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Abstract 
 
A promising clustering method, “intelligent” version of K-Means, iK-Means, 

which finds the number of clusters K and initializes K-Means with the 

so-called Anomalous pattern (AP) clusters, has been proposed and tested on 

several real-world data sets (Mirkin 2005). The subject of this thesis is to 

further analyse the performance of iK-Means method, in two versions – L2 

and L1, involving respectively the squared Euclidean distance and mean 

centroids, and the city block distance and median centroids. Firstly, one 

needs to see if there is any difference between results of these methods at all, 

and if there is, what data structures are better served by each. Secondly, one 

needs to compare the iK-Means with a host of other methods for obtaining 

the number of clusters published in the literature and to this end, to adopt or 

develop a technique for simulation studies. We propose a technique for 

modelling Gaussian clusters and their intermix. In experiments conducted 

over this model, iK-Means appear to outperform the others on the cluster 

and centroid recovery, though it may fail sometimes on the number of 

clusters. The iK-Means methods are applied then to solving an 

unconventional task in gene expression analysis: finding genes differently 

expressed in different types of cells. 

 



 iv 

Contents 
 
Acknowledgement vii 

List of Tables viii 

List of Figures ix 

List of Acronyms x 

List of Publications xi 

 

Chapter 1 K-Means clustering and its Issues  1 

 

Chapter 2 Choosing K in K-Means: A Review          11 

2.1 Variance approach          12 

2.2 Within-cluster cohesion vs. between-cluster separation 16 

2.3 Consensus approach          20 

2.4 Hierarchical approach          23 

2.5 Resampling approach          27 

2.6 Summary 34 

 

Chapter 3 Experiment Setting for Comparison of Methods for 

Choosing K 35 

3.1 Modelling cluster structure          36 

3.2 Selection of algorithms          49 

3.3 Evaluation: distances between centroids          56 

3.4 Evaluation: confusion between partitions          58 

3.5 Summary 60 

 

Chapter 4 Analysis of the Experimental Results           62 

4.1 First series of evaluation tables and their analysis         62 



 v 

4.2 Adjusted intelligent K-Means          68 

4.3 Second series of the experiment and their analysis 70 

4.4 Summary 78 

 

Chapter 5 Relationship between L1 & L 2 Versions         80 

5.1 The difference of the methods         80 

5.2 Suitable data structures         82 

5.3 Summary 84 

 

Chapter 6 Application of L1 and L2 K-Means to Gene  

Expression Data          86 

6.1 The issue of gene expression data pre-processing          87 

6.2 L1/L2 consistent genes analysis          96 

  6.2.1 Pivot-based with removal normalization results  99 

  6.2.2 Comparing clustering results with LOESS  

           normalization method 106 

6.3 Summary 113 

 

Chapter 7 Conclusion and Future Work        114 

 

List of references        118 

 

Appendix A: Lists of genes in Tumour/Dendrite gene expression data 

using Pivot-based with the removal normalization method 129 

 

Appendix B: Lists of genes in Tumour/Dendrite gene expression data 

at two normalization methods        131 

 



 vi 

Acknowledgement 
 

 

First and foremost, my gratitude goes out to my supervisor Prof. Boris 

Mirkin. What I have learned for these years is not only machine learning 

knowledge, especially clustering, but also the attitude of doing research in 

the future. I will always be grateful for his encouragement, continuous 

support and indefatigable guidance.   

 

I would also like to thank the friendly members of the Systems Group of 

School of Computer Science and Information Systems: Phil Gregg, Phil 

Docking, Andrew Watkins and Petar Konovski, which have given me full 

technical support. Especially, Phil Gregg and Petar gave me useful 

suggestions and support when running the experiments. I would specifically 

like to thank Prof. B Chain from the Virology Department of UCL, which 

provides the gene expression data for analysis. 

 

Last, but certainly not least, my utmost gratitude must go to my parents, to 

whom I will be forever indebted for their love, support, wise guidance and 

their dedication throughout the years, without which I would have never 

been in the position to write this thesis. Finally, I owe a deep appreciation to 

my wife Yongshuo for her inexhaustible patience, devotion during these 

years when we started this long and unpredictable journey together. 

 



 vii  

List of Tables 
 
Table 3.1: Between-cluster spread factors depending on the within-cluster 

spread shape types in the experiment 45 

Table 3.2: Set of methods for estimation of the number of clusters in 

K-Means under comparison 49 

Table 4.1: Comparison of iK-Means with 7 other methods at cluster=7 and 3 

cluster structural models 61 

Table 4.2: Comparison of iK-Means with 7 other methods at cluster=9 and 3 

cluster structural models 62 

Table 4.3: Comparison of iK-Means with 7 other methods at cluster=21 and 

3 cluster structural models 63 

Table 4.4: Comparison of adjusted iK-Means with 9 other methods at 

cluster=7, cluster shape=spherical 70 

Table 4.5: Comparison of adjusted iK-Means with 9 other methods at 

cluster=7, cluster shape=elliptical 71 

Table 4.6: Comparison of adjusted iK-Means with 9 other methods at 

cluster=9, cluster shape=spherical 72 

Table 4.7: Comparison of adjusted iK-Means with 9 other methods at 

cluster=9, cluster shape=elliptical 73 

Table 4.8: Comparison of adjusted iK-Means with 9 other methods at 

cluster=21, cluster shape=spherical 74 

Table 4.9: Comparison of adjusted iK-Means with 9 other methods at 

cluster=21, cluster shape=elliptical 75 

Table 5.1: Comparison of L2 and L1 at clusters=7 and cluster 

shape=spherical 77 

Table 5.2: Comparison of L2 and L1 at clusters=9 and cluster 

shape=spherical 77 

Table 5.3: Comparison of L2 and L1 at clusters=21 and cluster 

shape=spherical 77 

Table 5.4: Comparison of L2, L1, AL2, and AL1 with the generated clusters at 



 viii

clusters=7 and cluster shape=spherical 79 

Table 5.5: Comparison of L2, L1, AL2, and AL1 with the generated clusters at 

clusters=9 and cluster shape=spherical 79 

Table 5.6: Comparison of L2, L1, AL2, and AL1 with the generated clusters at 

clusters=21 and cluster shape=spherical 79 

Table 6.1: Cluster centroids of DC data obtained using the L2 method 95 

Table 6.2: Cluster centroids of DC data obtained using the L1 method 95 

Table 6.3: The confusion matrix between the results of L2 and L1 methods of 

DC data 96 

Table 6.4: Cluster centroids obtained using the L2 method of the 18962 

corresponding Mutz3 97 

Table 6.5: Cluster centroids obtained using the L1 method of the 18962 

corresponding Mutz3 98 

Table 6.6: Cluster centroids obtained using the L2 method of the 1246 

corresponding Mutz3 98 

Table 6.7: Cluster centroids obtained using the L1 method of the 1246 

corresponding Mutz3 98 

Table 6.8: Cluster centroids obtained using the L2 method of the 748 

corresponding Mutz3 99 

Table 6.9: Cluster centroids obtained using the L1 method of the 748 

corresponding Mutz3 99 

Table 6.10: The numbers of weak and active DC genes for four 

normalization methods 102 

Table 6.11: The numbers of very active and weak Mutz3 genes for four 

normalization methods 102 

Table 6.12: The numbers of genes that are not selected for different reasons 

in weak DC and very active Mutz3 case 103 

Table 6.13: The corresponding gene numbers according to Table 6.12 104 

Table 6.14: The numbers of genes that are not selected for different reasons 

in active DC and weak Mutz3 case 105 

Table 6.15: The corresponding gene numbers according to Table 6.14 106 



 ix 

List of Figures 
 
Figure 3.1: An illustration of cluster intermix 41 

Figure 3.2: Two Gaussian clusters with their density functions 42 

Figure 3.3: Examples of datasets generated at different data models 45 

Figure 3.4: Uni-modal distribution shape versus a bi-modal distribution 

shape 47 

Figure 5.1: MA plot with loess fit on the three replicates of DC dataset 100 



 x 

List of Acronyms 
 

AL 1:  Least Moduli Criterion of HT-adjusted iK-Means Clustering 

AL 2:  Least Square Criterion of HT-adjusted iK-Means Clustering 

AP:  Anomalous Pattern 

ARI:  Adjusted Rand Index 

BIC:  Bayesian Information Criterion 

CCIA:  Cluster Centre Initialization Algorithm 

CD:  Consensus Distribution area 

CDF:  Cumulative Distribution Function 

cDNA:  Complementary DNA 

CH:  Calinski and Harabasz Index 

DBMSDC:  Density-Based Multi Scale Data Condensation 

DC: Dendritic Cells 

DD:  Average Distance between Partitions 

DT:  Discarding Threshold 

GS:  Gap Statistic 

HT:  Hartigan’s Rule 

iK-Means:  Intelligent K-Means 

ISODATA:  Iterative Self-Organizing Data Analysis Techniques 

JS:  Jump Statistic 

KDD:  Knowledge Discovery in Database 

L1:  Least Moduli Criterion of iK-Means Clustering 

L2:  Least Square Criterion of iK-Means Clustering 

LOESS:  Locally Estimated Scatterplot Smoothing 

LOWESS:  Locally Weighted Scatterplot Smoothing 

LVQ: Learning Vector Quantization 

DL:  Minimum Discription Length 

MST:  Minimum Spanning Tree 

PB:  Pivot-based without removal normalization method 

PBR:  Pivot-based with removal normalization method 

PPCA:  Probabilistic Principal Component Analysis 

VQ: Vector Quantization 



 xi 

List of Publications 
 

Chiang M. M.T. and Mirkin B., Intelligent choice of the number of clusters in 

K-Means clustering: an experimental study with different cluster spreads, Journal 

of Classification, In press. 

 

Chiang M. M.T. and Mirkin B. (2007), Experiments for the number of clusters in 

K-Means, Progress in Artificial Intelligence, EPIA 2007, LNAI 4874, 395-405. 

 

Chiang M. M.T. and Mirkin B. (2006), Determining the number of clusters in the 

Straight K-Means: Experimental comparison of eight options, Proceeding of the 

2006 UK workshop on Computational Intelligence, 119-126. 

 

 



 1 

Chapter 1 
 

K-Means Clustering and its Issues 
 

There are a lot of data and reports generated in the public and private sectors 

everyday and how to deal with them efficiently and transfer them into useful 

information for decision support is a very important issue. In order to achieve this 

goal, one needs data collection, analysis and evaluation process. Generally, this 

process is called knowledge discovery and because the data is stored in a database, 

it is also known as knowledge discovery in databases (KDD) or data mining (Liu 

and Motoda 1998). 

The definitions of data mining have been proposed in many publications 

(Cabena et al. 1997, Grupe and Owrang 1995, Berry and Linoff 1997, Kleissner 

1998, Frawley et al. 1992) and the definition that Frawley et. al (1992) proposed is 

the most common version, that is, the non trivial extraction of implicit, previously 

unknown, and potentially useful information from data. Berry and Linoff (1997) 

described a four-stage process of data mining: identifying problems, transferring 

data into results, analyzing and evaluating results and these stages are repeated 

during data mining. Data mining involves the use of sophisticated data analysis 

tools to discover previously unknown, valid patterns and relationships in large data 

sets (Edelstein 1999, Adriaans and Zantinge 1996).  

Cluster analysis is an important technique in data mining and the process is to 

partition data into clusters (groups or classes) so that objects in the same cluster 

have high similarity in comparison to each other, that is, homogeneous, but are 
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very dissimilar to objects in other clusters, that is, heterogeneous (Aldenderfer and 

Blashfield 1984, Tian et al. 2005). K-Means is the simplest, fastest and the most 

commonly used clustering method (see Bock 2007, Steinley 2006) that applies to a 

data set involving the set of N entities, I, the set of M features, V, and the 

entity-to-feature matrix Y=(yiv), where yiv is the value of feature v∈V at entity i∈I. 

The method produces a partition S={S1, S2,…, SK} of I in K non-overlapping 

classes Sk, referred to as clusters, each with a centroid ck=(ckv), an M-dimensional 

vector in the feature space (k=1,2,…K). Centroids form set C={c1, c2,…, cK}. The 

criterion, minimized by the method, is the within-cluster summary distance to 

centroids: 

W(S, C)=∑∑
= ∈

K

k Si
k

k

cid
1

),(  (1) 

where d is a distance measure, typically the Euclidean distance squared or 

Manhattan distance. In the former case criterion (1) (see page 2) is referred to as 

the square error criterion (least square criterion (L2)) and in the latter, the absolute 

error criterion (least moduli criterion (L1)).  

Given K M-dimensional vectors ck as cluster centroids, the algorithm updates 

clusters Sk according to the Minimum distance rule: For each entity i in the data 

table, its distances to all centroids are calculated and the entity is assigned to its 

nearest centroid. Given clusters Sk, centroids ck are updated according to the 

distance d in criterion (1) (see page 2), k=1, 2, …, K. Specifically, ck is calculated 

as the vector of within-cluster averages if d in (1) is Euclidean distance squared and 

as of within-cluster medians if d is Manhattan distance. This process is reiterated 

until clusters Sk stabilize. Before running the algorithm, the original data is to be 
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,
1

ivikkv

K

k
iv escy += ∑

=

pre-processed (standardized) by subtracting the grand mean from each feature and 

further divided it by its range in our experimental settings, described on page 46. 

This algorithm will be referred to as Straight or Batch K-Means which will be 

implemented in my research. 

When the distance d in (1) is indeed the squared Euclidean distance, K-Means 

can be seen as an implementation of the alternating optimization procedure for 

maximization of the maximum likelihood under the assumed mixture of 

“spherical” Gaussian distributions model, in which all covariance matrices are 

equal to a diagonal matrix σ2I where I is the identity matrix and σ2 the variance 

value (Hartigan 1975, Banfield and Raftery 1993, McLachlan and Peel 2000). 

Another, somewhat lighter interpretation comes from the data mining paradigm, in 

which (1) is but the least-squares criterion for approximation of the data with a data 

recovery clustering model (Mirkin 1990, 2005) that states that every entry yiv in the 

data matrix (i denotes an entity and v a feature), can be presented as approximated 

by the “hidden” set of clusters S={S1, S2,…, SK} and their centers C={ c1, c2,…, cK} 

through equations   

 (2) 

where sk=(sik) is Sk membership vector in which sik=1 if i∈Sk and sik=0 otherwise, 

and eiv are residuals to be minimized over unknown ck and sk (k=1,2,…,K). 

Criterion (1) (see page 2) is the least-squares or least-moduli fitting criterion for 

model (2) (see page 3) if d in (1) is the squared Euclidean distance or Manhattan 

distance, respectively. 

A version of K-Means in which the number of clusters and initial centroids are 

determined beforehand with a procedure targeting anomalous patterns as the 



 4 

candidates for the initial centroids has been proposed in Mirkin (2005) under the 

title of “intelligent K-Means” (iK-Means). It initializes K-Means by standardizing 

the data in such a way that the origin is put into a point, usually the gravity centre 

of all the data points, rescaling it by dividing the range, and iterating then the 

so-called Anomalous Pattern algorithm described in the box below: 

 

 

 

The AP algorithm starts from that entity, which is the farthest from the origin, 

as the initial centroid c. After that, a one-cluster version of the generic K-Means is 

utilized. The current AP cluster S is defined as the set of all those entities that are 

closer to c than to the origin, and the next centroid c is defined as the center of 

gravity of S. This process is iterated until convergence. The convergence is 

guaranteed because the process alternates between minimizing the criterion (1) (see 

page 2) at K=2 with S1=S, S2=I-S, and centroids c1=c and c2=0, and the origin 

which is kept unchanged through the iterations. The final S, along with its centroid 

Anomalous Pattern (AP): 

1. Find an entity in I, which is the farthest from the origin and put it as the 

AP centroid c. 

2. Calculate distances d(yi,c) and d(yi,0) for each i∈I, and assign yi to the 

AP cluster S if d(yi c)<d(yi,0).  

3. Calculate the centroid c’  of the S found on step 2. If c’  differs from c, put 

c’  as c, and go to step 2, otherwise go to step 4 

4. Output S and its centroid c as the Anomalous Pattern. 
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c and its contribution to the data scatter, is the output AP cluster. After it is 

removed from the data set, the process of extracting AP clusters is reiterated 

without ever changing the origin, until no entity remains. Centroids of those AP 

clusters that have more than one entity are used as c set at the initialization of 

K-Means.  

This is a version of the so-called Principal cluster analysis approach that 

emulates the one-by-one strategy of the Principal component analysis applied to 

model (2) (see page 3): an AP pattern is a cluster derived from model (2) (see page 

3) at K=1 in such a way that it maximally contributes to the data scatter (Mirkin 

1990). The fact that AP cluster is far away from the origin conforms to the notion 

of interestingness in data mining: the farther from origin, the more interesting 

(Fayyad et. al 1996). The iK-Means algorithm iteratively applies the Anomalous 

Pattern procedure to the yet un-clustered part of the data until no entities remain 

out of the anomalous patterns. Those of the anomalous patterns that are not 

numerous, that is, singletons and, in general, those whose cardinality is less than or 

equal to a pre-specified discarding threshold DT, are removed from the set of 

anomalous patterns. (In our experiments, DT=1.) Those remaining are used to 

initialize K-Means: K is the number of remaining APs, and their centroids are taken 

to initialize K-Means. The algorithm is formulated in the box. 
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The intelligent K-Means procedure seems appealing both intuitively and 

computationally, and it leads to interpretable solutions in real-world problems. 

Therefore, it seems reasonable to put it to empirical testing. A version of the 

method, with a pre-specified K and with no removal of singletons, has been tested 

by Steinley and Brusco (2007), leading to rather mediocre results in their 

experiments. Here we intend to test the original version of the iK-Means as a 

device for identifying both the number K and initial centroids. 

The distance and centroids in iK-Means are defined differently depending on 

the criterion in the corresponding data recovery model. Specifically, with the least 

squares (square error) criteria, the distance is Euclidean squared and the cluster 

centroid is defined by the within-cluster feature averages. With the absolute error 

criterion, the distance is Manhattan, also referred to as city-block, and the cluster 

Intelligent K-Means: 

0. Put t=1 and I t =I , the original entity set, and standardize the data in such 

a way that the origin is put in the grand mean; the feature ranges are used 

for scaling.  

1. Apply AP to I t to find St and Ct.  

2. If St ≠ It, put I t�I t−St , t�t+1 and go to step 1, otherwise, proceed to 3. 

3. Remove all of the found clusters whose cardinality is less than or equal 

to the discarding threshold DT. Denote the number of remaining clusters 

by K and their centroids by c1, c2,…, cK. 

4. Do Straight K-Means with c1, c2,…, cK as initial centroids. 
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centroid is defined by the within cluster feature medians. 

The iK-Means algorithm has the following features:  

(a) it uses just one run of the iterative AP algorithm over set I,  

(b) it utilizes yet another parameter, the discarding threshold, which is taken to be 

DT=1 in the follow-up experiments,  

(c) it involves an automatic determination of both the K and initial centroids. 

The main difficulty remaining among the clustering methods is the 

determination of the “right” number of clusters (for reviews, see Jain and Dubes 

(1988), Dudoit and Fridlyand (2002), Mirkin (2005), Steinley (2006)). Ball and 

Hall (1965) proposed an ISODATA algorithm. The algorithm begins with a random 

partition and centroids and any clusters that do not have enough observations are 

discarded. Bischof et al. (1999) developed a method based on minimum description 

length (MDL). Starting from a large number of K, the algorithm removes clusters 

whenever the description length can be reduced, and any clustering algorithm, for 

example, K-Means can be used at each step to optimize the model fit to the data. 

The whole process is continued until it converges. Kothari and Pitts (1999) 

proposed a scale-based method for determining the number of clusters, which 

modified the within-cluster summary distance to centroids (see Eq (1) on page 2) 

of traditional K-Means.  

Some papers propose a procedure for estimating the number of clusters and 

experimentally comparing it to some other methods and some authors do more 

comprehensive experiments and either arrive at some winning procedures, like 

Milligan and Cooper (1985) in their seminal study of 30 indexes for cutting cluster 

hierarchies, or obtain inconclusive results like Hardy (1996) and Dimitraidou et al. 
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(2002). Milligan and Cooper (1985) proposed a Monte Carlo evaluation of the 

performance of 30 numerous cluster numbers determination procedures when 

applied to the analysis of artificial data sets containing 2, 3, 4, or 5 distinct clusters 

by four hierarchical clustering methods. Milligan and Cooper (1987) wrote a 

clustering methodology review and gave the practitioners in clustering some useful 

recommendations not only in methods but also in applied analysis. Hardy (1996) 

evaluates 7 methods over 6 different data sets and suggests trying several clustering 

techniques on the data and gathers more information to determine the number of 

clusters. Dimitraidou et al. (2002) present a comparison of 15 different validity 

indexes for the binary data sets consisting of 4, 5, or 6 clusters by two clustering 

algorithms: K-Means and hard competitive learning, but come to no definite 

conclusions. Steinley and Henson (2005) pointed out that it is very important, in 

experiments with simulated data, to maintain a degree of cluster overlap to be able 

to derive any realistic conclusions, which was not the case in previously published 

experimental studies. They propose a model for data generation with overlapping 

clusters, which however contains too many parameters and can model only 

one-dimensional overlaps. In a follow-up experimental study of different 

initialization strategies, Steinley and Brusco (2007) come to the conclusion that 

cluster overlap is the property of generated data that most affects the cluster 

recovery. 

A promising clustering method, “intelligent” version of K-Means, iK-Means, 

which initializes K-Means with the so-called Anomalous pattern (AP) clusters that 

are furthest away from the origin of the feature space, has been proposed and tested 

on several real-world data by Mirkin (2005) and this research is oriented towards 
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investigation of this method. The most important question is 

(1) Whether iK-Means is good for finding the number of clusters? 

To answer this question, one needs to address the following issues: 

1a.  Make a review of the literature and select methods for finding K 

with which to compare 

1b.  Put a data generator that allows a comparison between methods 

along with addressing the issue of modelling the overlap between 

clusters 

1c. Define evaluation criteria for the results of experiments 

1d. Conduct the experiments 

1e. Using the results of the experiments, find out if any improvement of 

iK-Means is possible at all 

If the answer to question 1 is positive in general, as we expect, we are 

interested in  

(2) further exploration of the relationship between L2 and L1 versions of the 

method. Specifically, we are interested to see: 

2a. Do these methods give similar results on all data structures, or 

could they lead to different results? 

If the answer to 2a is that these methods give different results, as we 

expect, then we have a more specific issue: 

2b. Whether these methods are oriented at different data structures? 

That is, if there is a data structure type that is better suitable for L2 

version and a data structure type that is more suitable for L2 

version? 
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2c. Is it possible to utilise the differences between the two iK-Means 

methods in a concerted application of them to a real-world 

problem? 

Accordingly, the contents of the thesis is organised along the lines of the 

inquiry. The question 1 is treated in Chapter 2 (devoted to 1a), Chapter 3 (devoted 

to 1a-1c) and Chapter 4 (devoted to 1d-1e). Chapter 2 contains a review of methods 

for finding the right K in K-Means in the published literature. We distinguish 

between five approaches as based primarily on: cluster variance, within-cluster 

cohesion versus between-cluster separation, consensus distribution, hierarchical 

clustering, and resampling. The setting of our experiments at the comparison of 

nine selected methods for finding the “right clustering” – the data sizes, the cluster 

shapes, the within- and between-cluster spread parameters, and evaluation criteria - 

is described in Chapter 3. Chapter 4 presents results of our experiments in tables 

containing the evaluation criteria values, averaged over multiple data generations at 

each of the twelve data settings, along with issues raised before the experiments 

and answers to them coming from the results. Question 2 is treated in Chapter 5 (2a 

and 2b) and 6 (2c). Finally the conclusion reviews the results and questions which 

remain unanswered.   

 



 11 

Chapter 2  
 

Choosing K in K-Means: A Review 
 

There have been a number of different proposals in the literature for choosing the 

right K after multiple runs of K-Means (Halkidi et al. 2001, Maulik and 

Bandyopadhyay 2002a, Kothari and Pitts 1999, Vesanto 2001, Hansen and 

Mladenovic 2001, Steinley 2006, Steinley and Brusco 2007, Likas et al. 2003, 

Hand and Krzanowski 2005, Ray and Turi 1999, Sugar and James 2003, Steinley 

2004, Shen et. al 2005, Pena et al. 1999, Pelleg and Moore 2000, Mirkin 1996, 

Mirkin 2005, Leisch 2006, Kuncheva, and Vetrov 2005, Krzanowski and Lai 1985, 

Kaufman and Rousseeuw 1985, Jain, and Dubes 1988, Fraley and Raftery 2002, 

Steinley 2003, Steinbach et. al 2000, Pena et. al 1999, Babu and Murty 1993, 

Thiesson et al. 1997, Khan and Ahmad 2004, He et al. 2004, Hamerly and Elkan 

2002, Paterlini and Krink 2006, Redmond and Heneghan 2007, Jiwei 2001, Jain et. 

al 1999, Breckenridge 1989 etc.). We can categorize them into five main 

approaches: 

A. Variance approach: comparing the within-cluster summary distance to 

centroids at different K; 

B. Within-cluster cohesion vs. between-cluster separation: comparing values 

of another characteristic of the cluster structure; 

C. Consensus approach: using on all random initizaliztion runs rather than 

on just the best one to arrive at a “compromise” solution; 

D. Hierarchical approach: choosing K according to the results of a divisive 
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or agglomerative clustering procedure 

E. Resampling approach: choosing K according to the similarity of 

clusterings generated on random samples or perturbed data 

 

We describe them in the following subsections. Let us denote the minimum of 

criterion (1) (see page 2) at a specified K by WK. Empirically, one can run K-Means 

R times starting using random subsets of K entities for initialization and use the 

minimum value of criterion (1) (see page 2) at obtained clusterings as a WK 

estimate.  

 

2.1 Variance approach 

 

There have been several different Wk based indices proposed to estimate the 

number of clusters K (see Calinski and Harabasz (1974), Hartigan (1975), 

Krzhanowski and Lai (1985), Tibshirani et al. (2001), Sugar and James (2003)). 

The issue is that WK itself cannot be used for the purpose since it monotone 

decreases when K grows. Thus, various “more sensitive” characteristics of the 

function have been utilized based on intuitive or statistical modeling of the 

situation. Of those, we choose the following four: two heuristic measures that have 

been experimentally approved by Milligan and Cooper (1985): a heuristic rule by 

Hartigan (Hartigan 1975), a Fisher-wise criterion by Calinski & Harabasz (Calinski 

and Harabasz 1974), and two model-based more recent indexes: Gap Statistic 

(Tibshirani et al. (2001)) and a statistical model based Jump Statistic (Sugar and 



 13 

James 2003), as a representative set. Before running the algorithm, the original data 

is to be normalized in our experiments. 

The heuristic rule by Hartigan (Hartigan 1975) utilizes the intuition that when 

clusters are well separated. “A crude rule of thumb”, Hartigan (1975, p. 91) is 

proposed by calculating HT=(WK/WK+1−1)(N−K−1), where N is the number of 

entities, while increasing K so that the very first K at which HT becomes less than 

10 is taken as the estimate of K* . Hartigan’s rule can be considered a 

partition-based analogue to the Duda and Hart (1973) criterion involving the ratio 

of the criterion (1) (see page 2) at a cluster and at its two-cluster split, which came 

very close second-best winner in the experiments of Milligan and Cooper (1985). It 

should be noted that, in our experiments, the threshold 10 in the rule is not very 

sensitive to 10-20% changes.  

