, in EP it is easy to see how the representation of the individual 

links to the behaviour of the individual, as opposed to GAs. To create the next 

generation in EP, both offspring and parents solve the problem. The resulting 

solution is evaluated against a set of possible solutions. They get a score, 

which is the individual’s fitness. The fittest individuals form the next 

generation. This can be described as an elitist cull. The fitness is sometimes 

calculated as the behavioural error. The behavioural error is the difference 

between the optimal behaviour (specified by the set of possible solutions) and 
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the actual observed behaviour. A specified number of those individuals with 

the lowest behavioural error go onto the next generation. EP has a heavy 

reliance on mutation, as there is no recombination operator, for which EP has 

been criticized (Goldberg, 1989). The basic algorithm for EP is given in 

Figure 5.1:  

 
 

Initialise a population of N individuals 

Repeat  

Select all N individuals to be parents 

Mutate and Create the offspring 

 Calculate the fitness of all 2N individuals 

 Select the N fittest of all 2N individuals  

 To these apply mutation 

Until the behavioural error is at some acceptable range 
 

 
Figure 5.1 The basic algorithm for evolutionary programming 
All of the individuals in the initial population are selected to be parents. From the 
resulting population only the fittest are selected for mutation. The resulting 
population is then evaluated. The fitness function measures the behavioural error, 
defined as the difference between the optimal behaviour and the actual observed 
behaviour.  
 

Evolutionary Strategies (ES) were developed by Rechenberg (1973) and 

expanded to include more than one individual in the population by Schwefel 

(1981). Individuals are generally represented as strings of real numbers. A 

new population is created by selecting the best solutions, be it parents and 

their offspring, or just the offspring, and applying recombination. In ES the 

offspring can be produced from more than two parents. ES place a heavier 

reliance on mutation than GAs. Mutation is applied to the resulting new 

population. The change to the genotype, as a result of mutation, is very small, 

as it alters the gene, which is represented as a real number, only a little. GAs 
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in contrast, invert the whole value of the gene. This means that ES results in a 

series of little hill climbs towards the optimal solution. The change to the 

individual, as a result of mutation, is only accepted in future generation, if the 

fitness of the individual is improved, as compared to the fitness of the 

individual without mutation.    

5.3 Which Evolutionary Process is best for the work of this thesis? 

In this thesis, a top-down approach has been used in the design of the model 

of Figure 3.3 of self-control behaviour. The suggestion is that the functions 

associated with the higher brain system, (i.e., rational thought) and the 

functions associated with the lower brain system, (i.e., instinctive behaviour)  

(Jacobs, 1999), are locked in some form of internal conflict for control of the 

organism and therefore its behaviour. The overall aim is to build a 

computational model that can help to guide research on the biophysical 

processes that underlie the mechanisms suggested by the functional analysis 

of this more abstract model. In order to do this, we need a model of the 

evolution of self-control through precommitment behaviour that makes some 

attempt to be both biologically and psychologically relevant. Therefore, it is 

paramount that the techniques used in the model emulate the biophysical 

mechanisms underlying this complex behaviour. Of the three main techniques 

of Evolutionary Algorithms  (EP, ES, and GAs), only GAs are concerned with 

the evolution of the individual using a near true simulation of natural 

evolution. EP and ES are both concerned with the evolution of behaviour and 

the fitness functions for EP and ES reflects this emphasis on behaviour. It is 

the view of this thesis that EP is less biologically plausible than GAs for the 

following reasons: (i) in EP the representation is dependent upon the problem, 
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for example, for the travelling salesman problem the genotype is an ordered 

list. Thus representation of the genotype in EP and ES is generally non-binary 

and hence requires special genetic operators, as the binary operators for 

mutation and crossover cannot be easily deployed; (ii) EP does not use a 

recombination operator, for example, crossover. It is accepted that crossover 

is an operator used in genetic evolution. Although the importance of crossover 

is under discussion (Eshelman and Schaffer, 1993), in this thesis we are 

concerned with simulating genetic evolution and should utilize all genetic 

operators used in genetic evolution. It is the view of this thesis that ES is less 

biologically plausible than GAs for the following reasons: (i) when ES was 

initially implemented, it had only one individual in the population 

(Rechenberg, 1973), which deviates from natural evolution and (ii) in ES the 

offspring can be produced from more than two parents, which is biologically 

implausible. In addition, the exploration versus exploitation problem, which is 

a distinguishing feature of reinforcement learning as discussed in Chapter 4, is 

addressed by using crossover. The reason for this is the following: as a result 

of crossover the offspring may be significantly different to their parents, 

which transpires in a search algorithm, which explore new domains. For all of 

the above reasons it is believed that GA is the best EA for the work of this 

thesis. 

5.4 Implementation of Genetic Algorithms 

The inspiration for GAs comes from a desire to emulate the mystery of natural 

evolution. It is thought that by harnessing the mechanisms of natural 

evolution, solutions may be developed to complex real-world problems even 

though a full understanding of the how and why may elude the researcher.  
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5.4.1 Genetic Operators 

5.4.1.1 Crossover 

The crossover operator in a GA mimics biological reproduction (Holland, 

1992). Crossover produces two new offspring from two strings. The offspring 

do not replace their parents, instead they replace individuals with low fitness 

levels. Examples of crossover operators are: single-point crossover, two-point 

crossover and uniform crossover. In the single-point crossover, the parent 

strings line up and a point along the strings is selected at random (the 

crossover point). Two offspring are created; the first containing the first bits 

up to and including the crossover point of one parent followed by the 

remaining bits of the second parent and the second containing the bits 

following the crossover point from the first parent and the first bits up to and 

including the crossover point of the second parent. This is implemented by a 

crossover mask consisting of all ones up to and including the crossover point, 

followed by all zeros, as in Figure 5.2.  Single-point crossover was the method 

used in the original application of Genetic Algorithms by Holland (1992). In 

two-point crossover, the crossover mask contains a string of zeros followed by 

the necessary number of ones, padded out by the necessary number of zeros to 

complete the string. For example, in Figure 5.2 the middle four bits are 

substitutes into the second parent. The uniform crossover takes bits uniformly 

from each parent. For example, in Figure 5.2 the offspring are created by 

taking the first two bits from one parent the next two bits from the other and 

so on. Crossover can be viewed as exchanging information between 

individuals of the population. 
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 Initial Strings Crossover Mask Offspring 
    
Single-point 
crossover 

111011001  111011100 

  111110000  
 010011100  010011001 
    
    
Two-point crossover 111011001  110011100 
  001111000  
 010011100  011011001 
    
    
Uniform crossover 111011001  110011101 
  001100110  
 010011100  011011000 
    

Figure 5.2 Types of crossover operator for genetic algorithms 
Typical types of crossover operator for genetic algorithms. The crossover operator 
forms two new offspring from two parent strings by copying selected bits from each 
parent. It uses a crossover mask to determine which bit comes from which parent.  
The same crossover mask is used for both offspring, however the roles are reversed 
ensuring that the bits used in the first offspring are not used in the second.  
 

5.4.1.2 Mutation 

The mutate genetic operator produces small random changes to the genotype 

of the offspring from a single parent. In natural evolution this happens 

infrequently. There are two forms of mutation in natural evolution: point 

mutation and inversion; point mutation is an error corresponding to a single 

misprint.  Inversion is where a piece of chromosome detaches itself and then 

reattaches itself in the inverted position. The most common mutation used in a 

GAs, is point mutation where small random changes are applied to the bit 

string by choosing a single bit at random then swapping its value. By doing 

this, diversity and innovation is added into the population, which introduces 

randomness into the normal GA.  
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The importance of recombination, of which crossover is a form of, has come 

under scrutiny, with arguments both supporting and dismissing the role of 

crossover in the simulation of evolution. Evolutionary Algorithms using no 

recombination at all, such as Evolutionary Programming, have been criticized 

as being insufficiently powerful (Goldberg, 1989; Holland, 1992). 

Alternatively others have concluded that the role of mutation in genetic 

algorithms has been underestimated  (Fogarty, 1989; Back, 1993) and that the 

crossover role has been totally overestimated (Eshelman and Schaffer, 1993). 

 

Critical Observation. The aim of simulating an evolutionary process in this 

thesis is not to determine a clear winner, but to explore what behaviours occur 

when. In GAs information on intermediate generations is easily retained for 

this purpose. This is yet another reason why GAs are appropriate for the work 

in this thesis. 

5.4.1.3 Selection 

In a GA, various fitness functions can be employed to rank the individuals in a 

population and select them for inclusion in the next generation. In fitness 

proportionate selection otherwise known as the roulette wheel selection, the 

chance that an individual will be selected is proportional to its fitness. In 

tournament selection two individuals are chosen randomly from a population 

and then compete for selection for the next generation. In rank selection the 

individuals are sorted by their fitness and then a specified number of the fittest 

individuals are selected. 
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5.4.2 Representation  

Representation in GAs is the problem of deciding how the genetic material of 

the individual is constructed. In GAs this is referred to as the genotype. The 

genotype of an individual has two purposes. It is not only the genetic blueprint 

of what that individual will become, but it also provides the genetic material 

for the next generation. In the construction of a genetic code, the critical 

design question is how to represent the problem? What characteristics of the 

problem need to be included in the chromosome, i.e., the collection of genes? 

How can the differences between the individuals in a population can be 

represented? What are the building blocks that make-up the genotype? In most 

GAs the genotypes are binary strings so that the genetic operators of crossover 

and mutation can easily be applied.  Any base can be used, however the lower 

the base the longer the string will be. Choosing how the individuals will be 

represented will depend on the nature of the problem.  

5.4.3 The Evolutionary Process 

The GA process is summarized in Figure 5.3, as taken from Holland (1992): 

1. Evaluate each individual in the population to determine fitness 
defined as the performance of the individual 

2. Rank individuals from high to low in order of fitness  

3. Apply selection.  

4. Higher ranking ones mate to produce offspring by crossover which 
replace low ranking individuals in the population 

5. Mutate a small fraction of the population, i.e., flip a zero to a one 
or vice versa inversion mutation 

6. Repeat steps 1 to 5 until a desired level of fitness is achieved or the 
maximum number of generations is reached  

 
Figure 5.3 The basic genetic algorithm 
A typical Genetic Algorithm as described by Holland (1992).  
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5.4.3.1 Population size 

In a GA it is typical to keep the population size fixed. In nature the population 

size may number millions, for example, the population size of insects is in the 

order of trillions. Population size is what is sustainable by the environment. In 

a GA this is also the case. The larger the population the more computational 

resources required, e.g., memory, processor. An increase in computer power, 

through faster processors and parallel processing, means that the software 

populations of a GA can in fact support the populations of nature. The 

computational requirements for a genetic algorithm search are dependent upon 

the number of generations and the population size. This is because the fitness 

of each individual in the population has to be calculated for each generation. 

Equation 5.1 gives the computational requirements for a GA, in terms of the 

computational power C (based upon Holland (1992)): 

 
 

*C G P=    (5.1) 

 
where G is the maximum number of generations and P is the population size.  

Eq. 5.1 demonstrates that for the same computational resources, a larger 

population requires fewer generations. Large populations support diversity. In 

nature, the bigger the gene pool, then the more diverse the population. In a 

diverse population, it is harder for elitism to occur, i.e., the population 

converges to an individual that is not necessarily the optimal solution (Riolo, 

1992).  This is called the premature convergence. In a smaller population the 

fittest individuals dominate and the premature convergence problem can 

occur. In smaller populations the mutation and crossover have a greater 

impact, as a small change to an individual can have a drastic impact on the 
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population. Research results suggest that the larger the population size, the 

more diverse the generation will be (Holland, 1992). In a small population, it 

might be possible to avoid premature convergence by mutation, which 

becomes more important in terms of adding diversity and innovation, whereas 

in larger populations both crossover and mutation are important.  

5.4.3.2 When to stop – Convergence 

 
After the genetic algorithm has run for several generations, it maybe that the 

individuals in the population may consist of similar if not identical genotypes. 

This is called convergence. It occurs when the selection operator of the GA 

has targeted a particular search area to the exclusion of other regions. The GA 

may converge to a genotype, which may not be the best solution. By 

maintaining diversity in the population this problem may be avoided.  

5.5 Evolutionary Algorithms and Artificial Neural Networks 

Evolutionary algorithms such as GAs combined with Artificial Neural 

Networks (ANNs) embrace the Baldwin effect (Baldwin, 1896): 

1. If a species is evolving in a changing environment, there will be 

evolutionary pressure to favour the individuals with the capability to 

learn during their lifetime 

2. Individuals who have the capacity to learn many traits rely less on 

their hard-wiring and use learning to overcome missing or partial traits 

Before discussing ANNs in the context of GAs it is pertinent that the key 

characteristics of an ANN are highlighted (a detailed discussion of ANN was 

given in Section 4.7. The study of an ANN is motivated by the desire to 

simulate the biological learning process. The speed and ability of a biological 
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neural system to capture and process information has led researchers to 

assume that highly parallel processes operate on knowledge distributed over 

many neurons. ANNs have been developed to capture these characteristics. 

There have been many attempts to model the biological systems, (e.g., Gabriel 

and Moore, 1990; Churchland and Sejnowski, 1992; Zornetzer et al. 1994). 

Research on ANNs has not solely focused on the need to model biological 

systems; a second area of research has focused on using ANNs to obtain 

highly performing machine learning algorithms (Tesauro, 1989; Pomerleau, 

1993)4.  

 

Evolution can be introduced into ANNs at three levels: the connection 

weights, the architecture and the learning rule. Evolution of the connection 

weights can overcome the local minima problem of backpropagation (refer to 

Chapter 4 Section 4.6 for an explanation of the local minimum problem) by 

using an EA to find a set of connection weights that minimize a predefined 

error function, which for example could be defined as the total mean square of 

the difference between the actual and target outputs. The fitness of the 

individual is determined by the error, i.e., the higher the error the lower the 

fitness. There has been much research in the evolution of the connection 

weights of an ANN (Yao, 1999). Evolution of an ANN’s architecture provides 

an alternative to the traditional trial and error process and is also an area of 

considerable research (Yao, 1999).  The evolution of an ANN’s learning rule 

is still in its infancy, but is important not only for optimization purposes, but 

also in exploring the complex relationship between evolution and learning. 

                                                           
4 In this thesis we touch on both areas of research- ANN as a model of biological system and 

using ANNs to obtain highly performing machine learning algorithms. 
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5.5.1 Evolution of the Weights in an ANN 

There are two distinct processes in evolving the connection weights. The first 

is concerned with the way of representing the ANN in the genotype. If the 

genotype is to be represented as a binary string and all weights are to be 

included, then a decision has to be made as to how the weights are to be 

ordered within the genotype. Including all weights, which are real values 

represented as a binary string, will increase the length of the genotype. There 

has to be a trade-off between precision and length of the chromosome. 

Representing the ANN as a bit string lends itself to the permutation problem 

where different chromosomes actually represent the same ANN, which 

renders the genetic operator of crossover ineffective. Alternatively the weights 

can be represented as real numbers (Liu et al., 2004). This renders the genetic 

operators of binary crossover and mutation ineffective and special search 

operators have to be created (Montana and Davis, 1989), (in this case EP and 

ES may be used, as less emphasis is placed on crossover, and mutation 

becomes the primary operator). The evolutionary system, in this case, is 

invariably a hybrid, as it would be most effective (Moriarty and Mikkulainen, 

1996; Lin et al., 1998). For example, a GA is used first for the global search, 

and then an ANN trained with backpropagation for the local search 

optimization. A typical evolutionary process for weight optimization is given 

in Figure 5.4. 
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Repeat  

1. Decode each individual (genotype) in the current generation into a 
set of connection weights and construct corresponding ANN with 
the weights 

2. Evaluate each ANN by training the network and computing its 
total mean square error between actual and target. The fitness of 
the individual is determined by the error. The higher the error, the 
lower the fitness. The optimal mapping from error to the fitness is 
problem dependent. A regularization term can be included in the 
fitness function to penalize large weights. 

3. Select parents for reproduction based on their fitness 

4. Apply search operators, such as crossover and/or mutation, to 
parents to generate offspring, which form the next generation 

    Until fitness > predefined value,  where (error < predefined value) 

 
Figure 5.4 An evolutionary algorithm for the optimization of an Artificial 
Neural Networks through the evolution of its connection weights (adapted from 
Yao, 1999)   
 

Critical observation. In this thesis the connection weights will not be evolved. 

Evolution will focus on an indirect representation, i.e., the number of hidden 

nodes and learning rules, which is biologically more plausible as it is 

impossible to code up the entire nervous system’s chromosomes (see Section 

5.2.2 for further explanation).  

5.5.2 Evolution of the ANN’s Architecture  

The architecture of an ANN is defined by the connectivity and transfer 

function of each node. According to Yao (1999), EAs are useful in optimizing 

ANN design. EAs provide an alternative to the traditional trial-and-error 

design of cutting through the large search space of possible nodes and 

connections. In addition, similar architectures yield different performances. 

Again there are two processes: representation and evolution. Representation 

of the architecture of an ANN in a genotype can either be direct or indirect. 

Direct representation separates the architecture from the weights. For 

example, an ANN with N nodes can be represented by an N-by-N matrix 
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where a 1 represents a connection and a zero no connection. The problems 

associated with this form of representation are: (i) scalability, i.e., a large 

ANN means a large matrix, and (ii) the permutation problem, where different 

chromosomes yielding the same ANN still exist. The weights and architecture 

are then evolved together (Pujol and Poli, 1998). Indirect representation is 

parameter-driven, where the number of hidden layers and the number of 

connections between the layers are included in the genotype (Harp et al., 

1989).   

5.5.3 Evolution of the ANN’s Learning rules. 

Evolution of the ANN learning rules can be viewed as learning to learn. 

Knowledge that is acquired during an individual’s lifetime is not passed onto 

the offspring (Dawkins, 1989); the learning ability however, of an individual 

might be passed on. There are many variations on how this can be done. The 

Pitt approach encodes the whole learning rule as a population (Kitano, 1990), 

whereas the Michigan approach encodes each learning rule as a genotype 

(Yao and Shi, 1995). In this case the representation needs a set of terms and 

coefficients in the genotype.  

 

What is new and overview? Research in the evolution of learning rules for an 

ANN is in its infancy. In Chapter 7 in this thesis, the parameters that define 

the learning rule, i.e., the learning rate and discount rate, will be encoded into 

the genotype as in the Michigan approach. The results that will be presented 

in Chapter 7, of combining the techniques of GAs, ANNs and RL are a 

contribution as they further the understanding of how GAs and ANNs can be 
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combined not only for optimization purposes, but also to explore the complex 

relationship between evolution and learning. 

5.5.4  Summary of Evolutionary Artificial Neural Networks 

Research results support that an ANN’s learning ability can be improved 

through evolution (Yao, 1999).  For effectiveness both the architecture and the 

weights need to evolve. Separate evolution of architecture and weights can 

make fitness evaluation inaccurate and misleading. Evolving just the 

architecture can be misleading as the same architecture with different sets of 

initial weights can give different results. Hence the evolution of architectures 

without any weight information has difficulties in evaluating fitness 

accurately and as a result evolution could be inefficient. If just the weights are 

evolved, then problems may occur with crossover as knowledge distributed 

amongst the connections can be destroyed. Another problem that can occur 

when a GA is used as an optimizer for an ANN is the permutation problem, 

where different genotypes represent the same Artificial Neural Network. 

When this happens the crossover operator is ineffective as it destroys the 

knowledge distributed amongst the connections. The best approach depends 

upon what one is trying to achieve by evolving the ANN. If the aim is to find 

a particular type of ANN, then evolving the architecture using indirect 

representation (the genotype includes the number of hidden layers and the 

number of connections between the layers), rather than being too exact, would 

be the best solution (Yao, 1999). Bullinaria’s (2003) solution of incorporating 

initial weight connections with the learning parameters seems to be a good 

compromise.  

 

                                                                       116                                                                            
  
 



What is new and overview? In this thesis the evolution of the 2-ANNs model 

is carried out using the indirect representation combined with the Michigan 

approach described above. Specifically the architecture is represented as the 

number of hidden nodes and the learning rule is represented as parameters, 

both encoded in the genotype of an individual. Evolving the architecture and 

learning together is a novel approach. 

5.6 Combining the techniques of Evolutionary Algorithms, Artificial 

Neural Networks and Reinforcement Learning 

Research combining the techniques of EAs, ANNs and RL, still seems to be in 

its infancy even though applications combining EAs with reinforcement 

learning (RL) commenced with the work of Holland’s classifier systems 

(1986) in the mid-eighties. A survey of EAs for RL  (EARL) carried out by 

Moriarty et al. (1999) suggests that combining aspects of these different 

approaches maximizes the advantages of all three methods.  EAs such as GAs 

are search methods, which have the ability to handle incomplete information 

on the state of environment as well as being able to cope with dynamic 

environments. The essential component of RL is prediction or estimation of 

the value of future rewards, which involves learning from interaction with the 

environment. The advantages of ANNs are in their speed and ability to 

capture and process information, and their ability to generalize. Combining 

these methods can only produce better hybrid systems.  

 

Implementing a hybrid system such as an EARL is not without its difficulties.  

In addition to the design decisions for the EAs, (how to represent the 

individuals and what operators to use), when an EA is combined with RL one 

                                                                       117                                                                            
  
 



is faced with the decisions of how to represent the policies and how to 

evaluate fitness. A policy can be represented as a single genotype, or 

distributed over several genotypes, as in Holland’s classifier system (1986). A 

policy can also be distributed over a population represented by an ANN as in 

the Symbiotic Adaptive Neuro-Evolution (SANE) system  of Moriarty and 

Mikkulainen (1996). The fitness of a policy can be either the total payoff for 

an individual, or an average of the payoff of an individual over a certain 

number of trials. In RL there is the additional problem of how to assign blame 

to past actions, i.e., the temporal credit assignment problem. It may be the 

case, that special genetic operators for RL need to be defined, such as the 

Triggered operator in Holland’s classifier system. Moriairty et al. (1999) lists 

the strengths of EARL as being able to cope with large, incomplete state 

spaces, and dynamic environments. However, they then suggest the weakness 

of an EARL system is that it requires a large number of experiences to learn, a 

problem also true for TD, and the states that are visited infrequently are 

overlooked, which is not a problem for TD as TD keeps a record of the states 

visited.   

 

Although EA methods on their own have been criticized as not being suited to 

RL problems (Sutton and Barto, 1998), evolution and learning work naturally 

together. GAs are implemented in a variety of RL architectures; for example, 

Lin et al. (1998) implement a GA combined with RL in the actor-critic 

architecture of Barto et al. (1983), with the reinforcement signal used as the 

fitness level. Their results indicate faster training times. The SANE system of 

Moriarty and Mikkulainen (1996) and Richards et al. (1998), implements a 
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population of neurons. The fitness function of the neuron is defined by the 

level of fitness of the ANN to which it belongs, i.e., how well the network 

performs on a given task. In SANE the temporal credit assignment problem is 

dealt with by evolving the fittest neurons, which is interpreted as rewarding 

the best. Moriarty and Mikkulainen (1996) claim that this method overcomes 

the local minima problem and outperforms the traditional RL techniques such 

as the actor-critic and Q-learning.  

5.7 Concluding Remarks 

Evolutionary Algorithms have three main techniques GA, EP, and ES. Out of 

this, GAs are a more exact simulation of natural evolution. GAs are typically 

used as an optimization technique for ANNs. In this thesis, we combine the 

techniques of GAs, RL and ANNs in a novel approach. Specifically the role of 

evolution and learning in the development of self-control through 

precommitment behaviour will be investigated in later chapters. Combining 

the techniques of GAs, RL and ANNs is not without its difficulties, as 

described in this chapter. However, the combination of evolution and learning 

lends itself to better hybrid systems, which overcome the problems of: (i) the 

local minima as opposed to global minima found in using ANNs alone, (ii) the 

exploration versus exploitation dilemma of RL and dynamic environments, 

problems typical of the techniques used in isolation. The next chapter 

combines RL and ANNs in the context of MARL to develop and test the 2-

ANNs model presented in Chapter 3.  
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Chapter 6 

6  Explaining Self-Control by Playing Games. 

6.1 Chapter Outline  

In this chapter the neural model of self-control in Figure 3.3 is implemented 

as two players competing in a game-theoretical situation. More specifically, 

the higher and lower centres of the brain are implemented as two simple feed 

forward multi-layer neural networks using reinforcement learning.  The ANN 

representing the higher brain centre is implemented with the Temporal 

Difference weight update rule (Sutton, 1988) and is explained in detail in 

Section 6.4.2.1. In summary, the Temporal Difference rule is implemented in 

this thesis with a lookup table, which maintains a history of previous rewards 

and includes a discount rate used in determining the value of future rewards. 

For these reasons, in this thesis, the Temporal Difference rule is viewed as 

being far-sighted and thus associated with the higher brain processes. The 

ANN representing the lower brain centre is implemented with the Selective 

Bootstrap weight update rule  (Widrow et al., 1973) and is explained in detail 

in Section 6.4.1.1. In summary, the Selective Bootstrap weight update rule has 

no memory of past rewards and no mechanism for estimating future rewards, 

hence, can be viewed as myopic.  

 
In the development and testing of the neural model (2-ANNs) presented in 

Chapter 3, the two ANNs compete in two games, Rubinstein’s Bargaining 

Game (RBG) (Rubinstein, 1982) and the Iterated Prisoner’s Dilemma (IPD) 

game (Axelrod and Hamilton, 1981). The RBG and the IPD are general-sum 

games that model real-world situations. General-sum games were introduced 
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in Chapter 4. In summary, general-sum games are where the players' payoffs 

are neither totally positively nor totally negatively correlated (Sandholm and 

Crites, 1996). Learning can be considerably more difficult in such games, 

which require both a mixture of cooperation and competition (Kaebling et al., 

1996). The ANNs in the 2-ANNs model in this thesis can be viewed as 

autonomous learners with interacting or competing goals. The ANNs in the 2-

ANNs model learn separately, but simultaneously.  This makes the game more 

difficult because (i) the simultaneous learning of the other player creates a 

dynamic environment, and (ii) the other learner also has no prior knowledge 

of the game. Research in multi-learners or multi-agent learning is still in its 

infancy. A review of multi-agent reinforcement learning in a shared 

environment, within the context of the current research in general-sum games 

is given in the next section.  

 

In this chapter two sets of experiments are conducted to explain self-control 

through games. The first set of experiments uses Rubinstein’s Bargaining 

game (Rubinstein, 1982). The Rubinstein’s Bargaining game (RBG) exhibits 

key characteristics of the self-control problem. The players have the dilemma 

of either accepting an unreasonable offer now or holding out for an acceptable 

offer later. In the RBG the resource diminishes with time and hence, the 

players have to cooperate with each other by each taking into account the 

other player’s impatience and making an acceptable offer without delay. It has 

been shown that the outcome of the RBG is dependent upon the other player’s 

discounting of future rewards (Kreps, 1990). In the first experiment using the 

RBG, an artificial opponent, whose responses are generated randomly, 
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competes against, first the Selective Bootstrap network and then the Temporal 

Difference network.  In the next experiment using the RBG, the two ANNs, 

representing the higher and the lower centres of the brain, compete against 

each other. The results are compared to the economic literature on self-

control, specifically Rubinstein (1982) and Kreps (1990).  

 

In the second set of experiments the Iterated Prisoner’s Dilemma game is used 

(Axelrod and Hamilton, 1981). As we have seen in Chapter 2, research on 

self-control suggests there is a relationship between cooperation and self-

control (Brown and Rachlin, 1999). Human cooperation has been modeled as 

a game of Prisoner’s Dilemma (Axelrod and Hamilton, 1981). Brown and 

Rachlin (1999) played a variation of the Iterated Prisoner’s Dilemma game 

(IPD) to represent the dilemma of the self-control problem, whereby choosing 

a higher immediate reward conflicted with behaviour that maximized the 

overall reward in the long term. For this reason, at this stage of this thesis the 

IPD is an appropriate game to use to verify the 2-ANNs model. The results of 

the 2-ANNs model are compared with the empirical results of Brown and 

Rachlin (1999), which showed a close analogy between self-control and social 

cooperation. To summarize, Brown and Rachlin  (1999) concluded that the 

path to greater self-control is in our confidence that we will continue to 

cooperate with our selves in the future (refer to Section 2.3 for further details).  

 

Precommitment is a mechanism for greater self-control by carrying out an 

action now with the aim of denying (or at least restricting) our future choices. 

In this chapter, it is proposed that this can be interpreted as biasing our 
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choices towards future rewards. The final set of experiments implements this 

bias towards future rewards in three ways: (i) as a variable bias with different 

values of the inputs of the network’s bias existing node, (ii) as an extra input 

to one or both of the ANNs in the 2-ANNs model and (iii) as a differential 

bias applied to the payoff matrix. The results of this final set of experiments 

are compared to the empirical results of Baker (2001) summarized in Chapter 

2, Section 2.3, Figure 2.6, which showed that increasing the probability of 

reciprocation promoted cooperation. The premise here is that precommitment, 

implemented as a bias towards future rewards, behaves in the same way, i.e., 

increasing precommitment promotes cooperation.  

