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ABSTRACT 

Relaxing the First Normal Form (1NF) assumption of relational databases 

gives rise to Non-First Normal Form relations or nested relations for short. 

Nested relations overcome a number of problems that the apparently 

reasonable restriction of 1NF condition causes.  

The need to support time in database systems, in order to model temporal 

events in the real world, has been addressed over the last two decades, 

reflecting the importance of that for almost every computer system application. 

This thesis combines the features of previous nested and temporal models 

to develop a new integrated Temporal Nested Model (TNM).  

TNM is a temporal, nested, attribute timestamping, heterogeneous database 

model, where time is represented as temporal elements. It is defined as an 

extension of a Nested Relational Model (NRM) which is also formally defined in 

the thesis.  

All the operations of the NRM are formalised. The recursive rename 

operation for nested relations is defined for the first time. A recursive natural 

join operation is also formally defined, to cover all the different cases of the 

common attributes that participate in the join of two nested relations. This 

natural join operation is more general than all other natural join operations 

that have been defined so far. 

The operations of NRM are next extended in order to support the temporal 

dimension of the TNM. Formal definitions for all the operations of the TNM are 

given and the operations are proved to be closed. 

A formal proof is given which shows that the TNM is a superset of the 

Conventional Relational Model.  

A number of examples of the management of temporal nested data using 

the TNM are also given. The queries illustrate the features of the temporal 

nested relational algebra, together with the expressive power of the new model 

and the ease of use of the algebra. 

Finally, a comparison with other temporal models is given and the 

capabilities of the TNM are discussed. 
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A prototype implementation has also been undertaken in Miranda to 

illustrate the functionality of the models defined in this thesis. 



   

 

 
 

5 

CONTENTS 

ABSTRACT .................................................................................................................................................................3 

ACKNOWLEDGMENTS ......................................................................................................................................10 

1. INTRODUCTION...........................................................................................................................................11 

1.1 BACKGROUND................................................................................................................................................... 11 
1.2 MOTIVATION OF THE THESIS .......................................................................................................................... 14 
1.3 CONTRIBUTION OF THE THESIS....................................................................................................................... 15 
1.4 OUTLINE OF THE THESIS.................................................................................................................................. 16 

2. LITERATURE SURVEY ..............................................................................................................................18 

2.1 INTRODUCTION ................................................................................................................................................. 18 
2.2 NON-TEMPORAL NESTED MODELS................................................................................................................ 18 

2.2.1 Abiteboul and Bidoit’s model ................................................................................................................20 
2.2.2 Roth, Korth and Silberschatz’s model..................................................................................................23 
2.2.3 Colby’s model...........................................................................................................................................24 
2.2.4 Deshpande and Larson’s model............................................................................................................27 
2.2.5 Levene’s model.........................................................................................................................................28 
2.2.6 Liu, Ramamohanarao and Chirathamjaree’s model.........................................................................30 

2.3 TEMPORAL MODELS......................................................................................................................................... 32 
2.3.1 Tansel’s model..........................................................................................................................................35 
2.3.2 Gadia’s model ..........................................................................................................................................39 
2.3.3 Clifford’s model .......................................................................................................................................43 
2.3.4 McKenzie’s model....................................................................................................................................48 
2.3.5 Snodgrass’s model...................................................................................................................................50 
2.3.6 Jensen and Snodgrass’s model..............................................................................................................52 
2.3.7 Lorentzos’s model....................................................................................................................................54 
2.3.8 TSQL2 ........................................................................................................................................................58 

2.4 SUMMARY.......................................................................................................................................................... 61 

3. DESIGN CONSIDERATIONS ....................................................................................................................62 

3.1 INTRODUCTION ................................................................................................................................................. 62 
3.2 BASIC TEMPORAL DEFINITIONS..................................................................................................................... 62 

3.2.1 Basic concepts of time .............................................................................................................................63 



   

 

 
 

6 

3.2.2 Temporal elements...................................................................................................................................63 
3.2.3 Attributes and time...................................................................................................................................65 

3.3 CATEGORISATION OF TEMPORAL DATABASE MODELS.............................................................................. 65 
3.3.1 Valid time versus Transaction time ......................................................................................................65 
3.3.2 Tuple timestamping versus Attribute timestamping...........................................................................67 
3.3.3 Homogeneous models versus Heterogeneous models.......................................................................72 
3.3.4 Points versus Intervals............................................................................................................................73 

3.4 THE STATIC PROPERTIES OF THE MODEL..................................................................................................... 74 
3.5 THE RUNNING EXAMPLE OF THE THESIS ...................................................................................................... 76 

3.5.1 The nested database example................................................................................................................77 
3.5.2 The temporal nested database example...............................................................................................81 

3.6 SUMMARY.......................................................................................................................................................... 84 

4. THE NESTED RELATIONAL MODEL (NRM)...................................................................................85 

4.1 INTRODUCTION ................................................................................................................................................. 85 
4.2 BASIC CONCEPTS AND TERMINOLOGY.......................................................................................................... 86 
4.3 OPERATIONS IN THE NRM .............................................................................................................................. 92 

4.3.1 The Recursive Nested Union  Operation (∪∪)....................................................................................93 
4.3.2 The Recursive Nested Difference Operation (--) ................................................................................95 

4.3.3 The Recursive Nested Intersection Operation (∩∩)...........................................................................96 
4.3.4 The Recursive Nested Projection Operation (ππ)...............................................................................97 

4.3.5 The Recursive Nested Selection Operation (σσ).................................................................................98 
4.3.6 The Recursive Unnest Operation (µµ) ............................................................................................... 100 
4.3.7 The Recursive Nest Operation (vv)..................................................................................................... 100 

4.3.8 The Recursive Nested Rename Operation (ρρ) ................................................................................ 101 

4.3.9 The Recursive Nested Cartesian Product Operation (××).............................................................. 103 
4.3.10 The Recursive Nested Natural Join operation ( ><><).................................................................. 105 

4.3.11 The Recursive Nested Θ-Join Operation (><Θ
><)......................................................................... 126 

4.3.12 The Recursive Nested Division Operation (÷÷) ............................................................................. 127 
4.3.13 Functions.............................................................................................................................................. 127 

4.4 SUMMARY........................................................................................................................................................ 128 

5. THE TEMPORAL NESTED MODEL (TNM) .................................................................................... 130 

5.1 INTRODUCTION ............................................................................................................................................... 130 
5.2 REPRESENTATION OF TNM RELATIONS ..................................................................................................... 130 
5.3 OPERATIONS IN THE TNM............................................................................................................................. 131 

5.3.1 The Recursive Temporal Nested Union Operation ( ∪t
∪)............................................................... 132 

5.3.2 The Recursive Temporal Nested Difference Operation (–t
-) ......................................................... 134 

5.3.3 The Recursive Temporal Nested Intersection Operation (∩t
∩) .................................................... 135 



   

 

 
 

7 

5.3.4 The Recursive Temporal Nested Projection Operation ( πt
π)......................................................... 136 

5.3.5 The Recursive Nested TimeSlice Operation ( ss) .............................................................................. 137 

5.3.6 The Recursive Temporal Nested Selection Operation (σt
σ)........................................................... 139 

5.3.7 The Recursive Temporal Unnest Operation (µt
µ) ............................................................................ 140 

5.3.8 The Recursive Temporal Nest Operation (?t
?) ................................................................................. 140 

5.3.9 The Recursive Temporal Nested Rename Operation (ρ t
ρ)............................................................. 141 

5.3.10 The Recursive Temporal Nested Cartesian Product Operation (×t
×)........................................ 141 

5.3.11 The Recursive Temporal Nested Natural Join Operation (><t
><) ............................................. 142 

5.3.12 The Recursive Temporal Nested Θ-Join Operation (><tT
><)...................................................... 147 

5.3.13 The Recursive Temporal Nested Division Operation (÷t
÷).......................................................... 147 

5.3.14 Temporal Functions........................................................................................................................... 147 
5.4 CLOSURE PROPERTY OF OPERATIONS......................................................................................................... 148 
5.5 SUMMARY........................................................................................................................................................ 150 

6. MODEL IN USE........................................................................................................................................... 152 

6.1 INTRODUCTION ............................................................................................................................................... 152 
6.2 MANAGEMENT OF NESTED DATA................................................................................................................ 152 
6.3 MANAGEMENT OF TEMPORAL NESTED DATA............................................................................................ 160 
6.4 SUMMARY........................................................................................................................................................ 174 

7. MAPPING THE CONVENTIONAL RELATIONAL MODEL (CRM) TO THE TNM......... 175 

7.1 INTRODUCTION ............................................................................................................................................... 175 
7.2 COMPARISONS OF DATABASE MODELS....................................................................................................... 175 
7.3 THE CONVENTIONAL RELATIONAL MODEL (CRM).................................................................................. 177 

7.3.1 Data types-Domains............................................................................................................................. 177 
7.3.2 Databases............................................................................................................................................... 178 
7.3.3 Structures............................................................................................................................................... 178 
7.3.4 Relational Operators............................................................................................................................ 178 
7.3.5 Operations.............................................................................................................................................. 178 
7.3.6 Functions................................................................................................................................................ 179 

7.4 THE NESTED RELATIONAL MODEL (NRM)................................................................................................ 179 
7.4.1 Data types-Domains............................................................................................................................. 179 
7.4.2 Databases............................................................................................................................................... 179 
7.4.3 Structures............................................................................................................................................... 180 
7.4.4 Relational Operators............................................................................................................................ 180 
7.4.5 Operations.............................................................................................................................................. 180 
7.4.6 Functions................................................................................................................................................ 181 

7.5 MAPPING THE CRM TO THE NRM............................................................................................................... 181 
7.5.1 Data types - Domains........................................................................................................................... 181 



   

 

 
 

8 

7.5.2 Databases............................................................................................................................................... 181 
7.5.3 Structures............................................................................................................................................... 182 
7.5.4 Relational Operators............................................................................................................................ 182 
7.5.5 Operations.............................................................................................................................................. 182 
7.5.6 Functions................................................................................................................................................ 185 

7.6 THE TEMPORAL NESTED MODEL (TNM) ................................................................................................... 186 
7.6.1 Data types-Domains............................................................................................................................. 186 
7.6.2 Databases............................................................................................................................................... 186 
7.6.3 Structures............................................................................................................................................... 187 
7.6.4 Relational Operators............................................................................................................................ 187 
7.6.5 Operations.............................................................................................................................................. 187 
7.6.6 Functions................................................................................................................................................ 187 

7.7 MAPPING THE NRM TO THE TNM............................................................................................................... 188 
7.7.1 Data types - Domains........................................................................................................................... 188 
7.7.2 Databases............................................................................................................................................... 188 
7.7.3 Structures............................................................................................................................................... 188 
7.7.4 Relational Operators............................................................................................................................ 188 
7.7.5 Operations.............................................................................................................................................. 189 
7.7.6 Functions................................................................................................................................................ 189 

7.8 MAPPING THE CRM TO THE TNM............................................................................................................... 189 
7.9 SUMMARY........................................................................................................................................................ 190 

8. COMPARISON WITH OTHER MODELS .......................................................................................... 191 

8.1 INTRODUCTION ............................................................................................................................................... 191 
8.2 CLASSIFICATION OF MODELS....................................................................................................................... 191 
8.3 EVALUATION CRITERIA................................................................................................................................. 194 
8.4 EVALUATION OF VALID TIME ALGEBRAS................................................................................................... 198 
8.5 SUMMARY........................................................................................................................................................ 207 

9. CONCLUSION AND FUTUR E RESEARCH...................................................................................... 208 

9.1 CONCLUDING REMARKS................................................................................................................................ 208 
9.2 FUTURE RESEARCH........................................................................................................................................ 210 

REFERENCES ....................................................................................................................................................... 212 

APPENDICES ........................................................................................................................................................ 224 

A. FORMAL SYNTAX OF THE TNM ALGEBRA.................................................................................... 225 

B. PROTOTYPE IMPLEMENTATION ........................................................................................................ 229 

B.1 INTRODUCTION............................................................................................................................................... 229 



   

 

 
 

9 

B.2 IMPLEMENTATION.......................................................................................................................................... 229 
B.2.1 Description of files ............................................................................................................................... 230 
B.2.2 Declaration of tables........................................................................................................................... 231 
B.2.3 Functions............................................................................................................................................... 233 

B.3 MIRANDA CODE............................................................................................................................................. 235 
B.4 ILLUSTRATION EXAMPLES............................................................................................................................ 259 



   

 

 
 
10 

ACKNOWLEDGMENTS 

A number of people have helped me significantly through out all these years 

of my research. The contribution of my supervisor, Dr Roger Johnson, to this 

work, is inestimable. He was always supportive, encouraging and patient, 

willing to give his guidance and advice to every problem that arose. Professor 

George Loizou, Head of the Computer Science Department of Birkbeck College, 

has helped me significantly with his unique way of parental interest and 

support. I am also grateful to Nikos Lorentzos, Associate Professor of the 

Agricultural University of Athens, for many discussions and constructive 

comments and suggestions on my work. Furthermore, many thanks are also 

due to the external examiner of this thesis, Professor Peter Gray, for his very 

helpful comments which were much appreciated. 

I would also like to thank the System Group of the Computer Science 

Department and especially Phil Gregg and Andrew Watkins, for providing me 

with all the necessary computing facilities and Ms Betty Walters, the executive 

officer of the Computer Science Department, for providing an excellent working 

environment in which I was pleased to study.  

Lastly and most importantly, my family deserves many thanks. I am 

indebted to my parents, Elias and Katerina, for their emotional and financial 

support. They were always so close to me, ready to share and solve my 

problems and worries. Angelos and Christina Efstathiou have been excellent 

parents in law. I would like to thank them for their moral support and 

patience. My sister, Myrto, has been wonderfully understanding and 

encouraging through out this long process. 

There are not enough words to thank my husband, Dr Athanasios 

Efstathiou, for what he has offered me all these years. He was the source of 

inspiration and power for me. He has given me boundless love, support, and 

encouragement, which was so important for the completion of this research. 

Without him this work would not have been made possible. This thesis is 

dedicated to him. 

The work documented in this thesis was partially funded by Birkbeck 

College Fees Awards Scheme for which I express my thanks. 



   

 

 
 
11 

CHAPTER 1 

1. INTRODUCTION 

1.1 Background 

Time is a ubiquitous feature of real world phenomena. Every activity or 

change in the real world takes place in the context of time both at the 

microscopic and macroscopic level. Since prehistoric eras, people in every 

culture have been preoccupied with measuring and recording the passage of 

time. Today, in an age dominated by technology and information systems, the 

recording of time is even more vital and essential since only few real world 

applications do not have a temporal component.  

Particularly in the field of database technology, the storage of data without 

a temporal dimension could signify, in the worst case, a vain attempt at 

recording information since information that changes over time cannot be 

recorded. Conventional databases without a temporal dimension record single 

states of real world phenomena. Every change of data, whether deletion, 

insertion or update, transitions the database from one state to another state. 

In consequence, past database states are not retained, resulting in a number 

of limitations: 

§ The evolution of real world phenomena over time cannot be recorded. 

§ Only queries that concern the current state of the database can be 

answered. 

§ Real world changes that will occur in the future or have occurred in the 

past cannot be recorded. 

§ Lack of functions to express common queries such as common points of 

two overlapping time intervals. 

Over the years, organisations and researchers have been trying to solve this 

highly demanding problem of time by providing special, application dependent 

facilities. In the most basic approaches, time was treated as another field in a 
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database table and queries concerning time were expressed with conventional 

SQL queries. These queries have an increased complexity, are error-prone, 

time consuming to formulate and lack expressive power. 

The development of generalised facilities for the direct support of time in 

databases has been inevitable. Consequently, in the last twenty years there 

has been a growing interest in extending data models to incorporate the time 

dimension. Database management systems providing support for the storage 

and retrieval of time-dependent data are called temporal database 

management systems and the corresponding databases, temporal databases. 

Time in temporal databases can be expressed in many different ways; it 

may be of interest to record the exact time when an event happened or the 

period in which an event took place or the duration of an event or even the 

periodicity of an incident – the frequency with which an incident occurs in 

time. Time is used to distinguish between past, present or future states. The 

recording of time allows the identification when facts are true in the modelled 

reality (valid time) or when facts are current in the database (transaction time). 

Time can stamp either tuples (tuple timestamping) or attributes (attribute 

timestamping) in relations. This diversity has produced many different 

temporal database models over the last twenty years. 

In chapter 2 there is a detailed review of those temporal data models which 

relate most closely to the work in this thesis. In order to provide the reader 

with a general introduction to work in the wider area, there follows now a 

short overview of developments across the whole field of temporal databases. 

The first attempt to formally define a temporal database model was appeared 

in [Ben82]. Ben-Zvi calls his model Time Relational Model (TRM) and also 

proposes a query language for it. His model supports both valid and 

transaction time. TRM is a tuple timestamping model with five additional 

implicit time attributes, effective -time-start, effective -time-stop, registration-

time-start, registration-time-stop and deletion-time. Static relation states as 

well as temporal states can be supported in his model. His temporal relational 

algebra is extremely limited. He defines a new operation, Time-View, which 

produces a relation state from a temporal state. Every operation defined in 

Ben-Zvi’s algebra uses this new operation to construct a conventional relation 

to which standard relational operations can be applied. Consequently, Ben-Zvi 

does not provide a temporal formalism or a set of temporal query facilities.  
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Since this first attempt, a plethora of papers about temporal databases have 

appeared in the literature. Bibliographies about temporal databases have been 

published over the years showing the considerable activity of researchers in 

this field ([BADW82], [Mck86], [SS88], [Soo91], [Kli93], [TK96] and [WJW97]). 

Gadia, Tansel, Clifford, Lorentzos, McKenzie, Snodgrass, Jensen, to name just 

a few, have worked extensively in this field and made significant contributions.  

They have all contributed to the general understanding of the subject and 

have helped in the development of alternative temporal database modelling 

approaches and in more or less uniformity in the definitions of basic concepts 

and terms.  

In 1993 the first book on temporal databases appeared ([TCG+93]). It is a 

collection of papers by the pioneers in the field covering different aspects of 

temporal databases such as formalisations of new temporal data models, 

temporal query languages and their completeness as well as the 

implementation of temporal database management systems. A glossary of 

temporal database concepts is included in this book as a result of e-mail 

discussions among the temporal database community. This glossary has since 

been revised and the latest version can now be found at 

http://www.cs.auc.dk/~csj/Glossary. A special issue of the IEEE 

Transactions on Data and Knowledge Engineering was devoted to temporal 

and real-time databases in August 1995. In 2000 a book was published on 

time granularities in databases, which is vital when designing and 

implementing databases supporting temporal data ([BJW00]). In 2003 another 

book was published, showing the endlessly interest on the temporal data and 

the relational model. It is a detailed investigation into the application of 

interval and relation theory to the problem of temporal database management 

([DDL03]).The first international workshop on an Infrastructure for Temporal 

Databases was organised in 1993 in Arlington, Texas, followed by the 1995 

International Workshop on Temporal Databases held in Zurich ([CT95]) and 

two Dagstuhl Seminars, one on Temporal Databases in 1997 ([EJS97]) and 

another on Integrating Spatial and Temporal Databases in 1998 

(http://timelab.co.umist.ac.uk/events/dag98/). These workshops brought 

together researchers interested in the development of tools for the 

management of temporal data. In 2001 another symposium was held at 
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Redondo Beach, CA ([JSST01]) concerning both spatial and temporal 

databases.  

In parallel with these developments, the temporal database research 

community has worked on the specification of a temporal query language. A 

significant work has been done by a committee comprising twenty one 

members residing in eight different countries that proposed a consensus 

temporal extension to SQL-92, called TSQL2 ([Sno95]), which has not become 

a standard.  

A new data type “PERIOD” has been included in SQL/Temporal, which is 

not yet a standard. Currently, there are no plans to publish a temporal 

 SQL standard.   

Another book recently published by Snodgrass ([Sno00]) deals with the 

development of temporal database applications in SQL.  

The activity described above clearly shows the importance of temporal 

databases and the interest of the database research community in the subject. 

It is remarkable, therefore, that there is still no widely accepted temporal 

query language and implementation available to users. Furthermore, the 

research field is still active, since answers have not yet been given to a variety 

of questions important in this area. These aspects include the definition of a 

data model that can support the essential semantics of time-varying relations, 

temporal data presentation, temporal data storage, efficient temporal query 

evaluation and temporal implementation strategies. 

1.2 Motivation of the Thesis 

A plethora of incompatible temporal data models have been proposed so far. 

Some of them are simple extensions to the Conventional Relational Model and 

others contain quite complicated new proposals. Their differences arise 

because of their varying support on the following: 

§ homogeneous or heterogeneous relations (having attribute values 

defined for the same or different time intervals in a tuple respectively),  

§ tuple or attribute timestamping representation,  

§ valid time (historical models), transaction time (rollback models) or valid 

and transaction time (bitemporal models),  
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§ time representation as time points, time intervals or time elements (sets 

of time intervals), 

§ 1NF or N1NF relations. 

This diversity exacerbates the already complex problem of modelling time in 

databases. 

The motivation of this thesis is to define a model which would provide as 

few representation constraints as possible and at the same time, as much 

expressive power as possible. For this reason, features that would tend to limit 

the representational capabilities of the model are rejected. Therefore, it is 

claimed that the model defined in this thesis is based on features that are 

more general than previous models. In pursuit of this objective, heterogeneous 

relations have been chosen rather than homogeneous, attribute timestamping 

rather than tuple timestamping, time elements rather than time points and 

time intervals, and finally N1NF rather than 1NF. Each of the four 

characteristics chosen is a generalisation of the option declined. 

To conclude, the objective of this thesis is to design a model that achieves a 

balanced combination of expressive power with ease of representation, use and 

understanding.  

1.3 Contribution of the Thesis 

The major contributions of this thesis are the following: 

1. A Temporal Nested valid time relational Model (TNM) is formalised for 

the representation of temporal and nested data. For the manipulation of these 

data TNM algebra is formally defined. It is proved that all the operations of 

the algebra are closed. Additionally, TNM is proved to be a consistent 

extension of the CRM (Conventional Relational Model).  

2. TNM is a well-defined model that achieves a very high rating against 

evaluation criteria. The criteria, derived from previous research in the field 

([Mck88]), are mutually compatible and well established. The advantages of 

TNM against other previous proposed temporal models are thus demonstrated. 

3. A Nested Relational Model (NRM) is formalised for the representation of 

nested data. A recursive algebra for NRM is proposed. All the operations are 

formally defined, including also the rename operation for nested relations. 

NRM is proved to be a superset of the CRM. 
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4. The nested generalised natural join operation is formally defined 

recursively for nested relations for the first time. The generalised natural join 

can be applied to all pairs of “joinable” nested relations independently of the 

number of the common attributes between the two relations and their types, 

i.e. atomic or relation-valued at either the top or lower levels (same or 

different) of the two relations. Six distinct cases are identified, distinguished 

by the above-mentioned properties of the common attributes participating in 

the natural join operation. 

5. The temporal nested generalised natural join operation is formally 

defined as a consistent extension of the generalised natural join operation for 

nested relations.  

 

The full expressive power of TNM is demonstrated by a series of examples. 

To conclude, the result of this research is an integration of temporal and 

nested database models producing a formally defined generalised temporal 

nested database model, in which not only temporal data but also all other 

static data can be nested to any finite depth so that the full power of the 

nested and temporal features can be exploited within one model. 

1.4 Outline of the Thesis 

The remainder of this thesis is organised in eight chapters. 

Chapter 2 presents a survey of relevant existing database models. The 

chapter is divided into two parts. In the first part, six N1NF models are 

described and their most important characteristics are presented. The natural 

join operation is described for each of these models and specific deficiencies 

are discussed. These shortcomings motivate the generalised nested natural 

join proposed in chapter 4.   

Eight different representative research approaches in the field of temporal 

databases are presented in the second part of this chapter. The temporal 

models of these approaches are described and the same example relation is 

presented in each of these models to illustrate the differences in their 

representational capabilities. Deficiencies of these models are also identified. 
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In Chapter 3 basic temporal definitions used in the thesis are given, the 

properties of the model defined in the subsequent chapters are described and 

the design decisions justified.  

The Nested Relational Model, NRM, is formalised in Chapter 4. All the 

operations of the model are defined recursively. An extended definition of the 

generalised natural join operation for nested relations is provided. 

In Chapter 5 the Temporal Nested relational Model, TNM, is formalised. The 

algebra of the TNM is formally defined and all the operations are proved to be 

closed. 

The full expressive power of TNM is demonstrated by a series of examples in 

Chapter 6. 

In Chapter 7 it is proved that NRM and TNM are consistent extensions of 

the Conventional Relational Model.  

In Chapter 8 the temporal models described in Chapter 2 and TNM are 

evaluated against 22 compatible criteria. It is shown that TNM satisfies the 

majority of these criteria. 

Finally, Chapter 9 summarises the achievements of this thesis and points 

out directions for possible future research. 

Two appendices have also been included in the thesis. Appendix A contains 

a formal syntax of the TNM algebra. In Appendix B a brief description of the 

prototype implementation that has been undertaken in Miranda is included, 

as well as selected parts of the code and examples presented in the thesis, 

occasionally with their results. 
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CHAPTER 2 

2. LITERATURE SURVEY 

2.1 Introduction 

A number of researchers have made proposals to relax the First Normal 

Form (1NF) assumption using the Non-First Normal Form (N1NF or NF2) 

relations to solve problems in new applications such as text processing, 

engineering design systems and office automation and thus overcome a 

number of limitations imposed by the apparently reasonable restriction that 

1NF causes. In section 2.2 the advantages of the Non-First Normal Form 

relational database model are presented and different approaches to support it 

are described. 

At the same time, in the last two decades many papers have appeared 

which address the problem of supporting time in database management 

systems. Numerous researchers have discussed the problem of modelling the 

time dimension of events that occur in the real world which is very important 

to almost every computer system application including banking, medical 

records and accounting. To solve this vital and highly demanding problem, 

they have proposed a variety of techniques that have addressed it from 

different viewpoints. Different approaches for the incorporation of time in 

database systems are presented in 2.3, where models introduced by a number 

of researchers are described. 

2.2 Non-Temporal Nested Models 

The Non-First Normal Form relational database model, or more simply the 

nested relational model, allows relations to have attributes which can have 

non-atomic values, i.e. the latter are themselves relations, subrelations of the 
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relation to which they belong. The NF2 model provides the basis for the object-

oriented database model. Many models ([JS82], [FT83], [AB86], [SS86], [TF86], 

[RKS88]) have been defined since 1977, when Makinouchi ([Mak77]) proposed, 

for the first time, the relaxation of the 1NF assumption.  

In spite of the large number of NF2 models, only a few query languages have 

been proposed for the management of non-first normal form relations (e.g. 

[RKB87], [LD98] and [WTWL96]) by reason of its difficulty. These are 

extensions of existing query languages, SQL and Query by Example. To the 

knowledge of the author of this thesis, [LD98] is the most recent. In [LD98], a 

Query by Example language for nested tables, called QBEN, has been 

described which allows the formulation of complex queries.  

The use of a NF2 model eliminates many problems. The NF2 model enables 

data about an object to be represented within one relation rather than 

distributing it over several relations. One major advantage is the fact that join 

operations which are substantially expensive in terms of execution time can be 

avoided.  

The Non-First Normal Form database models that have been developed so 

far can be divided into two categories. Models of the first category are called 

non-recursive models (e.g. [JS82], [TF86], [OOM87]) and those of the second 

category are called recursive models (e.g. [SS86], [AB86], [RKS88], [Col90], 

[Lev92], [LR94a]). The two approaches are distinguished by the recursive  or 

non-recursive nature of the operators that have been defined by the distinct 

researchers. The difference is that recursive operators can be applied 

repeatedly to the subrelations at the different levels of a relation, while the 

non-recursive operators cannot. In section 4.3 of this thesis the superiority of 

the recursive models compared to the non-recursive ones is explained and 

justified. 

Previous research on some of the most important NF2 recursive  models is 

reviewed below in chronological order. Non-recursive models are not discussed 

since, as explained in section 4.3, they are not preferred. The natural join 

operator is examined in detail for each model. The ability to join two or more 

relations is one of the most powerful features of relational systems ([Dat00]). 

However, the natural join operation is the most complicated operation 

involving nested relations since it is a binary operation and can be performed 

between a relation or a subrelation of a relation and another relation or 
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subrelation of it. The relations that participate in the natural join operation 

must have common attributes that can be either atomic or relation-valued 

(subrelations) and which can be either at the top level of the relations or at 

some lower level, either the same or not. Several researchers (e.g. [AB86], 

[Col90], [DL91], [Lev92], [LC96], [RKS88]) have defined natural join operations 

between two nested relations. However, to the author’s knowledge, all the 

definitions given so far have a very limited functionality as is explained in 

subsequent sections. 

2.2.1 Abiteboul and Bidoit’s model 

In [AB86], Abiteboul and Bidoit present a Non-First Normal Form database 

model called the Verso model. The data structure and operations of the model 

are formally defined. The main characteristic of the proposed algebraic query 

language is that it allows data restructuring. Five unary operations (extension, 

projection, selection, restriction and renaming) and five binary ones (union, 

intersection, difference, join and cartesian product) are introduced as well as a 

restructuring operation. They claim that these operations all together are as 

powerful as the conventional relational algebra.  

In the Verso model, a format specifies the underlying structure of a Verso 

instance (a generalisation of a relational instance). 

The extension operation is not formally defined. The projection operation 

presented in this model is not a generalisation of the projection for flat 

relations, since the only projection that can be performed for a flat relation is 

over the whole relation. However, arbitrary projections can be achieved but 

they usually require a restructuring of the original relation. Two versions of 

the selection operation are defined in [AB86]. Firstly, a simple version of the 

selection operation, the Verso-selection, is introduced and later an extension 

of the selection, called the “super-selection” which can be expressed by the 

Verso-selection, projection, and join operations. The restriction operation is 

itself restricted in that it can be applied only to the “root” of the format.  

They also define a join operation. It can be performed only between 

instances over compatible formats. Two relations have compatible formats when 

they have the same atomic attributes at the top level of their schemes. To 

overcome several limitations apparent with this definition, they introduce the 
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restructuring operation which allows for the structure of a relation to be 

modified. However, the restructuring operation is not a nonloss operation. 

Therefore, three format transformations are defined which characterise a 

format dominance (one format is dominated by another one iff each instance 

over the first format can be represented by an instance over the second format 

containing the same information). These format transformations are root and 

branch permutation, compaction and extension. However, these format 

transformations cannot transform entirely the structure of all relations.  

As a consequence of the limitations of the join and resructuring operation, 

join operations of practical interest cannot be formulated. An example is given 

below which shows that the join operation between two relations cannot be 

performed even after restructuring the relations. 

Example 2.1: Suppose that two relations are given: the TRAINING_1 

relation (Fig. 2.1) and the DEPT_1 relation (Fig. 2.2). TRAINING_1 relation has 

two attributes, COMPANY and PROGRAMME. COMPANY is an atomic 

attribute that represents the company name and PROGRAMME is a 

subrelation which contains two attributes, TRN atomic attribute which 

denotes the trainer’s name and CODE′ which is a subrelation containing only 

one atomic attribute CODE, which shows the codes of the courses a trainer 

has taught. Relation TRAINING_1 has the following scheme: TRAINING_1 = 

COMPANY PROGRAMME(TRN CODE′(CODE)) (for more explanations about 

this notation see section 4.2).  

Relation DEPT_1 has three attributes, two atomic, D and DN, and one 

nested, UNIT. UNIT has three attributes, the atomic attributes UN and UD and 

the nested attribute TRAINER having two attributes, the atomic attribute TRN 

and the nested attribute C having the atomic attributes CN and Y. 

Semantically, D is the department number, DN is the department name, UN is 

the unit number, UD is the unit description, TRN is the trainer’s name for 

each course, CN is the course number that each trainer has given in year Y. 

Relation DEPT_1 has the following scheme: DEPT_1 = D DN UNIT(UN UD 

TRAINER(TRN C(CN Y))). 
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  PROGRAMME    

COMPANY  TRN  CODE ′   

    CODE   

         Jack  xx0   

                            Apple  Mark  xy1   

    xy2   

                                xy1   

IBM  Tim  xx2   

                            Microsoft  Karen  xx1   

              Fig. 2.1: TRAINING_1 

 
      UNIT       
D DN  UN UD  TRAINER 
      TRN  C 
        CN Y    

                             511 Software    1 75    
    Engineering  Mark  2 76    
                     5 79    
                                                                              1 Research     Karen  1 82    
   552 Basic Research    2 79    
                                             Tim  5 79    
                                                                                      2 76    
   678 Planning  Mark  4 82    
                                                                                 650 Design  Karen  1 75    
                                                                              2 Development  780 Maintenance  Tim  3 82    
                                             Mark  2 76    
                                                                                      2 81    
   981 Planning  Jack  3 82    
        5 79    
                                       Fig. 2.2: DEPT_1 

 

Suppose that we want to find the names of the companies (COMPANY) for 

which trainers (TRN) have taught courses to technical employees together with 

the course number of each course (CN). The two relations must be joined on 

TRN, their common atomic attribute. However, TRN is at different nesting 

levels in the two relations and is not at the top level of any of them. Therefore, 

restructuring operations must be applied to both relations to transform their 

structure, in order to “move” TRN at the top level. However, this is not possible 

in [AB86]. This is because root permutation, branch permutation, compaction 

and extension can either move the attributes at the same nesting level or at 
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lower nesting levels. The conclusion is that the join operation has limited 

capabilities.  

The cartesian product operation (defined after the join operation) requires 

the first operand to be an instance over a flat relation and this is again a 

significant weakness.  

The algebra that they define is very elaborate. New definitions and notations 

are given, even for the simplest concepts, such as a (Verso) instance over a 

format. Furthermore, the key feature of their model, the restructuring 

operation, cannot reconstruct entirely the structures of the relations without 

loss of information, even when using a combination of all three 

transformations, root and branch permutations, compactions and extensions, 

as has been demonstrated above by Example 2.1. As a result, the potentiality 

of the operation is limited to a restricted spectre of cases.   

2.2.2 Roth, Korth and Silberschatz’s model 

An extended relational calculus and an equivalent algebra for Non-First 

Normal Form relations was defined in [RKS88] in order to unify the various 

theories of Non-First Normal Form databases that had been proposed up to 

that time. 

The Partitioned Normal Form (PNF) property is defined for nested relations. 

A relation R is in PNF if all the atomic attributes of R form a key for the 

relation and recursively, each relation-valued attribute of the relation is also in 

PNF. As a result, nested relations can be divided into those in PNF and those 

not in PNF. [RKS88] shows that relations in PNF have some good properties 

compared to other relations. However, in general, relations in PNF impose two 

important restrictions, that there is at least one atomic attribute at every 

nesting level of the relation and also that relation-valued attributes cannot be 

part of the key.  

Two new operators, nest and unnest, are added to the basic set of 

operators. The basic algebra operators, union, intersection, difference, 

cartesian product, natural join and projection are extended to work within the 

class of PNF relations. However, in [LL91] it has been proved that the extended 

projection of a nested relation in PNF is not a precise generalisation of the 

standard projection operator with respect to unnesting, as it is claimed in 
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[RKS89]. Union, intersection and difference are defined recursively. Cartesian 

product remains unchanged. Natural join is defined recursively. According to 

the definition, two tuples contribute to the natural join if the extended 

intersection of their projections over common attributes is not empty. This 

extended natural join can be performed either between relations which have 

common attributes at the top level of their scheme or between relations whose 

only common attributes are attributes of a common higher-order attribute.  

However, the case where the common attributes, either atomic or relation-

valued, are at lower nesting levels, the same or different, in the two relations, 

is not covered. The extended projection is a normal projection followed by a 

tuplewise extended union of the result. The union merges tuples that agree on 

the zero-order names left in the projected relation. Finally, the selection 

operator is not extended. 

Roth, Korth and Silberschatz also show that PNF relations are closed under 

the extended operators. It is important to note that these operators can be 

applied to non-PNF relations as well. The result, however, is not always a PNF 

relation.  

The author of this thesis believes that this approach, proposed to provide a 

simple and simultaneously complete model for nested relational databases, 

has a number of limitations. These limitations concern firstly, the fact that the 

algebraic operators proposed in [RKS88] are defined in such a way that work 

within the class of PNF relations. Therefore, they are closed only under PNF 

relations. In general, the operators defined in [RKS88] are not closed. 

Secondly, some of the defined operations cannot be applied to subrelations of 

nested relations as is for example projection, selection, join and cartesian 

product operations. Consequently, there are cases that are not covered by this 

approach and as a result, advantages of nested based relational approaches 

are missed. 

2.2.3 Colby’s model 

A recursive algebra for nested relations is defined by Colby in [Col90]. The 

classical operators are extended with recursive definitions in order to be used 

with subrelations of relations as well as with relations. As a result, 

restructuring or other operators which would be used as a “navigator” are 
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avoided (as is for example the subrelation constructor in [DL91] which 

provides navigational ability; for more explanations about the subrelation 

constructor see below in Deshpande and Larson’s model). However, the nest 

and unnest operations are occasionally needed for accessing subrelations. 

Therefore, nest and unnest operations are defined recursively. The difference 

from nest and unnest operations defined in previous models is that they can 

be applied to subrelations directly, without transforming any other attribute of 

the relation. This is achieved by the assistance of a nest and an unnest list 

which are defined exactly for this purpose. 

Union, intersection and difference are defined in two different ways. In the 

first way, non-recursive definitions are used, exactly as in [TF86], where only 

entire tuples participate in the operations, but not subrelations. The second 

way involves recursive definitions similar to those defined in [AB84], [DL87] 

and [RKS88], where the operations can be applied recursively to the 

subrelations of the tuples that share common key attributes. However, the 

PNF assumption, defined in [RKS88], is not made. Selection and projection 

operations are defined using the notions of a select and a project list 

respectively. They can be performed recursively at all levels of a nested relation 

without restructuring.  

The cartesian product operation can be performed recursively between a 

relation and either another relation or a subrelation of another relation. 

Colby defines the join operation recursively, for two cases, firstly where the 

common subrelations are at the top level in both relations that participate in 

the join and secondly where the common attributes are atomic which, while 

not at the top level in the first relation, are at the top level in the second. The 

second case requires the use of a join path that behaves as the guide-line 

which penetrates the different nesting levels of the first relation. Colby also 

suggests that it does not make sense to perform a join operation between 

subrelations which are not at the top level of two different relations. However, 

it is shown below (Example 2.2) that this is not correct since there are cases 

where such a join operation is meaningful and can take place between two 

subrelations of two relations.  