The Fisher-wise criterion by Calinski and Harabasz (1974) finds K maximizing 

CH=((T-WK)/(K-1))/(WK/(N-K)), where T= ∑∑
∈ ∈Ii Vv

ivy2 is the data scatter, that is, the 

sum of all entities yiv squared. The data scatter can be seen as the summary 

contributions of all features, where the contribution of feature v to the data scatter 

is defined as the distance of the M-dimensional column from zero column: 

Tv=∑
∈Ii

ivy2 . The concept of the data scatter plays an important role in data 

standardization, which is explained in Section 3.1. This criterion showed the best 

performance in the experiments by Milligan and Cooper (1985), and was 

subsequently utilized by some authors for choosing the number of clusters (for 

example, Casillas et al. 2003). 
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The Gap Statistic introduced by Tibshirani et al. (2001) has become rather 

popular, especially, in the bioinformatics community. This method compares the 

value of (1) with its expectation under the uniform distribution. Analogously to the 

previously described methods, it takes a range of K values and finds WK for each K. 

To model the reference values, a number, B, of uniform random reference datasets 

over the range of the observed data are generated so that criterion (1) (see page 2) 

values WKb for each b=1,…,B are obtained. The Gap statistic is defined as 

Gap(K)=1/B∑
b

log(WKb)-log(WK). Then the average GK = 1/B∑
b

log(WKb) and 

its standard deviation sdk=[1/B∑
b

(log(Wkb)-GK)2] 1/2 are computed leading to 

sK=sdK B/11+ . The estimate of K*  is the smallest K such that Gap(K)≧

Gap(K+1)- sk+1 (Tibshirani et al. 2001).  

The Jump Statistic (Sugar and James 2003) utilizes the criterion W in (1) 

extended according to the Gaussian distribution model. Specifically, the distance 

between an entity and centroid in (1) is calculated as d(i, Sk)=(yi-Ck)
TΓk

-1(yi-Ck), 

where Γk is the within cluster covariance matrix. The jump is defined as WK
-M/2 - 

WK -1
-M/2

, assuming that W0
-M/2≡0 and M is the number of dimensions. The 

maximum jump JS(K) corresponds to the right number of clusters. This is 

supported with a mathematical derivation stating that if the data can be considered 

a standard sample from a mixture of Gaussian distributions at which distances 

between centroids are great enough, then the maximum jump would indeed occur 

at K equal to the number of Gaussian components in the mixture (Sugar and James 

2003). 
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Hartigan (HT): 

- calculate HT=(WK/WK+1  −1)(N−K−1), where N is the number of entities 

- increase K from K=2 and pick the very first K at which HT becomes less 

than 10 (The threshold 10 here is “a crude rule of thumb” Hartigan (1975), 

p. 91, based on the intuition that if K is less than the “right number” of 

clusters, then a (K+1)-cluster partition should be equal to a K-cluster 

partition with one of its clusters split in two.) 

Calinski and Harabasz (CH): 

- calculate CH=((T-WK)/(K-1))/(WK/(N-K)), where T= ∑∑
∈ ∈Ii Vv

ivy2 is the data 

scatter 

- find the K which maximises CH 

Jump Statistic (JS): 

- for each integer K, clustering S={S1,S2,…,SK}, and centroids C={c1,c2,…cK} 

- for each i∈I and k=1,2, …,K, calculate d(i, Sk)=(yi-Ck)
TΓ-1(yi-Ck), where Γ is 

the within cluster covariance matrix 

- select a transformation power, typically M/2, where M is the number of 

dimension 

- calculate the jumps JS= WK
-M/2 - WK -1

-M/2  assuming that W0
-M/2≡0 

- find the K that maximises JS 
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2.2 Within-cluster cohesion vs. between-cluster 
separation 
 

A number of approaches utilize indexes comparing within-cluster distances with 

between cluster distances: the grater the difference the better the fit; many of them 

are mentioned in Milligan and Cooper (1985). The experiments and indices in 

Milligan and Cooper (1985) have been widely applied to different research fields, 

for example, bioinformatics. Some of the indices are specifically suitable for 

hierarchical clustering, for example, Mojena’s upper tail rule (Mojena 1977), Duda 

and Hart’s (Duda and Hart 1973) error ratio test, Gamma index (Baker and Hubert 

1975), etc and these are described in Section 2.4. Some of those indices are 

distribution or likelihood based, for example, cubic clustering criterion, likelihood 

ratio, etc, which are beyond the scope of this thesis, which is confined to K-Means 

related methods only. 

Gap Statistic (GS): 

- Cluster the observed data and obtain WK for each K 

- Generate B uniform random reference datasets over the range of the 

observed data and obtained Wk for each datasets, where k=1,2,…,K 

- Compute the estimated Gap statistic: Gap(k)=1/B∑
b

log(Wkb)-log(Wk) 

- Let GK=1/B∑
b

log(Wkb), compute the standard deviation 

sdk=[1/B∑
b

(log(Wkb)-GK)2] 1/2, and define sk=sdk B/11+  

- Find the smallest K such that Gap(K)≧Gap(K+1)-sk+1 
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The rest of them will be described briefly in the following paragraphs. A 

modified version of the Gamma index is so called G (+) index, and the formula is 

(2*S-)/(nd(nd-1)), where S- is the number of times that a pair of entities not in the 

same cluster had a smaller separation than a pair that were in the same cluster and 

nd is the number of within cluster distances. The minimum G (+) index indicates 

the number of cluster in the data. Davis and Bouldin (1979) proposed an index, that 

is, ∑
=

+
=

K

i ji

ji

ccdK
DB

1

)
),(

max(
1 αα

, where αi and αj is the average within cluster 

distance of cluster i and j and the denominator is the distance between centroids ci 

and cj. The minimum value of DB indicates the number of clusters. This index has 

been widely used in some application, for example, a bioinformatics toolbox for 

microarray data analysis (Bolshakova et al. 2005), experimental comparison in 

color image segmentation (Ray and Turi 1999), etc. Petrović (2006) compared the 

Silhouette Width index with the Davis-Bouldin index and the clustering results of 

the Silhouette Width index is more accurate than the Davis-Bouldin index although 

the Davis-Bouldin index is more computational efficient.  

Another within and between cluster related index is proposed by McClain and 

Rao (1975), that is, the ratio of the average within cluster distance divided by the 

number of within cluster distances over the average between cluster distances 

divided by the number of between cluster distances. The minimum of the index 

indicates the number of clusters. The McClain and Rao index shows an extremely 

good result in Milligan and Cooper (1985). Dunn’s (1974) index, which is based on 

the idea of classifying well-separated data, is not included in Milligan and Cooper 

(1985) but has been widely compared in some publications and applied on several 
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different fields, for example, image analysis in Ray and Turi (1999), and Boutin F. 

and Hascoët M. (2004), gene expression data analysis in Bolshakova and Azuaje 

(2003). This index is the ratio of the minimum intra-cluster distance (distance 

between two objects from different clusters) over the maximum inter-cluster 

distance (distance between two objects from the same clusters) within the range of 

0 to ∞. The maximum value of this index indicates the number of clusters. 

Two of those indexes in Milligan and Cooper (1985) are (a) the point-biserial 

correlation, that is, the correlation coefficient between the entity-to-entity distance 

matrix and the binary partition matrix assigning each pair of the entities 1, if they 

belong to the same cluster and 0 otherwise, that is, (Dk-Dmin)/(Dmax-Dmin), where Dk 

is the sum of the within cluster dissimilarity for a partition and Dmax and Dmin are 

the maximum and minimum of Dk respectively and (b) its ordinal version, the C 

index proposed by Hubert and Levin (1976). These two indexes show a very good 

performance in Milligan and Cooper’s tests. This, however, perhaps can be an 

artifact of the very special type of cluster structure utilized by Milligan and Cooper 

(1985): almost equal sizes of the generated clusters. Indeed, a mathematical 

investigation described in Mirkin (1996, pp. 254-257) shows that the point-biserial 

correlation expresses the so-called “uniform partitioning” criterion, which tends to 

produce equal-sized clusters. 

There are several other recent publications using the indexes relating to within- 

and between-cluster distance, for example, Ray and Turi (1999) proposed a simple 

validity index, which is the ratio of the average of distances between an item and 

its cluster centroid over the minimum of the distance between the item to other 

clusters to obtain the optimal number of clusters in colour image segmentation 
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application and the clustering which gives a minimum value for the validity 

measure will tell us what the ideal number of clusters is. A more recent effort is 

described in Shen et al. (2005), which proposed a dynamic validity index based on 

the validity index proposed by Ray and Turi (1999) and Dunn index (Dunn 1974) 

so that the distance between an item to its cluster centroid is minimized and the 

distance between the item to others clusters is maximized. The dynamic validity 

index is incorporated into K-Means algorithm for microarray data clustering. Bel 

Mufti et al. (2005) used Loevinger’s measure for the cluster stability, that is, 

'
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XAA
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mnnn

mnn
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−

−
−= , where A is a cluster in a partition, X’ is a sample 

of original data, n’ is the sample size, 'An  is the cluster size of cluster A, AXm ;'  is 

the number of entities of the samples that are in the same cluster, 'Xm  is the 

number of entities of the original data that are in the same clusters. The stability 

measure is the average of the sum of Loevinger’s measure over a large number of 

samples.  

A well-balanced coefficient, the Silhouette Width index, which has shown good 

performance in experiments (Pollard and van der Laan 2002), was proposed by 

Kaufman and Rousseeuw (1990). The concept of silhouette width involves the 

difference between the within-cluster tightness and separation from the rest. First, 

the silhouette width is calculated for each entity, then the average silhouette width 

for each cluster and then the overall average silhouette width for the total clustering. 

Specifically, the silhouette width s(i) for entity i∈I is defined as: 

s(i)=
))(),(max(

)()(

ibia

iaib −
 (3) 

where a(i) is the average dissimilarity between i and all other entities of the cluster 
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to which i belongs and b(i) is the minimum of the average dissimilarities between i 

and all the entities in other clusters. The silhouette width values lie in the range 

from –1 to 1. If the silhouette width value is close to 1, it means that the set I is 

well clustered. If the silhouette width value for an entity is about zero, it means that 

that the entity could be assigned to another cluster as well. If the silhouette width 

value is close to –1, it means that the entity is misclassified.  

The largest overall average silhouette width indicates the best number of 

clusters. Therefore, the number of clusters with the maximum overall average 

silhouette width is taken as the optimal number of the clusters. The usage of this 

index is described in the box below. 

 
 

 

2.3 Consensus approach 

 

The consensus approach relies on the entire set of all R clusterings produced at 

multiple runs of K-Means, given K, rather than just the best of them. The intuition 

is that the clusterings should be more similar to each other at the right K. Thus, a 

Silhouette width (SW) 

Given K, take the best clustering of the R runs. For each i∈I: 

- calculate a(i) = the average dissimilarity between i and all other entities of the 

cluster to which i belongs, b(i) = the minimum of the average dissimilarity 

between i and all the entities in other clusters, and s(i) according to (2).  

- calculate SWK=average s(i) 

- find the K that maximizes SWK 



 21 

measure of similarity between clusterings should be introduced and utilized. We 

consider two such measures. One is the Consensus distribution area introduced by 

Monti et al. (2003). To define the latter, the consensus matrix is calculated first. 

The consensus matrix C(K) is an N�N matrix whose (i,j)-th entry is the proportion 

of those clustering runs in which the entities i,j∈I are in the same cluster. An ideal 

situation is when the matrix contains 0’s and 1’s only: this is the case when all the 

R runs lead to the same clustering. The cumulative distribution function (CDF) of 

entries in the consensus matrix is defined as usual: 

CDF(x)= 
2/)1(

}),({1 (K)

−

≤∑
<

NN

xjiC
ji

 (4) 

where 1{cond} denotes the indicator function that is equal to 1 when cond is true, 

and 0 otherwise. The area under the CDF corresponding to C(K) is calculated using 

the conventional formula:                          

A(K)=∑
=

m

i 2

(xi-xi-1)CDF(xi) (5) 

where set {x1,x2,…,xm} is the sorted set of entries of C(K).  

We suggest that the average distance between the R partitions can be utilized as 

another criterion: the smaller, the better. This equals avdis(K)= ∑
=

R

wu

wu SSM
R 1,

2 ),(
1

, 

where distance M is defined as squared Euclidean distance between binary 

matrices of partitions Su and Sw. A binary partition matrix is an entity-to-entity 

similarity matrix; its (i,j)-th entry is 1 if i and j belong to the same cluster, and 0, 

otherwise, so that consensus matrix C(K) is the average of all R binary partition 

matrices. Denote the mean and the variance of matrix C(K) by µK and σK
2, 
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respectively. Then the average distance can be expressed as avdis(K)= µK*(1− µK) 

− σK
2, which also shows how close C(K) is to being binary.  

The average distance avdis(K)= ∑
=

R
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This can be rewritten as avdis(K)= ∑∑
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suggested in Monti et al. (2003) based on the average partition matrix which is an 

entity-to-entity similarity matrix defined by µ(i,j)=
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= , where st is the binary 

relation matrix corresponding to St and st=0, otherwise, with R*(i,j) denoting the 

number of partitions St at which both i and j are present. Therefore, we obtain 

avdis(K)= 
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The proof follows then from the definition of the variance of the matrix, q.e.d. 

To estimate “the right number of clusters”, the relative change of the indexes is 

utilized. Specifically, the relative change in the CDF area in (4) is defined as  

∆(K+1)=
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 (6) 

Then K which maximises ∆(K) is determined. The average distance based index is 

defined similarly except that it increases rather than decreases with the growth of K, 

so that DD(K)=(avdis(K) - avdis(K+1))/avdis(K+1). The number of clusters is 

decided by the maximum value of DD(K). 

Corresponding algorithms are presented in the boxes below. 
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A slightly different approach relating the average distance/Rand measure and 

the entropy of the consensus distribution on real and artificial data sets has been 

utilized by Kuncheva and Vetrov (2005). 

 

2.4 Hierarchical approach 

 

A number of approaches rely on the hierarchy of clustering solutions found by 

consecutive merging of smaller clusters into larger ones (agglomerative clustering) 

or by splitting larger clusters into smaller ones (divisive clustering). Some 

approaches are based on the distribution of the value of criterion function, where 

Average distance between partitions (DD) 

- For each K, calculate the mean µK and variance σK
2 of the consensus matrix 

C(K) 

- Compute avdis(K)= µK * (1- µK ) - σK
2 

- DD(K)=(avdis(K)-avdis(K+1))/avdis(K+1) 

- Find K maximizing DD(K) 

Consensus Distribution Area (CD): 

For each K in its range: 

For di=1: R 

- calculate the connectivity matrix M(di) where M(di)(i,j)=1  if i and j 

belong to the same cluster, and 0, otherwise 

    end di 

- calculate the consensus matrix C(K)(i,j)= RjiM
di

di /),()(∑  

     -  determine the cumulative distribution function CDF(x) (3) and the 

area A(K) in (4)  

- calculate ∆(K+1) (5) 

- find K maximizing ∆(K) 
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the criterion function, for example, could be the ratio of the within-cluster 

similarity over the between-cluster similarity in Pedersen and Kulkarni (2006). 

Mojena’s upper tail rule (Mojena 1977) is one of the well-known criterion function 

distribution based indexes, which is, αj+1>µα+cσα, where µα and σα is the mean and 

standard deviation of the distribution of clustering criterion value. It finds the first 

biggest jump of the series of the clustering criterion values as the number of cluster, 

which is in the upper tail of the clustering criterion value distribution for 

hierarchical agglomerative clustering. If no such number can be found then there is 

only one cluster. This index shows the best performance in the experiments of 

Milligan and Cooper (1985).  

However, more indices are focused on the within and between cluster distances, 

for example, the widely implemented Ward’s method (Ward 1963), Gamma index 

(Baker and Hubert 1975), error ratio index (Duda and Hart 1973), etc. Many papers 

have shown that Ward’s method outperforms others under the condition of less 

outliers and cluster overlaps (Aldenderfer and Blashfield 1984). Ward’s method 

(Ward 1963) minimizes the summary within cluster distance of two clusters that 

formed at each merging step, the so-called Ward distance. Each of the merged 

clusters is the smallest increase of the total within-cluster summary distance to the 

merged centroids and it tends to find smaller number of clusters (Hair et al. 1995). 

The above mentioned Ward method is for agglomerative hierarchical clustering, 

and for the divisive clustering, one needs to find the maximum Ward distance 

because of the nature of divisive clustering, that is, to build the cluster structure 

from the entire data, top to bottom. A specific K-Means at K=2 clustering can 

combine with the Ward divisive clustering method and the combined method, and 
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has been named as bisecting K-Means (Steinbach et al. 2000). It has been tested on 

document clustering, suggesting that the bisecting K-Means outperforms the 

Straight K-Means and agglomerative hierarchical methods because of the features 

of documents.  

Another widely used index for hierarchical clustering is Gamma index (Baker 

and Hubert 1975), and the formula is,
−+

−+

+

−

SS

SS
, where S+ is the number of times 

that a pair of entities not in the same cluster had a larger separation than a pair that 

were in the same cluster and S- represents the reverse outcome. The maximum 

Gamma index indicates the best partition. This is quite similar to the structural 

approach -- silhouette width (Kaufman and Rousseeuw 1990). The difference is 

that the Gamma index is only for hierarchical clustering because this index is 

defined for the tree diagram, also termed dendrogram. Duda and Hart’s error ratio 

(1973), that is, Je(2)/Je(1), where Je(2) is the sum of squared within cluster 

distance when data split into two clusters and Je(1) is the summary within cluster 

distance if only one cluster is present. It evaluates the cluster and its subcluster by 

taking the ratio of the summary Euclidean distance to the cluster centroids over the 

summary Euclidean distance to the subcluster centroids and a pre-defined threshold 

is computed from the standard normal distribution. This index showed very good 

performance in the experiments proposed by Milligan and Cooper (1985) and can 

be applied to agglomerative or divisive clustering methods. 

Frey and Van Groenewoud (1972) proposed an index, that is, the ratio between 

the differences between the between cluster distances and mean within cluster 

distances from two sub-clusters in a hierarchy. The very last K at which the index 

becomes above 1 is taken as the estimate of K* . There is only one cluster when no 
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index is below 1. In the experiments of Milligan and Cooper (1985), this index 

tends to find too many clusters.  

 More recently, a more advanced statistical index for choosing K, the Bayesian 

information criterion (BIC), is utilized typically for model selection. It is based on 

the posterior probability rather than the distance measures and requires three 

parameters: log likelihood of the data model (ln (L)), number of parameters in the 

data model (p) and number of entities (n) and the formula is BIC= -2 ln (L) + p ln 

(n). Pelleg and Moore (2000) included the Bayesian information criterion (BIC) to 

their X-means algorithm to determine the number of clusters using a divisive 

approach. The X-means algorithm is as follows: run conventional K-Means as 

initialization, then for each cluster, its BIC score is computed, the partition of the 

highest BIC score is kept, and the algorithm stops when reaches a pre-specified 

threshold. They tested conventional K-Means and X-means on both real and 

synthetic data and found that X-means outperforms not only on performance but 

also on computational time. An extended version of X-means is proposed by 

Ishioka (2005). The author modified the divisive procedures and the results have 

shown the later version is better. The modification includes a 2-means divisive 

method, that is, non-recursive divisive function is applied to one of the two clusters 

after each division, that is, to divide one cluster until no further cluster can be 

found and then deal with another. This will save the function call time if the loop of 

division is deep.  

Feng and Hamerly (2006) also proposed a 2-means divisive method, named 

PG-means (PG stands for projected Gaussian), to learn the number of clusters in 

data. This method randomly projects the data and model to one dimension, test the 
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goodness for each model and a model is selected if it has been accepted by two 

tests shown in the paper. They compare PG-means with three other methods, 

including X-means, and the experimental results of PG-means are better than the 

other methods.  

Some authors propose versions involving several techniques simultaneously. 

Casillas et al. (2003) utilize Minimum Spanning Tree (MST) with a genetic 

algorithm using a rather arbitrary stopping condition to arrive at a number of 

clusters. They compare the Calinski & Harabasz stopping rule (Calinski and 

Harabasz 1974) and the genetic algorithm on a document containing 14,000 news 

items and claim that if the real number of clusters is close to 2, the Calinski & 

Harabasz stopping rule (Calinski and Harabasz 1974) performs better than the 

genetic algorithm, and otherwise, the genetic algorithm is better. Chae et al. (2006) 

proposed a method which applied six different agglomerative clustering algorithms 

and four different validity measures for comparing the partitions to the generated 

data and five of the six methods to real-world data from a beer consumer report in 

USA. The number of clusters at which these partitions are most similar is selected. 

This approach obviously can be counted as belonging to the consensus framework 

because they are based on the similarity measure on two partitions. 

 

2.5   Resampling approach 

 

Resampling means using many randomly generated copies of the data for assessing 

statistical properties of a utilized method (see, for instance, Mirkin 2005). This 

approach can be grouped into 4 main types: (a) random sub-samples of the data set; 
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(b) random splits of the data set into “training” and “testing” subsets, (c) 

bootstrapping, that is, randomly sampling entities with replacement, usually to their 

original numbers, and (d) adding random noise to the data entries. The intuition is 

that different random copies lead to more similar results at the right number of 

clusters, for example, Levine and Domany (2001), Bel Mufti et al. (2005), 

Minaei-Bidgoli et al. (2004) for type (a), Dudoit and Fridland (2002) for type (b), 

McLachlan and Khan (2004) and Wishart (2004) for type (c), and Kerr and 

Churchill (2001) and Möller and Radke (2006) for type (d). Each type is explained 

briefly in the remainder of the section. 

 

(a) Subsampling 

Levine and Domany (2001) proposed a resampling procedure based on the 

consensus matrix, which is described in Section 2.3. The samples are obtained by 

selecting fN size of the original data randomly, where f is named as dilution factor 

between 0 and 1 and N is the total number of entities. A clustering algorithm with 

pre-specified parameters is applied to those samples and the consensus matrices of 

these partitions are calculated. By comparing these consensus matrices with the 

consensus matrix of the original data, a figure of merit measure is calculated. The 

parameters of the clustering algorithm are then changed and the whole process run 

again until the local maximum of the measure is found. Once the optimal 

parameters of the clustering algorithm are found, the stable partition is found. Bel 

Mufti et al. (2005) named the similar sampling procedure proportionate stratified 

sampling, which selects the number of elements randomly without replacement 

proportional to the number of elements in each cluster of partition obtained from 



 29 

the original data. This proportion has to be chosen between 0.7 and 0.9 based on 

experimental analysis. If all partitions obtained from these samples are close in 

structure to the partition of the original data P, the partition P is claimed as stable. 

For each K, the Loevinger’s measure is calculated and the maximum of these 

indices is taken as the number of the clusters.  

Minaei-Bidgoli et al. (2004) proposed a clustering ensemble algorithm, which 

generates subsamples of the data and obtains partitions by running K-Means 

clustering algorithm on each of the subsamples. A new partition of the original data 

is to combine the partition of each subsample so that the entities in the partition of 

the original data are more similar in same clusters than in different clusters and in 

order to achieve this, one needs to calculate the consensus matrix, that is, the 

similarity measure between entities. Monti et al. (2003) also use the subsampling 

procedure to resample the data, but the way they obtained the partitions is via the 

consensus distribution area, described in Section 2.3. The subsample size proposed 

in Minaei-Bidgoli et al. (2004) is within an interval utilized by the total number of 

entities and Monti et al. (2003) generate the sample from 80% of the original data. 

The authors of both publications compare bootstrapping and subsampling methods 

and both methods show similar results but prefer subsampling because of the 

computer complexity and the possibility of the result inflation of bootstrapping. 

Mitra et al. (2002) proposed a density-based multi scale data condensation 

(DBMSDC) algorithm for data subsampling based on a density criterion. Instead of 

a rather arbitrary subsampling size, this subsampling algorithm is to first 

pre-specify K, and then calculates the distance of each entity of the original data 

using K-nearest neighbor method. The next two steps are iterated until the original 
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data set is empty: select the entities that have the lowest distance and remove the 

entities in the original data sets that lie within a disc of radius of two times of 

centroids of the selected entities. This algorithm along with six other subsampling 

methods including random sampling has been tested on some well-known 

real-world data and it has been found that this subsampling method is superior to 

others. Some publications use subsampling as an initialization of the clustering 

algorithm, for example, the mixture likelihood approach proposed by Rocke and 

Dai (2003) and others use subsampling for identifying the tight and stable clusters 

in data, for example, a sequential approach proposed by Tseng and Wong (2003).  

 

(b) Random splitting 

Dudoit and Fridland (2002) proposed a popular procedure named Clest, 

following the pioneering work by Breckenridge (1989). This method has been 

tested on both the generated data and four microarray datasets. For each K, a 

number B of the following operations is performed: the set is split into 

non-overlapping training and testing sets, after which the training part is partitioned 

into K parts; then a classifier is trained on the training set clusters and applied for 

predicting clusters on the testing set entities. The predicted partition of the testing 

set is compared with that found, with the same procedure, on the testing set. The 

result of these B iterations is the median value t(K) of the index of similarity 

measure between two partitions of the testing set, that predicted from the training 

set and that found directly. The reason for using median instead of mean is not 

stated in Dudoit and Fridland (2002): probably because the median is more robust 

in the presence of outliers than the mean. After that a number of data sets of the 
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same size is generated randomly and the same procedure applies to each of them 

producing the average value of the index t’(K)  under the null hypothesis. The 

estimated K is that maximizing the difference t(K)-t’(K)  under some additional 

conditions. This procedure, as well as other resampling schemes, involves a 

number of important parameters such as the type of classifier (taken to be the linear 

discriminant analysis with the diagonal covariance matrix in Dudoit and Fridlyand 

2002), the training-testing split proportion (taken to be 2:1), numbers of iterations 

and reference sets generated (taken to be 20), the threshold on K values (taken to be 

5 or 10), the similarity between partitions index, etc. On the same data generating 

mechanisms, the approach was outperformed by a model-based statistic as reported 

by McLachlan and Khan (2004).  

 

(c) Bootstrapping 

Bootstrapping is one of the most popular resampling approaches in machine 

learning. One of its advantages is that the number of items of generated samples is 

the same as the original data. The identical replicated samples are generated n 

times by replacement from the original data, so the clustering algorithm might 

claim those n entities as a cluster, which are actually n replicates of the same item. 

Some authors prefer other resampling approach, e.g. subsampling, for determining 

the number of clusters. The bootstrapping method proposed by McLachlan and 

Khan (2004) is to generate samples under the null hypothesis of K1 clusters from 

the parametric mixture model with unknown parameters replaced by its maximum 

log-likelihood (log L) estimate from the original data. The hypothesis set is H0: 

K=K1 vs. the alternative hypothesis H1: K=K 2 (K2>K1). The likelihood ratio test 
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statistic -2 log λ is computed for each sample after fitting the mixture model for K1 

and K2 clusters and this process is iterated several times. The number of clusters is 

determined whether the number of clusters is the null hypothesis or not. Wishart 

(2005) proposed a bootstrap validation method which compares dendrogram, and 

searches for the partition that manifests the greatest departures from randomness. 

The dendrogram obtained from the original data is compared with the dendrograms 

obtained from the sampling data in order to find the biggest departures from 

randomness. 