6.2 Multi-agent Reinforcement Learning and General-sum Games 

In the last decade reinforcement learning (RL) as applied to games has been 

an active area of research  (Kaebling et al., 1996; Sutton and Barto, 1998).  

Much of the research in RL and games has to date focused on single learners 

in strictly competitive games with clear winners. In recent years there has 

been much work on extending RL to the multi-agent domain (Hu and 

Wellman, 1998; Bowling and Veloso, 2001; Littman 2001). Littman (2001) 

defines multi-agent learning as the case where multiple adaptive agents, with 

interacting or competing goals, are learning simultaneously, in a shared 

environment. Since the other agents are also learning and adapting, this makes 

the environment dynamic. RL is well suited for multi-agent learning. In 

Chapter 4 we saw that RL does not need a complete specification of its 

environment, it can deal with a dynamic environment, and RL is adaptable.   
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In Chapter 4, Reinforcement Learning (RL) was discussed in the context of a 

single agent within the mathematical framework of a Markov Decision 

Process (MDP). RL within the MDP framework has an Environment, which 

contains a critic to evaluate the learner’s (agent’s) actions and everything 

external to the agent. The State is a summary of past behaviour that is needed 

to determine future behaviour, which is referred to as the Markov property 

(Sutton and Barto, 1998). There is a single Agent, which is the learner, e.g., 

the player or ANN. An Action is what the agent can do, e.g., board move, 

movement around the room, selecting a lever. There is a Reinforcement Signal 

to evaluate the current action. The MDP framework is a model for Single 

Agent Reinforcement Learning (SARL). SARL has been the focus of much 

active research in the context of zero-sum games with great success. Tesauro’s 

TD-Gammon (Tesauro, 1994), a backgammon program using RL and ANN 

achieved expert level performance (Tesauro, 2002). TD-Gammon is a single 

learner playing itself in a zero-sum game, whose action at any point in time 

may be uncertain, but the state of the board and opponents are completely 

observable.  

 

It is considerably more difficult to apply RL in general-sum games (Kaebling 

et al., 1996). General-sum games have multiple learners with interacting or 

competing goals in a shared environment. Earlier attempts in implementing 

mulit-agent reinforcement learning systems (MARL) used the SARL model 

with other agents treated as part of the environment; hence the environment 

became dynamic (Tan, 1993; Balch, 1997; De Jong, 1997).  Littman (1994) 

was the first to introduce Markov games as a model for MARL. N-player 
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games fit into the mathematical framework of a Markov game. There is a set 

of actions, a transition function and a set of rewards for each player (van der 

Wal, 1981). This definition also holds true for stochastic games (Shapley, 

1953) and sometimes the two terms are used interchangeably. N-player games 

prove an interesting challenge, as the effects of a player’s action is dependent 

on the other players, who themselves are learning and adapting. This 

challenges the traditional notion of converging to a single optimum 

equilibrium as in a single learner zero-sum game.  Littman (1994) tested his 

theory of Markov games as a model for MARL with the algorithm minimax-

Q. Minimax-Q extends Q-learning for SARL by replacing the maximum 

Value Function with a function to calculate each player’s best response. 

Littman (1994) found that minimax-Q worked on a restricted set of games, 

namely 2-player zero-sum games. The use of linear programming to calculate 

the minimax value made it computationally expensive, and although 

minimax-Q did guarantee convergence it did not necessarily converge to the 

best response. Sandholm and Crites (1996) examined the extent Q-learning 

could be applied in the Iterated Prisoner’s Dilemma game, which is a general-

sum game. Each learner, implemented as a Q-learner, competes against a 

fixed strategy of Tit-for-Tat. Their results showed that optimal strategies 

could by achieved; however convergence was not guaranteed. Hu and 

Wellman (1998) introduced, what is referred to by Bowling and Veloso 

(2000), as Nash-Q. Hu and Wellman (1998) showed that convergence to a 

single Nash equilibrium (Nash, 1950a) using Q-learning was possible for 

restrictive set of general-sum games implemented in a 2-player Markov game 

framework. Littman (2001) identifies two limitations of Nash-Q in the context 
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of general-sum N-player games: (i) it converges to a single equilibrium and 

(ii) it only converges after infinite trials. Claus and Boutlier (1998) developed 

Joint Action Learners (JAL) based on SARL using the TD method of Q-

Learning. The agents in JAL learn actions based on the estimated actions of 

the other players. JAL converges for a restrictive set of general-sum games. 

Bowling and Veloso (2001) concurred that it was necessary that any MARL 

algorithm satisfied two properties: rationality and convergence. They 

concluded that all the MARL algorithms, proposed to date, failed to satisfy 

these two properties, either converging to non-optimal solutions or not 

converging at all. They proposed an alternative algorithm using Policy Hill 

Climbing (an extension of Q-learning to play mixed strategies), based on the 

Win or Learn Fast principle (WoLF). The basis of WoLF was to learn quickly 

while losing, and slowly while winning. It did this by varying the learning 

rate. When the player is losing, a larger learning rate is used, when the player 

is winning the learning rate is reduced. WoLF was applied to the simple grid-

world general-sum game with some success. The results showed that the 

WoLF algorithm satisfied the properties of rationality and convergence.  

 

More recently, this early research on MARL, e.g., Nash-Q, Minimax-Q, has 

been criticized as focusing on a unique equilibrium, which is too limiting  

(Bowling and Veloso, 2001; Shoham et al., 2003). In general-sum games there 

may be many Nash equilibria (Nash, 1950a). It is unrealistic to assume that all 

learners converge to a unique strategy; in fact it is incorrect to assume that all 

learners in a shared environment are playing with the same strategy. Littman 

(2001) presented an alternative to the Nash-Q, called Friend-or-Foe Q-
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learning (FoF-Q) where other players are categorized as either a friend or a 

foe, which attempted to address the multiple strategy problem of MARL. FoF-

Q was found to converge for a restrictive set of general-sum games, either 

cooperative or zero-sum games. Greenwald and Hall (2003) have developed 

Correlated-Q (CE-Q), which addresses the multiple equilibria problem of a 

general-sum game by categorizing the agents as either: (i) utilitarian, (ii) 

egalitarian, (iii) republican, or (iv) libertarian. CE-Q has been tested 

successfully on a restrictive set of deterministic general-sum games, the grid-

world game and soccer. Shoham et al. (2003) have even questioned the 

approach and scope of earlier work on MARL and general-sum games. They 

argue that there still does not exist a formal model of learning for MARL, 

which addresses how the agents learn in the context of other learners. In 

addition, Shoham et al. (2003) argue that currently there does not exist a 

method to find what the best learning strategy is for each agent in order that 

the game successfully converges. They even criticise the use of the Markov 

mathematical framework as a model for general-sum games. Littman (2001) 

agrees that a complete treatment of general-sum games is still lacking.  

 

All of the above methods have a centralized process that is multi-functional, it 

maintains Q-values, determines agents’ actions, and approximates action-

value functions. As an attempt to address the limitations of earlier research, 

recent research has moved away from this centralized processing placing 

control for an agent’s behaviour with the agent. In this case the agent is 

responsible for determining his or her own best response. The only 

prerequisite is that the agent is aware of the other agents’ actions. In addition, 
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other forms of learning are being investigated for their relevance to MARL. 

For example, No-regret learning is another form of learning other than RL, 

where the average payoff of each player exceeds that of any payoff achieved 

by any fixed strategy (Jafari et al., 2001). No-regret learning algorithms have 

been implemented, in Multi-Agents Systems (MAS) on a restrictive set of 

general-sum games with some success. Bowling (2005) combined no-regret 

with WoLF (GIGA-WoLF) to tackle the problems of convergence and no-

regret. Gondek et al. (2001) has extended no-regret to QnR-Learning in a 

distributed multi-agent system with each agent playing according to their own 

policy generated independently.  This work is still in its infancy. Early results 

are promising, comparable to CE-Q yet computationally less expensive than 

earlier MARL algorithms. 

 

Critical Observation. MARL is an active area of research. MARL as applied 

to general-sum games is still in its infancy with earlier research under 

scrutiny. New learning algorithms and alternative approaches are being 

explored. Recent work, that allows agents in a MAS to be autonomous 

(Gondek et al., 2001; Gao, 2004), removes the limitation of centralized 

learning and widens the scope for the agent’s behaviour. This could be seen as 

a move back to a variation of SARL. There still lacks a clearly defined 

statement on when RL can be applied to general-sum games usefully and in 

what form. The exploration and exploitation trade-off, a distinguishing feature 

of RL, has not been dealt with adequately within the current MARL systems. 

As yet, an algorithm that can be applied to the complete set of general-sum 
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games does not exist. Although clearly much progress has been made, there is 

still a great deal of scope for future research.   

 

6.3 What is new and overview? 

The 2-ANNs model presented in this thesis has 2 autonomous players 

simultaneously learning in a shared environment playing a general-sum game. 

This makes our model framework a multi-agent system (MAS). From a 

review of the literature on MARL presented above, it is considerably more 

difficult to apply RL in such games (Kaebling et al., 1996). A feasibility study 

was conducted to establish the extent to which RL can be applied in a game 

with real world consequences (Banfield and Christodoulou, 2003). The results 

showed that reinforcement learning could be applied successfully to 2-player 

general-sum games that model real-world situations. More specifically 

convergence was reached where the opponent is artificial whose responses are 

generated randomly with uniform probability and also in the more complex 

scenario where the opponent is another learner with interacting or competing 

goals. The work in this thesis builds upon the initial results of the Banfield 

and Christodoulou (2003) study and breaks from the traditional framework for 

MARL by removing the limitation of centralized learning. It does this by 

implementing the two players, representing the higher and lower brain 

centres, as autonomous agents, which learn simultaneously in a shared 

environment. 
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6.4 Explaining Self-Control with The Rubinstein’s Bargaining 

Game  

The Rubinstein’s Bargaining game (Rubinstein, 1982) is a general-sum game, 

incorporating aspects of the self-control problem. In addition, the Rubinstein’s 

Bargaining Game (RBG) is considered to be to be particularly simple. For 

these reasons it seemed an appropriate game to use to develop and test the 2-

ANNs model presented in Chapter 3. The RBG involves two players and a 

resource or pot, e.g., money. The two players seek to agree how to divide the 

pot. The pot decreases at each turn of the game by a fixed amount, hence it 

pays both players to reach an agreement sooner rather than later. Rubinstein 

(1982) added the concept of discounting to the bargaining game by 

diminishing the size of the pot with time (Nash, 1950b), in order to give the 

bargaining game its dynamic nature. At the beginning of a turn, one player 

makes an offer. An offer from one player to another is the fraction of the pot 

the player is willing to give to the other player. The other player can either 

accept or decline. If he rejects the offer, he then makes a counteroffer and the 

game continues for another turn. The game terminates when either nothing 

remains in the pot or one of the players accepts an offer. Each player seeks to 

gain as much of the pot as she or he can. The RBG has two further 

assumptions: (i) each of the two players has different discounting functions 

representative of the different degrees of impatience and (ii) the process of 

offers and counteroffers delays the players receiving their share of the pot. 

The first player will have the advantage in that he or she can determine the 

payoff for the second player. The second player may wish to avoid the delay 

and accept any offer depending upon his or her discount function. The 
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expected result is that the player least affected by the delay, i.e., the less 

impatient, will receive the larger output (Kreps, 1990). 

6.4.1 Selective Bootstrap feed forward network (SB-FFWD) playing 

an Artificial Opponent in the RBG 

6.4.1.1 Introduction 

In this experiment an ANN competes against an artificial opponent whose 

strategy is random. The motivation for this first experiment is to firstly to test 

the hypothesis that the lower brain functions can be modelled with the 

Selective Bootstrap weight update rule (Widrow et al., 1973) and secondly, to 

determine the optimal configuration for the ANN. In addition, there is also a 

requirement to verify the techniques to be used since, as discussed in Section 

6.2, applying RL in games where there is no clear winner is considerably 

more difficult. The Selective Bootstrap rule, which is a trial and error 

technique for reinforcement learning, has no mechanism for discounting 

future rewards; it simply learns the value of each action. The discount rate in 

this case can be assumed to be zero. For this reason it can be considered to be 

myopic. The Selective Bootstrap weight update rule, as used in reinforcement 

learning, is a variation on the Widrow-Hoff rule (Widrow and Hoff, 1960) 

used in supervised learning. In the Selective Bootstrap rule the target output is 

unknown; instead if the actual output produces a success then the actual 

output plays the role of the desired output and the weights are updated as if 

the actual output produced was in fact the desired output. On the other hand if 

actual output leads to a failure then the desired effect is to negate the actual 

output and behave as though the actual output was never produced. The rule 
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works as follows, in the case of a success, the actual output is used to reward 

the network by updating the synaptic weights as shown in Eq. (6.1): 

   [ ]t t tw a sη∆ = − tx   (6.1) 

 
where time (t) is the of number of completed rounds, st is the sum of the 

weighted inputs to the postsynaptic neuron, wt is the synapse weight at time t, 

η is the learning rate and xt is the input to the postsynaptic neuron at time t, at 

is the actual output of the neuron at time t and is used as the target output. To 

penalise the network, if the action is deemed a failure, the weights are updated 

as shown by Eq. (6.2): 

 
                [ ]1t tw a sη∆ = − − t tx   (6.2) 

 
where at is the actual output at time t, st is the sum of the weighted inputs to 

the postsynaptic neuron, wt is the synapse weight at time t, η is the learning 

rate and xt is the input to the postsynaptic neuron at time t.  In summary, for 

the Selective Bootstrap rule, if the output from the neuron corresponds to a 

success, then the weights are updated as though the actual output is the 

desired output. However, if the output corresponds to a failure, the weights are 

updated as if the actual output was never produced. 

6.4.1.2 Methodology 

The ANN plays an artificial opponent whose accept or decline response is 

generated randomly. If the artificial opponent rejects the network’s offer it 

then generates a counteroffer randomly. The two opponents (the ANN and the 

artificial opponent) go through a number of turns for each game, each taking it 
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in turns to make an offer, which is either accepted or rejected, and a 

counteroffer is made.  

 

The reinforcement learning algorithm is implemented as a multi-layer feed 

forward Artificial Neural Network with non-linear nodes, i.e., the output of 

the node is calculated using the Sigmoid threshold function of Eq. 4.8. In 

playing the Rubinstein’s Bargaining game the concept of time is only relevant 

for the duration of the game, so there is no need to retain details of previous 

games. There is therefore no need to employ temporal neural networks, for 

example, Time Delay or recurrent neural networks. For optimization purposes 

the ANN implementation is flexible allowing for the learning parameters as 

well as the topology to be easily changed by the experimenter during training. 

 

The design of the system in this experiment follows the single agent 

reinforcement learning of the Markov Decision Process (MDP) mathematical 

framework depicted in Figure 4.1. The system configuration for a RBG of 

complete information is shown in Figure 6.1. The environment contains: (i) a 

process that initializes the pot size and the artificial opponent’s offer at the 

start of the game and at each round it reduces the size of the pot and generates 

the artificial opponent’s counteroffer randomly, and (ii) a critic who rewards 

or penalizes the ANN at each turn of the game and at the end of the game. The 

artificial opponent is part of the environment. The state in the MDP is the 

input to the Artificial Neural Network (ANN). In the case of the RBG, if the 

game is a game of complete information, where both players know the size of 

the pot, the state is both the offer and the pot size. A game of incomplete 
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information is where the size of the pot is unknown and is modelled as having 

just one input to represent the opponent’s offer. The action in the MDP is the 

output from the ANN. In the case of the RBG this is the accept/reject response 

and the counteroffer. The agent from the MDP is modelled as an ANN. 

 

Environment Agent  

 

Pot size 
& offer 

 Accept or Decline + 
counter offer 

Process 

  
 
 
 
 

Critic 

 

 

 

 

 

Reward/penalty  

Figure 6.1 System Configuration for an ANN playing an Artificial Opponent in 
a Rubinstein's Bargaining Game of complete information 
The environment has a process that initializes the pot size and the artificial 
opponent’s offer at each round, and a critic who rewards or penalizes the network at 
each turn of the game and at the end of the game. The artificial opponent is part of 
the environment. 
 

The network is rewarded (i.e., rt+1 is set to one), if:  

 
1. the artificial opponent’s offer is lower than the ANN’s previous offer 

and the ANN rejects it or 

2. the artificial opponent’s offer is higher than the ANN’s previous offer 

and the ANN either:  

a. accepts the offer or 

b. makes a counteroffer higher than the artificial opponent’s offer  
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For all other actions the ANN is penalised (i.e., rt+1 is set to zero). The ANN 

receives a reinforcement signal at each turn of the game. At the end of the 

game, the ANN is rewarded if it won the greater share of the pot, otherwise it 

is penalised. The number of turns and the number of games played are varied. 

At each turn of the game, the artificial opponent’s offer, the ANN’s offer and 

the network’s accept or decline response are all recorded. At the end of the 

game the average winnings, total winnings, the total number of mistakes and 

the average number of mistakes are also recorded.  

 

Traditionally the performance criterion used to measure the success of 

learning in an ANN is an error function computed as the mean square of the 

difference between some desired output and the actual output of the ANN. In 

the bargaining game, and in RL in general, the desired output is unknown. In 

the bargaining game the players may or may not know the size of the pot. For 

example, in the case of a strike negotiation the strikers may have some desired 

figure, which may be based on their current salaries as opposed to a 

percentage of the company’s profits, which are represented by the pot in this 

case. For this reason it was decided to measure how successful the ANN 

learnt by measuring the number of mistakes the ANN made. In addition, a 

mistake is defined with the aim of helping the ANN to maximize its share of 

the pot. Hence it is expected that reducing the number of mistakes made, 

results in an increase in the share of the pot. A mistake is defined to be the 

case where: 

• The opponent exceeds his last offer, but the ANN declines  

or 
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• The opponent’s offer is less than the ANN’s last offer and the ANN 

accepts  

   

Success Criteria. How successful the ANN learns is evaluated by the 

following criteria: 

1. The number of mistakes the ANN made 

2. The share of the pot the ANN won 

3. The length of the game, i.e., the number of turns 

 

6.4.1.3 Test Procedure 

The ANN has as input the opponent’s offer. An offer is represented as a real 

value between zero and one. If the game is a game of complete information 

then the ANN has the size of the pot as an extra input. The pot is a fraction of 

the previous pot and is represented as a value between zero and one. There are 

two outputs, represented by real values between zero and one; one output 

accepts or declines the opponent’s offer and the other output gives the ANN’s 

counteroffer. An accept response is represented as any value greater than or 

equal to 0.5. A decline is represented as any value less than 0.5.  There is no 

pre-processing carried out on the input or output values as these are already 

real numbers between zero and one.  

 

The network bias is implemented as a node with an input value of 1 (typically 

the bias is a value between -1 and 1 or -0.5 and 0.5) with random weights. The 

bias is evaluated as a weight and added to the sum of the weighted inputs to 
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the node in the next neural network layer. The bias is in effect the weight, 

given that the input to the extra node is 1, as shown in Figure 6.2.  
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The net input (sum of weighted inputs) to the hidden layer neuron H1 is 

calculated as in Eq. 6.3: 

 
 
  netH1 = (WI11 * I1 ) + (WI21*I2) + Bias  (6.3) 

 
The bias is effectively the weight WB1i (where i equals 1, 2 or 3) of the 

neuron B1, which has an input value of 1. Given this the  netH1 is calculated as 

in Eq 6.4: 

 netH1 = (WI11 * I1output ) + (WI21*I2output) + (WB11*1.0)  (6.4) 

 

and similarly for the hidden layer neurons H2 and H3. Now consider the O1 

neuron in the output layer. O1 is connected to three neurons in the hidden 

layer H1, H2 and H3. The neural connection between neuron O1 in the output 

layer and neuron H1 in the hidden layer is WH11, likewise, the connection 

between neuron O1 in the output layer and neuron H2 in the hidden layer is 

WH21 and finally the connection between neuron O1 in the output layer and 

neuron H3 in the hidden layer is WH31. 

 
The net input (sum of weighted inputs) to the output layer neuron O1  is 

calculated as in Eq. 6.5: 

 
netO1 = (WH11 * H1 ) + (WH21*H2) + (WH31*H2) +  (WB21*1.0) (6.5) 

 
 
and similarly for the output layer neuron O2. 
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The task of the hidden nodes for this experiment is similar to a classification 

problem. In this experiment, the task is to form a decision boundary as to what 

is an acceptable offer. 

 
When an ANN is initialized, all the weights are assigned a random value 

between - 1 and 1, which means that the bias weights WB1i and WB2i are also 

initially assigned a small random value between -1 and 1. Starting on 

randomly selected initial weights means that each time the ANN plays, 

different results can be expected, since learning starts at different points (of 

error versus weights hypersurface). To overcome this disparity the results are 

compared for multiple trials and the best are selected. The ANN’s response 

initially is generated at random, with training it is expected that the ANN’s 

response will be that of the best response, which according to game theory in 

the RBG should be close to half of the pot. The artificial opponent’s responses 

are generated randomly. The artificial opponent goes first, which gives it the 

first player advantage. Since the main aim of this experiment is to determine 

the optimal configuration for the ANN this is not considered to be a problem.  

The game was played with the maximum number of turns per game held at 

10.  

 

The elements of the ANN that were varied during testing to determine the 

optimal configuration included the topology of the network, (i.e., the number 

of hidden layers and the number of neurons in each layer) and the learning 

variables (i.e., the learning rate for the Selective Bootstrap network). How 

successfully the ANN learns is measured by the success criteria as listed in 

Section 6.4.1.2. 
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6.4.1.4 Results 

The objective of this first set of tests was to find the optimum configuration 

for the Selective Bootstrap ANN (Boot) for both a game of incomplete 

information, i.e., where the players do not know the size of the pot and a game 

of complete information, i.e., where the players know the size of the pot. 

Figure 6.3 shows the effect of varying the learning rate for a game of 

incomplete information. More specifically, Figure 6.3 shows the best learning 

curve from at least three tests for each learning rate tested.  
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Figure 6.3 The effect of varying the learning rate for a RBG of incomplete 
information 
The graph is the best learning curve from at least three tests for each learning rate 
tested for a game of incomplete information, i.e., neither player knows the size of the 
pot. The learning rate of 0.1 was selected as optimum as it produces the lowest 
probability that the ANN will make a mistake on the next game. 
 

In each case the tests were carried out on an ANN of 1 input node (to 

represent the artificial opponent’s offer), a hidden layer of 3 nodes and an 

output layer of two nodes to represent the accept/decline response and 

counteroffer. The graphs show the probability of making a mistake based on 

the number of mistakes made over the total number of turns in 121 games. A 

trial was actually run for 1000 games, but it was found after approximately 

121 games the changes to the number of mistakes and weights to be 
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insignificant. All the learning rates tested produced learning curves that 

decayed rapidly and somewhat unsteadily, but then settled down to a plateau. 

The reason for the variations in the number of mistakes made in the earlier 

games may be explained in that learning starts at different points due to the 

randomly selected initial weights. The learning rate of 0.1 was selected as 

optimum as this produced the lowest probability that the ANN would make a 

mistake on the next game.  

 

The test was repeated for a game of complete information, i.e. the players 

know the size of the pot. Figure 6.4 shows the effect of varying the learning 

rate for a game of complete information.  
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Figure 6.4 The effect of varying the learning rate for a RBG of complete 
information 
The graph is the best learning curve from at least three tests for each learning rate 
tested for a game of complete information, i.e., each player knows the size of the pot. 
The learning rate of 0.1 was selected as optimum as it is less volatile than 0.2 and 
0.05 and plateaus to a low probability that the ANN will make a mistake on the next 
game than 0.05 and 0.4. 
 

Again, the graph shows the best learning curve from at least three tests for 

each learning rate tested. In each case the tests were carried out on an ANN of 

2 input nodes (one to represent the artificial opponent’s offer and another to 
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represent the pot), a hidden layer of 6 nodes and an output layer of two nodes 

to represent the accept/decline response and counteroffer. A trial was actually 

run for 1000 games, but it was found after approximately 500 games the 

changes to the number of mistakes and weights to be insignificant. As in the 

previous experiment, all the learning rates tested produced learning curves 

that decayed rapidly and somewhat unsteadily, but then settled down to a 

plateau. Again, the learning rate of 0.1 was selected as optimum, as this 

produced the curve with the least volatility and a low level of probability that 

the ANN would make a mistake on the next game. 

 

Figure 6.5 shows the effect of varying the depth, i.e., number of hidden layers 

and the number of hidden nodes in each layer, for a game of incomplete 

information. Varying the depth and the number of hidden nodes produced 

some interesting results. With fewer hidden nodes and no hidden layer the 

behaviour from the network tended to be volatile. With more hidden nodes the 

time to learn increased shown by a somewhat unsteady decline settling to a 

plateau. From these results, for a game of  incomplete information the 

configuration of 1-3-2 with a learning rate of 0.1 was considered optimal. 
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Figure 6.5 Effect of varying depth and numbers of hidden nodes for a RBG of 
incomplete information 
Reducing the either the depth or the number of nodes increased the volatility from the 
ANN. Increasing the number of hidden nodes increased the learning time, shown as 
the network settling to a plateau, but at a higher probability that the network will 
make a mistake on the next game. The configuration of 1-3-2 was considered 
optimal. 
 

The tests were repeated for a game of complete information where both 

players know the size of the pot they are bargaining for. Figure 6.6 shows the 

effect of varying the depth, i.e., number of hidden layers and the number of 

hidden nodes in each layer, for a game of complete information.  
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Figure 6.6 The effect of varying the depth and number of hidden nodes for a 
RBG of complete information  
With no hidden layer the behaviour from the ANN was more erratic with a higher 
level of mistakes made on average. Increasing the number of hidden layers and nodes 
(2-6-6-2) reduced the volatility in the graph, which continued to decline, although 
taking longer to settle to a plateau. For this reason 2-6-6-2 was considered optimal. 
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With fewer hidden nodes and no hidden layer the behaviour from the ANN 

tended to be erratic and unpredictable. With more hidden nodes the time to 

learn increased as shown by an unsteady decline settling to a plateau. The 

configuration of 2-6-6-2 produced a graph of least volatility and continued to 

decline although taking longer to settle to a plateau thus, for a game of 

complete information the configuration of 2-6-6-2 with a learning rate of 0.1 

was considered optimal. 

6.4.1.5 Conclusion 

From this first set of experiments the preliminary results suggest that the 

Selective Bootstrap weight update rule does indeed learn although learning is 

erratic with the ANN more often than not accepting the first offer made. This 

is reflected in the fact that the ANN made a high number of mistakes (>50%) 

and the average number of turns per game was 1. In this set of experiments 

the optimum configuration and parameters were determined for the Selective 

Bootstrap network. A similar set of experiments follow to determine the 

optimal configuration for the second ANN in the model of Figure 3.3, the 

Temporal Difference Network. Once the optimum network configuration and 

parameters had been determined, experiments were carried out to see how 

both ANNs behaved competing against an artificial opponent and the results 

are compared.   
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6.4.2 Temporal Difference feed forward network playing an Artificial 

Opponent in the RBG  

6.4.2.1 Introduction 

The motivation for this experiment is firstly to test the hypothesis that the 

higher brain functions can be modelled with the Temporal Difference weight 

update rule (Sutton, 1998) and secondly to optimise the Temporal Difference 

network’s configuration. In addition, the results of the Temporal Difference 

network playing an artificial opponent in the RBG is compared with the 

Selective Bootstrap network playing an artificial opponent in the RBG. As 

discussed in Chapter 4, Temporal Difference (TD) learning is a reinforcement 

method used as a model of classical conditioning learning from psychology 

(Sutton and Barto, 1998). The Temporal Difference update rule maintains an 

approximation of the expected return of future rewards and includes a 

discount rate for determining the value of future rewards; therefore it can be 

considered far-sighted, i.e., concerned with long-term goals, for this reason it 

was considered suitable to model the higher brain functions at an abstract 

level. In addition, there is also again a requirement to verify the RL techniques 

to be used in general-sum games for the reasons listed in Section 6.2.  

 

As in the previous experiment, with the ANN implemented with the Selective 

Bootstrap rule, the ANN with the TD weight update rule competes against an 

artificial opponent whose strategy is random. In this experiment TD is 

implemented as TD(0), as only one state preceding the current one is changed 

by the TD error in contrast to TD(λ), where all eligible states are changed by 
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the TD error (Sutton and Barto, 1998). This is because in the RBG game there 

are only a few states, as shown in Figure 6.7.  

 
  State                       Action  Value 

Function 
(Offer Pot) (Accept/Decline Counteroffer) V(St) 
0 0 A * 0 
0 >0 D * 0.5 
<0.5 * D <0.5 0.5 
<0.5 * D >=0.5 0.5 
<0.5 * A * 0.5 
>=0.5 * D <0.5 0.5 
>=0.5 * D >=0.5 0.5 
>=0.5 * A * 1 
          

 
 

Figure 6.7 The look-up table used in the Temporal Difference learning in the 
Rubinstein's Bargaining Game 
Initial values for the learned Value Function V for the state at time t (St). V  is the 
latest estimate of the probability of success (winning) from that state S if the 
corresponding action is taken.  * is a wildcard, i.e., any value between 0 and 1. The 
initial values are based on the following assumptions: if the offer is more than half 
the pot and the network has accepted, then the probability of winning is 1; similarly if 
offer is zero and the network has accepted, the probability of the network winning 
from this state is zero. The initial estimates of all other states are set to 0.5 that is the 
network has a 50% chance of winning. 
 