Example 2.2: Consider the example database, which contains two 

relations, the TRAINING_2 relation (Fig. 2.3) and the DEPT_2 relation (Fig. 2.4) 

Both relations are modified versions of relations TRAINING_1 (Fig. 2.1) and 
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DEPT_1 (Fig. 2.2) respectively. Relation TRAINING_2 has the following scheme: 

TRAINING_2 = COMPANY TRAINER(TRN C (CN Y)). Relation DEPT_2 has the 

following scheme: DEPT_2 = D DN UNIT(UN UD C(CN Y)).  

 
    TRAINER    

COMPANY  TRN  C   

    CN Y   

          Jack  1 75   

Apple    2 76   

                                    1 82   

  Mark  3 82   

    2 79   

                                    3 82   

IBM  Tim  5 79   

    4 82   

                                Microsoft  Karen  2 77   

    2 81   

                
 Fig. 2.3: TRAINING_2 

 
  UNIT 

D DN  UN UD             C   

      CN Y   

                1 75   

   511 Software  2 76   

    Engineering  5 79   

                                        1 Research  552 Basic   1 82   

    Research  2 79   

                                           678 Planning  2 76   

      4 82   

                                           650 Design  1 75   

      2 77   

                                        2 Development  780 Maintenance  3 82   

                                           981 Planning  2 81   

      3 82   

                    Fig. 2.4: DEPT_2 

 
Suppose that we want to find the names of the trainers and the 

departments in which they have taught at least one course. The two relations 

have to be joined on attribute C which is a subrelation in both relations. 

Therefore, there are cases (although complicated) where the join operation 

between common subrelations not at the top level of two different relations 

should be performed and is really meaningful.  

Colby also demonstrates the equivalence of the recursive and the non-

recursive algebras. Finally, some limitations of the model are briefly discussed. 
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These limitations refer to the weakness of the presented recursive algebra to 

support arbitrary algebraic expressions in lists (select lists, project lists etc.) of 

the operators, such as comparisons of values of compatible attributes situated 

at different nesting levels in a relation. As a result, there are still cases where 

the use of nest and unnest operators is necessary. 

2.2.4 Deshpande and Larson’s model 

An algebra for nested relations is presented in [DL91] which is an improved 

version of the one proposed by Schek and Scholl ([SS86]). Non-recursive 

union, difference, select, cartesian product, project, subrelation constructor, 

rename and PNF-Transformer operators are defined first.  

Operations on subrelations at any level take place with the aid of a new 

operator called the subrelation constructor. The subrelation constructor can 

transform the interior of a nested relation.  

The PNF-Transformer operator transforms recursively a nested relation into 

a nested relation in Partitioned Normal Form (PNF). The select operator is 

extended to include set comparisons and relational algebra expressions over 

the relation-valued attributes. However, comparisons can only take place if the 

attributes that participate in the selection predicate are in the scope of the 

operand relation. As it is defined in [DL91], the scope of a pathname consists 

of all the other attributes which are “seen” as one traverses the path starting 

at the root of the scheme diagram of R and ending at the subrelation identified 

by the pathname.  

With the project operator, if the project list contains two or more relation-

valued attributes, the cartesian product of their instances is computed in the 

same tuple firstly and then the result relation is formed. 

In addition, set operators, project, join, nest and unnest are defined 

recursively. These operators preserve PNF. Consequently, they inherite the 

limitations discussed in section 2.2.2. 

Null values are also supported. 

Deshpande and Larson ([DL91]) briefly present a join operation for nested 

relations. It is defined formally using a non-recursive cartesian product 

operation for nested relations. 
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Aggregate functions are included in their algebra, as opposed to all the 

other proposed models. 

In order to keep the proposed algebra as simple as possible, they make 

some assumptions which restrict the expressive power of the model.  

Overall, it is this author’s opinion that this approach is incomplete since 

not all the different cases are taken into consideration under the pretext of 

simplicity, as has been explained above, as for example for the cases of the 

selection and join operations. In addition, the subrelation constructor 

overcomes some problems caused by the fact that the operators are not 

recursive, at the cost that occasionally this operator has to be invoked one or 

more times in the formulation of queries. Clearly, this invocation increases the 

execution time to answer queries. 

2.2.5 Levene’s model 

Levene in [Lev92] presents the nested Universal Relation Model (nested UR 

model) which forms an extension of the classical UR model to nested relations. 

Levene claims that the nested UR model provides logical data independence, 

since users can view the nested database as if it was composed of a single 

nested relation. Null values are also taken into consideration in the formalised 

proposed model. The nested UR model is defined using the tools provided by 

the null extended nested relational model which was defined earlier in [Lev92].  

For the null extended nested relational model, null extended domains and 

null extended relations are defined. A typical nested relation in the nested 

model proposed by Levene can be seen in Fig. 2.6, over the nested relation 

scheme (NRS) of Fig. 2.7. The nested relation TRAINING* corresponds to 

nested relation TRAINING_3 of Fig. 2.5.  

Note: In NRS, the names of the relation-valued attributes, like the names of 

the nested relations, are followed by *. 
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        TRAINER 

COMPANY  TRN  CODE ′  DEPT_DIVISION  

    CODE    

          Jack  xx0  Administration  

                                Apple  Mark  xy1  Development  

    xy2    

                                    xy1  Customer Services  

IBM  Tim  xx2    

                                Microsoft  Karen  xx1  Technical Support  

                Fig. 2.5: TRAINING_3 
 

         (TR? (CODE)*  DEPT_DIVISION)*  

COMPANY  TRN  (CODE)*  DEPT_DIVISION  

    CODE    

Apple  Jack  xx0  Administration  

  Mark  xy1 

xy2 

 Development  

IBM  Tim  xy1 

xx2 

 Customer Services  

Microsoft  Karen  xx1  Technical Support  

Fig. 2.6: TRAINING* relation in Levene’s model  

(corresponds to relation TRAINING_3 of Fig. 2.5) 

 

 

 

 

 

 

 

 

Fig. 2.7: The scheme tree of relation TRAINING* 

 

A null extended algebra for the null extended nested relational model is 

defined. One of the main features that the null extended algebra provides, is 

the fact that the user does not need to know the structure of the nested 

relations in order to express a query in that algebra. All the basic operators of 

the algebra are defined extensively. Additionally, three operators, the null 

extended join, the null extended outer join and the null extended total 

COMPANY 

CODE 

TRN DEPT_DIVISION 
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projection are defined as extended versions of the corresponding operators of 

the UR model to nested relations.  

The null extended join is more general than other previously defined joins 

for nested relations since it supports null values. However, according to the 

definition, not all relations can be joined together. In order to perform a join 

between two relations, the two relations must be joinable (joinable relations in 

Levene’s model are a generalisation of compatible formats (see [AB86]), since 

they are not restricted to have the same attributes in their root nodes). If not, 

two restructuring operations must be applied, namely empty node insertion 

and root weighting, which transform the schemes of the relations to joinable 

NRSs. Clearly, restructuring operations are expensive operations in terms of 

optimisation and aggravate the performance of already computationally 

complex join operations in nested relations.  Additionally, as shown in chapter 

4 of this thesis where the NRM is proposed, the join operation defined there 

can be applied to all nested relations having one or more common attributes, 

without the need of applying a restructuring operation prior to performing the 

join (see also section 2.2.1). Therefore, the use of restructuring operations in 

the definition of the join operation is estimated to be a limitation in Levene’s 

model. 

Levene also examines null extended data dependencies and more 

specifically null functional dependencies, null extended functional 

dependencies and null extended join dependencies. Following this, null 

extended lossless decomposition and the extended chase procedure for nested 

relations are also defined. Finally, the special case when the nested database 

consists of a single nested relation is investigated. 

Lastly, the motivation of [Lev92] is the solution of the problem of incomplete 

information; therefore, [Lev92] has to be evaluated from this point of view. 

Further, e ven the problem of defining the join operation of two nested relations 

is solved with the help of the insertion of empty nodes. The author of the 

present thesis estimates that this approach could be avoided. 

2.2.6 Liu, Ramamohanarao and Chirathamjaree’s model 

In [LR94a] and [LR94b], Liu and Ramamohanarao present an algebra for 

nested relations. The definitions of selection, projection and intersection are 
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extended to support nested relations. A natural join is defined for cases where 

the two relations have two common nested attributes at the top level. An 

extended cartesian product is defined which combines two relational operands 

with common higher-order attributes not only at the top level but also at the 

subschema levels. In addition, a path-dependent cartesian product is defined 

as an extension of the extended cartesian product, which is defined at the 

interior of the subschemes that are specified in the given paths. A new join 

operator, called P-join, is introduced as a combination of the extended natural 

join and a recursive join. Two versions of the P-join are distinguished: the P-

join operator with a single join path and the P-join operator with multiple join 

paths. These definitions are defined as a combination of three other nested 

relation operations: cartesian product, selection and projection. In their 

approach two nodes are selection-comparable when one of the two nodes is a 

child of an ancestor of the other node. The P-join operation can be performed 

only when the common attributes appear on selection-comparable nodes in 

the scheme tree of the relation which results from the execution of the 

cartesian product operation between the two relations which participate in the 

join operation (P-join condition). Therefore, the functionality of the join 

operation is very limited. Specifically, according to their Decomposition P-join 

definition (which is a different name for the P-join operator with multiple join-

paths) firstly, the two schemes must be decomposed into pairs of subschemes 

that satisfy the P-join condition. Then, the P-join operator is applied to each 

pair of subschemes that contain the common attributes and finally, the 

natural join is performed on the result relations. However, the subschemes of 

the same relation need to contain at least one common atomic attribute at 

their top level. Therefore, relations containing only nested attributes at the top 

level cannot be joined, even when they have one or more common attributes, 

as shown in the following example. 

Example 2.3: Relations R and Q in Fig. 2.8 have been borrowed from 

[LR94a], where a join operation is illustrated. Now, it is noticed that if the two 

relations do not contain any atomic attribute at the top level of their schemes, 

i.e. the attributes A and I from relations R and Q respectively, then, the join 

operation cannot be performed since it is not possible to decompose each 

relation such that the intersection of all subschemes contains at least one 



   

 

 
 
32 

common atomic attribute at the top level to fulfil the condition that must hold 

according to the formal definition of the Decomposition P-join operation. 

 

R 

 

     A        X          Y              U 

 

      B   C   Z      D    E              K 

 

                  I      J 

 

Q 

 

   I  Y′           V 

 

     D       F      K      G       

Fig. 2.8: Schemes of relations R and Q as can be found in [LR94a] 

 

Liu and Chirathamjaree in [LC96] revise the P-join operator proposed in 

[LR94a] and present an algorithm that computes the P-join operator. They also 

evaluate its estimated cost. 

In the opinion of the author of this thesis, the approach, whose main 

motivation is to give a more efficient and powerful definition of the join 

operation for nested relations, provides a restricted and complicated approach 

to the problem. The conditions that must be satisfied: i) selection-comparable 

nodes applied to the common attributes and ii) atomic attributes at the top 

levels in both relations that participate in the join, as well as the fact that the 

case when the common attributes are nested attributes either at the top or 

lower levels of the two relations, whether the same or different, is not 

discussed, provide a restricted way of performing the join operation. 

2.3 Temporal Models 

Current approaches to the management of temporal data can be categorised 

by reference to the following characteristics: 
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1) The time at which a piece of data is estimated to be true in the real world 

is called valid time. A relation, in which both data and its time of validity is 

recorded, is called a historical relation. It has been the subject of extensive 

research principally by [Cli82], [CC87], [Gad88], [LJ88b], [TG89] and [Sar90]. 

The time at which a piece of data is stored in a relation is called transaction 

time. If both this data and its transaction time are recorded in a relation then 

this relation is called a rollback relation ([SA86]).  

If both valid and transaction times are recorded in a relation, the relation is 

called a bitemporal relation ([Sno87], [MS91], [Gad92]) (for more about valid 

time and transaction time see section 3.3.1). 

2) Temporal database proposals are characterised by the alternative of 

associating timestamps with tuples or with individual attributes. Therefore, 

temporal models are divided into two categories: tuple timestamping and 

attribute timestamping. In tuple timestamping ([Ahn93], [Sar90]) each tuple 

is augmented by one or two attributes for the recording of timestamps. One 

additional attribute can be used to record either the time point at which the 

tuple becomes valid or the time at which the data is valid. Two additional 

attributes are used to record the start and stop time points of the 

corresponding time interval of validity of the corresponding data. This is 

discussed further below, in point 4 of this section.  

The alternative is attribute timestamping ([Tan86], [Gad92]), when the time 

is associated with every attribute which is time-varying. Note that it is not 

necessary for every attribute to be time-varying in an attribute timestamping 

approach. Consequently, a history is formed for each time-varying attribute 

within each tuple. As a result, the degree of the relation is reduced by one or 

two compared with the tuple timestamping equivalent relation since 

timestamps are part of the attribute values (for more about tuple 

timestamping and attribute timestamping relations see section 3.3.2). 

Temporal relations can also be divided into 1NF relations ([Sar90]) and 

N1NF relations ([TG89]). Commonly tuple timestamping relations are 1NF, 

whereas attribute timestamping relations can form N1NF relations, or using 

different words, nested relations. 

In Fig. 2.9 a relation is represented in tuple timestamping format while in 

Fig. 2.10 the same data is represented using attribute timestamping format. 
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COMPANY TRN CN PERIOD 

Apple Jack 5.2 [2/11/1994, 25/4/1995) ∪ [7/8/96, 1/1/2010) 

Apple Mark 3.3 [2/1/1992, 8/11/1996) 

Apple Mark 3.5 [30/4/1995, 1/1/2010) 

IBM Tim 5.2 [19/3/1997, 21/4/1997) 

IBM Tim 5.0 [17/12/1995, 1/1/2010) 

Microsoft Karen 3.3 [25/6/1996, 1/1/2010) 

Fig. 2.9: Relation T_TRAINING in tuple timestamping format 

 

COMPANY TRN CN 

Apple [2/1/1992, 1/1/2010) Jack [2/11/1994, 25/4/1995) ∪ [7/8/1996, 

1/1/2010) 

Mark [2/1/1992, 1/1/2010) 

5.2 [2/11/1994, 25/4/1995) ∪ [7/8/1996, 

1/1/2010) 

3.3 [2/1/1992, 8/11/1996) 

3.5 [30/4/1995, 1/1/2010) 

IBM [17/12/1995, 

1/1/2010) 

Tim [17/12/1995, 1/1/2010) 5.2 [19/3/1997, 21/4/1997) 

5.0 [17/12/1995, 1/1/2010) 

Microsoft [25/6/1996, 

1/1/2010) 

Karen [25/6/1996, 1/1/2010) 3.3 [25/6/1996, 1/1/2010) 

Fig. 2.10: Relation T_TRAINING in attribute timestamping format 

 

3) Temporal database systems can be homogeneous or heterogeneous. A 

temporally homogeneous ([Gad88]) database is a database which is 

restricted to having temporal relations in which the lifespans of all attribute 

values – i.e. the time over which they are defined- in every tuple are identical. 

Models that employ tuple timestamping rather than attribute timestamping 

are necessarily temporally homogeneous since only temporally homogeneous 

relations are possible. It is obvious that homogeneous tuples are a subclass of 

heterogeneous tuples where the attributes in each tuple are defined over the 

same time period. 

In a database with a temporally heterogeneous relational data model the 

lifespans of the attribute values in each tuple can be different ([JJ92]).  

4) Temporal databases can also be characterised by the way time is 

expressed. Two basic approaches have been proposed. The first is to record 

time at two attributes, Start and Stop, which represent the boundary points 

of each attribute or tuple’s interval of validity ([Ben82], [Sno87]). 

In the second approach, time is recorded in just one attribute as an 

interval ([Lor88]). 

Fig. 2.9 shows a relation where time is represented in terms of union of time 

intervals (PERIOD attribute) in contrast to Fig. 2.11 which uses start and stop 

points to represent the same time data. 
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COMPANY TRN CN START STOP 

Apple Jack 5.2 2/11/1994 25/4/1995 

Apple Jack 5.2 7/8/1996 1/1/2010 

Apple Mark 3.3 2/1/1992 8/11/1996 

Apple Mark 3.5 30/4/1995 1/1/2010 

IBM Tim 5.2 19/3/1997 21/4/1997 

IBM Tim 5.0 17/12/1995 1/1/2010 

Microsoft Karen 3.3 25/6/1996 1/1/2010 

Fig. 2.11: Relation T_TRAINING where time is represented as two attributes, 

START and STOP 

 

In the relation T_TRAINING in Fig. 2.11 stop points correspond to the end 

points of the intervals in PERIOD attribute of the relation in Fig. 2.9. 

 

In the next sections, various temporal database models are presented and 

discussed. However, the discussion is restricted only to those models that 

support valid time because transation time is beyond the objective of the 

present thesis. 

2.3.1 Tansel’s model 

Tansel has produced many papers over the last 15 years, presenting new 

temporal database models. His interest is focused particularly on the area of 

N1NF attribute timestamping models.  

In his first model ([CT85], [Tan86], [Tan87] and [TAO89]), N1NF relations 

with a maximum of one nesting level are supported. A relation can contain 

four different types of attributes: atomic, set-valued, triplet-valued or set 

triplet-valued attributes. In the last two types of attributes, attribute values 

are stored along with either time points at which these values are obtained or 

time intervals over which these values are valid. Pack, unpack, triplet-

formation and triplet-decomposition operations are defined to manipulate 

historical relations and together with the basic operations of the relational 

algebra form the elementary operations of the new proposed historical 

relational algebra. In addition, drop-time and slice operations are defined in 

terms of the elementary operations. The new operations transform one 

attribute type to another or apply a version of the selection operation to the 

time domain of a time-varying attribute respectively. Historical relations are 
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first normalised and then algebraic and calculus operations are applied 

([Tan86]).  

Aggregation operations for historical relational databases are discussed in 

[TA86] and [Tan87]. The aggregate formation operation, which has been 

defined by Klug in [Klu82] for N1NF relations, is also used by Tansel. The 

aggregate formation operation partitions the relation so that all tuples in the 

same partition have the same value for a specific attribute and then, the 

aggregate function is applied to each of these partitions. A new operation is 

defined, named enumeration, which returns the relation instance of a 

historical relation at a specified time period. Aggregate functions can be 

directly applied to the result of the enumeration operation.  

In [TG89] a temporal database model supporting nested relations is 

informally defined. The unnest, nest, projection, union, difference, 

intersection, cartesian product, selection, join, slice and transfer-time 

operations of the historical relational algebra are briefly described but formal 

definitions are not given for any of these operations. Structuring of nested 

historical relations is reviewed and the equivalence between attribute 

timestamping and tuple timestamping relations is discussed. Although in 

[TG89] the model supports the general case, where nested relations can have 

arbitrary levels of nesting, it is presented in a very informal way.  

In [TT97] a non-homogeneous, N1NF model is presented where only one 

level of nesting is allowed. A nested relational tuple calculus, called NTC, is 

defined. NTC is compared to other temporal query languages in order to show 

the ascendancy of its expressive power over the other languages.  

His most recently proposed temporal database model is presented in 

[Tan97]. This model is the most complete published so far and eliminates 

some of the shortcomings that previous versions presented by Tansel had 

suffered from and for this reason it is now discussed in detail. 

Tansel in [Tan97] proposes a temporal, attribute timestamping relational 

data model where N1NF relations are allowed and only valid time is involved. 

Relations in the model can have arbitrarily many levels of nesting. Non-

homogeneous relations are also allowed in the model. Time is attached to 

every time-varying attribute forming temporal atoms with the corresponding 

temporal data values. Therefore, temporal atoms are ordered pairs of the form 

<t, v>, where v is an attribute value and t is either a temporal set or a time 
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interval and it denotes the time period t for which v is valid. Fig. 2.12 shows 

relation T_TRAINING in Tansel’s model representation.  

 

  TRAINER 

COMPANY TRN CN-H 

  CN 

Apple Jack 

Mark 

<{[2/11/1994, 25/4/1995) ∪ [7/8/1996, 1/1/2010)}, 5.2> 

<{[2/1/1992, 8/11/1996)}, 3.3> 

<{[30/4/1995, 1/1/2010)}, 3.5> 

IBM Tim <{[19/3/1997, 21/4/1997)}, 5.2> 

<{[17/12/1995, 1/1/2010)}, 5.0> 

Microsoft Karen <{[25/6/1996, 1/1/2010)}, 3.3> 

Fig. 2.12: Relation T_TRAINING in Tansel’s model 

 

In [Tan97] a temporal relational calculus which has been previously 

proposed in [TT97] is described and a temporal relational algebra is presented. 

Formal definitions for the selection, unnesting, nesting, temporal atom 

decomposition, temporal atom formation, slice, drop-time and diagonalisation 

operations are given.  

A temporal atom decomposition operation creates a new relation from the 

original relation, with its degree increased by one, where one attribute 

containing temporal atoms is split into two attributes, one containing the 

temporal data and the other the corresponding attribute values.  

Temporal atom formation is exactly the opposite operation, where the 

degree of the result relation is reduced by one compared to the original 

relation and a new attribute is created consisting of temporal atoms by 

combining two different attributes of the original relation, one consisting of 

atomic attribute values and the other of temporal sets.  

The slice operation is a modified version of the slice operation that has been 

defined in [CT85]. It creates a new relation from the original relation, where 

the temporal set part of one attribute is combined with the temporal set part of 

another attribute by computing their union, intersection or difference. 

The drop-time operation, as the name denotes, derives a new relation from 

the original one, where the temporal set part of an attribute containing 

temporal atoms is “dropped”. Thus, the specific attribute is converted from a 

temporal one to a static one. 
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The diagonalisation operation returns a new relation consisting of two 

copies of the original relation, one next to the other, so that one copy serves as 

a key to the other copy. 

Definitions for the union, intersection, difference, projection and cartesian 

product operations are not given, since they are exactly the same as in the 

relational algebra. Tansel in [Tan97] claims that the definition of the join 

operation can be derived from other elementary operations of the temporal 

relational algebra, as in the case of the traditional relational algebra. For this 

reason the join definition is omitted from [Tan97]. However, in the opinion of 

the author of this thesis this is a major omission from the presented model, 

since the join operation for temporal attribute timestamping N1NF relations is 

much more complicated than the traditional join operation. It requires a 

detailed study for a formal and complete definition in order to cover all the 

different cases that can arise in connection with the type of the common 

attributes that participate in the join operation and the nesting levels at which 

the common attributes are found (see section 5.3.11).  

The equivalence of the temporal relational calculus and the temporal 

relational algebra is also proved.  

In addition, two operations transforming the structure of the nested 

temporal relations are defined, named branch unnest and branch nest 

operations. The two operations convert nested temporal relations to 1NF 

relations and vice versa. Tansel claims that the two operations are inverses of 

each other.  

The collapse operation is another operation defined in [Tan97]. This 

operation has been introduced to solve the problem of producing weak 

relations. The collapse operation merges tuples that are the same, after 

applying drop-time operations to all the attributes of the relation that consist 

of temporal atoms. The temporal sets of these tuples are computed by taking 

the union of the temporal sets of the merged tuples. As a result, weak 

relations are transformed to standard relations.  

Collapsed versions of the set operations are also defined. More specifically, 

notations for collapsed union, collapsed intersection and collapsed difference 

are given. These operations apply set operations on the temporal set 

components of tuples in the operand relations in case they have the same 

static tuple. These operations produce standard nested temporal relations only 
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when they are applied to standard nested temporal relations. Otherwise, they 

produce weak relations. Besides, the operand relation must contain at least an 

atomic attribute at the top level to play the role of a key since these operations 

are intended to work on the whole data of an object.  

Collapse, slice and drop-time operations are redundant operations, since 

they can be derived from other basic operations; however, they are included in 

[Tan97] since they are convenient and useful.  

Aggregate functions are not included in [Tan97]. Moreover, Tansel does not 

provide a detailed presentation of predicates for the manipulation of temporal 

data.  

Temporal query languages for the nested temporal relations, 

implementation issues and query investigation are not included in [Tan97].  

Overall, in the author’s opinion, the model is the most complete attribute 

timestamping model presented. Undoubtedly, the researcher has a wide 

experience of the subject, since his research started formally more than 15 

years ago and he is one of the pioneers in defining attribute timestamping 

models. However, the model has some shortcomings which have been 

mentioned above. A fuller evaluation of the features of this model is given in 

chapter 8. 

2.3.2 Gadia’s model 

Gadia has a parallel activity with Tansel. His first paper about temporal 

databases ([GV85]) appears at about the same time as Tansel’s ([CT85]). Since 

then, he has written more than one dozen of papers concerning a new 

relational temporal database model and a query language. 

Gadia emphasises the homogeneity property. In all his papers N1NF 

attribute timestamping relations are used.  

In [GV85] a query language, called HTQUEL, is presented for a temporal 

model proposed by Gadia in [Gad88] (it appeared in the literature 3 years 

later). His homogeneous temporal relational database model is defined as a 

temporal parameterisation of static relations. Attribute values are represented 

as single valued functions of time. The temporal element is the basic data type 

to model time in his approach. He also introduces the notion of a temporal 

assignment to express the changing value of an attribute with time. According 
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to his definition, a temporal assignment to an attribute is a function from a 

temporal element into the domain of that attribute. Gadia’s temporal 

assignment corresponds to Tansel’s set-triplet-valued assignment. Key 

attribute values in a tuple of a relation in his model do not change with time 

(see also [Gad92]). The author of this thesis believes that this is a significant 

limitation of this particular model since there are cases in the real world to be 

modelled where key attributes change with time. For an example of a case 

where the key attribute of a relation is time-varying see Fig. 2.13. 

Semantically, the relation in Fig. 2.13 shows the addresses of a number of 

people. The first two tuples of the relation represent the same person. 

However, the change of the name is due to the fact that this person got 

married and so her name changed. Therefore, the key attribute, NAME, is a 

time-varying attribute. 

 

NAME ADDRESS 

Anna Black [d1, d6) 

 

52, Ladbroke Grove  [d1, d3) 

11, Homer Street [d3, d6) 

Anna Scott [d6, d10) 34, Regent Square  [d6, d10) 

Tom Thomas [d3, d10) 20, Holland Park  [d3, d10) 

Fig. 2.13: A relation where the key attribute (NAME) changes with time 

 

An example of a relation in Gadia’s model is shown in Fig. 2.14. It must be 

noted that future time is not supported in Gadia’s model since he assumes in 

[GN98] that “the universe of time consists of an interval [0, NOW] of instants 

with a linear order ≤ on it. NOW denotes the current instant of time”. 

Therefore, the future time point ‘31/12/2009’ is replaced by ‘NOW’ in Fig. 

2.14. 

 

COMPANY TRN CN 

[2/1/1992, NOW] Apple [2/11/1994, 24/4/1995] ∪ [7/8/1996, NOW] Jack 

[2/1/1992, NOW] Mark 

[2/11/1994, 24/4/1995] ∪ [7/8/1996, NOW] 5.2 

[2/1/1992, 7/11/1996] 3.3 

[30/4/1995, NOW] 3.5 

[17/12/1995, NOW] IBM  [17/12/1995, NOW] Tim [19/3/1997, 20/4/1997] 5.2 

[17/12/95, NOW] 5.0 

[25/6/1996, NOW] 

Microsoft 

[25/6/1996, NOW] Karen [25/6/1996, NOW] 3.3 

Fig. 2.14: Relation T_TRAINING in Gadia’s model 
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A relational algebra and a tuple calculus are presented for this model 

([Gad88]) and their equivalence is proved. All the relational algebraic 

expressions are defined recursively.  

The notion of weakly equal relations, which has been introduced in 

[Gad86b], is used throughout his papers. This definition is based on the fact 

that when two temporal relations have the same snapshots then, in a way, 

their information content is the same. Snapshots are very important in Gadia’s 

model, since temporal databases are considered as time-varying static 

databases. Therefore, snapshots are considered as basic building blocks to his 

model and are used to extend properties of static relations to their temporal 

counterparts. However, it is arguable that the concept of snapshots may cause 

a wrong impression by suggesting that there is a certain implicit structure in 

every temporal relation. 

A temporal selection operation is introduced in [Gad86b]. It is the natural 

restriction of a relation to a temporal element. Temporal selection is similar to 

the slice operation introduced by Tansel in [TG89]. 

As mentioned above, Gadia’s model is a homogeneous model. His basic 

argument for the homogeneity requirement is that the snapshot relation of a 

homogeneous relation is a static relation without nulls. However, this is only 

the case when the corresponding snapshots relations are in 1NF. When N1NF 

relations are supported nulls can be omitted from snapshots naturally. Gadia 

admits that the homogeneity assumption causes many problems. He mentions 

in [Gad86a]: “The homogeneity requirement is a severe restriction in modelling 

real life situation”. In addition, in a homogeneous model, the cross product 

operation is a limited version operation since it can be applied only to 

homogeneous tuples. For that reason, he introduces the multihomogeneity 

assumption ([Gad86a]), where a relation consists of a finite set of schemes and 

each tuple is homogeneous in each of these schemes. Gadia claims that 

multihomogeneous models can model a significant part of the real world. 

However, it is undoubtedly true that multihomogeneity, although it is more 

powerful than homogeneity, is more restricted than heterogeneity since the 

latter forms the general case and can model the real world without any 

limitation. 

The temporal database model presented in [Gad88] is generalised in [GY88] 

to support N orthogonal temporal dimensions. A discussion is also given about 
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how to give a precise classification of errors and updates. A kind of 

restructuring operation is also introduced, which changes the key of a relation 

to create a new relation weakly equal to the one from which it is derived.  

In [GY91], a N1NF tuple calculus is introduced, called TCAL, based on 

Gadia’s N1NF homogeneous temporal model. TCAL is compared to the 1NF 

tuple calculus TQuel, which has been proposed by Snodgrass in [Sno87]. 

Gadia argues that TCAL is more powerful than TQuel. 

Gadia in [GNP92] describes informally the restructuring, union, difference, 

projection, selection and cross product operations. However, the most 

important and also most complicated operation, the join operation, has not 

been studied in detail, in any of his papers. Besides, in [GNP92], an 

incomplete model is introduced as a generalisation of the complete information 

temporal database model which has been presented in [GY88].  

In his recent paper ([GN98]), Gadia uses the temporal model that was 

defined in his earlier papers and which has been described above, to discuss 

algebraic identities and query optimisation. The model is called a parametric 

model since databases in it can be viewed as a parametrisation of classical 

databases. In [GN98], homogeneous relations are divided into two categories: 

unihomogenous and multihomogeneous relations. Unihomogeneity is when 

the parametrisation of classical databases is with respect to a single time line 

and multihomogeneity with respect to more than one time line. Gadia’s model 

is unihomogeneous from that point of view. The relational operators for the 

model are described but not all of them are formally defined. The projection 

operation needs special attention, since there are two cases: the internal 

projection and the user projection, depending on whether the resulting 

projected relation contains a key or not. This is a consequence of the fact that 

in the parametric model keys play a critical role since a user thinks in terms of 

relations that have keys. In addition, the natural join is briefly described for 

the first time. With regard to the cross product operation only a restricted 

version is discussed, the unihomogeneous cross product.  

Future time is not taken into consideration in any of his papers. 

As mentioned above, in Gadia’s model relations are in N1NF. Relations 

having more than one nesting level are not discussed at all, in any of his 

papers.  
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Generally, the model proposed by Gadia provides a limited representation 

capability and lacks flexibility for the following reasons: 

§ only one nesting level is supported, 

§ it is homogeneous, 

§ null values are not supported, 

§ relational operators are not formalised, 

§ the join operation is not defined. 

Therefore, in the author’s opinion it is incomplete. 

2.3.3 Clifford’s model 

Clifford was another pioneer in the area of temporal databases and the first 

to suggest incorporating the time dimension at the attribute level. 

Unfortunately, his sudden death signified the end of an important line of 

research in this field.  

His first paper appeared in 1982 ([Cli82]). In [CW83], a formal theory (the 

Historical Database Model-HDBM) of database semantics that includes time is 

developed as well as a calculus-based query language. The formulation of an 

intensional logic is used for this purpose. The tuples of relations are 

timestamped with the help of a new attribute named STATE. In addition, a 

special Boolean-valued attribute, EXISTS?, is introduced to indicate which 

entities exist or not at any given state. The two new attributes are not ordinary 

attributes, but are built-in parts of the model.  

HDBM is explored further in [CT85] but this time from the operational point 

of view using a relational algebra. The temporal dimension is incorporated into 

the model at the attribute level. Relations are in N1NF since attributes that are 

time-varying have complex domains. Attributes can be either constants, time-

varying or temporal. However, key attributes in a relation must be constant. In 

addition, each relation has a lifespan related to it. The lifespan represents the 

time period over which the objects are being modelled in the relation. An 

example relation in Clifford’s model is given in Fig. 2.15. 
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LAWYER STUDIO SALARY lifespan 

Howell 1924 MGM 
1930 Paramount 

1939 MGM 

1924 30000 
1925 35000 

1926 ? 
1937 40000 

1938 ? 

{[1924, 1939]} 

Rosen 1912 Universal  
1923 Warner Br 

1930 ? 
1945 Rko 

1945 70000 
1946 ? 

1952 80000 

{[1912, 1952]} 

Mcmanus 1923 Warner Br 1923 35000 
1924 ? 

1926 40000 

{[1923, 1926]} 

Fig. 2.15: Relation LAWYERS in Clifford’s model ([CC87]) 

 

A discussion about various problems that arise when trying to define 

relational operations for historical databases is presented. More specifically, 

projection, selection, time-slice, join and when operations are discussed and 

examples are presented where the problems are demonstrated.  

Formal definitions of these operations have been provided in [CC87]. Four 

different kinds of join are examined: T -join, equijoin, natural-join and time-

join. All attributes are functions from time points to simple domains with the 

assignment of a lifespan to each attribute. Besides the lifespan of each 

attribute, each tuple is assigned a lifespan, too. Union, intersection and 

difference are defined over merge-compatible relations. Two relations are 

merge-compatible when they are union-compatible and at the same time, they 

have the same key. Depending on whether a historical relation is to be 

reduced to the value or the time dimension, two versions of the selection 

operation are defined, the select-if and the select-when operations respectively. 

Likewise, time-slice has two variations, static and dynamic. The static version 

returns a relation reduced to tuples consisting of those parts (of the tuples) 

defined over a specified lifespan. In contrast, in the dynamic version, lifespans 

for each tuple are not specified but are determined by the set of times that a 

specified attribute for that tuple maps to. The when operation returns the set 

of times during which a specific condition is satisfied in a given relation.  

Clifford argues that tuple and attribute lifespans provide time-varying data 

and schemes in the model and a “suitable level of user control over the 

temporal dimension of the data”. However, in the author’s opinion, this model 

generates many problems. Assume that it is intended to represent the data of 

relation T_TRAINING (Fig. 2.9) in Clifford’s model. After careful consideration it 

can be seen that this is not feasible, since in his model, all values of the 
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attributes in a relation are viewed as functions from time points to simple 

domains. Therefore, since in this particular example each company may have 

employed more than one trainer at the same time and since each trainer may 

teach more than one course for overlapping periods of time (which is a logical 

assumption), the entire history of each trainer could not have been recorded in 

just one tuple but, on the contrary, can only be represented by a series of 

tuples. In the general case, since attribute values are functions from a lifespan 

on to a value domain, Clifford’s model is effective only when there is a one-to-

one relationship between the key attributes’ values and each other attribute 

value for the same time in each tuple. This contradicts one of the main 

reasons for representing data in a relation using attribute timestamping 

approach, since data related to a single object is not represented in the same 

tuple but on the contrary, is split into different tuples. Consequently, relation 

T_TRAINING could be expressed in Clifford’s model but in a way that is 

impractical and to no real benefit. To demonstrate this, part of the 

T_TRAINING relation represented in Clifford’s model is shown in Fig. 2.16, 

where the problems that appear with this kind of representation are obvious. 

In addition, the key of such a relation is not easy to define, since key 

attributes in HRDM must be constant-valued. Even if it is assumed that the 

COMPANY attribute is constant-valued, the key for the relation could not be 

that attribute, because of the previous comment that the entire history of an 

object (in this specific case, the COMPANY object) would be split up in many 

tuples (see Fig. 2.16).  

 

COMPANY TRN CN lifespan 

Apple 2/11/1994  Jack 

25/4/1995  ? 

7/8/1996  Jack 

2/11/1994  5.2 

25/4/1995  ? 

7/8/1996  5.2 

{[2/11/1994, 24/4/1995] ∪ [7/8/1996, 31/12/2009]} 

Apple 2/1/1992  Mark 2/1/1992  3.3 {[2/1/1992, 7/11/1996]} 

Apple 2/1/1992  Mark 30/4/1995  3.5 {[2/1/1992, 31/12/2009]} 
. 
. . 

. 

. . 
. 
. . 

. 

. . 
Fig. 2.16: Relation T_TRAINING in Clifford’s model 

 

Therefore, HRDM has a limited capability and expressiveness. Also, one 

contradiction is the fact that, although key attributes must be constant-

valued, a lifespan is also assigned to them. In fact, every attribute must have a 
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lifespan associated with it, even if that attribute is constant or temporal, a 

statement which is also a contradiction. 

Clifford’s research in temporal databases continues in [CCT94] where two 

categories of historical database models are defined, temporally grouped and 

temporally ungrouped models, to distinguish between the two different 

modelling capabilities achieved by incorporating the temporal dimension at the 

tuple level or at the attribute level respectively. Temporally grouped models are 

those models which represent data in groups of related temporal values, while 

temporally ungrouped models cannot support this kind of grouping. Therefore, 

temporally ungrouped models are 1NF models; however, temporally grouped 

models are not fully N1NF models but only in the way they incorporate the 

temporal dimension. Clifford proposes the corresponding notions of historical 

relational completeness for each of these two categories. 

Clifford shows that temporally ungrouped models can only have the same 

expressive power as the temporally grouped models if they are extended with a 

grouping mechanism; otherwise they are less expressive than temporally 

grouped models. This grouping procedure adds a special attribute to an 

ungrouped relation. The new attribute assigns a kind of identity to each tuple, 

which is why it is called a “group-id attribute”. Three different languages are 

defined for the temporally ungrouped models: a temporal logic, a logic with 

explicit reference to time and a temporal algebra. He relaxes the previous 

assumption he has made for the HRDM that key attributes must be constant-

valued, by assuming that key attributes need not be constant over time. 

However, the key notion in temporally ungrouped models creates many 

problems, for example, without knowledge of the key, tuples which describe 

the same object cannot be grouped together, since there is no way to associate 

them. In addition, if the key is not required to be constant over all times (and 

there is no reason to require this), there would be no way at all to group 

related tuples (i.e., tuples describing the same object) ([CCT94]). For the 

temporal algebra the following operators are defined: select, project, cartesian 

product, set difference, union, future linear recursive operator and past linear 

recursive operator. Future and past linear recursive operators are needed to 

be able to simulate until/since operators in temporal calculus. The definition 

of the temporal join operation is omitted since it is said that it can be 

expressed in terms of cartesian product, select and project operators.  
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Temporally grouped models include the temporal component in their 

structures directly. Temporally grouped completeness is defined with the 

support of the Lh calculus. Lh is reduced to the standard relational calculus 

when the temporal dimension is not included in the model. The HRDM is a 

temporally grouped data model. However, it is not temporally grouped 

complete, since there are queries which cannot be expressed in an equivalent 

expression of the HRDM algebra. In [CCT94], Clifford shows that temporally 

grouped and temporally ungrouped models do not provide the same modelling 

and querying capabilities and that temporally grouped models have 

supremacy over temporally ungrouped models. He concludes by saying that 

there is no complete algebra defined for a temporally grouped data model. 