 

(d) Adding noise to the data 

Kerr and Churchill (2001) proposed a sampling method combining the 

bootstrapping and adding noise. They first fit the data to a linear model, found 

parameters and residue, and then obtained the bootstrapping data by randomly 

sampling with replacement among those parameters and residue using the same 

linear model. This sampling method is applied to gene expression data and the 

clustering method they apply is based on correlations between genes, that is, data 

with high correlations form clusters. A comparison of resampling methods is 

proposed by Möller and Radke (2006), which apply the subsampling, bootstrapping 

and adding noise on three gene expression data and four well-known real-world 

data and found the adding noise resampling method outperforms others. The 

subsampling rate taken as 80%, within the range of 70%-90%, of the original data, 

coincides with other published subsampling rates, for example, Monti et al. 2003. 

They add 1%, 5%, and 10% of the original data set with the same size to be noise 

and found 10% is the best rate among three experimentally.  
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In general, the procedure of the resampling approach is as follows: generating 

copies related to the original data, running a suitable algorithm, for example, 

K-Means, evaluating and merging the clustering results from the original data and 

copies. The clustering algorithm is done in the same way as it was on the original 

data, except for the case of random splitting, that is; the algorithm is only applied 

to the training sets. This difference is applied to the evaluation procedure, that is, 

the partition of the training sets are compared with the testing sets while others are 

compared with the original data.  

Most of the publications use similarity measure to compare the partition 

obtained from the original data and copies, for example, the subsampling case in 

Minaei-Bidgoli et al. (2004), but the similarity measure is specifically suitable for 

the splitting case because the two partitions obtained from the testing set, that 

predicted from the training set and that found directly by applying algorithm is 

closer the better. For other copies-generating cases, one can use any validation 

index, for example, the Rand index, described in Section 3.4. McLachlan and Khan 

(2004) and Wishart (2004) both use test statistic for evaluating the performance 

between the original data and copies and Levine and Domany (2001) choose 

average overlap index for evaluation, that is, 
2
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, where Nkj is the 

co-occurant counts in a confusion table described in Section 3.4 and N is the total 

number of entities.  

The widely applied method to merge the partition results of the original data 

and copies is to average the evaluation results for each copy and the average 

evaluated result can be taken as a result of the algorithm (Diday 1971, Diday et al. 



 34 

1979). Therefore, one can select the best algorithm based on the testing results of 

algorithms, for example, the method proposed by Levine and Domany (2001). 

However, Levine and Domany (2001) use the testing result for selecting the 

parameters within the same algorithm, for example, the number of clusters. Other 

ways of merging the results is to average and combine the modeL2 if the models 

have same and different formats respectively. If, for example, the hierarchical 

cluster structures have the same format, these can be averaged into a similar 

structure with the clusters that are found in most of the structures (Margush and 

McMorris 1981). If these structures have different formats, one can combine these 

structures to make a joint structure. 

 

2.6 Summary 

 

K-Means is arguably the most intuitive, computationally easy and the most 

commonly used clustering method and this is why studying its properties is of 

interest not only to the classification, data mining and machine learning 

communities, but also to the increasing numbers of practitioners in marketing 

research, bioinformatics, customer management, engineering and other application 

areas. Five different approaches to estimating the “right” number of clusters K*  in 

K-Means are described in this chapter. Clearly, different clustering methods and 

criterion for choosing K can suggest different results when applied to the same data 

sets. The best way for determining the number of clusters is to use several 

clustering techniques and to analyse all the results in order to have a clearer picture 

of the data. 
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Chapter 3  

 

Experiment Setting for Comparison of 

Methods for Choosing K 
 

The data for experimental comparisons can be taken from real-world applications 

or generated artificially. In the published literatures, several clustering experiments 

conducted over real-world data sets only, for example, Casillas et al. (2003) apply 

the document clustering on a Spanish newspaper with 14,000 news items, 

Minael-Bidgoli et al (2005) apply the resampling method on five famous datasets, 

such as Iris, Wine, and etc, Shen et al. (2005) apply the dynamic validity index on 

the microarray data, and etc. More publications only focus on generated data, for 

instance, Hand and Krzhanowski (2005), Hardy (2005), Ishioka (2005), Milligan 

and Cooper (1985), Steinley and Brusco (2007), and etc. Some publications use 

both the generated data and the real-world data, for example, Chae et al. 2006, 

Dudoit and Fridland (2002), Feng and Hamerly (2005), Kuncheva and Vetrov 

(2005), Maulik and Bandyopadhyay (2000) etc. For our K-Means clustering 

experiments, we consider generated data only, to allow us to control the parameters 

of the experiments. Having the set of parameter values specified, we generate a 

number of datasets so that the results reported further on are averaged over these 

datasets. Initially we generated 20 random datasets for each parameter setting (as 

did Dudoit and Fridlyand 2002) – these are reflected in Tables 4.1 and 4.2, but then 

for the sake of time, we reduced the number of generated datasets to 10 (in Tables 

4.3, 4.4 and 4.5). The following issues are to be decided upon before a data 
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generator is set:  

(A) Data sizes,  

(B) Cluster sizes,  

(C) Cluster shapes,  

(D) Cluster intermix, and  

(E) Data standardization.  

These are described in Section 3.1.  

 

3.1 Modelling cluster structure 

 

A. Data sizes. First of all, the quantitative parameters of the generated data and 

cluster structure are specified: the number of entities N, the number of generated 

clusters K* , and the number of variables M. In most publications, these are kept 

relatively small: N ranges from about 50 to 200, M is in many cases 2 and, anyway, 

not greater than 10, and K*  is of the order of 3, 4 or 5 (see, for example, Casillas et 

al. 2003, Chae et al. 2006, Hand and Krzanowski 2005, Hardy 1996, Kuncheva and 

Petrov 2005, McLachlan and Khan 2004, Milligan and Cooper 1985). Larger sizes 

appear in Feng and Hamerly (2006) (N= 4000, M is up to 16 and K*=20) and 

Steinley and Brusco (2007) (N is up to 5000, M=25, 50 and 125, and K*  =5, 10, 20). 

Our choice of these parameters is based on the idea that the data should imitate the 

conditions of real-world data analysis, under the timing constraints of the 

computational capacity. That means than N should be in thousands while limiting 

M within one or two dozens, to mimic the situation in which the data analysts 

select only features relevant to the problem at hand (“tall” data table cases) rather 
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than using all features or key words available (“wide” data table case); the latter 

should be treated in a different experiment. Another consideration taken into 

account is that, according to our real-world clustering experiences, it is not the 

absolute values of M and K*  but rather their ratios, the average cluster sizes, that 

affect the clustering results. As the major focus of our experiment is the effects of 

within and between cluster spreads on the clustering results, we decided to keep the 

ratio restricted, while maintaining two rather distinct values of K* . Therefore, two 

settings for the sizes are: (i) N=1000, M=15, K*=7 and 9 – about 110 entities in a 

cluster on average, and (ii) N=3000, M=20, K*=21 – about 145 entities in a cluster 

on average. These are obviously at the upper end of the sizes in the published 

reports (Casillas et al. 2003, Chae et al. 2006, Hand and Krzanowski 2005, Hardy 

1996, Kuncheva and Petrov 2005, McLachlan and Khan 2004, Milligan and 

Cooper 1985).  

It is probably worth mentioning that we do not consider the so-called irrelevant, 

or noisy, features: The presence of features that have nothing to do with the cluster 

structure was considered by Milligan and Cooper (1985); see also Dudoit and 

Fridlyand (2002) and Kuncheva and Vetrova (2005). K-Means partitioning can be 

and has been applied when no visible cluster structure is present, just to dissect the 

domain into manageable chunks as advocated by Späth 1985, among the others and 

a similar goal has been pursued by the so-called vector quantization (VQ) and 

learning vector quantization (LVQ) (Lloyd 1982 and Pollard 1982), the concepts 

that, basically, resemble the cluster centroids in K-Means. The issue of noisy 

features, in this perspective, deserves a separate consideration. 
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B. Cluster sizes. The term “size” is ambiguous in the clustering context, because it 

may refer to both the number of entities and spatial volume taken by a cluster. We 

use it here for the number only, in accordance with the practice of Computer 

Sciences, while utilizing the term “spread” for the geometric size. (Steinley and 

Brusco 2007 term the cluster size as the “cluster density” – we prefer to utilize this 

regarding a probabilistic density function.) The difference in cluster sizes can affect 

the outcome of a clustering process if it is driven by a criterion, such as the 

point-biserial correlation, that depends on them in a non-linear way. As mentioned 

in section 3.2, this may have affected some of experimental results in Milligan and 

Cooper (1985) because of the relatively equal cluster sizes utilized by them. 

However, criterion (1) (see page 2) always involves the same number N of 

distances, whichever cluster sizes these are, so that cluster sizes should not much 

matter. Steinley and Brusco (2007), who maintained three different patterns for 

cluster size distributions, report no differences in their results regarding the patterns. 

Therefore, we decided to disregard this aspect of the cluster structure: our 

generated clusters have uniformly random size distributions. To generate a random 

distribution of the cluster size proportions p=(p1,…,pK*) under the condition that 

elements of p are positive and sum up to 1, one can randomly generate K*-1 real 

numbers r1, r2, …,rK*-1 in the interval (0,1), sort them in the ascending order so that  

r1< r 2< …< rK*-1, set r0=0 and rK*  =1, after which the uniformly random 

proportions are computed as pk = rk - rk-1 (k=1,…,K*).     

 

C. Cluster shapes.  This property is not typically taken into account as a variable 

to control, because K-Means is conventionally seen as a method for fitting the 
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Gaussian mixture model with spherical Gaussians – and this, in fact, is a property 

which is directly associated with the Minimum distance rule. However, in 

real-world applications clusters may have more complex and elongated shapes, 

which can be, to an extent, be caught by the ellipsoidal shape of the Gaussian 

clusters (see also McLachlan and Khan 2004, p. 92). Thus, we generate data 

entities in each cluster by independently sampling from a Gaussian distribution. 

We take the conventional spherical shape of Gaussian clusters versus another one, 

much more elongated. Since the number of parameters needed to define the 

covariance matrix of a Gaussian distribution is in hundreds for our size settings, we 

utilize a version of the covariance matrix defined with a smaller number of control 

variables in a MatLab toolbox NetLab (see Generation of Gaussian mixture 

distributed data 2006). According to the so-called Probabilistic Principal 

Component Analysis (PPCA) model (Tipping and Bishop 1999), the M×M 

covariance matrix of a Gaussian distribution in this toolbox is defined by selecting 

the hidden dimension q as: 

Cov(σ)=Wq*Wq
’+σ2IM×M (7) 

where Wq= 





×−

×

qqM

qqI

)(1
, I n×n is an n×n identity matrix, and 1n×m a n×M matrix 

whose all entries are equal to 1. The PPCA model runs with the manifest number of 

features M and the hidden dimension q. The hidden factor structure is also 

advocated in Maclachlan and Peel (2000).  
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    It is easy to show that Cov(0)= 
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eigen-values of Cov(σ) are the same as those of Cov(0) with σ2 added to each; 

the eigen vectors are the same as well.  

    The structure of eigenvalues of Cov(0) has been investigated by Wasito and 

Mirkin (2006) who found that, of q nonzero eigenvalues, the maximal one is 

λ=1+(M-q)q whereas all the other q-1 eigen-values are equal to unity. In order to 

prove the eigenvalues of Cov(0), let us consider an M-dimensional vector x in the 

form x=(xq, xM-q) where xq and xM−q denote subvectors with q and M−q components, 

respectively. Also denote the sum of elements of xq by a and the sum of elements of 

xM−q by b. Obviously, to be an eigenvector of Cov(0) corresponding to its 

eigenvalue λ, x must satisfy the following equations: xq+b1q=λxq and 

(a+qb)1m−q=λxM−q. Summing up components of these vector equations leads to (i) 

a+bq=λa and (ii) (a+bq)(M−q)= λb, respectively. Let us see first that a = 0 

implies b = 0 and λ = 1. Having put a = 0 into (i) one obviously gets b = 0 as well. 

This implies that a + bq = 0 so that (a + bq)1m−-q = λxM−-q can hold only at xM-−q=0, 

provided that λ ≠ 0. Similarly, xq +b1q =λxq can hold only if xq = λxq, that is, if λ = 

1, which proves that λ = 1 is an eigenvalue. Moreover, the rank of the subspace of 

eigenvectors corresponding to λ = 1 is equal to q − 1, because they all are defined 

by the condition that the sum of their components a = 0.  

Let us now assume that a is not zero. Eq. (i) implies that λa can be put for a + 

qb in (ii), leading to λa(M − q) = λb. Thus, with λ ≠ 0, a(M − q) = b and b/a = M − 

q. But λ = 1 + qb/a according to (i), which leads to λ = 1 + q(M − q) and proves the 
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statement. This provides for really elongated shapes, so that we can check whether 

this change of the shape indeed affects the clustering results. 

 The actual data generation process is based on the spectral decomposition of 

matrix Cov(0) such as described in Murtagh and Raftery (1984) and Fraley and 

Raftery (2002). In our experiments q is set to be 6. The variance σ2 is taken to be 

0.1, which is not very important because, in any case, it is multiplied by the 

within-cluster spread values described in the following item D.  

Therefore, the generic PPCA covariance matrix generated is defined by 

formula (7) with q=6 and σ2=0.1. The generic covariance matrix of the Spherical 

Gaussian distribution is taken to be the identity matrix. These are multiplied then 

by different values to model different versions of the distribution of cluster spatial 

volumes. 

  

D. Clusters intermix. The possibility of controlling cluster intermix is a 

much-desired property in clustering experiments. Steinley and Henson (2005) 

noted that this issue had never been satisfactorily addressed in the literature and 

proposed a mechanism for generating clusters with an explicitly formalized degree 

of overlap, i.e. set-theoretic intersection.  Specifically, their model involves a 

value of the intersection for each pair of clusters over each single feature, thus 

having a disadvantage of “restricting the generation of the joint distribution clusters 

to be the product of the marginal distributions” (Steinley and Henson 2005, p. 245). 

Another problem with this mechanism is by far too many parameters which are not 

necessarily directly related to parameters of the generated clusters themselves. 

There is also an issue of how relevant is the usage of overlapping clusters for 
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evaluation of a partitioning method. We consider that the cluster overlap should be 

modelled as the spatial intermix rather than intersection, for which parameters of 

distributions used for modelling individual clusters are convenient to use.   

 

 

 

 

Since we utilize Gaussian clusters, their intermix are modelled by using the 

Gaussian characteristics of location, centres, and cluster shape and spread, 

covariance matrices. In this way, the intermix among Gaussian clusters can be 

captured as a consequence of the two not necessarily related aspects: the distance 

between cluster centroids (“between-cluster spread”) and the magnitude of their 

variance/covariance values (“within-cluster spread”), as illustrated in Figure 3.1, at 

which the centers of two clusters are close to each other (a small between-cluster 

spread) but are well separated because of small (co)variances, while another cluster, 

with its center being much further away, may intermix with either or both of them, 

because of its large (co)variances.  

Figure 3.1 An illustration of the cluster intermix depending on the distance between cluster centroids (represented 
by pentagrams), and their geometric sizes (represented by ellipses): two clusters on the right are close to each other 
but well separated, whereas the cluster on the left is further away but not separated because of its larger spread. 
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Yet Figure 3.1 may introduce some perception bias too, by representing Gaussian 

clusters as ellipses. When dealing with different within-cluster variances, the 

perception of Gaussian clusters as being “compact” can be misleading, to an extent. 

Consider, for example, densities of two one-dimensional Gaussian clusters drawn 

in Figure 3.2. One, on the left, is centered at 2 with its standard deviation equal to 

0.5, the other on the right is centered at 4 and has its standard deviation equal to 2. 

The clusters are well intermixed, but the cluster on the right is spread not only over 

the right part, but over the left as well – its density function is greater than that of 

the left cluster in all points to the left of A in Figure 3.2. This contradicts the 

compact cluster intuition. This is why, in the setting of cluster generation from 

probabilistic distributions, we prefer the term intermix rather than overlap. 

To control the within-cluster spread, one can multiply the cluster’s covariance 

matrix by a value. The number of these values is equal to the number of generated 

clusters K*. To keep things simple, one should try to define such a distribution of 

Figure 3.2 Two Gaussian clusters with their density functions drawn using a green and blue line respectively. The 
interval (A,B) is the only place at which the blue line cluster is more likely than the green line cluster. 

 A        B 
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the within-cluster spreads that can be controlled by a single parameter. One 

obvious definition comes from the model of spherical clusters – all the spreads are 

equal to each other, that is, all clusters are represented by spheres with a constant 

radius. This pattern fits well into the theoretical perspective of K-Means as a 

maximum likelihood method for fitting a Gaussian distribution mixture model in 

which all individual distributions are spherical with the same variance (Banfield 

and Raftery 1993). However, within the data-mining framework, clusters to be 

found may have different spatial sizes. To fit into this perspective, one may use 

different settings such as several, two or three or four, different within-cluster 

spread values – which would lead then to the task of defining the proportions for 

each of these types, for which we could find no guidance in the literature or our 

personal experiences. Therefore, we decided to go along a less challenging path by 

designing two types of the variant within-cluster spread values: the “linear” and 

“quadratic” ones. Specifically, we take the within-cluster spread value to be 

proportional to the cluster’s index k (the linear, or k-proportional distribution) or k2 

(the quadratic, or k2-proportional distribution), k=1, 2, …, K*. That is, with the 

variable within-cluster spreads, the greater the generated cluster index, the greater 

its spatial size. For example, the within cluster-spread of cluster 7 will be greater 

than that of cluster 1, by the value of 7 in k-proportional model and by the value of 

49 in k2-proportional model. Since the clusters are generated independently, the 

within-cluster spread values can be considered as assigned to clusters randomly. 

Hence, three different models for the within-cluster spread values utilized in our 

experiments are: (i) constant, (ii) k-proportional, and (iii) k2-proportional. 

To control the distance between clusters with a single parameter, we utilize a 
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special two-step mechanism for the generation of cluster locations. On the first step, 

all cluster centroids are generated randomly around the origin, so that each centroid 

entry is independently sampled from a normal distribution N(0,1) with the mean 0 

and standard deviation 1. On the second step, each of these centroids is shifted 

away from 0, and from the others, along the line passing through the centroid and 

space origin, by multiplying it with a positive value: the greater the value, the 

greater the shift, and the greater the distances between centroids. 

The cluster shift value is taken the same for all centroids. In our experiments, 

we consider two types of the between-cluster spread, “large” and “small” ones. 

These should be defined in such a way that the clustering algorithms recover the 

generated clusters well at the large spreads, and less than well at the small spreads. 

This idea has been implemented experimentally as follows: given the within-cluster 

spread and shape, put the between-cluster spread value at such a value that the 

generated clusters are recovered on average on the level of 0.95 of the ARI index of 

cluster recovery, which is defined by equation (8) in Section 3.4. This value is 

accepted then as the “large” between-cluster spread value. For a “small” 

between-cluster spread value, we have chosen a smaller value, such that the best 

cluster recovery achieved reaches ARI index value of about 0.4. Thus chosen 

between-cluster spread values at different within-cluster spread and shape models 

are presented in Table 3.1. 

Typical configurations of datasets with K*=9 clusters generated as explained 

above are illustrated in Figure 3.3. These are just two-dimensional projections of 

multidimensional spreads, thus hiding many of their spatial interactions, but still 

bearing some of them and shown here for purely illustrative purposes. 
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Figure 3.3 Examples of datasets generated at different data models on a plane defined by the two largest principal 
components, from the most confusing pattern on the left (PPCA clusters with the quadratic within-cluster spread 
and the between-cluster spread value equal to 2) to a clear-cut pattern on the right (the same cluster model, but the 
between-cluster spread value grows to 28). The nine clusters are shown with symbols: * ,., +, o, x, �, �, �, �. 

 

Within-cluster spread type 

 
Between-cluster 

spread  

 
Constant k-proportional k2-proportional 

Large 1.6 8 8 

Small 0.16 0.4 1.6 

Table 3.1 Between-cluster spread values depending on the within-cluster spread-shape types in the experiments 

 

E. Feature standardization: In many publications, starting from Milligan and 

Cooper (1985), the data are generated in such a way that features are comparable 

and no data standardization is needed, which is very far from the real case scenario. 

In real-world data, features are usually incomparable so that some form of data 

standardization is needed. Conventionally, data standardization is conducted as an 
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independent transformation of each individual feature by shifting its origin with the 

rescaling either using the standard deviation or the range.  

In statistics, the most popular standardization is the so-called z-scoring which 

shifts the origin of each feature to its grand mean and then rescales the feature into 

the units of its standard deviation. This standardization is rooted in the invariance 

properties of the one-dimensional Gaussian distribution. In the neural network and 

support vector machine learning literature, the standardization is conventionally 

performed in a distribution-free way – by shifting the origin to the midrange and 

relating the result to the half-range so that the boundary values become -1 and +1, 

which is very convenient for working with target features that tend to have a range 

between –1 and 1. (Vapnik 2006).  

Published clustering experiments have demonstrated that the mixed 

standardization in which the origin is shifted to the grand mean and rescaled using 

the range is better for cluster recovery than that by the standard deviation, for 

example, in Milligan and Cooper 1988, Steinley 2004, Vesanto 2001, etc. We can 

contribute to the debate with the following argument. Dividing the feature scale 

over the standard deviation is counter-intuitive in the following example that 

involves two features of the same ranges, so that one of them is uni-modal and the 

other is bi-modal, as shown on Figure 3.4, (a) and (b), respectively. The standard 

deviation of the former is much smaller than that of the latter so that after dividing 

by the standard deviations the uni-modal feature’s range and, thus, contribution to 

the distances, will be by far greater than that of the multimodal feature. But 

intuition tells us that it is rather the bi-modal feature which is more useful for 

clustering, because the two modes lead to natural subgroups while the uni-modal 
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feature tends to put all, except for the outliers, into the same group.  

 

 

 

 

 

 

Figure 3.4 Uni-modal distribution shape on (a) versus a bi-modal distribution shape on (b): the standard deviation 
of the latter is greater, thus making the latter less significant under the z-scoring standardization, which is odd in 
the clustering context.  

 

Milligan and Cooper (1988) compare seven standardization methods and found 

out that range normalization is the best standardization among those (see also a 

review in Milligan and Cooper 1987). The experiments of Steinley (2004) also 

support this experimental finding and suggest that normalized by maximum of the 

data performs quite well (see also a review in Steinley 2006). Vesanto (2001) 

compare only the range normalization and z-scoring and suggest that the range 

normalization performs better than z-scoring.  

The standardization issue addressed above explicitly relates to established 

statistics concepts when using mixed scale data (Mirkin 2005), that is, the data 

table contains quantitative, nominal and categorical features. By doing the data 

standardization, there are not many constant effects on the data scatter and the 

feature contributions to the data scatter. The mixed standardization is adopted in 

our experiments 

 

 

 

             (a)                                    (b) 
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3.2 Selection of algorithms 

 

Five different approaches to estimating the “right” number of clusters K*  in 

K-Means are described in the previous section: (i) Variance based, (ii) Structural, 

(ii) Consensus distribution, (iv) Hierarchical, and (v) Resampling. Of these, we 

take only three, (i), (ii), and (iii), for our experiments. Each of the other two 

approaches, both (iv) Hierarchical and (v) Resampling, involves too many diverse 

parameters that are absent from the variance based, structural based and consensus 

distribution based approaches. Since the thesis is confined to K-Means related 

clustering methods only, the hierarchical methods are beyond the scope. The 

resampling methods involve many parameters, for example, the type of classifier, 

the training-testing split proportion, number of iterations, reference sets generated, 

the threshold value on K, etc, and the choices for these parameters are not 

well-defined or well-specified. As the (i) Variance based approach relates to the 

criterion of K-Means and has received most theoretical support (Krzanowski and 

Lai 1985, Sugar and James 2003 Tibshirani et al. 2001), we take all four 

procedures referred to in section 2.1 – Hartigan’s “rule of thumb”, Calinski and 

Harabash criterion, Gap statistic and Jump statistic. We also take in the Silhouette 

width statistic, as the most versatile procedure, from (ii) Structural approaches, and 

two procedures from the (iii) Consensus distribution approach. Table 3.2 presents 

the selection of K*  estimating methods that participate in our experiments, along 

with their acronyms used in the remainder of the thesis. 
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Method Acronym  

Calinski and Harabasz index CH 

Hartigan rule HT 

Gap statistic GS 

Jump statistic JS 

Silhouette width SW 

Consensus distribution area CD 

Average distance between partitions DD 

Square error iK-Means  L2 

Absolute error iK-Means L1 

Table 3.2 Set of methods for estimation of the number of clusters in K-Means under comparison 

 

It is probably worth noting that almost all the methods utilize Euclidean square 

distance throughout, except for two cases: (a) a version of intelligent K-Means L1 

is based on Manhattan metric, and (b) the Jump-statistic utilizes Mahalanobis 

distance within clusters.  

The seven methods from the three selected approaches utilize the same format 

of computations: they run K-Means at different K and then choose “the best” fitting 

value among the Ks as the estimate of K* . Thus, we need to specify the range of K 

values for the experiments. Since the data is generated many times for each of the 

chosen values K*=7 and 9 and K*=21, and the between-cluster spread values are 

large enough to have several of the clusters well separated, we decided, to keep the 

computations within a reasonable time limit, that the range of tested K values 

should be within an interval of about a dozen with K*  in the middle; thus, the range 
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of tested K values is from 4 to 14 at K*=7 and 9 and from 15 to 25 at K*=21.  

As is well known, the clustering and criterion value produced by K-Means 

depends on the initialization. The user typically does not have a clear implication 

about the initial centroids. Several attempts and evaluations have been reported to 

solve the cluster initialization problem. Babu and Murty (1993) published a 

near-optimal centroid selection method using genetic programming and the fitness 

of each centroid selection is assessed by running the K-Means algorithm until 

convergence and then calculating the distance measures. The fitness solutions will 

then reproduce to create a second generation of solutions and this process is 

repeated until a predetermined number of generations have been created. Given if 

the optimum solution in many cases can be found, however, it becomes infeasible 

in a large database due to the need for repeated runs of the K-Means algorithm. 

Thiesson et al. (1997) suggested a rather simple idea: taking the mean of the entire 

dataset and randomly perturbing it K times to produce K centroids. Khan and 

Ahmad (2004) proposed a cluster center initialization algorithm (CCIA) under the 

assumption of Gaussian distributed features, which first generates initial clusters 

for each feature using Euclidean distance between feature values based on the 

mean, standard deviation, and the percentile of the feature and the entities in that 

feature and then runs the K-Means algorithm on each feature and the whole data set. 

The percentile is obtained based on the equal area under the partitions of the 

Gaussian curve of features. They treated the partitions obtained from each feature 

as a sampling result; therefore they applied the DBMSDC sampling algorithm to 

merge these partitions, described in Section 2.5.  

Comparisons among several different initialization methods also have been 
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proposed. Pena et al. (1999) presented a comparative study for different 

initialization methods for the K-Means algorithm and the results of their 

experiments illustrate that the random and the Kaufman approach (Kaufman and 

Rousseeuw 1990, 1999) outperforms the rest of the compared methods as they 

make the K-Means more effective and more independent on initial clustering and 

on instance order. Steinley and Brusco (2007) evaluated 12 different initializing 

K-Means options and found that Ward’s (1963) hierarchical cluster analysis 

suggested by Milligan (1980) performs the best followed closely by a multiple 

random initialization strategy. The multiple random initialization strategy is highly 

recommended for most of the situations, except when the size of the data set, the 

number of variables, or the number of clusters are too large to estimate the 

distribution of the solution. Kaufman and Rousseeuw (1999) suggested that the 

first centroid locates on the most central point of the whole data set and then, which 

of the points in the databases and which when chosen as the next centroid will 

produce the greatest reduction in the distance measures are examined. Once the 

second centroid is chosen, the third centroid is selected in the same way and 

continues until K centroids are chosen. If this algorithm is to be considered useful 

for large databases, a sub-sample of the instances must be used instead when find 

the centroids (He et al. 2004).  