The State is the input to the ANN. For RBG this is the opponent’s offer and, if 

the game is a game of complete information, the current pot size. Temporal 

Difference learning (TD(0)) in this experiment is implemented with a look-up 

table, which is in effect the Value Function V. The Value Function gives an 

estimation of the probability of success given the current state of the 

environment and the ANN’s action at time t. For this experiment the initial 

values for the Value Function for each possible state/action pair in the RBG 

are given in Figure 6.7.  The initial values for the look-up table are derived 

from the following assumptions: if the offer is equal to the pot or more than 

half of the pot and the ANN has accepted, then the probability of winning is 1; 

similarly if the offer is zero and the ANN has accepted, then the probability of 

the network winning from this state is zero. The initial estimates of all other 
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states are set to 0.5 that is the network has a 50% chance of winning. Eq. 6.6 

is used to update the estimate of the probability of success for the previous 

state, V(Sp) from Figure 6.7. Eq 6.6 is adapted from Sutton and Barto (1998): 

 
 

 ( ) ( ) ( ) ( )p p cV S V S V S V Sα p⎡ ⎤= + −⎣ ⎦    (6.6) 

 
where V(Sp) is the value of the previous state (the offer and pot size) and the 

matching action (accept/decline, counteroffer) for the previous time (p). 

Similarly V(Sc) is the Value Function of current state (the offer and pot size) 

and the matching action (accept/decline, counteroffer) for the current time (c), 

α is the step-size parameter or learning rate. The estimation of the probability 

of the network winning from each state/action pair is updated at the end of 

each turn of the game.  

 

The Value Function for the current time V(St+1) and the previous time V(St) 

are used to calculate the temporal difference error δt given by Eq. 6.7:  

 
 
  1 1( ) (t t t tr V S V S )δ γ+ += + −    (6.7) 

 
where rt+1 is the reinforcement signal at time t+1 (for a reward this will be 1), 

γ is the discount rate of future rewards, V(St+1) is the Value Function for the 

state, that is, the probability of winning from the state at time t+1 and V(St) the 

probability of winning from the state at time t where state is taken from Figure 

6.7. For the Temporal Difference update rule, the weights are updated based 

on this temporal difference error. More specifically the change in weights is 

given by Eq. 6.8: 
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    t tw txαδ∆ =    (6.8) 

 
where α is the step-size parameter and xt is the input at time t to the neuron. 

Both Eq. 6.7 and Eq. 6.8 are adapted from Sutton and Barto (1998).  

 

6.4.2.2 Methodology 

As in the previous experiment with Selective Bootstrap network, the network 

plays an artificial opponent whose accept or decline response is generated 

randomly and if the artificial opponent rejects the network’s offer it then 

generates a counteroffer randomly. Hence, the system configuration is the 

same as in Figure 6.1 with the ANN in this case implemented with the TD 

weight update rule. The game follows the same pattern as in the previous 

experiment, i.e., the ANN and the artificial opponent go through a number of 

turns for each game, each taking it in turns to make an offer, which is either 

accepted or rejected, and a counteroffer is made.  

 

As in the case of the Selective Bootstrap weight update rule, the TD weight 

update rule is implemented as a multi-layer feed forward Artificial Neural 

Network with non-linear nodes, i.e., the output of the node is calculated using 

the Sigmoid threshold function of Eq. 4.8. The network is rewarded (i.e., rt+1 

is set to one) and penalised (i.e., rt+1 is set to zero) as described in the previous 

experiment (Section 6.4.1.2).  
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The criterion for measuring how successfully the ANN learns is the same as 

that of the previous experiment, i.e., the number of mistakes the ANN makes, 

the share of the pot it wins and finally the length of the game. 

6.4.2.3 Test Procedure 

The system is configured in the same way as in the previous experiment, that 

is: 

• For a game of complete information the ANN has as input the 

opponent’s offer and pot size. An offer is represented as a real value 

between zero and one. The pot is a fraction of the previous pot and is 

represented as a value between zero and one.  

• For a game of incomplete information the ANN has as input just the 

opponent’s offer.  

• The ANN has two outputs represented by real values between zero and 

one; one output either accepts or declines the opponent’s offer. If the 

ANN rejects the offer then the other output is the ANN’s counteroffer. 

If the ANN accepts the offer then the other output is ignored. An 

accept response is represented as any value greater than or equal to 

0.5. A rejection is represented as any value less than 0.5.   

The bias was implemented as in the previous experiment, i.e., as a node whose 

weight is trainable in the same way as the other nodes in the network. As 

before the weights were initialized to random values and the results are 

compared for multiple trials and the best selected. Again the same elements of 

the ANN were varied during testing to determine the optimum configuration, 

i.e., the number of hidden layers and neurons in each layer, and the learning 

variables, which in the case of the TD network are the step-size and discount 
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rate. How successfully the ANN learns is measured by the success criteria as 

listed in Section 6.4.1.2. 

6.4.2.4 Results 

The objective of this set of tests was to find the optimum configuration of the 

Temporal Difference Network (TD) for both a game of incomplete 

information, i.e., where the players do not know the size of the pot and a game 

of complete information, i.e., where the players know the size of the pot. 

Figure 6.8 shows the effect of varying the step-size parameter for a game of 

incomplete information.  
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Figure 6.8 Effect of varying the step-size parameter for a game of incomplete 
information 
Varying the step-size parameter had no dramatic effect. The graph shows the best 
learning curve from at least three test for each parameter tested.  In each case the tests 
were carried out on an ANN configured as 1-3-2 and the discount rate was held at 
0.5. The step-size parameter of 0.05 was considered as optimum for this 
configuration. 
 

Figure 6.8 shows the best learning curve from at least three tests for each step-

size parameter tested. In each case the tests were carried out on an ANN of 1 

input node (to represent the artificial opponent’s offer), a hidden layer of 3 

nodes and an output layer of two nodes to represent the accept/decline 
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response and counteroffer. The discount rate was held at 0.5. The graphs show 

the probability of making a mistake based on the total number of mistakes 

made over the total number of turns in 121 games. As in the previous 

experiment for the Selective Bootstrap, although the trial consisted of 1000 

games, it was found that the weight changes and the changes to the number of 

mistakes to be insignificant after approximately 120 games. Varying the step-

size parameter had no dramatic effect. The learning curves decayed rapidly, 

but then settled down to a plateau. The step-size parameter of 0.05 produced a 

learning curve of a steady gentle decay and was considered optimum for this 

configuration. 

 

As in the experiments for the Selective Bootstrap network, the test was 

repeated for a game of complete information, i.e., the players know the size of 

the pot. Figure 6.9 shows the effect of varying the step-size parameter for a 

game of complete information.  
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Figure 6.9 The effect of varying the step-size parameter for a game of complete 
information 
The graph shows the best learning curve from at least three test for each parameter 
tested.  In each case the tests were carried out on an ANN with a configuration of 2-
6-2 and the discount rate was held at 0.5. The step-size parameter of 0.1 was 
considered as optimum for this configuration. 
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Again the graph selected is the best learning curve from at least three tests for 

each parameter tested. In each case the tests were carried out on an ANN of 2 

input nodes (one to represent the artificial opponent’s offer and another to 

represent the pot), a hidden layer of 6 nodes and an output layer of two nodes 

to represent the accept/decline response and counteroffer. The discount rate 

was held at 0.5. Again, the changes to the weights and the number of mistakes 

were insignificant after 120 games. The results show that all the learning 

curves decayed rapidly and somewhat unsteadily, but then settled down to a 

plateau. The step-size parameter of 0.1 was selected as optimum, as this 

produced the curve with the lowest percentage of mistakes. 

 
The effect of varying the depth, i.e., the number of hidden layers, and the 

number of hidden nodes was tested. For a game of incomplete information the 

step-size parameter was held at 0.05 and for a game of complete information 

the step-size parameter was held at 0.1. The discount rate was held at 0.5 for 

both sets of experiments. Figure 6.10 shows the effect of varying the depth 

and number of hidden nodes in each layer on the learning curve for a RBG of 

incomplete information. The best learning curve was selected from at least 

three tests for each configuration tested.  With fewer layers and nodes the 

graph tended to be more volatile (1-0-2). Increasing the number of hidden 

nodes reduced the volatility of the graph, but took longer, i.e., more games, to 

settle to a plateau (1-6-2 and 1-6-6-2). Thus the configuration of 1-3-2 was 

selected as optimum.  
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Figure 6.10 The effect of varying the depth and number of hidden nodes for a 
RBG of incomplete information 
With no hidden layer learning did not appear to take place with the graph 1-0-2 
stabilizing at a plateau at a higher level than at the start of play. Increasing the 
number of hidden nodes increased the learning time, but reduced the volatility in the 
learning curve. 1-3-2 was selected as optimum. 
 
 
The test was repeated for a game of complete information. Figure 6.11 shows 

the best learning curve selected from at least three tests for each configuration 

tested for a RBG of complete information.  
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Figure 6.11 The effect of varying the depth and number of hidden nodes for a 
RBG of complete information 
With no hidden layer the graph was more volatile. With more hidden nodes the graph 
was less volatile settling to a plateau. The configuration 2-6-6-2 was selected as 
optimum. 
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The results in Figure 6.11 were less dramatic than that of Figure 6.10. With no 

hidden layer the graph was more volatile. Increasing the number of hidden 

nodes reduced this. The configuration of 2-6-6-2 was selected as optimum as 

this produced a learning curve that was less volatile and that settled to a 

plateau equal or better than the alternate configurations.  

 

The final test in determining the optimal configuration for the TD network 

was to determine the effect of varying the discount rate. Again the best curves 

from multiple experiments were selected. Figure 6.12 shows the results of 

varying the discount rate for a RBG of incomplete information, the step-size 

parameter was held at 0.05 and the ANN configured at 1-3-2. 

 
 
 

0

20

40

60

80

100

120

1 51 101 151

No. of Games`Played

M
is

ta
ke

s 
 (%

) 0.05
0.1
0.5
0.75

 

Figure 6.12 The effect of varying the discount rate for a RBG of incomplete 
information 
The graphs show the best curves selected from multiple experiments. All the learning 
curves behaved the same, decaying rapidly then settling to a plateau lower than that 
at the start of play. The discount rate of 0.1 was selected as optimum as this settled to 
the lowest number of mistakes of all the discount rates tested. 
 

Varying the discount rate for a RBG of incomplete information had no 

dramatic effect. All the learning curves decay rapidly though somewhat 
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erratically, settling to a plateau lower than at the start of play. The discount 

rate of 0.1 was selected as optimum as it settled to the lowest level of all the 

discount rates tested.   

 

Figure 6.13 shows the results of varying the discount rate for a RBG of 

complete information the step-size parameter was held at 0.1 and the ANN 

configured at 2-6-6-2. 
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Figure 6.13 The effect of varying the discount rate for a RBG of complete 
information 
Again the learning curves were the best curves selected from multiple experiments. 
All the learning curves behaved the same, decaying rapidly then settling to a plateau. 
Although a discount rate of 0.5 was consistently lower than the discount rate of 0.1 
the graph showed more fluctuation and was discarded as being too middling for the 
purpose of these experiments, as effectively a discount rate of 0.5 is saying “we value 
future rewards 50% of the time”. Hence a discount rate of 0.1 was selected as 
optimum. 
 

Varying the discount rate for a game of complete information produced some 

interesting results. All the learning curves behaved the same, decaying rapidly 

then settling to a plateau, however, a low discount rate of 0.05 produced a 

learning curve that was more erratic and hence less predictable. The discount 

rate of 0.5 was consistently lower than the discount rate of 0.1 however, the 

graph showed more fluctuation and a discount rate of 0.5 was considered as 
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being too middling, as effectively a discount rate of 0.5 is saying “we value 

future rewards 50% of the time”. Hence a discount rate of 0.1 was selected as 

optimum.   

 

Having selected the optimum ANN configuration and parameters for both 

ANNs, experiments were carried out to determine how the ANNs behaved 

and to test the hypothesis that the lower brain functions can be modelled with 

the Selective Bootstrap weight update rule (Widrow et al., 1973) and that the 

higher brain functions can be modelled with the Temporal Difference weight 

update rule (Sutton, 1998). Figure 6.14 compares the typical results (number 

of mistakes and winnings expressed as a percentage of the total for the game) 

for both weight update rules playing an artificial opponent in a RBG of 

incomplete information.  
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Figure 6.14 Results for a Temporal Difference network and a Selective 
Bootstrap network playing an artificial opponent in a RBG of incomplete 
information 
A comparison of the number of mistakes and winnings per game. The TD Network is 
configured as 1-3-2 with a step-size parameter of 0.05 and a discount rate of 0.1 and 
the Selective Bootstrap Network as 1-3-2 with a learning rate of 0.1, which were 
selected as the optimum configuration from the above experiments. The more games 
played the less number of mistakes were made, indicating that both ANNs have 
learnt. However, the results are not significantly different. 
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The Temporal Difference Network is configured as 1-3-2 with a step-size 

parameter of 0.05 and a discount rate of 0.1 and the Selective Bootstrap 

Network as 1-3-2 with a learning rate of 0.1, which were selected as the 

optimum configuration from the above experiments. The ANNs played 5000 

games, however, after a certain point (200 games) the amount of change to the 

mistakes made and the winnings per game is so small as to be insignificant. 

The results show that the more games the networks played, the less number of 

mistakes the networks made, indicating that learning has occurred in both 

networks. However, when the results for each of the networks are compared 

they are not significantly different. 

 
Figure 6.15 compares typical results (number of mistakes and winnings 

expressed as a percentage of the total for the game) for both weight update 

rules playing an artificial opponent in a RBG of complete information.  
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Figure 6.15 Results for a Temporal Difference network and a Selective 
Bootstrap network playing an artificial opponent in a RBG of complete 
information 
A comparison of the number of mistakes and winnings per game. Both networks are 
configured as 2-6-6-2. The TD Network has a step-size parameter of 0.1 and a 
discount rate of 0.1 and the Selective Bootstrap Network has a learning rate of 0.1. 
The TD network fares slightly better in that, on average the TD network makes fewer 
mistakes and wins slightly more of the pot than the Selective Bootstrap network. 
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Both ANNs were configured as 2-6-6-2 as this was considered the optimal 

configuration from the experiments above. The Temporal Difference Network 

had a step-size parameter of 0.1 and a discount rate of 0.1 and the Selective 

Bootstrap Network had a learning rate of 0.1, which were selected as the 

optimum parameters from the above experiments. Again, the networks played 

5000 games, however, once again, after a certain point (250 games) the 

amount of change to the mistakes made and the winnings per game is so small 

as to be insignificant. In this case, the TD network does slightly better than the 

Selective Bootstrap network, in that it made fewer mistakes (47%) and won a 

slightly larger slice of the pot (51%).  

6.4.2.5 Conclusion 

 
A mistake was defined with the aim of helping the ANN to maximize its share 

of the pot. Hence it was expected that reducing the number of mistakes made 

would result in an increase in the share of the pot. The results shown in the 

above graphs support this. The less number of mistakes made by either ANN 

results in the ANN gaining a greater share of the pot.  

 
The decrease in the number of mistakes the ANNs make, indicates that the 

networks are behaving as expected, that is, the more games the networks play, 

the less mistakes it makes, indicating that the network has “learned”. On 

average, the Temporal Difference network gained a slightly larger slice of the 

pot as compared to the results of the Selective Bootstrap network as shown in 

Figure 6.15 and Figure 6.14. This may be can be explained by the tendency 

for Selective Bootstrap to accept a less than optimal offer reflected in the 

average turn per game for the Selective Bootstrap network as being one. This 
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supports the hypothesis that the player least affected by the delay as a result of 

the bargaining process, in this case the Temporal Difference network, will 

receive the larger slice of the pot (Kreps, 1990). This hypothesis is tested 

further in the next set of experiments. 

6.4.3 2-ANNs Playing the Rubinstein’s Bargaining Game 

6.4.3.1 Introduction 

In this experiment the two ANNs compete as two autonomous agents learning 

simultaneously in a shared environment. The motivation for this experiment is 

to further test the hypothesis that the Temporal Difference network exhibits 

behaviours of the higher brain processes and that the Selective Bootstrap 

network exhibits behaviours of the lower brain processes. A version of RBG 

with one player implemented as an ANN with the Selective Bootstrap weight 

update rule and the other player implemented as an ANN with the Temporal 

Difference weight update rule was played.  In this case the ANNs are two 

autonomous agents learning in a shared environment. Although each ANN is 

learning independently the existence of the other ANN is not ignored, as there 

is a requirement for cooperation between the players, since it is in both 

ANNs’ interest to reach an agreement sooner rather than later, as the resource 

diminishes with time. As the ANN implemented with TD learning is the 

player least affected by the delay, i.e., the less impatient, it is expected that it 

will receive the larger slice of the pot. 

6.4.3.2 Methodology 

In this version of the RBG, one player is implemented as an ANN with the 

Selective Bootstrap weight update rule and the other player is implemented as 
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an ANN with the Temporal Difference weight update rule. The system 

configuration for a RBG of complete information, i.e., where both the players 

know the size of the pot, is shown in Figure 6.16. A game of incomplete 

information, (i.e., where the players do not know the size of the pot) was 

modelled as having one input to represent the opponent’s offer. 
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Figure 6.16 System Configuration for 2-ANNs playing a RBG of complete 
information 
The environment has a process that initializes the pot size and the offer at the start of 
the game and a critic who rewards or penalizes the networks at each turn of the game 
and at the end of the game. 
  

At the end of each turn, the ANN whose turn it is (for illustration purposes 

call this ANN A and let the opposing ANN, be B) is rewarded (i.e., rt+1 is set 

to one), if:  
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1. the offer from B is lower than A’s previous offer and A declines the 

offer or 

2. the offer from B is higher than A’s previous offer and A either:  

a. accepts the offer or 

b. makes a counteroffer higher than the incoming offer  

 
For all other actions ANN A is penalised (i.e., rt+1 is set to zero). At the end of 

the game, the ANN that received the greater share of the pot, is rewarded and 

the other ANN is penalised. For each ANN, the average winnings, total 

winnings, the total number of mistakes and the average number of mistakes 

are recorded and compared. Each ANN is evaluated by the number of 

mistakes it made and the share of the pot it wins.  

6.4.3.3 Testing Procedure 

The ANNs’ configuration and parameters are held as those selected as 

optimum in the experiments in Section 6.4.1.4 and Section 6.4.2.4, that is, for 

a game of incomplete information the ANNs are configured as 1-3-2 with a 

step-size parameter of 0.05 and a discount rate 0f 0.1 for the Temporal 

Difference network and a learning rate of 0.1 for the Selective Bootstrap 

network; for a game of complete information the ANNs were configured as 2-

6-6-2 and all parameters were held at 0.1. Bias was implemented as in the 

previous experiments, i.e., as a node whose weight is trainable in the same 

way as the other nodes in the ANN. In the Rubinstein’s Bargaining game the 

player that moves first has the advantage, as the first player can determine 

what the other player might receive (Rubinstein, 1982). To overcome this 

problem of first player advantage, the starting ANN was selected at random.   
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Tests were run for games of complete and incomplete information. Variations 

of the RBG were also tried where the players have different policies or 

strategies, for example, one player (either the TD network or the Selective 

Bootstrap network or both) operates with a greedy policy. A greedy policy is 

modelled with an initial offer of zero, i.e., the first player is not prepared to 

bargain and has kept all of the pot. For a non-greedy policy an initial random 

offer is made indicating that the first player is willing to bargain. 

6.4.3.4 Results 

Figure 6.17 shows the results of the TD network competing with the Selective 

Bootstrap network in a non-greedy RBG of incomplete information, i.e., 

neither player knows the size of the pot and both players are willing to 

cooperate in order to reach an agreement sooner rather than later.   
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Figure 6.17 TD network versus Selective Bootstrap network in a RBG of 
incomplete information 
A TD network competing against a Selective Bootstrap network playing RBG, 
played as a game of incomplete information with a non-greedy policy, i.e., both 
players are willing to cooperate in order to reach an agreement sooner rather than 
later. The TD network fares better than the Selective Bootstrap in that it consistently 
wins the greater share of the pot  (89%) and makes less mistakes on average (25% as 
opposed to an average of 40% for the Selective Bootstrap network). 
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Figure 6.18 shows the results of the TD network competing with the Selective 

Bootstrap network in a non-greedy RBG of complete information, i.e., both 

player knows the size of the pot they are playing for and are willing to 

cooperate in order to reach an agreement sooner rather than later. 
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Figure 6.18 TD network versus Selective Bootstrap network in the RBG of 
complete information 
A Temporal Difference Network competing against a Selective Bootstrap network 
playing RBG, played as a game of complete information with a non-greedy policy. 
Again the TD network fares better than the Selective Bootstrap in that it consistently 
wins the greater share of the pot (86%) and makes slightly less mistakes on average. 
 

The graphs in Figure 6.18 show the ANN’s behaviour over multiple 

experiments run over a number of games. After a certain number of games 

(250) the amount of change to the number of mistakes made and the amount 

of pot won is so small as to be insignificant. The results show that the ANNs’ 

behaviour settled down to a plateau with the TD network gaining a significant 

majority of the pot (86%) as opposed to the Selective Bootstrap network, 

which gains significantly less of the pot (14%). Different types of RBGs were 

tried. For example, an experiment was conducted where both players had a 
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policy of greedy play competing in the RBG. The results are the same, i.e. the 

TD network does slightly better than the Selective Bootstrap network in terms 

of the number of mistakes and the TD network gains a significant larger slice 

of the pot than the Selective Bootstrap network.  

6.4.3.5 Conclusion 

In summary, the following observations were made for both weight update 

rules, i.e., Selective Bootstrap and Temporal Difference. For the Rubinstein’s 

Bargaining game even though the number of turns was set at ten, play never 

exceeded five turns per game. Either there was nothing left in the pot or the 

ANN accepted the opponent’s offer and the game ended. Both ANNs would 

seem to have learnt, supported by the decrease in the number of mistakes 

made by both ANNs. The Selective Bootstrap weight update rule for the 

reinforcement learning algorithm performed poorer both in the average 

number of mistakes made and in the pot won compared to the Temporal 

Difference weight update rule. This was made clear in the final set of 

experiments, which saw the TD network compete with the Selective Bootstrap 

network in variations of play for the RBG.  

 
In conclusion, the TD network did significantly better than the Selective 

Bootstrap network in that TD gained the largest share of the pot and made 

fewer mistakes. For the Temporal Difference network maintaining a history of 

previous rewards (even though it is only one state preceding the current) and 

including a discount rate would appear to have helped the TD network to learn 

better than the Selective Bootstrap network. The ANNs behaved as expected 

in that the Temporal Difference network, as the player least effected by delay, 
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received the larger slice of the pot (Kreps, 1990).  The results support the 

theoretical premise, made at the beginning of the chapter, that the Selective 

Bootstrap network is myopic, and hence more impatient than the Temporal 

Difference network. For the Selective Bootstrap network the waiting time till 

the reward is received, in this case its share of the final the pot, is more costly 

and hence at times it accepts an unreasonable offer (i.e., less than 50%). 

6.5 Explaining Self-control with the Iterated Prisoner’s Dilemma 

game 

In this set of experiments the two ANNs compete in the Iterated Prisoner’s 

Dilemma (IPD) game. The IPD is appropriate since, as discussed in Chapter 2 

Section 2.3, an experiment by Brown and Rachlin (1999) explored the 

relationship between self-control and cooperation, using human subjects 

playing a version of the IPD game. The IPD has been used to model the 

evolution of human cooperation (Axelrod and Hamilton, 1981). The IPD 

consists of two players who compete with each other repeatedly. Each player 

can either cooperate or defect. Defection is the higher payoff for the 

individual player, however if both players defect then the resulting payoff for 

both is worse. The goal is to maximise the total payoff.  

 

A preliminary version of this set of experiments appeared in Banfield and 

Christodoulou (2005), and was presented at 9th Neural Computation and 

Psychology Workshop. 
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6.5.1 The Temporal Difference Network versus the Selective 

Bootstrap Network playing an IPD game with local reward 

6.5.1.1 Introduction 

The motivation for this set of experiments is: firstly to verify the model 

proposed in Chapter 3 shown in Figure 3.3 and developed in Section 6.4, of 

the higher brain functions competing with the lower brain functions for 

control of the organism, and secondly to investigate the idea proposed by 

Brown and Rachlin (1999) that there is a direct relationship between 

cooperating with one’s self and self-control behaviour. These ideas were 

discussed in detail in Chapter 2 Section 2.3. To summarize, Brown and 

Rachlin  (1999) concluded that the path to greater self-control is in our 

confidence that we will continue to cooperate with our selves in the future. In 

the implementation of the IPD game in this thesis, to cooperate with our 

selves is represented by the reward for mutual cooperation, the top left hand 

box in the IPD payoff matrix (CC) in Figure 2.3. Hence, in this experiment 

and in the following experiments, the probability of continuing to cooperate 

with our selves in the future, is measured by the number of times the players 

select the reward for mutual cooperation (CC).  In this experiment and in the 

following experiment, the effect of different reward structures on the patterns 

of play, for example the number of times the players play a game of mutual 

cooperation, are investigated. In this experiment, each ANN in the 2-ANNs 

model receives a different reward and hence each ANN is playing to 

maximize its own payoff, for this reason we could say that the ANNs are 

playing an IPD game of selfish play. In the following experiment the ANNs 
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receive the same global reward with the aim of maximizing the reward for the 

organism as a whole, where the 2-ANNs model represents the organism. 

 

It follows from the results of the RBG experiments that the Selective 

Bootstrap network best represents the lower brain system associated with 

myopic behaviour in that it more often than not, accepted a less than optimal 

offer reflected in the size of the pot won. The Temporal Difference network 

exhibited behaviour associated with the higher brain functions such as 

planning and control in that it did not accept the first offer made and appeared 

to hold out for a more acceptable offer, reflected in that the TD network won 

the greater share of the pot. 

 

The Selective Bootstrap rule is implemented as described for the RBG, the 

same equations for updating the synaptic weights apply (see Section 6.4.1.1).  

The TD rule for IPD is implemented as described for RBG, but with a 

different look-up table, which is in effect the value function V. In this 

experiment, for the IPD game, the State is the opponent’s last action, i.e., to 

cooperate or to defect and the action is the player’s response based on the 

opponent’s last action. The Value Function is the probability of receiving the 

highest payoff, given the current state of the environment and the ANN’s 

action. Implemented in this way, the TD network maintains a history of the 

opponent’s previous action even though it is only one state preceding the 

current one. Figure 6.19 shows the initial values for the Value Function for 

each state/action combination. 
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State D/C Action  
D/C     

Value Function  V(St) 

D D 0 
C C 0.5 
D C 0 
C         D                 1 

 
 

Figure 6.19 The look-up table for Temporal Difference learning in the IPD 
Game 
A table of initial values for the learned Value Function V, where D stands for Defect 
and C represents Cooperate. The initial values are based on the probability of gaining 
the highest payoff derived from the payoff matrix by Maynard Smith (1982). 
 

The equations for updating the look-up table, calculating the TD error and the 

updates to the synaptic weights remain unchanged from those used in the 

RBG, i.e., Eq. 6.6, Eq. 6.7 and Eq. 6.8 respectively.  

6.5.1.2 Methodology 

The ANN is configured with two inputs nodes to represent the opponent’s 

previous action (a node to represent defection and a node to represent 

cooperation), and two output nodes representing a response (a node to 

represent defection and a node to represent cooperation). The nodes act like a 

binary switch, i.e., a value of 1 indicates that node is active. For example, if 

the opponent’s previous action was to defect, then the defection node would 

be set with an input value of 1 and the node representing cooperation with a 

value of zero. The output of the nodes are calculated using the Sigmoid 

threshold function of Eq. 4.8, as in the experiments for the RBG. The output is 

normalized to either a value of 1 or zero. A value of 1 in the output node 

indicates that node is active. For example, if the ANN’s response is to 

cooperate then the value of the defection node is zero and the node 

representing to cooperate is 1. A game consists of one or more rounds. The 

goal is to maximise the total payoff. Figure 6.20 shows the system 

configuration for this experiment. The system configuration is similar to the 
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one in Figure 6.16 for the experiment of 2-ANNs playing the RBG. In the 

case of the IPD game, the environment contains a process that initializes the 

input/state to the opponent’s previous action (to defect or to cooperate) at the 

start of each round. The output/action is the ANN’s action (to defect or to 

cooperate). The environment also contains a critic that assigns a reward or 

penalty, which is based on the payoff for each round and at the end of a game 

the ANN that has the highest accumulated payoff is rewarded and the other 

ANN is penalised. 
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Figure 6.20 System configuration for 2-ANNs playing IPD game 
The environment contains a process that initializes the input/state to th
previous action (to defect or to cooperate) at the start of each 
output/action is the network’s action (to defect or to cooperate). The 
also contains a critic that assigns a reward or a penalty based on the pa
round and at the end of a game 
 

The payoff matrix is adapted from the definition of the Prisoner

game given by Maynard Smith (1982), summarised in Figure 6.21.
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Figure 6.21 Maynard Smith's Payoff Matrix for the Iterated Prisoner’s 
Dilemma game 
Maynard Smith’s Payoff Matrix for the Iterated Prisoner’s Dilemma (Maynard 
Smith, 1982) where T: Temptation, R: reward, P: punishment, S: sucker’s payoff. 
Rule 1 (T>R>P>S) defines the game. Rule 2 (2R>T+S) ensures that the payoff is 
greater to two players who cooperate, than a pair who alternately cooperate and 
defect. Rewards are shown for the row player. 
 