Clifford’s work for temporally grouped and ungrouped models is developed 

further in [CCGT95]. An algebra for a temporally grouped inhomogeneous –i.e. 

where the homogeneity assumption is relaxed- and multisorted –i.e. it allows 

attribute values of all three sorts: user-defined time, time-invariant and time-

variant attributes- model is defined. The standard relational operators, union, 

difference, cartesian product, projection and selection, are extended to support 

the temporal dimension. In addition, two active -domain operators, the tdom(R) 

and vdom(R), which compute the temporal and value domains of a relation R 

respectively, as well as the timeslice operator which restricts the lifespans of 

attributes that are functions from time points to simple domains, are defined. 

Coalescing and restructuring notions are also discussed ([CCGT95]). The 

coalescing operation merges in one tuple snapshot equivalent tuples. In 

[CCGT95] it is reported that this operation is meaningless in temporally 

grouped models.  In this author’s opinion this is incorrect, since there are 

cases, especially after the execution of an operation or a series of operations, 

where coalescing is necessary in order to “coalesce” tuples into a single tuple.  

A regrouping operation for temporally grouped relations is also discussed. 

An important comment is made in [CCGT95], that the regrouping operation 

from one attribute to another is possible only when each one functionally 

determines the other. It is also said that regrouping is not a useful operation 

for temporally grouped relations and that is why it is not formally defined. 

However, in the opinion of the author of this thesis, there are cases where the 

regrouping operation is needed, as can be seen in chapter 6 of this thesis (e.g. 

Query 17). 



   

 

 
 
48 

Finally, in [CCT96] several examples are given in order to demonstrate the 

differences between temporally grouped and temporally ungrouped models 

when updating and querying data. This paper also repeats the claim for the 

supremacy of temporally grouped models over temporally ungrouped models. 

2.3.4 McKenzie’s model 

McKenzie extends the relational algebra to support both temporal 

dimensions, valid time and transaction time ([Mck88]). In this review, only 

valid time will be discussed, since transaction time is not examined in this 

thesis and it has been proved by many researchers that the two aspects of 

time are orthogonal and can be studied separately.  

McKenzie defines a historical algebra supporting valid time by extending the 

snapshot algebra. The design decisions made in order to define this algebra 

can be summarised to the following points: 

§ valid time is associated with attributes, 

§ valid time is represented as a set of chronons, 

§ attributes’ value parts must be atomic-valued, 

§ attributes’ valid time parts may be set-valued (relations are not 

necessarily in 1NF), 

§ timestamps of attributes in a given tuple may be different (non-

homogeneous relations), 

§ traditional relational operators have been extended to support valid 

time directly, 

§ temporal nulls are allowed for some attributes of a given tuple; however, 

not all attributes of a given tuple can contain temporal nulls 

simultaneously, 

§ no two tuples of a given relation can be value equivalent (value-

equivalence property). 

In Fig. 2.17, an example of a relation in McKenzie’s model is shown. 
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COMPANY TRN CN 

Apple {2/1/1992, 3/1/1992, …, 31/12/2009} Jack {2/11/1994, 3/11/1994, …, 24/4/1995,  

7/8/1996, 8/8/1996, …, 31/12/2009} 

5.2 {2/11/1994, 3/11/1994, …, 24/4/1995,  

7/8/1996, 8/8/1996, …,  31/12/2009} 

Apple {2/1/1992, 3/1/1992, …, 31/12/2009} Mark {2/1/1992, 3/1/1992, …, 31/12/2009} 3.3 {2/1/1992, 3/1/1992, …, 7/11/1996} 

Apple {2/1/1992, 3/1/1992, …, 31/12/2009} Mark {2/1/1992, 3/1/1992, …, 31/12/2009} 3.5 {30/4/1995, 1/5/1995, …, 31/12/2009} 

IBM {17/12/1995, 18/12/1995, …, 31/12/2009} Tim {17/12/1995, 18/12/1995, …, 31/12/2009} 5.2 {19/3/1997, 20/3/1997, …, 20/4/1997} 

IBM {17/12/1995, 18/12/1995, …, 31/12/2009} Tim {17/12/1995, 18/12/1995, …, 31/12/2009} 5.0 {17/12/1995, 18/12/1995, …, 31/12/2009} 

Microsoft {25/6/1996, 26/6/1996, …, 31/12/2009} Karen {25/6/1996, 26/6/1996, …, 31/12/2009} 3.3 {25/6/1996, 26/6/1996, …, 31/12/2009} 

Fig. 2.17: Relation T_TRAINING in McKenzie’s model 

 

From the above example it can be easily seen that McKenzie’s model suffers 

from some disadvantages. One of the main weaknesses of his model is the 

redundancy caused by the value parts of attributes not be ing set-valued. 

Another problem is caused by the representation of time as a set of chronons. 

As shown in Fig. 2.17 where time is represented in days, the listing of all the 

days of an interval can be inappropriate when time intervals represent a long 

length of time.  

Formal definitions for union, difference, cartesian product, selection and 

projection operations are provided as simple extensions of the corresponding 

operations of the snapshot algebra for snapshot relations with the addition of 

the appropriate treatment of the timestamps of the corresponding attributes. 

The projection operation has two versions: projection on a subset of attributes 

(the traditional projection operation) and projection on expressions, where 

tuples are projected on new attributes. The closure property of the projection 

operation is maintained with the restriction that tuples having empty valid 

component for all tuple components are removed. Therefore, the projection 

operation defined in [Mck88] is not an information nonloss operation. 

A new operator is defined, called the historical derivation operator, as a 

combination of temporal selection and projection on the timestamps of the 

tuples’ attributes. Specifically, for each tuple a new valid time component is 

calculated for each attribute as a function of specific intervals in the 

timestamps of the tuples’ attributes.  

Aggregation and unique aggregation are the two operators defined to 

compute aggregates, i.e. a summary of data contained in a given relation. 

Historical intersection, T -join, historical natural join and quotient are 

formally defined in terms of the union, difference, cartesian product, selection, 

projection and derivation operators and examples are given. 
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The historical algebra is defined so as to satisfy as many of the list of 29 

evaluation criteria which are defined in [Mck88]. All but 3 of these criteria are 

also presented and discussed in detail in [MS91] where it is argued that “they 

are well defined, have an objective basis for being evaluated and are arguably 

beneficial”. A more extended discussion of these criteria can be found in 

chapter 8 of this thesis. 

The possibility of extending the algebra to support set-valued attributes is 

also discussed. McKenzie proposes to use the approach presented in [SS86], 

where an algebra to support N1NF relations is defined as an extension of the 

snapshot algebra. The operations can then be recursively defined. However, he 

has not continued his research in this direction, although he recognises the 

benefits from such an approach.  

2.3.5 Snodgrass’s model 

Snodgrass has made a major contribution in the area of temporal 

databases. Two main points distinguish his work in the field; firstly, he 

published a number of early papers where his main concern was to define a 

basic terminology for the field and a taxonomy of time in databases as well as 

surveys and reports of other temporal query languages and models supporting 

time-varying data that have been proposed over the years ([SA85], [SA86], 

[Sno86], [Sno90], [Sno92] and [SJS95]) and secondly, he has presented 

implementation approaches for time-oriented databases in his recent 

published book ([Sno00]), where a time-varying database application is 

developed in SQL. 

In [Sno87], Snodgrass proposes TQUEL, a temporal extension of QUEL, 

which is now briefly discussed. The snapshot relational database model is 

used for the development of the semantics of TQUEL, since it is simple, well 

defined and has already been implemented.  

The semantics for the TQUEL statements are also presented. TQUEL 

supports both transaction and valid times. Rollback queries supporting 

transaction time use the “as of” clause, while historical queries supporting 

valid time use the “valid” clause. The “valid” clause has two variants, the “valid 

at” for event relations and the “valid from … to …” for interval relations. The 
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“when” clause of TQUEL is the temporal equivalent of the “where” clause of 

QUEL.  

Both transaction and valid times can be represented as intervals (interval 

relations). The starting time of the interval is denoted by the “begin of”, while 

the stopping time is denoted by the “end of” operators. However, relations can 

be event relations as well. The operators “overlap”, “precede” and “extend” can 

be used in temporal predicates and expressions contained in the “valid” 

clause.  

Relations can be either snapshot, rollback, historical or temporal. The 

“persistent” keyword is used for rollback or temporal relations, the “interval” 

or “event” keywords for historical or temporal relations; otherwise the relation 

is snapshot. 

Finally, the paper compares TQUEL to ten other temporal query languages 

against 17 properties and is shown to satisfy most of them. These properties 

are discussed extensively in chapter 8 of this thesis. 

TQUEL also supports new aggregates, which are formally defined in 

[SGM93], as well as all the aggregates supported in QUEL. These new 

temporal aggregates are: first, last, rate, var, earliest, latest and rising. The 

semantics of these aggregates can be found in [SGM93]. An approach 

(algorithm) for computing TQUEL aggregates is also given.  

A typical relation supported by TQUEL is shown in Fig. 2.18. 

 

VALID TIME  COMPANY TRN CN 

(FROM)  (TO) 

Apple  Jack 5.2 2/11/1994 25/4/1995 

Apple Jack 5.2 7/8/1996 1/1/2010 

Apple Mark 3.3 2/1/1992 8/11/1996 

Apple Mark 3.5 30/4/1995 1/1/2010 

IBM Tim 5.2 19/3/1997 21/4/1997 

IBM Tim 5.0 17/12/1995 1/1/2010 

Microsoft Karen 3.3 25/6/1996 1/1/2010 

Fig. 2.18: Relation T_TRAINING in Snodgrass’s model (a historical relation) 

 

Snodgrass reports both in [Sno87] and in [Sno92] that TQUEL is based on 

the temporal algebra proposed in [Mck88], therefore many of the same 

remarks can be applied as to McKenzie’s model. However, although in 

McKenzie’s model the valid time parts of attributes can be set-valued, this is 
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not discussed by Snodgrass. Furthermore, since key attributes are not defined 

in his work, it is unclear if the above representation of the T_TRAINING 

relation (Fig. 2.18) is correct, since two of the tuples have equal values for all 

their atomic attributes. Other differences can also be found between 

McKenzies’s temporal algebra and Snodgrass’s temporal query language. An 

example is the association of valid time with attributes and the support of 

N1NF relations in McKenzie’s model; therefore, TQUEL cannot be based on 

this temporal algebra without some modifications, which are not discussed in 

the paper. 

In summary, Snodgrass appears to be more concerned about the 

implementation side of temporal databases and so, from the theoretical point 

of view, his work is not well defined and lacks formalisation. 

2.3.6 Jensen and Snodgrass’s model 

Jensen and Snodgrass have collaborated for a number of years in the area 

of temporal databases and they have produced a significant number of papers 

about the understanding of the semantics of temporal data. Jensen’s most 

important publications can also be found in [Jen00]. 

Their major contribution in this field is the development of a new temporal 

model, called the Bitemporal Conceptual Model (BCDM) ([JS92]). This new 

model supports both valid and transaction time. However, it is presented here 

since valid time relations can be seen as special cases of bitemporal relations 

supporting only valid time.  

Relations in BCDM are considered from a conceptual standpoint rather 

than from the representational one used with all the other proposed temporal 

data models. Nevertheless, in [JS96a] it is mentioned that the term 

“conceptual” does not make the formalism of the new proposed model different 

from that of the other temporal data models. On the contrary, it is used to 

underline the design and query language capabilities of the new model. 

Relations in BCDM use tuple timestamping, since they consist of a set of 

tuples and each tuple includes an implicit attribute value, comprising an 

ordered pair of integers, denoting when the fact represented by this specific 

tuple is true in the modelled reality (valid time) and when it is current in the 

stored relation (transaction time). Therefore, time is represented in BCDM as 
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temporal elements. Consequently, each single tuple represents the whole 

history of a fact. Moreover, relations in BCDM are in N1NF, since the 

timestamps associated with the tuples are sets of time chronons. Obviously, 

only homogeneous tuples are supported in the model. 

Two operators are also defined, named the transaction-timeslice operator 

and the valid-timeslice operator, which take as arguments a bitemporal 

relation and either transaction or valid time and return a valid time relation or 

a transaction time relation, respectively, consisting of  all tuples valid during 

the time value. 

The following table (Fig. 2.19) represents the valid time T_TRAINING relation 

in their model. 

 

COMPANY TRN CN T 

Apple  Jack 5.2 {2/11/1994, 3/11/1994, …, 24/4/1995, 7/8/1996, 8/8/1996, …, 31/12/2009}  

Apple Mark 3.3 {2/1/1992, 3/1/1992, …, 7/11/1996}  

Apple Mark 3.5 {30/4/1995, 1/5/1995, …, 31/12/2009}  

IBM Tim 5.2 {19/3/1997, 20/3/1997, …, 20/4/1997}  

IBM Tim 5.0 {17/12/1995, 18/12/1995, …, 31/12/2009}  

Microsoft Karen 3.3 {25/6/1996, 26/6/1996, …, 31/12/2009}  

Fig. 2.19: Relation T_TRAINING in Jensen and Snodgrass’s model  

(valid time relation) 

 

An algebra is also defined at the conceptual level for the BCDM ([JSS92]). 

Thus, the projection, selection, union, difference and natural join operations 

are formally defined. Two transformation functions are also defined, named 

coalescing and elimination of repetition transformations. The coalescing 

transformation takes value-equivalent tuples with overlapping or adjacent 

temporal elements and converts them to a single tuple. The elimination of 

repetition transformation reduces temporally redundant information (a 

bitemporal relation instance has temporally redundant information if it 

contains two distinct tuples that are value-equivalent and have timestamps 

that encode overlapping regions in bitemporal space), possibly at the expense 

of adding more tuples, since the transformation may partition the region 

covered by the argument rectangles on either transaction time or valid time 

([JS96a]). 

Three representations of bitemporal relations are examined which map to 

and from the conceptual bitemporal relations of BCDM. These are a tuple 
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timestamped 1NF representation scheme, a backlog based representation 

scheme composed of 1NF timestamped change requests (either insertion 

requests or deletion requests but never update requests) and a N1NF attribute 

value timestamped representation scheme. 

The BCDM forms the basis for the TSQL (Temporal Structured Query 

Language) proposal, an extension of SQL. Jensen and Snodgrass claim that 

the conceptual bitemporal data model that they have proposed is useful when 

time-varying semantics need to be expressed.  

BCDM, although it retains the simplicity of the relational model, is inferior 

to other temporal proposed models from the representational point of view, 

because of the large number of timestamps that each tuple contains and the 

representation of timestamps as bitemporal elements ([JS99]). 

An important research contribution is made by Jensen and Snodgrass in 

the area of dependency theory (temporal normal forms and temporal keys) for 

temporal databases in terms of BCDM schemas ([JSS94]). However, it is not 

discussed here since it is beyond the objective of the present thesis. 

Furthermore, they examine and categorise temporal relations according to 

all possible different relative positions between valid and transaction 

timestamps; they call this “taxonomy of specialized properties of either event 

or interval temporal relations” ([JS94]).  

Finally, in [JS96b] they introduce surrogates to represent real-world entities 

in the database, lifespans of attributes, derivation functions that compute new 

values from stored attribute values and observation and update patterns for 

time-varying attributes. All these notions provide different semantics for time-

varying attributes and can be used in the design of database schemas. 

To conclude, Jensen and Snodgrass have made an important contribution 

to the field of temporal databases. However, their proposed model, the BCDM, 

has shortcomings in its internal representation and in the display of temporal 

data to users, as discussed above. 

2.3.7 Lorentzos’s model 

Lorentzos is well known for his significant work on interval data which 

concerns not only temporal databases but also other areas of databases, such 

as spatial ([LTR99], [LRT99]) and spatio-temporal databases ([LSYK99], 
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[RLT01], [RL01]), soil information systems ([LK89]), CAD, cartography and 

engineering. He has studied in depth the notion of generic intervals which 

form an important component in all the above mentioned applications. 

Additionally, he has used his results to extend the relational model to support 

temporal data, since time intervals are one of the many different generic 

intervals that can be used in databases. For this reason his work is discussed 

here in some detail. 

In [Lor88], Lorentzos presents a detailed and formal extension of the 

relational model to support generic intervals. Different properties of the 

intervals are studied. One basic principle is the Duality Principle which says 

that every 1-dimensional point is isomorphic to an elementary interval. He 

also defines all possible relative positions between two 1-dimensional intervals 

(see also [LJ88a]) and then, extends his definitions to n-dimensional intervals.  

Firstly, he defines the Interval Relational Model (IRM) which supports n-

dimensional intervals and afterwards the Interval Extended Relational Model 

(XRM) which allows both intervals and points to be recorded. Union, 

difference, projection and cartesian product operations of the XRM are the 

same as that for the Conventional Relational Model (CRM). In the selection 

operation new predicates can be used for the comparison of two intervals. The 

new operations, compute, fold, extend and unfold, that are defined in the XRM 

are explained further below. The join operation is also formally defined. 

Another operation introduced in [LM94], called normalise, returns a relation 

where duplicate tuples are eliminated and adjacent or overlapping intervals 

are merged into one. It is a combination of unfold and fold operations. XRM is 

proved to be a proper superset of the CRM. The expressive power of the XRM 

is also demonstrated by a number of examples. Finally, he examines the new 

proposed model semantically, by defining the Interval and the Point 

Functional Dependencies, the key of an XRM relation and two new normal 

forms, the P and Q normal forms.   

The management of 2-d interval relations is also discussed in [LM94] and 

new efficient algorithms are proposed for the normalisation, insertion and 

deletion of 2-d interval data. The normalise operation produces canonical 

interval relations, i.e. normalised representation of interval relations in which 

there is no duplication of data, as defined in [LPS94]. Additionally, two 

operations are defined, p-union and p-diff, counterparts to the set-union and 



   

 

 
 
56 

set-difference operations of the CRM but which return canonical relations. 

These operations are then transformed to the optimised s-union and s-diff 

operations which also maintain the property of canonicity. Formal proofs of 

this property for the above mentioned operations, p-union, p-diff, normalise, s-

union and s-diff, can be found in [LPS95]. 

In an interesting paper, [LM95], it is shown that some of the known 

temporal data models, which have been proposed over the years, can be used 

in other areas than temporal databases by replacing the set of Time values by 

other sets. This is a very important observation since it means that some 

particular attributes or parts of attributes can be interpreted equally well 

either as time or as another type of data.  Furthermore, temporal data models 

are evaluated against some properties which are identified in the same paper 

for valid time 1NF and N1NF models. Finally, two new models are mentioned, 

I-1NF and I-NESTED models, supporting interval data management but are 

not discussed further or formalised. 

An extension of SQL, called IXSQL, for the management of interval data is 

proposed in [LM97], based on the algebra described above for a 1NF model. 

Generic intervals are used as a new primitive data type. Relations can contain 

more than one interval attribute. New interval predicates, interval value 

functions and interval set functions are also introduced and formally defined. 

The concept of the key of an interval relation is also supported. 

His proposed model can be used directly as a temporal model where time is 

treated as generic data type and not as a “stamp” for the related data values. 

Lorentzos’s temporal model, called TRA (a model for a Temporal Relational 

Algebra) ([LJ87], [JL87], [LJ88b]), is presented briefly below. The model is a 

minimal extension of the Conventional Relational Model. It is simple since 1NF 

is maintained. Data valid at some specific time either in the past, present or 

future can be supported in this model and the corresponding time can be 

represented equally well either as time points or as time intervals.  

An example of a relation in Lorentzos’s model is shown in Fig. 2.20. 
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COMPANY TRN CN PERIOD 

Apple  Jack 5.2 [2/11/1994, 25/4/1995) 

Apple Jack 5.2 [7/8/1996, @)  

Apple Mark 3.3 [2/1/1992, 8/11/1996) 

Apple Mark 3.5 [30/4/1995, @)  

IBM Tim 5.2 [19/3/1997, 21/4/1997) 

IBM Tim 5.0 [17/12/1995, @)  

Microsoft Karen 3.3 [25/6/1996, @)  

Fig. 2.20: Relation T_TRAINING in Lorentzos’s model 

 

Four new operations are defined: compute, fold, extend and unfold. 

Compute is defined so that functions can be used in the new model. Fold 

returns a relation where time is represented as time intervals from an input 

relation where time is represented as time points. Extend returns a relation 

from an initial relation which contains a new attribute consisting of all the 

time points that are extracted from the time intervals. Unfold is the inverse of 

the fold operation. Fold and unfold operations should not be confused with the 

nest and unnest operations of the N1NF models, since fold returns intervals 

from consecutive points while nest returns sets of attribute values. The 

cartesian product operation is also discussed in TRA. The result of the 

cartesian product operation of two time interval relations is a relation having 

four time attributes. This kind of relation is useful when periodic events need 

to be supported. An implementation is also briefly described. 

Lorentzos’s model is simple and more general than the other proposed 

models since temporal relations are one of the many different types of 

relations that it can support. Therefore, XRM cannot be considered as a pure 

temporal database model. However, it can be used for the representation of 

valid time relations as has been demonstrated.  

In Lorentzos’s model, attributes are timestamped since more than one time 

interval attribute can coexist in the same relation referring to different data. 

However, relations are maintained in 1NF. This causes a number of problems. 

Firstly, it is not representationally clear with which attributes each timestamp 

is associated. Secondly, data regarding the same object is not included in the 

same tuple. Indeed, they are contained in different tuples and, as a result, the 

history of an object does not consist of a single tuple but is split up into many. 

As a consequence, even though this specific representation is 1NF attribute 



   

 

 
 
58 

timestamping, it does not take full advantage from either the 1NF or the 

attribute timestamping approach. 

Further, fold and unfold operations must be used in temporal selection and 

temporal projection operations of the algebra and, as a result, these operations 

can be time and space consuming. 

Nevertheless, his interesting results about generic intervals and points can 

easily be used as the groundwork for any study of temporal database models. 

2.3.8 TSQL2 

TSQL2 ([Sno95]) is a temporal extension to SQL-92 produced by a research 

community consisting of twenty-one members of eight different countries. It 

has been designed to query and manipulate time-varying data stored in a 

relational database.  

The features of TSQL2 are summarised below: 

§ It is a language defined on a conceptual data model. 

§ It is based on a tuple timestamping data model. 

§ It supports three types of time, user-defined, valid and transaction. 

§ Time can be expressed either as a set of time instants (instant set) or as 

a union of non-adjacent and non-overlapping periods (elements). Note 

however, that temporal valid time can be expressed either as set of instants 

or as temporal elements, but transaction time can be expressed only as 

temporal elements. 

§ Six kinds of relations are supported: snapshot relations that support 

only user-defined time and neither valid nor transaction time, valid time 

state relations which support only valid time elements, valid time event 

relations which support only valid time instant sets, transaction time 

relations that support only transaction time elements, bitemporal state 

relations which support bitemporal elements and bitemporal event relations 

which support bitemporal instant sets. 

§ Valid time and transaction time are recorded in implicit attributes. 

§ Only one implicit attribute is allowed in a relation. 

§ TSQL2 is based on homogeneous tuples. 

§ Value-equivalent tuples, i.e. tuples having identical values for all their 

explicit attributes, are not allowed in a relation. 
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It is worth noting that the algebra underlying TSQL2 was defined after the 

language definition of TSQL2. An example of a relation in TSQL2 is shown in 

Fig. 2.21. 

 

COMPANY TRN CN V 

Apple  Jack 5.2 [2/11/1994, 24/4/1995] ∪ [7/8/1996, 31/12/2009]  

Apple Mark 3.3 [2/1/1992, 7/11/1996]  

Apple Mark 3.5 [30/4/1995, 31/12/2009]  

IBM Tim 5.2 [19/3/1997, 20/4/1997]  

IBM Tim 5.0 [17/12/1995, 31/12/2009]  

Microsoft Karen 3.3 [25/6/1996, 31/12/2009]  

Fig. 2.21: Relation T_TRAINING in TSQL2 (valid time state relation) 

 

The scheme of the T_TRAINING relation is: T_TRAINING = {COMPANY, TRN, 

CN | V}, where attributes COMPANY, TRN, CN are explicit and V is an implicit 

timestamp attribute distinguished from the explicit attributes by the symbol |. 

Since V is an implicit attribute that contains valid time elements, T_TRAINING 

relation is a valid time state relation in TSQL2. 

Although time in a tuple is not atomic in general, a 1NF tuple timestamping 

data model is assumed. This statement is justified in [Sno95] as follows: “The 

conceptual model and algebra are not meant for physical implementation due 

to the N1NF nature of the model. We therefore show how the semantics of the 

conceptual algebra can be supported with a 1NF representational model and 

accompanying algebra. The 1NF nature of this representation allows the use, 

or adaptation of, many well-established query optimisation and evaluation 

techniques”. The algebra described briefly below is the conceptual algebra. 

Besides, only valid time relations are discussed in this section, since 

transaction time and bitemporal relations are out of interest in the present 

thesis.  

The snapshot relational algebra is extended to accommodate the TSQL2 

characteristics. Six sets of relational algebra operators are defined to support 

the six different types of relations that TSQL2 supports. 

Three new operators that do not have snapshot analogues are introduced in 

the set of valid time state operators and together with seven operators that are 

generalisations of the corresponding snapshot operators form the operators of 

the algebra. 
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Projection, selection, theta-join, left outer-join, union, difference, rename, 

ATVS, BS which transforms a valid time state relation into a bitemporal state 

relation and SNVS which transforms a valid time state relation into a snapshot 

relation and slice form the set of valid time state operators. The set of valid 

time event operators consists of the same ten operators. The definitions of 

valid time state and valid time event operators are almost identical. 

Coalescing is the process of collapsing all value-equivalent tuples into a 

single tuple.  

However, the slice operator may produce non-coalesced tuples. Therefore, it 

violates the restriction that value-equivalent tuples are not allowed in the data 

model since it can produce value-equivalent tuples. Hence, it is not a closed 

operation. 

The definition of the join operation between a snapshot relation and a valid 

time state relation is missing in the TSQL2 algebra. Besides, snapshot 

relations cannot be transformed to valid time relations, due to the lack of 

relevant operators. 

TSQL2 supports only one valid time dimension since only one implicit valid 

time attribute is allowed in each valid time state or in each valid time event 

relation. This imposes restrictions to the modelling of temporal data. For 

example, if two or more valid times must be recorded in a valid time state or 

valid time event relation, then, only one of them can be implicit and the 

remainder have to be recorded in explicit attributes. Therefore, relations with 

multiple valid time attributes do not have a uniform way of representation. To 

extend the previous remark, when a binary operation has to be performed 

between two relations that both have multiple valid time attributes then, there 

are many different ways to formulate it, depending on which of these valid 

time attributes is implicit in both relations. 

Another limitation of the model is that a temporal relation must always 

have at least one explicit attribute. In addition, implicit attributes do not 

participate in the key of the relation. Therefore, the key of a relation consists of 

explicit attributes only. 

Although it was proposed to become a standard, this did not occur. The 

above stated limitations can justify this statement. 



   

 

 
 
61 

2.4 Summary 

The two fundamental characteristics that compose the database model 

proposed in this thesis, N1NF and the temporal features have been discussed.  

Several different approaches to the support of N1NF relations have been 

presented and extensively reviewed. Various problems that these approaches 

encounter have been explained and demonstrated by examples.  

Various temporal database models have also been reviewed. The 

presentation of these models is not based on a specific piece of work but on 

the overall research which has been conducted by each researcher over the 

years of relevant activity in the subject. The main shortcomings of each 

approach have also been discussed.  

This chapter provides a motivation for the chapters that follow, where a new 

temporal nested model is formalised. 
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CHAPTER 3 

3. DESIGN CONSIDERATIONS 

3.1 Introduction 

In chapter 2 the temporal database models have been categorised according 

to certain properties that distinguish them and the most important proposals 

for temporal database models have been reviewed.  

In this chapter the properties of the nested temporal model defined in this 

thesis are described and the decisions that have been made are justified.  

Firstly, the various temporal features that characterise temporal models are 

outlined. More explicitly, they concern:  

§ the semantics of time representation (valid time/transaction time), 

§ whether timestamping is applied to a tuple or to individual attributes 

(tuple timestamping/attribute timestamping), 

§ whether attribute values are defined for the same or different time 

period in the same tuple (homogeneous tuple/heterogeneous tuple), 

§ whether time is represented as points or intervals (single 

chronons/intervals/temporal elements). 

For each of these features the alternative approaches are discussed and 

their advantages and disadvantages are reviewed. The static properties of the 

model proposed in this thesis are then given and finally, the running example 

used in this thesis is introduced. 

3.2 Basic Temporal Definitions 

Time is naturally continuous. In databases it can be treated either as 

continuous, i.e. isomorphic to real numbers, or as discrete, i.e. isomorphic to 

natural numbers. Both views of time assume that time is linearly ordered. 
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Discrete time has commonly been adopted by the research community in 

temporal databases for two reasons: it is simple and easy to be implemented 

([TCG+93]). 

Therefore, time is interpreted in this thesis as discrete. T = {0, t1, t2, …, tn} 

represents the set of ordered and equally spaced time points. 0 represents the 

least time instance and tn represents the greatest time instance. Time units 

are application dependent. 

Some basic temporal terms that are going to be used in the rest of this 

thesis are now defined.  

3.2.1 Basic concepts of time 

Definition 3.1 (Time domain) A time domain is a non-empty, finite, totally 

ordered set of consecutive elements of the same time type (e.g. years, hours, 

minutes, seconds). � ([LJ88b]) 

Definition 3.2 (Time point) The elements of a time domain are called time 

points. � 

Definition 3.3 (Chronon) Chronon is the shortest non-decomposable unit of 

time (i.e. the time period between two consecutive time points) supported by a 

temporal database management system. � 

Definition 3.4 (Time interval, TI) Time interval is the finite set of 

consecutive time points between two given time points.  

TI = [ti, tj) = {tk | tk ∈ T, ti ≤ tk < tj } where T is defined as the set of time 

points. � 

Time intervals are closed to the left and open to the right ([LJ88b]). 

Definition 3.5 (Time interval’s start point, start) Start point of a time 

interval is the minimum boundary point of a time interval (ti - Definition 3.4). � 

Definition 3.6 (Time interval’s stop point, stop) Stop point of a time 

interval is the maximum boundary point of a time interval (tj - Definition 3.4). 

� 

Note that the stop point does not belong to the interval. 

3.2.2 Temporal elements 

Definition 3.7 (Temporal element, TE) Temporal element is a finite set of 

disjoint and non-adjacent time intervals. �  
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Example 3.1: TE = {[1, 5), [8, 9), [15, 23)}.  

Definition 3.8 (Temporal element’s start point, START) The START point 

of a temporal element is the minimum start point of all the start points of the 

time intervals that belong to this temporal element.  

TE = {[t1START, t1STOP), [t2START, t2STOP), …, [tkSTART, tkSTOP)}, where k=1. 

START(TE) = MIN{t1START, t2START, …, tkSTART } � 

Definition 3.9 (Temporal element’s stop point, STOP) The STOP point of 

a temporal element is the maximum stop point of all the stop points of the 

time intervals that belong to this temporal element.  

TE = {[t1START, t1STOP), [t2START, t2STOP), …, [tkSTART, tkSTOP)}, where k=1. 

STOP(TE) = MAX{t1STOP, t2STOP, …, tkSTOP } � 

Temporal elements are closed under the set theoretic operations of union, 

difference and intersection, which are defined next.  

Let TE1 and TE2 be two temporal elements. Then, the following definitions 

are given:  

Definition 3.10 (Union of temporal elements, ∪TE)  

It is the temporal element defined as: 

TE1 ∪TE TE2 = { t | t ∈ TE1 ∨ t ∈ TE2} � 

Example 3.2: {[22/1/1994, 29/6/1994), [3/10/1995, 25/12/1995), 

[11/3/1996, 15/8/1998)} ∪TE {[1/1/1994, 3/4/1994), [30/12/1995, 

20/7/1997)} = {[1/1/1994, 29/6/1994), [3/10/1995, 25/12/1995), 

[30/12/1995, 15/8/1998)} 

Definition 3.11 (Difference of temporal elements, -TE)  

It is the temporal element defined as: 

TE1 -TE TE2 = { t | t ∈ TE1 ∧ t ∉ TE2} � 

Example 3.3: {[22/1/1994, 29/6/1994), [3/10/1995, 25/12/1995), 

[11/3/1996, 15/8/1998)} -TE {[1/1/1994, 3/4/1994), [30/12/1995, 

20/7/1997)} = {[3/4/1994, 29/6/1994), [3/10/1995, 25/12/1995), 

[20/7/1997, 15/8/1998)} 

Definition 3.12 (Intersection of temporal elements, ∩TE)  

It is the temporal element defined as: 

TE1 ∩TE TE2 = = { t | t ∈ TE1 ∧ t ∈ TE2}  � 
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Example 3.4: {[22/1/1994, 29/6/1994), [3/10/1995, 25/12/1995), 

[11/3/1996, 15/8/1998)} ∩TE {[1/1/1994, 3/4/1994), [30/12/1995, 

20/7/1997)} = {[22/1/1994, 3/4/1994), [11/3/1996, 20/7/1997)} 

3.2.3 Attributes and time 

Definition 3.13 (Temporal attribute) An attribute is a temporal attribute if 

it is defined on the domain of temporal elements. � 

Definition 3.14 (Time-invariant attribute) Time-invariant attribute is an 

attribute whose values are not associated with timestamps. � 

Time-invariant attributes can be updated e.g. in the case of an error, but a 

database does not keep a history of it. 

Definition 3.15 (Time-varying attribute) Time-varying attribute is an 

attribute whose values are associated with timestamps. � 

Definition 3.16 (Timestamp) A timestamp is a time value associated with a 

timestamped object (i.e., an attribute value or tuple). � ([TCG+93])  

Definition 3.17 (Lifespan) The lifespan of a database object is the time 

over which the object is defined. � ([JDB+98]) 

3.3 Categorisation of Temporal Database Models 

Temporal data models can be categorised according to their distinguishing 

characteristics. These have been discussed briefly in section 2.3.  

The decision to include specific features in a temporal data model depends 

on the overall benefits that each one provides.  

The advantages and disadvantages of the different approaches to temporal 

database models are presented next. Also, section 3.4 gives an overall 

assessment of the features of the new model. 

3.3.1 Valid time versus Transaction time 

Two different kinds of time that can be stored in temporal databases have 

been widely accepted by the temporal database community, valid time and 

transaction time. The majority of the temporal models that have been 

presented in the literature consider only valid time. 
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Databases model reality. Consequently, when the time dimension of 

different facts is modelled in a database, the most important issue is to model 

the time when these facts are true in the modelled reality. This time, in 

temporal database terminology, is called valid time.  

It should noted that including valid time in a database, while it provides a 

history of the values in a tuple, does not provide a log of changes to those 

values. Thus, if an incorrect value is entered for an attribute and is 

subsequently amended, no record of the earlier incorrect value will exist once 

the correction has been made. In other words, past versions of the database 

are lost.  

As mentioned in [MS91], valid time is a multifaceted aspect of time since 

the existence of a single object or relationship may be defined by using 

different times. An example of this property is the time must is stored in 

barrels and the time wine is ready for consumption may both be used in 

specifying the wine’s production (in natural and not industrialised conditions). 

From the literature it can be seen that the support of valid time has 

produced the most interesting problems and for this reason most proposed 

algebras address it. 

Transaction time was introduced later than valid time. Transaction time 

represents the time at which the data remains stored in the database and 

therefore it stores versions of relations and not histories of modelled reality. 

Therefore, transaction time errors cannot be corrected since the transaction 

time data forms a temporal record of the values actually stored in the 

database whether or not they are a correct representation of the real world. 

Mistakes can be eliminated only by creating a new correct record with a later 

transaction time. Another difference between transaction and valid time is 

that, in the former, future time is not supported since it has no meaning, 

whereas in the latter predictions and knowledge of the future do make sense 

and are allowed. 

It has been shown that the two time dimensions are orthogonal, so they can 

be studied separately ([Sno87]). However, the results of some research on valid 

time databases are relevant to transaction time databases and vice versa, at 

least on issues concerning some basic temporal concepts, for example 

operations on time intervals.   
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3.3.2 Tuple timestamping versus Attribute timestamping 

All tuple timestamping models proposed so far maintain the 1NF property at 

least concerning the non-temporal attributes. N1NF tuple timestamping 

models exist, e.g. [Sar90] and [JS99]; however, only the temporal attributes 

are nested (time in a tuple is represented as a set of time points). All other 

attributes are atomic and so these models have been defined by adding a 

temporal attribute to 1NF relations. If a tuple timestamping model supports 

nested data, other than nested time data, then whenever any nested data 

changes, the whole tuple must be replicated with the updated attribute value 

and associated tuple timestamp. Therefore, real N1NF tuple timestamping 

models are not feasible, since time-varying nested attributes cannot be 

supported efficiently. 

In contrast, attribute timestamping models support N1NF. 1NF attribute 

timestamping models can exist but do not take full advantage of the features 

that attribute timestamping provides, since the history of an object (attribute) 

cannot be maintained within a single tuple, therefore they have not been 

proposed thus far. 

Saying that, it is important to mention Lorentzos’ 1NF model. His model can 

be used to support either tuple or attribute timestamping. He does not 

endorse either in [Lor88]. However, his model has been considered as a 1NF 

attribute timestamping model by several researchers as in [Mck88]. A features’ 

analysis of Lorentzos and all the other major models is given in chapter 8. 

As has been mentioned in chapter 2, several models have been proposed 

which are based on the tuple timestamping approach. This approach, 

although popular, has a number of shortcomings which are summarised 

below. It should be noted that a number of shortcomings as well as a number 

of advantages are derived directly from the 1NF property of tuple timestamping 

relations. 

1. It can support only homogeneous tuples. A temporal tuple is 

homogeneous if the lifespans of all attribute values within it are identical. 

Since with tuple timestamping there is only one timestamp per tuple it is 

necessarily homogeneous. Consequently, the expressive power of the model is 

limited, because attribute values with different lifespans within the same tuple 

cannot be supported.  
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In Fig. 3.1 the name of a person may change, for example a woman’s name 

after marriage. However, the ID remains the same since it is unique for each 

person. NULL values in the ADDRESS attribute mean that for that specific 

time interval (TIME attribute) the address of that person is unknown. The 

existence of NULL values is unavoidable in this relation since attribute values 

within the same tuple must have same lifespans. 