Since several experimental evidences have suggested that the multiple random 

initialization strategy outperforms other initialization methods in real-world 

conditions (see Pena et al. 1999, Hand and Krzanowski 2005, Steinley and Brusco 

2007), we propose the following initialization methods: at each K from the ranges 

defined above, the Batch K-Means is run R times, each time from a random set of 
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entities taken as initial centroids. Of the R resulting clusterings, that one 

minimizing the value of criterion (1) (see page 2) is chosen, and the value of 

criterion (1) (see page 2) at it is denoted by WK. We accept R=100. This choice is 

consistent with, first, Hand and Krzanowski (2005) recommendation R=20 for N of 

the order of 200 in their experiments, and, second, our desire to simulate the 

constraints of real-world computations. 

It should be noted that there have been suggested many improvements over the 

Straight K-Means version, leading to deeper minima of the criterion (1) (see page 2) 

for the same initializations, such as the adaptable change of centroids after each 

entity’s Minimum distance assignment (McQueen 1967). Likas et al. (2003) 

presented a global K-Means algorithm which aims to gradually increase the 

number of clusters until K are found and this algorithm can be taken as an 

initialization of other clustering techniques (Steinley and Brusco 2007). This 

algorithm starts at one cluster and its centroid is the grand mean, and they then run 

the K-Means clustering algorithm with a gradual increase in the number of clusters 

N times, where N is the number of entities. They compared their method with 

multiple runs of the K-Means algorithm and claim that the global K-Means 

algorithm shows the best quality. Hansen and Mladenovich (2001) proposed a 

J-Means algorithm, where the centroids of clusters are relocated to entities which 

have not yet been selected as centroids rather than entities in clusters which may 

move to other clusters in K-Means and all entities of that cluster are reassigned to 

their closest centroids. This method along with 3 other methods have been applied 

on several famous real-world datasets, and J-Means shows very good performance 

on the cluster quality but the worst on the computational time. Other authors 
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compared different versions of K-Means, for example, bisecting K-Means 

(Steinbach et al. 2000) clustering method, described in Section 2.4. Hamerly and 

Elkan (2002) proposed a G-means (G stands for Gaussian) clustering method to 

ensure the entities in each cluster are Gaussian distributed. It runs Straight 

K-Means starting from one cluster or a small number of clusters, then if the entities 

in a cluster are Gaussian under hypothesis test, the cluster centroid remains; 

otherwise, the centroid of the cluster splits into two by adding two numbers 

obtained from a principal component based method to the centroid. The advantage 

of G-means is that only one parameter needs to be specified, that is, the 

significance level of the hypothesis test, which should be set in a standard way.  

Another K-Means related improvement can be done by modifying the 

summary within cluster squared Euclidean distance, which can be generalized as a 

cost function (Kothari and Pitts 1999). The added term of the modified cost 

function further ensures the summary within cluster distance is minimal; therefore 

if the algorithm starts from a large number of clusters, the centriods are much 

closer to each other because of this added term. Kothari and Pitts (1999) applied 

this modification on four data sets and used the Dunn index (Dunn 1974) to 

validate the clustering results.  

Another improvement can be done by applying the genetic algorithm, for 

example, GA-clustering proposed by Maulik and Bandyopadhyay (2000) (also see 

Bandyopadhyay and Maulik 2002) a genetic algorithm based clustering technique, 

from the idea of the evolutionary genetics, which improves K-Means by a process 

of selection, crossover and mutation until a termination criterion is reached. It 

creates a population of solutions based on the so-called fitness function and finds 
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the good solution for the next generation according to the process iteratively. The 

fitness function is the multiplicative inverse of the summary within the cluster 

absolute Euclidean distance; therefore, to minimize the summary distance is to 

maximize the fitness function. A different version of the fitness function with the 

summary within cluster squared Euclidean distance is also tested and similar good 

performance of GA-clustering has been shown in the paper cited. A comparison of 

four methods including GA-clustering has been proposed by Paterlini and Krink 

(2006) and they suggest that the differential evolution method is superior to the 

other methods, which uses a more complex crossover procedure, because the 

mutation procedure of other methods is rather random search in the existing 

solutions.  

Some authors propose a centroid-based clustering algorithm, for example, 

Leisch (2006) generalized the K-centroids method, which finds centroids which 

average distances between entities to the closest centroids is minimal, and nominal 

data clustering algorithm K-modes, which have been implemented in R statistical 

software package. The distance measure of K-modes is to count the number of 

dimensions of which an entity and its centroid do not have the same value. 

Modified criteria have been utilized by many (see, for reviews, Steinley 2006 and 

Bock 2007). These all are left outside of our experiments: only Straight K-Means is 

being tested since the thesis is confined to be K-Means related methods only. 
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3.3 Evaluation: distance between centroids 

 

Since the generated data is a collection of entities from K*  Gaussian clusters, the 

results of a K-Means run can be evaluated by the quality of recovery of the 

following components of the generated clusters: (1) the number K* , (2) the cluster 

centroids, and (3) the clusters themselves. This leads us to using three types of 

criteria based on comparison of each of these characteristics as produced by the 

algorithm with those in the generated data. The cluster recovery conventionally is 

considered of greater importance than the other two.  

The recovery of K*  can be evaluated by the difference between K*  and the 

number of clusters K in the clustering produced with a procedure under 

consideration. Measuring the distance between found and generated centroids is 

not quite straightforward even when K=K* . Some would argue that this should be 

done based on a one-to-one correspondence between centroids in the two sets, 

hence the best pair-wise distance matching between two sets. Others may consider 

that such a matching would not necessarily be suitable because of the asymmetry 

of the situation – one should care only about how well the generated centroids are 

reproduced by those found ones, so that if two of the found centroids are close to 

the same generated centroids, both should be considered its empirical 

representations. We adhere to the latter view, the more so that this becomes even 

more relevant, both conceptually and computationally, when K differs from K* .  

Another issue that should be taken into account is of the difference in cluster 

sizes: should the centroid of a smaller cluster bear the same weight as the centroid 

of a larger cluster? Or, on the contrary, should the relative cluster sizes be involved 
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so that the smaller clusters have less of an effect on the total? To address this issue, 

we use both weighting schemes in the experiments conducted, to find out which of 

them is more consistent with cluster recovery than the other.  

According to the “asymmetric” perspective above, to score the similarity 

between the generated centroids, g1, g2, …, gK* , and those obtained using one of 

the chosen algorithms in Table 3.2, e1, e2, …, eK, we utilize a procedure consisting 

of the following three steps:  

(a) pair-wise matching of the obtained centroids to those generated:  

For each k=1,….K*, assign gk with that ej (j=1,…,K) which is the nearest to it. Any 

not yet assigned centroid ei then is matched to its nearest gk. 

 

(b) calculating distances between matching centroids:  

Let Ek denote the set of those ej that have been assigned to gk; and αjk = qj/|Ek| , 

where qj is the proportion of entities in j-th found cluster (weighted version) or αjk 

= 1 (unweighted version). Define, for each k=1,…,K,  dis(k) = Σej∈Ek d(gk,ej)* αjk . 

The weighted distance is the average weighted distance between the generated and 

the set of matching centroids in the computed clusters; the unweighted distance is 

just the summary distance between all matching pairs of clusters. (The distance d 

here is Euclidean squared distance.) 

 

(c) averaging the distances:  

Calculate D=∑
=

*

1

)(*
K

k
k kdisp  where pk=Nk= |Nk|, is the number of entities in the 

generated k-th cluster (in the weighted version), or pk= 1/K*  (in the unweighted 

version). 
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3.4 Evaluation: confusion between partitions 

 

To measure similarity between two partitions, the contingency (confusion) table of 

the corresponding partitions of I is used. Entries in the contingency table are the 

co-occurrence frequencies of the generated partition clusters (row categories) and 

the obtained clusters (column categories): they are the counts of entities that fall 

simultaneously in both. Four coefficients, that is, adjusted Rand index ARI (Hubert 

and Arabie 1985, Yeung and Ruzzo 2001), average overlap A, the relative distance 

M, and Tchouproff’s coefficient T (Mirkin 2005), are used for measuring the 

similarities between two partitions and the four coefficients capture different 

structural properties of partitions and expose different behaviour in our 

experiments, but regarding our main conclusions they tend to show the same 

outcome. This is why in the experimental result tables in Chapter 4 and 5 we 

present only values of ARI coefficient.  

Denote the generated clusters (rows) by k, the obtained partition clusters 

(columns) by j and the co-occurrence counts by Nkj. The frequencies of row and 

column categories (cluster sizes) are denoted by Nk+ and N+j . The relative 

frequencies are defined accordingly as pkj=Nkj/N, pk+=Nk+/N, and p+j=N+j /N, where 

N is the total number of entities. We use a conventional similarity measure, the 

adjusted Rand index ARI defined by the following formula (Hubert and Arabie 

1985, Yeung and Ruzzo 2001): 
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. ARI captures the similarities in the contents of pairs of 

entities belonging to the same clusters. The greater the ARI, the more similar are 

the partitions. 

The relative distance to the real partition M and the relative chi-square 

contingency coefficient T are: 
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where K is the real number of clusters and E is the estimated number of clusters. 

Average overlap A is another criterion related to the contingency table. Two tables 

are formed as follows: the row of the contingency table is divided by the number of 

items in the obtained cluster list and the column of the contingency table is divided 

by the number of items in the real cluster list. A table is obtained by summing up 

the previous two tables and is divided by 2. The entry in the table is then multiplied 

by the corresponding probability pkj, which will form a new table. Then the average 

overlap is calculated across the new table. The average overlap index captures the 

similarities in the contents of entities, not the pair of entities. The relative distance 
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is quite similar to ARI but not normalized. Tchouproff’s coefficient captures the 

statistical dependence, which goes against the statistical independence.  

 

3.5 Summary 

 

The bulk of the experimental study addresses one of the most controversial issues 

in clustering: the right number of clusters, which some may view as baseless 

because in many cases, “clusters are not in data but in the viewing eye.”  In the 

experiments, we try to maintain the case when clusters are in the data. The data are 

generated as sets of entities randomly drawn from Gaussian clusters, with the 

cluster sizes (proportions) drawn randomly as well. Using Gaussian clusters allows 

us to address the issue of modelling the cluster intermix in an intuitively appealing 

way in terms of within- and between-cluster spreads. This also enables us to 

conduct experiments by confronting two types of situations: well separated clusters 

(large between-cluster spread) and not well separated clusters (small 

between-cluster spread). We combine these with three different models of 

within-cluster spread and shape. One of the models is of conventional spherical 

cluster with a constant variance; the other two involve elongated clusters and 

different cluster variances. The twelve combined data settings provide rather 

different cluster structures for comparing different methods. To be closer to the 

real-world data analyses, we maintain relatively large data sizes (one or three 

thousand entities) and cluster numbers (7, 9 and 21). Another feature of our 

experimental setting is that to evaluate the results, we utilize the centroid recovery 

performance of a clustering method in addition to the conventional cluster recovery 
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performance.
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Chapter 4  

 

Analysis of the Results 
 

4.1 First series of evaluation tables and their analysis  

The experiment is conducted in two instalments. The first instalment is, basically, 

to see whether our assumptions are right, specifically:  

(i) If one of the two distance formulas, weighted and unweighted, is any 

better then the other; 

(ii)  If the randomness in the generated cluster sizes or initialization of 

centroids makes a difference, and if it does, what to do about it;  

(iii)  Are there any patterns in the recovery of the number of generated 

clusters K*, that go across the lines of the within- and between-cluster 

spread models accepted for the experiment? If there are, can they be 

used for enhancing the clustering procedures? 

(iv) Are there any patterns in the cluster recovery within or across the 

within- and between-cluster spread models? 

The major parameters of the first instalment of the experiment are six 

spread-shape models that are the result of combining two types of models: (a) 

either of the three cluster models according to the distribution of the within-cluster 

spreads and associated shape formats (the spherical shape for the constant spreads, 

and the elongated NetLab (see Generation of Gaussian mixture distributed data 
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2006) covariance for the variant within-cluster spreads), and (b) either of two 

modes of the between-cluster spreads, the “large” and “small”, according to Table 

3.1.  

The results of our experiments are presented in Table 4.1, 4.2 and 4.3, for the 

cases of 7, 9 and 21 Gaussian clusters generated respectively. The entries are 

averages of the respective evaluation values taken over 20 data sets generated, 

along with their standard deviations. In the experimental result tables, the standard 

deviations are divided by the averages, expressed in per cent. The reason for this is 

the presentational purpose. The cluster shape, spread and spatial sizes are taken 

according to Table 3.1 in Section 3.2. In Table 4.1, 4.2 and 4.3, we highlight two 

winners among the nine algorithms under comparison, at each of the six spread 

patterns (three cluster spread-shape models times two between-cluster spreads), by 

using the bold font. The two different between-cluster spreads are presented in 

different columns while the three cluster spread-shape models are reflected within 

the cells by three rows, as explained in the captions. 
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Comparison of iK-Means with 7 other methods at cluster=7 and 3 cluster structural models 

 Estimated number of 
clusters 

Weighted distance between 
centroids 

Unweighted distance between 
centroids 

Adjusted Rand Index 

 LaS SmS LaS SmS LaS SmS LaS SmS 

CH 
8.28/5 

10.70/6 
8.30/5 

4.00/0 
4.00/0 

4.30/12 

48116.80/16 
1558562.68/15 
1595574.32/13 

360.91/14* 
3621.98/16 

55930.42/12 

326.49/14* 
9699.31/14* 

10448.37/13* 

380.77/20 
3279.99/14 

56453.01/13 

0.77/12 
0.64/11 
0.74/13 

0.40/11 
0.31/12 
0.43/13 

HT 
7.39/6 
7.55/5 
7.55/6 

6.20/10 
8.89/10 
8.70/10 

128684.97/17 
1799188.85/16 
1746987.36/14 

390.98/13 
3030.92/15 

60371.09/15 

329.66/15 
9656.33/15 

10440.73/12 

388.65/18 
3047.52/18 

58707.33/15 

0.75/12 
0.76/13 
0.72/11 

0.39/12 
0.38/12 
0.50/12 

GS 
5.25/7 
5.75/8 
5.95/7 

5.85/11 
5.12 / 9 
5.25/11 

49584.52/11 
1492546.32/14 
1458569.52/11 

475.85/11 
3785.25/11 

59351.25/12 

338.38/11 
9642.58/11 

10589.52/12 

425.89/11 
3280.65/11 

54963.74/12 

0.80/11 
0.81/12 
0.79/12 

0.37/12 
0.31/12 
0.44/11 

JS 
10.67/6 
10.00/0 
10.40/6 

4.00/0 
4.78/10 
4.80/10 

51148.43/15 
1456705.09/14 
1766608.06/13 

360.90/12 
3441.78/15 

72390.75/12 

325.04/13 
9743.94/13* 

10491.41/14* 

353.96/19 
3018.44/15 

58712.23/16 

0.60/15 
0.74/12 
0.6911 

0.40/11 
0.37/11 
0.50/15 

SW 
4.89/5 
6.60/6 
5.60/5 

4.65/10 
5.44/10 
5.40/11 

44560.63/15 
1412019.54/13 
1696914.01/15 

359.24/12 
3375.02/15 

62581.11/14 

325.59/15 
9672.26/14* 
10408.32/13 

379.24/16 
2997.17/16 

55420.80/14* 

0.93/12 
0.90/11 
0.94/12 

0.41/12 
0.40/11 
0.57/13 

CD 
5.22/6 
5.00/0 
5.00/0 

5.05 / 4 
5.00 / 0 
5.00 / 0 

45201.58/17 
1365256.89/12 
1390176.82/15 

476.60/15 
3178.91/15 

56446.03/13 

341.30/14* 
9741.09/14 

10476.44/13 

379.84/16 
3283.51/15 

56759.32/17 

0.79/11 
0.74/12 
0.77/11 

0.36/10 
0.32/11 
0.45/15 

DD 
5.00/0 
6.70/4 
6.20/6 

5.95/12 
5.11/10 
5.30 / 9 

45638.01/16 
1423139.34/15 
1488715.14/14 

483.02/15 
3849.27/14 

56111.21/16 

342.90/15 
9740.43/14 

10486.01/15 

445.71/17 
3307.85/16 

56261.32/19 

0.82/14 
0.75/12 
0.71/13 

0.38/12 
0.30/11 
0.45/12 

L2 
5.44/5 
5.90/6 
5.40/6 

17.90/18 
10.89/19 
9.40/18 

44586.72/15 
1358256.30/15 
1348704.94/14 

1142.03/15 
2869.79/14 

60274.25/17 

328.19/13* 
9658.11/13 

10504.31/13* 

476.86/23 
3096.48/20 

55334.98/20 

0.97/13 
0.98/12 
0.95/11 

0.41/12 
0.33/15 
0.53/15 

L1 
16.78/7 
7.70/6 
9.10/4 

35.00/21 
7.67/18 

18.10/19 

58992.53/14 
1513975.39/14 
1499187.03/13 

439.60/12 
2883.21/15 

64655.17/15 

340.97/15 
9739.12/15 

10507.21/14 

647.83/29 
3007.08/21 

55290.32/22 

0.66/12 
0.73/11 
0.74/15 

0.28/13 
0.28/14 
0.37/15 

* within 1% of the best value 

Table 4.1 The average values of evaluation criteria at 7-clusters data sets with NetLab Gaussian covariance matrix for the 
large and small spread values (LaS and SmS, respectively) in Table 3.1. The standard deviations are divided by the 
averages, expressed after slash in per cent. The three values in a cell refer to the three cluster structure models: the spherical 
shape with constant cluster sizes on top, the PPCA elliptical shape with k-proportional cluster sizes in the middle, and the 
PPCA elliptical shape with k2-proportional cluster sizes in the bottom. Two winners of the eight methods are highlighted 
using the bold font, for each of the options. 
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Comparison of iK-Means with 7 other methods at cluster=9 and 3 cluster structural models 

 Estimated number of 
clusters 

Weighted distance between 
centroids 

Unweighted distance between 
centroids 

Adjusted Rand Index 

 LaS SmS LaS SmS LaS SmS LaS SmS 

CH 
11.55/8 
12.10/4 
11.15/8 

4.00 / 0 
5.30 / 5 
4.11 / 8 

53057.85/13 
1462774.95/11 
1560337.21/11 

832.87/15 
465599.77/14 
50703.90/12 

403.85/12 
11788.38/14* 
12146.83/13* 

419.27/12 
2932.79/19 

53779.46/15 

0.82 / 9 
0.81 / 8 
0.79 / 9 

0.25/12 
0.21/12 
0.22/12 

HT 
8.27/6 
8.55/7 
9.35/7 

7.60/10 
9.40 / 9  
9.12/10 

47293.32/13 
1332058.56/15 
1495325.18/14 

742.47/13 
409831.54/14 
51941.10/15 

412.40/13 
11833.21/14* 
12154.99/15 

386.01/14 
2965.56/15 

55286.55/14 

0.89 / 9 
0.90 / 9 
0.84 / 9 

0.29/10 
0.37/11 
0.28/12 

GS 
6.25/7 
6.75/8 
5.95/8 

5.75 / 8 
5.95/10 
6.25 / 9 

47295.85/11 
1305125.52/10 
1395568.25/11 

795.52/11 
394596.52/11 
51845.25/11 

438.33/12 
11758.62/12 
12185.62/13 

385.25/12 
2991.15/12 

54258.63/13 

0.77/11 
0.77/12 
0.76/12 

0.28/13 
0.28/12 
0.29/12 

JS 
12.12/8 
12.75/9 
12.10/8 

4.50 / 0 
6.15 / 8 
4.45 / 5 

55417.22/15 
1548757.47/12 
1570361.91/12 

798.96/13 
510687.27/15 
50716.82/12 

403.38/13 
11785.21/13* 
12131.86/12* 

419.27/13 
2908.33/15 

53699.24/14 

0.77/10 
0.82 / 8 
0.80 / 8 

0.25/12 
0.24/13 
0.22/11 

SW 
6.29/8 
6.95/7 
7.15/8 

4.54/10 
4.95 / 4 
4.28/11 

46046.56/15 
1299190.70/15 
1462999.91/12 

805.30/15 
393227.66/14 
50383.53/13 

418.26/12 
11876.31/13* 
12203.58/12 

418.66/14 
2846.31/16 

53583.12/16 

0.92/10 
0.92 / 8 
0.85 / 6 

0.26/13 
0.27/12 
0.22/13 

CD 
5.31/7 
5.30/6 
5.20/6 

5.11 / 9 
5.10/10 
5.31 / 9 

47122.13/14 
1305051.80/14 
1350841.29/13 

791.76/12 
394572.84/13 
51968.86/12 

429.96/12 
11943.98/13 
12265.98/12 

373.93/12 
2897.61/18 

55040.86/15 

0.78/12 
0.78/12 
0.75/12 

0.27/13 
0.28/14 
0.25/13 

DD 
5.67/3 
4.90/3 
5.30/3 

6.42 / 8 
5.60 / 9 
5.83 / 8 

47190.83/15 
1306014.88/13 
1394892.59/14 

792.15/15 
395524.66/12 
50813.28/15 

435.37/12 
11979.30/13 
12286.43/12 

409.97/13 
2996.28/18 

53912.13/13 

0.75/12 
0.74/12 
0.71/12 

0.27/12 
0.24/12 
0.27/10 

L2 
8.67/6 
8.80/6 
7.95/7 

13.00/18 
10.80/16 
13.44/18 

49095.21/15 
1485719.73/12 
1444645.99/15 

1110.88/13 
486979.24/14 
51226.10/12 

402.47/12 
11771.70/12 
12031.13/11 

335.91/23 
2661.41/20 

54026.92/15 

0.99 / 9 
0.99/10 
0.90 / 9 

0.48/12 
0.42/12 
0.45/12 

L1 
9.33/6 
8.80/7 

10.00/6 

25.00/18 
16.10/17 
23.11/18 

54478.33/13 
1487335.77/13 
2092537.57/12 

705.61/15 
487940.63/13 
50506.80/12 

400.18/12 
11767.34/13 
12114.01/12 

381.12/25 
2648.60/20 

53507.21/16 

0.92 / 9 
0.99/10 
0.84/10 

0.38/12 
0.41/12 
0.41/12 

* within 1% of the best value 

Table 4.2 The average values of evaluation criteria at 9-clusters data sets with NetLab Gaussian covariance matrix for the 
large and small spread values (LaS and SmS, respectively) in Table 3.1. The standard deviations are divided by the 
averages, expressed after slash in per cent. The three values in a cell refer to the three cluster structure models: the spherical 
shape with constant cluster sizes on top, the PPCA elliptical shape with k-proportional cluster sizes in the middle, and the 
PPCA elliptical shape with k2-proportional cluster sizes in the bottom. Two winners of the eight methods are highlighted 
using the bold font, for each of the options. 
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With respect to the issues (i)-(iv) raised for this batch of experiments, one can 

notice the following: 

(i) The orderings of estimates according to the weighted and unweighted 

distances between centroids differ considerably. The winners with 

respect to the centroid recovery closely match the winners with respect to 

the cluster recovery when the unweighted distance is used, and do not 

match at all, when the weighted distance is used. This goes in line with 

the view that K-Means clustering results can be interpreted as a form of 

Comparison of iK-Means with 7 other methods at cluster=21 and 3 cluster structural models 

 Estimated number of 
clusters 

Weighted distance between 
centroids 

Unweighted distance between 
centroids 

Adjusted Rand 
Index 

 LaS SmS LaS SmS LaS SmS LaS SmS 

CH 
33.25/11 
34.95/10 
31.45/10 

14.52/10 
14.85/10 
13.95/12 

68196.52/11 
178529.52/12 
181648.52/11 

1052.63/11 
24584.52/12 
61458.63/12 

578.42/12* 
12685.52/11 
14896.54/11 

498.42/12 
6574.54/12* 
35145.25/12 

0.81/10 
0.82/11 
0.79/12 

0.35/12 
0.34/12 
0.29/12 

HT 
20.72/11 

20.45/11* 
21.85/10* 

19.85/10 
20.42/10 
21.79/10 

66524.85/12 
177389.63/12 
179526.12/11 

958.46/12 
22548.63/12 
59851.58/12 

569.12/11* 
12578.12/10* 
14746.49/11 

487.65/11* 
6585.19/11* 

34719.49/11* 

0.81/12 
0.82/11 
0.82/12 

0.34/12 
0.33/11 
0.35/10 

GS 
17.52/10 
16.85/10 
16.45/10 

14.36/11 
15.42/10 
16.52/11 

67521.95/12 
178528.62/12 
182176.52/13 

984.65/11 
23758.96/12 
61953.25/11 

571.45/12* 
12694.28/12 
14940.63/11 

491.48/12* 
6512.75/11* 

34751.85/12* 

0.79/12 
0.81/12 
0.81/12 

0.34/11 
0.29/12 
0.30/10 

JS 
32.15/10 
34.12/10 
32.62/11 

13.99/11 
14.85/12 
15.75/12 

67195.52/12 
179526.52/13 
182274.85/12 

975.27/12 
23579.48/12 
61847.52/11 

574.45/12* 
12501.27/11* 
14975.75/12 

489.75/10* 
6541.51/11* 

34275.15/12* 

0.82/12 
0.81/11 
0.83/11 

0.32/12 
0.33/12 
0.34/10 

SW 
15.42/10 
16.65/10 
14.85/10 

14.18/12 
15.95/10 
16.85/11 

66745.85/12 
176859.52/12 
180493.85/11 

931.42/12 
21587.54/12 

60157.24/11* 

562.15/10* 
12649.57/11 
14734.15/10 

485.42/12* 
6524.75/11* 

34815.16/12* 

0.79/11 
0.81/11 
0.80/12 

0.33/12 
0.29/11 
0.31/10 

CD 
17.29/10 
16.76/10 
18.45/12 

15.85/11 
15.52/10 

17.04/12* 

67085.12/12* 
176384.85/11 
180052.63/11 

942.35/12* 
21465.18/12 
59941.11/12 

571.16/10* 
12534.75/11* 
14576.67/11 

486.52/11* 
6518.27/12* 

34842.19/11* 

0.81/12 
0.82/12 
0.80/11 

0.29/10 
0.32/12 
0.34/12 

DD 
16.78/10 
18.65/10 
17.95/12 

17.85/12 
16.49/10 
17.42/10 

66975.52/12* 
179416.85/12 
181756.85/12 

954.25/12 
22951.54/11 

60175.52/12* 

572.42/10* 
12549.42/11* 
14594.12/11 

482.45/11* 
6547.73/11* 

34768.42/10* 

0.79/12 
0.81/12 
0.82/11 

0.34/12 
0.33/12 
0.29/12 

L2 
20.12/11* 
20.85/12 
21.32/10 

26.85/20 
28.45/22 
30.42/10 

69015.52/11 
179526.75/12 
181085.63/12 

942.16/12* 
22568.42/12 

59975.54/10* 

571.48/12 
12347.57/11 
14259.54/12 

479.48/11 
6498.15/10 

34152.57/12 

0.99/11 
0.99/12 
0.99/10 

0.42/12 
0.44/11 
0.43/10 

L1 
20.35/10 
21.42/11 
20.95/12 

39.45/18 
38.63/19 
39.52/21 

68759.52/12 
179528.53/12 
182163.52/13 

934.16/10 
21984.85/11* 
60846.18/12* 

570.85/12 
12468.27/11 
14375.25/12 

480.45/12 
6501.57/12 

34271.45/12 

0.98/12 
0.99/11 
0.95/12 

0.45/12 
0.44/11 
0.43/10 

* within 1% of the best value 

Table 4.3 The average values of evaluation criteria at 21-clusters data sets with NetLab Gaussian covariance matrix for the 
large and small spread values (LaS and SmS, respectively) in Table 3.1. The standard deviations are divided by the 
averages, expressed after slash in per cent. The three values in a cell refer to the three cluster structure models: the spherical 
shape with constant cluster sizes on top, the PPCA elliptical shape with k-proportional cluster sizes in the middle, and the 
PPCA elliptical shape with k2-proportional cluster sizes in the bottom. Two winners of the eight methods are highlighted 
using the bold font, for each of the options. 
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typology at which centroids represent its so-called intensional, that is, 

conceptual, part. According to this view, the distances should not be 

weighted by the cluster sizes. The results in the table support this view 

and make us use only the unweighted distance in the further experiments. 