In this thesis Temptation has a numerical value of 2, Reward a value of 1, 

Punishment a value of zero and Sucker’s payoff a value of  (–1). The payoff 

matrix to be used in this experiment is shown in Figure 6.22. The payoff 

matrix is explained in terms of higher and lower brain regions rather than row 

and column players. The reward in this first experiment is local, i.e., each 

ANN receives an individual reward, which is the payoff shown in the matrix 

in Figure 6.22. The actions are rewarded at each round of the game as in 

shown in Figure 6.22. The payoffs to the player representing the higher brain 

functions are listed first: (C,C) the reward for mutual cooperation (R) a value 

of (1,1), (D,D) the punishment for mutual defection (P) a value of (0,0), (C,D) 

the penalty for Sucker’s payoff (S) a value of  (–1) and (D,C) the reward for 

Temptation to defect (T) has a numerical value of (2,-1). The Temptation to 

defect is the highest immediate reward, representative of the smaller-sooner 

reward (SS) in the self-control problem illustrated in Figure 2.1 in Chapter 2. 

Mutual cooperation yields the highest reward in the long-term, representative 

of the larger-later reward (LL) in the self-control problem illustrated in Figure 

2.1 in Chapter 2. 
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Figure 6.22 The payoff matrix for the Prisoner’s Dilemma game used in the 
simulation of the IPD game in this thesis. 
Defined by: Temptation to defect (T) must be better than the Reward for mutual 
cooperation (R), which must be better than the Punishment for mutual defection (P), 
which must be better than the Sucker’s payoff (S); the average of the Temptation to 
defect and the Sucker’s payoffs must not exceed the Reward for mutual cooperation. 
The Temptation to defect is the highest immediate reward, representative of the 
smaller-sooner (SS) reward in the self-control problem shown in Figure 2.1. Mutual 
cooperation (C,C) yields the highest reward in the long-term, representative of the 
larger-later (LL) reward in the self-control problem shown in Figure 2.1. The payoffs 
to the player representing the higher brain functions are listed first. 
 

To illustrate this consider a real world example of the self-control problem. 

With reference to Figure 2.1, assume that for a student that at the beginning of 

the academic year the LL represents getting good grades. At some point later 

in time, the student receives an invitation to go to the pub and it is at this time 

that his  SS becomes known, i.e. going to the pub. When invited to the pub, 

the student is faced with the self-control problem of staying at home and 

studying (the LL reward) or going to the pub and socializing (the SS reward). 

In Figure 6.22, the (C,C) is the LL  reward of staying at home and studying 

leading to good grades and the (D,D) is the SS reward of going to the pub and 

socializing. If it is assumed that C is staying at home and D is going to the 

pub, then (C,D) could represent the situation of when asked to the pub you 

decide to stay at home, but do not study as effectively because you wish you 

had gone to the pub, and (D,C) could represent the situation of going to the 
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pub, but having a miserable time because you feel guilty about not studying.5 

At the end of the game the ANN with the highest payoff is rewarded, (i.e., rt+1 

is set to one) and the other ANN is penalized (i.e., rt+1 is set to zero).  

6.5.1.3 Test Procedure 

The ANNs are configured with two input nodes representing the opposing 

network’s previous action (to defect or to cooperate) and two output nodes 

representing the ANN’s response (to defect or to cooperate.) With this 

arrangement, the ANNs’ configuration matches that of a RBG game of 

complete information, hence the networks topology and parameters are held 

as those selected as optimum for a RBG of complete information, i.e., the 

networks are configured as 2-6-6-2 and all parameters are held at 0.1. Bias 

was implemented as in the previous experiments, i.e., as a node whose weight 

is trainable in the same way as the other nodes in the ANN. Starting on a 

randomly selected initial weights means that each time the ANN plays 

different results can be expected, since learning starts at different points of 

error versus weights hypersurface. To overcome this disparity the results are 

held for three trials and the average shown on the graphs. The task of learning 

for this experiment is to find the best response based on the opponent’s 

previous response; this is encoded in the hidden nodes. The best response in 

this case is to maximize the individual ANN’s payoff. For evaluating the 

game, for each ANN the following are recorded, the pattern of play, i.e., the 

sequence of the ANN’s actions to defect or to cooperate, the payoff for the 

round and the accumulated payoff for the game.  
                                                           
5 Note the word cooperation has a non-conventional meaning in this thesis. Cooperation is 

defined as working together for a common end in which case (D,D) could be viewed as 
cooperation. In this thesis this is not so, cooperation means cooperating in order to gain the 
larger later reward (LL). Refer to Section 2.3 for further details. 
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6.5.1.4 Results 

The topology implemented for both ANNs is shown in Figure 6.23. The 

weights are numbered from left to right as shown in the legend of weights in 

Figure 6.23. 
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2 

4 5 6 B 

B 1 

2 3 

Input Layer 
(I) 

1 4 5 6 B 2 3 

2 1 

Hidden Layer 1 
(H1) 

Output Layer 
(O) 

Hidden Layer 2 
(H2) 

1 BI H11 16 I2 H14 31 H12 H21 46 H14 H24 61 BH2 O0 
2 BI H12 17 I2 H15 32 H12 H22 47 H14 H25 62 BH2 O1 
3 BI H13 18 I2 H16 33 H12 H23 48 H14 H26 63 H21 O0 
4 BI H14 19 BH1 H21 34 H12 H24 49 H15 H21 64 H21 O1 
5 BI H15 20 BH1 H22 35 H12 H25 50 H15 H22 65 H22 O0 
6 BI H16 21 BH1 H23 36 H12 H26 51 H15 H23 66 H22 O1 
7 I1 H11 22 BH1 H24 37 H13 H21 52 H15 H24 67 H23 O0 
8 I1 H12 23 BH1 H25 38 H13 H22 53 H15 H25 68 H23 O1 
9 I1 H13 24 BH1 H26 39 H13 H23 54 H15 H26 69 H24 O0 
10 I1 H14 25 H11 H21 40 H13 H24 55 H16 H21 70 H24 O1 
11 I1 H15 26 H11 H22 41 H13 H25 56 H16 H22 71 H25 O0 
12 I1 H16 27 H11 H23 42 H13 H26 57 H16 H23 72 H25 O1 
13 I2 H11 28 H11 H24 43 H14 H21 58 H16 H24 73 H26 O0 
14 I2 H12 29 H11 H25 44 H14 H22 59 H16 H25 74 H26 O1 
15 I2 H13 30 H11 H26 45 H14 H23 60 H16 H26    
 
Figure 6.23 The ANN’s topology with weight legend 
The weights of the synapses are numbered left to right, the number is followed by the 
node at the start of the synapse followed by the node at the end of the synapse, e.g., 
weight 16 is associated with the synapse that starts at the second node (2) in the input 
layer (I) and ends at the fourth node (4) in hidden layer 1 (H1).  
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The number of rounds per game were initially held at 1000. A trial consists of 

three games of 1000 rounds. To avoid any first player advantage or 

disadvantage, the starting ANN was selected at random. The ANNs are 

rewarded or penalised at the end of each round and at the end of the game, as 

detailed above. Although reinforcement learning involves learning throughout 

one’s lifetime (where learning in the case of ANNs is reflected in the change 

in the ANN’s weights) it was found that in this experiment most learning 

occurred early in the game (around a 150 rounds). After this point, the amount 

of change to the weights, from both ANNs, was so small as to be insignificant. 

Figure 6.24 and Figure 6.25 show the weight changes for the Selective 

Bootstrap network and the Temporal Difference network respectively. The 

graphs show the typical variance across all trials.  Given learning plateaus at, 

or around 150 rounds with the weight changes to be so small to be 

insignificant, a note was made for future experiments to limit the number of 

rounds per game to 250. 
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Figure 6.24 Learning in the Selective Bootstrap Network for the IPD Game 
Typical weight changes for the Selective Bootstrap network competing in the IPD 
game. Most learning occurs before 150 rounds, with the weights changes after 150 
rounds being so small as to be insignificant. 
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Figure 6.25 Learning in the Temporal Difference Network for the IPD game 
Typical weight changes for the Temporal Difference network competing in the IPD 
game. Most learning occurs before 100 rounds, with weight changes after this point 
being so small as to be insignificant. 
 
 

A trial is repeated 3 times and the total payoff and the average payoff for the 

three games for each ANN is recorded, as well as the net payoff, i.e., the sum 

of the total payoff for both ANNs. Figure 6.26 shows the average payoff for 

each ANN, the net payoff and the range, i.e., the minimum and maximum 

payoff for each ANN is also shown. Figure 6.26 shows the first 150 rounds 

even though each game was played for 1000 rounds. It was found that the 

disparity in the ANNs’ payoff and the range continued to increase. 
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Figure 6.26 The TD network versus the Selective Bootstrap network in the IPD 
game with selfish play 
The graph shows the average accumulated payoff, the range, i.e., the minimum and 
maximum values, shown as the shaded area for both the Temporal Difference 
network and the Selective Bootstrap network competing in an IPD game with selfish 
play, i.e., maximize their individual rewards. The game was played to 1000 rounds, 
but only the first 150 rounds are shown as the disparity in the networks’ payoff 
continues in same way, i.e., the difference in the minimum and maximum payoffs 
continues to increase for both networks.  
 
 
This disparity is also reflected in the patterns of play in the three trials. A 

breakdown of which is shown in Figure 6.27. 

 
Play % trial 1 % trial 2 % trial 3 
CC 12 3 2 
CD 44 57 39 
DC 11 26 37 
DD 33 14 22 

 
 

Figure 6.27 Pattern of play for an IPD game where the players receive 
individual rewards 
Breakdown in percentage by trial of a certain type of play for the IPD game, for 
example, DC with a value of 11 says that 11% of the time the ANNs’ played a game 
of one ANN defecting and the other ANN cooperating.  
 

                                                                       176                                                                            
  
 



6.5.1.5 Conclusion 

The results showed that the TD Feed Forward network consistently achieved a 

higher accumulated payoff. However, the ANNs did not follow any specific 

pattern of behaviour, i.e., both ANNs may choose to defect at every round or 

one ANN may play a round of cooperation followed by a round of defection. 

Both ANNs’ had a tendency to defect, as shown in the breakdown of the 

pattern of play in Figure 6.27.  

6.5.2 The Temporal Difference Network versus the Selective 

Bootstrap Network in an IPD game with global reward  

6.5.2.1 Introduction 

In the previous experiment where each ANN receives a different reward, we 

could say that the ANNs played selfishly, as each ANN played to maximize 

its own payoff. Although, the ANNs did not follow any specific pattern of 

behaviour, the results suggest both ANNs had a tendency to defect as opposed 

to cooperate. The motivation for this next set of experiments is: firstly to 

reduce the variability of the ANNs’ behaviour with the aim of improving the 

net payoff of the organism by rewarding (or penalizing) the ANNs in the same 

way and secondly to investigate further the idea proposed by Brown and 

Rachlin (1999) that there is a direct relationship between cooperating with 

one’s self and self-control behaviour. These ideas were presented in Chapter 2 

Section 2.3 and discussed in the previous experiment Section 6.5.1.1. With 

reference to Figure 2.1, Brown and Rachlin  (1999) concluded that choosing 

the reward for mutual cooperation (CC), i.e., the top left hand box in the IPD 

payoff matrix, leads us to the LL in the self-control problem in Figure 2.1. In 
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this experiment the ANNs receive the same global reward with the aim of 

maximizing the reward for the organism as a whole, where the 2-ANNs model 

represents the organism. This is measured by the number of times the players 

play a game of mutual cooperation. 

 

Again the Selective Bootstrap network represents the lower brain system and 

the Temporal Difference network represents the higher brain functions such as 

planning and control. Both the Selective Bootstrap rule and the Temporal 

Difference rule are implemented as described as in the previous experiment. 

The Value Function for the TD network is shown in Figure 6.28. The Value 

Function is the probability of winning, given the current state of the 

environment and the ANN’s action. In this experiment, the highest long-term 

reward is achieved if both ANNs learn to cooperate. This is reflected in the 

look-up table, which is in effect the Value Function. Figure 6.28 shows the 

initial values for the Value Function for each state/action combination. 

 
 

State D/C Action  
D/C     

Value Function  V(St) 

D D 0 
C C 1 
D C 0.5 
C          D                0.5 

 
 

Figure 6.28 The look-up table for Temporal Difference learning in the IPD 
Game with global rewards 
A table of initial values for the learned Value Function V, where D stands for Defect 
and C for Cooperate. The initial values are based on the fact that to gain the higher 
long-term reward both  ANNs must cooperate.  

6.5.2.2 Methodology 

The ANN is configured in the same way as in the previous experiment with 

two inputs nodes to represent the opponent’s previous action (a node to 

represent defection and a node to represent cooperation), and two output 
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nodes representing a response (a node to represent defection and a node to 

represent cooperation). The input and output are normalized as in the previous 

experiment. Figure 6.29 shows the system configuration for this experiment. 

The system configuration is similar to the Figure 6.22 for the above 

experiment. In the case of this experiment, the critic assigns a global reward 

or penalty based on the actions of both ANNs, as opposed to assigning an 

individual reward to each ANN, as in the previous experiment. 

 

  
 
 
 
 

Global Reward/ 
penalty 

Last action 
Defect/Cooperate 

Current action 
Defect/Cooperate 

Process 
Higher 

Cooperate  
Critic 

Environment  

 

 

 

 

 

 

 

 

 
 
Figure 6.29 System Configuration for two ANNs playing an IPD w
reward 
The environment contains a process that initializes the input/state to th
previous action (defect or cooperate) at the start of each round. The Out
the network’s action (defect or cooperate). The environment also contain
assigns a global reward or penalty based on the payoff for each round. 
 

The goal in the previous experiment was to maximize the indivi

payoff. As shown in the results in the above experiment, t

maximize the net payoff of the organism as a whole. The g

experiment is to maximise the net payoff. The payoff matrix to be
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experiment is shown in Figure 6.30. The reward in this experiment is global, 

i.e., both ANNs receives the same reward, which is the payoff shown in the 

matrix in Figure 6.306. The payoff matrix is explained in terms of higher and 

lower brain regions rather than row and column players. The reward is a 

global reward to both ANNs, i.e., both ANNs get the same. The reward is the 

sum of the rewards from the payoff matrix for the IPD game with local 

rewards shown in Figure 6.22.  

 
 

 Lower Lower 
Higher  2 (C,C) 1(C,D) 
Higher 1(D,C) 0 (D,D) 

 

 

Figure 6.30 The payoff matrix for the IPD game with global rewards 
The payoff matrix is explained in terms of higher and lower brain regions rather than 
row and column players. The reward is a global reward to both ANNs, i.e., both 
ANNs get the same. The reward is the net of the individual rewards from the payoff 
matrix for the IPD game with local reward Figure 6.22.  
 

Although the payoff matrix as shown in Figure 6.30 violates the first rule of 

the IPD game, i.e., T>R>P>S, it is similar to the payoff matrix used by Brown 

and Rachlin (1999) in the self-control game discussed in Section 2.3, whose 

results we aim to emulate. The ANNs actions are rewarded at each round of 

the game with the global reward shown in Figure 6.30. The reward for mutual 

cooperation (C,C) is the highest at 2, as this is the desired behaviour, the 

punishment for mutual defection (D,D) is the lowest at 0, the penalty for 

Sucker’s payoff (C,D) and the reward for Temptation to defect (D,C) both 

have a numerical value of 1. The reward for mutual defection is the lowest, 

representative of the cost of taking the smaller-sooner reward (SS) in the self-

                                                           
6 Note that the payoff matrix in the self-control game by Brown and Rachlin (1999) also used 

global rewards as well and  also violates the first rule of the IPD game, i.e., T>R>P>S, refer 
to Figure 2.5  
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control problem illustrated in Figure 2.1 in Chapter 2. Mutual cooperation 

(C,C) yields the highest reward in the long-term, representative of the larger-

later reward (LL) in the self-control problem illustrated in Figure 2.1 in 

Chapter 2 and hence the highest payoff. To illustrate consider our example of 

the student and the pub, the reward for Mutual defection (D,D) reflects the 

punishment for taking the immediate reward (SS) of going to the pub and 

having a good time, but at a cost of not studying and hence leading to poor 

grades in the future. Whereas the reward for Mutual cooperation (C,C) 

rewards us for staying at home and studying, leading us to the larger later 

reward (LL) of good grades 

6.5.2.3 Test Procedure 

The ANNs are configured in the same way as in the previous experiment, i.e., 

the networks are configured as 2-6-6-2 and all parameters are held at 0.1. The 

bias was implemented as in the previous experiments, i.e., as a node whose 

weight is trainable in the same way as the other nodes in the ANN. The task of 

learning for this experiment is to find the best response based on the 

opponent’s previous response; this is encoded in the hidden nodes. The best 

response in this case is to maximize the net payoff for the organism as a 

whole. Again, the pattern of play, i.e., the sequence of the ANN’s actions (i.e., 

to defect or to cooperate), the payoff for the round and the accumulated payoff 

for the game were recorded. The number of rounds per game was again held 

at 1000. Again, a trial consists of three games of 1000 rounds. To avoid any 

first player advantage or disadvantage, the starting ANN is selected at 

random. The ANNs are rewarded or penalised at the end of each round. Since 
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the payoff will be the same for both ANNs, the networks are not rewarded or 

penalized at the end of the game.   

6.5.2.4 Results 

A trial is repeated 3 times and the accumulated payoff and the average payoff 

for the three games are recorded, (the payoff in this experiment is the same for 

both ANNs, as both networks receive the same reward). Figure 6.31 shows the 

net payoff and the range, i.e., the minimum and maximum payoff for each 

round is also shown. 
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Figure 6.31 Results for the TD Network and Selective Bootstrap Network 
playing the IPD game where both networks receive the same reward 
The accumulated payoff for the IPD game with a global reward, showing the range, 
i.e., the minimum and maximum values as the shaded area. 
 

Figure 6.31 shows the average payoff and range (minimum and maximum 

values) for the first 150 rounds, as even though each game was played for 

1000 rounds play continued in the same way, that is the payoff continued to 

increase and play tended to be cooperation. This is reflected in the patterns of 

play in the three trials as shown in Figure 6.32. 
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Play % trial 1 % trial 2 % trial 3 
CC 28 50 55 
CD 45 1 32 
DC  - 39 12 
DD 27 9 1 

 
Figure 6.32 Pattern of Play for an IPD Game with global reward 
Breakdown in percentage by trial of a certain type of play where players receive the 
same reward. To illustrate, for CC a value of 28 says that 28% of the time the 
networks played a game where both networks cooperate.   

6.5.2.5 Conclusion 

In the case of the IPD game played with a global reward, i.e., both ANNs 

receive the same reward, play was symmetric with cooperation the dominant 

behaviour from both ANNs. The results show that the accumulated payoff is 

higher for both ANNs than in the previous experiment, suggesting that the 

ANNs performed better in terms of desired behaviour, i.e., a global reward 

promotes mutual cooperation. In summary, with this arrangement (both ANNs 

receiving the same reward) there is less variability in the ANNs’ behaviour 

and the accumulated payoff increases, as opposed to the net payoff in the IPD 

with a local reward (Figure 6.26). This can be explained as follows: in the IPD 

game with a global reward there is a tendency for both ANNs to cooperate, 

hence the ANNs receive the higher reward for Mutual cooperation. In games 

of asymmetric play, i.e., one ANN defects at random and the other cooperates, 

the reward is less and hence the net payoff is less for the organism.   

6.6 Modelling a bias towards future rewards 

The most important purpose of this chapter is to model the behaviour self-

control through precommitment. As discussed in Chapter 2, precommitment 

behaviour can be defined as carrying out an action with the aim of denying (or 

at least restricting) future temptations, e.g., the SS  in Figure 2.1, or to go to 
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the pub in the student example. Precommitment is carried out in order that we 

can obtain the larger later reward, the LL in Figure 2.1, or the good grades in 

the student example. Precommitment in the case of the student who has to 

study and wants to avoid temptation such as going to the pub, could be simply 

switching their mobile phone off or rigging up some contraption to prevent 

him/her from answering the door. The results from the previous experiment 

would seem to suggest that a tendency to cooperate leads to the larger later 

reward, the LL, which is in line with the results of Brown and Rachlin (1999). 

Cooperation was enhanced to some extent by implementing a global reward. 

It would seem however from the results of the previous experiment that in 

order to maximize the long term payoff, we need to bias rewards to promote 

cooperation. Secondly, in the payoff matrix in Figure 6.30, we do not 

differentiate between the (C,D) situation, which represents the middling 

behaviour of staying at home, but not studying as effectively, because you 

wish you had gone to the pub and the (D,C) situation, i.e., the negative 

behaviour of going to the pub, but having a miserable time because you feel 

guilty for not studying.  

 

In this next set of experiments we examine three ways of addressing these 

issues. The first experiment investigates the effect of implementing the bias 

towards future rewards by simply varying the input value of the ANN’s bias 

node between 0 and 1 (instead of fixed as 1). The effect on the behaviour of 

the 2-ANNs model is recorded. This method is referred to as the variable bias 

method. The second experiment implements a bias towards future rewards as 

an extra input to one or both of the ANNs in the 2-ANNs model. In this case 
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the ANN’s threshold is implemented in the usual way, i.e., as a node with an 

input value of 1 whose weight is trainable in the same way as the other nodes 

in the network and the bias towards future rewards is implemented as an 

additional node to the input layer. Different values are tried for this extra input 

and the effect is recorded. This method is referred to as the extra input bias 

method. The final experiment implements a bias towards future rewards as a 

differential bias applied to the payoff matrix of Figure 6.30 to calculate a 

differential payoff.  Again the ANN’s threshold is implemented in the usual 

way, i.e., as a node with an input value of 1 whose weight is trainable in the 

same way as the other nodes in the network. This method is referred to as the 

differential bias method. In all three techniques for implementing the bias 

towards future rewards the parameter is assigned a value between 0 and 1, 

which is fixed for the duration of the trial. The results for all three techniques 

are recorded and compared. 

6.6.1 Modelling bias towards future rewards as a variable bias 

6.6.1.1 Introduction 

In this experiment a bias towards future rewards is implemented by varying 

the value of the bias node of the ANN between the values 0 and 1, i.e., this 

variable bias is in effect the ANN’s bias. These different values represents 

different values of bias towards future rewards. For example switching off his 

or her mobile phone biased the student’s later choice of staying home and 

studying. A more extreme form would be to rig up some contraption, e.g., 

nailing planks of wood to the door, to physically prevent the student from 

going to the pub. A version of IPD was played with the TD network 
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competing against the Selective Bootstrap network. The variable bias value is 

fixed for the duration of the game. The aim of this experiment is to reduce 

behaviour variability of the ANNs by increasing the value of this variable 

bias and also to enhance cooperation. This is the desired behaviour if this 

variable bias technique did indeed represent precommitment.  

6.6.1.2 Methodology 

Each ANN is configured as shown in Figure 6.33.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.33 The network topology for an ANN implemented with a variable bias 
The network topology used for the TD network and the Selective Bootstrap network 
where the bias towards future rewards is implemented by varying the input value of 
the network’s bias. This technique is referred to as the variable bias V.   
 

There are two inputs nodes to represent the opponent’s previous action (a 

node to represent defection and a node to represent cooperation), a variable 

bias whose input takes a value between zero and 1 and whose weight is 
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trainable in the same way as the other nodes in the network and two output 

nodes representing a response (a node to represent defection and a node to 

represent cooperation). The input and output are normalized as in the previous 

experiments. The system configuration for this experiment is the same as in 

the experiment where the ANNs in the 2-ANNs play to maximize their own 

payoffs, which assigns a local reward or penalty to each ANN, see Figure 

6.20. The payoff matrix is the same as the experiment where each ANN 

receives a local reward as shown in Figure 6.22. 

6.6.1.3 Test Procedure 

The ANNs are configured as 2-6-6-2 and all learning parameters are held at 

0.1 as in the experiment in Section 6.5.2. A series of experiments were run to 

test the effect of increasing the variable bias.  Again, the pattern of play, i.e., 

the sequence of the ANN’s action, i.e., to defect or to cooperate, the payoff for 

the round and the accumulated payoff for the game were recorded. The 

number of rounds per game was held at 1000, giving the ANNs a chance to 

learn. A trial consists of three games. To avoid any first player advantage or 

disadvantage, the starting ANN is selected at random. The ANNs are 

rewarded or penalised just at the end of each round. 

6.6.1.4 Results 

A series of experiments were run to test the effect of changing the variable 

bias on the ANNs’ emergent behaviour when both ANNs signal a bias 

towards future rewards. Figure 6.34 summarizes the results for a range of 

values for the variable bias V. 
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Figure 6.34 TD network versus Selective Bootstrap network with a variable bias 
of the same value competing in the IPD game 
The accumulated payoff for a Temporal Difference Feed Forward Network 
competing against a Selective Bootstrap Network in the Iterated Prisoner’s 
Dilemma’s game. Both networks have a variable bias V with the same value for the 
bias towards future rewards. The net payoff (the summation of the accumulated 
payoffs from both networks) increases, as cooperation becomes the dominant play 
from both networks, since both networks are rewarded for mutual cooperation. 
 

The results show that increasing the value of the variable bias node increases 

the tendency, from both ANNs, is to cooperate. This is shown in the increase 

in the net payoff, as mutual cooperation (1,1) produces the highest payoff in 

the long term. For low values of the variable bias node, the play tends to be 

asymmetric, reflected in the disparity in the payoffs between the two ANNs. 

In an asymmetric play one ANN will defect and receive the higher immediate 

reward of Temptation to defect of 2; the other ANN will cooperate and 

receive the lower reward of Sucker’s payoff of (-1). This is reflected in the 

vastly different accumulated payoffs for the ANNs. Increasing the value of the 

value of the variable bias node promotes cooperation from both ANNs and the 

difference is reduced.   
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6.6.1.5 Conclusion 

In this section the bias towards future rewards is modelled as a variable bias 

whose value ranged from zero, indicating that the network is not biasing 

towards future rewards, to one where the network is fully committed to long 

term rewards. Theoretically this could not act as precommitment to the 

network, because during training there is a possibility that the final values of 

the weights attained are such as to cancel out the different input value for the 

bias towards future rewards, as shown in Figure 6.35.  

  

  
 10 2 
           

0.1 0.5 
 
 
 
 
Figure 6.35 A problem with implementing a bias towards future rewards as a 
variable bias  
The effective input for of the above configurations are the same (i.e., 0.1 * 10  = 0.5 
* 2), so they have the same effect despite the different initial input values.  
 

So what is the effect of a variable bias on the ANN? It would seem from the 

results in this experiment that with a variable bias cooperation is enhanced, 

which is the desired behaviour if this variable bias did indeed represent 

precommitment. In addition, with the variable bias, the ANN  still has the 

capability to learn the best solution. An alternative method, described in the 

next experiment, does not have the problem highlighted in Figure 6.35. 
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6.6.2 Modelling a bias towards future rewards as an extra input to the 

ANN  

6.6.2.1 Introduction 

The motivation for this experiment is to determine if a bias towards future 

rewards can be modeled as an extra input to the ANN. Modeling a bias 

towards future rewards as an extra node in the input layer is in effect 

implementing an extra input to the ANN whose value is fixed. In this 

experiment, a bias towards future rewards is implemented as an extra node in 

the input layer with the following assumptions: (i) once announced it must be 

irrevocable, i.e., once the value is set it cannot be changed for the duration of 

the trial and (ii) the input value of the extra node has different values to model 

different levels of bias towards future rewards. For example, moving the 

alarm clock away from the bed biased our later choice of getting up when the 

alarm clock rings. A more extreme form of a bias towards future rewards 

however, would be to rig up some contraption to physically prevent ourselves 

from going back to sleep. These different levels of a bias towards future 

rewards are modeled as input values from zero (do not care about future 

rewards, e.g., the alarm clock stays by the bed), to one (fully committed to 

long term gain, e.g., the contraption).  

6.6.2.2 Methodology 

The ANN is configured in the same way as in previous experiments, as shown 

in Figure 6.23 with the network’s bias implemented as a node whose weight is 

trainable in the same way as the other nodes in the ANN. In this cases bias 

                                                                       190                                                                            
  
 



towards future rewards is implemented as an extra input node whose value 

ranged from zero to one as shown in Figure 6.36.  

Output layer  

 
Hidden layer 

 

 
Input layer 

 
Extra Input 

 
Figure 6.36 The topology of an ANN with a bias towards future rewards 
implemented as an extra input 
A bias towards future rewards is implemented as an additional input node whose 
value ranged from zero to one.  
 