 

ID NAME ADDRESS TIME 

1 Anna Black NULL [d1, d3) 

1 Anna Black 52, Ladbroke Grove [d3, d5) 

1 Anna Black NULL [d5, d6) 

1 Anna Scott NULL [d6, d8) 

1 Anna Scott 34, Regent Square [d8, d10) 

2 Tom Thomas 20, Holland Park [d3, d10) 

Fig. 3.1: Tuple timestamping (homogeneous) relation with time represented as 

time intervals 

 

2. With tuple timestamping, one new attribute must be added to the 

relation to represent time when the time domain is expressed using intervals 

(Fig. 3.1) and two attributes are needed if it is expressed using start and stop 

points (Fig. 3.2). Consequently, since the number of attributes in the relation 

increases, relations require in general more storage space.  

 

ID NAME ADDRESS START STOP 

1 Anna Black  NULL d1 d3 

1 Anna Black  52, Ladbroke Grove d3 d5 

1 Anna Black  NULL d5 d6 

1 Anna Scott  NULL d6 d8 

1 Anna Scott  34, Regent Square d8 d10 

2 Tom Thomas  20, Holland Park d3 d10 

Fig. 3.2: Tuple timestamping (homogeneous) relation with time represented 

as start and stop points 

 

3. Necessarily with tuple timestamping the key must be extended to include 

time even if the key attribute itself is time-invariant. For example, in Fig. 3.2 

in order to retrieve a single name and address it is necessary to specify values 

not only for the ID but for the required time point or time interval as well. 

4. By their definition, temporal 1NF models do not support multivalued 

attributes except perhaps the attributes in which time is recorded. 



   

 

 
 
69 

5. When more than one attribute is time-varying there can still only be one 

time domain in a tuple. This results in either the relation having to be 

vertically partitioned to give one relation per time-varying attribute or 

introducing a new tuple each time a data item is amended, with consequent 

duplication of data and the appearance of NULL values (Fig. 3.1). 

In Fig. 3.1 it is obvious that for the first three attributes (ID, NAME, 

ADDRESS) a number of pieces of data are repeated.  

6. If a relation contains two or more time-varying attributes, it is not 

obvious following an update which attribute value has changed in the newly 

created tuple (see Fig. 3.1). Therefore, each attribute value has to be compared 

to the corresponding attribute value of the previous tuple to identify any 

change that may happen. 

7. The use of NULL values and data duplication can be eliminated but this 

results in fragmented relations with very few attributes in each table, as in Fig. 

3.3. As a consequence, these relations have less expressive modelling power.  

 

 

Fig. 3.3: The data of the table in Fig. 3.1 in two fragmented tables 

 

This approach results in a wide gulf between the logical unit of data and its 

physical representation. This is a serious disadvantage for all proposed query 

languages based on this approach because much effort is needed to link 

together related pieces of data from different relations when queries are 

executed. Additionally, the join operation which is used to associate data from 

different relations is an expensive operation and should be avoided when 

possible. 

 

However, the benefits that tuple timestamping offers are very important and 

also have to be mentioned.  

1. Tuple timestamping relations can be represented uniquely in contrast 

to nested relations used for attribute timestamping models. In other words, 

the structure of each relation does not need to be changed, apart for the order 

 

ID ADDRESS TIME 

1 52, Ladbroke Grove [d3, d5) 

1 34, Regent Square [d8, d10) 

2 20, Holland Park [d3, d10) 

ID NAME TIME 

1 Anna Black  [d1, d6) 

1 Anna Scott  [d6, d10) 

2 Tom Thomas  [d3, d10) 
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of the attributes in the relation (attributes in a relation are unordered). The 

benefits of the above proposition are that no restructuring operations are 

needed in order to transform the structure of a tuple timestamping relation 

and in addition it is impossible for two relations with different schemes to be 

equivalent.  

2. In general, the users can easily understand the structure of a temporal 

database which consists only of tuple timestamping relations and express 

queries using this approach.  

3. Algebraic operations can be defined straightforwardly as a simple 

extension of corresponding operations of the conventional relational algebra 

because of the 1NF property. 

4. An approach where tuple timestamping relations are used can be 

implemented more easily. 

5. Traditional functional dependencies can be applied to a tuple 

timestamping relation since it is at least in 1NF. 

In summary, the tuple timestamping approach has all the advantages of 

traditional relational databases.  

 

Attribute timestamping models append at each update a new attribute 

value together with its timestamp to the updated tuple by means of a nested 

relation for each time-varying attribute.  

Attribute timestamping relations present a number of shortcomings. Some 

of these shortcomings are caused by the nested feature of the relations that an 

attribute timestamping database model involves. These are: 

1. The structure of a nested relation is difficult to be understood. More 

explicitly, the larger the number of nesting levels a nested relation has, the 

more complex its structure and hence, it becomes harder to understand. 

2. A consequence of the above proposition is that queries can become very 

complex, even in those cases where only one relation is involved.  

3. An implementation of an attribute timestamping model is more complex 

than one for a corresponding tuple timestamping model.  

4. Definitions of algebraic operations for an attribute timestamping 

temporal database model can become very complicated, since relations in 

general, can consist of a finite but unknown number of nesting levels. 
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5. Particularly for the join operation when it is required, it is extremely 

difficult both to define and implement.  

6. An attribute timestamping nested relation can be represented in many 

different ways, using different structures. In other words, different schemes 

can lead to equivalent relations which may cause confusion. In addition, 

restructuring operations must be defined. 

7. Traditional functional dependencies cannot be applied in attribute 

timestamping nested relations, since they are in N1NF and so new functional 

dependencies must be defined in ways analogous to [Lev92]. 

 

Nevertheless, the attribute timestamping approach offers significant 

advantages over tuple timestamping: 

1. It can support N1NF or nested relations as shown in Fig. 3.4 where 

tuples have a set of composite values for NAME and ADDRESS attributes. (The 

relation in Fig. 3.4 represents the same data as the relation in Fig. 3.1). 

 

ID NAME ADDRESS 

1 Anna Black [d1, d6) 

Anna Scott [d6, d10) 

52, Ladbroke Grove [d3, d5) 

34, Regent Square [d8, d10) 

2 Tom Thomas [d3, d10) 20, Holland Park [d3, d10) 

Fig. 3.4: N1NF attribute timestamping heterogeneous relation 

 

A number of the following advantages are derived directly from the nested 

character of attribute timestamping relations. 

2. The attribute timestamping model can support temporally heterogeneous 

data. However, such a model can still be used to represent a temporally 

homogeneous model by the use of appropriate temporal constraints. Fig. 3.4 

shows a heterogeneous attribute timestamping model in which the lifespan of 

NAME attribute for ID=1 is [d1, d10) but the lifespan of ADDRESS attribute for 

the same ID is [d3, d5) ∪ [d8, d10). 

3. In attribute timestamping models, the attribute values are functions of 

time. Therefore, the fragmentation of an object description is avoided since the 

whole history of an object is modelled in one single tuple and as a result this 

gives a more natural view of data. 

Naturally, the time domain of attribute values is a temporal element. Even if 

the time domain is physically fragmented as in Fig. 3.4 where the time domain 
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of the ADDRESS attribute for ID=1 is [d3, d5) ∪ [d8, d10), the attribute data 

values can stay in the database as a single logical object. In addition, NULL 

values are avoided, in contrast to the situation when tuple timestamping is 

used. Thus, the integrity of the temporal history is maintained.  

4. Within one relation many functionally independent attributes can be 

simultaneously time-varying as in Fig. 3.4 where NAME and ADDRESS 

attributes are both independently time-varying. In addition, time-varying 

attributes can be expressed using different time domains (i.e. time domains of 

different time types e.g. years, days, months, seconds) in the same relation.  

5. Time-invariant attributes are not encumbered with a timestamp as in 

tuple timestamping models. 

6. With attribute timestamping, duplication of time-invariant data is 

avoided, thus saving storage space and avoiding the update anomalies which 

are a consequence of data redundancy.  

7. Usually, a change occurs not to the values of all attributes in the same 

tuple but only to the values of a small subset of the attributes. Consequently, 

in the attribute timestamping approach, when attribute values change, the 

new attribute values can be inserted into the same tuple thus, avoiding the 

creation of a new tuple. 

8. Within nested relations temporal semantics are explicitly represented. 

 

In summary, the same data represented in attribute timestamping format 

can be stored in a single table in contrast to the use of tuple timestamping 

where they are represented either in one table with duplicated data and null 

values or in two or more tables. As a result, attribute timestamping models 

provide a more natural view, closer to how a user might perceive reality and 

consequently likely to be easier to design or query. 

3.3.3 Homogeneous models versus Heterogeneous models 

As has been described in section 2.3, temporally homogeneous database 

models involve relations where all attribute values in the same tuple have been 

defined over the same lifespan, whereas in temporally heterogeneous database 

models relations have tuples with different lifespans of the attribute values 
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within them. Therefore, a more complete representation of the real world is 

allowed when heterogeneous tuples are used. 

Homogeneity is a natural consequence of tuple timestamping models. 

Therefore, in all proposed tuple timestamping models, homogeneity is an 

implicit feature. Although algebraic operations in homogeneous relations are 

easy to define they have some restrictions on their expressive power. 

Additionally, a homogeneous relation needs more storage space since the 

number of tuples that are required to describe the same information is larger 

than in an equivalent heterogeneous relation. Another important drawback of 

homogeneity is the fact that certain pieces of data cannot be modelled. For 

example, if a father dies before his child is born the lifespan of the father does 

not intersect with that of the child. Consequently, a tuple (f, c) cannot be 

recorded in relation Parent(Father, Child). 

In contrast, attribute timestamping models are more flexible since they can 

be either homogeneous or heterogeneous.  

Although a number of researchers have defined homogeneous temporal 

models, some of them have tried to relax this assumption ([Gad86a]) because 

of the various problems it causes.  

Homogeneous models can be defined as a special case of heterogeneous 

models. Therefore, heterogeneous models form the general case for the time 

domains of attributes in the same tuple of a given relation. 

3.3.4 Points versus Intervals 

The way in which time is represented in temporal databases has been 

extensively studied (e.g. [Lor88], [Tom96]). There are three different 

approaches to represent it: a single time point, two time points which 

represent an interval and a set of time intervals which form a temporal 

element ([CC87], [Gad88], [MS91], [TCG+93]).  

Although in some of the first proposals for temporal database models, time 

is expressed using single time points (i.e. events), as for example in [CC87], 

[Ari86] and [SS87], the majority of the temporal models use intervals and 

temporal elements to represent time (e.g. [Lor88], [Mck88], [BG93], [Tan97]). 

There are many reasons that lead to this approach. Firstly, a time point 

denotes either the start or the end of the lifespan of an object (relation, tuple 
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or attribute). In order to store the whole history of the object, two different 

attributes need to be added in the relation, i.e. the start point and the stop 

point, so that the lifespan of that object can be shown. In contrast, time 

intervals contain the complete information about the lifespan of an object in a 

“compact style”. In the literature, a complete study of intervals has been given, 

where an algebra has been described for their manipulation and the 

operations defined have been proved to be closed ([Lor88]). 

A temporal element is defined as the union of disjoint and non-adjacent 

time intervals. Therefore, in respect of its semantics, a temporal element and 

its time intervals can be used interchangeably. However, a relation where time 

is represented by time intervals requires more storage space than the 

equivalent one where temporal elements are used. This is because the number 

of tuples in the former relation, in general, is larger than in the latter case, 

where more than one tuple can be combined into a single tuple if they have 

the same atomic values for all their attributes, even if they are defined over 

disjoint and non-adjacent time intervals. In other words, temporal elements 

enable the entire history of an object to be presented in a single tuple. 

However, it is also important to observe that the definition of algebras is 

more complex when time intervals and temporal elements are used since extra 

properties and operations must be defined for their support of time intervals 

([Lor88]). 

It can be proved straightforwardly that a time point is a special case of a 

time interval and a time interval is a special case of a temporal element (the 

former is called the Duality Principle ([Lor88]). 

A detailed study of point and interval types can be found in [DDL03]. 

3.4 The Static Properties of the Model 

The model proposed in this thesis is a temporal nested relational model, 

called the Temporal Nested Model (TNM). Relations can be nested to any finite 

depth. The basic motivation is to define a temporal model with as few 

constraints as possible for the user. For this reason, the model is defined in 

such a way that the user can express the data as naturally and as easily as 

possible, using as few relations as possible and as a consequence as few join 

operations as possible.  
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The proposed model is neither a tuple timestamping model nor an attribute 

timestamping model with the traditional meaning of the words. However, TNM 

combines the advantages of tuple timestamping and attribute timestamping 

models and minimises the limitations of these two approaches.  

In the proposed model, temporal elements which timestamp attribute values 

form temporal attributes (see Definition 3.13). Each atomic attribute which 

changes over time has a temporal attribute connected with it which shows for 

each tuple the time period over which each value of the atomic attribute is 

valid. Temporal attributes in the same relation can be defined over different 

time domains. The atomic attribute and the corresponding temporal attribute, 

referred to together as a temporal nested attribute, form a temporal nested 

subrelation in the general case. However, temporal attributes may also appear 

at the top level of relations. Therefore, time-varying attributes are timestamped 

by taking advantage of the nested feature of the model.  

Temporal nested subrelations can contain other temporal or non-temporal 

subrelations as well. 

Nested attributes in TNM can contain time-varying attributes, atomic time-

invariant attributes or even both. Compound keys are supported. Key 

attributes can be time-varying. A nested attribute can be a key attribute.  

Example 3.5: An example of a nested key attribute is shown in Fig. 3.5. 

The key of that relation is the nested attribute NAME. Semantically, since a 

name of a person can change with time, as for example a woman’s name after 

marriage, the whole tuple of this nested attribute, as a single object, uniquely 

identify the corresponding tuple of the relation. 

 

NAME ADDRESS COURSE 

N N_PERIOD A A_PERIOD  

Anna Black 

Anna Scott 

[d1, d6) 

[d6, d10) 

50, Homer St. 

34, Porchester Sq. 

[d3, d6) 

[d8, d10) 

Ph.D. 

Tom Thomas [d3, d7) 20, Holland Pk. [d3, d7) B.Sc. 

Fig. 3.5: A nested relation with key the nested attribute NAME 

 

One important feature of the model is that, when the key is time-varying, a 

single timestamp is applied to the whole key, whether a simple nested 

attribute or a compound key. The timestamp of the key provides a lifespan for 

the tuple in these cases. This is similar to Clifford and Croker’s proposal for 
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timestamping each whole tuple in addition to each time-varying attribute 

([CC87]). However, the model proposed in this thesis makes use of temporally 

heterogeneous tuples rather than the homogeneous tuples they suggested. 

Time in TNM is represented by temporal elements.  

The representation used in TNM is believed by the author of this thesis to 

have many advantages compared to the previously described models where the 

time domain of an attribute value is part of the same attribute as that value. 

Firstly, data describing an object is not fragmented into many relations, since 

they can be nested within the same relation. Moreover, extra operations such 

as Temporal Atom Decomposition, Temporal Atom Formation and Drop-Time 

([Tan97]), which have been briefly described in section 2.3.1, can be avoided. 

In addition, when the relation is viewed from the external level it can be 

characterised as an attribute timestamping relation, while at an internal level 

(that of a temporal subrelation) it can be viewed as a tuple timestamping 

relation. The advantage of this approach is that atomic values and time values 

form different attributes and so can be referenced separately which is very 

important since they have different properties. Key attributes are not 

necessarily time-varying. However, TNM allows this potentiality for cases 

where it is appropriate semantically. 

3.5 The Running Example of the Thesis 

Two databases are used as examples in the thesis. The first one does not 

contain any temporal data while the second one does. However, the two 

examples contain similar information with the addition of temporal attributes 

in the second case. The nested database example is used to illustrate the NRM 

and the temporal nested database example is used for the TNM. The two 

databases are shown below and some explanation is given. In the examples in 

chapters 4, 5 and 6 there are cases where relations from the two databases are 

used in a slightly modified form for the sake of the examples. These will be 

indicated when they are used. 
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3.5.1 The nested database example 

The running nested database example of the thesis consists of seven 

relations TRAINING, DEPT, LOCATION, CASH-POINT, EMPLOYMENT, 

PAYMENT and COURSE (Fig. 3.6-3.12). All these relations are nested 

relations. An explanation of the running example is now given in order to 

introduce the reader to the example which will be used in the rest of this 

thesis.  

Relation TRAINING (Fig. 3.6) holds data about courses and trainers 

provided by IT companies. It consists of one atomic attribute, COMPANY, and 

one nested attribute, TRAINER. Attribute TRAINER in turn, consists of one 

atomic attribute, TRN, and one nested attribute, COURSE. Subrelation 

COURSE consists of one atomic attribute, CODE, and one nested attribute, C, 

which consists of two atomic attributes, CN and Y.  

Semantically, the attributes of the TRAINING relation have the following 

meaning: COMPANY - company name, TRN - trainer name, CODE - course 

code, CN - course numberY - year in which the course was taken. A specific 

course can be identified uniquely by both course number (CN) and year (Y); a 

specific course consists of a number of different topics (see rel. COURSE-Fig. 

3.12) which can be given by different trainers belonging to different 

companies. 

Relation DEPT (Fig. 3.7) holds data about the different departments of a 

company as well as the trainers who have given courses to the staff of these 

departments. DEPT consists of three attributes, the atomic attributes D and 

DN and the nested attribute UNIT. Subrelation UNIT consists of three 

attributes, the atomic attributes UN and UD and the nested attribute 

COURSE_DETAILS. COURSE_DETAILS consists of two atomic attributes, TRN 

and COMPANY and one nested attribute, the C attribute. Subrelation C 

contains two atomic attributes, CN and Y.  

The semantics of the attributes of relation DEPT are: D - department 

number, DN - department name, UN – unit number, UD – unit description, 

TRN – trainer name, COMPANY – company name, CN - course number and Y - 

year in which the course was taken. Relation DEPT (Fig. 3.7) is a modified 

version of relation DEPT in [SS86]. 
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Relation LOCATION (Fig. 3.8) contains data about branches of different 

companies. It consists of one atomic attribute, COMPANY, and one nested 

attribute, ANNEX. Subrelation ANNEX consists of two atomic attributes, 

BUILDING and ADDRESS.  

The attributes of relation LOCATION have the following semantics: 

COMPANY –company name, BUILDING – building name and ADDRESS – 

street name. 

Relation CASH-POINT (Fig. 3.9) has data about cash-points that different 

banks own. CASH-POINT consists of two attributes, the atomic attribute BANK 

and the nested attribute BRANCH. Attribute BRANCH consists of two atomic 

attributes, SORT_CODE and ADDRESS.  

The semantics of the attributes of relation CASH-POINT are: BANK – bank 

name, SORT_CODE – sort code of the branch and ADDRESS – street name. 

Relation EMPLOYMENT (Fig. 3.10) contains data about the employees that 

work for different companies. EMPLOYMENT consists of two attributes, the 

atomic attribute NAME and the nested attribute JOB. Attribute JOB consists 

of two atomic attributes, COMPANY and JOB_DESCRIPTION.  

Semantically, the meaning of the attributes of relation EMPLOYMENT is: 

NAME – employee name, COMPANY – company name, JOB_DESCRIPTION – 

job description.  

Relation PAYMENT (Fig. 3.11) shows the salaries that different companies 

give for different jobs. PAYMENT consists of two attributes, the atomic 

attribute SALARY and the nested attribute JOB. Attribute JOB consists of two 

atomic attributes, COMPANY and JOB_DESCRIPTION. 

The semantics of the attributes of relation PAYMENT are: SALARY – salary 

range, COMPANY – company name, JOB_DESCRIPTION – job description.  

Relation COURSE (Fig. 3.12) contains data about the different courses that 

took place. It consists of four attributes, nested attributes C and SUBJECT 

and atomic attributes COURSE_DURATION and TITLE. Attribute C consists of 

two atomic attributes, CN and Y, and attribute SUBJECT consists of one 

atomic attribute, the TOPICS attribute.  

Semantically, the meaning of the attributes of relation COURSE is: CN - 

course number, Y - year in which the course was taken, COURSE_DURATION 

– course duration (number of hours), TITLE – course title and TOPICS – course 

topics. 
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    TRAINER       

COMPANY  TRN    COURSE    

    CODE   C    

      CN Y    

                        Jack  xx0  1 75    

Apple      2 76    

                                                                      xy1  1 82    

  Mark    3 82    

                                     xy2  2 79    

                                                                      xy1  3 82    

                                 IBM  Tim  xx2  5 79    

      4 82    

                                                                  Microsoft  Karen  xx1  2 77    

      2 81    

                                 Fig. 3.6: TRAINING 
 

  UNIT 

D DN  UN UD COURSE_DETAILS 

      TRN COMPANY C 

         CN Y    

                               511 Software     1 75    

    Engineering  Mark Apple  2 76    

                       5 79    

                                                                                    1 Research        1 82    

   552 Basic Research  Karen Microsoft  2 79    

                                                Tim IBM  5 79    

                                                                                             2 76    

   678 Planning  Mark Apple  4 82    

                                                                                       650 Design  Karen Microsoft  1 75    

                                                                                    2 Development  780 Maintenance  Tim IBM  3 82    

                                                Mark Apple  2 76    

                                                                                             2 81    

   981 Planning  Jack Apple  3 82    

         5 79    

                                          Fig. 3.7: DEPT 
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COMPANY                          ANNEX   

  BUILDING ADDRESS  

     
TOSHIBA  North Building Porchester Rd.  

     
     

IBM  Maple House Kendal Av.  

  Main Building Danebury Rd.  

     
     

Microsoft  Pegasus House Ashford St.  

  Queen’s Building Park Rd.  

     
Fig. 3.8: LOCATION 

 
BANK                        BRANCH   

  SORT_CODE ADDRESS  

     
Barclays  386600 Ashford St.  

     
     

NatWest  560045 Park Rd.  

  560038 Porchester Rd.  

     
     

Lloyd’s  478202 Ashford St.  

  478210 Park Rd.  

     Fig. 3.9: CASH-POINT 
 

NAME  JOB 

  COMPANY JOB_DESCRIPTION  

     
Anna  Microsoft Secretary  

  TOSHIBA Secretary  

     
     

Paul  IBM Software Engineer  

  Microsoft Programmer  

     
     

Mark  Apple Director  

     
Fig. 3.10: EMPLOYMENT 

 
SALARY             JOB   

  COMPANY JOB_DESCRIPTION  

     
15,500-19,500  TOSHIBA Secretary  

  Apple Secretary  

     
     

18,000-23,000  Microsoft Programmer  

  Microsoft Secretary  

     
     

25,000-30,000  Apple Director  

     
Fig. 3.11: PAYMENT 
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 C  COURSE_DURATION TITLE  SUBJECT  

 CN Y     TOPICS  

         
 1 75     Access  

 2 77  80 Computer Skills  Word  

       Excel  

         
         
 2 82  120 Multimedia  Power Point  

 3 82     Internet  

         
         
 2 79  20 Programming  C++  

       JAVA  

         
Fig. 3.12: COURSE 

3.5.2 The temporal nested database example  

The running temporal nested database example consists of five relations, 

T_TRAINING, T_DEPT, T_LOCATION, T_CASH-POINT and T_COURSE (Fig. 

3.13-3.17). All relations are temporal nested relations. These relations are 

modified versions of the corresponding nested relations described in section 

3.5.1 (Fig. 3.6-3.9, 3.12). For this reason only the new attributes that have 

been introduced in the temporal nested version of the example are explained 

in this section. 

Relation T_TRAINING (Fig. 3.13) contains data about trainers. More 

precisely, it shows in which companies they work, which courses they have 

taught and the period of time over which each course was taking place. 

Attribute TRAINER is a temporal nested attribute, which consists of one 

atomic attribute, TRN, and one temporal nested attribute, COURSE. 

Subrelation COURSE consists of one atomic attribute, CN, and one temporal 

attribute, CN_PER t attribute. Semantically, the meaning of the new or different 

attributes is: CN – course number (a course consists of a number of different 

topics (see relation T_COURSE below-Fig. 3.17) which can be given by different 

trainers belonging to different companies), CN_PER t – duration of each course. 

Relation T_DEPT (Fig. 3.14) contains data about a company’s staff. 

Attribute STAFF is a temporal nested attribute. It consists of three attributes, 

the atomic attributes UN and UD and the temporal nested attribute 

COURSE_DETAILS. COURSE_DETAILS consists of one atomic attribute, 

SNAME, one temporal attribute, STAFF_PER t and one temporal nested 



   

 

 
 
82 

attribute, COURSE. Subrelation COURSE contains one atomic attribute, CN, 

and one temporal attribute, CN_PER t. The semantics of the new attributes is: 

SNAME - staff name, STAFF_PER t – period of staff employment, CN_PER t - 

duration of each course.  

Relation T_LOCATION (Fig. 3.15) is very similar to its corresponding nested 

version, the LOCATION relation (Fig. 3.8). The only difference is that the 

ANNEX attribute is a temporal nested attribute which consists of two atomic 

attributes, BUILDING and ADDRESS and one temporal attribute, 

ADDRESS_PERt. The semantics of the new attribute is the following: 

ADDRESS_PERt – time during which a company’s annex was at a specific 

address.  

Similarly, the only difference between relation T_CASH-POINT (Fig. 3.16) 

and its corresponding nested version, the CASH-POINT relation (Fig. 3.9) is 

that attribute BRANCH of relation T_CASH-POINT is a temporal nested 

attribute which consists of three attributes, the atomic attributes SORT_CODE 

and ADDRESS and the temporal attribute ADDRESS_PER t. The semantics of 

the new attribute is: ADDRESS_PERt – time period of a bank’s branch at a 

specific address. 

In relation T_COURSE (Fig. 3.17) the nested attribute C of nested relation 

COURSE (Fig. 3.12) has been replaced by the temporal nested attribute 

COURSE. Attribute COURSE consists of one atomic attribute, CN and one 

temporal attribute, CN_PER t. The semantics of the new attribute is: CN_PER t – 

duration of each course. 

 
  TRAINER   

COMPANY  TRN  COURSE   

    CN CN_PERt   

                  Jack  5.2 [2/11/1994, 25/4/1995) ∪ [7/8/1996, 1/1/2010)   

                                Apple  Mark  3.3 [2/1/1992, 8/11/1996)   

    3.5 [30/4/1995, 1/1/2010)   

                                    5.2 [19/3/1997, 21/4/1997)   

IBM  Tim  5.0 [17/12/1995, 1/1/2010)   

                                Microsoft  Karen  3.3 [25/6/1996, 1/1/2010)   

                Fig. 3.13: T_TRAINING 



   

 

 
 
83 

 
 

  STAFF 

D DN  UN UD COURSE_DETAILS 

      SNAME  STAFF_PERt COURSE 

         CN CN_PERt    

                                  Paul [13/5/1994, 5/9/1996)  5.2 [1/2/1995, 24/6/1995)    

   511 Software     5.0 [27/8/1995, 30/1/1996)    

                                              Engineering  Peter [26/2/1996, 1/1/2010)  3.5 [1/1/1998, 28/10/1998)    

              
                                                                      1 Research     Anna [30/4/1994, 27/8/1995)  3.1 [1/7/1995, 1/8/1995)    

   552 Basic   ∪ [4/6/1997, 19/11/1998)  3.3 [29/9/1997, 10/2/1998)    

                                              Research  Mary [15/5/1995, 1/1/2010)  3.3 [17/1/1997, 28/4/1997)    

                                                                                       678 Planning  Katy [24/1/1994, 10/7/1995)  3.2 [22/4/1995, 15/5/1995)    

         5.4 [13/2/1994, 4/3/1995)    

                                                                                       650 Design  Steve [2/1/1995, 27/6/1998)  5.0 [18/3/1996, 1/7/1996)    

                                                                                    2 Development  780 Maintenance  Helen [14/2/1996, 1/1/2010)  3.5 [17/8/1997, 1/1/2010)    

                                                Pat [21/6/1995, 31/1/1996)  2.2 [18/9/1995, 10/10/1995)    

                                                        Fig. 3.14: T_DEPT 
 

COMPANY   ANNEX   
  BUILDING ADDRESS ADDRESS_PERt  

      
Toshiba  North Building Porchester Rd. [3/8/1995, 1/1/2010)  

      
      

IBM  Maple House Kendal Av. [17/1/1996, 22/5/1998)  

  Main Building Danebury Rd. [10/6/1998, 1/1/2010)  

      
      

Microsoft  Pegasus House Ashford St. [29/10/1994, 4/4/1997)  

  Queen’s Building Park Rd. [18/3/1995, 1/1/2010)  

      

Fig. 3.15: T_LOCATION 
 

BANK  BRANCH 

  SORT_CODE ADDRESS ADDRESS_PERt  

      
Barclays  386600 Ashford St. [16/11/1995, 23/12/1998)  

      
      

NatWest  560045 Park Rd. [1/2/1993, 10/8/1998)  

  560038 Porchester Rd. [6/5/1994, 20/2/1995)  

      
      

Lloyd’s  478202 Ashford St. [23/7/1995, 1/1/2010)  

  478210 Park Rd. [16/6/1995, 1/1/2010)  

      

Fig. 3.16: T_CASH-POINT 
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COURSE COURSE_DURATION TITLE SUBJECT  

CN CN_PERt   TOPICS 

                Power Point  

 5.0 [27/8/1995, 30/1/1996)  35 Presentation Skills  Word  

       Outlook Express  

         
         
 3.3 [17/1/1997, 28/4/1997)  15 Multimedia  Power Point  

       Internet  

         
         
 3.5 [17/8/1997, 10/1/2001)     Access  

 5.4 [1/1/1995, 6/3/1995)  180 Computer Skills  Excel  

         
         
 5.2 [13/2/1994, 4/3/1995)  80 Programming  C++  

       JAVA  

         
Fig. 3.17: T_COURSE 

3.6 Summary 

When the time dimension is added to database models it provides 

opportunities for having a number of different approaches to temporal 

database models. These approaches can be distinguished from each other by 

their answers to the following questions: 

1. Semantically, does time represent valid time or transaction time? 

2. Does the model use tuple timestamping or attribute timestamping?  

3. Are the tuples temporally homogeneous or heterogeneous?  

4. Is time represented by single chronons, intervals or temporal elements? 

The advantages and disadvantages of each of these characteristics have 

been examined and the properties of the model proposed in the present thesis 

have been given.  

In the last section of this chapter the running example, which is going to be 

used in the rest of this thesis to demonstrate the various features and 

algebraic operations of the model, is described. 
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CHAPTER 4 

4. THE NESTED RELATIONAL MODEL 

(NRM) 

4.1 Introduction 

A new non-temporal nested relational model is defined in this chapter, 

called the Nested Relational Model, NRM. Relations in NRM can be nested to 

any finite depth. 

The operations of the model are formally defined. Union, difference, 

intersection, projection, selection, unnest, nest, rename, cartesian product, 

natural join and T –join operations are recursively defined. For each definition, 

an example is presented in order to make it clearer. For the first time, the 

natural join operation is defined for any pair of nested relations which have 

one or more attributes in common, even when they are in different 

subrelations and at different nesting levels in each relation. The generalisation 

of natural join uses one or more of the six distinct cases of the nested natural 

join operation which are identified in this chapter, distinguished by certain 

properties of the attributes in the join paths between the relations that 

participate in the join operation. These properties depend on whether an 

attribute is either atomic or relation-valued and on whether it is at either the 

top level or lower level (same or different) of the two relations. The 

generalisation of natural join is shown to be applicable to all joinable nested 

relations. The recursive rename operation for nested relations is also formally 

defined for the first time. Formal definitions for aggregate functions for nested 

relations are also included in NRM. 

It is important to emphasise that the NRM constitutes the base for the 

equivalent temporal nested model, TNM, which is defined in the next chapter, 
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but in addition, forms by itself, a well-defined complete model for nested 

relations. 

4.2 Basic Concepts and Terminology 

In order to introduce the Nested Relational Model (NRM) in the next 

section it is necessary to present firstly the basic concepts and terminology 

that are going to be used. Some of the following definitions have been used 

before by the database community. However, a repetition of these definitions 

at the present point is necessary for completeness. Moreover, some terms and 

notation are introduced for the first time in the present thesis in order to 

provide the essential formalisation of the presented model.  

Definition 4.1 (Relation-valued attributes or nested attributes) 

Relation-valued attributes or nested attributes are attributes which contain 

non-atomic values. �  

Relation-valued attributes or nested attributes can be considered as 

subrelations of the relations to which they belong.  

Definition 4.2 (Non-first normal form relations or nested relations) 

Non-first normal form relations or nested relations are relations which contain 

relation-valued attributes or nested attributes. � 

In this thesis, relations with atomic attributes only will be called flat 

relations, whereas relations that contain relation-valued attributes or only 

atomic attributes will be referred to as nested relations. In other words, in this 

thesis, flat relations are considered as special cases of nested relations. 

Furthermore, attributes that contain non-atomic values will be referred to as 

nested attributes and attributes that contain only atomic values will be called 

atomic attributes. 

Attr(R) is the set of attributes of relation r with scheme name R, i.e. Attr(R) = 

{R1, R2, ..., Rn}, where n ≥ 1 and R1, R2, ..., Rn are the attributes of R, either 

atomic or nested. 

Definition 4.3 (Tree structure) Every nested relation r with relation 

scheme R can be represented as a tree with root node R. All the nested 

attributes of the relation are the non-leaf nodes of the tree and all the atomic 

attributes form the leaf nodes of the tree. � 
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The tree structure is a very useful representation of a nested relation since 

the scheme of a nested relation can become complex and so the tree offers a 

clear graphical representation of the nested structure.  

Example 4.1: The tree structure of the TRAINING relation (Fig. 3.6) is 

shown in Fig. 4.1. 

 

TRAINING 

 

COMPANY TRAINER 

   

 TRN COURSE 

    

 CODE    C 

 

CN Y 

Fig. 4.1: Tree representation of relation TRAINING 

 

Definition 4.4 (Nesting levels of a relation) The number of nesting levels 

of a relation is equal to the maximum number of nodes to be passed through 

starting from the root to reach any atomic attribute in the tree representation. 

The root of the relation is by definition at nesting level 0. � 

Example 4.2: The nesting levels of relation TRAINING (Fig. 4.1) are 4.  

Consequently, the nesting level of an attribute in a relation can be 

computed by counting the number of nodes which must be passed through 

from the root node to get to that attribute. For example, atomic attribute TRN 

of relation TRAINING (Fig. 4.1) is at nesting level 2. 

Definition 4.5 (Common attributes between two relations) Two (flat or 

nested) relations have an atomic attribute in common if they both contain an 

atomic attribute which has the same name and domain in both relations. Two 

nested relations have a nested attribute in common if they both contain a 

nested attribute which has the same name and the same scheme (the same 

attributes with the same names defined over the same domains). � 

The above definition can be applied recursively for nested attributes 

containing one or more nested attributes.  
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The path of an attribute is defined recursively below.  

Definition 4.6 (Path) Let LAn→Aj be the path of nested or atomic attribute A j 

belonging to nested attribute An, which is a child of the root of relation R. 

Then, LAn→Aj is defined as follows: 

i) LAn→Aj = An, where Aj = An 

ii) LAn→Aj = An(LAn+1→Aj), where An+1 is an attribute of An either equal to or 

containing Aj. � 

Then, the set of all attributes (atomic and nested) of R can be defined as 

Attr(R) = {Ra1, Ra2, …, Rap, Rn1, …, Rni, …, Rnq}  

 = {Ra1, Ra2, …, Rap, Rn1, …, U
m

k 0=

LRni → Rni
k
, …, Rnq} 

where: 

§ Ra1, Ra2, …, Rap are atomic attributes at nesting level 1 of relation R (p 

≥ 0), 

§ Rn1, …, Rni, …, Rnq are nested attributes at nesting level 1 of relation 

R (1 ≤ i ≤ q),  

 Rni for k = 0  

§ Rni
k
=   

Rni
k
 for k ≠ 0 (i.e. an attribute that has nested attribute 

Rni as its ancestor) 

§ m is the number of descendants’ attributes of nested attribute Rni. 

 

Example 4.3: The path is used for the definition of an attribute in a nested 

relation, in contrast to flat relations, since the whole path of an attribute is 

needed in order to identify that specific attribute. As an example, consider the 

nested relation DEPT (Fig. 3.7) with tree structure in Fig. 4.2. 
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DEPT 

 

D DN UNIT 

   

                 UN      UD     COURSE_DETAILS 

     

            TRN  COMPANY   C 

 

            CN           Y 

Fig. 4.2: Tree representation of relation DEPT 

 

Then, the set of all attributes of relation DEPT is the following: 

Attr(DEPT) = {D, DN, UNIT, UNIT(UN), UNIT(UD), UNIT(COURSE_DETAILS), 

UNIT(COURSE_DETAILS(TRN)), 

UNIT(COURSE_DETAILS(COMPANY)), 

UNIT(COURSE_DETAILS(C)), 

UNIT(COURSE_DETAILS(C(CN))), 

UNIT(COURSE_DETAILS(C(Y)))}  

and the path of the atomic attribute CN is:  

LUNIT→CN = UNIT(LCOURSE_DETAILS→CN) = UNIT(COURSE_DETAILS(LC→CN)) = 

UNIT(COURSE_DETAILS(C(LCN→CN))) = UNIT(COURSE_DETAILS(C(CN))). 

From the above example, it is apparent that the name of an attribute by 

itself is not enough in general to uniquely identify the attribute, since in 

nested relations an attribute is fully defined by reference to both its name and 

its position in the tree structure of the relation in which it belongs. In addition, 

there are cases in which two common attributes belong in the same relation 

but in different subrelations, as for example in the result relation of a join 

operation. Consequently, the only way for the two attributes to be 

distinguished from one another is by their paths. Therefore, the path of an 

attribute shows whether the attribute belongs to a nested attribute or not, as 

well as the nesting level of it. The path of an attribute identifies the attribute 

uniquely. 
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Definition 4.7 (Two nested relations having the same scheme) Two 

nested relations have the same scheme iff they contain only common 

attributes (atomic and/or nested) -see Definition 4.5. � 

An attribute or set of attributes whose values uniquely identify each entity 

in an entity set is called a key for that entity set ([Ull95]). For the case of a 

nested database model, entity sets are nested relations and the definition of 

the key must be expanded in order to support nested attributes as well. 

Informally, a nested relation can have either atomic or nested attributes or 

even a conbination of atomic and nested attributes as a key. Semantically, a 

nested attribute is a key of a nested relation, when each set of values of the 

nested attribute that belongs to the same tuple, uniquely identifies that tuple. 

That implies that each of these set of values of the nested attribute 

distinguishes, as an entirety, solely the tuple in which it belongs. 