(ii)  The averages reported in Table 4.1, 4.2 and 4.3 are rather stable: all the 

standard deviations lie within 15% of the average values (except for L1 

and L2 at the small between-cluster spread associated with very high 

numbers of clusters found – these two will be modified later on). That 

means that the randomness of the choice of initial centroids and the 

randomness in cluster sizes do not affect the results that much, and can 

be considered justifiable. 

(iii)  With regard to the number K*  recovery, one can easily notice that the 

differences in within-cluster shape/spread do not appear to affect the 

outcomes. However, with respect to between-cluster spread differences, 

there can be discerned four different patterns: (a) HT consistently 

chooses K values that are very close to K*=7, 9 and 21; (b) L1 and L2 

closely follow K*=7, 9 and 21 at the large spread and lead to much larger 

Ks at the small spread – this especially concerns L1; (c) when K*=7, 9 

and 21, both CH and JS overestimate K*  at the large spread and 

underestimate it at the small spread, and (d) when K*=7, 9 and 21, GS, 

SW, CD, and DD underestimate K*  at both between-cluster spreads, 

though when K*=9, SW is close at the large spread and DD at the small 

spread, but when K*=7, SW is close at the small spread and DD at the 

large spread. 
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(iv) With respect to the cluster recovery, the common pattern is that the 

larger spreads lead to better reproduction of clusters than the small 

spreads for all of the algorithms. Overall, the algorithm L2 outperforms 

other methods but when K*=7, the algorithms SW and HT join; when 

K*=9, the algorithms SW and L1 join and when K*=21, the algorithm L1 

joins. 

 

 

4.2 Adjusted intelligent K-Means 

 

According to the experiment, iK-Means methods L2 and L1 may lead to excessive 

numbers of clusters, while HT, on the other hand, makes a very good recovery of 

the number of clusters. This leads us to suggest that the HT number-of-cluster 

results should be taken as a reference to adjust the threshold for removing small AP 

clusters for the initial setting in iK-Means. So far, only AP singletons are removed 

from the initial setting. If other “smaller” AP clusters are removed, the chosen K 

will be smaller and, thus, closer to K* . A straightforward option would just remove 

all AP clusters whose sizes are less than or equal to a pre-specified discarding 

threshold DT. Given Kh, found with the Hartigan rule, a suitable discarding 

threshold DT can be found in such a way that the number of clusters KDT identified 

with DT, taken as the discarding threshold, is close enough to Kh. This can be done 

by gradually increasing DT from the default value DT=1. A typical sequence of 

steps, at a given Kh, say Kh =9, could be like this: at DT=1, the number of AP 

clusters is KDT =32; at DT=2, still KDT =32, that is, no doubletons among the AP 

clusters; then K3 =29, K4 =24, K8 =20, K11 =14, K12 =11, and K14 =8 (the omitted 
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DT values give no reduction in KDT values). Therefore, DT should be taken as 

DT=14. Since Kh value is not necessarily correct but rather indicative, DT=12, 

leading to 11 clusters, is also acceptable, especially if K*=10 or 11. Thus, one can 

use a computational routine of increasing DT one by one until KDT becomes less 

than θKh. When we put θ=1.1, the next KDT value is typically less than Kh, whereas 

θ=1.2 leaves KDT rather large, but θ=1.15 produces reasonable approximations of 

Kh. We refer to thus HT conditioned versions of L2 and L1 as AL2 and AL1. 

 

 

 

HT-adjusted iK-Means  

0. HT-number: Find the number of clusters Kh by using R runs of Straight 

K-Means at each K with the Hartigan rule. 

1. iK-Means number: Find the number of clusters by using iK-Means with 

the discarding threshold DT=1. Let it be Kls for L2 and Klm for L1.  

2. Adjust: If Kls (or Klm) is 1.15 times greater than Kh, increase the 

discarding threshold by 1 and go to step 1 with the updated DT. 

Otherwise, halt. (The adjustment factor value of 1.15 has been found 

experimentally.)  
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4.3 Second series of the experiment and their analysis 

 

The second series of our experiments differs from the first one in three aspects:  

(1) The adjusted versions of iK-Means clustering, AL2 and AL1, are included in the 

list of methods; 

(2) Data sets with the number of clusters K* in three versions, 7, 9 and 21 clusters, 

are generated as described in section 3.1;  

(3) The cluster shapes and cluster distances are fully crossed. 

Therefore, the set of data structures generated here is expanded to 24 models by 

fully crossing the following four values:  

(a) Three versions of the number of clusters K*, 7, 9 and 21 clusters; 

(b) Two versions of the cluster shape, either spherical or elliptical, as 

described in section 3.1.C; 

(c) Three versions of the within-cluster spread – constant, linear and quadratic, 

as described in section 3.1.D; 

(d) Two versions of the between-cluster spread, large and small, as described 

in section 3.1.D with the spread values presented in Table 3.1. 

The issues to be addressed in these experiments are those (ii)-(iv) above, and, 

additionally, as follows: 

(i) Is there any pattern of (dis)similarity between the two data size 

formats; 

(ii)  Are the HT-adjusted iK-Means methods better than the original ones; 
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(iii)  Are the algorithms’ recovery properties at the constant spherical 

within-cluster-spread model any better than those at the elongated 

not-constant spread clusters?  

    The averaged, over ten to twenty data sets generated at each of the 24 patterns, 

evaluation criteria values are presented in Tables 4.4 to 4.9. Each of the four tables 

corresponds to one of the four combinations of the size (a) and shape (b), whereas 

the six combinations of spread (c) and (d) are presented within each of the Tables 

4.4 to 4.9.  

The cluster centroid recovery results in Tables 4.4 to 4.9 are presented with a 

change in reporting: the weighted distance case is removed so that only the 

unweighted distances are left. Moreover, the distances are rescaled to achieve 

comparability across the between-cluster spread models, so that issue (vii) can be 

addressed with just visual inspection by a naked eye. The distance between 

centroids recovery is calculated in a Euclidean space, not in a squared Euclidean 

space. When we move the centroids by multiplying a value, for example 30, the 

squared distance becomes the square of the value greater, in this case, 302=900. 

The rescaling is conducted according to the inter-cluster spread values in 

Table 3.1 and takes into account that, at the small within-cluster spreads, the spread 

value at k2-proportional model, 2, is four times greater than that at k-proportional 

model, 0.5, and 10 times greater than that at the equal spread model, 0.2. By 

multiplying the distances between centroids at the equal spread model by 100=102 

and at the k-proportional model by 16=42, they are made comparable with those at 

the k2-proportional model. (Note that the distance between centroids is squared 

Euclidean, which implies the quadratic adjustment of the values.) Similarly, at the 
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large spreads, the within-cluster spread values at the variant spread models are the 

same while that at the constant spread model is 5 times smaller, so we multiply the 

distances between centroids at the equal spread model by 52=25.  

Here are the findings related to each of the issues above: 

(v) Tables 4.4 to 4.9 show a remarkable degree of similarity regarding the 

main findings of the first series of experiments:  

a. The relatively small standard deviations; 

b. The same four groupings of the procedures with regard to the 

number of clusters K* recovery, with the obvious AL2 and AL1 

effects; 

c. The same winners over a bulk of the experimental conditions, 

though HT at K*=21 shows winning performances over some of 

the conditions too.  

(vi) The HT-adjusted iK-Means methods are not better than the original 

ik-Means with respect to the cluster recovery; they, however, are better 

with respect to the number of clusters. It is somewhat surprising that 

the absolute error based method L1 is on par with the square error 

based method L2, in spite of the fact that the data is generated 

according to Gaussian distributions favouring squared distances. 

(vii)  The algorithms’ recovery properties at the equal within-cluster-spread 

model are not much better than those at the elongated not-constant 

spread clusters, whichever measure is used – the centroid or cluster 

recovery. Yet most methods perform better when the cluster spatial 

sizes are less different: at the constant sizes the best, and at the 
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k2-proportional sizes the worst. However, the effects of differences in 

within-cluster spread-shape patterns are rather minor.  

 

 

Comparison of adjusted iK-Means with 9 other methods at cluster=7, cluster shape=spherical 

 Estimated number of clusters Adjusted distance between centroids Adjusted Rand Index 

 LaS SmS LaS SmS LaS SmS 

CH 
8.28/5 
9.56/7 
9.25/7 

4.00 / 0 
5.00 / 0 
5.84 / 8 

8162.25/14* 
9218.27/12 
9957.24/13 

38077.00/20 
42578.25/12 
48249.26/12 

0.77/12 
0.58/12 
0.72/12 

0.40/11 
0.35/11 
0.48/12 

HT 
7.39/6 
7.65/7 
7.12/7 

6.20/10 
8.75 / 7 
9.15 / 9 

8241.50/15 
9217.57/12 
9910.24/12 

38865.00/18 
42671.48/10 

47527.75/10* 

0.75/12 
0.65/12 
0.73/12 

0.39/12 
0.34/11 
0.42/11 

GS 
5.25/7 
5.14/6 
5.18/7 

5.85/11 
6.14/11 
5.79/10 

8459.29/11 
9312.59/11 
9917.24/10 

42589.52/11 
43057.85/12 

47562.75/10* 

0.80/11 
0.75/11 
0.68/10 

0.37/12 
0.32/11 
0.44/11 

JS 
10.67/6 
9.75 / 7 
10.71/7 

4.00 / 0 
9.49 / 9 

10.24 / 8 

8126.00/13 
9327.45/11 

10048.18 / 9 

35396.00/19 
42759.42/10 
48217.35/12 

0.60/15 
0.68/12 
0.69/12 

0.40/11 
0.35/15 
0.42/12 

SW 
4.89/5 
7.75/6 
6.49/7 

4.65/10 
6.54/11 
5.75/10 

8139.74/15* 
9299.48/10 

10057.26/10 

37983.00/16 
42873.15/10 
47657.85/12 

0.93/12 
0.78/12 
0.85/13 

0.41/12 
0.31/12 
0.47/12 

CD 
5.22/6 
4.50/0 
4.50/0 

5.05 / 4 
5.27 / 8 
4.85/11 

8532.50/14 
9314.67/10 
9957.15/10 

37984.00/16 
42496.18/12 
48018.72/11 

0.79/11 
0.75/10 
0.76/10 

0.36/10 
0.37/12 
0.45/10 

DD 
5.00/0 
5.85/7 
6.37/7 

5.95/12 
6.27 / 8 
5.85/11 

8572.50/15 
9327.18/10 
9948.26/10 

44571.00/17 
42579.27/12 
47524.52/12 

0.82/14 
0.68/12 
0.71/13 

0.38/12 
0.38/10 
0.43/15 

L2 
5.44/5 
4.96/7 
5.17/6 

17.90/18 
12.75/25 
11.49/18 

8240.75/13* 
9248.52/11 
9968.85/12 

47686.00/23 
42279.52/18 
48078.21/20 

0.97/13 
0.96/10 
0.94/10 

0.41/12 
0.37/14 
0.42/13 

L1 
16.78/7 
6.95/7 
7.28/7 

35.00/21 
14.48/18 
17.48/21 

8524.25/15 
9247.35/12 
9952.49/11 

64783.00/29 
41917.35/12 
47495.57/21 

0.66/12 
0.68/12 
0.72/13 

0.28/13 
0.34/12 
0.45/10 

AL2 
6.44/5 
7.15/7 
7.25/8 

6.10 / 7 
7.24 / 8 
7.75 / 7 

8129.75/13 
9095.45/12 
9745.18/12 

37780.00 / 9 
42175.25/12 
48256.52/10 

0.97/13 
0.94/11 
0.95/10 

0.60/10 
0.57/10 
0.52/13 

AL1 
16.78/7 
7.49/6 
8.47/8 

6.10 / 9 
7.42 / 6 
7.37 / 7 

8224.25/15 
9125.75/13 
9713.25/13 

29727.00/11 
42834.27/12 
48527.17/13 

0.76/14 
0.71/13 
0.72/13 

0.60/12 
0.56/12 
0.49/11 

* within 1% of the best value 

Table 4.4 The average values of evaluation criteria for the large and small between-cluster spread factors (in 
columns LaS and SmS, respectively) as presented in Table 3.1. The standard deviations are divided by the 
averages, expressed after slash in per cent. The three values in a cell refer to the three within-cluster spread 
models: the constant on top, the k-proportional cluster sizes in the middle, and the k2-proportional cluster sizes in 
the bottom. The rows correspond to ten K-Means methods (eight listed in Table 3.2 plus AL2 (adjusted L2) and 
AL1 (adjusted L1) . Two winners of 10 in each category are highlighted using the bold font. Distances between 
centroids are rescaled as described above according to factors in Table 3.1. 
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Comparison of adjusted iK-Means with 9 other methods at cluster=9, cluster shape=elliptical 

 Estimated number of clusters Adjusted distance between centroids Adjusted Rand Index 

 LaS SmS LaS SmS LaS SmS 

CH 
5.25/7 

10.70/6 
8.30/5 

3.82 / 8 
4.00 / 0 
4.30/12 

9375.18/11 
9699.31/14 

10448.37/13* 

47957.19/12 
52479.84/14 
56453.01/13 

0.58/11 
0.64/11 
0.74/13 

0.35/12 
0.31/12 
0.43/13 

HT 
8.07/8 
7.55/5 
7.55/6 

7.87 / 9 
8.89/10 
8.70/10 

9317.26/12 
9656.33/15* 

10440.73/12* 

47967.52/13 
48760.32/18 
58707.33/15 

0.69/11 
0.76/13 
0.72/11 

0.38/11 
0.38/12 
0.50/12 

GS 
5.17/8 
5.75/8 
5.95/7 

4.01 / 8 
5.12 / 9 
5.25/11 

9297.47/12* 
9642.58/11 

10589.52/12 

47634.48/12* 
52489.52/11 
54963.74/12 

0.74/11 
0.81/12 
0.79/12 

0.39/11 
0.31/12 
0.44/11 

JS 
9.74/9 

10.00/0 
10.40/6 

4.93 / 9 
8.78/10 

10.80/10 

9275.81/12 
9743.94/13 

10491.41/14 

48921.75/13 
48295.04/15 
58712.23/16 

0.64/13 
0.74/12 
0.69/11 

0.40/11 
0.37/11 
0.50/15 

SW 
4.73/8 
6.60/6 
5.60/5 

5.49 / 8 
4.78/10 
5.40/11 

9301.75/12 
9672.26/14* 

10408.32/13* 

48276.96/12 
47954.72/16 
55420.80/14 

0.89/13 
0.90/11 
0.94/12 

0.40/11 
0.40/11 
0.57/13 

CD 
5.11/7 
5.00/0 
5.00/0 

5.17 / 8 
5.00 / 0 
5.00 / 0 

9395.17/11 
9741.09/14 

10476.44/13 

48672.45/12 
52536.16/15 
56759.32/17 

0.80/10 
0.74/12 
0.77/11 

0.38/11 
0.32/11 
0.45/15 

DD 
5.88/7 
6.70/4 
6.20/6 

5.23 / 9 
5.11/10 
5.30 / 9 

9401.57/12 
9740.43/14 

10486.01/15 

49019.46/12 
52925.60/16 
56261.32/19 

0.81/13 
0.75/12 
0.71/13 

0.39/13 
0.30/11 
0.45/12 

L2 
4.84/7 
5.90/6 
5.40/6 

15.48/21 
10.89/19 
9.40/18 

9297.15/12* 
9658.11/13* 
10504.31/13 

46218.12/18 
49543.68/20 
55334.98/20 

0.91/12* 
0.98/12 
0.95/11 

0.40/11 
0.33/15 
0.53/15 

L1 
9.23/7 
7.70/6 
9.10/4 

17.64/18 
7.67/18 

18.10/19 

9285.49/12* 
9739.12/15 

10507.21/14 

48567.52/19 
48122.88/21 
55290.32/22 

0.92/11 
0.73/11 
0.74/15 

0.34/12 
0.28/14 
0.37/15 

AL2 
7.24/8 
6.90/6 
6.40/6 

7.35 / 9 
7.24 / 8 
7.75 / 7 

9276.49/11 
9595.11/13 

10369.31/13 

47349.75/12 
46592.16 / 9 
56806.21/10 

0.93/13 
0.97/13 
0.95/11 

0.63/13 
0.53/12 
0.55/11 

AL1 
8.49/7 
8.70/6 
9.10/4 

7.29 / 9 
7.42 / 6 
7.37 / 7 

9308.46/11 
9635.12/15 

10386.21/14 

48086.75/13 
47203.20/11 
57908.32/13 

0.74/13 
0.88/11 
0.74/15 

0.65/11 
0.53/12 
0.41/11 

* within 1% of the best value 

Table 4.5 The average values of evaluation criteria for the large and small between-cluster spread factors (in 
columns LaS and SmS, respectively) as presented in Table 3.1. The standard deviations are divided by the 
averages, expressed after slash in per cent. The three values in a cell refer to the three within-cluster spread 
models: the constant on top, the k-proportional cluster sizes in the middle, and the k2-proportional cluster sizes in 
the bottom. The rows correspond to ten K-Means methods (eight listed in Table 3.2 plus AL2 (adjusted L2) and 
AL1 (adjusted L1). Two winners of 10 in each category are highlighted using the bold font. Distances between 
centroids are rescaled as described above according to factors in Table 3.1. 
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Comparison of adjusted iK-Means with 9 other methods at cluster=9, cluster shape=spherical 

 Estimated number of 
clusters 

Adjusted distance between centroids Adjusted Rand Index 

 LaS SmS LaS SmS LaS SmS 

CH 
11.55/8 
10.76/9 
9.98/9 

4.00 / 0 
5.17 / 8 
5.49 / 7 

10096.25/12* 
13859.21/12 
19247.63/12 

41927.00/12 
48657.52/13 

49657.52/11* 

0.82 / 9 
0.78/10 
0.82 / 9 

0.25/12 
0.28/11 
0.25/11 

HT 
8.27/6 
8.06/8 
9.07/9 

7.60/10 
9.77/11 
9.85/12 

10310.00/13 
13795.45/12 
19067.85/12 

38601.00/14 
49349.42/13 
50348.52/12 

0.89 / 9 
0.89/10 
0.84 / 9 

0.29/10 
0.23/11 
0.27/12 

GS 
6.25/7 
6.47/8 
7.34/8 

5.75 / 8 
4.35/12 
5.67/11 

10958.25/12 
13957.32/13 
19123.52/12 

38526.96/12 
48963.75/12 

49446.52/13* 

0.77/11 
0.79/12 
0.79/12 

0.28/13 
0.27/11 
0.30/13 

JS 
12.12/8 
11.95/7 
12.07/6 

4.50 / 0 
5.19 / 8 
5.75 / 8 

10084.50/13 
13967.52/12 
19635.75/12 

41927.00/13 
49052.75/14 
50217.53/12 

0.77/10 
0.79/10 
0.80 / 8 

0.25/12 
0.27/14 
0.25/12 

SW 
6.29/8 
5.85/7 
6.07/7 

4.54/10 
6.96/10 
5.08/11 

10456.50/12 
13769.75/12 
19452.49/11 

41866.00/14 
49135.86/14 
49834.47/13 

0.92/10 
0.89/10 
0.85 / 8 

0.26/13 
0.28/13 
0.25/11 

CD 
5.31/7 
5.18/8 
4.75/7 

5.11 / 9 
6.49/12 
4.98 / 8 

10749.00/12 
13994.63/12 
19379.85/13 

37393.00/12 
49235.36/12 

49576.74/13* 

0.78/12 
0.77/11 
0.79/11 

0.27/13 
0.30/11 
0.27/11 

DD 
5.67/3 
4.76/7 
6.85/8 

6.42 / 8 
5.79 / 8 
6.98 / 8 

10884.25/12 
14027.67/12 
19459.63/11 

40997.00/13 
49726.45/13 
50176.35/12 

0.75/12 
0.78/11 
0.71/12 

0.27/12 
0.26/11 
0.28 / 9 

L2 
8.67/6 
8.76/8 
8.92/7 

13.00/18 
15.79/19 
25.46/21 

10061.75/12 
13867.63/11 

19196.85/12* 

33591.00/23 
45367.16/18 
49174.37/17 

0.99 / 9 
0.98/10 
0.91/10 

0.48/12 
0.45/11 
0.42/11 

L1 
9.33/6 
8.74/7 
9.86/9 

25.00/18 
17.69/19 
21.64/21 

10004.50/12 
13982.52/12 
19237.45/13 

38112.00/25 
46397.53/21 
49324.52/21 

0.92 / 9 
0.99/10 
0.89/11 

0.38/12 
0.43/11 
0.47/12 

AL2 
8.50/5 
8.36/8 
9.24/8 

7.60 / 6 
9.25/10 
9.77/11 

10086.75/12* 
13846.38/11 
18963.52/11 

33849.00/12* 
47219.56/13 

49734.54/12* 

0.99/11 
0.99/10 
0.94/11 

0.50/11 
0.43/12 
0.40/11 

AL1 
8.70/6 
9.98/8 
9.37/8 

7.50 / 6 
8.95/12 
9.38/11 

10504.50/12 
13725.19/12 
19035.16/13 

30556.00/12 
47652.36/12 

49652.46/13* 

0.99/12 
0.99/11 
0.93/12 

0.44/10 
0.41/12 
0.38/10 

* within 1% of the best value 

Table 4.6 The average values of evaluation criteria for the large and small between-cluster spread factors (in 
columns LaS and SmS, respectively) as presented in Table 3.1. The standard deviations are divided by the 
averages, expressed after slash in per cent. The three values in a cell refer to the three within-cluster spread 
models: the constant on top, the k-proportional cluster sizes in the middle, and the k2-proportional cluster sizes in 
the bottom. The rows correspond to ten K-Means methods (eight listed in Table 3.2 plus AL2 (adjusted L2) and 
AL1 (adjusted L1) . Two winners of 10 in each category are highlighted using the bold font. Distances between 
centroids are rescaled as described above according to factors in Table 3.1. 
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Comparison of adjusted iK-Means with 9 other methods at cluster=9, cluster shape=elliptical 

 Estimated number of 
clusters 

Adjusted distance between centroids Adjusted Rand Index 

 LaS SmS LaS SmS LaS SmS 

CH 
9.43/12 
12.10/4 
11.15/8 

6.52/11 
5.30 / 5 
4.11 / 8 

11969.34/12 
11788.38/14* 
12146.83/13 

45793.48/12 
46924.64/19 
53779.46/15 

0.81/10 
0.81 / 8 
0.79 / 9 

0.27/11 
0.21/12 
0.22/12 

HT 
8.57/11* 
8.55 / 7 
9.35 / 7 

8.97/12 
9.40 / 9 
9.12/10 

11785.34/12* 
11833.21/14* 
12154.99/15 

43967.25/13 
47448.96/15 
55286.55/14 

0.85/10 
0.90 / 9 
0.84 / 9 

0.28/11 
0.37/11 
0.28/12 

GS 
5.00 / 0 
6.75 / 8 
5.95 / 8 

6.95/12 
5.95/10 
6.25 / 9 

11795.36/12* 
11758.62/12 
12185.62/13 

44369.27/12 
47857.52/12 
54258.63/13 

0.79/10 
0.77/12 
0.76/12 

0.28/13 
0.28/12 
0.29/12 

JS 
11.75/10 
12.75 / 9 
12.10 / 8 

5.29/12 
6.15 / 8 
4.45 / 5 

12084.37/11 
11785.21/13* 
12131.86/12 

45736.18/12 
46533.28/15 
53699.24/14 

0.77/11 
0.82 / 8 
0.80 / 8 

0.26/11 
0.24/13 
0.22/11 

SW 
7.65 / 9 
6.95 / 7 
7.15 / 8 

5.08/11 
4.95 / 4 
4.28/11 

11936.47/12 
11876.31/13* 
12203.58/12 

45739.27/11 
45540.96/16 
53583.12/16 

0.91/11 
0.92 / 8 
0.85 / 6 

0.28/12 
0.27/12 
0.22/13 

CD 
5.19 / 9 
5.30 / 6 
5.20 / 6 

4.00 / 0 
5.10/10 
5.31 / 9 

11997.52/12 
11943.98/13 
12265.98/12 

45691.34/11 
46361.76/18 
55040.86/15 

0.77/11 
0.78/12 
0.75/12 

0.25/14 
0.28/14 
0.25/13 

DD 
4.00 / 0 
4.90 / 3 
5.30 / 3 

6.39/12 
5.60 / 9 
5.83 / 8 

11857.20/12* 
11979.30/13 
12286.43/12 

44637.18/11 
47940.48/18 
53912.13/13 

0.77/11 
0.74/12 
0.71/12 

0.27/11 
0.24/12 
0.27/10 

L2 
8.95 / 9 
8.80 / 6 
7.95 / 7 

11.69/19 
10.80/16 
13.44/18 

11753.19/12 
11771.70/12 
12031.13/11 

43593.14/18 
42582.56/20 
54026.92/15 

0.99 / 9 
0.99/10 
0.90 / 9 

0.51/13 
0.42/12 
0.45/12 

L1 
8.47 / 9 
8.80 / 7 

10.00 / 6 

17.96/18 
16.10/17 
23.11/18 

11896.49/12 
11767.34/13 
12114.01/12 

43829.76/17 
42377.60/20 
53507.21/16 

0.91/10 
0.99/10 
0.84/10 

0.40/11 
0.41/12 
0.41/12 

AL2 
8.69/10 

8.70 / 7* 
8.70 / 9 

9.31/12 
9.90 / 7 
9.40 / 9 

11763.52/12 
11871.70/15* 
11031.13/12 

45324.76/13 
43536.32/11 
52098.21/12 

0.99/10 
0.99/11 
0.95/11 

0.50/13 
0.42/12 
0.38/12 

AL1 
9.64 / 9 

8.70 / 7* 
9.50 / 9 

9.81/11 
10.60 / 9 
9.60 / 9 

11967.54/13 
11867.34/15* 
10114.01/13 

44679.52/13 
44298.88/11 
53057.21/11 

0.99/13 
0.99/10 
0.92/13 

0.48/11 
0.38/11 
0.35 / 9 

* within 1% of the best value 

Table 4.7 The average values of evaluation criteria for the large and small between-cluster spread factors (in 
columns LaS and SmS, respectively) as presented in Table 3.1. The standard deviations are divided by the 
averages, expressed after slash in per cent. The three values in a cell refer to the three within-cluster spread 
models: the constant on top, the k-proportional cluster sizes in the middle, and the k2-proportional cluster sizes in 
the bottom. The rows correspond to ten K-Means methods (eight listed in Table 3.2 plus AL2 (adjusted L2) and 
AL1 (adjusted L1). Two winners of 10 in each category are highlighted using the bold font. Distances between 
centroids are rescaled as described above according to factors in Table 3.1. 
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Comparison of adjusted iK-Means with 9 other methods at cluster=21, cluster shape=spherical 