As in the previous experiment there are two inputs nodes to represent the 

opponent’s previous action (a node to represent defection and a node to 

represent cooperation), and two output nodes representing a response (a node 

to represent defection and a node to represent cooperation).  The input and 

output are normalized as in the previous experiment. The system 

configuration is the same as that shown in Figure 6.28. Again, a global reward 

or penalty, based on the actions of both ANNs, is assigned to both ANNs at 

the end of each round. The payoff matrix to be used in this experiment is the 

same as the global reward as shown in Figure 6.30. 

6.6.2.3 Test Procedure 

The ANNs are configured as 3-6-6-2 and all learning parameters are held at 

0.1. A version of IPD was played with the TD network competing against the 

Selective Bootstrap network. The extra input value is fixed for the duration of 

the game. The aim is to reduce behaviour variability from the ANN by 

                                                                       191                                                                            
  
 



increasing the value of the extra input. A series of experiments were run to 

test the effect of increasing the bias towards future rewards on the ANNs 

emergent behaviour when (i) both ANNs signal a bias towards future rewards 

and (ii) when just one ANN signals a bias towards future rewards.  Again, the 

pattern of play, i.e., the sequence of the ANN’s actions to defect or to 

cooperate, the payoff for the round and the accumulated payoff for the game 

were recorded. The number of rounds per game was held at 1000, giving the 

networks a chance to learn. A trial consists of three games. To avoid any first 

player advantage or disadvantage, the starting ANN is selected at random. The 

ANNs are rewarded or penalised just at the end of each round.   

6.6.2.4 Results 

Figure 6.37 summarizes the results when both ANNs signal a bias towards  

future rewards.  
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Figure 6.37 TD network versus Selective Bootstrap network in the IPD game 
with a bias towards future rewards implemented as an extra input on both 
ANNs 
The net payoff for a Temporal Difference network competing against a Selective 
Bootstrap network in the Iterated Prisoner’s Dilemma’s game. Both networks signal 
bias for future rewards with the same value. The net payoff increases, as cooperation 
becomes the dominant play from both networks, hence both networks receive the 
higher reward for mutual cooperation. 
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The results show that when a bias towards future rewards is implemented on 

both ANNs, the tendency from both ANNs is to cooperate. This is shown as 

an increase in the payoff, as mutual cooperation produces the highest payoff 

in the long term, which is reflected in the patterns of play in Figure 6.38.  

 
 0.01 (%) 0.5 (%) 0.9 (%) 
CC 60  36 69 
CD 6  31 20 
DC 19  32 5 
DD 15  1 6 

 

Figure 6.38 Pattern of play with a bias towards future rewards implemented as 
an extra input to both ANNs 
Breakdown in percentage by trial of a certain type of play for the IPD game with 
global reward, for example, DC with a value of 38 says that 38% of the time the 
networks played a game where the TD network cooperates and the Selective 
Bootstrap network defects.  A pattern of play of CC or DD is considered to be 
symmetric. A pattern of play of CD or DC is considered to be asymmetric.  
 

Figure 6.39 summarizes the results when just the TD network signals a bias 

towards future rewards.  
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Figure 6.39 TD Network versus Selective Bootstrap Network in the IPD game 
with a bias towards future rewards implemented as an extra input to only the 
TD Network  
The payoff increases for all levels, but the value of the bias has an effect on the 
amount of payoff achieved.  
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The results show that the level of bias affects the disparity in the payoffs. For 

low levels of bias, the play tends to be asymmetric, as shown in the 

breakdown of the typical patterns of play in Figure 6.40.  

 

  0.01 (%) 0.5 (%) 0.9 (%) 
CC 24  55 35 
CD 23  18 22 
DC 38  14 26 
DD 15  16 19 

 

Figure 6.40 Pattern of play with a bias towards future rewards implemented as 
an extra input on only the TD Network  
Breakdown in percentage by trial of a certain type of play for the IPD game with 
global reward when a bias towards future rewards is implemented on just the TD 
network.  To illustrate, an entry CD with a value of 23 says that 23% of the time the 
networks played a game where the TD network cooperates and the Selective 
Bootstrap network defects.  A pattern of play of CC or DD is considered to be 
symmetric. A pattern of play of CD or DC is considered to be asymmetric. 
 

This is reflected in the lower payoff, as in asymmetric play where one ANN 

will defect and the other ANN will cooperate, the organism will receive the 

lower reward of Temptation to defect or Sucker’s payoff.  Increasing the level 

of bias on the TD Feed Forward network does not necessarily promote 

cooperation from both networks.   

 

Figure 6.41 summarizes the results when just the Selective Bootstrap network 

signals a bias for future rewards.  
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Figure 6.41  The TD Network versus the Selective Bootstrap Network in the IPD 
game with a bias towards future rewards implemented as an extra input on only 
the Selective Bootstrap Network 
The net payoff increases for all levels. The value of the bias has a greater effect on 
the amount of payoff than when signaled on just the TD network or on both 
networks. 
 
  
The results show that increasing the level of bias towards future rewards on 

the Selective Bootstrap network promotes cooperation from both networks, as 

shown in Figure 6.42 and the payoff increases, as mutual cooperation yields 

the highest reward. There is a direct relationship between the level of bias for 

future rewards and cooperation. 

 
  0.01 (%) 0.5 (%) 0.9 (%) 
CC 31  32 89 
CD 11  31  6 
DC 34  30  2 
DD 24  7  3 

 

Figure 6.42 Pattern of play with a bias towards future rewards implemented as 
an extra input on only the Selective Bootstrap Network 
Breakdown in percentage by trial of a certain type of play for the IPD game with 
global reward, with bias towards future rewards implemented on just the Selective 
Bootstrap network. For example, CC with a value of 31 says that 31% of the time the 
networks played a game where both networks cooperate.  A pattern of play of CC or 
DD is considered to be symmetric. A pattern of play of CD or DC is considered to be 
asymmetric.  
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6.6.2.5 Conclusion 

In this section the bias towards future rewards is modelled as an extra input 

node whose input value ranged from zero, indicating that the ANN is not 

biased towards future rewards, to one, where the ANN is fully committed to 

long term rewards. This technique of modelling the bias towards future 

rewards as an extra input does seem to promote cooperation, although the 

percentage of cooperation depends upon which network signals a bias towards 

future rewards. In addition, this technique does not have the problem 

illustrated in Figure 6.35. The problem in this technique is by using the global 

reward payoff matrix of Figure 6.30 the situations of (C,D) and (D,C) are 

rewarded in the same way, which is not necessarily true. For example, if we 

consider the student  and the temptation of going to the pub,  if it is assumed 

that C is staying at home and D is going to the pub, then (C,D) could represent 

the middling situation of when asked to go to the pub you decide to stay at 

home, but do not feel so much of a conflict, as you were determined to stay at 

home any way. Therefore you work reasonably well. (D,C) could represent 

the more negative situation of going to the pub, but you feel doubly miserable 

because not only do you feel guilty about not studying, but you also are going 

against your long term goal. An alternative technique for modeling a bias 

towards future rewards, described in the next section, aims to address this.  
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6.6.3 Modelling a bias towards future rewards as a differential bias 

applied to the payoff matrix 

6.6.3.1 Introduction 

The motivation for this experiment is to examine the effect of modelling a 

bias towards future long-term rewards as a variable bias applied to the payoff 

matrix referred to as the differential bias. This differential bias, with a value 

between 0 and 1, is assigned to the payoff matrix for both ANNs to calculate 

the differential payoff and is fixed for the duration of the trial. Let 

ψ  represent the differential bias to distinguish it from the Neural Network 

bias described in Figure 6.23. The differential bias ψ  is added only to the 

diagonal terms in the matrix as shown in Figure 6.43:  

 

  
 

 Lower Lower 
Higher  2 (C,C) 1(C,D) +ψ 
Higher 1(D,C)-ψ 0 (D,D) 

 

 

 

Figure 6.43  A bias towards future rewards implemented as a differential bias 
ψ  applied to the payoff matrix to calculate the differential payoff 
A differential bias ψ  is applied to the payoff matrix. The bias is assigned with a 
value between 0 and 1 for both networks, which is fixed for the duration of the trial. 
This bias is used in the payoff matrix, to calculate the differential payoff and is added 
only to the diagonal terms in the matrix. This represents a bias towards future reward 
in the following way. In the example of the student and the pub, when the student is 
asked to go to the pub, but stays at home (C,D), he or she does not feel so much of a 
conflict, as they were determined anyway to stay at home. Therefore, they work 
reasonably well and get a good payoff. Similarly, if the student is asked to stay at 
home, but goes to the pub (D,C), they feel doubly miserable as they also go against 
their own preference to the long-term reward. 
 

This represents a bias towards future rewards in the following way. In the 

example of the student and the pub, when the student is asked to go to the 

pub, but stays at home (C,D), he or she does not feel so much of a conflict, as 
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they were determined anyway to stay at home. Therefore, they work 

reasonably well and get a good payoff. Similarly, if they are asked to stay at 

home, but go out (D,C), they feel doubly miserable as they also go against 

their own bias for long-term future gain. 

6.6.3.2 Methodology 

The ANN is configured in the same way as in the experiment described in 

Section 6.5.2 and shown in Figure 6.23 with two inputs nodes to represent the 

opponent’s previous action (a node to represent defection and a node to 

represent cooperation), and two output nodes representing a response (a node 

to represent defection and a node to represent cooperation). The ANN’s bias 

was implemented as in the previous experiment, i.e., as a node whose weight 

is trainable in the same way as the other nodes in the network. The input and 

output are normalized as in the previous experiments. The system 

configuration for this experiment is the same as the previous experiments, 

which assigns a global reward or penalty based on the actions of both ANNs, 

i.e., Figure 6.29.  The payoff matrix to be used in this experiment is shown in 

Figure 6.44. The differential bias ψ  is assigned a value between 0 and 1 at the 

beginning of a trial for both networks, and is fixed for the duration of that 

trial. 

6.6.3.3 Test Procedure 

The ANNs are configured as 2-6-6-2 and all learning parameters are held at 

0.1 as in the experiment in Section 6.5.2. A series of experiments were run to 

test the effect of increasing the differential bias, when applied to the payoff 

matrix, on the emergent behaviour of the ANNs.  Again, the pattern of play, 
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i.e., the sequence of the ANN’s actions to defect or to cooperate, the payoff 

for the round and the accumulated payoff for the game were recorded. The 

number of rounds per game was held at 1000, giving the ANNs a chance to 

learn. A trial consists of three games. To avoid any first player advantage or 

disadvantage, the starting ANN is selected at random. The ANNs are 

rewarded or penalised just at the end of each round. 

6.6.3.4 Results 

Figure 6.45 compares the effect on the accumulated payoff of increasing the 

value of the differential bias ψ . 
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Figure 6.44  The effect of increasing the differential bias when added to the 
diagonal rewards of the payoff matrix in the IPD game 
When a differential bias ψ is applied to the diagonal rewards for asymmetric play, 
i.e., (C,D) or (D,C), the results suggest that increasing ψ promotes cooperation 
behaviour leading to the reward for mutual Cooperation. 
 

The results show that increasing the level of bias ψ,  implemented as 

described above, would seem to promote cooperation, as shown in Figure 

6.45, and hence the accumulated payoff increases, as the ANNs receive the 
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higher reward for mutual cooperation. In addition, it would seem from the 

results in Figure 6.46, that implementing the bias for future rewards as a 

differential bias ψ  addresses the conflict represented by the situations of  

(C,D), i.e., when asked to the pub you stay at home, but do not study as 

effectively because you wish you had gone to the pub, and (D,C) going to the 

pub, but having a miserable time because you feel guilty about not studying. It 

does this by  promoting the middling behaviour of when you are asked to go 

to the pub, you stay at home (C,D), but you do not feel so much of a conflict, 

as you were determined anyway to stay at home. 

 

  0.01 (%) 0.5 (%) 0.9 (%) 
CC 55 33 75 
CD 6 0 24 
DC 34 52 1 
DD 79 15 0 

 

Figure 6.45  Pattern of play when the bias for future reward is implemented as a 
differential bias applied to the payoff matrix 
Breakdown in percentage by trial of a certain type of play for the IPD game with bias 
for future rewards implemented as a differential bias applied to the payoff matrix. 
For example, CC with a value of 61 says that 61% of the time the networks played a 
game where both networks cooperate.  A pattern of play of CC or DD is considered 
to be symmetric. A pattern of play of CD or DC is considered to be asymmetric. 
 

6.6.3.5 Conclusion 

Implementing a bias towards future rewards as a bias applied to the payoff 

matrix, to calculate the differential payoff, would seem to not only to promote 

cooperation, but also to address the internal conflict represented by either the 

(C,D) or (D,C) situation. In particular, the middling behaviour of staying at 

home and working (C,D) would appear to increase as the differential bias ψ  

approaches the upper limit of the range tested (0.9). This can perhaps be 
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explained as follows: as the reward is global, i.e., both ANNs receive the same 

reward, implementing the bias towards future rewards in this way affects both 

ANNs, hence increasing the differential bias ψ  increases the reward for the 

middling behaviour of (C,D) bringing it closer to the reward for mutual 

cooperation, whilst at the same time decreasing the reward for the more 

negative behaviour of (D,C) bringing it closer to the reward for mutual 

defection. The result is that instead of four classes of rewards the organism is 

faced with just two classes of rewards: one with a tendency for cooperation 

and one with a tendency for defection. 

 

6.7 Summary 

In this chapter the 2-ANNs model presented in Chapter 3, representing the 

higher and lower brain centres, is implemented as two artificial neural 

networks with different weight update rules to represent the different 

behaviours of the higher and lower centres of the brain. We tested the 2-

ANNs model as two autonomous players learning simultaneously in a shared 

environment competing in two general-sum games, firstly in the RBG then in 

the IPD game. This makes our 2-ANNs a multi-agent system. We have seen 

from the review of MARL in Section 6.2 that this is an area still in its infancy. 

There is still no definitive model of multi-agent learning, as there is with 

SARL and the MDP mathematical model. MARL has been proven to work for 

a restricted set of general-sum games, which are strictly competitive, i.e., 

zero-sum games. In this chapter, we have shown that convergence is reached 

in both the RBG and the IPD game, which are general-sum games where the 

players’ payoffs are neither totally positively nor totally negatively correlated. 
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The networks weights settled into an equilibrium and with the performance of 

the ANNs reaching an acceptable level, i.e., division of the resource is close to 

half in the RBG, and both ANNs settle into a play of mutual cooperation in 

the IPD game. These results suggest that TD learning is representative of the 

higher brain processes and the Selective Bootstrap is representative of the 

lower brain processes. Since the Selective Bootstrap network accepted less 

than optimal offers, i.e., less than half of the pot in the RBG, and had a 

tendency to defect in the IPD game, which is indicative of myopic behaviour 

associated with the lower brain processes.  The Temporal Difference network 

exhibited behaviour associated with the higher brain functions such as 

planning and control in that it did not accept the first offer made and appeared 

to hold out for a more acceptable offer in the RBG, and had a tendency to 

cooperate in the IPD game. 

 

In the final set of experiments, a version of IPD was played with the TD 

network competing against the Selective Bootstrap network, with one or both 

networks signalling a bias towards future rewards. The results suggest that 

with a bias towards future rewards implemented as a variable bias 

cooperation is enhanced. This is the desired behaviour, if this variable bias 

technique does indeed represent precommitment, as increasing this variable 

bias enhances cooperation behaviour leading to the LL. With this technique 

there is a possibility that the final values of the weights are such as to cancel 

out the effect of the variable bias, as illustrated in Figure 6.35. This problem 

does not occur when a bias towards future rewards is implemented as an extra 

input node and again cooperation is enhanced. With this extra input technique 
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the situations represented by (C,D) and (D,C) are rewarded in the same way, 

which is not necessarily true. When the bias towards future rewards was 

implemented as a differential bias added to the global reward in the payoff 

matrix, cooperation behaviour was further enhanced. In addition, by 

increasing this differential bias the dilemma represented by the situations 

(C,D) or (D,C) is resolved since the reward for the middling behaviour 

represented by (C,D) also increases promoting cooperation. For these reasons 

it was considered that the differential bias technique was the best technique to 

model precommitment. This apparent relationship, between precommitment 

modeled, as a differential bias, and cooperation, is explored further in the 

context of evolution in the next chapter. 
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Chapter 7  

7 Evolutionary Adaptation of the Neural Model 

7.1 Chapter Outline 

In this chapter the 2-ANNs model, presented in Chapter 3, and developed and 

tested in the previous chapter, undergoes evolutionary adaptation by 

simulating genetic evolution using genetic algorithms (Holland, 1992). In 

Chapter 5, it was concluded that genetic algorithms is the evolutionary 

algorithm of choice in this thesis since, they are concerned with the evolution 

of the individual and use a near true simulation of natural evolution making it 

more biologically plausible than alternative evolutionary algorithms such as 

Evolutionary Programming or Evolutionary Strategies. In addition, in Genetic 

Algorithms information on intermediate generations is easily retained and 

since the aim of simulating an evolutionary process in this thesis is not simply 

to determine a clear winner, but to examine what behaviour patterns emerge 

this is yet another reason why Genetic Algorithms is the evolutionary 

algorithm of choice for this thesis.   

 

The motivation for this chapter is to investigate the evolution of the behaviour 

self-control through precommitment. The results in Chapter 6 suggest 

implementing a bias towards future rewards enhances cooperation behaviour, 

which as Brown and Rachlin (1999) suggest leads to greater self-control as we 

learn to cooperate with our selves. In Chapter 6, this bias towards future 

rewards was called the differential bias to distinguish it from the ANN bias 

shown in Figure 6.23. If this differential bias does in fact enhance cooperation 

                                                                       204                                                                            
  
 



behaviour then this could be interpreted as precommitment as it has the same 

effect as precommitment, i.e., cooperation behaviour is enhanced leading to 

the larger later reward, the LL in Figure 2.1. In addition, the results in Chapter 

6, Section 6.6.2, showed that increasing this differential bias appeared to 

resolve some internal conflict represented by the (C,D) or (D,C) situations, 

again suggesting that this is a reliable technique of modeling precommitment 

since, as described in Section 2.2, precommitment resolves some internal 

conflict by restricting or denying future choices. The evolution of this 

differential bias as precommitment, is the purpose of this chapter.  

 

There are two simulations of evolutionary adaptation carried out on the 2-

ANNs model developed and tested in Chapter 6. Both simulations focus (as 

before) on the functional decomposition of the brain into “higher” brain 

functions associated with rational thought, and the “lower” brain functions 

associated with instinctive behaviour as in our 2-ANNs model. The two 

Artificial Neural Networks (2-ANNs) model in this thesis is subjected to 

evolutionary adaptation using GAs.  

 

The first simulation investigates the suggestion made in Chapter 6 that self-

control is an example of some internal conflict that is resolved by 

precommitment. It does this by examining what behaviour patterns emerge 

from the 2-ANNs model, focusing on when inconsistent patterns of behaviour 

occur and what (if any) is the dominant behaviour from each of the two 

ANNs. The types of questions that are asked are: what is the effect of this 

differential bias on the pattern of play? What different patterns of behaviour 
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emerge, for example, when is cooperation the dominant pattern of play? What 

are the results, in terms of fitness, of the various possible combinations of 

patterns of play? Does an ANN prefer a particular pattern of play? Is any one 

network the decision-maker? In addition, the simulation investigates if 

precommitment, implemented as a bias towards future rewards, results in a 

fitness benefit in game-theoretical situations. The types of questions that are 

asked are: what is the effect of this bias towards future rewards on the fitness 

of the individual, on the population and on future generations? What values of 

this bias towards future rewards work best, i.e., maximize the fitness of the 

individual, the population and future generations? The simulation answers 

these questions by examining the effect of this differential bias on the payoff, 

where the payoff represents the fitness of the organism.  The premise being 

that if this differential bias is a successful mechanism in game-theoretical 

situations then this should result in a higher fitness for the organism. The 

relationship between this differential bias and cooperation is investigated in 

the context of the psychological data on self-control and cooperation by 

Brown and Rachlin (1999).  

 

The second simulation examines the effect of this differential bias on learning. 

The premise being that the brain is not hard-wired for every response and 

learning during an organism’s lifetime plays a critical part in deciding which 

action is the best response to a changing environment. Here the role of 

learning and the effect of learning on the fitness of the organism in the context 

of this differential bias undergoing evolutionary adaptation is investigated.  

The type of questions that are asked here are:  what is the effect of learning on 

                                                                       206                                                                            
  
 



the fitness of the individual, on the population and on future generations? 

What effect do different values for this bias towards future rewards have on 

learning? For example, does reducing the differential bias slow down 

learning? Does a differential bias of zero prevent learning? If the differential 

bias is removed, what is the effect on learning? Does having a bias towards 

future rewards make a difference on the results? 

7.2 Scenario of Simulation of the evolution of a bias towards future 

rewards  

The motivation in simulating the evolutionary process in this first simulation 

is not to simply determine a clear winner, but to investigate how a bias 

towards future rewards leads to a larger, but later reward, the LL in Figure 2.1, 

and how this bias may have evolved. In the first instance, experiments are run 

to see which values for this bias towards future rewards yield the higher 

payoff. The payoff in this experiment is the individual’s fitness. The results 

from the experiments in Chapter 6 on modeling a bias towards future rewards, 

suggested that a high payoff indicates a higher percentage of cooperation 

behaviour. In this simulation the effect of increasing this bias towards future 

rewards on cooperation behaviour and hence payoff is investigated and the 

results are compared to Baker’s results (2001), which showed that increasing 

the probability of reciprocation, increases the tendency to cooperate. The 

hypothesis, which is made in this thesis, is that this bias towards future 

rewards plays the same role as the probability of reciprocation in Baker’s 

experiment (2001) in that increasing the value of this bias towards future 

rewards promotes cooperation behaviour. 
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The evolutionary ideas are implemented in a game theoretical context such as 

in Axelrod’s evolution of cooperation (Axelrod and Hamilton, 1981), where 

different strategies were represented as a string of chromosomes for the 

Iterated Prisoner’s Dilemma  (IPD) game.  In the Axelrod and Hamilton 

(1981) experiment each individual represented a strategy. Each individual in 

the current generation using the strategy defined in its chromosomes, 

competes against other strategies in the Iterated Prisoner’s Dilemma game. 

Each game consisted of 151 rounds against the same opponent. This was the 

average number of rounds used in an earlier experiment of a computer 

tournament of different strategies submitted by academics in economics, 

sociology, political science and mathematics (Axelrod and Hamilton, 1981).  

The fitness of an individual was defined as the aggregate total against all the 

opponents, in all the competitions. Each strategy was ranked by its fitness. 

The fittest strategies were subjected to genetic evolution using genetic 

algorithm techniques (Holland, 1992). Axelrod characterised the strategies 

that evolved as either Nice or Nasty. A Nice strategy, is the one where the 

player is never the first to defect, but is capable of defecting (only in 

retaliation). A Nasty strategy includes all other strategies. A player with a 

Nasty strategy will defect even when not provoked. Axelrod and Hamilton 

(1981) found that most of the strategies that evolved were Nice strategies, 

such as the Tit-for-Tat strategy. The Tit-for-Tat strategy is where the player 

cooperates on the first move and from then on he or she does whatever the 

other player did on the previous move (Axelrod and Hamilton, 1981). In 

Axelrod’s study on the simulation of the evolution of strategies for the IPD, it 

was found that the strategy Tit-for-Tat was found to achieve the highest score 
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and that most of the strategies that evolved in the simulation resembled Tit-

for-Tat (Axelrod and Hamilton, 1981).  

 

Rachlin (2000) suggests that the problem of self-control has been likened to 

an IPD game of Tit-for-Tat with oneself. The self-control problem can be 

constructed as an IPD game in the following way: defection (going to the pub 

and socializing), yields a higher immediate payoff, i.e., the SS in Figure 2.1, 

but if you continue to defect however, you would do worse in the long term 

rather than if you cooperate (stay at home and study), leading to the larger 

later reward (good grades), i.e., the LL in Figure 2.1. In terms of self-control 

this can viewed as learning to cooperate with oneself in order to maximise the 

total accumulated payoff. Brown and Rachlin (1999) suggest that self-control 

can be explained in terms of the probability of continuing to cooperate with 

oneself. If one cooperates with his or her self now (stays at home and studies), 

then the next time he or she faces the dilemma of choosing between the 

smaller-sooner reward (the pub) or the larger-later reward (good grades), he or 

she can still choose the higher future reward, i.e., the good grades. In this 

simulation the relationship between cooperation and implementing a bias 

towards future rewards is investigated in the context of evolutionary 

adaptation of the 2-ANNs model. In particular the focus is on the effect of 

increasing this bias for future rewards on behaviour variability and fitness.  

7.2.1 Architecture and Algorithm  

The simulation program is implemented on the 2-ANNs model developed and 

tested in Chapter 6, playing the Iterated Prisoner’s Dilemma (IPD) game. As 

in the experiment in Section 6.6.2, the ANN simulating the lower brain 
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functions is implemented with the Selective Bootstrap weight update rule 

(Widrow et al., 1973) and the ANN simulating the higher brain functions with 

the Temporal Difference weight update rule (Sutton, 1988). This is justified 

since, the Selective Bootstrap network fared worse in both the RBG and the 

IPD game exhibiting behaviour generally associated with the lower brain 

processes, such as in the RBG accepting the first offer made. The Temporal 

Difference network did not necessarily accept the first offer made and 

achieved the higher payoff in the IPD game, with behaviour associated with 

the higher brain functions such as planning and control.  

 

Most of the research in the combination of Evolutionary Algorithms and 

Artificial Neural Networks is concerned with finding the optimum ANN for a 

specific problem (Yao, 1999).  In this chapter a break from the traditional 

approach is adopted. The techniques of GAs, RL and ANNs are combined in a 

novel approach in order to investigate the role of evolution in the development 

of a bias towards future rewards. To summarize, Genetic Algorithms (GA), 

work on a population of individuals. Each individual is represented as a 

genotype, which is simply a string of genes. A gene can be represented as a bit 

string. Selection of those individuals to go on to the next generation is done by 

a fitness function. The offspring for the next generation are produced when 

two individuals of the population come together. Reproduction involves 

taking bits from each parent to form a new individual (generally referred to as 

crossover).  Mutation is then applied to the resulting population. The 

combined effects of crossover and mutation mean that GAs can produce 

offspring that are very different from their parents.  
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The system configuration for the 2-ANNs model undergoing evolutionary 

adaptation in this simulation is shown in Figure 7.1.  
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Figure 7.1 The system configuration of the 2-ANNs neu
simulation of the evolution of a bias towards future rewards 
The population consists of a number of individuals (n) whose 
representation of the bias towards future rewards implemented a
(ψ) as in Section 6.6.3 Each individual’s genotype is converted i
value from the bit representation and is used to adjust the pay
differential bias in the IPD Game environment. The IPD game en
a process that initializes the input/state to the opponent’s previous
to cooperate) at the start of each round. The Output/Action is the 
defect or to cooperate). The critic assigns a global reward or p
payoff for the pattern of play from the payoff matrix, at the end of
 

A population consists of a number of individuals each 

genotype of random bit strings. Each genotype contains the

towards future rewards, which is used to calculate the globa

game environment contains a process that initializes the 

opponent’s previous action (to defect or to cooperate) at

round. At the start of a game the input value of the starting 

to a random value. The ANN that starts is selected
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Output/Action is the ANN’s action (to defect or to cooperate). The 

environment also contains a critic that assigns a global reward or penalty to 

the players, i.e., both ANNs receive the same, at the end of a round, which is 

the payoff as defined in the payoff matrix. A round consists of both players 

deciding whether to cooperate or to defect based on the opponent’s previous 

action for the last round. The goal is to maximize the accumulated payoff over 

a number of rounds. 

 

To summarize, the IPD game consists of two players who compete with each 

other repeatedly. Each player can either cooperate or defect. Defection is the 

higher payoff for the individual player, however if both players defect, then 

the resulting payoff for both is worse. A game consists of one or more rounds. 

The goal is to maximise the accumulated payoff. A bias towards future 

rewards is implemented as in the experiment in Section 6.6.2, i.e., as a bias 

applied to the payoff matrix to calculate the differential payoff, for the 

following reason: (i) it would seem to promote cooperation behaviour leading 

to the larger, later reward, the LL in Figure 2.1 and (ii) it would seem to 

address the internal conflict represented by either of the (C,D) or (D,C) 

situation.  The payoff matrix is the same as that used in the experiment in 

Section 6.6.2, where the differential bias (ψ) with a value between 0 and 1, is 

assigned to the payoff matrix for both ANNs, which is fixed for the duration 

of the game. This differential bias is used in the payoff matrix to calculate the 

payoff. The differential bias is added only to the diagonal terms in the matrix 

as shown in Figure 7.2. 
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Higher  2 (C,C) 1(C,D) +ψ 
Higher 1(D,C)-ψ 0 (D,D) 

 

 

Figure 7.2 The payoff matrix for the IPD used in the evolutionary adaptation of 
the 2-ANNs Neural Model with a bias towards future rewards 
A differential bias ψ  is applied to the payoff matrix. The differential bias is assigned 
with a value between 0 and 1 for both ANNs, which is fixed for the duration of the 
game. This bias is used in the payoff matrix, to calculate the differential payoff and is 
added only to the diagonal terms in the matrix. This represents a bias towards future 
reward in the following way: when you are asked to go out, but stay at home (C,D), 
you do not feel so much of a conflict, as you were determined to stay at home 
anyway. Therefore, you work reasonably well and get a good payoff. Similarly, if 
you are asked to stay at home, but go out (D,C), you feel doubly miserable as you 
also go against your own preference to the long-term reward. 
 