Formally, the definition of a key of a nested relation is given below: 

Definition 4.8 (Key of a nested relation) The key of a nested relation r 

with relation scheme R, can be a set K consisting of atomic and/or nested 

attributes of R such that for any two tuples ti and tj in the relation the 

following constraint is valid at all times: t i[K] ≠ tj[K], where i ≠ j and with the 

additional property that removing any attribute from K leaves a set of 

attributes that is not a key of R. � 

Example 4.4: An example of a nested key attribute can be found in section 

3.4 (Fig. 3.5).  

It is considered, by the author of this thesis, that an approach where nested 

attributes are allowed to be part of key attributes is an important benefit for a 

nested model. Nested models, where nested attributes are not allowed to be 

part of key attributes, have a significant limitation, since relations, as the one 

presented in Fig. 3.5, cannot be supported. Therefore, there are cases that are 

not covered by such an approach. 

Many authors have adopted the PNF assumption, defined by Roth, Korth 

and Silberschatz in [RKS88], in their approaches. A relation is in PNF  when 

all the atomic attributes of the relation participate in the key of the relation 

and in addition, each nested attribute of the relation is also in PNF (see 

section 2.2.2). The PNF assumption presupposes that nested attributes cannot 
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form part of a key in a nested relation, a significant restriction of a nested 

database model, as explained above.  

Consequently, in the nested model defined in the present thesis, the 

relaxing of the restriction that other nested models impose, to allow nested 

attributes as part of the key, is a considerable extension and thus, an 

important benefit that the NRM offers. 

In addition, time is allowed in key. There are two major objections for this 

approach: 

1) Key should be short.  

This is correct from the point of efficiency. From a theoretical point of view, 

however, the relational model does not impose any restriction of the form 

'attributes of data type A are not allowed to participate in the key'. Therefore, 

since the work in the present thesis is the definition of a relational algebra and 

not the development of efficient methods, the allowance of union of intervals to 

be part in the key is absolutely correct. 

2) Key should have a fixed length.   

This also relates to e fficiency. Again, however, the relational model does not 

impose any restriction related to the size of data that is recorded in an 

attribute. Hence, the same applies to an attribute that participates in a key. If 

implementation issues are considered, however, two solutions are presented 

below: 

Assume that one table is R (T, A, B) and the key is T, of variable length. 

1st Solution (Best Solution): 

In a way not seen by the user, this table is internally maintained as 

R(Id, T, A, B). For the system, the key is Id and now, this key has a fixed size. 

This Id is not seen by the user. For the user, however, the key is T. 

Note: In SQL BLOB data types are supported now. They have varying length  

and enable recording images etc. They are not allowed to participate in the  

key. One disadvantage is that relations with attributes of a BLOB type may  

not be involved in UNION, EXCEPT and other operations. 

Note that normally, commercial DBMSs use to consider an extra column in 

addition to those of users. For example, INGRES has such a column (ColID), 

where the systems records automatically a unique tuple identifier. 
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2nd Solution: 

In a way not seen by the user, this table is internally maintained in two  

tables: 

R(Id, A, B) with key Id and Time(Id, T) with key Id. 

Now, key has a fixed size and the system performs a join, whenever 

necessary, in order to maintain the table or reply a query. 

4.3 Operations in the NRM 

The operations in the NRM are introduced in this section. The algebra of the 

non-temporal nested model forms the heart of the temporal nested model, 

TNM, which will be formally presented in the next chapter. It is important to 

emphasise at this point that the NRM is not just a model designed to 

constitute the base for the equivalent temporal one, but forms by itself, a well-

defined complete model for nested relations. 

The algebraic operations of the NRM are defined recursively.  

Recursive algebraic definitions in nested models are undoubtedly preferable 

to the corresponding non-recursive ones. This is based on the following facts:  

1) The non-recursive algebras allow operations only on entire tuples. In 

contrast, recursive algebras allow the direct manipulation of tuples either at 

the top level or at lower levels of the nested relations. 

2) When an attribute at a lower nesting level of the nested relation needs to 

be accessed, because it participates in an operation expressed in a non-

recursive algebra, one or more unnesting operations need to be applied 

resulting in the creation of many additional tuples. The non-recursive 

operation can then be performed and finally the relation is nested again. 

However, one of the main motivations for a model consisting of nested 

relations is the reduction in the number of tuples processed. 

3) In the non-recursive algebras, queries can become long and complicated, 

while in the recursive algebras queries will be shown to be compact, simpler 

and more naturally expressed. 

4) Restructuring operations are not required with recursive algebras unlike 

non-recursive ones.  

5) Traditional query optimisation techniques can be used with recursive 

algebras. In contrast, nest and unnest operations which have to be used 
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frequently in non-recursive algebras, are not, in general, inverse operations. 

Therefore, traditional query optimisation techniques can be applied to queries 

which are expressed using recursive algebras since recursive operations can 

be performed at any nesting level without using nest or unnest operations 

([Lev92]). 

However, it has been shown that the recursive and non-recursive algebras 

are equivalent in expressive power ([Col90]).  

 

All of the relational algebra operations defined for flat relations are now 

redefined using recursive definitions for nested relations. The “base case” of 

each recursive operator has the same definition as the non-recursive one; i.e., 

the recursive definition can be reduced to the non-recursive one when 

relations do not contain any nested attributes. 

4.3.1 The Recursive Nested Union  Operation (∪∪ ) 

Let r and q be two nested (in general) relations with relation schemes R and 

Q respectively. Assume that the two relations have the same relation scheme 

i.e. R = Q = {S(R), R1, R2, …, Rn} where S(R) is the set containing all the key 

nested attributes and all the atomic attributes of R and Q (the same for the 

two relations) and {R1, R2, …, Rn} are the non-key nested attributes of R and Q. 

Assume also that Attr(R) is the set of all attributes (atomic and nested) of the 

two relations, tr is a tuple in relation r, tq is a tuple in relation q and t is a 

tuple in the result relation (r ∪∪ q). 

Then, the union of the two relations r and q is defined as follows: 

Definition 4.9 (Recursive Nested Union) 

i) Non-recursive union for flat relations (r ∪ q) 

r ∪ q = { t| ((∃ tr ∈ r) (t[Attr(R)] = tr[Attr(R)]))  

  ∨ ((∃ tq ∈ q) (t[Attr(R)] = tq[Attr(R)]))} 

ii) Recursive union for nested relations (r ∪∪ q) 

r ∪∪ q = { t| (∃ tr ∈ r) (∃ tq ∈ q) ((t[S(R)] = tr[S(R)] ∪ tq[S(R)])  

∧ ((t[R1] = tr[R1] ∪∪ tq[R1]) ∧…∧ (t[Rn] = tr[Rn] ∪∪ tq[Rn])))} � 

Example 4.5: Let relations TRAINING_2 (Fig. 4.3) and TRAINING_4 (Fig. 

4.4) be two modified versions of relation TRAINING (Fig. 3.6) having the same 

scheme. Please note that relation TRAINING_2 is the same as that of Fig. 2.3 
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(section 2.2.3). However, the reason for this repetition is to simplify the 

reading of this specific example. 

In both relations, TRAINING_2 and TRAINING_4, S(TRAINING_2) = 

S(TRAINING_4) = COMPANY. 

The union of the two relations, according to the above definition, is shown 

in Fig. 4.5.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3: TRAINING_2 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4: TRAINING_4 

    TRAINER    

COMPANY  TRN C 

    CN Y   

          Jack  1 75   

Apple    2 76   

                                    1 82   

  Mark  3 82   

    2 79   

                                    3 82   

IBM  Tim  5 79   

    4 82   

                                Microsoft  Karen  2 77   

    2 81   

                

    TRAINER    

COMPANY  TRN  C 

    CN Y   

          Jack  6 82   

Apple    2 76   

                                  Mark  3 82   

    2 79   

                                IBM  Tim  5 84   

                                Microsoft  Karen  2 77   

    2 81   
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    TRAINER    

COMPANY  TRN  C 

    CN Y   

            1 75   

Apple  Jack  2 76   

    6 82   

                                    1 82   

  Mark  3 82   

    2 79   

                                    3 82   

IBM  Tim  5 79   

    4 82   

    5 84   

                                Microsoft  Karen  2 77   

    2 81   

                

Fig. 4.5: TRAINING_2 ∪∪ TRAINING_4 

4.3.2 The Recursive Nested Difference Operation (--) 

Let r and q be two nested (in general) relations with relation schemes R and 

Q respectively. Assume that the two relations have the same relation scheme 

{S(R), R1, R2, …, Rn}, where S(R) is the set of all the key nested attributes and 

all the atomic attributes of R and Q (the same for the two relations) and {R1, 

R2, …, Rn} are the non-key nested attributes of R and Q. Assume also that 

Attr(R) is the set of all attributes (atomic and nested) of the two relations, tr is 

a tuple in relation r, tq is a tuple in relation q and t is a tuple in the result 

relation (r -- q). 

Then, the difference of the two relations r and q is defined as follows: 

Definition 4.10 (Recursive Nested Difference) 

i) Non-recursive difference for flat relations (r - q) 

r - q = { t| (∃ tr ∈ r) (∀ tq ∈ q) ((t[Attr(R)] = tr[Attr(R)])  

∧ (t[Attr(R)] ≠ tq[Attr(R)]))} 

ii) Recursive difference for nested relations (r –- q) 

r -- q = { t| ((∃ tr ∈ r) (∀ tq ∈ q)  

((t[S(R)] = tr[S(R)] - tq[S(R)]) ∧ (t[R1] = tr[R1]) ∧…∧ (t[Rn] = tr[Rn])))  

∨ ((∃ tr ∈ r, ∃ tq ∈ q) ((t[S(R)] = tr[S(R)] = tq[S(R)])  

∧ (t[R1] = tr[R1] -- tq[R1]) ∧…∧ (t[Rn] = tr[Rn] -- tq[Rn])))} � 
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Example 4.6: The difference of the two relations TRAINING_2 (Fig. 4.3) and 

TRAINING_4 (Fig. 4.4) is shown in Fig. 4.6. 

 

 

 

 

 

 

 

 

Fig. 4.6: TRAINING_2 -- TRAINING_4 

4.3.3 The Recursive Nested Intersection Operation (∩∩ ) 

The intersection of two nested (in general) relations r and q, having the 

same scheme R is a nested relation with scheme R that contains only the 

tuples which have exactly the same values in every attribute in both relations. 

Formally, let r and q be two nested relations with relation schemes R and Q 

respectively. Assume that the two relations have the same relation scheme R 

and let S(R) be all the key attributes of the relations (atomic and nested) and 

all the non-key atomic attributes of the relation scheme R. Let {R1, ..., Rn} be 

all the non-key nested attributes of R. Assume also that Attr(R) is the set of all 

attributes (atomic and nested) of the two relations, t r is a tuple in relation r, tq 

is a tuple in relation q and t is a tuple in the result relation (r ∩∩ q). 

Then, the intersection of the two relations r and q, is defined as follows: 

Definition 4.11 (Recursive Nested Intersection) 

i) Non-recursive intersection for flat relations (r ∩ q) 

r ∩ q = { t| (∃ tr ∈ r) (∃ tq ∈ q) (t[Attr(R)] = tr[Attr(R)] = tq[Attr(R)])} 

ii) Recursive intersection for nested relations (r ∩∩q) 

r ∩∩ q = { t| (∃ tr ∈ r) (∃ tq ∈ q) ((t[S(R)] = tr[S(R)] ∩ tq[S(R)])  

    ∧ ((t[R1] = tr[R1] ∩∩ tq[R1]) ∧ ... ∧ (t[Rn] = tr[Rn] ∩∩ tq[Rn])))} � 

Example 4.7: The intersection of the two relations TRAINING_2 (Fig. 4.3) 

and TRAINING_4 (Fig. 4.4) is shown in Fig. 4.7. 

 

    TRAINER    

COMPANY  TRN  C    

    CN Y   

        Apple  Jack  1 75   

                                  Mark  1 82   

                                    3 82   

IBM  Tim  5 79   

    4 82   
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Fig. 4.7: TRAINING_2 ∩∩ TRAINING_4 

4.3.4 The Recursive Nested Projection Operation (π π) 

Let r be a nested (in general) relation with relation scheme R and let {Ra1, …, 

Rak} be the subset of atomic attributes of R which are going to be projected and 

{Rn1, …, Rnm} the subset of nested attributes of R which are going to be 

projected either fully or attributes belonging to these nested attributes (k, m ≥ 

0). 

In order to define the projection operation, the term project list needs to be 

defined firstly. In general, a project list is a list of project paths. A project path 

of an attribute which is going to be projected is the path of that attribute (see 

Definition 4.6). 

Definition 4.12 (Project list) Lπ is a project list of R if 

i) Lπ is empty (the project list of an atomic attribute is empty). 

ii) Lπ is of the form (Rn1Ln1, …, RnmLnm), where Ln1, …, Lnm are project lists of 

nested attributes Rn1, …, Rnm respectively. � 

Then, the projection operation in a nested relation r, ππ(rLπ), where t r is a 

tuple in relation r and t is a tuple in the result relation, is defined as follows: 

Definition 4.13 (Recursive Nested Projection) 

i) π(r) = r  

ii) ππ(r(Ra1, …, Rak, Rn1Ln1, …, RnmLnm)) = { t| (∃ tr ∈ r)  

   ((t[Ra1] = tr[Ra1]) ∧ … ∧ (t[Rak] = tr[Rak])  

  ∧ (t[Rn1] = ππ(tr[Rn1]Ln1)) ∧ … ∧ (t[Rnm] = ππ(tr[Rnm]Lnm)))} � 

Example 4.8: Given relation TRAINING_2 (Fig. 4.3) consider the following 

query: “Retrieve the course numbers for the courses that each company has 

run”. The result is shown in Fig. 4.8. 

    TRAINER    

COMPANY  TRN  C    

    CN Y   

        Apple  Jack  2 76   

                                  Mark  3 82   

    2 79   

                                Microsoft  Karen  2 77   

    2 81   
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Fig. 4.8: ππ(TRAINING_2(COMPANY, TRAINER(C(CN)))) 

4.3.5 The Recursive Nested Selection Operation (σσ) 

Let r be a nested (in general) relation with relation scheme R and let Ra = 

{Ra1, …, Rak} and Rn = {Rn1, …, Rnm} be the subsets of all atomic and nested 

attributes of R respectively that participate in the selection operation, where k 

and m are less than or equal to the number of atomic and nested attributes at 

the top level in the relation R, respectively. Let also, c be a set of conditions in 

R, which is of the form {ca, cn} where ca={ca1, …, cak} is a set of conditions which 

must be true for the atomic attributes Ra1, …, Rak of R respectively and cn 

={cn1, …, cnm} is a set of conditions that must hold for the nested attributes 

Rn1, …, Rnm of R respectively. When both sets of conditions are applied 

simultaneously then, the result is obtained by computing the intersection of 

the two results. In addition, the condition can be no matter complicated, as for 

example equality of nested attributes. If, two multi-valued nested attributes 

are compared for equality, they are treated as sets so, since each nested 

attribute is, in fact, a relation, equal tuples are searched at the level of the 

nested relations. 

In order to define the selection operation, the term select list needs to be 

defined firstly. In general, a select list is a list of select paths. A select path of 

an attribute that is going to participate in the selection, is the path of that 

attribute (see Definition 4.6). The select list is defined recursively. 

Definition 4.14 (Select list) Lσ is a select list of R if 

i) Lσ is empty (all the atomic attributes of relation r have empty select lists). 

   TRAINER  

COMPANY   C  

   CN  

        1  

   2  

          Apple   1  

   3  

   2  

             3  

IBM   5  

   4  

          Microsoft   2  

   2  
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ii) Lσ is of the form (Rn1Ln1, …, RnmLnm) where Ln1, …, Lnm are select lists of 

nested attributes Rn1, …, Rnm respectively. � 

Then, a selection operation of the relation r, where t r is a tuple in relation r 

and t is a tuple in the result relation, is defined as follows: 

Definition 4.15 (Recursive Nested Selection) 

i) σ(rca1, …, cak) = { t| (∃ tr ∈ r)  

((t[Attr(R) - {Ra1, …, Rak}] = tr[Attr(R) - {Ra1, …, Rak}])  

∧ ((t[Ra1] = tr[Ra1]) ∧ ca1 = true)  

∧ … ∧ ((t[Rak] = tr[Rak]) ∧ cak = true))} 

ii) σσ(rcn1, …, cnmLσ) = { t| (∃ tr ∈ r)  

((t[Attr(R) - {Rn1, …, Rnm}] = tr[Attr(R) - {Rn1, …, Rnm}])  

∧ (t[Rn1] = σσ(tr[Rn1]cn1Ln1) ≠ ∅)  

∧ … ∧ (t[Rnm] = σσ(tr[Rnm]cnmLnm) ≠ ∅))} 

In the general case, the selection operation can be defined as the 

intersection of the two previously defined cases as follows: 

σσ(rcLσ) = σσ(rca1, …, cak, cn1, …, cnmLσ) = σ(rca1, …, cak) ∩ σσ(rcn1, …, cnmLσ) � 

Example 4.9: Given relation TRAINING_2 (Fig. 4.3) consider the following 

query: “Find all the information of the TRAINING_2 relation of those courses 

that have been given by trainers Mark or Tim during the year 1982”. 

 

 

 

 

 

 

 

 

Fig. 4.9: σσ(TRAINING_2((TRAINER(TRN) = ‘Mark’ OR ‘Tim’) AND (TRAINER(C(Y)) = 82))) 

 

The unnest operation (section 4.3.6) as well as the nest operation (section 

4.3.7) are restructuring operations, since they change the scheme of the 

relation in which they are applied. 

    TRAINER    

COMPANY  TRN  C 

    CN Y   

                Apple  Mark  1 82   

    3 82   

                                IBM  Tim  3 82   

    4 82   
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4.3.6 The Recursive Unnest Operation (µµ) 

Let r be a nested (in general) relation with relation scheme R. 

Definition 4.16 (Unnest list) Lµ is an unnest list of R if it is of the form 

i) Ri, where Ri is a nested attribute of R at the top level. 

ii) (RiLi) where Li is an unnest list of the nested attribute Ri. � 

Let Attr(R) be the set of all attributes of R and R i a nested attribute of R, at 

the top level of R. Let also, t r be a tuple in relation r and t a tuple in the result 

relation. Then, the unnest operation, µµ(rLµ), is defined as follows (see also 

[Col90]): 

Definition 4.17 (Recursive Unnest) 

i) µ(rRi) = { t| (∃ tr ∈ r) ((t[Attr(R) - Ri] = tr[Attr(R) - Ri]) ∧ (t[Ri] ? tr[Ri]))} 

ii) µµ(rRiLi) = { t| (∃ tr ∈ r) ((t[Attr(R) – Ri] = tr[Attr(R) – Ri])  

  ∧ (t[Ri] = µµ(tr[Ri]Li)))} � 

Example 4.10: The result of unnesting relation TRAINING (Fig. 3.6) on the 

COURSE attribute, i.e. µµ(TRAININGTRAINER(COURSE) ), is shown in Fig. 4.10. 

 

    TRAINER       

COMPANY  TRN  CODE   C    

      CN Y    

                        Jack  xx0  1 75    

      2 76    

                                                                  Apple  Mark  xy1  1 82    

      3 82    

                                                         Mark  xy2  2 79    

                                                                    Tim  xy1  3 82    

                                            IBM  Tim  xx2  5 79    

      4 82    

                                                                  Microsoft  Karen  xx1  2 77    

      2 81    

                                 Fig. 4.10: µµ(TRAININGTRAINER(COURSE) ) 

4.3.7 The Recursive Nest Operation (vv)  

Let r be a nested (in general) relation with relation scheme R. 

Definition 4.18 (Nest list) Lv is a nest list of R if it is of the form  
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i) (R1, …, Rn) where R1, …, Rn are attributes of R, either atomic or nested at 

the top level of R. 

ii) (RiLi) where Li is a nest list of the nested attribute Ri. � 

Let Attr(R) be the set of all attributes of R and An = {R1, …, Rn} the set of 

attributes of R that are going to be nested to form a new nested attribute A.  

Let also, tr be a tuple in relation r, t a tuple in the result relation and s a 

tuple of the new nested attribute A. Then, the nest operation, vv(rLv→A), is 

defined as follows (see also [Col90]): 

Definition 4.19 (Recursive Nest) 

i) v(rAn→A) = { t| (∃ tr ∈ r) ((t[Attr(R) - An] = tr[Attr(R) - An])  

∧ (t[A] = {s[An] | (s ? r) (s[Attr(R) - An] = tr[Attr(R) - An])}))} 

ii) vv(r(RiLi) →A) = { t| (∃ tr ∈ r) ((t[Attr(R) – Ri] = tr[Attr(R) – Ri])  

   ∧ (t[Ri] = vv(tr[Ri]Li→A)))} � 

Example 4.11: In order to return to relation TRAINING (Fig. 3.6) from the 

relation µµ(TRAININGTRAINER(COURSE) ) of Fig. 4.10, a nest operation needs to be 

performed, i.e. vv(µµ(TRAININGTRAINER(COURSE) )TRAINER(CODE, C) → TRAINER(COURSE) ). 

4.3.8 The Recursive Nested Rename Operation (ρρ ) 

The rename operation takes a specified relation and returns another that is 

identical to the given one except that at least one of its attributes has a 

different name ([Dat00]). The rename operation is useful before or after 

performing a number of operations, as for example for cases when there are 

duplicate names in the result relation after performing a join operation of two 

relations, or when the cartesian product operation is performed between two 

relations having attributes with the same name. When a rename operation 

takes place only the heading of the relation changes, the body (instance) 

remains the same. 

Let r be a nested (in general) relation with relation scheme R = {R1, R2, …, 

Ri, …, Rn, A, B,…, Z}, where R1, R2, …, R i, …, Rn are atomic attributes and A, 

B, …, Z are nested attributes  at the top level of relation R. 

Then, the rename operation ρρ of relation r is defined as follows: 

Definition 4.20 (Recursive Nested Rename) 

i) Rename of an atomic attribute Ri to Ri´ at the top level of relation R 

    ρ[Ri ← Ri´](R) = {R1, R2, …, Ri´, …, Rn, A, B, …, Z} 
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ii) Rename of a nested attribute A to A′ at the top level of relation R 

    ρ[A ← A′](R) = {R1, R2, …, Ri, ..., Rn, U
m

k 0=

LA´→Ak, B, …, Z} 

where m is the number of attributes that are descendants of A and for m = 

0, A′ = A0 (atomic attribute at the top level of R) and case (ii) reduces to case (i). 

iii) Rename of an atomic or nested attribute Ai to Ai′ at a lower level of 

relation R 

    ρρ[Ai ← Ai′](R) = {R1, R2, …, R i, …, Rn, A, A1, …, U
m

k 0=

LA→Ai′k, B, …, Z}, where 

A1 is a child attribute of nested attribute A, A i is an attribute at a lower level of 

relation R belonging to nested attribute A and m is the number of descendants 

that Ai has (m = 0, when atomic, in which case Ai′0 = Ai′). � 

When more than one attribute has to be renamed the definition is recursive, 

as follows: 

ρρ[Ra1←R′a1, …, Rak←R′ak, Rn1←R′n1, …, Rnm←R′nm, Rl1←R′l1, …, Rlp←R′lp](R) =  

(ρρ[Rlp←R′lp](…(ρρ[Rl1←R′l1](ρ[Rnm←R′nm](…(ρ[Rn1←R′n1](ρ[Rak←R′ak](…(ρ[Ra1←R′a1]

(R))))))))))  

where Ra1, …, Rak are atomic attributes at the top level of relation R, Rn1, …, 

Rnm are nested attributes at the top level of relation R and R l1, …, Rlp are either 

atomic or nested attributes at lower levels (different, in general) of relation R 

and k, m, p ≥ 0. The names of the attributes having primes denote the new 

names that these attributes are going to be renamed. 

Example 4.12: Consider the relation DEPT with tree structure in Fig. 4.2 

and let attribute UD be renamed as UD′ and attribute C as C′. Then, the 

rename operation is defined as follows: 

ρρ[UD ← UD′, C ← C′](DEPT) =  

ρρ[C ← C′](ρρ[UD ← UD′](DEPT)) =  

ρρ[C ← C′]({D, DN, UNIT, UNIT(UN), UNIT(UD′), UNIT(COURSE_DETAILS), 

UNIT(COURSE_DETAILS(TRN)), UNIT(COURSE_DETAILS(COMPANY)), 

UNIT(COURSE_DETAILS(C)), UNIT(COURSE_DETAILS(C(CN))), 

UNIT(COURSE_DETAILS(C(Y)))}) =  

{D, DN, UNIT, UNIT(UN), UNIT(UD′), UNIT(COURSE_DETAILS), 

UNIT(COURSE_DETAILS(TRN)), UNIT(COURSE_DETAILS(COMPANY)), 
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UNIT(COURSE_DETAILS(C′)), UNIT(COURSE_DETAILS(C′(CN))), 

UNIT(COURSE_DETAILS(C′(Y)))} 

The tree structure of relation DEPT after the renaming of attributes UD and 

C is shown in Fig. 4.11. 

 

 DEPT 

 

 

D DN UNIT 

   

                 UN    UD′   COURSE_DETAILS 

     

            TRN  COMPANY   C′ 

 

           CN    Y 

Fig. 4.11: The tree representation of relation DEPT after the renaming of 

attributes UD and C to UD′ and C′ respectively 

4.3.9 The Recursive Nested Cartesian Product Operation (××) 

Let R be a relation scheme of relation r.  

Definition 4.21 (Join path) L is a join path of R if either:  

(i) L is empty or 

(ii) L = RiLi where Ri is a nested attribute of R and Li is a join path of R i. � 

([Col90])  

The join path can be represented as a branch of the tree structure of some 

nested relation R starting from a child of the root of the tree and going down to 

some node of the tree that represents either an atomic or nested attribute. In 

other words, the join path consists of all the nodes that are passed in order to 

reach a specific attribute.  

Example 4.13: In relation DEPT (Fig. 3.7) an example of a join path is 

UNIT(COURSE_DETAILS(TRN)). The tree structure of the relation DEPT is 

shown in Fig. 4.2. 

Let r and q be two nested (in general) relations with relation schemes R and 

Q respectively and let Attr(R) be all the attributes (atomic and nested) of R, 
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Attr(Q) all the attributes (atomic and nested) of Q and L a join path of R. Let, 

also, R i be a nested attribute of R, L i a join path of R i, tr a tuple in relation r, tq 

a tuple in relation q and t a tuple in the result relation. The cartesian product 

operation can be applied either at the top level of both relations or between a 

lower nesting level of a relation and the top level of another relation. The first 

case is exactly the same as the standard cartesian product for flat relations. 

So, the cartesian product of two relations r and q is defined as follows (see 

also [Col90]): 

Definition 4.22 (Recursive Nested Cartesian Product) 

i) × (r, q) = { t ≡ (t[Attr(R)], t[Attr(Q)])|  

   (∃ tr ∈ r, ∃ tq ∈ q) ((t[Attr(R)] = t r[Attr(R)]) ∧ (t[Attr(Q)] = tq[Attr(Q)]))} 

ii) ×× (rL, q) = ×× (r(RiLi), q) ≡ ×× (q, r(RiLi)) =  

{ t| (∃ tr ∈ r) ((t[Attr(R) –{Ri}] = tr[Attr(R) – {Ri}]) ∧ (t[Ri] = ×× (tr[Ri]Li, q)))} � 

An example follows where the second case is demonstrated. 

It follows from the formal definition of the recursive nested cartesian 

product operation that the result relation of the cartesian product of nested 

relations r and q consists of the attributes of relation r plus the attributes of 

relation q. In addition, the commutative property is again satisfied, as is the 

case in the CRM. Thus, it is always valid: 

×× (r(RiLi), q) ≡ ×× (q, r(RiLi)) 

Example 4.14: The cartesian product operation is performed between the 

COURSE attribute of relation TRAINING (Fig. 3.6) and the CASH-POINT 

relation (Fig. 3.9). Due to the large number of tuples in the result relation, only 

a part of it is displayed in Fig. 4.12. 

Note that, in case the operands of the cartesian product are interchanged, 

the result remains exactly the same. 



   

 

 
 
105 

 

    (TRN (CODE C BANK BRANCH)) 

COMPANY  TRN  (CODE C BANK BRANCH)   

    CODE  C  BANK  BRANCH    

      CN Y    SORT_CODE ADDRESS    

                                    xx0  1 75  Barclays  386600 Ashford St.    

      2 76         

                                                                  Jack  xx0  1 75  NatWest  560045 Park Rd.    

      2 76    560038 Porchester Rd.    

                                                                    xx0  1 75  Lloyd’s  478202 Ashford St.    

      2 76    478210 Park Rd.    

                                                                                                    xy1  1 82  Barclays  386600 Ashford St.    

Apple      3 82         

                                                                    xy1  1 82  NatWest  560045 Park Rd.    

      3 82    560038 Porchester Rd.    

                                                                    xy1  1 82  Lloyd’s  478202 Ashford St.    

      3 82    478210 Park Rd.    

                                                                  Mark  xy2  2 79  Barclays  386600 Ashford St.    

                                                                    xy2  2 79  NatWest  560045 Park Rd.    

           560038 Porchester Rd.    

                                                                    xy2  2 79  Lloyd’s  478202 Ashford St.    

           478210 Park Rd.    

                                                . 

. 

. 

. 

 . 

. 

. 

. 

 . 

. 

. 
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 . 
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. 

. 

   

                 

Fig. 4.12: ×× (TRAINING(TRAINER(COURSE)), CASH-POINT) 

 

Note: As can be seen from the above example, the cartesian product 

operation is not often a semantically meaningful operation. However, it helps 

in defining the join operation (see sections 4.3.10 and 4.3.11), since the join is 

a special case of a cartesian product operation and for this reason it is 

included here. 

4.3.10 The Recursive Nested Natural Join operation (><><) 

The natural join operation is the most complicated operator, especially in 

nested models, since the two relations which participate in the natural join 

can have multiple common attributes (atomic or nested) which can be in 
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different subrelations and at different nesting levels in each of the two joined 

relations. 

When the two nested relations which participate in the natural join 

operation have two or more (atomic or nested) attributes in common in 

different subrelations and at different levels of nesting in each relation, the 

natural join operation can be informally stated as follows: 

Step 1: Define a join path for each relation. 

Step 2: Join the two relations using one of the six cases (formally defined 

later). 

Step 3: In the resulting relation choose another pair of common attributes. 

Step 4: Construct the paths for both attributes. 

Step 5: Find the first different nodes on the paths progressing towards the 

common attributes. 

Step 6: Assume that these two nodes are the root nodes of the two 

subrelations that are going to be joined. 

Step 7: Perform the natural join of the two subrelations according to one of 

the six cases. 

Step 8: Repeat the steps 3 to 7 until no more common attributes are in the 

result relation. � 

Note: When the natural join operation is performed the result relation may 

contain one or more new subrelations, which are created by joining two 

subrelations of the two original relations. The names of these new subrelations 

are formed from the attributes of which they are composed and are then 

enclosed in parentheses.  

An example of the general case of the recursive nested natural join 

operation is given below. 

Example 4.15: Consider the relations TRAINING_1 (Fig. 2.1) and DEPT (Fig. 

3.7) and suppose that the following query is given: “In which years has the 

course with code number xy1 been taught?”.  

The two relations must be joined in order to answer this query. To do this, 

the 8-step algorithm, which was described earlier, must be executed. 

The two relations TRAINING_1 and DEPT are joined on two pairs of common 

attributes. The two pairs are: (PROGRAMME(TRN), 

UNIT(COURSE_DETAILS(TRN))) and (COMPANY, 
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UNIT(COURSE_DETAILS(COMPANY))), where the first attribute of each pair 

belongs to relation TRAINING_1 and the second belongs to relation DEPT. 

Step 1: Initially, one of the pairs of join paths given above must be selected. 

For our example, the first join paths are PROGRAMME(TRN) and 

UNIT(COURSE_DETAILS(TRN)) for relations TRAINING_1 and DEPT 

respectively.  

Step 2: The natural join is performed according to Case 3b (defined later) 

where the two common atomic attributes are not at the same nesting levels in 

the two joined relations. The tree representation of the result relation x1 is 

shown in Fig. 4.13. 

 
x1 

 
 

    D     DN     (UN UD (COMPANY TRN CODE′ C)COMPANY) 

 

      UN   UD  (COMPANY TRN CODE′ C)   COMPANY 

 

COMPANY  TRN CODE′     C 

 

     CODE      CN    Y 

Fig. 4.13: The tree representation of relation x1 

 

Step 3: In the result relation only the attribute COMPANY appears twice.  

Step 4: The paths for these two attributes, with the same name COMPANY, 

are: (UN UD (COMPANY TRN CODE′ C)COMPANY)(COMPANY) and (UN UD 

(COMPANY TRN CODE′ C)COMPANY)((COMPANY TRN CODE′ C) (COMPANY)). 

Step 5: For these two attribute occurrences the first different nodes starting 

from the root are the (COMPANY TRN CODE′ C) attribute and the COMPANY 

attribute.  

Step 6: So, the two subrelations that must be joined are the subrelation 

with root node (COMPANY TRN CODE′ C) and the subrelation which has only 

the atomic attribute COMPANY.  

Step 7: The natural join operation is performed according to Case 1, which 

is described below.  
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The tree representation of the result relation is shown in Fig. 4.14 and the 

result relation of the natural join operation in Fig. 4.15. 

 

   x2 

 

      D       DN     (UN UD (COMPANY TRN CODE′ C)) 

 

                   UN    UD   (COMPANY TRN CODE′ C) 

 

     COMPANY  TRN CODE′       C 

 

      CODE   CN   Y 

Fig. 4.14: The tree representation of the result relation  

x2= ><>< (TRAINING_1, DEPT) 
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    (UN        UD  (COMPANY TRN  CODE ′ C))        

D DN  UN UD (COMPANY TRN CODE ′ C)        

      COMPANY TRN  CODE ′    C    

         CODE   CN Y    

                                     511 Software   Apple Mark  xy1   1 75    

    Engineering     xy2   2 76    

                             5 79    

                                                                                                      1 Research  678 Planning  Apple Mark  xy1   2 76    

         xy2   4 82    

                                                                                        552 Basic  IBM Tim  xy1   5 79    

    Research     xx2        

                                                                          Microsoft Karen  xx1   1 82    

            2 79    

                                                                                                         981 Planning  Apple Jack  xx0   2 81    

            3 82    

            5 79    

                                                                                                      2 Development  780 Maintenance  Apple Mark  xy1   2 76    

         xy2        

                                                         IBM Tim  xy1   3 82    

         xx2        

                                                                                                         650 Design  Microsoft Karen  xx1   1 75    

                                                   Fig. 4.15: The result relation x2 = ><>< (TRAINING_1, DEPT) 

 

Definition 4.23 (Generalised Natural Join) Let r and q be two nested 

relations with relation schemes R and Q respectively and let A = {A0, A1, …, Aj} 

be the set of all common attributes that the two relations have, where A0, A1, 

…, Aj are atomic or nested attributes either at the top or lower levels in the two 

relations. Then, the generalised natural join is defined as follows: 

><>< (r, q) = ><>< (sjLsjAj, s′jLs′jAj)(…(><>< (s1Ls1A1, s′1Ls′1A1)(><>< (rLrA0, qLqA0)))) 

where ><>< (rLrA0, qLqA0) = x1, ><>< (s1Ls1A1, s′1Ls′1A1) = x2, …, ><>< (sjLsjAj, s′jLs′jAj) = 

xj+1 and (s1, s′1),…, (sj, s′j) pairs, are subrelations of x1, …, xj respectively with 

their root node being the first different nodes along the paths to the common 

attributes A1, …, Aj respectively. � 
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Fig. 4.16 shows all the different cases which are analysed below giving their 

formal semantics. Formal definitions are given even for the simplest cases in 

order to have a unified representation of the nested natural join operation. 

The nested natural join operation presented in this section is defined 

recursively. The six cases which are examined in detail can be grouped into 

two more general categories. The first category involves joining two nested 

relations which have atomic attributes in common and the second involves 

joins between two nested relations which have nested attributes in common, 

i.e. subrelations. In each category three cases are examined depending on the 

join paths of the relations to be joined. 

 

Category 1      Category 2 

1st relation 

 

2nd relation 

atomic 

attribute 

top level  

atomic attribute  

not top level  

 1st relation 

 

2nd relation 

nested 

attribute 

top level  

nested attribute  

not top level  

atomic 

attribute 

top level  

Case 1 Case 2  nested 

attribute 

top level  

Case 4 Case 5 

atomic 

attribute  

not top level  

Case 2 Case 3a 

         (same level) 

 

 

Case 3b 

(not same level) 

 nested 

attribute  

not top 

level  

Case 5 Case 6a 

(same level) 

 

 

Case 6b 

(not same level) 

Fig. 4.16: The different cases of common attributes between two relations 

that participate in the nested natural join operation 

 

The two tables in Fig. 4.16 can be represented in a different way. In the 

general case, the recursive nested natural join operation, written as ><>< (rL, 

qM), where L,  ̄and M,¯ are the lengths of the join paths L and M recursively, 

can be distinguished in the following different cases: 
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 i) L,  ̄= ∅, M,¯= ∅                                    Case 1 / Case 4  

ii) (L,  ̄≠ ∅, M,¯ = ∅) ∨ (L,  ̄= ∅, M,¯ ≠ ∅)        Case 2 / Case 5 

   ><>< (rL, qM) = iii) L, ,̄ M,¯ ≠ ∅ ∧ L,  ̄= M,¯            Case 3a / Case 6a 

iv) L, ,̄ M,¯ ≠ ∅ ∧ L,  ̄≠ M,¯                    Case 3b / Case 

6b 

 

 

Fig. 4.17 

 

Case 1: Join a nested (or flat) relation to another nested (or flat) relation 

which have one or more atomic attributes at the top level in common 

This natural join is exactly the same as the standard natural join for flat 

relations. If either of the relations are nested (they contain subrelations), when 

the natural join operation is performed, the subrelations behave like common 

(atomic) attributes.  