 Estimated number of clusters Adjusted distance between 
centroids 

Adjusted Rand Index 

 LaS SmS LaS SmS LaS SmS 

CH 
24.56 / 9 
23.49/11 
24.63 / 9 

15.00 / 0 
16.83 / 8 
17.09/10 

14598.62/10* 
16658.37/13 
19254.52/12 

24583.26/10 
25869.74/13 
28563.64/13 

0.79 / 8 
0.82 / 9 
0.79 / 9 

0.24/11 
0.28/12 
0.25/12 

HT 
20.45/8 

20.95 / 8 
22.85 / 7 

18.50 / 8  
20.39/10 
22.79/10 

14378.52/11* 
16764.96/13 
19246.34/13 

26164.25/13 
26946.37/13 
28837.96/13 

0.90 / 9 
0.88/11 
0.88/10 

0.21/11 
0.39/12 
0.30/12 

GS 
18.32 / 9 
18.75/10 
18.19/11 

15.32/10 
17.91/10 
18.04/10 

15489.65/10 
16431.05/13 
19113452/13 

24354.25/11 
25736.48/13 
28543.65/13 

0.81/11 
0.81/11 
0.78/11 

0.25/11 
0.26/12 
0.29/11 

JS 
25.58 / 7 
23.27 / 8 
24.08/11 

15.00 / 0 
17.63 / 9 
16.74 / 8 

14478.96/12* 
16776.14/12 
19248.52/13 

24583.26/10 
25960.81/13 
28619.57/11 

0.76/10 
0.83 / 8 
0.82/10 

0.24/11 
0.27/13 
0.25/11 

SW 
19.35 / 8 
17.87/10 
18.65 / 8 

17.50/10 
17.38 / 8 
18.29 / 9 

15895.52/11 
16737.57/13 
19376.19/11 

22267.25/12* 
25842.51/13 
28736.11/13 

0.93/10 
0.90/10 
0.83 / 8 

0.26/12 
0.28/11 
0.25/12 

CD 
17.52 / 9 
18.17 / 7 
17.51 / 9 

17.00 / 0 
17.82 / 9 
18.07/10 

15254.95/11 
16493.24/13 
19237.82/13 

27154.26/12 
25964.75/13 
28893.12/14 

0.79/12 
0.78/11 
0.77/10 

0.30/11 
0.29/12 
0.31/13 

DD 
17.84 / 9 
16.38 / 8 
17.74/10 

17.25 / 8 
17.64/10 
18.19/12 

15269.52/11 
16793.52/13 
19436.42/11 

26458.25/10 
26019.57/13 
28631.75/13 

0.79/12 
0.74/10 
0.70/11 

0.35/11 
0.29/12 
0.31/10 

L2 
20.85 / 7 
21.43 / 8 
20.74 / 9 

25.85 / 8 
29.42/12 
31.48/15 

14254.85/11 
16237.10/13 
18934.26/13 

26954.23/12 
25234.27/13 
28443.59/13 

0.99 / 9 
0.98/10* 
0.94/10 

0.36/10 
0.46/12 
0.41/12 

L1 
21.56/8 

21.96/10 
22.16/10 

37.45/18 
34.63/17 
39.67/19 

15254.85/11 
16634.91/13 
18896.17/13 

24586.23/12 
25336.52/19 
28651.63/16 

0.96 / 9* 
0.99/10 
0.90/11 

0.40/11 
0.43/11* 
0.39/11 

AL2 
20.32/8 
21.76/9 

21.87 / 9 

19.85 / 6 
20.79 / 7 
22.10 / 9 

14358.95/11 
16349.27/13 
19234.71/12 

22145.85/10 
25729.15/13 
28931.25/10 

0.99/11 
0.99/11 
0.98/11 

0.50/11 
0.45/11 

0.37/12* 

AL1 
21.25 / 9 
21.07 / 9 
22.13 / 8 

22.52 / 6 
22.61/10 
21.63 / 8 

15254.95/11 
16836.49/12 
19273.85/13 

21856.32/12 
26167.29/13 
28392.24/11 

0.99/12 
0.99/11 
0.95/12 

0.45/11 
0.39/11 

0.36/10* 

* within 1% of the best value 

Table 4.8 The average values of evaluation criteria for the large and small between-cluster spread factors (in 
columns LaS and SmS, respectively) as presented in Table 3.1. The standard deviations are divided by the averages, 
expressed after slash in per cent. The three values in a cell refer to the three within-cluster spread models: the 
constant on top, the k-proportional cluster sizes in the middle, and the k2-proportional cluster sizes in the bottom. 
The rows correspond to ten K-Means methods (eight listed in Table 3.2 plus AL2 (adjusted L2) and AL1 (adjusted 
L1). Two winners of ten in each category are highlighted using the bold font. Distances between centroids are 
rescaled as described above according to factors in Table 3.1. 
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4.4 Summary 

 

In this chapter, we compare the iK-Means related methods with seven other 

methods described in Chapter 2 and 3. In the first section of this chapter, we 

compare the two versions of iK-Means with seven methods by checking how well 

Comparison of adjusted iK-Means with 9 other methods at cluster=21, cluster shape=elliptical 

 Estimated number of clusters Adjusted distance between 
centroids 

Adjusted Rand Index 

 LaS SmS LaS SmS LaS SmS 

CH 
25.67/7 
24.96/8 
23.45/9 

18.59 / 9 
17.35 / 9 
16.45 / 9 

16948.49/12 
18789.25/11* 
20984.62/10 

21654.51/13 
37856.25/19 
55145.89/12 

0.81 / 9 
0.80 / 8 
0.82/10 

0.27/10 
0.23/12 
0.21/12 

HT 
20.97/8 
21.12/8 
21.52/7 

22.08 / 9  
21.45/10 
21.12/11 

15949.52/11 
18457.52/10* 
20761.95/10 

20369.85/13 
38152.52/15 
59254.56/11 

0.91 / 7 
0.89 / 8 
0.87/10 

0.20/11 
0.45/12 
0.35/12 

GS 
19.57/8 
17.56/9 
17.52/8 

17.64/12 
16.52/11 
18.32/10 

16495.49/13 
21278.32/11 
21859.32/11 

21549.18/13 
37524.21/11 
55328.45/11 

0.82/11 
0.77/10 
0.79/11 

0.26/12 
0.27/11 
0.26/10 

JS 
19.24/8 
24.65/8 
25.25/7 

17.67/13 
18.75 / 9 
15.85 / 7 

16627.49/13 
18546.32/11* 
21254.74/10 

21687.13/12 
37526.25/15 
56254.85/14 

0.78/11 
0.82 / 8 
0.81 / 9 

0.23/12 
0.25/13 
0.25/11 

SW 
18.00/0 
18.35/8 
18.52/8 

18.26/10 
16.85 / 7 
17.38 / 7 

16762.56/12 
21587.85/10 
22459.45/12 

21026.84/13 
37859.26/16 
56859.25/16 

0.91/11 
0.91 / 8 
0.85 / 8 

0.26/12 
0.26/12 
0.23/13 

CD 
17.97/8 
18.52/7 
16.45/9 

17.32/13 
17.25 / 8 
18.52 / 9 

16596.19/13 
21148.52/11 
22984.52/11 

21738.16/11 
37152.56/18 
55492.17/15 

0.81/11 
0.78/11 
0.77/10 

0.26/12 
0.27/14 
0.29/13 

DD 
18.46/7 
15.95/8 
17.52/9 

16.85/12 
16.52 / 9 
17.25 / 9 

16815.24/13 
20365.14/11 
21523.65/11 

21267.19/13 
38185.54/18 
56874.82/13 

0.81/11 
0.76/10 
0.76/12 

0.33/12 
0.25/12 
0.27/10 

L2 
21.96/7 
20.75/7 
18.96/7 

25.49/13 
27.65 / 9 
30.45 / 9 

15536.28/13 
18254.65/11 
22351.85/11 

20035.15/13 
31459.25/18 
53462.52/15 

0.99 / 9 
0.99/10 
0.90/10 

0.33/11 
0.40/12* 
0.42/12 

L1 
22.07/9 
20.65/9 

22.45/9* 

27.10/15 
36.25/16 
38.12/17 

15863.87/13 
18754.25/11 
22145.88/11 

20469.25/15* 
29025.52/17 
52854.21/16 

0.98 / 9* 
0.99/10 
0.86/10 

0.43/11 
0.42/12* 
0.40/12 

AL2 
21.72/7 

21.85/9* 
21.42/8 

21.95/13 
21.87 / 8 
21.85 / 9 

15532.45/12 
19658.52/11 
20542.65/11 

21354.56/13 
38452.95/10 
51954.65/12 

0.99/11 
0.99/11 
0.97/11 

0.54/11 
0.45/12 

0.39/12* 

AL1 
22.49/9 

20.12/8* 
21.85/7* 

21.72/12 
23.45 / 9 

21.45 / 8* 

15767.63/13 
18236.12/11 
22956.25/11 

20861.57/13 
37529.52/10 
52018.85/11 

0.99/12 
0.99/10 
0.95/13 

0.52/11 
0.38/11 

0.38 / 9* 

* within 1% of the best value 

Table 4.9 The average values of evaluation criteria for the large and small between-cluster spread factors (in 
columns LaS and SmS, respectively) as presented in Table 3.1. The standard deviations are divided by the averages, 
expressed after slash in per cent. The three values in a cell refer to the three within-cluster spread models: the 
constant on top, the k-proportional cluster sizes in the middle, and the k2-proportional cluster sizes in the bottom. 
The rows correspond to ten K-Means methods (eight listed in Table 3.2 plus AL2 (adjusted L2) and AL1 (adjusted 
L1). Two winners of ten in each category are highlighted using the bold font. Distances between centroids are 
rescaled as described above according to factors in Table 3.1. 
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the generated clusters can be reproduced by the found ones. The two versions of 

iK-Means perform well apart from the number of clusters recovery. HT index 

performs well on the number of clusters recovery. This leads to the adjusted 

version of iK-Means algorithm. In the second series of the experiments, we 

compare the adjusted version of iK-Means methods with nine other methods 

including the two versions of iK-Means methods. It shows that HT-adjusted 

iK-means methods perform the best among the eleven methods.
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Chapter 5  
 

Relationship between L1 & L 2 Versions 
 

5.1 The difference of the methods 

 

Another issue that remains unanswered is whether there is a difference between the 

two versions of the iK-Means method. Therefore, we conduct a series of similar 

experiments as above but only at the two versions of the iK-Means method, where 

the centroids and cluster recovery are evaluated between these two versions, rather 

than with the generated partition. In this set of experiments, the unweighted 

distance between centroids is applied because it shows that the weighted distance 

between centroids has no correlation with cluster recovery and number of cluster 

recovery in the experimental results shown in Table 4.1 to 4.3. The cluster shape is 

the conventional spherical shape of Gaussian clusters because the spherical 

Gaussian clusters are one of the simplest data structures. The between-cluster and 

within-cluster spread values are taken from Table 3.1. The two settings for the data 

sizes are: (i) N=1000, M=15, K*=7 and 9 – about 110 entities in a cluster on 

average, and (ii) N=3000, M=20, K*=21 – about 145 entities in a cluster on 

average.  

Tables 5.1 to 5.3 show the experimental results of the comparison. The 

averages reported in Tables 5.1 to 5.3 are rather stable: all the standard deviations 

lie within 15% of the average values, except when the between-cluster spread is 

small and this match with the findings of the previous experiments. The values of 
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the ARI index are rather small compared to those in Tables 4.1 to 4.9 in both large 

and small between-cluster spreads. The ARI index for L2 method in large 

between-cluster spreads in Table 4.1 is 0.97; whereas the ARI index in Table 5.1 

for L2 method in large between-cluster spreads is 0.62. On average, the ARI index 

for L2 and L1 methods in Table 4.1 to 4.9 is 0.99; whereas the ARI index in Table 

5.1 to 5.3 is 0.65. This indicates that the two versions of iK-Means may produce 

very different results. 

 

 

 

Comparison of L2 and L1 at clusters=9 and cluster shape=spherical 

 Estimated number of clusters Adjusted distance between 
centroids 

Adjusted Rand Index 

 LaS SmS LaS SmS LaS SmS 

L2 
8.27/10 
8.75/11 
8.45/12 

12.85/20 
11.75/25 
14.75/27 

1242.65/12 
24785.12/13 
32478.95/14 

236.52/24 
2513.25/20 

37589.52/17 

0.64 / 9 
0.63/10 
0.67 / 9 

0.32/12 
0.24/12 
0.34/12 

L1 
8.95/12 
8.12/14 
9.45/13 

27.45/21 
18.45/18 
20.45/18 

1469.02/12 
27458.96/15 
37859.12/13 

374.52/23 
2614.56/20 

47851.36/18 

0.65 / 9 
0.66/10 
0.67/10 

0.31/12 
0.29/12 
0.30/12 

* within 1% of the best value 

Table 5.2 The data entities in each cluster are sampled from Gaussian distribution. The average values of 
evaluation criteria for the large and small between-cluster spread factors (in columns LaS and SmS, 
respectively) as presented in Table 3.1. The standard deviations are after slash, per cent. The three values in a 
cell refer to the three within-cluster spread models: the constant on top, the k-proportional cluster sizes in the 
middle, and the k2-proportional cluster sizes in the bottom.  

Comparison of L2 and L1 at clusters=7 and cluster shape=spherical 

 Estimated number of clusters Adjusted distance between 
centroids 

Adjusted Rand Index 

 LaS SmS LaS SmS LaS SmS 

L2 
6.12 / 9 
7.85/10 
6.75/11 

15.42/25 
17.45/25 
14.85/21 

1524.75/11 
27451.85/14 
38254.52/13 

345.85/23 
2719.52/24 

48529.12/27 

0.62/11 
0.67/10 
0.61 / 9 

0.29/12 
0.31/13 
0.31/12 

L1 
6.45/11 
7.12/11 
8.25/11 

16.45/21 
24.52/24 
19.52/24 

1425.74/12 
28519.52/11 
39219.14/12 

349.52/25 
2465.85/20 

41296.12/25 

0.59 / 9 
0.61/11 
0.64/12 

0.31/12 
0.29/12 
0.30/13 

* within 1% of the best value 

Table 5.1 The data entities in each cluster are sampled from Gaussian distribution. The average values of 
evaluation criteria for the large and small between-cluster spread factors (in columns LaS and SmS, 
respectively) as presented in Table 3.1. The standard deviations are after slash, per cent. The three values in a 
cell refer to the three within-cluster spread models: the constant on top, the k-proportional cluster sizes in the 
middle, and the k2-proportional cluster sizes in the bottom.  
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5.2 Suitable data structures 

 

The experimental results in Chapter 4 show that in general L2 always performs 

better than L1. The cluster shapes in those experiments are Gaussian clusters in 

spherical and ellipsoidal and the data entities in each cluster are generated 

independently sampling from a Gaussian distribution. The experimental results in 

Chapter 4 are in line with the view that L2 version of K-Means is a method for 

fitting with Gaussian mixture model. Given n independent Gaussian distributed 

random numbers x1, x2, …, xn, in order to find the maximum likelihood estimation 

of the parameters mean µ of the continuous Gaussian joint probability density 

function ∏
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µ . This sum is exactly the square Euclidean 

distance, also known as the least square criterion in K-Means clustering.  

    The above calculation can simply apply to the continuous exponential 

distribution. Therefore, in order to find the maximum likelihood parameter 

Comparison of L2 and L1 at clusters=21 and cluster shape=spherical 

 Estimated number of clusters Adjusted distance between 
centroids 

Adjusted Rand Index 

 LaS SmS LaS SmS LaS SmS 

L2 
20.74/11 
21.85/12 
22.15/11 

25.15/20 
28.15/28 
27.56/12 

1745.52/12 
29483.12/11 
30158.52/10 

358.12/25 
3015.52/20 

39581.26/21 

0.65/10 
0.63/10 
0.60/11 

0.32/10 
0.31/10 
0.32/11 

L1 
20.95/11 
21.15/12 
21.65/11 

40.51/30 
38.05/12 
33.15/12 

1625.42/11 
26859.12/10 
36152.85/10 

294.52/20 
3125.65/24 

39415.12/23 

0.61/11 
0.62/10 
0.60/12 

0.32/11 
0.31/10 
0.30/10 

* within 1% of the best value 

Table 5.3 The data entities in each cluster are sampled from Gaussian distribution. The average values of 
evaluation criteria for the large and small between-cluster spread factors (in columns LaS and SmS, 
respectively) as presented in Table 3.1. The standard deviations are after slash, per cent. The three values in a 
cell refer to the three within-cluster spread models: the constant on top, the k-proportional cluster sizes in the 
middle, and the k2-proportional cluster sizes in the bottom.   
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estimation of its continuous joint probability density function given n independent 

exponentially distributed numbers x1, x2,…xn, 

∏
=

−
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i
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x
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21 )exp(

)(

1
),...,,( β

µ
β , the sum that needs to be minimized 

becomes∑
=

−

n

1
ix

i

µ . This is the Manhattan distance, also known as the least 

moduli criterion in K-Means clustering. 

    The experiment settings are similar with the experiments in Section 5.1 of the 

spherical cluster structure with 7, 9 and 21 generated clusters. The two settings for 

the data sizes are: (i) N=1000, M=15, K*=7 and 9 – about 110 entities in a cluster 

on average, and (ii) N=3000, M=20, K*=21 – about 145 entities in a cluster on 

average. The clustering results of L1 and L2 methods are compared with the 

generated clusters to see how well the generated clusters can be reproduced by the 

two versions of iK-Means. The constant within-cluster spread values are taken in 

this set of experiments. The simulation results are shown in Table 5.4, 5.5 and 5.6. 

The results clearly show that L1 outperforms L2, which proves the above 

implication. 

 

 

Comparison of L2, L1, AL 2, and AL1 with the generated clusters at clusters=7 and cluster shape=spherical 

 Estimated number of clusters Unweighted distance between centroids Adjusted Rand Index 

 LaS SmS LaS SmS LaS SmS 

L2 7.55/10 9.20/10 860857.45/10 133587.52/10 0.75/10 0.53/11 
L1 7.30 / 9 7.55/10 852579.52/10 128945.76/11 0.79 / 9 0.65/10 

AL2 6.25/11 8.25/11 861075.85/11 131269.85/11 0.77/11 0.54/11 
AL1 7.08/11 7.15/10 850798.85/10 129125.19/11 0.80/10 0.69/10 

Table 5.4 The data entities in each cluster are sampled from exponential distribution. The average values of 
evaluation criteria for the large and small between-cluster spread factors (in columns LaS and SmS, respectively) 
as presented in Table 3.1. The standard deviations are after slash, per cent.  
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5.3 Summary  
 

In this chapter, we compare L1 version with L2 version of iK-Means method to see 

(1) whether if there is any difference between them and (2) which data structure is 

more suitable for L2 version. We run a series of experiments by comparing the L1 

version partitions with L2 version partitions, not comparing those partitions with 

the generated ones. It clearly shows the two versions of iK-Means are different by 

comparing the cluster recovery. In order to answer the second question, we run a 

series of experiments where the data entries in each cluster are independently 

generated from exponential distributions. We compare the clustering of L1 and L2 

versions of iK-Means with the generated clusters and it shows that L1 performs the 

Comparison of L2, L1, AL 2, and AL1 with the generated clusters at clusters=21 and cluster shape=spherical 

 Estimated number of 
clusters 

Unweighted distance between 
centroids 

Adjusted Rand Index 

 LaS SmS LaS SmS LaS SmS 

L2 15.74/11 16.54/10 26503.32/10 3021.45/10 0.87/11 0.38/11 
L1 20.52/10 21.12/10 26401.96/12 2941..52/10 0.91/11 0.41/11 

AL2 20.34/10 20.45/11 26543.85/11 3104.52/10 0.89/11 0.40/10 
AL1 21.29/10 20.95/10 26429.54/11 3012.85/11 0.95/10 0.45/10 

Table 5.6 The data entities in each cluster are sampled from exponential distribution. The average values of 
evaluation criteria for the large and small between-cluster spread factors (in columns LaS and SmS, respectively) 
as presented in Table 3.1. The standard deviations are after slash, per cent.  

Comparison of L2, L1, AL 2, and AL1 with the generated clusters at clusters=9 and cluster shape=spherical 

 Estimated number of clusters Unweighted distance between 
centroids 

Adjusted Rand Index 

 LaS SmS LaS SmS LaS SmS 

L2 7.70/12 8.20/13 7640.98/11 1044.68/10 0.83 / 8 0.39 / 8 
L1 9.60 / 7 8.20/13 7618.69/10 1039.43 / 9 0.93 / 8 0.55 / 9 

AL2 8.12/10 8.15/10 7630.48/12 1045.36 / 8 0.82 / 9 0.41/12 
AL1 9.54 / 7 8.80/12 7615.85/10 1038.54 / 8 0.96 / 8 0.56/10 

Table 5.5 The data entities in each cluster are sampled from exponential distribution. The average values of 
evaluation criteria for the large and small between-cluster spread factors (in columns LaS and SmS, respectively) 
as presented in Table 3.1. The standard deviations are after slash, per cent.  
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best on all evaluation criteria. 



 86 

Chapter 6  

 

Application of L 1 and L2 K-Means to 

Gene Expression Data 
 

From the experimental results described above, iK-Means methods outperform 

other methods in terms of the centroids and cluster recovery but not on the number 

of clusters, which can be solved by the HT-adjusted version iK-Means methods. To 

find the patterns of gene expression data has become one of the most popular 

research fields and many authors have applied various clustering techniques on 

gene expression data, for example, Dudoit and Fridlyand (2002), Shen et al. (2005), 

etc. Obviously, iK-Means can be applied for clustering gene expression data too, 

but this is not exactly our goal. We are interested in utilizing the discrepancies 

between L1 and L2 methods for a biological meaningful problem. Such a problem 

emerged on research of Prof. B. Chain, Virology Department, UCL. Their team has 

produced two data sets based on the same genes and gene fragments, one related to 

gene expression in dendritic cells and the other in cancerous dendritic cells. We are 

indeed interested in finding which genes differ between DC and Mutz3. This is 

because many people would like to use dendritic cells derived from leaukaemias to 

stimulate an immune response which could potentially control the leukemia itself. 

However, it doesn’t work. One reason may be that for some reason dendritic cells 

which are derived from leukaemic cells are different (and not as good as) dendritic 

cells from normal monocytes (i.e. normal blood cells which are not cancerous). So 

we want to know, at a molecular level, what differences there are between a 
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“normal” dendritic cell (which we call DC) and a cancerous dendritic cell (which 

we call Mutz33). To answer this question computationally, one first needs to select 

a data pre-processing option, because the gene expression data is subject to many 

potential failings of the expression process. As proven in Section 5.1, the L1 and L2 

methods may produce different results --- we are going to exploit this by using 

those parts of the found clusters that are stable between the two and it can be used 

for analyzing the difference in gene activity across gene expression data in 

different cells. Since our gene expression data contains highly correlated signals, 

we develop a special normalization method for separation of the physical condition 

of the gene expression experiment from its biological part, the pivot-based 

normalization (PBR). The following section is organized as follows: we briefly 

described the existing literature of pre-processing in Section 6.1, pre-processing, 

clustering dendritic and tumor cells gene expression data using iK-Means methods 

and we compare the results with three different pre-processing methods in Section 

6.2. 

 

6.1 The issue of gene expression data pre-processing 
 

DNA microarrays are a technology to investigate the expression levels of 

thousands of genes simultaneously, which is a great improvement over the 

traditional genomic research that has focused on the study of single gene, single 

protein, or a single reaction at a time. The thousands of affixed DNA sequences 

known as probes can be placed on a single DNA microarray. The probes are 

normally oligonucleotides or complementary DNA (cDNA) in spotted microarrays 

and the probes are short oligonucleotides sequence in oligonucleotide microarrays 
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for matching part of the sequences to known or predicted genome portions. A 

well-known DNA microarray manufacturer Affymetrix produces the sequence for 

oligonucleotide array and now the term “Affymetrix” is not only a company name 

but also the data obtained from an oligonucleotide array. Each spotted microarray 

has been hybridized with cDNA from two samples (e.g. disease tissue vs. healthy 

tissue or experimental data vs. synthetic data in our analysis) labeled with different 

fluorescent dyes. A two-colored dye is used for each sample so that we can tell the 

two samples apart on the array. Fluorescent dyes include Cy5 and Cy3, referred to 

by convention as red and green, accordingly. The data is represented as a matrix 

with rows (genes) and columns (different conditions or time). The data which 

measures the expression level of genes in a certain condition at different instances 

of time is called temporal data (versus non-temporal data). 

    In order to reduce the ill-effects of various data corruption circumstances, data 

pre-processing is necessary for the effective analysis of gene expression data. 

However, there may be some inconsistencies after pre-processing, for example, 

different scales among different conditions of gene expression data, gene 

expression data obtained from different arrays, replicated gene expression data or 

etc. Many techniques and approaches have been presented to tackle the above 

inconsistencies. They have been reviewed and, partly, compared in a number of 

articles (Yang et al. 2002, Bolstad et al. 2003, Park et al. 2003, Pandey et al. 2007, 

etc). However, as we limit ourselves with more specific data types akin to those 

developed in the Virology Department of University College London (UCL), we 

found convenient to categorize the pre-processing procedures being applied in the 

gene expression data analysis as follows: 
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A. Standardization, that is, to minimize various variations between rows 

and/or columns of the data 

B. Functional transformation, that is, to perform a functional transformation, 

for example, logarithmic transformation (Yang et al. 2002), sigmoid-based 

normalization (Pandey et al. 2007), etc ; and 

C. Filtering outliers, that is, to filter the differently expressed genes (Saviozzi 

and Calogero 2003, Jiang et al. 2004); 

 

Each of these admits different approaches that can be systematized, based on 

the body of published literature, as follows:  

A. Standardization:  

A.1 Column normalization: 

  A.1.1 by itself: dividing by scaling values, for example, Z score based 

normalization (Jiang et al. 2004, Tamayo et al. 1999, Cheadle et al. 2003, 

Pandey et al. 2007), optimization-based genetic algorithm (Shmulevich 

and Zhang 2002), etc; 

  A.1.2 by green from the same column: LOWESS/LOESS 

normalization for cDNA arrays (Yang et al. 2001, Quackenbush 2002), or 

etc; 

  A.1.3 by replicates comparison: Combining replicates (Draghici 2003), 

parametric normalization (Liggett 2006), pivot-based with removals 

normalization method (Chiang and Mirkin 2008), etc; 

  A.1.4 by samples comparison: centralization (Zien 2001), etc 

A.2 Row normalization: quantile normalization (Bolstad et al. 2003), etc;  
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One of the most commonly used column normalization methods is called Z 

score (Tamayo et al. 1999, Cheadle et al. 2003, Pandey et al. 2007), that is, to shift 

the red or green signal values in a vector by the mean of their values and scale 

them by the standard deviation. Z score is popular for the transformation of 

temporal gene expression data (Tamayo et al. 1999). Bergmann et al. (2003) 

proposed an algorithm for analyzing the gene expression data, that is, to iteratively 

refine the genes and conditions until they match pre-defined transcription modules 

and the normalization method they used is mathematically equivalent to Z score. 