This represents a bias towards future rewards in the following way: when you 

are asked to go out, but stay at home (C,D), you do not feel so much of a 

conflict, as you were determined to stay at home anyway. Therefore, you 

work reasonably well and get a good payoff. Similarly, if you are asked to 

stay at home, but go out (D,C), you feel doubly miserable as you also go 

against your own bias for long-term future gain. The payoff matrix in Figure 

7.2 is similar to the payoff matrix used in the self-control game in the 

experiments by Brown and Rachlin (refer to Section 2.3), where defecting and 

choosing the higher current reward, represented by either of the bottom two 

boxes conflicts with cooperating and choosing the long term reward, 

represented by either of the top two boxes and hence the dilemma, which is 

the self-control problem as defined in Section 2.1.   

 

In this simulation, the population consists of a number of individuals each 

represented by a genotype of random bit strings. Each genotype contains the 

value for the differential bias ψ  as a bit representation of a real number. The 

bit representation is converted from its binary value and then translated to its 
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real number by dividing by ten; any value greater that 1.0 is truncated to 1, an 

example is shown in Figure 7.3.  
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Single-point 
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1011  
 
 
1100 

1001

     

 0001  1100 

Figure 7.4 Crossover mask for the evolution of a bias towards future rewards 
The genotype contains a bit string for the differential bias (ψ). The single-point 
crossover operator forms two offspring from two parents using a crossover mask 
determined by a randomly selected breakpoint in the genotype. To illustrate this, the 
building blocks of the first offspring are underlined. 
 
 
Mutations happen infrequently and hence the level of mutation was initially 

set to modify only a small fraction of the population, and was fixed for the 

duration of the experiment.  

 

The evolutionary algorithm for the program used in this simulation is given in 

Figure 7.5. The population size is fixed for the duration of a run. The 

genotype of each individual is randomly initialized to include the differential 

bias ψ. The rewards are calculated for the payoff matrix using the decoded 

differential bias. The individuals play a game of Iterated Prisoner’s Dilemma 

using the 2-ANNs model defined previously. The accumulated payoff is 

retained in addition to its pattern of play. The accumulated payoff becomes 

the individual’s fitness. The individuals are sorted and ranked according to 

their fitness. The fittest (1- cr, where cr is the crossover rate) individuals go 

onto the next generation. From the current generation, pairs of individuals are 

selected at random to produce two more offspring using crossover and 
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mutation as described above. This gives a new population and the process is 

repeated for the desired number of generations. 

 
Initialize population Pop to contain 20 individuals, which is held at 20 for 
the duration of the simulation. Each individual is represented by a genotype 
of a bit string for the differential bias (ψ) generated randomly. 

Repeat  

1. Decode each individual (genotype) as the differential bias ψ  

2. Construct the payoff matrix using the decoded differential bias 

3. Construct two ANNs with topology of 2-6-6-2 and random initial 
weights, and train them.  The ANNs are trained by competing in a 
game of Iterated Prisoner’s Dilemma for a specified number of rounds. 
This is repeated three times and the average payoff over all three games 
is recorded. 

4. Calculate the fitness of each individual according to the average 
training result. Each individual is evaluated by its fitness, where fitness 
is the accumulated payoff from the payoff matrix. The higher the 
payoff, the higher the fitness.  

5. Sort and rank individuals according to their fitness 

6. Select the 1 – cr fittest for the next generation 

7. Select parents from current generation and apply search operators, 
crossover and mutation, to parents for generating offspring, which form 
the next generation 

    Until generation = Maximum_generation 

 
Figure 7.5 Evolutionary algorithm for the simulation of the evolution of a bias 
towards a future reward 
An initial population is created with 20 individuals. The individual is represented by 
a genotype of random strings of bits for the differential bias ψ. The two ANNs 
compete in the IPD game. The individual fitness is the accumulated payoff achieved 
after a number of rounds. The 1 – cr fittest individuals, where cr is the crossover rate, 
are selected to go onto the next generation. The remainder cr of the next generation is 
constructed by selecting two individuals at random from the current generation, to 
produce two more offspring using crossover and mutation as described above. This 
gives a new population and the process continues for a fixed number of generations.  
 

7.2.2 Testing Procedure 

For a given trial, the evolutionary algorithm of Figure 7.5 was executed for a 

predefined maximum number of generations, initially set at 20. The 

population size was fixed at 20 individuals, as this was believed to give 

enough diversity and coverage of the possible permutations of the genotype. 
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Each individual in the population played the IPD game, where each game 

consisted of 250 rounds. As it was found from earlier experiments in Chapter 

6, this gave the ANNs a chance to learn (refer to Figures 6.23 and 6.24). The 

network topology was that of the previous experiments (2-6-6-2) of: (i) one 

input layer of two input nodes representing, the opponent’s last action (to 

defect or to cooperate), (ii) two hidden layers with six nodes and (iii) two 

output nodes for the ANN’s action, which could either be to defect or to 

cooperate, as this proved to be the optimal configuration in terms of 

performance in the validation and verification of the model in Chapter 6. The 

network topology was fixed for the duration of the trials.  

 

At the end of each game the individual’s accumulated payoff is retained in 

addition to its pattern of play. At the end of 3 games the average payoff is 

calculated. This average payoff becomes the individual’s fitness. To avoid any 

first player advantage/disadvantage, the starting ANN was selected at random. 

The individuals in the population are sorted, and ranked according to their 

fitness. A certain number (1 – cr, where cr is the crossover rate) of the fittest 

individuals go onto the next generation. 

 

A number of tests were run to determine the optimal values for the crossover 

rate, the mutation rate, population size and the maximum number of 

generations. All runs were conducted under identical conditions to allow an 

assessment of the variability of results. In the initial test, the crossover rate 

was set to 0.75, which ensured that 25% of the fittest individuals went onto 

the next generation by the genetic operator selection, with the remainder of 
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the individual for the next generation being reproduced by crossover. The 

mutation rate was held at 1 in 1000 bits and was fixed across generations. 

From the current generation, two pairs of individuals are selected to produce 

two more offspring using crossover and mutation as described above. These 

are selected randomly. This gives a new population and the process is 

repeated for the desired number of generations.  

 

 
For each generation the composition of the generation, i.e., how many 

different differential biases are included in the population, the average fitness 

and the maximum fitness for the generation are recorded.  In addition, the 

pattern of play was recorded for each game.  The success of the GA in this 

simulation was measured by the prediction in Holland’s article (1992) that an 

individual with an average fitness greater than the average fitness of the 

generation should have more off-spring and those individuals with an average 

fitness lower than the average fitness of the generation less offspring.  

7.2.3 Results and Interpretation 

In the first test the maximum number of generations was set to 20, the 

population size was held at 20 individuals, the mutation rate was set to 1 in 

1000, meaning that each bit had a 0.001 chance of being mutated and the 

crossover rate was set to 0.75, meaning that 25% of the population would go 

on to the next generation. Since the population was sorted by fitness this 

meant the fittest individuals had a higher probability of dominating the future 

generations. To assess if increasing the value of the differential bias had some 

fitness benefit to the individual, the average fitness for each differential bias 
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represented in the population was calculated. This was compared to the 

cooperation percentage for each differential bias. The results are shown in 

Figure 7.6. 
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Figure 7.6 The average fitness and the cooperation (%) by differential bias 
Generally a higher differential bias is associated with a higher average fitness, with 
some exceptions, e.g. a differential bias of 0.3 has a high average fitness. A high 
average fitness indicates a high percent of cooperation in the pattern of play. 
Cooperation is represented by a pattern of play of CC or CD, i.e., the top row in the 
payoff matrix. 
 
 
To explain the exceptions to the general trend in the behaviour of the 2-ANNs 

model the performance of the GA was assessed. The average fitness was 

tracked for each generation as shown in Figure 7.7. It was expected that the 

average fitness should increase with the number of generations, which is 

suggested by the trendline, however the graph tended to be rather volatile. 

This behaviour can perhaps be explained by the composition of the final 

population. It was expected that after a number of generations the population 

would consist of similar, if not identical individuals (Riolo,1992).  Figure 7.8, 

shows the composition of the final population, it is apparent that in this case 

this did not happen. Although the population is converging to individuals with 

                                                                       219                                                                            
  
 



genotypes representing higher values for the differential bias (>0.5) there is 

still a number of different genotypes represented in the final population. 
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Figure 7.7 The average fitness for a population of 20 individuals over 20 
generations with a crossover rate of 0.75 and mutation rate 0.001 
It was expected that average fitness should increase with the number of generations, 
which is suggested by the trendline (linear) for the average fitness. However, the 
graph is tended to be rather volatile, which perhaps can be explained by the diversity 
in the composition in the final 20th generation. 
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Figure 7.8 Composition of the final population for a maximum generation of 20, 
with a population size of 20, a crossover rate of 0.75 and a mutation rate of 0.001 
The final population consists of individuals with genotypes with high values for the 
differential bias, but convergence has not been met, indicated by the fact that the final 
population consists of a number of different genotypes. 
 

In addition, Holland’s prediction that the individuals with above average 

fitness levels should have more off-spring did not necessarily hold true.  
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Figure 7.9 shows the average fitness for each differential bias, taken over all 

20 generations, expressed as a percent of the average fitness for the final 

generation, and the total number of individuals with that differential bias, 

expressed as a percent of the total number of individuals across all generations 

(i.e., population size multiplied by maximum generation, which in this case is 

20 × 20 = 400). The results show that not all possible values for the 

differential bias have been adequately represented (e.g. 0 and 0.1) and some 

have been missed completely (e.g. 0.8). In addition, Holland’s prediction 

(1992) that those individuals with an average fitness better than the average 

fitness for the population have more off-spring, does not necessarily hold true. 

For example 0.7 has an average fitness greater than that of the population, but 

has less off-spring than that of 0.6, which has a lower average fitness than the 

population. 
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Figure 7.9 Population composition by differential bias for a maximum 
generation of 20, with a population size of 20, a crossover rate of 0.75 and a 
mutation rate of 0.001. 
Not all possible values for the differential bias have been adequately represented (e.g. 
0.3, 0.4) some have been missed completely (e.g. 0.8). In addition, it does not 
necessarily hold true that those individuals with an average fitness better than the 
average fitness for the population have more off-spring (0.7 and 0.3 have an average 
fitness better than the population’s average fitness but have less off-spring than those 
with a lower average fitness such as 0.6).  
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To address the situation shown in Figure 7.9, where not all differential bias 

are adequately represented, it was decided to increase the mutation rate.  

Mutation adds randomness to the population composition. It does not on its 

own advance the search for the best solution, i.e., the fittest individual, it does 

however, provide an insurance against one individual dominating the 

population (Holland, 1992). In this next test the maximum number of 

generations was again set to 20, the population size was held at 20 individuals 

and the crossover rate was set to 0.75, as in the previous test. The mutation 

rate was increased to 1 in 100, which meant that each bit had a 0.01 chance of 

being mutated. Figure 7.10 shows the effect of increasing the mutation rate on 

the population composition. All possible values for the differential bias are 

now represented, but Holland’s prediction (1992) still does not hold true. 

 
 

0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Differential Bias

Pe
rc

en
t

Individuals
Fitness

 
 
Figure 7.10 Population composition by differential bias  with an increased 
mutation rate of 0.01 over a maximum generation of 20, with a population size 
of 20 and a crossover rate of 0.75. 
All possible values for the differential bias are now represented. However,  Holland’s 
prediction (1992) does not necessarily hold true, for example 0.2 has an average 
fitness which exceeds the population average, but this is not represented in the total 
number of individuals with a genotype of 0.2, similarly 0.1.   
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The fact that Holland’s prediction (1992) still does not hold true with an 

increased mutation rate can be explained by the composition of the final 

generation as shown in Figure 7.11. The results suggest that convergence had 

not been reached, indicated by the number of different values for the 

differential bias in the final population. This could be because those 

individuals with a lower than average fitness, e.g., 0.0 and 0.4, have not been 

discarded from future generations. 
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Figure 7.11 Composition of the final population for a maximum generation of 
20, with a population size of 20, a crossover rate of 0.75 and an increased 
mutation rate of 0.01 
Convergence has not been reached indicated by the high number of values for the 
differential bias in the final generation. In addition, those differential biases with a 
lower average fitness than the population have not been excluded, e.g. 0.0. 
 

Based on the results in Figure 7.11 the decision was made to increase the 

crossover rate to 0.6. This meant that 40% of the population would be selected 

to go on to the next generation as opposed to 25% in the previous test. Since 

the population was sorted by fitness, the expectation was that more of the 

fittest individuals would be chosen by the selection operator. The actual 

results seemed to behave as expected if the composition of the final 

population is taken as an indication, as shown in Figure 7.12.  
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Figure 7.12 Composition of the final population for a maximum generation of 
20, with a population size of 20, a mutation rate of 0.01 and a reduced crossover 
rate of 0.6 
The population has converged to two values, i.e., the genetic algorithm has pushed 
the population into two target values. This result would seem to suggest that the 
individual with the higher value for the differential bias is the optimal one.  
 

To assess if Holland’s prediction holds true, the population composition over 

all twenty generations was tracked and is shown in Figure 7.13.   
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Figure 7.13 Population composition by differential bias with a reduced 
crossover rate of 0.6 and a mutation rate of 0.01 over a maximum generation of 
20, with a population size held at 20. 
All possible values for the differential bias are represented, but Holland’s prediction 
(1992) still does not necessarily hold true (e.g. 0.8 and 0.3). 
 
 
From the results in Figure 7.13, the genetic algorithm would seemed to have 

behaved as expected with those individuals with a higher than average fitness 

(i.e. 0.3 and 1) having more off-spring. However, there are exceptions such as 
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0.8, which seem to have a large number of off-spring in relation to its average 

fitness. The trend for the average fitness was to increase with the number of 

generations, as shown in Figure 7.14. The peaks and troughs in the graph were 

less erratic than in the results for the first test shown in Figure 7.7. The graph 

of the average fitness for each generation in Figure 7.14 still tended to be 

rather volatile as shown by the peaks and troughs in the graph.  
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Figure 7.14 The average fitness for a population of 20 individuals for a 
maximum of 20 generations with a crossover rate of 0.6 and mutation rate 0.01 
It would seem that the trend for the average fitness was to increase with number of 
generations, however, with the peaks and troughs this trend is not obvious, 
suggesting perhaps the genetic algorithm needs to run for more generations to reach 
convergence. 
 

The decision was made to let the GA run for a maximum number of 

generations of 100 in order to enable the GA to converge and to see what 

trends emerged across generations, e.g., whether the average fitness continued 

to increase erratically with the number generations. Figure 7.15 shows the 

average fitness for a maximum generation of a 100. Even though there are still 

peaks and troughs, the graph is less volatile and the trend is for the average 

fitness (shown by the linear trend line) to increase with each future generation.  
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Figure 7.15 The average fitness for a population of 20 individuals for a 
maximum of 100 generations with a crossover rate of 0.6 and mutation rate 0.01 
Although the graph still has peaks and troughs the graph is less volatile and it is clear 
that the trend for the average fitness was to increase with number of generations, 
shown by the linear trendline. 
 
 
In addition, Holland’s prediction (1992) that those individuals with a higher 

average fitness than the population will have more off-spring holds true. 

Figure 7.16 shows the population composition by differential bias. Those 

individuals with a higher than average fitness (i.e., those individuals with a 

genotype that has a value for the differential bias of greater than or equal to 

0.5) tend to have more off-spring as compared to those individuals with a 

lower than average fitness (i.e., those individuals with a genotype of a 

differential bias with a value lower than 0.5). In addition, the graph shows that 

increasing the differential bias increases the average fitness.  
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Figure 7.16 Population composition by differential bias for a maximum 
generation of a 100 generations with a crossover rate of 0.6 and a mutation rate 
of 0.01, with a population size held at 20. 
Holland’s prediction holds true with those individuals with a higher than average 
fitness, i.e., > 0.5 having more off-spring than those with a lower average fitness, i.e., 
<0.5. In addition, the average fitness increases with the differential bias. 
 
Since a higher fitness is associated with a higher percent of cooperation (as 

shown in Figure 7.6), it follows that a higher differential bias results in a 

higher percent of cooperation, as shown in Figure 7.17.  
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Figure 7.17Cooperation (%) by differential bias  
Increasing the differential bias increases the cooperation percentage in the same way 
as increasing the probability of reciprocation increases the cooperation percentage in 
Baker’s experiment (2001) shown in Figure 7.18. 
 
The results in Figure 7.17 show the cooperation percentage, where 

cooperation is the sum of the number of patterns of play of (C,C) or (C,D) 

expressed as a percentage of the total number of plays, increases as the 
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differential bias increases. This result compares favourably to Baker’s (2001) 

experiments, which showed that the degree of cooperation is strongly affected 

by the probability of reciprocation, as shown in Figure 7.18.  
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Figure 7.18 Baker's experiment on the cooperation percentage and the 
probability of reciprocation 
Increasing the probability of reciprocation introduces the percent cooperation leading 
to greater self-control adapted from Baker (2001). 
 

7.2.4 Conclusion 

In the first test of twenty generations, not all possible values for the 

differential bias were adequately represented and there still existed much 

diversity in the final population, suggesting that perhaps convergence had not 

been reached and that the optimal value for the differential bias had not been 

found. The simulation was then run again with an increased mutation rate 

increasing diversity in the population, but again convergence was not reached. 

Reducing the crossover rate ensures that more of the fittest individuals go on 

to future generations. This certainly was the case, as shown in Figure 7.13, but 

although the results were an improvement on earlier simulations there was 

some diversity in the final population as shown in Figure 7.12, suggesting that 

convergence had not reached and hence an optimal value(s) for the differential 
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bias had not been found.  In the final experiment, where the maximum number 

of generations was set to 100, a trend showed that a higher value for the 

differential bias (>0.5) resulted in a higher than average fitness. An increase in 

the value of the differential bias increases the percentage of cooperation 

behaviour as shown in Figure 7.6 and Figure 7.17. A higher average fitness is 

achieved when either both ANNs cooperate, i.e., the pattern of play is mutual 

cooperation (C,C) or where only the ANN representing the higher brain 

processes, in this case the Temporal Difference network cooperates, i.e., the 

pattern of play is (C,D). This represents the middling behaviour of the 

situation of when asked to go to the pub you decide to stay at home, but you 

do not feel too bad as you are still moving towards you later larger reward of 

good grades. It follows that a high percentage of cooperation behaviour is 

associated with a higher average fitness.  In this first simulation, with the 2-

ANNs model it was found that in order to maximize payoff, i.e., fitness, rather 

than one ANN being the decision-maker, it was necessary that both the ANNs 

learn to cooperate. In addition, the results suggest that a bias towards future 

rewards, implemented as a differential bias applied to the payoff matrix, has a 

fitness benefit for the individual in the game theoretical situation played out 

here, where payoff equates to fitness. This then has a fitness benefit for the 

population. This results in a higher average fitness for future generations 

shown by the trend line in Figure 7.15.  Higher values for this bias towards 

future rewards (i.e., > 0.5) maximizes the fitness of the individual. It follows 

that this differential bias is a successful mechanism of modeling 

precommitment in game-theoretical situations since this results in a higher 

fitness for the organism. The relationship between this differential bias and 
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cooperation can be compared to the relationship between reciprocation and 

cooperation in the experiments by Baker (2001); in that increasing the 

differential bias increases the tendency to cooperate as shown in Figure 7.17.  

7.3 Scenario of Simulation of the evolution of learning in the context 

of a bias towards future rewards  

In the first simulation, experiments were run to see which values for this bias 

for future rewards, referred to as the differential bias, yielded the higher 

payoff. The payoff is the individual’s fitness. The results showed that high 

values of the differential bias yielded a higher payoff and hence fitness for the 

individual. Results also showed that a high payoff indicates a higher 

percentage of cooperation behaviour. In this simulation the effect of this 

differential bias on learning is investigated. The premise being that the brain is 

not hard-wired for every response and learning during an organism’s lifetime 

plays a critical part in deciding which action is the best response to a changing 

environment. Here the role of learning and the effect of learning on the fitness 

of the organism in the context this differential bias undergoing evolutionary 

adaptation is investigated. The types of questions asked in this second 

simulation are:  does having a bias towards future rewards make a difference 

to the results? What is the effect of different values for this differential bias on 

learning? For example, does a differential bias of zero prevent learning taking 

place? What is the effect of learning on the fitness of the individual, on the 

population and on future generations? In addition, this simulation explores the 

relationship between learning, specifically reinforcement learning, and 

evolution on the behaviour of the ANNs. In particular, how do the ANNs deal 

with discounting, that is, the reduction in value of a reward due to delay? Also 

                                                                       230                                                                            
  
 



the relationship between learning and fitness of the organism, where fitness is 

the payoff of the individual, is investigated.  

7.3.1 Architecture and Algorithm  

The simulation program is implemented on the 2-ANNs model in the same 

way as in the first simulation. The ANN simulating the lower brain functions 

is implemented with the Selective Bootstrap weight update rule (Widrow et 

al., 1973) and the ANN simulating the higher brain functions with the 

Temporal Difference weight update rule (Sutton, 1988).  

 

A bias towards future rewards is implemented as in the previous simulation, 

i.e., as a bias applied to the payoff matrix to calculate the differential payoff, 

for the same reasons as in the first simulation, i.e., as it: (i) would seem to 

promote cooperation behaviour leading to the larger, later reward, the LL in 

Figure 2.1 and (ii) would seem to addresses the internal conflict represented 

by either the (C,D) or (D,C) situation.  The payoff matrix is the same as that 

used in the first simulation. A bias with a value between 0 and 1, is assigned 

to the payoff matrix for both ANNs, which is fixed for the duration of the 

game. In addition, the population consists of a number of individuals each 

represented by a genotype of random bit strings. In this simulation, the string 

of genes includes the learning parameters for both ANNs, as described in the 

research by Bullinaria (2003) and the differential bias. Each genotype contains 

the learning parameters (step-size α, discount rate λ) for the ANN representing 

the higher centre of the brain followed by the learning parameters (learning 

rate η) for the ANN representing the lower centre of the brain followed by the 

value for the differential bias ψ. To summarize, the genotype is the bit 
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representation of the real numbers for α, λ, η and ψ. The bit representation is 

converted to its binary value and then translated to its real number by dividing 

by ten; any value greater that 1.0 is truncated to 1, an example is shown in 

Figure 7.19.  
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by a number of zeros. The beginning and end of the ones is determined by the 

breakpoints of the building blocks of the genotype, which in this case is (α, λ, 

η, ψ). An example is given in Figure 7.20.  

 

 Initial Strings Crossover Mask Offspring 

Uniform 

crossover 

1101001010001111  
 
 
1111000011110000 

1101100010001011

     

 0010100000001011  0011001000001111 

Figure 7.20 Crossover mask for the evolution of learning in the context of a bias 
towards future rewards 
The genotype contains the bit strings for the learning parameters followed by a bit 
string for the differential bias (ψ). The uniform crossover operator forms two 
offspring from two parents using a crossover mask determined by the breakpoints of 
the building blocks of the genotype to determine which bit comes from which parent. 
In this case this is (α, λ, η, ψ). To illustrate this, the building blocks of the first 
offspring are underlined. 
 

Since mutations only modify a small fraction of the population, the mutation 

rate was set to a suitably low level, i.e., as 1 bit in 1000 individuals across 

generations, and was fixed for the duration of the experiment.  

 

The evolutionary algorithm for the program used in this simulation is given in 

Figure 7.21. The population size is constant. The genotype of each individual 

is randomly initialized to include the learning parameters, step-size and 

discount rate for the TD network, and learning rate for the Selective Bootstrap 

network, and the differential bias ψ. The genotype of each individual is 

decoded into two learning rules one for the ANN representing the higher brain 

processes and the other for the ANN representing the lower brain processes.  
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Initialize population Pop to contain 20 individuals, which is held at 20 for 
the duration of the simulation. Each individual is represented by a genotype 
of bit strings for (α, λ, η, ψ) generated randomly. 

Repeat  

1. Decode each individual (genotype) in the current generation into a 
learning rule for the ANN representing the higher brain processes and a 
learning rule for the ANN representing the lower brain processes and 
the differential bias ψ  

2. Construct the payoff matrix using the decoded differential bias 

3. Construct two ANNs with topology of 2-6-6-2 and random initial 
weights, and train them using the decoded learning rules.  

4. The ANNs are trained by competing in a game of Iterated Prisoner’s 
Dilemma for a specified number of rounds.  

5. Repeat step 4 until three IPD games have been played for the desired 
number of rounds 

6. Calculate the fitness of each individual according to the average 
training result. Each individual is evaluated by its’ fitness where fitness 
is the average of  the accumulated payoff from the three IPD games. 
The higher the payoff, the higher the fitness.  

7. Sort and rank individuals according to their fitness 

8. Select the 1 – cr fittest for the next generation 

9. Select parents from current generation and apply search operators, 
crossover and mutation, to parents to generate offspring, which form 
the next generation 

    Until generation = Maximum_generation 

 
Figure 7.21 Evolutionary algorithm for the simulation to investigate the role of 
the learning in the context of the evolution of a bias for future reward  
An initial population is created with 20 individuals. The individual is represented by 
a genotype of random strings of bits for the learning parameters (step-size α, discount 
rate λ) for the ANN representing the higher centre of the brain followed by the 
learning parameters (learning rate η) for the ANN representing the lower centre of the 
brain followed by the value for the differential bias ψ. The two networks compete in 
the IPD game. The accumulated payoff is the total payoff achieved after a number of 
rounds. Repeat this process twice more. The individual’s fitness is the average 
accumulated fitness for the three games. The 1 – cr fittest individuals, where cr is the 
crossover rate, are selected to go onto the next generation. The remainder cr of the 
next generation is constructed by selecting two individuals at random from the 
current generation, to produce two more offspring using crossover and mutation as 
described above. This gives a new population and the process continues for a fixed 
number of generations.  
 

The rewards are calculated for the payoff matrix using the decoded 

differential bias. The individuals play three games of Iterated Prisoner’s 

Dilemma using the 2-ANNs model defined previously. For each game, the 

accumulated payoff is retained in addition to its pattern of play. The average 
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of the three accumulated payoffs becomes the individual’s fitness. The 

individuals are sorted and ranked according to their fitness. The fittest (1- cr, 

where cr is the crossover rate) individuals go onto the next generation. From 

the current generation, pairs of individuals are selected at random to produce 

two more offspring using crossover and mutation as described above. This 

gives a new population and the process is repeated for the desired number of 

generations. The system configuration for the 2-ANNs model undergoing 

evolutionary adaptation in this simulation is shown in Figure 7.22.  
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Figure 7.22 The system configuration of the 2-ANNs neu
simulation of the evolution of a bias towards future rewards w
The population consists of a number of individuals (n) whose 
representation of the learning parameters, step-size and discou
network, and learning rate for the Selective Bootstrap network, 
bias ψ. Each individual’s genotype is converted into the real num
bit representation and decoded into two learning rules one fo
representing the higher brain processes and the other for the 
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global reward or penalty based on the payoff for the pattern of p
matrix, at the end of each round. 
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The population consists of a number of individuals (n) whose genotype is the 

bit representation of the learning parameters followed by the differential bias 

ψ. Each individual’s genotype is converted into the real number value from 

the bit representation and decoded into two learning rules one for the TD 

network representing the higher brain processes and the other for the Selective 

Bootstrap network representing the lower brain processes. The rewards are 

calculated for the payoff matrix using the decoded differential bias in the IPD 

game environment. The IPD game environment contains a process that 

initializes the input/state to the opponent’s previous action (to defect or to 

cooperate) at the start of each round. The Output/Action is the network’s 

action (to defect or to cooperate). The critic assigns a global reward or penalty 

based on the payoff for the pattern of play from the payoff matrix, at the end 

of each round. 

7.3.2 Testing Procedure 

The population size was fixed at 200 individuals and the maximum generation 

was held at 100, to allow for diversity in the initial population since the 

genotype now had 4 bit strings representing the step-size parameter, discount 

rate, the learning rate and differential bias. This was believed to give enough 

diversity and coverage of the possible permutations of the genotype (each bit 

string has ten possible values given a total of 104 permutations).  For a given 

trial, the evolutionary algorithm of Figure 7.22 was executed for a predefined 

maximum number of generations. Each individual in the population played 

the IPD game three times, where each game consisted of 250 rounds, as this 

gave the ANNs a chance to learn (refer to Figures 6.23 and 6.24). The 

individual’s fitness was the average of the three payoffs achieved. This was 
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repeated for a maximum number of 100 generations. The network topology 

was that of the previous experiments as this proved to be the optimal 

configuration in terms of performance in earlier experiments in the validation 

and verification of the model and was fixed for the duration of the trials of: (i) 

one input layer of two input nodes representing, the opponent’s last action (to 

defect or to cooperate), (ii) two hidden layers with six nodes, as this was 

found to yield the optimum performance in the IPD game in the experiments 

in Chapter 6, and (iii) two output nodes for the ANN’s action, which could 

either be to defect or to cooperate (2-6-6-2).  