Definition 4.24: Let r and q be two relations (nested, in general) with 

relation schemes {R1, R2, ..., A1, …, Aj, ..., Rn} and {Q1, Q2, ..., A1, …, Aj, ..., Qm} 

respectively where j > 0 and n, m ≥ j and different in general. The two relations 

r and q have in common the atomic attributes A1, …, Aj. Then, >< (r, q) is 

defined as follows: 

 >< (r, q) = { t | (∃ tr ∈ r) (∃ tq ∈ q) 

  ((t[A1, ..., Aj] = tr[A1, …, Aj] = tq[A1, …, Aj]) 

  ∧ (t[Attr(R) - {A1, …, Aj}] = tr[Attr(R) - {A1, …, Aj}]) 

  ∧ (t[Attr(Q) - {A1, …, Aj}] = tq[Attr(Q) - {A1, …, Aj}]))} � 

 

Case 2: Join two nested relations having one or more atomic attributes in 

common which in one relation are atomic attributes of a subrelation of the 

relation and in the other are at the top level 

This definition is the same as Colby’s recursive definition of the natural join 

operation ([Col90]), where the join path of the one relation is not empty, but is 

defined from the subrelation of the relation which participates in the natural 

join operation (this subrelation contains at a lower level the common atomic 
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attributes). In this case, the result relation consists of all the attributes of the 

one relation except the subrelation which participates in the natural join 

operation and the remaining attributes of the result are computed by joining 

the subrelation of that relation to the other relation. If the join path is empty, 

the natural join is performed according to Case 1. If it is not, the same 

procedure is followed as before until the join path becomes empty. Thus, the 

natural join operation is applied recursively.  

Definition 4.25: Let r and q be two nested relations (in general) with 

relation schemes {R1,  R2, ..., Ri, …, Rn} and {Q1, Q2, …, A1, …, Aj …, Qm} 

respectively where i, j > 0, n ≥ i and m ≥ j. Assume without loss of generality 

that the two relations have in common one or more atomic attributes which in 

the one relation belong to the nested attribute R i and in the other relation are 

the atomic attributes A1, …, Aj. Further, let rL represent relation r with join 

path L. Then, ><>< (rL, q) is defined as follows: 

><>< (rL, q) =  ><>< (q, rL) = ><>< (r(RiLi), q) = { t | (∃ tr ∈ r) 

          ((t[Attr(R) - {Ri}] = tr[Attr(R) - {Ri}]) 

         ∧ (t[Ri] = ><>< (tr[Ri]Li, q) ≠ ∅))} � 

 

Case 3: Join a nested relation to another nested relation which have one or 

more common atomic attributes which belong in different subrelations of the two 

relations (but in the same subrelation in each relation) 

There are two subcases depending on whether or not the nesting levels of 

the common atomic attributes in the different subrelations of the two relations 

are the same. 

 

Case 3a: The common atomic attributes are at the same nesting level in the 

two joined relations  

In this case, the result relation consists of all the attributes of the two 

relations which do not take part in the natural join operation and a new 

subrelation, which is formed by joining the subrelations which contain the 

common atomic attributes, by applying this method recursively until the 

common atomic attributes are reached. Only the tuples which have equal 

values in the common attributes are then selected. 
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Definition 4.26: Let r and q be two nested relations with relation schemes 

R = {R1, R2, ..., R i, ..., Rn} and Q = {Q1, Q2, ..., Q j, ..., Qm} respectively where i, j 

> 0, n ≥ i and m ≥ j. Suppose that at least the attributes R i and Qj of the two 

relations r and q respectively are nested attributes and that they contain the 

common atomic attributes. 

Let L be a join path of R and let M be a join path of Q. L is of the form R iLi 

where L i is a join path of R i and M is of the form Q jMj where Mj is a join path of 

Qj. Then, ><>< (rL, qM) is defined as follows: 

><>< (rL, qM) = ><>< (r(RiLi), q(QjMj)) = { t| (∃ tr ∈ r) (∃ tq ∈ q) 

   ((t[Attr(R) - {Ri}] = tr[Attr(R) - {Ri}]) 

   ∧ (t[Attr(Q) - {Qj}] = tq[Attr(Q) - {Qj}]) 

   ∧ (t[RiQj] = ><>< (tr[Ri]Li, tq[Qj]Mj) ≠ ∅))} � 

As shown above, the different levels of nesting are traversed until the 

subrelations which contain the common atomic attributes are reached. The 

common subrelations can then be joined using Definition 4.24. 

Example 4.16: Consider the relations LOCATION (Fig. 3.8) and CASH-

POINT (Fig. 3.9) and suppose that the following query is given: “Which banks 

have cash-points on the same road as Microsoft has a branch?”. In order to 

answer this query the natural join of the two relations must be computed. The 

common attribute is the atomic attribute ADDRESS which belongs in different 

subrelations of the two relations -in relation LOCATION in the subrelation 

ANNEX and in relation CASH-POINT in the subrelation BRANCH- but in each 

case at nesting level 2. The result relation is shown in Fig. 4.18. 

 
COMPANY  (BUILDING ADDRESS SORT_CODE)  BANK 

  BUILDING ADDRESS SORT_CODE   

       TOSHIBA  North Building Porchester Rd. 560038  NatWest 

              Microsoft  Pegasus House Ashford St. 386600  Barclays 

              Microsoft  Queen’s Building Park Rd. 560045  NatWest 

              Microsoft  Pegasus House Ashford St. 478202  Lloyd’s 

  Queen’s Building Park Rd. 478210   

       Fig. 4.18: ><>< (LOCATION, CASH-POINT) 

 

Case 3b: The common atomic attributes are not at the same nesting level in 

the two joined relations 
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In this case, the tree representations of the two relations that take part in 

the natural join operation can help us to design the scheme tree of the result 

relation since even the simplest relations in this case are complex (the nesting 

levels of the relations are at least two and not necessarily the same).  

The result relation is constructed iteratively. It consists of the common 

atomic attributes and all its siblings from both joined relations. The parent 

nodes of the atomic attributes in common in the two joined relations form the 

parent node of the common attributes and all its siblings. The siblings of the 

parent nodes remain siblings of the result parent node. The same procedure is 

followed until the root of both relations is reached, so that the hierarchy of the 

joined relations is maintained in the result relation. 

Let r and q be two nested relations with relation schemes  

R = {Ri1(R(i-1)1(...(R21(A11...A1j R1j+1…R1n)...R2k)...)R(i-1)l)...Rim} and  

Q = {Qi′1(Q(i′-1)1(...(Q21(A11...A1jQ1j+1…Q1n′)...Q2k′)...)Q(i′-1)l′)...Qi′m′} respectively where 

i, n, k, l, m, j, i ′, n′, k′, l′ and m′ are positive integers, not equal in general. The 

common atomic attributes are the attributes A11, …, A1j. All the other 

attributes which do not form the join paths can be atomic or non-atomic but 

since they do not participate in the natural join operation, this is of no 

consequence.  

Assume that: i) i≠i′, which means that the two relations have different levels 

of nesting (in fact, the assumption is i < i ′ without loss of generality) and ii) the 

common atomic attributes A11 … A1j are the first attributes in the subrelations 

in which they belong and these subrelations are the first attributes of the 

subrelations in which they belong and so on, since the order of the attributes 

at the same nesting level and in the same subrelation is not significant.  

In Fig. 4.19 and 4.20 the tree representations of the two relations are 

shown. 
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R 

 

                                                        Ri1     Ri2    ... Rim 

 

           R(i-1)1          R(i-1)2    ... R(i-1)l            

                                  
.   ... . . 

R31      ... 

 

            R21         R22     ...  R2k 

 

     A11 … A1j   R1j+1 ... R1n 

Fig. 4.19: The tree representation of relation r 

 

      Q 

 

Qi′1   Qi′2  ...Qi′m′ 

 

      Q(i′-1)1     Q(i′-1)2    … Q(i′-1)l′            

                                  
.   ... . . 
Qi1 … 

 

 

Q(i-1)1 … 
.   … . . 

Q31   ... 

 

               Q21        Q22  ...  Q2k′ 

 

        A11… A1j   Q1j+1 ...Q1n′ 

Fig.4.20: The tree representation of relation q 

 

For definition purposes the following is assumed: a name is given for all 

attributes belonging at the same nesting level and that are not part of the join 

paths in the two relations.  
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Thus, for relation R: 

Ri = Ri2 ... Rim 

Ri-1 = R(i-1)2 ... R(i-1)l 

... 

R2 = R22 ... R2k 

R1 = R1j+1 ... R1n 

and similarly for relation Q:  

Qi′ = Qi′2 ... Qi′m′ 

Qi′-1 = Q(i′-1)2 ... Q(i′-1)l′ 

... 

Qi+1 = Q(i+1)2 ... Q(i+1)p′ 

Qi = Qi2 ... Qiq′ 

... 

Q2 = Q22 ... Q2k′ 

Q1 = Q1j+1 ... Q1n′ 

Then, ><>< (rL, qM) is defined as follows: 

Definition 4.27: 

><>< (rL, qM) = { t| (∃ tr ∈ r) (∃ tq ∈ q)  

((t[Attr(Qi′(...(Qi+1)))] = tq[Attr(Qi′(...(Qi+1)))])  

    ∧ (t[Attr(Ri)] = tr[Attr(Ri)])  

    ∧ (t[Attr(Qi)] = tq[Attr(Qi)])  

    ∧ (t[Ri1Qi1] = ><>< (tr[Ri1]Li1, tq[Qi1]Mi1)))} � 

The result relation s has the following scheme: 

S = {Qi′1 (Q(i′-1)1 (... (Q(i+1)1 (x (... (z (A11 …A1j R1j+1...Q1j+1...) R22...Q22...)...) 

     Ri2...Qi2...)Q(i+1)2...)...)Q(i′-1)2...)Qi′2...} 

The tree representation of the result relation s is given in Fig. 4.21. 
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S 

 

      Qi′1            Qi′2      ...     Qi′m′         

 

Q(i′-1)1         Q(i′-1)2        ...             Q(i′-1)l′             
. . . 

Q(i+1)1           ... 

 

             x        Ri2  ... Qi2      ...  
. . . 
y      ... 

 

      z    R22  ... Q22      ... 

              

     A11… A1j  R1j+1 ... Q1j+1    ... 

Fig. 4.21: The tree representation of the result relation s = ><>< (rL, qM) 

 

The x, y, and z nodes represent nested subrelations and so, conventionally 

are given names reflecting the attributes which they contain. Thus, for 

example z = (A11… A1j R1j+1 ... R1n Q1j+1 ... Q1n′). 

Example 4.17: Suppose that relations TRAINING_1 (Fig. 2.1) and DEPT_1 

(Fig. 2.2) are given. Consider the query: “Retrieve the names of the companies 

and the years for which trainers have taught courses to technical employees 

together with the code number of each course”. A natural join operation is 

required in order to answer this query. The natural join operation is performed 

according to Definition 4.27. The scheme tree of the result relation of the 

natural join operation of the two relations DEPT_1 and TRAINING_1 is shown 

in Fig. 4.22 and the result table in Fig. 4.23. 
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x3 

 

                              D    DN    (COMPANY UN UD (TRN CODE′ C))    

 

           COMPANY    UN   UD   (TRN CODE′ C) 

 

                                                  TRN   CODE′   C 

                       

               CODE   CN      Y 

Fig. 4.22: The tree representation of the result relation  

x3 = ><>< (TRAINING_1(PROGRAMME(TRN)), DEPT_1(UNIT(TRAINER(TRN)))) 

 

   (COMPANY UN UD (TRN CODE ′ C)) 

D DN  COMPANY UN UD  (TRN CODE ′ C) 

       TRN  CODE ′    C    

         CODE   CN Y    

                                     Apple 511 Software     xy1   1 75    

     Engineering  Mark  xy2   2 76    

                             5 79    
                                                                                     1 Research  Apple 678 Planning  Mark  xy1   2 76    

         xy2   4 82    

                                                                                        IBM 552 Basic  Tim  xy1   5 79    

     Research    xx2        

                                                                                        Microsoft 552 Basic  Karen  xx1   1 82    

     Research       2 79    

                                                                                                         Apple 981 Planning  Jack  xx0   2 81    

            3 82    

            5 79    

                                                                                     2 Development  Apple 780 Maintenance  Mark  xy1   2 76    

         xy2        

                                                                                        IBM 780 Maintenance  Tim  xy1   3 82    

         xx2        

                                                                                        Microsoft 650 Design  Karen  xx1   1 75    

                                                   Fig. 4.23: The result relation  

x3 = ><>< (TRAINING_1(PROGRAMME(TRN)), DEPT_1(UNIT(TRAINER(TRN)))) 
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Case 4: Join two nested relations which have one or more subrelations at 

the top level in common 

The natural join definition presented here is a slightly modified version of 

Colby’s natural join definition ([Col90]). The natural join of two relations, 

which have one or more nested attributes at the top level in common, is a new 

relation which consists of tuples which share the same values of the common 

nested attributes and all the other attributes (atomic or nested) have as values 

the corresponding values of the non-shared attributes of the two relations 

which participate in the natural join operation. Subsequently, the scheme of 

the result relation is composed of the nested attributes in common of the two 

joined relations and all the remaining attributes of the two joined relations 

which are not in common.  

Let r and q be two nested relations with relation schemes {R1, R2, ..., A1, …, 

Aj, ..., Rn} and {Q1, Q2, ..., A1, …, Aj, ..., Qm} respectively where j > 0 and n, m ≥ 

j and different in general. The two relations r and q have in common the 

nested attributes A1, …, Aj at the top level. Then, >< (r, q) is defined as follows: 

Definition 4.28: 

>< (r, q) = { t | (∃ tr ∈ r) (∃ tq ∈ q) 

  ((t[Attr(R) - {A1, …, Aj}] = tr[Attr(R) - {A1, …, Aj}]) 

  ∧ (t[Attr(Q) - {A1, …, Aj}] = tq[Attr(Q) - {A1, …, Aj}]) 

  ∧ (t[A1, …, Aj] = ><(tr[A1, …, Aj], tq[A1, …, Aj])  

       = (A1r ∩∩ A1q) ∧ ... ∧ (Ajr ∩∩ Ajq)))} � 

where A1r, ..., A jr are the common nested attributes of relation r and A1q, ..., Ajq 

are the common nested attributes of relation q. 

The recursive nested intersection of two nested relations has been defined 

in section 4.3.3 (see Definition 4.11). 

Example 4.18: Consider the relations EMPLOYMENT (Fig. 3.10) and 

PAYMENT (Fig. 3.11) and the query “What is the scale of payment for Anna?” 

which can be answered by applying the natural join operation to the two 

relations. The joined attribute is the subrelation JOB which is at the top level 

in both relations. The result relation is given in Fig. 4.24. 
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NAME  JOB  SALARY 

  COMPANY JOB_DESCRIPTION   

Anna  TOSHIBA Secretary  15,500-19,500 

            Anna  Microsoft Secretary  18,000-23,000 

            Paul  Microsoft Programmer  18,000-23,000 

            Mark  Apple Director  25,000-30,000 

      Fig. 4.24: >< (EMPLOYMENT, PAYMENT) 

 

Case 5: Join two nested relations which have one or more subrelations in 

common which in the one relation are subrelations of a subrelation of a relation 

and in the other relation are at the top level 

This natural join is similar to Case 2 where the join path of one relation is 

not empty but instead of atomic attributes in common the two relations have 

subrelations in common. Therefore, the natural join operation is performed as 

in Case 2, the only difference being that the common attributes A1 … Aj in 

relation R are nested attributes that belong to subrelation R i while in the other 

relation Q are the nested attributes A1 … Aj at the top level (see Definition 

4.25). The result relation consists of all the attributes of the first relation 

except the subrelation which participates in the natural join operation and the 

remaining attribute of the result is computed by joining the subrelation of the 

first relation to the second relation. When the final iteration down the join 

path is reached, the natural join is performed according to Definition 4.28 

where the first relation consists only of the common subrelations. 

 

Case 6: Join two nested relations which have one or more common 

subrelations which belong at different subrelations of the two relations (but in 

the same subrelation in each relation) 

In this case, both relations which participate in the natural join operation 

have non-empty join paths. As in Case 3, two subcases can be distinguished, 

depending on whether or not the common subrelations are at the same 

nesting level in the two joined relations. 
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Case 6a: The common subrelations are at the same nesting level in the two 

joined relations 

In this case, the resulting relation consists of all the attributes of the two 

relations which do not take part in the natural join operation and a new 

subrelation is formed by joining the subrelations which contain the 

subrelations in common, and by applying this method recursively, until the 

subrelations in common are reached from which only the subtuples which 

have equal values are selected (intersection operation is applied – see 

Definition 4.11). 

Let r and q be two nested relations with relation schemes R = {R1, R2, ..., Ri, 

..., Rn} and Q = {Q1, Q2, ..., Q j, ..., Qm) respectively where i, j > 0, n ≥ i and m ≥ 

j. Suppose that the attributes Ri and Qj of the two relations r and q 

respectively are nested and that they contain the common subrelations. 

Let L be a join path of R and M be a join path of Q. L is of the form RiLi 

where L i is a join path of R i and M is of the form Q jMj where Mj is a join path of 

Qj. Then, ><>< (rL, qM) is defined as follows: 

Definition 4.29: 

><>< (rL, qM) = ><>< (r(RiLi), q(QjMj)) = { t| (∃ tr ∈ r) (∃ tq ∈ q) 

   ((t[Attr(R) - {Ri}] = tr[Attr(R) - {Ri}]) 

   ∧ (t[Attr(Q) - {Qj}] = tq[Attr(Q) - {Qj}]) 

   ∧ (t[RiQj] = ><>< (tr[Ri]Li, tq[Qj]Mj) ≠ ∅))} � 

As shown above, the different levels of nesting are traversed until the 

common subrelations are reached. The common subrelations can then be 

joined using Definition 4.28, with the two relations participating in the natural 

join operation consisting only of the common subrelations and so this natural 

join is equal to the intersection of the common subrelations (see also section 

4.3.3). 

Example 4.19: Consider the example database, which contains two 

relations, the DEPT_2 relation (Fig. 4.25) and the TRAINING_2 relation (Fig. 

4.3). Both relations are modified versions of relations DEPT (Fig. 3.7) and 

TRAINING (Fig. 3.6) respectively. Relation DEPT_2 has the following scheme: 

DEPT_2 = D DN UNIT(UN UD C(CN Y)). The tree representation of the relation 

DEPT_2 is shown in Fig. 4.26. Relation TRAINING_2 has the following scheme: 
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TRAINING_2 = COMPANY TRAINER(TRN C (CN Y)). The tree representation of 

the relation TRAINING_2 is given in Fig. 4.27.  

Consider the following query: “Find the departments for which Tim has 

taught courses to their employees”. To answer this query the natural join 

operation is needed to be  performed according to the above definition. The 

scheme tree of the result relation is shown in Fig. 4.28 and the result table in 

Fig. 4.29. 

 

    UNIT      

D DN  UN UD             C   

      CN Y   

                1 75   

   511 Software  2 76   

    Engineering  5 79   

                                        1 Research  552 Basic Research  1 82   

      2 79   

                                           678 Planning  2 76   

      4 82   

                                           650 Design  1 75   

      2 77   

                                        2 Development  780 Maintenance  3 82   

                                           981 Planning  2 81   

      3 82   

                    Fig. 4.25: DEPT_2 

 

DEPT_2 

 

D   DN UNIT 

 

            UN    UD    C 

        

CN      Y 

Fig. 4.26: The tree representation of relation DEPT_2 
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TRAINING_2 

 

   COMPANY   TRAINER 

   

 TRN    C 

    

       CN      Y 

Fig. 4.27: The tree representation of relation TRAINING_2 

   

   x4 

 

                   D   DN        (UN UD C TRN)     COMPANY        

 

                                  UN  UD    C  TRN           

       

                            CN         Y 

Fig. 4.28: The tree representation of the result relation  

x4 = ><>< (DEPT_2(UNIT(C)), TRAINING_2(TRAINER(C))) 
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    (UN UD C TRN)   

D DN  UN UD      C    TRN  COMPANY 

      CN Y     

               511 Software Engineering  1 75  Jack   

1 Research     2 76    Apple 

                                                   552 Basic Research  1 82  Mark   

      2 79     

                                                   678 Planning  2 76  Jack   

                                                1 Research  511 Software Engineering  5 79  Tim  IBM 

                                                   678 Planning  4 82  Tim   

                                                2 Development  650 Design  1 75  Jack   

                                                   780 Maintenance  3 82  Mark  Apple 

                                                   981 Planning  3 82  Mark   

                                                2 Development  780 Maintenance  3 82  Tim  IBM 

                                                   981 Planning  3 82  Tim   

                                                2 Development  650 Design  2 77  Karen  Microsoft 

                                                   981 Planning  2 81  Karen   

                                    Fig. 4.29: The result relation  

x4 = ><>< (DEPT_2(UNIT(C)), TRAINING_2(TRAINER(C))) 

 

Case 6b: The common subrelations are at different nesting levels in the two 

joined relations 

This case is similar to Case 3b. Once again, the tree representations of the 

two relations that take part in the natural join operation can help to the 

designing of the scheme tree of the result relation. The resulting relation is 

constructed iteratively and consists of the common subrelations together with 

all its siblings starting from the bottom. One level up, the parent nodes of the 

subrelations in common in the two joined relations form the parent node of 

the common subrelations and all its siblings. The siblings of the parent nodes 

are still siblings of the result parent node. The same procedure is followed 

until the root of both relations is reached, so that the hierarchy of the joined 

relations is maintained in the result relation as well. 

Let r and q be two nested relations with relation schemes  

R = {Ri1(R(i-1)1(...(R21(A11...A1j R1j+1…R1n)...R2k)...)R(i-1)l)...Rim} and  
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Q = {Qi′1(Q(i′′-1)1(...(Q21(A11... A1j Q1j+1…Q1n′)...Q2k′)...)Q(i′-1)l′)...Qi′m′} respectively 

where i, n, k, l, m, j, i′, n′, k′, l′ and m′ are positive integers, not equal in 

general. The common subrelations are the subrelations A11 … A1j. All the other 

attributes which do not form the join paths can be atomic or nested but since 

they do not participate in the natural join operation, this makes no difference. 

The same assumption is made as in Case 3b, i.e. i) i≠i′, which means that the 

two relations have, in general, different levels of nesting (in fact, the 

assumption is i < i′ without loss of generality) and ii) the common subrelations 

A11 … A1j are the first attributes in order of the subrelations in which they 

belong and these subrelations are the first attributes of the subrelations in 

which they belong and so on, since the order of the attributes at the same 

nesting level and in the same subrelation is insignificant. 

The formal definition is not given here, since it is the same as Definition 

4.27. 

Example 4.20: In the following example the DEPT_2 relation (Fig. 4.25) is 

joined to the TRAINING relation (Fig. 3.6) in order to answer the following 

query: “Find the departments for which trainers Mark and Karen have taught 

courses to their employees and the code of these courses”. The scheme tree of 

the result relation is shown in Fig. 4.30 and the result relation in Fig. 4.31. 

 

  x5 

 

                COMPANY      (TRN (CODE C UD UN) D DN)  

 

   TRN  (CODE C UD UN)    D       DN 

 

             CODE   C   UD   UN 

                       

     CN      Y 

Fig. 4.30: The tree representation of the result relation  

x5 = ><>< (DEPT_2(UNIT(C)),TRAINING(TRAINER(COURSE(C)))) 
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 (TRN (CODE C UD UN) D DN)  

COMPANY  TRN  (CODE C UD UN)    D DN  

    CODE   C  UD UN     

      CN Y        

                                  xx0  1 75  Software 511     

  Jack    2 76  Engineering   1 Research  

                                                 xx0  2 76  Planning 678     

                                                                             Mark  xy1  1 82  Basic Research 552  1 Research  

                                             Apple    xy2  2 79  Basic Research 552     

                                                                             Jack  xx0  1 75  Design 650  2 Development  

                                                                             Mark  xy1  3 82  Maintenance 780  2 Development  

                                                                xy1  3 82  Planning 981     

                                                                                            Tim  xx2  5 79  Software Engineering 511  1 Research  

                                                            IBM    xx2  4 82  Planning 678     

                                                                                            Tim  xy1  3 82  Maintenance 780  2 Development  

                                                                xy1  3 82  Planning 981     

                                                                                          Microsoft  Karen  xx1  2 77  Design 650  2 Development  

                                                                xx1  2 81  Planning 981     

                                             Fig. 4.31: The result relation  

x5 = ><>< (DEPT_2(UNIT(C)),TRAINING(TRAINER(COURSE(C)))) 

4.3.11 The Recursive Nested Θ-Join Operation (><Θ
><) 

The Θ-join operation is a special case of the join operation where the two 

relations are joined on the basis of some comparison operator other than 

equality.  

It can be expressed by applying a selection operation to the result of the 

cartesian product operation of two relations. The cartesian product is applied 

at the top levels of the two nested relations and then, a recursive nested 

selection operation follows which compares two attributes in the resulting 

relation. The two attributes need not be at the same nesting level in the 

resulting relation. The recursive nested selection operation is defined in 

section 4.3.5.  
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Let r and q be two nested (in general) relations with relation schemes R and 

Q respectively. Let also, X and Y be two atomic attributes belonging to 

relations R and Q respectively and Θ the condition that they must satisfy. 

Assume, without loss of generality, that Y belongs to a deeper nesting level 

than X and LσY′→Y is the select path of Y starting at node Y′ which is at the 

same nesting level as X (when X and Y are at the same nesting level the select 

path is empty). So, the recursive nested Θ–join operation of the two relations r 

and q is defined as follows: 

Definition 4.30 (Recursive Nested Θ-Join)  

r ><Θ
>< q = σσ((r × q)X Θ Y Lσ Y′→Y) � 

4.3.12 The Recursive Nested Division Operation (÷÷) 

The division operation has not been addressed in any of the previous 

proposed algebra for nested models as far as the author of this thesis is aware. 

It is believed that this is due to the following reasons: 

1. the division operation is not a primitive operation, 

2. it is not often used, 

3. it is not implemented in any commercial product, 

4. it is, by nature, hard to define. 

The division operation can be expressed as a number of projections, 

differences and a cartesian product operation between two relations.  

4.3.13 Functions 

Beyond the above relational algebra operations, many authors define 

additional operations that enable the use of scalar functions ([Lor88]) and 

aggregate functions ([Klu82], [Tan86]). 

For simplicity reasons, in the present thesis, such functions are 

incorporated directly within the remainder relational algebra operations. 

Scalar functions are used in the sequel wherever necessary, but their 

definitions have been omitted as obvious.  

On the other hand, aggregate functions for nested relations have not been 

discussed in any other model presented in chapter 2, but in [DL91]. Saying 

that, it is important to mention that, outside the relational world, the object 
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database world and the functional data model may both be capable of dealing 

with sets of objects [DS85]. However, the whole perspective of the present 

thesis is completely relational and so, a functional or object data model is out 

of its scope.  

 Aggregate functions are redefined below. 

Let f be a nested aggregate function (f ? {N-MAX, N-MIN, N-SUM, N-AVG, N-

COUNT}, where N-MAX, N-MIN, N-SUM, N-AVG and N-COUNT are the nested 

versions for the corresponding aggregate functions MAX, MIN, SUM, AVG and 

COUNT for flat relations), f ′ an aggregate function for flat relations (f′ ? {MAX, 

MIN, SUM, AVG, COUNT}), r a nested relation, X an atomic or nested attribute 

at a lower nesting level of r, Par the parent attribute of atomic attribute Y of r 

(Y is at the same or higher nesting level than X and it is the attribute over 

which attribute X is summarised) and X/Y denotes that attribute X is 

summarised over attribute Y. Then, f[X/Y](r) is defined as follows: 

Definition 4.31 (Nested Aggregate Function) 

f[X/Y](r) = f′({ti[X] | ti ? t, t ? Par(Y) ∧ ti[X]  ≠ null}) � 

Note: Attribute X can be a nested attribute only when the nested aggregate 

function f is N-COUNT. For all other cases, X attribute must be an atomic 

attribute. 

For an example see Query 7 in section 6.2 of chapter 6. 

4.4 Summary 

In this chapter, a database model and algebra have been defined for nested 

relations of arbitrary nesting levels.  

All the operators have been recursively defined. As a result, there is no need 

to flatten the nested relations when a series of operations are executed and so 

the data redundancy and duplication caused by unnesting relations is 

avoided. Furthermore, the representation of the data is claimed to be in a 

“natural form”, since even complex objects can be modelled in one relation and 

thus, it is easier for users to understand when working with the data.  

A detailed presentation and definitions of the rename and natural join 

operations for nested relations have been included in this chapter. In 

particular, a systematic review of the various forms of natural join between 

nested relations and subrelations is given. Six distinct cases of natural join 
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have been analysed according to the positions and types of the common 

attributes that participate in the natural join operation.  

NRM is the tool that is going to be used to build the temporal nested model 

in the next chapter. However, by itself, it provides a complete model for nested 

relations. 
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CHAPTER 5 

5. THE TEMPORAL NESTED MODEL (TNM) 

5.1 Introduction 

The Temporal Nested Model (TNM) is defined in this chapter, as an 

extension of the NRM presented in chapter 4. Relations can be nested to any 

finite depth as in the NRM. In the general case, time is represented as 

temporal elements that form temporal attributes, which together with the 

corresponding time-varying attributes form temporal nested attributes. 

Therefore, the temporal dimension of the model is nested and is not integral 

with the corresponding time-dependent value as in other previous proposed 

temporal nested models (e.g. [Tan97]). As a result, the full power of the nested 

model is gained and simultaneously temporal elements can be readily 

referenced with or without their associated time-varying attribute values. 

All the operations of the algebra for the TNM are defined recursively. In 

particular, a detailed definition of the natural join operation for temporal 

nested relations is presented where different cases are examined. These cases 

are distinguished by the types (atomic, temporal, nested or temporal nested 

attributes) and the nesting levels of the common attributes that participate in 

the natural join operation. 

A formal syntax of the TNM algebra is also given in Appendix A. 

Finally, the operations of the TNM are proved to be closed. 

5.2 Representation of TNM Relations 

A relation in the TNM is a temporal nested relation which can be 

represented either in a tabular representation (see Fig. 3.13-3.17) or in a tree 

representation. Specifically, for the tree representation, a relation R in the 



   

 

 
 
131 

TNM can be described as a tree with root node R and with all the nested and 

temporal nested attributes, Rn and Rtn respectively, as non-leaf nodes of the 

tree and all the atomic and temporal attributes, Ra and Rt respectively, as 

leaves of the tree. In order for the attributes Ra and Rt to be distinguished, all 

the temporal attributes have a special indication on their names, the subscript 

t. Thus, it is easy to distinguish atomic and temporal attributes between 

themselves and treat them differently (see the algebraic operations of the TNM 

in section 5.3). 

An example follows where a tree representation of a temporal nested 

relation is given.  

Example 5.1: The tree structure of relation T_LOCATION (Fig. 3.15) is 

shown in Fig. 5.1.  

 

T_LOCATION 

 

COMPANY ANNEX 

 

BUILDING ADDRESS ADDRESS_PERt 

 

Fig. 5.1: The tree representation of relation T_LOCATION 

5.3 Operations in the TNM 

In this section, the operations of the algebra of the NRM, which were 

defined in section 4.3, are extended to support temporal data.  

In the general case, temporal data are represented as temporal attributes 

connected to the corresponding time-varying attributes. Each time-varying 

attribute together with the corresponding temporal attribute form a temporal 

nested attribute.  

The operations of the algebra that are defined next are named according to 

their common names with the prefix “T” to denote their temporal version.  

A formal syntax of all the TNM operations is given in Appendix A. Formally, 

this defines well-formed formulae (WFF), i.e. formulae that are grammatically 

correct using BNF grammar ([Gra84]). 
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For sections 5.3.1, 5.3.2 and 5.3.3, let r and q be two temporal nested 

relations with the same relation scheme R. Let Attr(Ra) be all the atomic 

attributes, Attr(Rn) all the nested attributes that do not contain temporal 

attributes, Attr(Rt) all the temporal attributes, Attr(Rtn) all the nested attributes 

that contain temporal attributes of R and Attr(S) the set of all the atomic 

attributes and all the key temporal, nested and temporal nested attributes of R 

and Q. Let tr be a tuple in relation r, tq a tuple in relation q and t a tuple in the 

result relation. 

5.3.1 The Recursive Temporal Nested Union Operation (∪t
∪ ) 

The union of two temporal nested relations r and q, r ∪t
∪ q, is a new 

temporal nested relation with identical headings to relations r and q, 

consisting of all tuples appearing in either or both of the two relations and, in 

addition, for all those tuples with the same values for all the atomic attributes, 

the temporal elements for all the temporal attributes are computed by taking 

the unions of the temporal elements of the corresponding temporal attributes 

of the two relations r and q (see Definition 3.10).  

Then, the recursive temporal nested union of the two relations r and q, r ∪t
∪ 

q, can be formally defined as follows: 

Definition 5.1 (TUnion)  

i) Non-recursive union for temporal flat relations (r ∪t q) 

   r ∪t q = { t| ((∃ tr ∈ r) (∃ tq ∈ q) ((t[Attr(Ra)] = tr[Attr(Ra)] = tq[Attr(Ra)])  

                  ∧ (t[Attr(Rt)] = tr[Attr(Rt)] ∪TE tq[Attr(Rt)]))) 

  ∨ ((∃ tr ∈ r) ((t[Attr(Ra)] = tr[Attr(Ra)]) ∧ (t[Attr(Rt)] = tr[Attr(Rt)]))) 

  ∨ ((∃ tq ∈ q) ((t[Attr(Ra)] = tq[Attr(Ra)]) ∧ (t[Attr(Rt)] = tq[Attr(Rt)])))} 

ii) Recursive union for temporal nested relations (r ∪t
∪ q) 

    r ∪t
∪ q = { t| (∃ tr ∈ r) (∃ tq ∈ q) ((t[Attr(S)] = tr[Attr(S)] ∪ tq[Attr(S)])   

    ∧ (t[Attr(Rt)] = tr[Attr(Rt)] ∪TE tq[Attr(Rt)]) 

    ∧ (t[Attr(Rn)] = tr[Attr(Rn)] ∪∪ tq[Attr(Rn)]) 

    ∧ (t[Attr(Rtn)] = tr[Attr(Rtn)] ∪t
∪ tq[Attr(Rtn)]))} � 

Example 5.2: The two tables T_TRAINING (Fig. 5.2) and T_TRAINING_1 (Fig. 

5.3) are given. In both relations, Attr(S) = COMPANY. The semantics of these 

two tables are given in subsection 3.5.2 of chapter 3. Please note that relation 

T_TRAINING is the same as that of Fig. 3.13. However, the reason for this 
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repetition is to simplify the reading of this specific example. Fig. 5.4 shows the 

result table of the TUnion of these two relations. 

 

  TRAINER   

COMPANY  TRN  COURSE   

    CN CN_PERt   

                  Jack  5.2 [2/11/1994, 25/4/1995) ∪ [7/8/1996, 1/1/2010)   

                                Apple  Mark  3.3 [2/1/1992, 8/11/1996)   

    3.5 [30/4/1995, 1/1/2010)   

                                    5.2 [19/3/1997, 21/4/1997)   

IBM  Tim  5.0 [17/12/1995, 1/1/2010)   

                                Microsoft  Karen  3.3 [25/6/1996, 1/1/2010)   

                Fig. 5.2: T_TRAINING 
 
 

  TRAINER   

COMPANY  TRN  COURSE   

    CN CN_PERt   

                Apple  Mark  3.3 [10/10/1993, 1/1/2010)   

    3.7 [8/10/1992, 15/5/1994)   

                          Mark  4.1 [1/9/1995, 1/1/2010)   

IBM    5.5 [13/8/1996, 28/7/1998)   

                        
        Microsoft  Karen  3.3 [5/7/1997, 18/3/1998)   

                Fig. 5.3: T_TRAINING_1 
 
 

  TRAINER   

COMPANY  TRN  COURSE   

    CN CN_PERt   

                  Jack  5.2 [2/11/1994, 25/4/1995) ∪ [7/8/1996, 1/1/2010)   

                                Apple    3.3 [2/1/1992, 1/1/2010)   

  Mark  3.5 [30/4/1995, 1/1/2010)   

    3.7 [8/10/1992, 15/5/1994)   

                                  Tim  5.2 [19/3/1997, 21/4/1997)   

IBM    5.0 [17/12/1995, 1/1/2010)   

                                  Mark  4.1 [1/9/1995, 1/1/2010)   

    5.5 [13/8/1996, 28/7/1998)   

                                Microsoft  Karen  3.3 [25/6/1996, 1/1/2010)   

                Fig. 5.4: T_TRAINING ∪t
∪ T_TRAINING_1 
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5.3.2 The Recursive Temporal Nested Difference Operation (–t-) 

The difference of two temporal nested relations r and q, r –t- q, is a new 

temporal nested relation with identical headings to relations r and q, 

consisting of all tuples appearing in relation r but not in relation q and in 

addition, for all those tuples with the same values for all the atomic attributes, 

the temporal elements for all the temporal attributes are computed by taking 

the differences of the temporal elements of the corresponding temporal 

attributes of the two relations r and q (see Definition 3.11). In the resulting 

relation, tuples having empty temporal elements must be discarded. Then, the 

recursive temporal nested difference of the two relations r and q, r –t- q, can be 

formally defined as follows: 

Definition 5.2 (TDifference) 

i) Non-recursive difference for temporal flat relations (r -t q) 

r -t q = { t| ((∃ tr ∈ r) (∀ tq ∈ q) ((t[Attr(Ra)] = tr[Attr(Ra)])  

∧ (t[Attr(Ra)] ≠ tq[Attr(Ra)])  

       ∧ (t[Attr(Rt)] = tr[Attr(Rt)]))) 

     ∨ ((∃ tr ∈ r,  ∃ tq ∈ q) ((t[Attr(Ra)] = tr[Attr(Ra)] = tq[Attr(Ra)]) 

           ∧ (t[Attr(Rt)] = (tr[Attr(Rt)] -TE tq[Attr(Rt)]) ≠ ∅)))} 

ii) Recursive difference for temporal nested relations (r –t- q) 

r –t- q = { t| ((∃ tr ∈ r) (∀ tq ∈ q) ((t[Attr(S)] = tr[Attr(S)] – tq[Attr(S)])  

   ∧ (t[Attr(R) – Attr(S)] = tr[Attr(R) – Attr(S)]))) 

   ∨ ((∃ tr ∈ r) (∃ tq ∈ q) ((t[Attr(S)] = tr[Attr(S)] = tq[Attr(S)])  

 ∧ (t[Attr(Rt)] = (tr[Attr(Rt)] -TE tq[Attr(Rt)]) ≠ ∅) 

 ∧ (t[Attr(Rn)] = tr[Attr(Rn)]) 

 ∧ (t[Attr(Rtn)] = tr[Attr(Rtn)]))) 

∨ ((∃ tr ∈ r, ∃ tq ∈ q) ((t[Attr(S)] = tr[Attr(S)] = tq[Attr(S)])  

  ∧ (t[Attr(Rt)] = tr[Attr(Rt)] = tq[Attr(Rt)]) 

          ∧ (t[Attr(Rn)] = tr[Attr(Rn)] –- tq[Attr(Rn)]) 

          ∧ (t[Attr(Rtn)] = tr[Attr(Rtn)] –t- tq[Attr(Rtn)])))} � 
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Example 5.3: The TDifference of relations T_TRAINING (Fig. 5.2) and 

T_TRAINING_1 (Fig. 5.3) is shown in Fig. 5.5.  