Shmulevich and Zhang (2002) proposed a normalization procedure: apply the 

optimization-based genetic algorithm then binarize the data. The 

optimization-based genetic algorithm chooses scaling parameters so that the 

sample mean and standard deviation are minimized and ensure that the maximum 

gene expression levels after normalized is larger than both the maximum 

un-normalized gene expression levels and one. Those genes with high expression 

levels are binarized to 1, otherwise 0, where the threshold is the first difference 

between sorted gene expression levels exceeding a pre-specified value. 

However for cDNA arrays, Z score adjusts the overall intensities of the gene 

expression data but does not address the dye non-linearity (Draghici 2003). 

Therefore, there are several normalization techniques which are specifically for the 

cDNA or Affymetrix data, for example, use LOWESS/LOESS normalization 

(Yang et al. 2001, Quackenbush 2002) to eliminate the intensity dependent bias for 

cDNA data, the detection calls (Draghici 2003) implemented in several Affymetrix 

analysis software, and etc. LOWESS normalization stands for locally weighted 
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scatter plot smoothing and LOESS stands for locally weighted polynomial 

regression. Both of them use the linear polynomial function to normalize the red 

signals by the green signals, but LOESS uses a quadratic polynomial to solve the 

over-fitting and the excessive twisting and turning problems. Berger et al. (2004) 

proposed a LOWESS-based method, which aims for choosing the best fraction 

used in the local regression so that the mean-squared difference function between 

LOWESS estimates and normalization reference level is minimized. This fraction 

is between 0 and 1, and in general, the smaller the value, the more that the 

LOWESS curves follow data points. Piece-wise normalization (Draghici 2001) is 

another LOWESS-similar normalization method, which improves the 

computational efficiency of LOWESS. Detection calls characterize genes into three 

states using a non-parametric hypothesis testing approach as either present (P), 

absent (A), or marginal (M), which means that the expression level is higher, lower, 

or similar to the minimum detection level, respectively. Other various 

normalization methods specifically either for cDNA data or Affymetrix data are 

presented in several publications, such as Li and Wong 2001, Li and Wong 2001a, 

Wang et al. 2002, Finkelstein et al. 2002, etc.  

Because of the large amount of noise with the microarray data, scientists tend 

to repeat the microarray experiments. It is convenient to combine all the replicates 

to a unique value in some circumstances; however, the loss of information may 

happen by using the above normalization and transformation methods. Two 

approaches described in the book by Draghici (2003) may be attempted to solve the 

loss of information problem. The first approach is to store the parameters of the 

distribution of the original values and the second approach is to filter out the 
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outliers. Both of these approaches need to calculate the mean, the standard 

deviation, and other parameters of the distribution of the original data. Data points 

outside some given interval are considered as outliers and will be eliminated. The 

parameters of the remaining data will be re-calculated and the process is iterated 

until no outliers can be found.  

In some cases, the variability in the red signals may be partly attributed to the 

physical conditions of the experiments, and this can be captured in the green 

signals. If this hypothesis is true, then we could improve the reproducibility of red 

signals, by taking into account the physical conditions as caught up on the green 

signals. Liggett (2006) proposed a parametric normalization approach by 

normalizing the red by the physical condition, but Liggett used the results of factor 

analysis of greens to normalize the reds, which requires user-specified parameters. 

If the replicates show highly linearly correlated, the parametric normalization 

approach may not be suitable. Therefore we proposed a pivot-based normalization 

method, which can capture the differences among replicates by using linear 

regression analysis1. We consider one replicate green signal, gp, as a pivot and 

express others as linear functions of gp. Specifically, if a replicate green signal g 

can be expressed as g=agp+b, where a and b are constants, then it is reasonable to 

assume that these constants take into account the difference in physical conditions 

that produced signals gp and g. If the conditions would have been the same, the 
                                                 
1 A linear regression line has an equation of the form Y=aX+b, where X is the explanatory 

variable and Y is the dependent variable, a is the slope and b is the intercept. In order to 

obtain a and b, the mean and standard deviation of X and Y are computed, denoted as 

X , Y ,σX, σY and the equations for calculating a and b are as follows: a=θ*σY /σX 

and b=Y -a* X , where θ is the correlation coefficient between X and Y. 



 93 

signals should be the same, gp=g. Therefore, to take into account the difference in 

the physical conditions over replicas gp and g, one should normalize g into 

g’=(g-b)/a. The same normalization should be applied to the red signal in g-replica 

to make it compatible, over physical conditions, over the red in gp-replica. This 

pivot-based linear regression normalization algorithm with removals is 

implemented as shown in the box below, along with some data cleaning steps, so 

that the regressions found in the green can be applied to the red. 

 

 

 

The Quantile normalization method proposed by Bolstad et al. (2003) is a 

popular normalization method commonly used for Affymetrix data, which is 

available in the MATLAB bioinformatics toolbox2. It takes the means across rows 

(gene) of a column-sorted gene expression data matrix and assigns the mean to 

each element in the row to get a quantile equalized matrix. Then the quantile 

equalized matrix is rearranged to have the same order of the original gene 

                                                 
2 http://www.mathworks.com/products/bioinfo 

Pivot-based linear regression normalization algorithm 

A. Check the correlations between the green replicas and select that one that 

makes the highest summary correlation with the other as the pivot, gp, and 

make regressions of each of the others, go, over the pivot  

B. The red signals are pivot-adjusted according to the regressions: the red 

corresponding to the green pivot remains as is, and subtracting the intercept 

and dividing by the slope adjust two other red replicas. 
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expression data matrix. This procedure makes the distribution of the expression 

level of each array identical and the drawback might be some loss of information 

during the normalization process. A number of papers have been presented for row 

(gene) normalization, such as Workman et al. (2002), Lepre et al. (2004), etc. 

Zein et al. (2001) proposed a sample-based normalization method, 

centralization, which is applied after the replicates normalization methods. They 

use a maximum likelihood approach to find a scaling factor after computing the 

probability distributions for the pairwise scaling for every pair of the sample 

measurement. Based on their assumption that most genes are not or only 

moderately regulated or the numbers of genes which up-regulated or 

down-regulated are approximately the same, centralization reproduces the results 

of other normalization methods.  

 

B. Functional transformation 

 

The logarithmic transformation has been widely used in microarray data 

pre-processing (Yang et al. 2002) because it is convenient for later data analysis. 

Ease of interpretation is another well-known reason for the logarithmic 

transformation and the log transformed data will be more meaningful to biologists. 

Sigmoid-based normalization methods (Pandey et al. 2007) are based on the 

sigmoid function and double sigmoid function which take into account not only the 

outliers but also the distribution of the gene expression data. Pandey et al. (2007) 

modify the sigmoid function so that it considers the gene expression value 

distribution and smooths the center of the distribution. The main parameters of the 
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modified sigmoid function are the mean and variance of the normal distribution. 

These functions have been applied to other studies but firstly applied to 

bioinformatics domain for gene expression analysis and they perform very well for 

non-temporal data (Pandey et al. 2007). 

 

C. Filtering outliers  

 

A number of papers have been published to establish the importance of 

filtering the genes that have significantly different expression patterns between two 

data sets; for example, Nimgaonkar et al. (2003) report 27% of negative correlation 

between the two data sets they use. Therefore, several filtering methods have been 

published. Saviozzi and Calogero (2003) firstly remove the genes that have a 

similar expression level with the background and then further remove the genes 

that show low hybridization quality, generated from the dCHIP software (Li and 

Wong 2001a). Jiang et al. (2004) apply the student’s t test to filter the outliers and 

the p-value is set to be 0.00001.  

Several evaluations of normalization methods have been published, for 

example, Park et al. (2003) compared seven normalization methods for replicates 

and found that the normalization methods perform similarly when the original data 

has a high linear correlation, the intensity-dependent normalization method 

performs better among others and the performance of intensity-dependent linear 

and non-linear methods are quite similar. Steinhoff and Vingron (2006) 

summarized several normalization approaches and found that the choice of the 

normalization methods depends on the gene expression. Ma and Qin (2006) 
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evaluated different normalization strategies on heritability estimation, which are 

implemented in software such as MAS 5.0 (Mircroarray Analysis Suite), dChip, or 

RMA (Robust Multi-array Average), for oligonucleotide data and found that the 

RMA method performs well in cross-chip normalization with the highest 

heritability among the three methods. RMA creates an expression matrix from 

Affymetrix data. The raw intensity values are standardized, log2 transformed and 

then quantile normalized. Next a linear model is fit to the normalized data to obtain 

an expression measure for each gene set. Pandey et al. (2007) recently presented an 

evaluation over several normalization methods, such as Z score, quantile and 

sigmoid normalization, and their results show that different data sets and the type 

of functional information being predicted can significantly affect the performance 

of different normalization methods. 

 

6.2 L1/L 2 consistent genes analysis 
 

The experiments in Chapter 5 have shown that L1 and L2 methods are different; 

therefore, it would be reliable to utilize the difference of these two methods in a 

meaningful problem: given these gene expression data, find those genes that re 

weak and those that are strong. The biologists tend to replicate the experiment 

several times. The problem is extracting consistent patterns from the data. To do so, 

we propose the following method:  

1. Normalization on gene expression data 

2. Clustering on one set of the normalized gene expression data 

3. Selecting the weak and active genes according to the centroids of 

the genes consistent between L2 and L1 methods 
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4. Clustering on another set of the normalized gene expression data 

5. Selecting the weak and active genes according to the centroid sets 

of genes consistent over L1 and L2 methods 

We apply this method to two gene sets: one is DC (dendritic cells) and 

another one is Mutz3 (cancerous dendritic cells). Each of the DC and Mutz3 gene 

sets is represented by data in three different versions. Experimental data (red vs. 

green signal) is contained in each version and there are 37358 genes in each 

version. 

The hypothesis of these gene sets is that the variability between the versions 

may be partly attributed to the physical conditions of the experiments, and this can 

be captured by analyzing differences in the green signal, which is supposed to be 

independent of the substantive variability. For these data sets, the high level of 

correlation (on the average level of 0.95) between green signals is observed both in 

Mutz3 and DC, which ensures that there is a substantial linear component in the 

relations between the signals. Because of this feature, we would like to apply the 

pivot-based linear regression normalization method described in Section 6.1. We 

consider one of the three green signals, gp, as a pivot and express two others as 

linear functions of gp. Specifically, if green signal g in one data set can be 

expressed as g=agp+b, where a and b are constants, then it is reasonable to assume 

that these constants take into account the difference in physical conditions that 

produced the signals gp and g. If the conditions would have been the same, the 

signals should be the same, gp=g. Therefore, to take into account the difference in 

the physical conditions over replicas gp and g, and make g comparable to gp, one 

should normalize g into g’=(g-b)/a. The same normalization should be applied to 
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the red signal in g-version to make it comparable, over physical conditions, over 

the red in gp-version. This pivot-based linear regression normalization algorithm is 

implemented as shown in the box below, along with some noise cleaning steps, 

named as pivot-based with removals (PBR) normalization method, so that the 

regressions found in the green signal can be applied to the red signal.  

After normalization, we utilize the discrepancies of L1 and L2 methods to find 

out the cluster consistent genes, that is, the cluster contents in the clusters that are 

present among the results of both methods. The normalization and clustering 

results are presented in Section 6.2.1. We then compare the clustering results of 

pivot-based linear regression normalization method with the clustering results of 

three pre-processing methods. This is carried out in Section 6.2.2. 

 

 

 

Pivot-based regression normalization algorithm with removals 

A. Remove all the genes where the expression level reaches 100000 or more at 

least on one replicate 

B. Check the correlations between the green replicas and select that one that 

makes the highest summary correlation with the other as the pivot, gp, and 

make regressions of each of the others, go, over the pivot, after cleaning the 

2.5% of the high-value outliers in the distribution of max(gp/go, go/gp)  

C. The red signals are pivot-adjusted according to the regressions: the red 

corresponding to the green pivot remains as is, and subtracting the intercept 

and dividing by the slope adjust two other red replicas. 
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6.2.1 Pivot-based with removal normalization results 

 

For DC, we found that version 2 of green, g2, should be the pivot, after the high 

expression level is removed, and the corresponding regressions after a further 2.5% 

removal are: g3=1.29*g2-2389.1 and g1=1.55*g2-4228.8. For Mutz3, it is version 3 

of green, g3, that should be the pivot, after removal of genes with the high 

expression level, and the corresponding regressions, after a further 2.5% removal, 

are: g2=1.28*g3-1838 and g1=1.21*g3-1617.8. 

After the double removals described above, there remain 35452 genes in DC 

and 35510 genes in Mutz3.  

Our clustering methods iK-Means Least Square (L2) and Least Moduli (L1) are 

applied to cluster these data sets (over three features corresponding to the 

pivot-regression normalized red signals). For DC, L2 produces only two clusters, of 

35097 and 355 genes, respectively, and L1 produces three clusters, containing 

34865, 577 and 10 genes, respectively. For Mutz3, a similar story: three clusters for 

L2 algorithm (30862, 3638, and 1010 genes) and two clusters for L1 algorithm 

(33069 and 2441 genes). This means that the distributions of the signals are so 

much skewed to the left that even intelligent K-Means cannot properly separate the 

genes according to this data.  

Therefore, we take logarithms of all the original signals, and carry on the same 

procedure as described above, with thus transformed data. The only difference is in 

the cleaning of noise: because of using the logarithm transformation, one needs to 

subtract rather than divide to perform the 2.5% removal operation. The correlations 
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between green signals are very high (but not higher, as it should be expected) again. 

For DC, we take version 3 of green, g3, as the pivot after removing the higher 

expression level genes, and the corresponding regressions after further 2.5% 

removals are: g2=0.93*g3+0.73 and g1=0.93*g39+1.12 (Note, these are for 

logarithms!). For Mutz3, we take version 3 of green, g3, as the pivot after removing 

the higher expression level genes, and the corresponding regressions after further 

2.5% removals are: g1=0.98*g3+0.31 and g2=1.02*g3+0.11. There are 35539 genes 

of DC and 35628 genes of Mutz3 left after the cleaning. 

In spite of the logarithm transformation, Mutz3 remains tight against our 

clustering methods and gives us again only two clusters. Thus we concentrate on 

clustering DC, which makes more clusters. Since our L1 and L2 methods tend to 

produce rather different results, we consider those clusters valid that are present 

among the results of both methods – we refer to their contents as cluster consistent 

genes. 

There are 35539 genes of DC and 35628 genes of Mutz3 left after 

double-removal of the log-transformed gene sets and Table 6.1 and 6.2 present 

centroids (averages) of clusters of DC found with L2 and L1 methods, respectfully. 

According to Table 6.1 and the averages, L2 clusters 2 and 5 contain active genes, 

cluster 1 weak and cluster 3 medium expression level, which are of interests to us. 

Similarly, the L1 centroids in Table 6.2 give us clusters 2 and 6 of active genes, 

cluster 1 weak, and 3 medium expression level. 
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Cluster centroids of log-transformed DC data obtained using the L2 method 

Cluster number R1 R2 R3 

1 5.18 4.68 4.86 

2 10.03 11.06 10.79 

3 7.02 7.67 7.44 

4 8.14 9.08 8.65 

5 9.19 10.34 9.72 

6 8.76 9.76 9.00 

7 9.24 8.85 10.06 

8 8.06 9.85 9.59 

9 8.46 9.12 9.33 

10 8.90 9.87 9.78 

11 8.56 9.60 9.90 

12 9.18 9.42 9.32 

13 8.50 9.88 9.39 

14 8.72 9.57 9.36 

15 8.76 9.37 9.64 

16 8.43 9.48 9.50 

17 8.71 9.57 9.62 

Table 6.1 The values are the averages of clusters of DC found with L2 method. Three columns represent three 
versions.  
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Cluster centroids of log-transformed DC data obtained using the L1 method 

Cluster number R1 R2 R3 

1 5.03 4.69 4.84 

2 9.99 11.15 10.73 

3 6.70 7.63 7.41 

4 8.14 9.05 8.66 

5 8.78 9.16 9.31 

6 9.20 10.30 9.74 

7 8.17 9.70 9.27 

8 9.50 9.66 9.18 

9 8.78 9.75 9.02 

10 9.10 9.65 9.81 

11 8.61 10.07 9.78 

12 8.34 9.54 9.72 

13 8.57 9.40 9.27 

14 8.74 9.87 9.42 

15 8.65 9.37 9.73 

16 8.87 9.68 9.67 

17 8.48 9.72 9.58 

18 8.61 9.62 9.83 

19 8.26 9.39 9.54 

20 8.74 9.61 9.39 

21 8.64 9.69 9.52 

22 8.73 9.54 9.59 

Table 6.2 The values are the averages of clusters of DC found with L1 method. Three columns represent three 
versions 

 

To compare these genes we derive the confusion matrix of the overlaps between 

them (Table 6.3). This table shows that the active, weak and medium genes over L1 

and L2 are almost identical. In the follow steps of the experiment, we will use the 

cluster intersection of cluster number 1 of L2 and cluster number 1 of L1, cluster 

number 2 of L2 and cluster number 2 of L1, cluster number 5 of L2 and cluster 

number 6 of L1 and cluster number 3 of L2 and cluster number 3 of L1 for the 



 103 

further analysis, that is, the cluster-consistent genes of DC data. 

 

Confusion matrix between the results of L2 and L1 methods of DC data 

 L1 

  1 3 2 6 others Total 

1 20345 180 0 0 0 20525 

3 39 9326 0 0 120 9485 

2 0 0 1257 24 0 1281 

5 0 0 12 750 109 871 

Others 0 18 5 14 3340 3377 

L2 

Total 20384 9524 1274 788 3569 35539 

Table 6.3 The number of cluster-consistent genes of DC data. The number of genes of cluster number 1 of L2 
method and cluster number 1 of L1 method are 20345 (weak), cluster number 2 of L2 method and cluster number 2 
of L1 method are 1257 (very active), cluster number 5 of L2 method and cluster number 6 of L1 method are 750 
(active) and cluster number 3 of L2 method and cluster number 3 of L1 method are 9326 (medium). 

 

Now we are going to take a look at the distributions of Mutz3 expression levels 

within each of these cluster-consistent genes. In order to find out which gene 

differs between DC and Mutz3, we take the cluster-consistent genes in DC, which 

are 20345 (weak), 1257 (very active) and 750 (active), and 9326 (medium) genes 

and do clustering on the corresponding 35628 pivot-based linear regression 

normalized logarithmic Mutz3 data. The numbers of genes for clustering are 18962, 

1246, 748, and 9243 genes, accordingly (since some of the genes have been 

cleaned out before).  

The following tables, Table 6.4 to 6.9, show the clustering centroids (averages) 

and partitions (number of genes) of L2 and L1 method in each cluster of the 18962, 

1246, 748 corresponding Mutz3. Since the extreme cases are of interests to us, 

clustering results of 9243 medium genes are not listed here. From the tables, these 

two methods show very similar results, so we take the cluster intersections, that is, 

the cluster-consistent genes.  
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The 18962 genes are the cluster-consistent genes which shown weak in DC 

clusters, and the centroids (averages) in clusters 2 and 5 shown in Table 6.4 and 6.5 

are very high, which means the genes in cluster 2 and 5 are very weak in DC but 

very active in Mutz3. The sizes of these genes are 26 and 10 genes respectively; 

these 36 genes are listed in Appendix A as genes that are weak in DC and active in 

Mutz3. A similar analysis is done with the very active 1246 cluster-consistent 

active genes in DC, where the clustering results are shown in Table 6.6 and 6.7, and 

found out that the centroids of clusters 2 and 5 are quite low and the number of 

cluster-consistent genes in clusters 2 and 5 is 8 and 6 genes respectively. These 

genes are listed in Appendix A, as genes that are very active in DC and weak in 

Mutz3. The same procedure is done with the active 748 cluster consistent genes in 

DC, where the clustering results are shown in Table 6.8 and 6.9, and found the 

centroids in cluster 1 of both clustering methods are very low. This means the 

cluster-consistent genes of cluster 1 are active in DC and weak in Mutz3, which are 

listed in Appendix A as active in DC and weak in Mutz3 and the number of the 

genes is 6.  

 

 

Cluster centroids obtained using the L2 method of the 18962 corresponding Mutz3 

Cluster Number R1 R2 R3 Number of genes 

1 4.57 4.62 4.63 15624 

2 10.33 9.64 9.70 27 

3 6.67 6.44 6.43 3191 

4 8.38 8.23 7.55 76 

5 9.17 8.85 8.92 17 

6 8.17 7.61 8.24 27 

Table 6.4 R1, R2, and R3 represent three versions of the data. The centroids are log transformed. 
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Cluster centroids obtained using the L1 method of the 18962 corresponding Mutz3 

Cluster Number R1 R2 R3 Number of genes 

1 4.56 4.61 4.52 15314 

2 10.17 9.55 9.55 26 

3 6.52 6.28 6.35 3462 

4 8.14 7.93 7.58 120 

5 9.23 9.11 8.61 15 

6 8.93 8.56 8.73 10 

7 8.40 7.88 8.44 15 

Table 6.5 R1, R2, and R3 represent three versions of the data. The centroids are log transformed. 

 

Cluster centroids obtained using the L2 method of the 1246 corresponding Mutz3 

Cluster Number R1 R2 R3 Number of genes 

1 10.72 10.23 10.73 1107 

2 5.89 5.64 6.31 8 

3 9.13 8.58 9.58 108 

4 8.96 8.45 6.36 8 

5 7.17 6.79 7.20 7 

6 8.50 8.25 7.73 8 

Table 6.6 R1, R2, and R3 represent three versions of the data. The centroids are log transformed. 

 

Cluster centroids obtained using the L1 method of the 1246 corresponding Mutz3 

Cluster Number R1 R2 R3 Number of genes 

1 10.76 10.28 10.75 1084 

2 6.42 6.04 6.69 9 

3 9.35 8.83 9.71 130 

4 8.93 8.46 6.27 8 

5 7.19 6.88 7.13 8 

6 8.21 8.02 7.57 7 

Table 6.7 R1, R2, and R3 represent three versions of the data. The centroids are log transformed. 
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Cluster centroids obtained using the L2 method of the 748 corresponding Mutz3 

Cluster Number R1 R2 R3 Number of genes 

1 5.00 5.13 5.29 9 

2 9.90 9.48 9.88 602 

3 8.77 8.34 9.07 110 

4 7.41 7.20 7.32 17 

5 8.14 8.04 8.11 10 

Table 6.8 R1, R2, and R3 represent three versions of the data. The centroids are log transformed. 

 

Cluster centroids obtained using the L1 method of the 748 corresponding Mutz3 

Cluster Number R1 R2 R3 Number of genes 

1 4.27 4.50 4.77 6 

2 9.88 9.46 9.89 557 

3 6.76 6.60 6.50 9 

4 7.81 7.44 8.32 15 

5 8.91 8.58 9.20 148 

6 7.60 7.57 7.37 6 

7 8.31 8.15 8.14 7 

Table 6.9 R1, R2, and R3 represent three versions of the data. The centroids are log transformed. 

 

 
6.2.2 Comparing clustering results with LOESS 
normalization method 
 

Since there are many methods for normalizing red signals over green signals, we 

would like to compare the clustering results at different normalization methods. 

Therefore, we applied LOESS normalization method to the same DC and Mutz3: 

pivot-based normalization without removals (PB), one of the most popular 

normalization methods: intensity dependent normalization (LOESS) method (Yang 

et al. 2001). The data for normalization is log transformed because the cluster 

analysis shown in the previous section suggests that the distribution of the signals 
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is left skewed and in order to make these results comparable, there will be no 

removals on the pivot-based normalization whereas the rest of the algorithm is the 

same as described in Section 6.2.  

The intensity dependent normalization (Yang et al. 2001) is done by the 

following equation: 

 log R/G � log R/G –c(A) (11) 

where R and G are considered as the red and green signal respectively and c(A) is 

the LOESS fit to the M=log(R/G) vs. A=log( GR* ) plot. This normalization is 

one of the most popular methods for gene expression data normalization; the 

software is freely available in the Matarray software (Venet 2003). Many 

publications and books have suggested that the MA plot should be used for solving 

the dye bias which depends on the spot intensity. Figure 5.1 shows the MA plots 

with LOESS fit of the three replicates of DC datasets from the left to the right 

respectively, and it clearly shows that a linear normalization is required because 

these curves are around a horizontal line near 0, which matches the fact found in 

the previous section that the data are highly linearly correlated. The MA plots of 

the Mutz3 data are quite similar to the MA plots of DC data. In this case, for each 

entity in the dataset we apply the linear LOESS curve to a subset of the data. This 

parameter usually lies between 0.2 and 0.5 for most LOESS applications and is set 

to be 0.5 as default in the Matarray software.  
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Figure 5.1 MA plots with loess fit on the three replicates of DC datasets. The red line is the loess curve and the 
plots show the first, second and third replicate of the DC datasets from left to right, respectively. 

 

In order to find the genes that are different between Mutz3 and DC, we apply 

the same procedure as described in the previous section:  

1. Normalization of both log-transformed DC and Mutz3 

2. Clustering on the normalized DC data 

3. Selecting weak and active DC genes according to the centroids of 

sets of genes consistent between L2 and L1 methods 

4. Clustering on the normalized Mutz3 data of the corresponding sets 

of weak and active DC genes  

5. Selecting the weak and active Mutz3 genes according to the 

centroids of sets of genes consistent over L2 and L1 methods 

The following table presents the numbers of weak and very active DC genes 

that have been selected based on the overlaps according to the centroids of both L2 



 109 

and L1 methods because of the identical results found by using of both methods. 

The other genes are not listed or shown because we are only interested in the 

extreme cases.  

 

The number of weak and active DC genes found at three normalization methods 

 Weak Very active 

Pivot-based without removals (PB) 21648 1185 

Pivot-based with removals (PBR) 20345 1257 

Intensity dependent normalization (LOESS) 22161 1284 

Table 6.10 The weak and active is based on the cluster centroids of L2 and L1 method. 

 

We then do clustering on the corresponding normalized Mutz3 data sets 

according to each of the normalization methods and Table 6.11 shows the numbers 

of very active and weak Mutz3 genes based on the sets of consistent genes 

according to the centroids of both clustering methods. These genes are of interest to 

us because these are the genes that differ between DC and Mutz3, that is, take PB 

method as an example, there are 28 genes that are weak in DC but very active in 

Mutz3 and 5 genes that are very active in DC but weak in Mutz3, according to PB 

normalized data.  

 

The number of very active and weak Mutz3 genes for three normalization methods 

 Very active weak 

Pivot-based without removals (PB) 28 5 

Pivot-based with removals (PBR) 26 8 

Intensity dependent normalization (LOESS) 33 12 

Table 6.11 The weak and active is based on the cluster centroids of L2 and L1 method. 

 

Among the genes that are weak in DC but very active in Mutz3, there are 22 

genes in common among the three normalization methods. We compare the 
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uncommon genes of each method with those at other two methods and can easily 

see the reasons why these genes are selected in one method but not the other. All 

the different reasons for a gene having not been selected at a normalization method 

categorized into four:  

        (1) medium expression level on DC or the corresponding Mutz3;  

        (2) cluster-inconsistence of the gene on DC data;  

        (3) cluster-inconsistence of the gene on the corresponding Mutz3 data;  

        (4) removed as an outlier.  