 

At the end of each game the individual’s accumulated payoff is retained in 

addition to its pattern of play. At the end of three games the average of the 

three accumulated payoff becomes the individual’s fitness. To avoid any first 

player advantage/disadvantage, the starting ANN was selected at random. All 

runs were conducted under identical conditions to allow an assessment of the 

variability of results. The individuals in the population are sorted, and ranked 

according to their fitness. A certain number (1 – cr, where cr is the crossover 

rate) of the fittest individuals go onto the next generation. The crossover rate 

was set to 0.6, to ensure that more of the fittest individuals went onto the next 

generation by the genetic operator selection, with the remaining being 

reproduced by crossover. The mutation rate was reduced to 1 chromosome in 

1000 individuals to accommodate the increased population size and increased 

maximum number of generations, and was fixed across generations. From the 

current generation, two pairs of individuals are selected to produce two more 

offspring using crossover and mutation as described above. These are selected 
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randomly. This gives a new population and the process is repeated for the 

desired number of generations. The statistics recorded included the highest 

average fitness for an individual found at each generation, the average fitness 

for the generation and the pattern of play so that the behaviour for individuals 

of a particular genotype pattern can be tracked.  

 

7.3.3 Results and Interpretation 

Firstly, the effect on the fitness of the population as a result of evolving the 

learning parameters for the TD network, (step-size and discount rate) and the 

Selective Bootstrap network (learning rate) in the context of the evolution of 

the differential bias was investigated. It was found that the minimum fitness 

for any game across all generations was zero. In this case, the pattern of play 

was for both ANNs to defect (D,D) and thus receiving the reward for Mutual 

defection, which is zero (refer to the payment Matrix in Figure 7.2). The 

maximum fitness for any game across all generations was 500. In this case, 

the pattern of play was for both ANNs to cooperate (C,C) leading to the 

highest reward of mutual cooperation, which is two (refer to Figure 7.2) and 

thus achieved the maximum fitness of 500 (the number of rounds multiplied 

by the reward for mutual cooperation). Individuals, which achieved a 

minimum fitness of zero, tended to have genotypes where the learning 

parameters and differential bias were in the minimum range of valid values, 

i.e., zero or one. These individuals had a tendency to defect leading to mutual 

defection and hence a minimum fitness of zero.  Individuals, which achieved a 

maximum fitness, had genotypes with high values for the differential bias and 

step-size, a low value for the discount rate and a non-zero value for the 
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learning rate. A much higher proportion of the population had a tendency to 

cooperate when they had high values for the differential bias (>0.5) and lower 

values for the learning parameters.  

 

Figure 7.23 shows the trendlines (linear) for each of the parameters that were 

subjected to the simulation of evolutionary adaptation.  A low discount rate 

(<0.3) and a high value for the differential bias (>0.5) would seem to promote 

cooperation behaviour leading to the maximum fitness value of 500 (i.e., the 

number of rounds per game multiplied by the reward for mutual cooperation). 

It would also seem that as long as the values for the learning-rate and step-size 

are non-zero, i.e., some learning is taking place, then the fitness of the 

individual increases as a result of the ANNs tending to cooperate.  
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Figure 7.23 The effect of evolving the learning parameters in the simulation of 
the evolution of a bias towards future rewards  
The learning parameters, i.e., the step-size and discount rate, for the Temporal 
Difference Feed Forward Network (TD) and learning-rate for the Selective Bootstrap 
in the context of the evolutionary adaptation of the differential bias are compared to 
the fitness of the individual for that genotype. The individual’s fitness is the average 
of the accumulated payoff over three games. A low discount rate (<0.3) and a high 
value for the differential bias (>0.5) promotes cooperation leading to the maximum 
fitness value of 500 (the no. of rounds per game multiplied by the reward for Mutual 
cooperation), as long as the values for the learning-rate and step-size are non-zero.  
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To investigate the effect of the differential bias on learning the fitness of those 

individuals with a differential bias of zero was tracked. It was found that both 

the learning-rate and step-size behaved as expected, i.e. lower values were 

associated with fitter individuals. A lower value discount rate is associated 

with a higher fitness, which is surprising given that as the discount rate 

approaches 1, the ANN becomes more far-sighted and takes future rewards 

into account more strongly. The maximum fitness, as a result of a game of 

mutual cooperation was not achieved when the differential bias was zero. The 

results are summarized in Figure 7.24. 
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Figure 7.24 The effect of evolving the learning parameters without a bias 
towards future rewards 
A lower fitness is achieved since the higher reward of Mutual cooperation is not 
achieved, indicating that a bias towards future rewards promotes cooperation 
behaviour.   
 

7.3.4 Conclusion 

As it can be observed, a higher differential bias is associated with a higher 

level of fitness. The increase in the differential bias can be explained as 

follows: as the differential bias approaches 1, the middling behaviour of (C,D) 

becomes more strongly favoured as the reward for this behaviour becomes 
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more closely aligned to the reward for mutual cooperation (the higher long 

term payoff). An increase in the fitness of the individual accompanied a non-

zero learning rate for the Selective Bootstrap and a non-zero step-size 

parameter for the TD network. The role of the learning rate in the ANN is to 

moderate how much the weights are changed at each time step. The learning 

rate is usually set to some small value. If the learning rate is too large there is 

a possibility that the network will converge to a less than optimum 

equilibrium. This did not appear to be the case in this simulation, as long as 

some learning was taking place maximum fitness could be achieved. In 

addition, with a differential bias of zero, which is in effect not implementing a 

bias towards future rewards, learning reverted to the expected behaviour, i.e., 

low values for the learning parameters were associated with higher levels of 

fitness. With a differential bias of zero, the maximum fitness was not 

achieved, indicating that in order to promote cooperation behaviour leading to 

the higher reward of mutual cooperation there needs to be a bias towards 

future rewards. This result seems to suggest that learning alone is not 

sufficient to make a difference to the results. 

7.4 Concluding Remarks 

From the first simulation, concerned with investigating if self-control through 

precommitment results from an internal conflict between the higher and lower 

centres of the brain, it was shown that the ANNs in our 2-ANNs model 

exhibited different behaviours, which resulted in a conflict between Mutual 

cooperation and Temptation to defect, akin to the self-control problem as 

suggested by the empirical data of Brown and Rachlin (1999).  In particular, 

in this first simulation it was demonstrated that increasing the level of bias 
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towards future rewards increased the tendency to cooperate, which is 

consistent with the empirical results of Baker (2001) that showed that 

increasing the probability of reciprocation increased the probability of 

cooperation. In the second simulation, it was shown that implementing a bias 

towards future rewards, as a differential bias is a useful mechanism to 

maximize the fitness of an individual. In particular, it was demonstrated in the 

second simulation that although it was necessary that some learning occurred, 

i.e., learning parameters must be non-zero, individuals with a higher value for 

the differential bias fared better. In addition, it was shown that a high level of 

differential bias, rather than learning alone, increases the tendency to 

cooperate, supported by the fact that individuals with a differential bias of 

zero did not achieve the maximum fitness associated with the reward for 

mutual cooperation. In order to maximize fitness, both ANNs had to play a 

game of mutual cooperation. It follows that a high value for the differential 

bias results in a high fitness benefit for the individual. The results suggest that 

this differential bias enhances cooperation, which could be interpreted as 

precommitment and hence that self-control through precommitment has an 

evolutionary benefit in a game-theoretical situation. In the context of the 

Brown and Rachlin (1999) experiment, the model is learning to cooperate 

with oneself. 
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Chapter 8 

8 Can self-control through precommitment be explained by 

evolutionary game theory? 

8.1 Retrospective 

The aim of this thesis was to attempt to explain how evolution has resulted in 

self-control through precommitment behaviour. We recognize we have 

problems with self-control and implement precommitment behaviour that 

limits our future choices, making it difficult to change our preferences at some 

later time. Three possible explanations for the evolution of this behaviour 

have been investigated in this thesis. The explanations are neither mutually 

exclusive nor exhaustive.  

 

The first explanation for the evolution of self-control through precommitment 

is that it results from an internal conflict between the higher and lower centres 

of the brain. The internal conflict may be a result of the different centres of the 

brain evolving different behaviours in response to a dynamic environment. In 

this case the type of questions that are explored are: when did low-level 

intrinsic behaviours manifest themselves? Alternatively, when did behaviours 

that lead to long term rewards “win” in the competition for control of the 

organism?  Did the higher centre of the brain take on the role of decision-

maker in determining what behaviours are appropriate when?  

 

The second explanation investigated the evolution of self-control through 

precommitment in the context of games. The theoretical premise in this case is 
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that if the evolution of self-control through precommitment is a successful 

strategy for game-theoretical situations, then there must be a fitness benefit 

for the organism, which is reflected in its payoff. 

 

The final explanation views self-control through precommitment as a result of 

a best evolutionary compromise to a dynamic and complex environment. This 

is based on the theoretical premise that there is a basic hard-wiring in the 

organism for self-control, but it is not feasible for evolution to program the 

brain with a direct hard-wired response to every situation it could meet in such 

an environment. Instead, there is a capacity for learning. Evolution cannot 

always result in the optimum fitness benefit for the organism during its 

lifetime and learning plays a part in maximizing fitness in certain situations. 

Hence, natural selection has provided a mechanism for allowing learning to 

effectively take control when cues are strong enough, with the result reflected 

in a fitness benefit.  

 

Chapter 2 provides the theoretical foundation on which this thesis is based. To 

summarize, it defines self-control as choosing a larger-later reward over a 

smaller-sooner reward. Initially our preference is for the larger-later reward, 

but at some later point in time our preferences are reversed, and the smaller-

sooner reward is preferred. We recognize that this reversal of preferences 

happens and exercise self-control by precommiting to the larger-later reward, 

when it is the preferred choice, by either denying the smaller-sooner reward, 

or making it difficult to choose the smaller-sooner reward in the future.  

Chapter 2 goes on to discuss self-control in the context of games. We saw that 
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self-control can be defined as learning to cooperate with oneself. Brown and 

Rachlin (1999) used a version of the IPD game to illustrate this.  A factor that 

determines if one will continue to cooperate with oneself is the probability of 

reciprocation, which Baker (2001) showed has a direct correlation to 

cooperation. In this thesis, the theoretical premise is made that a similar 

relationship exists for precommitment and cooperation. 

 

In Chapter 3, the cognitive neuroscience model for self-control was presented 

after considering both neurophysiological models and abstract models of 

related behaviours. The model is adapted for this thesis and implemented as a 

2-ANNs model competing in a game-theoretical situation using RL. This set 

the scene for the explanations listed above to be investigated in Chapters 6 

and 7. 

 

Chapters 4 and 5 provided the necessary groundwork by introducing the main 

techniques to be used in the context of self-control notably reinforcement 

learning, artificial neural networks and genetic algorithms.  

 

After laying down this groundwork, Chapter 6, then began the quest to 

explore the evolution of this complex behaviour by firstly verifying the model 

in different game theoretical situations against empirical data on self-control. 

The results of the RBG game confirmed the theoretical premise that the 

Temporal Difference update rule exhibited behaviours associated with the 

higher centres of the brain such as planning and control, and that the Selective 

Bootstrap update rule exhibited low-level intrinsic behaviours associated with 
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the lower centres of the brain, such as actions that lead to immediate 

gratification. The results from the IPD game also confirmed this premise, as 

the dominant behaviour from the Selective Bootstrap network was to defect (a 

low-level intrinsic behaviour, associated with immediate gratification (SS)) 

and the dominant behaviour from the Temporal Difference network was to 

cooperate (a high-level behaviour, associated with a long-term reward (LL)). 

To this framework we added a bias towards future rewards implemented in 

three ways. The variable bias technique implemented a bias towards future 

rewards by simply varying the input values of the ANN’s bias node between 

zero and one. Increasing this variable bias enhances cooperation behaviour, 

which is the desired behaviour if this technique does indeed represent 

precommitment. A potential problem with this technique is that there is a 

possibility that during training the final values of the weights may cancel out 

the effect of this variable bias, as shown in Figure 6.35. The second technique 

implemented a bias towards future rewards as an extra input to one or both of 

the ANNs in the 2-ANNs model. The extra input technique did not have this 

problem and again cooperation was enhanced. With this extra input technique 

there is no distinction between the situations represented by (C,D) and (D,C), 

which is not necessarily the case. The final technique implemented the bias 

towards future rewards as a differential bias added to the global reward in the 

payoff matrix. The results showed that cooperation behaviour was further 

enhanced. In addition, the dilemma represented by the situations (C,D) or 

(D,C) is dealt with by the different rewards, i.e., the reward for the middling 

behaviour represented by (C,D) increases, whilst the reward for the more 

negative behaviour represented by (D,C) decreases. For these reasons it was 
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considered that the differential bias technique was the best technique to model 

precommitment. Its behaviour suggests that this bias towards future rewards 

has the effect that precommitment would have, in that precommitment acts in 

the same way as the probability of reciprocation in Baker’s experiment 

promoting cooperation with ones self leading to greater self-control. In 

Chapter 7, this was explored further in the context of evolution.  

  

Chapter 7 explored the possible explanations as to how this bias towards 

future rewards has evolved, such that people must use a bias towards future 

rewards to control their future self. Various explanations were explored. In 

exploring the explanation that self-control results from an internal conflict, the 

following questions were investigated and the results suggested the following 

answers:   

What behaviour patterns emerged and what were the results of these patterns 

of  behaviour?  

The individuals that had a tendency to cooperate achieved the higher payoff 

and dominated the gene pool. This can be explained as follows: to maximize 

fitness, the ANNs had to play a game where the dominant behaviour was to 

cooperate, if both ANNs cooperated, then the ANNs receive the higher reward 

of mutual cooperation, hence the higher net payoff for the organism. 

  

Did a particular ANN favour a particular pattern of play?  

The dominant behaviour from the Selective Bootstrap network is to defect and 

the dominant behaviour from the Temporal Difference network is to 

cooperate. The pattern of play however, depends on the value of the bias 
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towards future rewards; the higher the value, the higher the tendency to 

cooperate from both networks. 

 

Is any one ANN the decision-maker?  

Each ANN seemed to behave as an autonomous agent, learning 

simultaneously, but separately in a shared environment.  

 

What was the effect of this bias towards future rewards on the pattern of play? 

A higher bias towards future rewards promoted cooperation. Increasing the 

bias towards future rewards reduced the conflict between the low-level 

intrinsic behaviour of defection (SS) and the high-level complex behaviour of 

cooperation (LL). This was done by increasing the disparity between the 

rewards for, the middling behaviour of staying home and studying although 

wishing you had gone to the pub  represented by the (C,D), and the negative 

behaviour of the situation when asked to go to the pub you go, but feel doubly 

miserable as you are going  against your future self and the possibility of 

long-term gain.  

 

In exploring if the evolution of self-control through precommitment is a side 

effect of playing games, the following questions were investigated and the 

results suggested the following answers:  

 
What values for this bias towards future rewards evolve?  

To maximize fitness both ANNs had to play a game of mutual cooperation. 

Cooperation behaviour is associated with higher values for the bias towards 
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future rewards. Results showed that increasing this bias towards future 

rewards, promotes cooperation.  

 

In exploring if self-control through precommitment is a best evolutionary 

compromise to environmental complexity and variability, the effect of 

evolving of learning in the evolution of self-control is investigated. The 

question asked and, given the results, the following answer is suggested:  

 

What is the effect of this bias towards future rewards on learning?  

Implementing a bias towards future rewards would seem to increase the rate 

of learning suggesting that a higher learning rate was associated with a 

higher level of fitness. When no bias towards future rewards was implemented 

the tendency to cooperate was reduced suggested by the fact that none of the 

individuals with a bias towards future rewards of zero achieved the maximum 

fitness. 

8.2 Conclusion  

The results of the first simulation, which investigated if self-control through 

precommitment is a result of an internal conflict, showed that there are 

differences in the behaviour of the system components, i.e., the two artificial 

neural networks simulating the higher and lower centres of the brain. The 

results from this first simulation in Chapter 7 expand on the results of Chapter 

6, where it was shown that the ANNs demonstrated different behaviours 

consistent with the expected behaviours of the brain regions modelled, e.g., 

the Selective Bootstrap network had a tendency to defect (a low-level intrinsic 

behaviour).  This supports the theoretical premise, specified in Chapter 2, that 
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self-control can be explained in terms of multiple selves. Each self exhibits or 

wants a different behaviour. In summary, the results from this first simulation 

supports the explanation that self-control is a result of an internal conflict 

between the present self, guided by immediate outcomes, and the future self, 

guided by future prospects.   

 

In addition, the results from this first simulation support the explanation that a 

bias towards future rewards (modeled as a differential bias for the reasons 

listed in Section 8.1) is a useful mechanism in a game-theoretical situation and 

that there is an evolutionary benefit in a game-theoretical situation. The 

results showed that as the value of the bias towards future rewards increases 

the tendency to cooperate also increased. This proved to be a useful fitness 

benefit resulting in a pattern of mutual cooperation leading to a higher payoff. 

This supports the empirical results of Baker (2001), which showed increasing 

the probability of reciprocation increases cooperation. The results from this 

simulation showed that implementing a bias towards future rewards behaves 

in the same way as the probability of reciprocation, and hence increases 

cooperation.  

  

In the final simulation, the explanation that learning, as opposed to evolution, 

is critical in formulating self-control through precommitment as a best 

response to a complex and dynamic environment was investigated. This is 

based on the theoretical premise that the brain is not hard-wired for every 

response and that learning, during an organism’s lifetime, plays a part in 

making the decision as to which action is the best response to a changing 
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environment. The results from this final simulation suggest that although 

learning does play a part, it is not mutually exclusive to evolutionary factors 

and that evolutionary factors, as opposed to learning alone, plays a crucial role 

in the development of this complex behaviour.  

 

Even in this rather coarse simulation of biological evolution, the results 

support an evolutionary basis for self-control through precommitment 

behaviour, as there is a fitness benefit associated with implementing a bias 

towards future rewards. This does not suggest that learning plays no role in 

self-control through precommitment behaviour, but rather that evolution has 

provided us with a the capacity to bias our preferences to future rewards in 

order to control our future actions. The results provide clues as to the 

explanation of the evolution of this complex behaviour, but much still remains 

to be learned. For example, there still remain missing pieces of the puzzle, as 

to the exact hard-wiring of the cognitive architecture for this bias towards 

future rewards.  

8.3 Contributions 

The major contributions of this thesis were firstly to provide a cognitive 

architecture that supports self-control through precommitment behaviour, and 

secondly give possible explanations for the origin of this complex behaviour. 

In this thesis the model of self-control as an internal process from the 

viewpoint of modern cognitive neuroscience, depicted in Figure 3.3, is 

brought to life in a computational model with behavioural predictability. The 

model goes beyond the connectionist framework as simply an information 

processing system that receives some input, processes it and then outputs 
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some results. The model simulates self-control through precommitment 

behaviour in a functionally decomposed system providing a deeper 

understanding of the psychological processes of how self-control emerges. 

The results from the 2-ANNs model are compared with the empirical data in 

psychology on self-control. The results from the two ANNs, representing the 

higher and the lower systems of the brain, competing in the RBG are 

compared to the economic literature, specifically Rubinstein (1982) and Kreps 

(1990), which suggest that the player who is least myopic will fare better. The 

results from the 2-ANNs model demonstrate this premise. The results of 

Brown and Rachlin (1999) show a close analogy in the structure of 

cooperation behaviour and the structure of self-control behaviour. Brown and 

Rachlin (1999) used a version of the IPD game, called the self-control game, 

to demonstrate that self-control can be viewed as cooperating with one’s self, 

the higher the probability that one will cooperate with one’s future self the 

greater the self-control. This probability was referred to as the probability of 

reciprocation. In Chapter 6 of this thesis a similar experiment was carried out 

with the 2-ANNs model competing in the IPD game, simulating the self-

control game. The results emulated those of Brown and Rachlin (1999), which 

showed that the self-control problem could be seen as a question of: if I 

cooperate now, will I cooperate in the future?  Given this success, a bias 

towards future rewards was added to the 2-ANNs model. The results 

suggested a positive correlation between this bias towards future rewards and 

cooperation behaviour emulating Baker’s (2001) results, which showed a 

positive correlation between reciprocation and cooperation. From this point 

(Chapter 7) the neural model is subjected to evolutionary adaptation 
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consistent with evolutionary theory. In Chapter 7, we explored the results of 

Chapter 6 in the context of evolution, demonstrating in the simulation of self-

control as an internal conflict and that this bias towards future rewards 

behaves in the same way as the probability of reciprocation and cooperation 

(Baker, 2001). In addition, the results in Chapter 7 of a functionally 

decomposed system undergoing evolutionary adaptation, support the premise 

that an internal conflict between the higher and lower centres of the brain 

exists in self-control problems, and that a bias towards future rewards is a 

useful mechanism to reduce this conflict. In the final simulation in Chapter 7, 

it was shown that it is this bias towards future rewards that determines the 

level of cooperation behaviour and not learning alone. These results provide a 

deeper understanding of the relationship between the hard-wiring of a 

cognitive architecture for self-control, which arises through evolutionary 

processes, and learning of self-control. This multi-level approach is important 

in model building. In this thesis, the marrying of empirical and computational 

research has proven to be a productive path to progress future research on the 

biophysical processes that underlie self-control through precommitment 

behaviour.   

 

As a sideline contribution, this thesis has examined the capabilities of 

combining the techniques of RL, GAs and ANNs. In particular, the extent to 

which different forms of RL work in MAS. The model presented in Figure 3.3 

and developed in this thesis, is a MAS comprised of two independent learners 

simultaneously learning in shared environment, using RL, playing a general-

sum game. General-sum games are interesting as the payoffs are neither 
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wholly adverse nor wholly competitive. From a review of the literature on 

MARL this is an active area of research. One of the unresolved issues is the 

lack of a clearly defined statement on when RL can be applied to general-sum 

games usefully and in what form. To date there does not exist an algorithm for 

MARL that can be applied to the complete set of general-sum games. In this 

thesis we broke from the traditional framework for MARL and games, i.e., 

Markov games, and implemented our learners as autonomous agents learning 

simultaneously. This removed the limitation of centralized learning, which 

widens the scope for the learner’s behaviour. The results demonstrated that 

RL could be usefully applied in this context in that the ANNs learned to 

behave rationally in two general-sum games that model a real-world situation, 

i.e., the division of the resource is close to half in the RBG, and both ANNs 

settle into a play of mutual cooperation in the IPD game, and that convergence 

was reached with the ANNs’ weights settling into an equilibrium.  

 

The following is a list of specific contributions in order of appearance. 

 
1. In Chapter 2 a departure from traditional theories of the brain was 

proposed. This thesis presents a novel view of the higher and lower brain 

regions cooperating, i.e., working together, as opposed to the classical 

view of the higher brain as the controller overriding the lower brain.  

 
2. In Section 3.3 a top-down approach to modeling self-control behaviour in 

the computational model is adopted. This is a novel approach to modeling 

the brain, but is appropriate given the complexity of the behaviour that is 

being modeled. The premise here is that in the behaviour self-control it is 

                                                                       254                                                                            
  
 



more meaningful to describe the overall image rather than each individual 

neuron and for this reason a holistic approach to the brain as a functionally 

decomposed system is adopted. 

 
3. In Chapter 6 the somewhat vague abstract behavioral model of self-control 

as an internal process taken from psychology and presented in Chapter 3 is 

implemented as a computational model, which to the best of my 

knowledge is the first time that this has been undertaken and hence a 

significant contribution. The psychological model explains self-control 

behaviour at an abstract level. The computational model, developed in this 

thesis, provides a greater understanding of self-control behaviour by 

implementing the abstract psychological model and providing a possible 

explanation for precommitment behaviour by adding a bias towards future 

rewards. The results suggest that this bias enhances cooperation behaviour 

and hence could be interpreted as precommitment. 

 
4. In Chapter 6, RL and ANN are combined in a new value function 

approximation scheme. The higher and lower brain regions are 

implemented as ANNs with RL. The higher brain region is implemented 

with Temporal Difference learning with a simple lookup table for each 

state-action pair. TD learning is implemented as TD(0), as only one state 

preceding the current one is changed by the TD error. The lower brain 

region is implemented with the Selective Bootstrap weight update rule.  

The model framework is implemented as two players learning 

simultaneously, but independently, competing in general-sum games.  
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5. From a review of the literature on RL, summarized in Section 6.2, RL is 

considerably more difficult to implement in general-sum games.  As part 

of this thesis, a feasibility study on the extent RL can be applied to such 

games was carried out. The results showed that RL could be applied 

successfully to general-sum games that model some real-world situation.  

 
6. In addition, the computational model of two autonomous players 

simultaneously learning in a shared environment makes it a multi-agent 

system. MARL is an area of intense research activity. The results of this 

thesis contribute to a greater understanding of MARL by showing that 

convergence is reached in such a system.   

 
7. Section 6.3 introduced an alternative to the traditional measure of learning 

in ANN as being a function of some error. The concept of a mistake was 

introduced as a measure of learning in the RBG. The ability of the ANN to 

learn was measured by the number of mistakes the ANN made. 

 
8. In Chapter 7 all three techniques RL, ANNs and GAs are combined. This 

is an area in its infancy. The results of Chapter 7 contribute to a greater 

understanding of such hybrid systems. 

 

8.4 Future Work 

Following the results in this thesis there are a number of questions and 

avenues for future research. This thesis has focused on creating an abstract 

neural network model, which was realistic given the complexity of the 

behaviour we were trying to simulate. In future work the aim would be to give 

the model a stronger biological basis based on the known neurophysiological 
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data of reinforcment learning and reward-directed behaviour. Future research 

would still be based on the theoretical premise that the higher and the lower 

systems of the brain are largely independent and are locked in some form of 

internal conflict for the optimal control of the organism. However, the ANNs 

comprising the higher and lower brain system will be made more biologically 

realistic by including at the node level, models of neurons, which are more 

biologically plausible, such as leaky-integrate-and-fire models. The overall 

aim is to build a computational model that can help guide research on the 

biophysical processes that underlie the mechanisms suggested by the 

functional analysis of the more abstract model from this thesis.  

                                                                       257                                                                            
  
 



  

References 

 
Ainslie G., Specious reward: A behavioral theory of impulsiveness and impulse 

control. Psychological Bulletin, 82: 463-496, 1975. 

Ainslie G., Picoeconomics: The strategic interaction of successive motivational 

states within the person. Cambridge University Press, New York, 1992. 

Ainslie G. and Haslam N., “Hyperbolic Discounting”. In Loewenstein G. and Elster 

J. (Eds)., Choice over Time, pp. 57-92, Russell Sage Foundation, 1992. 

Ariely D., Procrastination, Deadlines, and Performance: Self-Control by 

Precommitment. MIT Press, Cambridge, MA, 2002. 

Axelrod R., The Evolution of Cooperation. Basic Books Inc., New York, 1984. 

Axelrod R. and Hamilton W.D., The Evolution of Cooperation. Science, 211:1390-

1396, 1981. 

Back T., Optimal mutation rates in genetic search. In S. Forrest (Ed.), Proceedings of 

the fifth International Conference on Genetic Algorithms, pp. 2-8, Morgan 

Kaufmann, San Mateo, CA, 1993. 

Baker F., Probability of reciprocation in repeated Prisoner’s dilemma games. Journal 

of behavioral Decision Making, 14(1): 51-67, 2001. 

Balch T., Learning roles: Behavioural diversity in robot teams. In Sen Sandip (Ed.), 

Collected papers from the AAAI-97 workshop on multiagent learning, 1997 

Baldwin J.M., A new factor in evolution. American Naturalist, 30:441-451, 1896. 

Avail. online at http://www.santafe.edu/sfi/publications/Bookinfo/baldwin.html

Banfield G. and Christodoulou C., On Reinforcement Learning in two player real-

world games. In Proc. ICCS ASCS Int. Conf. on Cognitive Science, 22, 2003.  

Banfield, G. and Christodoulou, C., Can Self-Control be Explained through Games? 

In A. Cangelosi, G. Bugmann, R. Borisyuk (Eds), Modelling Language, Cognition 

and Action, Progress in Neural Processing, World Scientific, 16:321-330, 2005.  

                                                                       258                                                                            
  
 

http://www.santafe.edu/sfi/publications/Bookinfo/baldwin.html


Barto A.G., Adaptive critics and the basal ganglia. In Houk J.C., Davis J. and Beiser 

D. (Eds), Models of Information Processing in the Basal Ganglia, MIT Press, 

Cambridge, MA, pp. 215-232, 1995. 

Barto A.G., Sutton R.S. and Anderson C.W., Neuron like adaptive elements that can 

solve difficult learning control problems. IEEE Transactions on Systems, Man, 

and Cybernetics, 13(5): 834-846, 1983. 

Baumeister R.F., Transcendence, guilt, and self-control. Behavioral and Brain 

Sciences, 18:122-123,1995. 