 

  TRAINER   

COMPANY  TRN  COURSE   

    CN CN_PERt   

                  Jack  5.2 [2/11/1994, 25/4/1995) ∪ [7/8/1996, 1/1/2010)   

                                Apple    3.3 [2/1/1992, 10/10/1993)   

  Mark  3.5 [30/4/1995, 1/1/2010)   

                                  Tim  5.2 [19/3/1997, 21/4/1997)   

IBM    5.0 [17/12/1995, 1/1/2010)   

                                Microsoft  Karen  3.3 [25/6/1996, 5/7/1997) ∪ [18/3/1998, 1/1/2010)   

                Fig. 5.5: T_TRAINING –t- T_TRAINING_1 

5.3.3 The Recursive Temporal Nested Intersection Operation (∩t
∩ ) 

The intersection of two temporal nested relations r and q, r ∩t
∩ q, is a new 

temporal nested relation with identical headings to relations r and q, 

consisting of all tuples appearing in both of the relations r and q and in 

addition, for all those tuples with the same values for all the atomic attributes, 

the temporal elements for all the temporal attributes are computed by taking 

the intersections of the temporal elements of the corresponding temporal 

attributes of the two relations r and q (see Definition 3.12). In the resulting 

relation, tuples having empty temporal elements must be discarded. Then, the 

recursive temporal nested intersection of the two relations r and q, r ∩t
∩ q, is 

defined as follows: 

Definition 5.3 (TIntersection) 

i) Non-recursive intersection for temporal flat relations (r ∩t q) 

r ∩t q = { t| (∃ tr ∈ r) (∃ tq ∈ q) ((t[Attr(Ra)] = tr[Attr(Ra)] = tq[Attr(Ra)])  

     ∧ (t[Attr(Rt)] = (tr[Attr(Rt)] ∩TE tq[Attr(Rt)]) ≠ ∅))} 
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ii) Recursive intersection for temporal nested relations (r ∩t
∩ q) 

r ∩t
∩ q = { t| (∃ tr ∈ r) (∃ tq ∈ q) ((t[Attr(S)] = tr[Attr(S)] ∩ tq[Attr(S)])  

      ∧ (t[Attr(Rt)] = (tr[Attr(Rt)] ∩TE tq[Attr(Rt)]) ≠ ∅) 

      ∧ (t[Attr(Rn)] = tr[Attr(Rn)] ∩∩ tq[Attr(Rn)]) 

      ∧ (t[Attr(Rtn)] = tr[Attr(Rtn)] ∩ t
∩ tq[Attr(Rtn)]))} � 

Example 5.4: The TIntersection of relations T_TRAINING (Fig. 5.2) and 

T_TRAINING_1 (Fig. 5.3) is shown in Fig. 5.6. 

 
  TRAINER   

COMPANY  TRN  COURSE   

    CN CN_PERt   

                Apple  Mark  3.3 [10/10/1993, 8/11/1996)   

                                Microsoft  Karen  3.3 [5/7/1997, 18/3/1998)   

                Fig. 5.6: T_TRAINING ∩t
∩  T_TRAINING_1 

5.3.4 The Recursive Temporal Nested Projection Operation (π t
π) 

The projection operator gives as a result a “vertical” subset of a given 

relation. TProjection is similar to the recursive nested projection operation. It 

can be expressed at all levels without restructuring. In the resulting relation, 

tuples having the same values for all the atomic attributes are coalesced, by 

taking the unions of the temporal elements of their corresponding temporal 

attributes (see Definition 3.10).  

Let r be a temporal nested relation with relation scheme R. Let Attr(Ra) = 

{Ra1, …, Rak} be the subset of all the atomic attributes of R which are going to 

be projected, Attr(Rn) = {Rn1, …, Rnm} the subset of all the nested attributes of R 

which are going to be projected either fully or attributes belonging to these 

nested attributes with Ln1, …, Lnm their project paths respectively, either empty 

or not, and Attr(Rt) the subset of all the temporal attributes of R which are 

going to be projected. Let Attr(Rtn) = {Rtn1, …, Rtnm′} be the subset of all the 

temporal nested attributes of R which are going to be projected either fully or 

attributes belonging to these temporal nested attributes (Ltn1, …, Ltnm′ are the 

project paths of attributes Rtn1, …, Rtnm′ respectively, either empty or not). 

Atomic and temporal attributes behave the same way for the projection 

operation. 
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Then, the recursive temporal nested projection in the relation r, πt
π(rLπ), 

where Lπ is a project list of R (see Definition 4.12), t r a tuple in relation r and t 

a tuple in the resulting relation, is defined as follows: 

Definition 5.4 (TProjection) 

i) Projection of the whole temporal nested relation (πt(r)) 

πt(r) = r  

ii) Non-recursive projection of a temporal nested attribute R tn at the top level 

of R consisting of subsets Attr(Ra), Attr(Rn) and Attr(Rt) of atomic, nested and 

temporal attributes respectively at its top nesting level (πt(r(Rtn))) 

πt(r(Rtn)) = { t| (∃ tr ∈ r) ((t[Attr(Ra)] = tr[Attr(Ra)])  

 ∧ (t[Attr(Rn)] = tr[Attr(Rn)])  

 ∧ (t[Attr(Rt)] = tr[Attr(Rt)]))} 

iii) Recursive projection for temporal nested relations (πt
π(rLπ)) 

πt
π(rLπ) = πt

π(r(Ra1, …, Rak, Attr(Rt), Rn1Ln1, …, RnmLnm, Rtn1Ltn1, …, Rtnm′Ltnm′))=  

{ t| (∃ tr ∈ r) ((t[Ra1] = tr[Ra1]) ∧ … ∧ (t[Rak] = tr[Rak]) 

      ∧ (t[Attr(Rt)] = tr[Attr(Rt)]) 

      ∧ (t[Rn1] = ππ(tr[Rn1]Ln1)) ∧ … ∧ (t[Rnm] = ππ(tr[Rnm]Lnm))  

      ∧ (t[Rtn1] = πt
π(tr[Rtn1]Ltn1)) ∧ … ∧ (t[Rtnm′] = πt

π(tr[Rtnm′]Ltnm′)))} � 

Example 5.5: The result relation of the TProjection operation of attributes 

COMPANY and COURSE in relation T_TRAINING (Fig. 5.2) is shown in Fig. 

5.7. 

 

COMPANY  COURSE  

  CN CN_PERt  

       5.2 [2/11/1994, 25/4/1995) ∪ [7/8/1996, 1/1/2010)  

Apple  3.3 [2/1/1992, 8/11/1996)  

  3.5 [30/4/1995, 1/1/2010)  

            5.2 [19/3/1997, 21/4/1997)  

IBM  5.0 [17/12/1995, 1/1/2010)  

          Microsoft  3.3 [25/6/1996, 1/1/2010)  

     Fig. 5.7: πt
π(T_TRAINING(COMPANY, TRAINER(COURSE))) 

5.3.5 The Recursive Nested TimeSlice Operation (ss) 

TProjection cannot be used to “project” a relation along a given temporal 

element, i.e. how a relation looks like at a given temporal element. A new 



   

 

 
 
138 

operation needs to be defined, namely TimeSlice, which takes the intersection 

of the given temporal element and each temporal element of the relation (see 

Definition 3.12). In the resulting relation, tuples having empty temporal 

elements are not considered. The TimeSlice operation is similar to the Slice 

operation proposed by Tansel ([Tan86]). 

Let r be a temporal nested relation with relation scheme R. Let, also, 

Attr(Ra,n) be all the atomic and nested attributes, Attr(Rtn) = {Rtn1, …, Rtnm} all 

the temporal nested attributes at the top level of R, Attr(Rt) all the temporal 

attributes, TE a temporal element, t r a tuple in relation r and t a tuple in the 

result relation. 

Definition 5.5 (TimeSlice) 

i) Non-recursive timeslice for a temporal nested attribute R tn (with Attr(Ra,n) 

and Attr(Rt) at the top level) of a temporal nested relation r along a given 

temporal element TE (sTE(t[Rtn])) 

sTE(t[Rtn]) = { t| (∃ tr ∈ r) ((t[Attr(Ra,n)] = tr[Attr(Ra,n)])  

     ∧ ((t[Attr(Rt)] = tr[Attr(Rt)] ∩TE TE) ? Ø))} 

ii) Recursive timeslice for temporal nested relations along a given temporal 

element TE (ss
TE(r)) 

ss
TE(r) = { t| (∃ tr ∈ r) ((t[Attr(Ra,n)] = tr[Attr(Ra,n)])  

        ∧ ((t[Attr(Rt)] = tr[Attr(Rt)] ∩TE TE) ? Ø) 

        ∧ (t[Rtn1] = ss
TE(tr[Rtn1])) ∧ … ∧ (t[Rtnm] = ss

TE(tr[Rtnm])))} � 

Example 5.6: In Fig. 5.8 the TimeSlice of relation T_TRAINING (Fig. 5.2) for 

the temporal element [3/12/1996, 28/9/1997) is shown. 

 

  TRAINER   

COMPANY  TRN  COURSE   

    CN CN_PERt   

                  Jack  5.2 [3/12/1996, 28/9/1997)   

                                Apple  Mark  3.5 [3/12/1996, 28/9/1997)   

                                    5.2 [19/3/1997, 21/4/1997)   

IBM  Tim  5.0 [3/12/1996, 28/9/1997)   

                                Microsoft  Karen  3.3 [3/12/1996, 28/9/1997)   

                Fig. 5.8: ss
 [3/12/1996, 28/9/1997)(T_TRAINING) 
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5.3.6 The Recursive Temporal Nested Selection Operation (σt
σ) 

The selection operation extracts specified tuples from a given relation r that 

satisfy a specified condition. In addition to the standard selection operation, 

TSelection can use special temporal comparison operators when the specified 

condition involves relative positions among temporal elements or among time 

points and temporal elements  (i.e. BEFORE, AFTER, MEETS, OVERLAPS, 

COVERS defined in [Lor88]). 

Let r be a temporal nested relation with relation scheme R, Attr(R) be all the 

attributes of R and let Attr(Ra) be the subset of all the atomic attributes, 

Attr(Rt) the subset of all the temporal attributes, Attr(Rn) the subset of all the 

nested attributes and Attr(Rtn) the subset of all temporal nested attributes of R 

that participate in the selection operation. Let also c be a set of conditions in 

R, which is of the form {ca, ct, cn, ctn}, where ca is a set of conditions which 

must be true for the subset Attr(Ra), ct a set of conditions which must be true 

for the subset Attr(Rt), cn a set of conditions which must be true for the subset 

Attr(Rn) and ctn a set of conditions which must be true for the subset Attr(Rtn). 

As has been mentioned above, ct can be a set of predicates for temporal 

elements. Furthermore, it is important to notice that c tn concerns, eventually, 

the lowest nesting level of atomic and temporal attributes, since temporal 

nested attributes consist of atomic and temporal attributes. Then, the 

recursive temporal nested selection of relation r, where Lσ is a select list of r 

(see Definition 4.14), tr a tuple in relation r and t a tuple in the resulting 

relation is defined as follows: 

Definition 5.6 (TSelection) 

i) Non-recursive selection concerning the set of temporal attributes Attr(Rt) 

that occur at the top level of a temporal nested relation r (σt(rct)) 

σt(rct) = { t| (∃ tr ∈ r) ((t[Attr(R) – Attr(Rt)] = tr[Attr(R) – Attr(Rt)])  

       ∧ (t[Attr(Rt)] = tr[Attr(Rt)]) ∧ (ct = true))} 
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ii) Recursive selection concerning the set of temporal nested attributes 

Attr(Rtn) (σt
σ(rctn1, …, ctnm′L′

σ)) 

σt
σ(rctn1, …, ctnm′L′

σ) = { t| (∃ tr ∈ r)  

((t[Attr(R) – Attr(Rtn)] = tr[Attr(R) - Attr(Rtn)])  

∧ (t[Rtn1] = σt
σ(tr[Rtn1]ctn1Ltn1) ≠ ∅)  

∧ … ∧ (t[Rtnm′] = σt
σ(tr[Rtnm′]ctnm′Ltnm′) ≠ ∅))}  

iii) Recursive selection for temporal nested relations (σt
σ(rcLσ)) 

σt
σ(rcLσ) = σ(rca1, …, cak) ∩ σt(rct) ∩ σσ(rcn1, …, cnmLσ) ∩ σt

σ(rctn1, …, ctnm′L′
σ) � 

Example 5.7: Assume that the following query is given: “Find all 

information for trainers Mark and Tim and for courses that took place for 

period overlapping the time interval [1/1/1997, 1/1/1998) from the 

T_TRAINING table (Fig. 5.2). The result table is given in Fig. 5.9. 

 

  TRAINER   

COMPANY  TRN  COURSE   

    CN CN_PERt   

                Apple  Mark  3.5 [30/4/1995, 1/1/2010)   

                                    5.2 [19/3/1997, 21/4/1997)   

IBM  Tim  5.0 [17/12/1995, 1/1/2010)   

                Fig. 5.9: σt
σ(T_TRAINING (TRAINER(TRN)=‘Mark’ OR ‘Tim’)  

AND (TRAINER(COURSE(CN_PER t)) OVERLAPS [1/1/1997, 1/1/1998))) 

5.3.7 The Recursive Temporal Unnest Operation (µ tµ) 

The definition of the recursive unnest operation for temporal nested 

relations is the same as the definition of the recursive unnest operation (µµ) for 

nested relations (see Definition 4.17 in section 4.3.6). 

5.3.8 The Recursive Temporal Nest Operation (?t?) 

The definition of the recursive nest operation for temporal nested relations 

is the same as the definition of the recursive nest operation (??) for nested 

relations (see Definition 4.19 in section 4.3.7). 
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5.3.9 The Recursive Temporal Nested Rename Operation (ρt
ρ ) 

The definition of the recursive rename operation for temporal nested 

relations is the same as the recursive rename operation for nested relations 

(see Definition 4.20 in section 4.3.8). 

5.3.10 The Recursive Temporal Nested Cartesian Product 

Operation (×t
×) 

Let r and q be two temporal nested relations with relation schemes R and Q 

respectively. The TCartesianProduct of r and q is a new temporal nested 

relation consisting of all possible combinations of tuples of the two relations. 

Attributes of relation Q can be placed either next to the last attribute of 

relation R, which means that the cartesian product operation operates at the 

top level of both relations and so it is exactly the same as the standard 

cartesian product operation for flat relations or next to an attribute which is 

not at the top nesting level of relation R which means that the cartesian 

product operates between a lower nesting level of relation R and the top 

nesting level of relation Q.   

Let Attr(R) and Attr(Q) be all attributes (atomic, temporal, nested and 

temporal nested) of R and Q respectively. Let also, L be a join path of R (see 

Definition 4.21), Rtn a temporal nested attribute of R, Ltn a join path of 

attribute R tn, tr a tuple in relation r, tq a tuple in relation q and t a tuple in the 

resulting relation. 

Then, the cartesian product of the two relations r and q, ×t
× (rL, q), is 

defined as follows: 

Definition 5.7 (TCartesianProduct) 

i) Non-recursive cartesian product between two temporal nested relations r 

and q when L is empty (×t (r, q)) 

×t (r, q) = { t ≡ (t[Attr(R)], t[Attr(Q)])| (∃ tr ∈ r, ∃ tq ∈ q) ((t[Attr(R)] = t r[Attr(R)])  

  ∧ (t[Attr(Q)] = tq[Attr(Q)]))} 
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ii) Recursive cartesian product between two temporal nested relations r and 

q when L is not empty (×t
× (rL, q)) 

×t
× (rL, q) = ×t

× (r(RtnLtn), q) ≡ ×t
× (q, r(RtnLtn)) 

= { t| (∃ tr ∈ r) ((t[Attr(R) – {Rtn}] = tr[Attr(R) – {Rtn}])  

    ∧ (t[Rtn] = ×t
× (tr[Rtn]Ltn, q)))} � 

It follows from the formal definition of the recursive temporal nested 

cartesian product operation that the result relation of the cartesian product of 

temporal nested relations r and q consists of the attributes of relation r plus 

the attributes of relation q.  

Note: The definition of the TCartesianProduct operation for temporal nested 

relations (Definition 5.7) is the same as the recursive cartesian product 

definition for nested relations (see Definition 4.22), since temporal attributes of 

the two relations that participate in the TCartesianProduct operation are not 

compared by definition but behave like standard atomic attributes. 

Furthermore, the commutative property is always valid in the recursive 

temporal nested cartesian product operation, as is the case in the recursive  

nested cartesian product operation. 

 

5.3.11 The Recursive Temporal Nested Natural Join Operation 

(><t
><) 

In general, the join operation is a special case of the cartesian product 

operation between two relations where the tuples of the two relations 

contributing to any given combination, satisfy some specified condition 

(selection operation). When the specified condition includes time-varying 

attributes, the intersections of the temporal elements of the corresponding 

temporal attributes of the two relations are computed (see Definition 3.12). If 

the result of the intersection is the empty set, the result tuple is discarded. In 

what is described below the specified condition is equality, i.e. a natural join 

operation can be performed only when the two temporal nested relations 

which participate in the join operation have one or more attributes in 

common. Since the attributes in common can be atomic, temporal, nested or 

temporal nested either at the top or at a lower nesting level in the two 

relations, different cases of natural join have to be examined. 
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The cases can be grouped according to the join paths of the two relations 

that are going to be  joined and are, in general, the same as for the non-

temporal nested relations presented in Fig. 4.17. 

For all the six different cases below, tr is a tuple in relation r, tq a tuple in 

relation q and t a tuple in the resulting relation. 

 

Case 1: Join two temporal nested relations which have one or more atomic 

and temporal attributes at the top level in common  

Definition 5.8: Let r and q be two temporal nested relations with relation 

schemes R and Q respectively and Attr(R) and Attr(Q) the sets of all attributes 

of R and Q respectively. The two relations r and q have in common the subsets 

of atomic and temporal attributes Attr(Ra) and Attr(Rt) respectively. Then, ><t 

(r, q) is defined as follows: 

><t (r, q) = { t| (∃ tr ∈ r) (∃ tq ∈ q)  

((t[Attr(R) - {Attr(Ra), Attr(Rt)}] = tr[Attr(R) - {Attr(Ra), Attr(Rt)}]) 

∧ (t[Attr(Q) - {Attr(Ra), Attr(Rt)}] = tq[Attr(Q) - {Attr(Ra), Attr(Rt)}]) 

∧ (t[Attr(Ra)] = tr[Attr(Ra)] = tq[Attr(Ra)]) 

∧ (t[Attr(Rt)] = (tr[Attr(Rt)] ∩TE tq[Attr(Rt)]) ≠ ∅))} � 

 

Case 2: Join two temporal nested relations having one or more atomic and 

temporal attributes in common which in one relation are attributes of a 

subrelation of the relation and in the other are at the top level 

Definition 5.9: Let r and q be two temporal nested relations with relation 

schemes R = {R1, R2, …, Rtn, …, Rk} and Q = {Q1, Q2, …, Attr(Qa), Attr(Qt), …, 

Qk′} respectively, where k, k′ > 0 and k ≠ k′ (in general). Let also, Attr(R) and 

Attr(Q) be the sets of all attributes of relations r and q respectively. The two 

relations have in common one or more atomic and temporal attributes which 

in one relation belong to temporal nested attribute R tn and in the other relation 

are the subsets Attr(Qa) and Attr(Qt) of atomic and temporal attributes 

respectively. Let L be a join path of R. L is of the form R tnLtn where L tn is a join 

path of Rtn. Then, ><t
>< (rL, q) is defined as follows: 

><t
>< (rL, q) = ><t

>< (q, rL) = ><t
>< (r(RtnLtn), q) = { t| (∃ tr ∈ r) 

      ((t[Attr(R) - {Rtn}] = tr[Attr(R) - {Rtn}]) 

      ∧ (t[Rtn] = ><t
>< (tr[Rtn]Ltn, q) ≠ ∅))} � 
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Note: This definition is the same as Definition 4.25 (Case 2) for non-

temporal nested relations in the NRM. 

 

Case 3: Join two temporal nested relations having one or more atomic and 

temporal attributes in common which belong in different subrelations of the two 

relations (but in the same subrelation in each relation) 

The same two cases can be distinguished here, as in the NRM, depending 

on whether or not the nesting levels of the common atomic and temporal 

attributes in the different subrelations of the two relations are the same. 

Case 3a: The common atomic and temporal attributes are at the same 

nesting level in the two joined relations  

Definition 5.10: Let r and q be two temporal nested relations with relation 

schemes R = {R1, R2, ..., Rtn, …, Rk} and Q = {Q1, Q2, ..., Qtn, …, Qk′} respectively 

where k, k′ > 0 and k ≠ k′ (in general). Let also, Attr(R) and Attr(Q) be the sets 

of all attributes of relations r and q respectively. Suppose that at least the 

attributes Rtn and Qtn of the two relations r and q respectively are temporal 

nested attributes and that they contain the common atomic and temporal 

attributes. 

Let L be a join path of R and M a join path of Q. L is of the form R tnLtn where 

Ltn is a join path of Rtn and M is of the form QtnMtn where Mtn is a join path of 

Qtn. Then, ><t
>< (rL, qM) is defined as follows: 

><t
><  (rL, qM) = ><t

><  (qM,  rL) = ><t
>< (r(RtnLtn), q(QtnMtn)) =  

{t| (∃ tr ∈ r) (∃ tq ∈ q)  

    ((t[Attr(R) - {Rtn}] = tr[Attr(R) - {Rtn}]) 

    ∧ (t[Attr(Q) - {Qtn}] = tq[Attr(Q) - {Qtn}]) 

    ∧ (t[RtnQtn] = ><t
>< (tr[Rtn]Ltn, tq[Qtn]Mtn) ≠ ∅))} � 

Example 5.8: Suppose that relations T_LOCATION (Fig. 3.15), T_CASH-

POINT (Fig. 3.16) and the following query are given “Which banks have 

branches at the same road as the given companies during the same time 

period?”.  

The result relation is shown in Fig. 5.10. 
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COMPANY  (BUILDING  ADDRESS  ADDRESS_PERt  SORT_CODE)  BANK  

  BUILDING ADDRESS ADDRESS_PERt SORT_CODE     

         
Microsoft  Pegasus House Ashford St. [16/11/1995, 4/4/1997) 386600  Barclays  

         
         

Microsoft  Queen’s Building Park Rd. [18/3/1995, 10/8/1998) 560045  NatWest  

         
         

Microsoft  Queen’s Building Park Rd. [16/6/1995, 1/1/2010) 478210  Lloyd’s  

         
  Pegasus House Ashford St. [23/7/1995, 4/4/1997) 478202    

         

Fig. 5.10: ><t
>< (T_LOCATION(ANNEX(ADDRESS, ADDRESS_PERt)), 

T_CASH-POINT(BRANCH(ADDRESS, ADDRESS_PERt))) 
 

Case 3b: The common atomic and temporal attributes are not at the same 

nesting level in the two joined relations 

The definition is the same as Definition 4.27 (Case 3b) for non-temporal 

nested relations in the NRM. 

 

Case 4: Join two temporal nested relations which have one or more temporal 

nested attributes at the top level in common 

Definition 5.11: Let r and q be two temporal nested relations, with relation 

schemes R and Q respectively. Let also, Attr(R) and Attr(Q) be the sets of all 

attributes of relations r and q respectively. The two relations r and q have in 

common the temporal nested attributes Attr(Rtn) = {Rtn1, Rtn2, …, Rtnk} and 

Attr(Qtn) = {Qtn1, Qtn2, …, Qtnk} respectively (k > 0) at the top level. Then, ><t (r, 

q) is defined as follows: 

><t (r, q) = { t| (∃ tr ∈ r) (∃ tq ∈ q)  

((t[Attr(R) – Attr(Rtn)] = tr[Attr(R) – Attr(Rtn)]) 

∧ (t[Attr(Q) – Attr(Qtn)] = tq[Attr(Q) – Attr(Qtn)]) 

∧ (t[Attr(Rtn)] = ><t (tr[Attr(Rtn)], tq[Attr(Qtn)])  

         = ((Rtn1 ∩t
∩ Qtn1) ∧ (Rtn2 ∩t

∩ Qtn2) ∧ … ∧ (Rtnk ∩t
∩ Qtnk)) ? Ø))} � 

 

Case 5: Join two temporal nested relations having one or more subrelations 

in common which in one relation are subrelations of a subrelation of a relation 

and in the other are at the top level 

The definition is the same as Definition 5.9 (Case 2). 
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Case 6: Join two temporal nested relations having one or more common 

subrelations which belong at different subrelations of the two relations (but in 

the same subrelation in each relation) 

Case 6 in the TNM is similar to Case 6 in the NRM (subsection 4.3.10). 

In the following example the natural join of two temporal nested relations, 

having one common temporal nested attribute belonging to different 

subrelations and at different nesting levels in the two relations, is computed. 

Example 5.9: Let assume that the T_TRAINING relation (Fig. 3.13) and the 

T_DEPT relation (Fig. 3.14) are given. In order to answer the query “Find 

which trainers have given courses to which staff members?” the natural join of 

the two relations must be computed. The two relations have in common the 

temporal nested attribute COURSE which is located at nesting level 2 at the 

T_TRAINING relation and at nesting level 3 at the T_DEPT relation. The result 

relation is shown in Fig. 5.11. 

 

  (UN  UD  (SNAME  STAFF_PERt  COURSE  TRN)  COMPANY) 

D DN  UN UD (SNAME  STAFF_PERt  COURSE  TRN) COMPANY  

      SNAME STAFF_PERt  COURSE  TRN    

         CN CN_PERt      

                                   511 Software  Paul [13/5/1994,5/9/1996)  5.2 [1/2/1995, 25/4/1995)  Jack  Apple  

                                                    Engineering  Peter [26/2/1996,1/1/2010)  3.5 [1/1/1998, 28/10/1998)  Mark    

                                                                                                1 Research  511 Software 

Engineering 

 Paul [13/5/1994,5/9/1996)  5.0 [17/12/1995,30/1/1996)  Tim  IBM  

                                                                                                   552 Basic 

Research 

 Anna [30/4/1994,27/8/1995) 

∪  

[4/6/1997,19/11/1998) 

 3.3 [29/9/1997, 10/2/1998)  Karen  Microsoft  

                                                                      Mary [15/5/1995, 1/1/2010)  3.3 [17/1/1997, 28/4/1997)  Karen    

                                                                                                2 Development  780 Maintenance  Helen [14/2/1996, 1/1/2010)  3.5 [17/8/1997, 1/1/2010)  Mark  Apple  

                                                                                                   650 Design  Steve  [2/1/1995, 27/6/1998)   5.0 [18/3/1996, 1/7/1996)  Tim  IBM  

                                                
Fig. 5.11: ><t

>< (T_TRAINING(TRAINER(COURSE)), 

T_DEPT(STAFF(COURSE_DETAILS(COURSE)))) 

 

It can be concluded that the only difference between the natural join 

operation for temporal nested relations in the TNM, defined in this section, 

and the natural join operation for non-temporal nested relations in the NRM, 

defined in section 4.3.10, is when it reaches a nesting level where a temporal 
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attribute occurs. In this case, either the Definition 5.8 of Case 1 or the 

Definition 5.11 of Case 4 of this section is applied. Therefore, the TJoin 

operation of the TNM has been defined as a consistent extension of the 

recursive nested natural join operation defined for the NRM. 

5.3.12 The Recursive Temporal Nested Θ-Join Operation (><tT
><) 

Let r and q be two temporal nested (in general) relations with relation 

schemes R and Q respectively. Let X and Y be two atomic or temporal 

attributes belonging to relations R and Q respectively and Θ the condition that 

they must satisfy. Assume, without loss of generality, that Y belongs to a 

deeper nesting level than X and LσY′→Y is the select path of Y starting at node Y′ 

which is at the same nesting level as X (when X and Y are at the same nesting 

level the select path is empty). So, the Θ-TJoin of two relations r and q is 

defined as follows: 

Definition 5.12 (Θ-TJoin)  

r ><tT
>< q = σt

σ((r ×t q) X Θ Y LσY′→Y) 

Note: The definition of the Θ-TJoin operation for temporal nested relations 

is the same as the definition of the recursive Θ-Join operation for nested 

relations (Definition 4.30); the only difference is that the comparison (selection 

operation) can be performed also between temporal attributes. 

5.3.13 The Recursive Temporal Nested Division Operation (÷t
÷) 

The recursive temporal nested division operation is not defined for the same 

reasons discussed in section 4.3.12. 

5.3.14 Temporal Functions 

The START and STOP functions have been defined in section 3.2.2. 

Different researchers have defined various temporal functions and a detailed 

list can be found in [LM97]. Hence, repetition of such functions is omitted 

here. Informal description of the functionality of such functions is given in the 

sequel wherever they are used. 
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5.4 Closure Property of Operations 

The temporal nested operations defined in section 5.3 are proved, in this 

section, to be closed in U, where U is the underlying domain of the temporal 

nested relations. For all the following propositions, let r be a temporal nested 

relation with relation scheme R(Attr(Ra), Attr(Rt), Attr(Rtn)), where Attr(Ra) = 

{Ra1, Ra2, …, Rak} is the set of all atomic attributes (k ≥ 0), Attr(Rt) = {Rt1, Rt2, …, 

Rtq} is the set of all temporal attributes (q ≥ 0) and Attr(Rtn) = {Rtn1, Rtn2, …, 

Rtnm} is the set of all temporal nested attributes in R (m ≥ 0). Nested attributes 

can be considered as a special case of temporal nested attributes and so they 

are not included in the relation scheme. Let also, Dai be the underlying domain 

of the atomic attribute Rai (where 0 ≤ i ≤ k), Dtp the underlying domain of the 

temporal attribute Rtp (where 0 ≤ p ≤ q) and P(DOM(Rtnj)) the underlying 

domain of the temporal nested attribute Rtnj (where 0 ≤ j ≤ m).  

The underlying domain of relation r is:  

Da1 × Da2 × … × Dak × Dt1 × Dt2 × … × Dtq × P(DOM(Rtn1)) × P(DOM(Rtn2)) × … × 

P(DOM(Rtnm)). 

Note: A temporal attribute behaves in the same way as an atomic attribute 

in the following proofs. However, the domains of temporal attributes are 

distinct from those of atomic attributes.  

 

Proposition 5.1 The TUnion operation is closed in U.  

Proof: Let q be a temporal nested relation with the same relation scheme 

and the same underlying domain as relation r.  

Then, the underlying domain of relation s, where s = r ∪t
∪ q, is also Da1 × 

Da2 × … × Dak × Dt1 × Dt2 × … × Dtq × P(DOM(Rtn1)) × P(DOM(Rtn2)) × … × 

P(DOM(Rtnm)), according to Definition 5.1. So, the output of the TUnion 

operation is a temporal nested relation with the same scheme and the same 

underlying domain as the input relations r and q. Thus, the TUnion operation 

is closed in U. 

 

Proposition 5.2 The TDifference operation is closed in U.  

Proof: The proof is omitted since is the same as that of the TUnion 

operation. 
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Proposition 5.3 The TIntersection operation is closed in U.  

Proof: The proof is omitted since is the same as that of the TUnion 

operation. 

 

Proposition 5.4 The TProjection operation is closed in U.  

Proof: The output of the TProjection operation, πt
π(rLπ), of the temporal 

nested relation r, is a temporal nested relation whose underlying domain is a 

proper subset of the underlying domain of relation r, according to Definition 

5.4. Thus, the TProjection operation is closed in U. 

 

Proposition 5.5 The TimeSlice operation is closed in U.  

Proof: The output of the TimeSlice operation, ss
TE(r), of the temporal nested 

relation r, is a temporal nested relation whose underlying domain is the 

underlying domain of relation r, according to Definition 5.5. Thus, the 

TimeSlice operation is closed in U. 

 
Proposition 5.6 The TSelection operation is closed in U.  

Proof: The output of the TSelection operation, σt
σ(rcLσ), of the temporal 

nested relation r, is a temporal nested relation whose underlying domain is the 

underlying domain of relation r, according to Definition 5.6. Thus, the 

TSelection operation is closed in U. 

 

Proposition 5.7 The TCartesianProduct operation is closed in U.  

Proof: Let q be a temporal nested relation with relation scheme Q(Attr(Qa), 

Attr(Qt), Attr(Qtn)), where Attr(Qa) = {Qa1, Qa2, …, Qak′} the set of all atomic 

attributes (k′ ≥ 0), Attr(Qt) = {Qt1, Qt2, …, Qtq′} the set of all temporal attibutes in 

Q (q′ ≥ 0) and Attr(Qtn) = {Qtn1, Qtn2, …, Qtnm′} the set of all temporal nested 

attibutes in Q (m′ ≥ 0). Let also, D′ai′ be the underlying domain of the atomic 

attribute Qai′ (where 0 ≤ i′ ≤ k′), D′tp′ the underlying domain of the temporal 

attribute Q tp′ (where 0 ≤ p′ ≤ q′) and P(DOM(Qtnj′)) the underlying domain of the 

temporal nested attribute Qtnj′ (where 0 ≤ j′ ≤ m′). 

The underlying domain of relation q is D ′a1 × D′a2 × … × D′ak′ × D′t1 × D′t2 × … 

× D′tq′ × P(DOM(Qtn1)) × P(DOM(Qtn2)) × … × P(DOM(Qtnm′)). 
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Then, the output of the TCartesianProduct operation of the two temporal 

nested relations r and q, ×t
× (rL, q), is a temporal nested relation with 

underlying domain Da1 × Da2 × … × Dak × Dt1 × Dt2 × … × Dtq × P(DOM(Rtn1)) × 

P(DOM(Rtn2)) × … × P(DOM(Rtnm)) × D′a1 × D′a2 × … × D′ak′ × D′t1 × D′t2 × … × D′tq′ 

× P(DOM(Qtn1)) × P(DOM(Qtn2)) × … × P(DOM(Qtnm′)), according to Definition 5.7. 

So, the output of the TCartesianProduct operation is a temporal nested 

relation whose underlying domain is the cartesian product of the underlying 

domains of the two input relations, r and q. Thus, the TCartesianProduct 

operation is closed in U. 

 

Proposition 5.8 The TJoin operation is closed in U.  

Proof: The proof is omitted since is the same as that of the 

TCartesianProduct operation. 

 

Proposition 5.9 The Θ-TJoin operation is closed in U.  

Proof: The proof is omitted since is the same as that of the 

TCartesianProduct operation. 

5.5 Summary 

In this chapter, a temporal database model (TNM) and algebra have been 

defined using nested relations. The advantage of this approach is that it 

combines for the first time a simple temporal extension with nested relational 

theory, thus exploiting the suitability of the Nested Relational Model for 

representing temporal complex objects.  

All the operators that are used are recursively defined. The result is that 

there is no need to flatten the temporal nested relations when queries are 

executed. Data duplication does not occur. Furthermore, the representation of 

the data is claimed to be in a “natural form” and thus, it is easier for users to 

understand when querying the data.  

The most interesting and at the same time difficult operation to define is the 

natural join operation. It has been given special consideration in this chapter, 

within the scope of the TNM. As in the previous chapter, detailed attention has 

been paid to solving the problems that are presented when computing the 
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natural join operation of two relations, due to the dissimilarity of the common 

attributes that the two relations might share. 

Lastly, the closure property for all the operations of the TNM has been 

proved. 
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CHAPTER 6 

6. MODEL IN USE 

6.1 Introduction 

This chapter gives a number of examples of the management of temporal 

nested data using the Temporal Nested Model (TNM) described in chapters 3 

and 5. The queries illustrate the features of the temporal nested relational 

algebra that has been defined also in chapter 5.  

The examples are presented incrementally and thus, have been divided in 

two different categories; the first one includes queries that involve non-

temporal nested data, showing the expressive power of the NRM, defined in 

chapter 4 and the second one deals with temporal nested relations for the 

management of temporal nested data, demonstrating the full expressive power 

of the TNM. 

Note that in the examples that follow, for simplicity reasons, the result 

relation is the one obtained after the application of the necessary number of 

unnest operations. Moreover, when a new attribute is computed from an 

aggregate or scalar function, a new name is given by the user to that new 

attribute, without the need of using the rename operation. 

6.2 Management of Nested Data 

The non-temporal nested model presented in chapter 4, is a well-defined 

and formalised nested model where data restructuring operations are avoided. 

In this chapter, examples are provided to show the ease of use of the NRM 

algebra. Relations have no restrictions on the number of nesting levels they 

can contain. The nested model presented, provides a better way of 

representing and querying complex data as demonstrated by the queries that 
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follow since they are short and do not require nest, unnest or any other 

restructuring operations for the manipulation of nested data. 

A number of examples are presented that contain only operations on nested 

data, demonstrating how this model works and functions. Queries refer to the 

nested database example described in section 3.5 (Fig. 3.6–3.12). For each 

query, the resulting relation is also given. In the resulting relation the names 

of the new subrelations are derived from the names of the attributes they 

contain using a bracketed notation (see also section 4.3.10). For some queries, 

comparisons are made with other proposed models, in order to demonstrate 

the claimed superiority of the NRM and the weakness of other proposed 

algebras to express these queries. 

 

Query 1: What are the descriptions of the units that belong to department 

1 and who are the trainers who have given courses to staff members of these 

units (ref. to Fig. 3.7)? Display also the value for the department. 

ππ((σσ(DEPTD = 1)) D, UD, TRN)  

 
  (UD   (TRN)) 
D  UD  (TRN)   
    TRN   
                Software  Mark   
  Engineering     
                                   1  Basic Research  Karen   
           Tim   
                              Planning  Mark   
              Fig. 6.1: The resulting relation of Query 1 

 

A projection operation on a selected part of the DEPT relation is needed to 

answer the above query. Three attributes of the relation are projected which 

can be found at different nesting levels; attribute D at nesting level 1 (top 

level), attribute UD at nesting level 2 and attribute TRN at nesting level 3. 

However, the projection operation takes place as normal, without changing the 

structure of the relation using unnest and nest operations and thus, the 

nesting arrangement of the relation is maintained in the resulting relation as 

well. Therefore, in the resulting relation, D, UD and TRN are still at nesting 

levels 1, 2 and 3 respectively, as in the input relation DEPT. 
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Query 2: Find the department names and the companies that have 

provided these departments with trainers (ref. to Fig. 2.2, 2.3). 

ππ((DEPT_1 ><>< TRAINING_2) DN, COMPANY) 

 

DN  (COMPANY)  

  COMPANY  

                                                                                                                                                                                                                                                      

Research  IBM  
    

                                                                                                                                                                                                                                                                                            

Development  IBM  
    

Fig. 6.2: The resulting relation of Query 2 

 

Although the two relations that have to be joined, DEPT_1 and 

TRAINING_2, contain the common nested attribute TRAINER at different 

nesting levels, and also a projection operation is applied to two attributes at 

different nesting levels in the resulting relation after performing the natural 

join operation, the structure of these complex objects is preserved while 

accessing them and the query can be answered easily with two basic 

operations, natural join and projection, ignoring the complexity of the 

operands. The output relation is nested completely without requiring any 

nesting operations.  