Table 6.12 shows the number of genes that are not selected for different reasons, 

for example, there are 6 and 3 genes that are not selected in PB method but selected 

in other methods because these genes are classified as medium expression level on 

DC or Mutz3 and cluster-inconsistent genes on Mutz3 data using PB method 

respectively. Table 6.13 shows the gene numbers of those genes categorized in 

Table 6.12 and detailed lists can be found in Appendix B.  

Consider, for example, the differences between PB and PBR methods: we 

found that 3 genes, that have been removed as outliers at PBR method are selected 

at the PB method. Of these, 2 genes are not selected at the PBR method because 

these genes are cluster-inconsistent on Mutz3 data normalized by PB method.  

 

The number of genes that are not selected for different reasons in weak DC and very active Mutz3 case 

 Medium 

DC or 

Mutz3 

Cluster-inconsistent 

genes on DC data 

Cluster-inconsistent 

genes on Mutz3 

data 

Removed as 

outliers 

PB 6 0 3 0 

PBR 3 0 1 3 

LOESS 2 1 0 0 
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Table 6.12 There are total 11 genes that are not selected due to the medium expression level of DC or Mutz3. 
There is only 1 gene that is not selected due to the cluster inconsistency on DC data. There are 4 genes that are not 
selected due to the cluster inconsistency on Mutz3 data. 3 genes are removed as outliers. 

 

The corresponding gene numbers according to Table 6.12 

 Medium 

DC or 

Mutz3 

Cluster-inconsistent 

genes on DC data 

Cluster-inconsistent 

genes on Mutz3 

data 

Removed as 

outliers 

PB 6121 

17501 

19105 

25435 

34293 

42349 

N/A 262 

21187 

42205 

N/A 

PBR 25435 

34293 

42349 

N/A 262 16620 

21827 

44198 

LOESS 6121  

19105 

42349 N/A N/A 

Table 6.13 The gene number lists that are not selected due to four reasons. 

A similar analysis can be done for the very active DC and weak Mutz3 genes: 

there is just 1 gene common among all four normalization methods. Table 6.14 

shows the numbers of genes that have not been selected. For example, there are 2 

and 4 genes that are not selected at PB method but selected in other methods 

because these genes are classified as cluster inconsistent on DC and Mutz3 data 

respectively. Table 6.15 shows the gene labels of those genes in Table 6.14; their 

detailed lists can be found in Appendix B. Comparing between PB and PBR 

methods, one can see that there are 4 genes that are inconsistent because 3 of them 

are cluster inconsistent genes on Mutz3 data and 1 of them is cluster-inconsistent 

on DC data for PB method. 

The gene lists of weak DC/very active Mutz3 and very active DC/weak Mutz3 
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of the two normalization methods are in Appendix B. Two comparison tables of 

these genes with normalized expression levels obtained from different 

normalization methods and log-transformed original values are available online3. 

The tables show the common part of all methods followed by the genes obtained 

under different normalization methods. 

 
The number of genes that are not selected for different reasons in active DC and weak Mutz3 case 

 Medium 

DC or 

Mutz3 

Cluster-inconsistent 

genes on DC data 

Cluster-inconsistent 

genes on Mutz3 

data 

Removed as 

outliers 

PB 0 2 4 0 

PBR 0 1 1 2 

LOESS 0 0 0 0 

Table 6.14 There are 3genes that is not selected due to the cluster inconsistency on DC data. There are 5 genes that 
are not selected due to the cluster inconsistency on Mutz3 data. 2 genes are removed as outliers. 

 

The corresponding gene numbers according to Table 6.14 

 Medium 

DC or 

Mutz3 

Cluster-inconsistent 

genes on DC data 

Cluster-inconsistent 

genes on Mutz3 

data 

Removed as 

outliers 

PB N/A 28352 

41755 

2344 

8538 

16552 

29926 

N/A 

PBR N/A 41755 16552 23361 

33774 

LOESS N/A N/A N/A N/A 

Table 6.15 The gene number lists that are not selected due to four reasons. 

 

 

 

                                                 
3 http//www.dcs.bbk.ac.uk/~mingtsochiang/gene/ 
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6.3 Summary 

 

In this chapter, the difference between two versions of iK-Means is utilized in order 

to analyze real-world data sets. We proposed the two versions of the pivot-based 

normalization method due to the hypothesis and the high correlation of the gene 

expression data. After normalization, two versions of iK-Means are applied to the 

normalized data and an algorithm for finding sets of genes differing in gene activity 

over difference cells by using L1/L2 consistency is proposed in Section 6.2. We 

would like to compare the differently expressed genes found by using the two 

versions of the pivot-based normalization method with LOESS normalization 

method. We found that the genes found by the LOESS method cover other methods, 

whereas the pivot-based methods only captures the extreme cases, thus leading to a 

rather conservative estimate
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Chapter 7  
 

Conclusion and Future Work 
 

Overall, the impact of this work to the body of knowledge can be summarised as 

follows. A computational model for generation of data with a Gaussian cluster 

structure controlled by just two “spread” parameters is proposed. It is 

experimentally shown that popular methods for choosing the number of clusters in 

K-Means clustering, such as Gap statistic, are inferior to intelligent K-Means 

method on data of this structure, in either iK-Means version considered, L1 and L2. 

Based on the experimental results, a new version of iK-Means, combining it with 

the Hartigan’s rule, is proposed and verified. We also show, additionally using 

exponential cluster structures, that the two versions of iK-Means, L1 and L2, may 

lead to rather differing results. This has been utilised in application to a problem in 

bioinformatics by using only L1 and L2 consistent cluster parts. The problem 

concerns analysis of differences in gene activities in different types of condition 

(cancer or not) over the gene expression data. To normalise the data, a systematic 

review of the methods has been conducted and a novel normalisation method 

suitable to the task was proposed and utilised.  

The subject of interest is the intelligent K-Means method, iK-Means, that 

determines the number of clusters by sequentially extracting “anomalous patterns”, 

in two versions: least squares (L2) and least moduli (L1). We are interested to see 

whether there are any differences between these two versions and if there are, then 

what are the specific data structures in which one version is better than another. 
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In designing the experiments, one needs not only a good data generation model 

but also comprehensive evaluation criteria. Three evaluation measures, including 

the number of clusters, centroids recovery and four cluster recovery coefficients, 

are implemented. We found that the unweighted distance between centroids much 

better correlates with the cluster recovery than its cluster-size-weighted version, 

which leads us to rejection of the latter as an evaluation index.  

Our experimental results indicate that: 

(a) In general, all tested methods are not sensitive to the relative cluster sizes. Both 

the cluster recovery and centroid recovery are better at the large 

between-cluster spreads. The centroid recovery of all methods slightly 

improves when moving from elongated clusters of different variances to 

spherical clusters of a constant variance; the cluster recovery follows this 

pattern too, but the effects are minor on this aspect; 

(b) L1 and L2 version of iK-Means method do lead to different results, and in 

general, L2 is favoured by Gaussian clusters whereas L1 is favoured by 

exponential clusters; 

(c) Hartigan’s rule “of thumb” HT outperforms the others, in most tests, in terms 

of the number of clusters, and it is good in terms of cluster recovery at the large 

between-cluster spreads; the other methods under consideration form 

consistent patterns of, typically, under-estimating the number of clusters; 

(d) iK-Means, in most cases, outperforms the others in terms of both centroid and 

cluster recovery, but it overestimates the number of clusters, especially at the 

small between-cluster spreads, which can be cured by using a specially 
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designed, “HT-adjusted”, version by increasing the size of anomalous patterns 

being disregarded before running K-Means. 

 

Since L1 and L2 iK-Means methods may lead to very different results as 

follows from our experiments, we are interested in utilizing the differences 

between the two methods for a biologically meaningful problem. Such is the 

problem of finding genes that differently express under different conditions. The 

gene expression data are in two different types of cell, dendritic (DC) and 

cancerous dendritic cells (Mutz3). Before applying the clustering method, one 

needs to normalize the data. This issue has attracted a lot of different proposals – 

we provide a systematic review of the normalization methods. Since L1 and L2 

versions tend to produce rather different results, we consider those clusters valid 

that are present among the results of both methods – we refer to their contents as 

cluster-consistent genes. The L1-L2 cluster consistency can be used for analyzing 

the difference in gene activity across gene expression data in different cells. We 

utilized the property of our gene expression data that they contain highly correlated 

signals to develop a special normalization method for separation of the physical 

condition of the gene expression experiment from its biological part, the 

pivot-based normalization (PBR), which is compared with other normalization 

methods. Our results indicate that: 

(a) By using only L1-L2 consistent gene sets, two sets of genes have been found: 

those consistently weak in DC and active in Mutz3, and those consistently 

active in DC and weak in Mutz3; 

(b) PBR normalization method finds most conservative cases of the difference 
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between DC and Mutz3 signals. 

 

Among the issues left unexplored one should mention the following. There are 

many data structures, not covered in this project, that deserve consideration as a 

medium for comparing clustering methods. Further research should deeper 

investigate the entire issue of modelling various data structures and see how 

methods compare on different data structures. Our attempt in this direction, related 

to the exponential distribution, indicates that there can emerge different patterns in 

choosing the right number of clusters. Other future work should include the two 

approaches to choosing K*  that we reviewed but not covered in our experiments: 

those resampling based on and those utilizing hierarchical clustering approaches. 

Another direction should include more search-intensive versions of K-Means, such 

as for example, involving the genetic and other evolutionary minimization 

algorithms. 
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Appendix A Lists of genes in Tumour/Dendrite gene expression data 
using Pivot-based with the removal normalization method 
 
A.1 Genes that are weak DC but very active in Mutz3 

gene 
number probename gene name gene description 

3722 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

4082 A_23_P96158 KRT17 Homo sapiens keratin 17 (KRT17), mRNA [NM_000422] 

4198 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

11366 A_32_P62963 ENST00000332402 Unknown 

15339 A_24_P8371 LOC124976 
Homo sapiens, Similar to spinster-like protein, clone 
IMAGE:4814561, mRNA, partial cds. [BC041772] 

15533 A_24_P882732 ENST00000311208 Unknown 

16044 A_23_P121596 PPBP 
Homo sapiens pro-platelet basic protein (chemokine 
(C-X-C motif) ligand 7) (PPBP), mRNA [NM_002704] 

19594 A_24_P94222 FBLP-1 
Homo sapiens filamin-binding LIM protein-1 (FBLP-1), 
mRNA [NM_017556] 

20272 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

21187 A_24_P153035 ENST00000311208 Unknown 

22327 A_24_P887857 LOC440421 
PREDICTED: Homo sapiens similar to keratin 17 
(LOC440421), mRNA [XM_496202] 

22943 A_23_P49136 LOC161931 
Homo sapiens testis nuclear RNA-binding protein-like 
(LOC161931), mRNA [NM_139174] 

25019 A_23_P154849 OLIG1 
Homo sapiens oligodendrocyte transcription factor 1 
(OLIG1), mRNA [NM_138983] 

25133 A_32_P76627 ENST00000322533 
full-length cDNA clone CS0DI013YN06 of Placenta Cot 
25-normalized of Homo sapiens (human). [CR597597] 

27258 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

30434 A_24_P265346 KRT14 
Homo sapiens keratin 14 (epidermolysis bullosa simplex, 
Dowling-Meara, Koebner) (KRT14), mRNA [NM_000526] 

31036 A_23_P38537 KRT16 

Homo sapiens keratin 16 (focal non-epidermolytic 
palmoplantar keratoderma) (KRT16), mRNA 
[NM_005557] 

31165 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

32578 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

35681 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

35731 A_23_P56050 TNNT1 
Homo sapiens troponin T1, skeletal, slow, mRNA (cDNA 
clone IMAGE:3531880), partial cds. [BC022086] 

37900 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

39452 A_32_P53524 THC2132626 
Q6IGP7 (Q6IGP7) HDC05721, partial (12%) 
[THC2132626] 

39676 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

42205 A_24_P392991 KRT16 

Homo sapiens keratin 16 (focal non-epidermolytic 
palmoplantar keratoderma) (KRT16), mRNA 
[NM_005557] 

43512 A_24_P261734 SLC38A1 
Homo sapiens cDNA FLJ14201 fis, clone 
NT2RP3002955. [AK024263] 

1318 A_24_P610945 ENST00000311197 Unknown 

4029 A_23_P152047 SCAMP5 
Homo sapiens secretory carrier membrane protein 5 
(SCAMP5), mRNA [NM_138967] 

6286 A_23_P206280 GPR56 
Homo sapiens G protein-coupled receptor 56 (GPR56), 
transcript variant 1, mRNA [NM_005682] 

13186 A_23_P204751 ACCN2 

Homo sapiens amiloride-sensitive cation channel 2, 
neuronal (ACCN2), transcript variant 1, mRNA 
[NM_020039] 

17095 A_23_P336198 GLCCI1 
Homo sapiens cDNA FLJ36336 fis, clone 
THYMU2006303. [AK093655] 

17501 A_23_P39647 SLC4A3 
Homo sapiens solute carrier family 4, anion exchanger, 
member 3 (SLC4A3), mRNA [NM_005070] 

24861 A_24_P923676 X15674 Human pTR5 mRNA for repetitive sequence. [X15674] 

25435 A_23_P396765 PGM2LM 
Homo sapiens phosphoglucomutase 2-like 1 (PGM2LM), 
mRNA [NM_173582] 

34293 A_23_P122863 GRB10 
Homo sapiens growth factor receptor-bound protein 10 
(GRB10), transcript variant 4, mRNA [NM_001001555] 
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35417 A_23_P390504 FOXC1 
Homo sapiens forkhead box C1 (FOXC1), mRNA 
[NM_001453] 

 

A.2 Genes that are very active in DC but weak in Mutz3 
gene 

number probename gene name gene description 

2344 A_24_P12573 CCLS6 
Homo sapiens chemokine (C-C motif) ligand 26 (CCLS6), 
mRNA [NM_006072] 

8538 A_23_P109143 PRNP 

Homo sapiens prion protein (p27-30) (Creutzfeld-Jakob 
disease, Gerstmann-Strausler-Scheinker syndrome, fatal 
familial insomnia) (PRNP), transcript variant 1, mRNA 
[NM_000311] 

10465 A_23_P209625 CYP1B1 
Homo sapiens cytochrome P450, family 1, subfamily B, 
polypeptide 1 (CYP1B1), mRNA [NM_000104] 

15420 A_23_P134347 CPVL 
Homo sapiens carboxypeptidase, vitellogenic-like 
(CPVL), transcript variant 1, mRNA [NM_031311] 

17957 A_23_P36745 ALDH2 

Homo sapiens aldehyde dehydrogenase 2 family 
(mitochondrial) (ALDH2), nuclear gene encoding 
mitochondrial protein, mRNA [NM_000690] 

28352 A_23_P7827 AF086130 
Homo sapiens full length insert cDNA clone ZA84A12. 
[AF086130] 

29926 A_23_P16915 QPCT 
Homo sapiens glutaminyl-peptide cyclotransferase 
(glutaminyl cyclase) (QPCT), mRNA [NM_012413] 

40888 A_24_P319088 CCLS3 
Homo sapiens chemokine (C-C motif) ligand 23 (CCLS3), 
transcript variant CKbeta8-1, mRNA [NM_005064] 

2927 A_24_P380734 SDC2 

Homo sapiens syndecan 2 (heparan sulfate proteoglycan 
1, cell surface-associated, fibroglycan) (SDC2), mRNA 
[NM_002998] 

13355 A_24_P673063 FABP5 
Homo sapiens fatty acid binding protein 5 
(psoriasis-associated) (FABP5), mRNA [NM_001444] 

19729 A_24_P71468 QPCT 
Homo sapiens glutaminyl-peptide cyclotransferase 
(glutaminyl cyclase) (QPCT), mRNA [NM_012413] 

27927 A_23_P116898 A2M 
Homo sapiens alpha-2-macroglobulin (A2M), mRNA 
[NM_000014] 

40263 A_23_P39265 C4.4A 
Homo sapiens GPI-anchored metastasis-associated 
protein homolog (C4.4A), mRNA [NM_014400] 

42282 A_23_P94533 CTSL 
Homo sapiens cathepsin L (CTSL), transcript variant 1, 
mRNA [NM_001912] 

 

 

A.3 Genes that are active in DC but weak in Mutz3 
gene 
number probename gene name gene description 

9104 A_23_P31755 CRH 
Homo sapiens corticotropin releasing hormone (CRH), 
mRNA [NM_000756] 

19209 A_23_P87709 FLJ22662 
Homo sapiens hypothetical protein FLJ22662 (FLJ22662), 
mRNA [NM_024829] 

21084 A_23_P147025 RAB33A 
Homo sapiens RAB33A, member RAS oncogene family 
(RAB33A), mRNA [NM_004794] 

28028 A_23_P63209 HSD11B1 
Homo sapiens hydroxysteroid (11-beta) dehydrogenase 1 
(HSD11B1), transcript variant 2, mRNA [NM_181755] 

31460 A_23_P89799 ACAA2 

Homo sapiens acetyl-Coenzyme A acyltransferase 2 
(mitochondrial 3-oxoacyl-Coenzyme A thiolase) (ACAA2), 
nuclear gene encoding mitochondrial protein, mRNA 
[NM_006111] 
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Appendix B Lists of genes in Tumour/Dendrite gene expression data at 
two normalization methods 
 
A. Pivot-based without removals normalization method 
A.1 Genes that are weak DC but active in Mutz3 

gene 
number probename gene name gene description 

262 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

3722 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

4082 A_23_P96158 KRT17 Homo sapiens keratin 17 (KRT17), mRNA [NM_000422] 

4198 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

11366 A_32_P62963 ENST00000332402 Unknown 

15339 A_24_P8371 LOC124976 
Homo sapiens, Similar to spinster-like protein, clone 
IMAGE:4814561, mRNA, partial cds. [BC041772] 

15533 A_24_P882732 ENST00000311208 Unknown 

16044 A_23_P121596 PPBP 
Homo sapiens pro-platelet basic protein (chemokine (C-X-C 
motif) ligand 7) (PPBP), mRNA [NM_002704] 

16620 A_23_P314101 SUSD2 
Homo sapiens sushi domain containing 2 (SUSD2), mRNA 
[NM_019601] 

19594 A_24_P94222 FBLP-1 
Homo sapiens filamin-binding LIM protein-1 (FBLP-1), 
mRNA [NM_017556] 

20272 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

21827 A_23_P360754 ADAMTS4 

Homo sapiens a disintegrin-like and metalloprotease 
(reprolysin type) with thrombospondin type 1 motif, 4 

(ADAMTS4), mRNA [NM_005099] 

22327 A_24_P887857 LOC440421 
PREDICTED: Homo sapiens similar to keratin 17 
(LOC440421), mRNA [XM_496202] 

22943 A_23_P49136 LOC161931 
Homo sapiens testis nuclear RNA-binding protein-like 
(LOC161931), mRNA [NM_139174] 

25019 A_23_P154849 OLIG1 
Homo sapiens oligodendrocyte transcription factor 1 
(OLIG1), mRNA [NM_138983] 

25133 A_32_P76627 ENST00000322533 
full-length cDNA clone CS0DI013YN06 of Placenta Cot 
25-normalized of Homo sapiens (human). [CR597597] 

27258 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

30434 A_24_P265346 KRT14 
Homo sapiens keratin 14 (epidermolysis bullosa simplex, 
Dowling-Meara, Koebner) (KRT14), mRNA [NM_000526] 

31036 A_23_P38537 KRT16 
Homo sapiens keratin 16 (focal non-epidermolytic 
palmoplantar keratoderma) (KRT16), mRNA [NM_005557] 

31165 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

32578 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

35681 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

35731 A_23_P56050 TNNT1 
Homo sapiens troponin T1, skeletal, slow, mRNA (cDNA 
clone IMAGE:3531880), partial cds. [BC022086] 

37900 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

39452 A_32_P53524 THC2132626 Q6IGP7 (Q6IGP7) HDC05721, partial (12%) [THC2132626] 

39676 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

43512 A_24_P261734 SLC38A1 
Homo sapiens cDNA FLJ14201 fis, clone NT2RP3002955. 
[AK024263] 

44198 A_23_P79769 BIRC7 
Homo sapiens baculoviral IAP repeat-containing 7 (livin) 
(BIRC7), transcript variant 2, mRNA [NM_022161] 

 
A.2 Genes that are active in DC but weak in Mutz3 

gene 
number probename 

gene 
name gene description 

10465 A_23_P209625 CYP1B1 
Homo sapiens cytochrome P450, family 1, subfamily B, polypeptide 1 
(CYP1B1), mRNA [NM_000104] 

15420 A_23_P134347 CPVL 
Homo sapiens carboxypeptidase, vitellogenic-like (CPVL), transcript 
variant 1, mRNA [NM_031311] 

17957 A_23_P36745 ALDH2 

Homo sapiens aldehyde dehydrogenase 2 family (mitochondrial) 
(ALDH2), nuclear gene encoding mitochondrial protein, mRNA 
[NM_000690] 

33774 A_24_P133905 CCLS3 
Homo sapiens chemokine (C-C motif) ligand 23 (CCLS3), transcript 
variant CKbeta8-1, mRNA [NM_005064] 
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40888 A_24_P319088 CCLS3 
Homo sapiens chemokine (C-C motif) ligand 23 (CCLS3), transcript 
variant CKbeta8-1, mRNA [NM_005064] 

 
 
B. Intensity dependent normalization 
B.1 Genes that are weak DC but active in Mutz3 

gene 
number probename gene name gene description 

262 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

3722 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

4082 A_23_P96158 KRT17 Homo sapiens keratin 17 (KRT17), mRNA [NM_000422] 

4198 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

11366 A_32_P62963 ENST00000332402 Unknown 

15339 A_24_P8371 LOC124976 
Homo sapiens, Similar to spinster-like protein, clone 
IMAGE:4814561, mRNA, partial cds. [BC041772] 

15533 A_24_P882732 ENST00000311208 Unknown 

16044 A_23_P121596 PPBP 
Homo sapiens pro-platelet basic protein (chemokine (C-X-C 
motif) ligand 7) (PPBP), mRNA [NM_002704] 

16620 A_23_P314101 SUSD2 
Homo sapiens sushi domain containing 2 (SUSD2), mRNA 
[NM_019601] 

17501 A_23_P39647 SLC4A3 
Homo sapiens solute carrier family 4, anion exchanger, 
member 3 (SLC4A3), mRNA [NM_005070] 

19594 A_24_P94222 FBLP-1 
Homo sapiens filamin-binding LIM protein-1 (FBLP-1), mRNA 
[NM_017556] 

20272 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

21187 A_24_P153035 ENST00000311208 Unknown 

21827 A_23_P360754 ADAMTS4 

Homo sapiens a disintegrin-like and metalloprotease 
(reprolysin type) with thrombospondin type 1 motif, 4 
(ADAMTS4), mRNA [NM_005099] 

22327 A_24_P887857 LOC440421 
PREDICTED: Homo sapiens similar to keratin 17 
(LOC440421), mRNA [XM_496202] 

22943 A_23_P49136 LOC161931 
Homo sapiens testis nuclear RNA-binding protein-like 
(LOC161931), mRNA [NM_139174] 

25019 A_23_P154849 OLIG1 
Homo sapiens oligodendrocyte transcription factor 1 (OLIG1), 
mRNA [NM_138983] 

25133 A_32_P76627 ENST00000322533 
full-length cDNA clone CS0DI013YN06 of Placenta Cot 
25-normalized of Homo sapiens (human). [CR597597] 

25435 A_23_P396765 PGM2LM 
Homo sapiens phosphoglucomutase 2-like 1 (PGM2LM), 
mRNA [NM_173582] 

27258 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

30434 A_24_P265346 KRT14 
Homo sapiens keratin 14 (epidermolysis bullosa simplex, 
Dowling-Meara, Koebner) (KRT14), mRNA [NM_000526] 

31036 A_23_P38537 KRT16 
Homo sapiens keratin 16 (focal non-epidermolytic 
palmoplantar keratoderma) (KRT16), mRNA [NM_005557] 

31165 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

32578 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

34293 A_23_P122863 GRB10 
Homo sapiens growth factor receptor-bound protein 10 
(GRB10), transcript variant 4, mRNA [NM_001001555] 

35681 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

35731 A_23_P56050 TNNT1 
Homo sapiens troponin T1, skeletal, slow, mRNA (cDNA clone 
IMAGE:3531880), partial cds. [BC022086] 

37900 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

39452 A_32_P53524 THC2132626 Q6IGP7 (Q6IGP7) HDC05721, partial (12%) [THC2132626] 

39676 A_23_P87879 CD69 
Homo sapiens CD69 antigen (p60, early T-cell activation 
antigen) (CD69), mRNA [NM_001781] 

42205 A_24_P392991 KRT16 
Homo sapiens keratin 16 (focal non-epidermolytic 
palmoplantar keratoderma) (KRT16), mRNA [NM_005557] 

43512 A_24_P261734 SLC38A1 
Homo sapiens cDNA FLJ14201 fis, clone NT2RP3002955. 
[AK024263] 

44198 A_23_P79769 BIRC7 
Homo sapiens baculoviral IAP repeat-containing 7 (livin) 
(BIRC7), transcript variant 2, mRNA [NM_022161] 
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B.2 Genes that are active in DC but weak in Mutz3 
gene 
number probename 

gene 
name gene description 

2344 A_24_P12573 CCLS6 
Homo sapiens chemokine (C-C motif) ligand 26 (CCLS6), mRNA 
[NM_006072] 

8538 A_23_P109143 PRNP 

Homo sapiens prion protein (p27-30) (Creutzfeld-Jakob disease, 
Gerstmann-Strausler-Scheinker syndrome, fatal familial insomnia) 
(PRNP), transcript variant 1, mRNA [NM_000311] 

10465 A_23_P209625 CYP1B1 
Homo sapiens cytochrome P450, family 1, subfamily B, polypeptide 1 
(CYP1B1), mRNA [NM_000104] 

15420 A_23_P134347 CPVL 
Homo sapiens carboxypeptidase, vitellogenic-like (CPVL), transcript 
variant 1, mRNA [NM_031311] 

16552 A_23_P214222 MARCKS 
Homo sapiens myristoylated alanine-rich protein kinase C substrate 
(MARCKS), mRNA [NM_002356] 

17957 A_23_P36745 ALDH2 

Homo sapiens aldehyde dehydrogenase 2 family (mitochondrial) 
(ALDH2), nuclear gene encoding mitochondrial protein, mRNA 
[NM_000690] 

23361 A_23_P215484 CCLS6 
Homo sapiens chemokine (C-C motif) ligand 26 (CCLS6), mRNA 
[NM_006072] 

28352 A_23_P7827 AF086130 Homo sapiens full length insert cDNA clone ZA84A12. [AF086130] 

29926 A_23_P16915 QPCT 
Homo sapiens glutaminyl-peptide cyclotransferase (glutaminyl cyclase) 
(QPCT), mRNA [NM_012413] 

33774 A_24_P133905 CCLS3 
Homo sapiens chemokine (C-C motif) ligand 23 (CCLS3), transcript 
variant CKbeta8-1, mRNA [NM_005064] 

40888 A_24_P319088 CCLS3 
Homo sapiens chemokine (C-C motif) ligand 23 (CCLS3), transcript 
variant CKbeta8-1, mRNA [NM_005064] 

41755 A_23_P29773 LAMP3 
Homo sapiens lysosomal-associated membrane protein 3 (LAMP3), 
mRNA [NM_014398] 

 
 
 
 