Beiser D.G. and Houk J.C., Model of Cortical-Basal Ganglionic Processing: 

Encoding the Serial Order of Sensory Events. The American Physiological 

Society, 3168-3190, 1998. 

Bellman R.E., A problem in the Sequential design of experiments. Sankhya, 16:221-

229, 1956. 

Bellman R.E., Dynamic Programming. Princeton University Press, Princeton, New 

Jersey, 1957a. 

Bellman R.E., A Markov decision process. Journal of Mathematical Mechanics, 

6:679-684, 1957b. 

Binmore K., Fun and Games: A text on Game Theory. D. C. Heath and Co., 

Lexington, MA, 1992. 

Bjork J.M, Knutson B., Fong G.W., Caggiano D.M, Bennett S.M, Hommer D., 

Incentive-Elicited Brain Activation in Adolescents: Similarities and Differences 

from Young Adults.  Journal of Neuroscience, 24(8):1793-1802, 2004. 

Bowling M., Convergence and No-Regret in Multiagent Learning. In Advances in 

Neural Information Processing Systems, pp. 209-216. MIT Press, 2005   

Bowling M. and Veloso M. Analysis of Stochastic Game Theory for Mutiagent 

Reinforcement Learning. Technical Report CMU-CS-00-165, Carnegie Mellon 

University, Pittsburgh, 2000. 

                                                                       259                                                                            
  
 



Bowling M. and Veloso M. Rational and Convergent Learning in Stochastic Games. 

In Proceedings of the Seventeenth International Joint Conference on Artificial 

Intelligence, pp. 1021-1026, Seattle, WA, 2001. 

Brown J. and Rachlin H., Self-control and Social Cooperation, Behavioral Processes 

47:65-72, 1999. 

Brown J., Bullock D. and Grossberg S., How the basal ganglia use parallel excitatory 

and inhibitory learning pathways to selectively respond to unexpected rewarding 

cues. Journal of Neuroscience, 19(23):10502-10511, 1999. 

Bullinaria J.A., Evolving efficient learning algorithms for binary mapping. Neural 

Networks, 16:793-800, 2003. 

Burnham T. and Phelan J., Mean Genes: From Sex to Money to Food: Taming Our 

Primal Instincts. Perseus Publishing, USA, 2000. 

Carver C. S. and Scheier M. F., On the Self Regulation of Behavior. Cambridge 

University Press, Cambridge UK, 1998. 

Churchland P.S. and Sejnowski T.J., The Computational Brain. MIT Press, 

Cambridge MA, 1992. 

Claus C. and Boutilier C., The dynamics of reinforcement learning in cooperative 

multiagent systems. In Proceedings of the Fifteenth National Conference on 

Artificial Intelligence, pp. 746-752, AAAI Press, 1998. 

Cohen J. D., Braver T.S. and Brown J.W., Computational perspectives on dopamine 

function in prefrontal cortex. Current Opinion in Neurobiology, 12:223-229, 2002. 

Cosmides L. and Tooby J., Evolutionary Psychology and the Generation of Culture, 

Part II Case Study: A Computational Theory of Social Exchange. Ethology and 

Sociobiology, 10:51-97, 1989. 

Damasio A.R., Descartes Error: Emotion, Reason and the Human Brain. Putnam, 

New York, 1994. 

                                                                       260                                                                            
  
 



Damasio A.R., Tranel D. and Damasio H., Individuals with sociopathic behavior 

caused by frontal damage fail to respond automatically to social stimuli. 

Behavioural Brain Research, 41:81-94, 1990. 

Dawkins R., The Selfish Gene. Oxford University Press, Oxford, UK, 1989. 

Dayan P. and Abbot L.F., Theoretical Neuroscience Computational and 

Mathematical Modeling of Neural Systems. pp. 331-358, MIT press, Cambridge, 

MA, 2002. 

Dayan P. and Balleine B. W., Reward, Motivation and Reinforcement Learning. 

Neuron, 36:285-298, 2002. 

De Jong E., Non-random exploration bonuses for online reinforcement learning.  In 

Sen Sandip (Ed.), Collected papers from the AAAI-97 workshop on multiagent 

learning, 1997. 

Doya K., Complementary roles of the basal ganglia and cerebellum in learning and 

motor control. Current Opinion in Neurobiology, 10(6):732-739, 2000. 

Eisenberger R., Does behaviorism explain self-control? Behavioral and Brain 

Sciences, 18:125, 1995. 

Eshelman L.J. and Schaffer J.D., Crossover’s niche, In S. Forrest (Ed.), Proceedings 

of the Fifth International Conference on Genetic Algorithms, pp. 9-14, Morgan 

Kaufmann, San Mateo, CA, 1993. 

Fantino E., The future is uncertain: Eat dessert first. Behavioral and Brain Sciences, 

18:125-126, 1995. 

Fodor, J. A., The Modularity of Mind. MIT Press, Cambridge, MA, 1983. 

Fogarty T.C., Varying the probability of mutation in the genetic algorithm. In J.D. 

Schaffer (Ed.), Proceedings of the Third International Conference on Genetic 

Algorithms, pp. 104-109, Morgan Kaufmann, San Mateo, CA, 1989. 

Fogel L.J., Owens A. J., and Walsh M.J., Artificial Intelligence through Simulated 

Evolution, Wiley, New York, 1966. 

                                                                       261                                                                            
  
 



Frank M., Loughry B. and O’Rielly R.C., Interactions between the frontal cortex and 

basal ganglia in working memory: A computational model. Cognitive Affective 

and Behavioral Neuroscience, 1:137-160, 2001. 

Frank R.H., Passions within Reason: The strategic Role of the emotions. W. H. 

Norton, New York, 1988. 

Frank R.H., Internal commitment and efficient habit formation. Behavioral and Brain 

Sciences, 18:127, 1995. 

Gabriel M. and Moore J., Learning and computational neuroscience: Foundations of 

adaptive networks (edited collections). MIT Press, Cambridge, MA, 1990. 

Gibbard A., Wise Choices, Apt Feelings: A theory of Normative Judgment. Oxford 

University Press, Oxford, 1990. 

Gao Y., Huang J.X., Rong H.  and Zhou Z. H., Meta-game Equilibrium for Multi-

agent Reinforcement Learning. In Australian Conference on Artificial 

Intelligence, pp. 930-936, 2004. 

Goldberg D. E., Genetic Algorithms in Search, Optimization and Machine Learning. 

Addison-Wesley, Reading, MA, 1989. 

Gondek D., Greenwald A., and Hall K., QnR-Learning in Markov Games, 2001. 

Available at http://www.cs.brown.edu/people/amygreen/papers/qnr.ps.gz. 

Greenfield S.A., The Human Brain: A Guided Tour. Basic Books, New York, 1997.  

Greenwald A. and Hall K., Correlated-Q Learning. In 20th International Conference 

on Machine Learning, pp. 242-249, Morgan Kaufman, San Francisco, 2003.

Haig D., Parental antagonism, relatedness asymmetries, and genomic imprinting, In 

Proceedings of the Royal Society of London B, 264:1657-1662, 1997. 

Hamburger H., Games as models of social phenomena. W.H. Freeman, NY, 1979. 

Harp S.A., Samad T. and Guha A., Towards the genetic synthesis of neural networks. 

In J.D. Schaffer (Ed.), Proc. third Int. Conf. Genetic Algorithms and Their 

Applications, pp. 360-369, Morgan Kaufmann, San Mateo, CA, 1989. 

                                                                       262                                                                            
  
 

http://www.cs.brown.edu/people/amygreen/papers/qnr.ps.gz


Hoch S.J. and Loewenstein G. F., Time-inconsistent preferences and consumer self-

control. Journal of Consumer Research, 17:492-507, 1991 

Holland J.H., Adaptation in Natural and Artificial Systems. Univ. Michigan Press, 

Ann Arbor, Michigan, 1975. 

Holland J.H., A mathematical framework for studying learning in classifier systems. 

Physica D, 2(1-3):307-317, 1986. 

Holland J.H., Genetic Algorithms. Scientific American 267: 66-72, 1992. 

Holroyd C.B. and Coles M.G.B, The neural basis of human error processing 

reinforcement learning, dopamine, event related negative. Psychological Review 

109(4):679-709, 2002. 

Hu J. and Wellman M.P., Multiagent reinforcement learning: Theoretical framework 

and an algorithm. In Proceedings of the Fifteenth International Conference on 

Machine Learning, pp.242-250, Morgan Kaufman, San Francisco, 1998. 

Hughes J. and Churchland P.S, My behaviour made me do it: The uncaused cause of 

teleological behaviorism. Behavioral and Brain Sciences, 18:130-131, 1995. 

Jacobs R. A., Computational Studies of the Development of Functionally Specialized 

Neural Modules. Trends in Cognitive Science 3:31-38, 1999. 

Jafari A., Greenwald A., Gondek D. and Ercal G., On no-regret learning, fictitious 

play, and Nash equilibrium. In Proceedings of the Eighteenth International 

Conference on Machine Learning, pp. 226-233, Morgan Kaufman, San Francisco, 

2001. 

Kane R., Patterns, acts, and self-control: Rachlin’s theory, Behavioral and Brain 

Sciences, 18:109-159, 1995. 

Kanekar S., Conceptual problems in the act-versus-pattern analysis of self-control. 

Behavioral and Brain Sciences, 18:132,1995. 

Kaebling L. P., Littman M. L., and Moore A. W., Reinforcement Learning: A 

Survey. Journal of AI Research, 4:237-285, 1996. 

                                                                       263                                                                            
  
 



Kitano H., Designing neural networks using genetic algorithms with graph generation 

system. Complex Systems, 4(4): 461-476, 1990. 

Klopf A. H., Brain Function and adaptive systems - A heterostatic theory. Technical 

Report AFCRL-72-0164, Air Force Cambridge Research Laboratories, Bedford, 

MA, (1972). A summary appears In Proceedings of the International Conference 

on Systems, Man, and Cybernetics, IEEE Systems, Man and Cybernetics Society, 

Dallas, TX, 1974. 

Klopf A.H., A comparison of natural and artificial intelligence. SIGART Newsletter, 

53:11-13, 1975. 

Klopf A.H., A neuronal model of classical conditioning, Psychobiology, 16:85-125, 

1988. 

Knutson B., Adams C.M., Fong G.W., and Hommer D., Anticipation of Increasing 

Monetary Reward Selectively Recruits Nucleus Accumbens, Journal of 

Neuroscience,  21:RC159:1-5, 2001. 

Kochanska G., Murray K. and Harlan E.T., Effortful control in early childhood: 

Continuity and changes, antecedents, and implications for social development. 

Developmental Psychology, 36(2):220-232, 2000. 

Kolmogorov A.N., On the representations of continuous functions of many variables 

by superpositions of continuous functions of one variable and addition, Doklady 

Akademii Nauk, USSR, 114(5):953-956, 1957. 

Konar A., Artificial Intelligence and Soft Computiong Behavioral and Cognitive 

Modeling of the Human Brain. CRC Press LLC, 2000. 

Kreps D.M., A course in Microeconomic Theory. Princeton University Press, 1990. 

Kurkova V., Kolmogorov’s Theorem and Multilayer Neural Networks. Neural 

Network, 5(3):501-506, 1992. 

Laibson D., Golden Eggs and Hyperbolic Discounting. Quarterly Journal of 

Economics, 112:443-477, 1997. 

                                                                       264                                                                            
  
 



Lin C.T., Jou C. P. and Lin C. J., GA-based reinforcement learning for neural 

networks, International Journal of Systems Science, 29(3):233-247, 1998. 

Littman M. L., Markov games as a framework for multi-agent reinforcement learning 

In Proceedings of the Eleventh International Conference on Machine Learning, 

pp. 157-163, Morgan Kaufmann, San Francisco, CA, 1994. 

Littman M.L., Friend-or-foe Q-learning in General-Sum Games, In Proceedings of 

the eighteenth International Conference on Machine Learning, pp. 322-328, 

Morgan Kaufmann, San Francisco, CA, 2001. 

Littman M.L., Dean T.L. and Kaebling L.P., On the complexity of solving Markov 

decision problems. In Proceedings of the Eleventh Annual Conference on 

Uncertainty in Artificial Intelligence, pp. 394-402, 1995. 

Liu Z., Liu A., Wang C. and Niu Z., Evolving Neural Networks using real coded 

genetic algorithms for multispectral image classification. Future Generation 

Computer Systems, 20:1119-1129, 2004. 

Loewenstein G. F., Out of Control: Visceral influences on behavior. Organizational 

Behavior and Human Decision Processes, 65:272-292, 1996. 

Maynard Smith J., Evolution and the Theory of Games. Cambridge University Press, 

UK, 1982. 

Mazur J. E., An adjusting procedure for studying delayed reinforcement. In M. L. 

Commons, J. E. Mazur, J. A. Nevin, and H. Rachlin, (Eds.), Quantitative analyses 

of behaviour: V.  The effects of delay and of intervening events on reinforcement 

value, pp. 55-73, Lawrence Erlbaum, Hillsdale, N.J., 1987. 

McCulloch W. S. and Pitts W., A logical calculus of the ideas immanent in nervous 

activity, Bulletin of Mathematical Biophysics, 5:115-133, 1943. 

Mele A., Conceptualizing self-control, Behavioral and Brain Sciences, 18:136-137, 

1995. 

Mendel J.M., A survey of learning control systems. ISA Transactions, 5:297-303, 

1966. 

                                                                       265                                                                            
  
 



Metcalfe J. and Mischel W., A hot/cool –system analysis of delay of gratification: 

Dynamics of willpower. Psychological Review, 106(1):3-19, 1999. 

Millar A. and Navarick D. J., Self control and choice in humans: effects of video 

game playing as a positive reinforcer. Learning and Motivation, 15:203-218, 

1984. 

Minsky M.L., Theory of Neural-Analog Reinforcement Systems and its Application to 

the Brain-Model Problem. Ph.D Thesis, Princeton University, 1954. 

Minsky  M.L., Steps towards artificial intelligence, In Proceedings of the institute of 

radio engineers, 49:8-30, (1961). Reprinted in E. A. Feigenbaum and J. Feldman 

(Eds.) Computers and Thought, pp. 406-450, Mcgraw-Hill, New York, 1963. 

Mischel W. and Mischel H.N., Development of children’s knowledge of self-control 

strategies. Child Development, 54:603-619, 1983. 

Mischel W., Shoda Y and Rodriguez M., Delay of gratification in children, Science 

244:933-938, 1989. 

Montana D. and Davis L., Training feedforward neural networks using genetic 

algorithms.  In Proc. eleventh  Int. Conf. Artificial Intelligence, pp. 116-121, 

Morgan Kaufmann, San Mateo, CA, 1989. 

Morgan C. T., King R. A., Robinson N. M., Introduction to Psychology. Mcgraw-

Hill, Tokyo, 1979. 

Moriarty D.E. and Mikkulainen D.E., Efficient Reinforcement Learning through 

symbiotic evolution. Machine Learning, 22:11-32, 1996. 

Moriarty D.E., Schultz A.C. and Grefenstette J.J., Evolutionary Algorithms for 

Reinforcement Learning. Journal of Artificial Intelligence Research, 11:241-276, 

1999. 

Mosterin J., Overcoming addiction through abstract patterns. Behavioral and Brain 

Sciences, 18: 137-138, 1995. 

Muraven M. and Baumeister R.F., Self-regulation and depletion of limited resources: 

Does self-control resemble a muscle? Psychological Bulletin, 126:247:259, 2000. 

                                                                       266                                                                            
  
 



Narendra K.S. and Thathachar M. A. L., Learning automata – A survey. IEEE 

Transactions on Systems, Man, and Cybernetics, 4:323-334, 1974. 

Nash J.F., Equilibrium Points in N-person Games. In Proceedings of the National 

Academy of Sciences of the United States of America 36, pp. 48-49, 1950a. 

Nash J.F., The Bargaining Problem, Econometrica, 18:155-162, 1950b. 

Nesse R. M., Natural Selection and the Capacity for Subjective Commitment. In R. 

M. Nesse (Ed.), Evolution and the Capacity for Commitment, pp. 1-44, Russell 

Sage, New York, 2001. 

O’Doherty J., Deichmann R., Critchley H.D. and Dolan R.J., Neural Responses 

during Anticipation of a Primary Taste Reward. Neuron, 33(5):815-826 2002. 

O’Reilly R.C. and Munakata Y., Computational Explorations in Cognitive 

Neuroscience.  MIT Press, 2000. 

Platt J., Social Traps. American Psychologist, 28:641-651, 1973. 

Plaud J.J., The behavior of self-control, Behavioral and Brain Sciences, 18:139-140, 

1995. 

Pavlov, P. I., Conditioned Reflexes. Oxford University Press, London, 1927. 

Pomerleau D.A., Knowledge-based training of artificial neural networks for 

autonomous robot driving. In J. Connell and S. Mahadevan (Eds.), Robot 

Learning, pp. 19-43, Kluwer Academic Publishers, Boston, 1993. 

Pujol J.C. and Poli R., Evolving the topology and weights of neural networks using a 

dual representation. Applied Intelligence, 8:73-84, 1998. 

Rachlin H., Self-Control: Beyond commitment, Behavioral and Brain Sciences, 

18:109-159, 1995. 

Rachlin H., The Science of Self-Control. Harvard University Press, MA, 2000. 

Rachlin H. and Green L., Commitment, choice and self-control. Journal of the 

Experimental Analysis of Behavior, 17:15-22, 1972. 

Rechenberg I., Evolution Strategy: Optimization of Technical Systems by Principles 

of Biological Evolution. Frommann-Holzboog, Stuttgart, 1973. 

                                                                       267                                                                            
  
 



Richards N., Moriarty D.E. and Mikkulainen D.E., Evolving Neural Networks to play 

Go. Applied Intelligence, 8: 85-96,1998. 

Riolo R.L., Survival of the Fittest Bits. Scientific American, 267(1):114-116, 1992. 

Roth A.E., Vesna P., Okuno-Fujiwara and Zamir, Bargaining and Market Behavior in 

Jerusalem, Ljublijana, Pittsburgh and Tokyo: An Experimental Study. American 

Economic Review, 81(5):1068-1095, 1991. 

Rubinstein A., Perfect equilibrium in a bargaining model. Econometrica 50(1):99-

109, 1982. 

Rubinstein A., Is it “Economics and Psychology”?: The case of hyperbolic 

discounting. International Economic Review, 44:1207-1216, 2003. 

Rumelhart D.E., Hinton G.E. and Williams R.J., Learning internal representation by 

error propagation. In Rumelhart D.E. and McClelland J.L. (Eds), Parallel 

distributed processing: Explorations in the microstructure of cognition, (Vol. 1) 

pp. 318-362, MIT Press, Cambridge, MA, 1986. 

Rummery G.A., Problem Solving with Reinforcement Learning. Ph.D. Thesis, 

Cambridge University, 1995. 

Samuel A. L., Some studies in machine learning using the game of checkers, IBM 

Journal on Research and Development, 3:211-229, (1959). Reprinted in E.A. 

Feigenbaum and J. Feldman (Eds.), Computers and Thought, pp. 71-105, 

Mcgraw-Hill, New York, 1963. 

Samuelson L. and Swinkels J.M., Information and the evolution of the utility 

function, Journal of Economic Literature, 2002. 

Sandholm T. W. and Crites R. H., Multiagent reinforcement learning in the Iterated 

Prisoner’s Dilemma, BioSystems 37: 147-166, 1996. 

Schelling T., The ecology of micromotives, Public Interest  25:61-98, 1971. 

Schelling T., Self-command: A new discipline, In Choice over time, pp. 167-176, 

Loewenstein G.F. and Elster J. (Eds.), Russell Sage Foundation, 1992. 

                                                                       268                                                                            
  
 



Schwefel H.P., Numerical Optimization of Computer Models. Wiley, Chichester, UK, 

1981. 

Shapley L., Stochastic games. In Proc. Natl. Acad. Sci. USA  39:1095-1100, 1953. 

Shefrin H. M. and Thaler R. H., An economic Theory of Self-Control, The Journal of 

Political Economy, 89(2):392-406, 1981. 

Shoham Y., Powers R. and Grenager T., Multi-agent Reinforcement Learning: a 

critical survey. A Technical Report, Stanford University,  available at 

http://robotics.stanford.edu/~shoham, 2003. 

Smolensky P., Putting together connectionism. Behavioral and Brain Sciences 11:59-

70, 1988. 

Solnick J. W., Kannenberg C., Eckerman D.A. and Waller M. B., An experimental 

analysis of impulsivity and impulse control in humans. Learning and Motivation 

1:61-77, 1980. 

Sozou P. D., 2003, The Evolutionary Context of Self-Control Problems, Presented at 

the Workshop on the Evolutionary Biology of Learning, Fribourg, Switzerland, 

21-22 February 2003. 

Sporns O., Tononi G. and Edelman G.M., Connectivity and Complexity: the 

relationship between neuroanatomy and brain dynamics. Neural Networks, 

13:909-922, 2000. 

Strotz R.H., Myopia and inconsistency in dynamic utility maximization. Review of 

Economic Studies, 23:165-180, 1956. 

Suri R.E. and Schultz W., A neural network model with dopamine like reinforcement 

signal that learns a spatial delayed response task. Neuroscience, 91:871-890, 

1999. 

Sutton R.S., Learning to predict by the method of temporal differences, Machine 

Learning, 3:9-44, 1988. 

                                                                       269                                                                            
  
 

http://robotics.stanford.edu/~shoham


Sutton R.S. and Barto A. G., A temporal-difference model of classical conditioning, 

In Proceedings of the Ninth Annual Conference of the Cognitive Science Society, 

pp. 355-378, Lawrence Erlbaum, Hillsdale, NJ, 1987. 

Sutton R. S. and Barto A. G., Reinforcement Learning: An Introduction. MIT Press, 

Cambridge, MA, 1998. 

Tan M., Multi-agent reinforcement learning: Independent vs. cooperative agents. In 

Proceedings of the tenth international Conference on Machine learning, pp. 330-

337, Morgan Kaufmann, Amherst, MA, 1993. 

Tesauro G., Neurogammon wins computer Olympiad. Neural Computation, 1:321-

323, 1989. 

Tesauro G., TD-Gammon, a Self-Teaching Backgammon Program Achieves Master-

Level Play. Neural Computation, 6:215-219, 1994. 

Tesauro G., Programming backgammon using self-teaching neural nets. Artificial 

Intelligence, 134:181-199, 2002. 

Thaler R.H. and Shefrin H.M., An Economic Theory of Self-control. The Journal of 

Political Economy, 89(2):392-406, 1981. 

Thorndike E.L., Animal Intelligence, Hafner, Darien, Connecticut, 1911. 

Trivers, R., The Elements of a Scientific Theory of Self-Deception. Annals of the 

New York Academy of Sciences, 907:114-131, 2000. 

Trivers R. and Burt A., Kinship and genomic imprinting. In R. Ohlsson, (Ed.), 

Genomic Imprinting, An Interdisciplinary Approach, pp. 1-23, Springer, 

Heidelberg, Germany, 1999. 

van der Wal J., Stochastic dynamic programming. In Mathematical centre tracts, 

139, Morgan Kaufmann, Amsterdam, 1981. 

von Neumann J. and Morgenstern, Theory of Games and Economic Behaviour. 

Princeton University Press, Princeton, 1944. 

Waltz M.D. and Fu K. S., A heuristic approach to reinforcement learning control 

systems. IEEE Transactions on Automatic Control, 10:390-398, 1965 

                                                                       270                                                                            
  
 



Watkins C.J.C.H,  Learning from Delayed Rewards. Ph.D  Thesis, Cambridge 

University, 1989. 

Werbos P.J., The Roots of Backpropagation. John Wiley and Sons Inc., New York, 

1994. 

Widrow B., Gupta N. K. and Maitra S., Punish/reward: Learning with a critic in 

Adaptive Threshold Systems. IEEE Trans. on Sys., Man and Cyber., 5:455-465, 

1973.  

Widrow B. and Hoff J. M. E., Adaptive switching circuits. IRE WESCON 

Convention Record, pp. 961-1104, 1960. 

Yao X., Evolving Artificial Neural Networks. In Proc. of  the IEEE 87( 9):1423-

1447, 1999. 

Yao X. and Shi Y, A preliminary study on designing artificial neural networks using 

co-evolution, In Proc. IEEE Singapore Int. Conf. Intelligent Control and 

Instrumentation, Singapore, pp. 149-154, 1995. 

Zornetzer S.F., Davis J.L. and Lau C., An introduction to neural and electronic 

networks edited collection. 2nd edn., Academic Press, New York, 1994. 

 
 

                                                                       271                                                                            
  
 



 Candidate’s Publications During the PhD Research 

Banfield G. and Christodoulou C., 2003, On Reinforcement Learning in two player 

real-world games, In Proc. ICCS ASCS Int. Conf. on Cognitive Science, 22 .  

Banfield, G. and Christodoulou, C. 2005, Can Self-Control be Explained through 

Games? In A. Cangelosi, G. Bugmann, R. Borisyuk (Eds), Modelling Language, 

Cognition and Action, Progress in Neural Processing, World Scientific, 16, 321-

330.  

 

Candidate’s Invited Presentations During the PhD Research 

School of Computer Science and Information Systems Research seminar, Birkbeck 

College, University of London, Jan. 2003  

Computational modelling group, Centre for Brain & Cognitive Development School 

of Psychology, Birkbeck College, University of London, June 2003 

LSE  UCL 30 Gordon St ELSE Seminar room, Feb 2004 

 
 

                                                                       272                                                                            
  
 


	Introduction
	Overview
	Outline of this Thesis

	Literature Review of Self-Control and Games
	Chapter Outline
	Self-Control through Precommitment: the problem and its impo
	Defining self-control behaviour
	Exercising Self-Control
	Defining Precommitment behaviour
	Precommitment behaviour and games

	Explaining Self-control through games
	Physiological evidence for Self-Control
	Evolution of Self-Control through Precommitment
	Summary

	Review of the concepts for the Neural Modelling of Self-Cont
	Chapter Outline
	Support for the dual-process model
	Alternative abstract models
	Neurological support for the dual-process model
	A model of self-control
	What is new and overview?

	Concluding Remarks

	Review of Reinforcement learning in the context of Self-Cont
	Chapter Outline
	A novel approach to the self-control problem
	A Brief History of Reinforcement Learning
	Elements of Reinforcement Learning
	Reinforcement Learning methods
	Reinforcement Learning and Function Approximation Techniques
	Gradient Descent and Artificial Neuron Learning
	Reinforcement Learning and Neuroscience
	Summary

	Concluding Remarks

	Review of the Concepts for Evolutionary Adaptation of the Ne
	Chapter Outline
	An Overview of Evolutionary Computation
	Which Evolutionary Process is best for the work of this thes
	Implementation of Genetic Algorithms
	Genetic Operators
	Crossover
	Mutation
	Selection

	Representation
	The Evolutionary Process
	Population size
	When to stop – Convergence


	Evolutionary Algorithms and Artificial Neural Networks
	Evolution of the Weights in an ANN
	Evolution of the ANN’s Architecture
	Evolution of the ANN’s Learning rules.
	Summary of Evolutionary Artificial Neural Networks

	Combining the techniques of Evolutionary Algorithms, Artific
	Concluding Remarks

	Explaining Self-Control by Playing Games.
	Chapter Outline
	Multi-agent Reinforcement Learning and General-sum Games
	What is new and overview?
	Explaining Self-Control with The Rubinstein’s Bargaining Gam
	Selective Bootstrap feed forward network (SB-FFWD) playing a
	Introduction
	Methodology
	Test Procedure
	Results
	Conclusion

	Temporal Difference feed forward network playing an Artifici
	Introduction
	Methodology
	Test Procedure
	Results
	Conclusion

	2-ANNs Playing the Rubinstein’s Bargaining Game
	Introduction
	Methodology
	Testing Procedure
	Results
	Conclusion


	Explaining Self-control with the Iterated Prisoner’s Dilemma
	The Temporal Difference Network versus the Selective Bootstr
	Introduction
	Methodology
	Test Procedure
	Results
	Conclusion

	The Temporal Difference Network versus the Selective Bootstr
	Introduction
	Methodology
	Test Procedure
	Results
	Conclusion


	Modelling a bias towards future rewards
	Modelling bias towards future rewards as a variable bias
	Introduction
	Methodology
	Test Procedure
	Results
	Conclusion

	Modelling a bias towards future rewards as an extra input to
	Introduction
	Methodology
	Test Procedure
	Results
	Conclusion

	Modelling a bias towards future rewards as a differential bi
	Introduction
	Methodology
	Test Procedure
	Results
	Conclusion


	Summary

	Evolutionary Adaptation of the Neural Model
	Chapter Outline
	Scenario of Simulation of the evolution of a bias towards fu
	Architecture and Algorithm
	Testing Procedure
	Results and Interpretation
	Conclusion

	Scenario of Simulation of the evolution of learning in the c
	Architecture and Algorithm
	Testing Procedure
	Results and Interpretation
	Conclusion

	Concluding Remarks

	Can self-control through precommitment be explained by evolu
	Retrospective
	Conclusion
	Contributions
	Future Work