This query cannot be performed in Abiteboul and Bidoit’s model ([AB86]) 

since the natural join operation cannot be performed between the TRAINING_2 

and DEPT_1 relations, as they do not contain any common atomic attributes 

at the top level (see section 2.2.1). 
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Query 3: Find the tuples with course numbers equal to the number of the 

department for the whole tuple (ref. to Fig. 3.7). 

σσ(DEPTD = CN) 

 
  UNIT 

D DN  UN UD COURSE_DETAILS 

      TRN COMPANY C 

         CN Y    

                            1 Research  511 Software Engineering  Mark Apple  1 75    

                                                                                       552 Basic Research  Karen Microsoft  1 82    

                                                                                    2 Development  780 Maintenance  Mark Apple  2 76    

                                                                                       981 Planning  Jack Apple  2 81    

                                          Fig. 6.3: The resulting relation of Query 3 

 

The above query shows the advantage of the selection operation proposed in 

section 4.3.5 that allows arbitrary expressions to be specified in the select 

condition, as for example equality of values of attributes that are not at the 

same nesting level in the relation, without unnesting and nesting the relation. 

The query is expressed algebraically in exactly the same way as if the two 

compared attributes were at the top level of the original relation.  

 

Query 4: Find the names of the banks and the companies that are situated 

at the same road (ref. to Fig. 3.8, 3.9). 

νν((µµ(ππ((LOCATION><><CASH-POINT) 

     COMPANY,BANK,ADDRESS))(ADDRESS))(COMPANY,BANK)→(COMPANY BANK)) 

 

ADDRESS  (COMPANY   BANK)  

  COMPANY   BANK  

       Porchester Rd.  TOSHIBA   NatWest  

              Ashford St.  Microsoft   Barclays  

     Lloyd’s  

              Park Rd.  Microsoft   Lloyd’s  

     NatWest  

       Fig. 6.4: The resulting relation of Query 4 
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In this example, and in similar cases, nest and unnest operations are 

necessary since they can restructure the relations and as a result, present the 

same data in a different format that is required by the given query.  

However, extra nest and unnest operations are avoided in the above query 

since the natural join and projection operations are defined recursively in the 

NRM algebra.  

In Abiteboul and Bidoit’s model this query cannot be performed since the 

two relations that participate in the natural join operation do not have any 

common attributes at the top level. 

 

Query 5: Find the names of the trainers that have given the “Computer 

Skills” training course (ref. to Fig. 3.6, 3.12). 

ππ((σσ(TRAINING ><>< COURSE)  TITLE= “Computer Skills”) TRN) 

 

TRN 

Jack 

Karen 

Fig. 6.5: The resulting relation of Query 5 

 

 One can easily see the advantage of joining subrelations which are at 

different nesting levels (in this example, the subrelation C at nesting level 3 in 

relation TRAINING and at nesting level 1 in relation COURSE), without the 

need to unnest and nest the data and without any other restructuring 

operations assumed by other proposed models (e.g. [AB86], [Col90]).  

In contrast, in Levene’s model the natural join can be applied only if 

relation COURSE is extended with two empty nodes at levels 1 and 2 so that 

the common attribute C to appear at the same nesting level 3 in both 

relations. Then, the two relations are joinable, according to Levene’s definition 

and therefore, can be joined (see also section 2.2.5). 

The above example shows that the nested algebra proposed in this thesis 

provides a simple way of answering queries, since even just the algebraic 

solution of the query can be translated naturally to the above well-phrased 

query; moreover, the query does not distinguish between nested and flat 

relations, as the query would be expressed in the same way if the two 
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relations, TRAINING and COURSE, were flat relations. This is explained by the 

recursive  nature of the NRM operations. 

 

Query 6: Find the names of the banks which are located on the same road 

as the companies for which Tim or Karen have worked for, together with the 

names of these companies (ref. to Fig. 3.6, 3.8, 3.9). 

ππ((((σσ(TRAINING(TRN= “Tim” OR TRN = “Karen”))) ><>< LOCATION) ><>< CASH-POINT) 

COMPANY, BANK) 

 

COMPANY BANK 

Microsoft Barclay’s  

Microsoft NatWest 

Microsoft Lloyd’s 

Fig. 6.6: The resulting relation of Query 6 

 

 This query requires two natural join operations. However, since the 

natural join defined in this thesis can be performed between any possible 

relations sharing common attributes, it does not involve any preliminary 

checks to determine if the two operand relations are qualified for the natural 

join. In other models, for example in Colby ([Col90]) or in Abiteboul and 

Bidoit’s models ([AB86]), it is not certain if the natural join operation can be 

performed between a nested relation and the output of the natural join of two 

nested relations, since, as explained in chapter 2 of this thesis, for each of 

these models the natural join operation is subject to some restrictions. This, 

however, is not discussed either in [Col90] or in [AB86]. 

 On the other hand, in NRM any possible combination of relations, sharing 

at least one common attribute, can be joined.  

This query also demonstrates how complex queries can be answered easily 

in the query language proposed in this thesis. 
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Query 7: What is the title of the course that has the maximum number of 

different topics (ref. to Fig. 3.12)? Display also the the number of different 

topics that this course has.  

ππ(COURSE(TITLE, N-COUNT[TOPICS/TITLE]←MTOPICS)) ><><  

ππ(ππ(COURSE(TITLE, N-COUNT[TOPICS/TITLE]←MTOPICS1)) 

(MAX(MTOPICS1)) ←MTOPICS) 

 

TITLE  MTOPICS 

Computer Skills 3 

Fig. 6.7: The resulting relation of Query 7 

 

 Aggregate functions for nested attributes have been redefined in chapter 4 

(see section 4.3.13).  

The above query is expressed in the TNM using the following steps: 

STEP 1: In the original relation COURSE, the number of different topics per 

title is computed, it is named MTOPICS1 and projected on TITLE and 

MTOPICS1 attributes. 

STEP 2: From the result of step 1, MAX(MTOPICS1) is computed, named 

MTOPICS and projected. 

STEP 3: In the original relation COURSE, the number of different topics per 

title is computed, it is named MTOPICS and projected on TITLE and MTOPICS. 

STEP 4: The results of steps 2 and step 3 are joined together. 

 

Note that, for simplicity reasons, when a new attribute is computed from 

an aggregate or scalar function, a new name is given by the user to that new 

attribute, without the need of using the rename operation. 

It is noteworthy that if the relation COURSE was a flat relation then, the 

SUMMARIZE operation would be used to produce the same result in 

combination with the traditional aggregate functions COUNT and MAX. 

It must be said that this query or any other query containing aggregate 

functions on nested attributes cannot be expressed in any other relational 

model discussed in chapter 2 apart from [DL91] with the use of an additional 

operator, the subrelation constructor. 

The query is represented in Deshpande and Larson’s model as follows: 
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π[TITLE, MAX[SUBJECT′] ]  (? (C, COURSE_DURATION, TITLE, SUBJECT, 

SUBJECT′); SUBJECT′ := COUNT[TOPICS](SUBJECT)?  (COURSE)) where ?  is 

the subrelation constructor. 

 

Query 8: Find all trainers who have given more courses than Karen has 

(ref. to Fig. 3.6). 

ππ((σσ 

     (ππ((νν(µµ( πt
π(T_TRAINING(TRN, COURSE))COURSE)(CODE, C)→COURSE))  

(TRN, N-COUNT[CN/TRN] ←MCN))  

×× 

     ππ((σσ(TRAININGTRN= “Karen”))(N-COUNT[CN/TRN]←MCN1))) MCN > MCN1) TRN) 

 
 TRN  

    Mark  

   
   
 Tim  

   
Fig. 6.8: The resulting relation of Query 8 

 

Two copies of the TRAINING relation are needed for this query in order to 

perform the cartesian product operation between them. However, to make the 

query simpler, a projection operation is applied to the first copy of the relation 

and an aggregate function is also used to count the number of nested tuples 

which corresponds to the number of different courses that each trainer (TRN) 

has given. Moreover, an unnest and then a nest operation are also used to a 

projected part of the original relation to convert the relation to the right one, 

before the computation of the aggregate function. With the second copy of the 

relation, a projection is performed on a selection of the relation. The same 

aggregate function is also used here, applied to the same attribute as before. 

The cartesian product is performed afterwards between a binary relation and a 

unary one containing only one tuple.  

Once again, the above query can demonstrate the expressive power of the 

proposed nested model and the facility in stating complex queries. This query, 

as the previous one, cannot be expressed in any other nested relational model 

presented in chapter 2 apart from [DL91], yet with the problem discussed 

above. 
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6.3 Management of Temporal Nested Data 

Temporal data in TNM are represented as temporal elements. As defined in 

section 3.2.2 a temporal element is a finite set of disjoint and non-adjacent 

time intervals (see Definition 3.7). Consequently, the management of temporal 

data consists of handling time intervals.  

The behaviour of time intervals has been investigated by a number of 

researchers, as mentioned in section 3.3.4. To the best of the knowledge of the 

author of this thesis the most extended, analytical and complete approach to 

intervals has been given by Lorentzos in [Lor88]. He described the 

representation of generic intervals in a database model and defined an algebra 

to manipulate them. Consequently, the management of temporal data in the 

TNM adopts the approach of [Lor88] in general. The operators that are used to 

compare the relative positions of two temporal elements are based on the set 

of operators for intervals defined in [Lor88]. Although these set operators cover 

all possible relative positions of two intervals, they are multitudinous and 

difficult to memorise. For this reason, only a limited number of them are used 

in TNM, the most important, useful and basic and all the rest can be derived 

from them. Therefore, the following set of operators for time intervals are 

considered to be known and can be used in the TNM (Fig. 6.9). Their 

definitions can be found in [DDL03. 

 

 

 

 

 

 

 

Fig. 6.9: Operators for two time intervals 

 

In the TNM, as described in chapters 3 and 5, in the general case, temporal 

elements can be found in temporal attributes which form part of temporal 

nested attributes. So, a temporal nested attribute consists of a number of 

atomic and/or non-temporal nested attributes and one or more temporal 

attributes which contain the time periods over which the corresponding data 

BEFORE 

AFTER 

= 

MEETS 

OVERLAPS 

COVERS 
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instances of the atomic and/or non-temporal nested attributes are valid. In 

this respect and at that level, a temporal nested attribute can be considered as 

a subrelation that represents a tuple timestamping relation. Consequently, 

when the different nesting levels of a temporal nested relation are traversed 

from top to bottom and the temporal nested attributes are reached, the 

operations are performed as if the temporal nested attributes were tuple 

timestamping relations, despite the fact that the original relations are attribute 

timestamping temporal nested relations. This is one of the most significant 

benefits the TNM model offers, since it combines the benefits of tuple and 

attribute timestamping database models presented in section 3.3.2. 

The management of temporal nested data is one of the most complicated 

issues in temporal databases. Combining temporal data with nested data, 

gives a result that is even more complex. Therefore, an algebra which can 

provide a simple method for the manipulation of temporal nested data is an 

important advance.  

In what follows, queries managing temporal nested data are presented. In 

this section some queries are also expressed in Tansel’s model ([Tan97]). 

Tansel’s model, as has been discussed in chapter 2, is the only temporal 

model which provides full support of nested relations and in addition, as it will 

be shown in chapter 8, Tansel’s model and TNM are the only models that 

satisfy all criteria concerning the representation features. For this reason, a 

comparison is made only between TNM and Tansel’s model for some queries in 

this section, when it is considered worthwhile. 

The following examples illustrate the expressive power of the proposed TNM 

model and show that it is both easy to use and effective in formulating 

queries. 

 

Query 9: Find the names and course histories of staff members who were 

working in the Research Department at 1/1/1998 (ref. to Fig. 3.14). 

πt
π((σt

σ(T_DEPT) (DN=“Research”  AND STAFF_PER t OVERLAPS [1/1/1998, 2/1/1998))) SNAME, 

COURSE) 
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SNAME  COURSE 

  CN CN_PERt    

       Peter  3.5 [1/1/1998, 28/10/1998)    

              Anna  3.1 [1/7/1995, 1/8/1995)    

  3.3 [29/9/1997, 10/2/1998)    

              Mary  3.3 [17/1/1997, 28/4/1997)    

       Fig. 6.10: The resulting relation of Query 9 

 

This query is a classical temporal query. It involves a selection of historical 

tuples from T_DEPT relation together with a temporal projection. The 

structure of the nested data is preserved while accessing them as well as while 

performing the operations on them. In this example, the temporal elements of 

attribute STAFF_PERt are compared with a time point. Time points can be 

considered as elementary time intervals ([Lor88]). Therefore, set operators 

between time intervals can be extended to include operators between time 

intervals and time points as well. 

In Tansel’s model the T_DEPT relation is represented in the following way: 

 
  STAFF 

D DN  UN UD COURSE_DETAILS 

       SNAME  COURSE 

          CN    

                                   <{[13/5/1994, 5/9/1996)}, Paul>   <{[1/2/1995, 24/6/1995)}, 5.2>    

1 Research  511 Software      <{[27/8/1995, 30/1/1996)}, 5.0>    

                                              Engineering   <{[26/2/1996, 1/1/2010)}, Peter>   <{[1/1/1998, 28/10/1998)}, 3.5>    

                                                                                    . .  . .   .   .    

. .  . .   .   .    

Fig. 6.11: T_DEPT relation in Tansel’s model 

 

The Temporal Relational Algebra (TRA) expression for the above query in 

Tansel’s model is shown below: 

πSNAME, COURSE ( TSNAME (σDN= “Research” ∧ 1/1/1998 ∈ SNAME.T (µCOURSE_DETAILS (µSTAFF(T_DEPT))))) 

As can be seen, this query requires additional operations in Tansel’s model. 

In particular, two extra unnest operations and one drop-time operation are 

needed to express this query, due to the non-recursive nature of the algebra 

and the temporal atoms’ representation of time-varying attributes in Tansel’s 

model. 
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Query 10: During which time periods did staff members follow courses (ref. 

to Fig. 3.14)? 

πt
π((T_DEPT) SNAME, CN_PERt) 

 

SNAME   (CN_PERt)  

  CN_PERt  

    
Paul  [1/2/1995, 24/6/1995) ∪ [27/8/1995, 30/1/1996)  

    
    

Peter  [1/1/1998, 28/10/1998)  

    
    

Anna  [1/7/1995, 1/8/1995) ∪ [29/9/1997, 10/2/1998)  

    
    

Mary  [17/1/1997, 28/4/1997)  

    
    

Katy  [13/2/1994, 4/3/1995) ∪ [22/4/1995, 15/5/1995)  

    
    
Steve  [18/3/1996, 1/7/1996)  

    
    
Helen  [17/8/1997, 1/1/2010)  

    
    

Pat  [18/9/1995, 10/10/1995)  

    
Fig. 6.12: The resulting relation of Query 10 

 

The time periods during which staff members have followed courses are 

summarised. The temporal data, which pertains to different course numbers, 

is merged into one temporal element. This is achieved by the facility of the 

TNM projection operation to coalesce tuples having the same values for all the 

atomic attributes, by taking the unions of the temporal elements of their 

corresponding temporal attributes (see section 5.3.4). 

In Tansel’s model, since the projection operation is defined in exactly the 

same way as in the relational algebra, unnest operations need to take place 

initially to unnest the STAFF, COURSE_DETAILS and COURSE attributes 

before the projection operation is performed. A temporal atom decomposition 

operation needs also to be performed to split the CN attribute of T_DEPT 

relation into its temporal sets and value parts and place them as the last two 

columns of the result. Their names will be CN.T and CN.v respectively (see Fig. 

6.11). 

The query is expressed in Tansel’s algebra as follows: 

πSNAME, CN.T ( ∂CN (µCOURSE (µCOURSE_ DETAILS (µSTAFF(T_DEPT))))) 
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Therefore, in Tansel’s model, the result relation contains two attributes, one 

of them consisting of temporal sets (CN.T). 

This query shows once more the greater simplicity of the TNM algebra 

compared to Tansel’s one. 

 

Query 11: List the starting time point of every course that each trainer has 

given (ref. to Fig. 3.13). 

πt
π((T_TRAINING) TRN, START(CN_PERt)←BEGIN) 

 
TRN  (BEGIN)  

  BEGIN  

    Jack  2/11/1994  

        Mark  2/1/1992  

  30/4/1995  

        Tim  19/3/1997  

  17/12/1995  

        Karen  25/6/1996  

    Fig. 6.13: The resulting relation of Query 11 

 

The above query is a pure temporal query. The temporal operator that is 

used is the START operator, which extracts the start point of a temporal 

element (see Definition 3.8). Note that, for simplicity reasons, a new name is 

given by the user to the new attribute computed from the START operator, 

without the need of using the rename operation. 

Once again, the structure of the nested data is preserved in the resulting 

relation. Although the query is dealing with attributes belonging to nested 

attributes, TRN and CN_PERt, it is expressed in the same way as if the input 

T_TRAINING relation, was a flat relation. 

 

Query 12: How many courses took place in 1998 (ref. to Fig. 3.13)? 

COUNT(πt
π((σt

σ(T_TRAINING(CN_PER t OVERLAPS [1/1/1998, 1/1/1999))))CN))←TOTAL_CN 

 
TOTAL_CN 

4 

Fig. 6.14: The resulting relation of Query 12 
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The aggregate function COUNT is used to count the number of courses that 

took place during a specific time period. The aggregate function can be applied 

in the normal way to attribute CN, despite being an atomic attribute belonging 

to a nested attribute, since it is the only one projected in the resulting relation. 

In addition, the temporal operator OVERLAPS is used in order to compute 

whether a temporal element has common points with a given time interval.  

In Tansel’s model two unnest operations are also needed before the 

selection operation to unnest completely the T_TRAINING relation, since the 

selection operation can be performed only for attributes at the top nesting level 

of the relation. 

 

Query 13: Find the name of the bank that had a branch at the same 

address for the longest period of time (ref. to Fig. 3.16). 

πt
π((σt

σ(T_CASH-POINT (MAX(DURATION(ADDRESS_PERt)))))BANK) 

 

BANK 

Lloyd’s 

Fig. 6.15: The resulting relation of Query 13 

 

DURATION is a scalar function that returns the duration of a temporal 

element. 

This query uses a projection of an atomic attribute of a selected tuple. The 

tuple which is selected must satisfy a given condition. The condition tests 

every tuple of the relation and extracts the valid tuple. The above query is 

expressed in the same way as if the relation was a flat relation in the CRM. 

However, there are cases where a given aggregate function must be applied 

to each nested set of tuples of a given nested attribute separately. This case is 

examined below, in queries 20 and 21. 

 

Query 14: Find the titles of the courses that each trainer has given (ref. to 

Fig. 3.13 and 3.17). 

πt
π ((T_TRAINING ><t

>< T_COURSE) TRN, TITLE) 
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TRN  TITLE  

    Jack  Programming  

    
    
Mark  Computer Skills  

    
    
Tim  Presentation Skills  

    
    
Karen  Multimedia  

    
Fig. 6.16: The resulting relation of Query 14 

 

The natural join in the above query is performed according to Case 5 (see 

subsection 5.3.11). A projection operation is then performed to extract two 

attributes of the resulting relation. 

In Tansel’s model additional unnest operations are needed before the 

natural join operation. 

 

COURSE COURSE_DURATION TITLE SUBJECT   TRAINER  

CN    TOPICS   TRN COURSE  

. . .  .  

 

COMPANY 

  CN  

. . .  .   .  . .  
       .  . .  

T_COURSE   T_TRAINING   

Fig. 6.17: T_COURSE and T_TRAINING relations in Tansel’s model 

 

The query is expressed in Tansel’s algebra as follows: 

πTRN, TITLE((µCOURSE(µTRAINER(T_TRAINING))) >< (µCOURSE(T_COURSE))) 

 

Query 15: What was Karen’s company when she gave a course to Mary, 

which course was it and when was it (ref. to Fig. 3.13 and 3.14)?  

πt
π((σt

σ(T_DEPT ><t
>< T_TRAINING)(TRN=“Karen” AND SNAME=“Mary”))COMPANY, COURSE) 

Note: The resulting relation of the natural join operation of T_DEPT and 

T_TRAINING relations can be seen in Fig. 5.11. 

 

 (COURSE) 

COMPANY COURSE 

 CN CN_PERt 

              
Microsoft   3.3 [17/1/1997, 28/4/1997)   

       
       

Fig. 6.18: The resulting relation of Query 15 
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The above query is a temporal query since it involves “when” expressions, 

although there is no need to include any external temporal comparisons. This 

is one of the advantages the natural join operation of the TNM offers. The 

temporal comparison is contained internally in the natural join operation 

when the two relations to be joined have common temporal nested attributes, 

as in this case (COURSE attribute). The temporal comparison corresponds to 

the computation of the overlapping periods of the common temporal attributes 

for equal values of the common atomic attributes.  

Therefore, the query remains compact and simple. 

 

Query 16: Find the courses that have been given by trainers who work for 

the IBM company and had completed before IBM moved from Maple House 

(ref. to Fig. 3.13 and 3.15). Display also the trainers’ names. 

πt
π((σt

σ(T_TRAINING ><t
>< T_LOCATION) 

(COMPANY=“IBM” AND CN_PER t BEFORE STOP(ADDRESS_PERt) AND BUILDING=“Maple House”))TRN, CN) 

 
TRN  (CN)  

  CN  

    Tim  5.2  

    
Fig. 6.19: The resulting relation of Query 16 

 

Both BEFORE and STOP temporal operators are used in this query. The 

natural join operation is performed between the relations T_TRAINING and 

T_LOCATION, which share the COMPANY atomic attribute at the top level. The 

natural join is performed according to Case 1 (see subsection 5.3.11). The two 

temporal attributes, CN_PER t and ADDRESS_PERt, belonging to T_TRAINING 

and T_LOCATION relations respectively, do not contribute to the natural join 

since they represent different information. A number of selection operations 

take place afterwards and then a projection to produce the final result.  

T_LOCATION relation in Tansel’s model is represented as shown in Fig. 

6.20. 
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COMPANY  ANNEX  

  BUILDING ADDRESS  

     
Toshiba  <{[3/8/1995, 1/1/2010)}, North Building> <{[3/8/1995, 1/1/2010)}, Porchester Rd.>  

     
     

IBM  <{[17/1/1996, 22/5/1998)}, Maple House> <{[17/1/1996, 22/5/1998)}, Kendal Av.>  

  <{[10/6/1998, 1/1/2010)}, Main Building> <{[10/6/1998, 1/1/2010)}, Danebury Rd.>  

     
     

Microsoft  <{[29/10/1994, 4/4/1997)}, Pegasus House> <{[29/10/1994, 4/4/1997)}, Ashford St.>  

  <{[18/3/1995, 1/1/2010)}, Queen’s Building> <{[18/3/1995, 1/1/2010)}, Park Rd.>  

     
Fig. 6.20: T_LOCATION relation in Tansel’s model 

 

In Tansel’s model the above query is expressed as follows: 

πTRN, CN.v (σCOMPANY=“IBM” ∧ STOP(ADDRESS.T)>STOP(CN.T) ∧ BUILDING.v=“Maple House” (µCOURSE(µANNEX, TRAINER 

(T_TRAINING >< T_LOCATION)))) 

The result is shown in the following table (Fig. 6.21): 

 

TRN CN 

Tim 5.2 

Fig. 6.21: The resulting relation of Query 16 in Tansel’s model 

 

Two comments must be made when the TNM query is compared with the 

equivalent one in Tansel’s model. Firstly, more operations are needed in 

Tansel’s model, in particular three unnest operations and secondly, in Tansel’s 

model the result is represented in fully unnested format and thus, the 

structures of the input relations are not maintained in the result. 

 

Query 17: Find the course number of the course that lasted the shortest 

period of time and the names of the staff members that followed it (ref. to Fig. 

3.13 and 3.14). 

vv((µµ((πt
π((σt

σ(T_TRAINING(MIN(DURATION(CN_PER t)))))CN)) ><t
>< 

(πt
π(T_DEPT(SNAME,CN))))(CN))SNAME→(SNAME) ) 

 

CN  (SNAME)  

  SNAME   

    
5.2  Paul  

    
Fig. 6.22: The resulting relation of Query 17 
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The aggregate function MIN, in conjunction with the scalar function 

DURATION, is used in this query to compute the shortest temporal element of 

the CN_PERt attribute of the T_TRAINING relation. In addition, the query 

makes use of the nest and unnest operations in order to restructure the result 

relation. These two restructuring operations cannot be avoided with this 

query, since otherwise, the result relation would have a different, undesirable 

structure. However, additional nest and unnest operations are not needed for 

the selection, projection and natural join operations, although the data are 

nested.  

In contrast, in Tansel’s model additional unnest operations are needed 

before the initial projection operations, since the projection operation cannot 

be performed on attributes at lower nesting levels. In Tansel’s model the 

projection operation is defined in exactly the same way as in the conventional 

relational algebra. 

 

Query 18: Find the numbers of courses that Paul has followed after he 

finished course number 5.2 and also the start time points of these courses 

(ref. to Fig. 3.14). 

πt
π((σt

σ(T_DEPT1 ×t T_DEPT2)(SNAME1=“Paul” AND SNAME2=“Paul” AND CN2=5.2 AND  

      ((CN_PER t1 AFTER CN_PERt2) OR (CN_PER t2 MEETS CN_PERt1)))) CN1, START(CN_PERt1)←BEGIN) 

 

CN1 BEGIN 

5.0 27/8/1995 

Fig. 6.23: The resulting relation of Query 18 

 

This query requires the cartesian product operation of relation T_DEPT 

with itself, in order to compare tuples of this relation. To be precise, initially, 

rename operations for all the attributes of the T_DEPT relation are needed in 

order to perform the cartesian product operation between two relations with 

no common attributes. However, the rename operations are not included in 

the above query for simplicity reasons. The selection operation consists of five 

select conditions. The temporal set operators, AFTER and MEETS, are used to 

denote two selection conditions that can both happen. In the final projection 

operation, the START operator is used to extract the start time points of the 

selected temporal elements. Note that, for simplicity reasons, a new name is 
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given by the user to the new attribute computed from the START operator, 

without the need of using the rename operation.Even though the query is 

complicated, the algebraic representation is simpler than the non-recursive 

equivalent one, where more operators are required. In Tansel’s model for 

example, unnest operations are required before the final projection operations. 

 

Query 19: Who are the current trainers of all courses that Paul has ever 

followed (ref. to Fig. 3.13, 3.14)? Display also the course numbers. 

 

If TODAY( ) is a function that returns the current date, the query can be 

formulated as: 

πt
π((σt

σ(T_TRAINING ><t
>< (πt

π(σt
σ(T_DEPT(SNAME=“Paul”)))CN)) 

STOP(CN_PER t)=TODAY( ) OR STOP(CN_PER t) AFTER TODAY( )) TRN, CN) 

 
TRN  (CN) 

  CN  

    Jack  5.2  

        Tim  5.0  

    Fig. 6.24: The resulting relation of Query 19 

 

To answer the above query a natural join operation needs to be performed 

between two relations. However, the natural join is performed between a 

relation and a projection of a selection of another relation. This is due to the 

fact that otherwise, the natural join operation between the two original 

relations would be executed between the common temporal nested attribute 

COURSE, which would cause a wrong result in terms of this specific query. 

Therefore, the natural join operation that takes place here is a natural join 

operation between the temporal nested relation T_TRAINING and another flat 

relation with only one attribute, CN and consequently, sharing a common 

atomic attribute, CN. 

In the result relation, the structures of the two original relations are 

preserved. Additionally, the STOP function is used in order to select the stop 

time point of the CN_PER t temporal attribute if it is equal to or after the 

current date, since the current trainers are being retrieved. It is noticeable 

that the query remains simple and easy to perform despite the complicated 

wording of its specification. 
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Query 20: For each trainer, find the longest period of time for which they 

have given a course (ref. to Fig. 3.13). 

πt
π((νν(µµ( πt

π(T_TRAINING(TRN, COURSE))COURSE)(CN, CN_PERt)→COURSE)) 

(TRN, N-MAX[DURATION(CN_PERt)/TRN]←K)) 

 

TRN K 

Jack  5067 

Mark  5362 

Tim  5125 

Karen  4935 

Fig. 6.25: The resulting relation of Query 20 

 

Initially, an unnest operation is needed to a projected part of T_TRAINING 

relation and then, a nest operation, so that TRN attribute to be completely 

nested. Moreover, another projection is required to project attributes TRN and 

K (a new attribute computed by an aggregate function that calculates the 

longest period of time each trainer has given a course).  

 

It is important to note here that aggregate functions have not been 

discussed in Tansel’s model.  

 

Query 21: For each trainer, find the title of the course he/she has given 

and which has lasted the longest period of time (ref. to Fig. 3.13, 3.17). 

πt
π( 

(((πt
π((νν(µµ( πt

π(T_TRAINING(TRN, COURSE))COURSE)(CN, CN_PERt)→COURSE)) 

(TRN, N-MAX[DURATION(CN_PERt)/TRN]←K))) ><t
><  

(πt
π((νν(µµ( πt

π(T_TRAINING(TRN, COURSE))COURSE)(CN, CN_PERt)→COURSE))  

(TRN, CN, DURATION(CN_PERt)←K)))) ><t
>< 

       πt
π(T_COURSE(CN, TITLE))) TRN, TITLE) 

 

TRN TITLE 

Jack Programming 

Mark Computer Skills 

Tim Presentation Skills 

Karen Multimedia 

Fig. 6.26: The resulting relation of Query 21 
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This query includes two natural join operations. The first join is performed 

between the result of query 20 and a projected part of a subquery of query 20, 

which consists of three attributes, TRN, CN and K (a new attribute computed 

by the scalar function DURATION that calculates the duration of each course 

for each trainer). 

Since, one of the projected attributes, TITLE, is derived from the T_COURSE 

relation, a natural join operation needs to be performed additionally, to join 

the previous result to a projected part of the T_COURSE relation.The above 

query is quite long and complicated, since an extra join operation is needed, 

for the computation of the N-MAX aggregate function and the projection of the 

CN attribute. However, this join operation cannot be  avoided even in Codd’s 

relational flat model. 

 

Query 22: Which courses did Helen and Peter both follow simultaneously 

and when (ref. to Fig. 3.14)? 

1st version: 

πt
π((σt

σ((πt
π(ρρ[SNAME←SNAME1,CN←CN1,CN_PERt←CN_PERt1](T_DEPT)) 

(SNAME1,CN1,CN_PERt1)) ×t 

(πt
π(ρρ[SNAME←SNAME2,CN←CN2,CN_PERt←CN_PERt2](T_DEPT)) 

(SNAME2,CN2,CN_PERt2))) 

(SNAME1=“Peter” AND SNAME2=“Helen” AND CN1=CN2 AND CN_PER t1 OVERLAPS CN_PER t2))  

CN1, (CN_PERt1 ∩TE CN_PERt2)←CPERIOD) 

 
CN1 CPERIOD 

3.5 [1/1/1998, 28/10/1998) 

Fig. 6.27: The resulting relation of the 1st version of Query 22 

 

The above query requires a comparison between tuples of the same 

relation. This can be carried out by computing the cartesian product of a 

projected number of attributes of a temporal nested relation with itself. 

Rename operations must take place initially to change the names of the 

projected attributes so that the cartesian product operation can be performed 

afterwards between two relations with no common attributes. The temporal 

selection operation includes the set operator OVERLAPS between two temporal 



   

 

 
 
173 

elements. Finally, two attributes need to be projected. One of them has to be 

computed by taking the intersection of two temporal elements. Note that, for 

simplicity reasons, a new name (CPERIOD) is given by the user to that new 

attribute, without the need of using the rename operation. 

The same query can be answered also in a better way, avoiding a number 

of rename operations and using a natural join operation instead of the 

cartesian product operation used in version 1. The natural join is performed 

between two relations that have the common subrelation COURSE at the top 

level in common (see Case 4 in subsection 5.3.11). 

 

2nd version: 

πt
π(((σt

σ(πt
π(ρρ[SNAME←SNAME1](T_DEPT))(SNAME1,COURSE))SNAME1=“Peter”) ><t

><   

(σt
σ(πt

π(ρρ[SNAME←SNAME2](T_DEPT))(SNAME2,COURSE))SNAME2=“Helen”))CN,CN_PERt) 

 

CN CN_PERt 

3.5 [1/1/1998, 28/10/1998) 

Fig. 6.28: The resulting relation of the 2nd version of Query 22 

         

In Tansel’s model ([Tan97]) this question can be answered by the following 

query: 

πCN1(§∩,CN1,CN2((πSNAME1,CN1(σSNAME1.v=“Peter”(µCOURSE1 (µCOURSE_DETAILS1(µSTAFF1(T_DEPT1))))))  

><    (πSNAME2,CN2(σSNAME2.v=”Helen”(µCOURSE2 (µCOURSE_DETAILS2(µSTAFF2(T_DEPT2)))))))) 
CN1.V=CN2.V 

Rename operations are omitted from the above query for simplicity reasons.  

 

CN1 

<{[1/1/1998, 28/10/1998)}, 3.5> 

Fig. 6.29: The resulting relation of Query 22 in Tansel’s model 

 

It is clear that extra operations cannot be avoided in Tansel’s model. In 

particular, six unnest operations and a slice operation are needed to answer 

the above query. 
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6.4 Summary 

A variety of different kinds of queries has been presented in the algebraic 

format of the NRM and TNM. The examples illustrate a wide variety of 

applications of the management of nested and temporal data. For each 

example, the result table is given as well as a brief explanation to justify why 

this particular query has been chosen. 

A number of these queries has also been expressed in other models. The 

superiority of the NRM and TNM algebras compared to them is thus shown 

and discussed. In particular, TNM has been compared with Tansel’s model. 

Tansel’s model has been chosen among all other temporal models since it is 

the only one that provides full nested support as TNM does. 

All examples have explicitly shown that queries in the NRM and TNM are 

simple but at the same time powerful, short but at the same time complete, 

naturally presented but at the same time effective. Therefore, the full 

expressive power of both models presented in this thesis, NRM and TNM, has 

been demonstrated.  
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CHAPTER 7 

7. MAPPING THE CONVENTIONAL 

RELATIONAL MODEL (CRM) TO THE TNM 

7.1 Introduction 

Although the majority of the new models that have been defined until now 

are claimed to be supersets of the Conventional Relational Model, or in other 

words, consistent extensions of the CRM, a formal proof is rarely provided 

([Lor88]).  

In this chapter, a complete and formal proof is provided, in order to show 

that the model proposed in this thesis, the TNM, is a consistent extension of 

the CRM. For this purpose, the properties of the NRM, also introduced in this 

thesis, are used. 

Firstly, a brief introduction to comparisons of different database models is 

presented and the method that is going to be adopted in the following sections 

in order to do the mapping of the two models is discussed. Next, all the 

properties of the CRM are reviewed. Following that, the properties of the NRM, 

defined in chapter 4 of this thesis, are presented. Then, the NRM is proved to 

be a superset of the CRM. Subsequently, all the properties of the TNM are 

given comprehensively after which, the TNM is proved to be a superset of the 

NRM. Finally, it is proved that the TNM is a superset of the CRM.  

7.2 Comparisons of Database Models 

In the literature, a number of different approaches for comparing two 

database models have been presented. Most frequently, a newly defined model 

is compared to the Conventional Relational Model (namely, the snapshot 
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model ([MS91]), in order to prove that the new model is an extension of the 

CRM. However, in reality, very few proposed models have provided a formal 

proof of this proposition. All the others are simply limited to claiming the 

above proposition without any verification.  

One method of comparing two database models is to determine mappings 

between these data models ([TL82]). There are four basic features of the 

database models, which have to be compared as part of the overall mapping of 

the two models and they are the following: 

§ the structures,  

§ the constraints,  

§ the operations and  

§ the databases of the model.  

In [TL82], eight different types of mappings are presented depending on 

whether the mapping is constructive – i.e. a database (instance) according to 

one schema is mapped to another database (instance) according to another 

schema – or not, if the two schemas use two different data models or the same 

data model and finally if the operations are included or not in the mapping. 

The type of mapping between the CRM and the TNM that has to be proved, 

belongs to the category of database cooperation mapping, since it is 

constructive, the two schemas use two different data models and the 

operations are included in the mapping.  

In what follows, the mapping between the CRM and the TNM consists in 

comparing the basic characteristics of the two models, which are:  

§ the data types (the underlying domains of attributes),  

§ the databases,  

§ the structures,  

§ the operators,  

§ the operations and  

§ the functions of each model.  

This list is partially modified from the list proposed in [TL82]. In particular, 

the constraints that have been mentioned in [TL82] are omitted since all the 

possible constraints which are applied to the CRM can also be applied to the 

TNM. Three other properties of a data model have been added in this list, the 

data types, the operators and the functions. They are included here since they 

have also been considered in XRM (the Interval-Extended Relational Model, 
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[Lor88]) which is a subset of TNM. For this reason, data types, operators and 

functions must be considered for the mapping between the TNM and the CRM, 

in addition to the other three basic characteristics of database models. 

More specifically, regarding the operations, for temporal data models a 

specific approach has been used to prove that a newly proposed algebra is a 

consistent extension of the snapshot algebra, when two different database 

models are compared. The approach which has been mentioned in [MS91], 

uses the snapshot reducibility property with the assistance of the function 

Transforms which converts a snapshot relation instance to its temporal 

equivalent. The snapshot reducibility property says that the same relation is 

obtained either by applying a snapshot operator to a snapshot relation and 

then applying the function Transforms to the result or by applying firstly the 

function Transforms to the snapshot relation and then applying the temporal 

operator to the result ([Lle94]). A number of researchers have used this 

approach to show that the algebras they have defined are supersets of the 

snapshot algebra ([Deb94], [Lle94]).  

In the following sections, the data types, databases, structures, operators, 

operations and functions of each model are presented and then, these 

properties are compared between themselves respectively in order to prove 

that the newly defined model, the TNM, is a superset of the CRM. 

7.3 The Conventional Relational Model (CRM) 

The components of the CRM are described below. 

7.3.1 Data types-Domains 

In the relational model, data types and domains are two similar concepts. A 

domain is a user or system-defined data type. In fact, in order to define a 

domain, the data type from which the data values forming the domain are 

drawn, must be specified ([EN00]).  

Formally, a domain is a set of values. 

Definition 7.1 (Atomic attribute domain) The domain of an atomic 

attribute Ra, DOM(Ra), is DOM(Ra) ⊆ D, where D is the underlying database 

domain.  
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Consequently, D = DOM(Ra1) × DOM(Ra2) × … × DOM(Rak) where Ra1, Ra2, …, 

Rak are the atomic attributes of all relations in the CRM and k ≥ 1. 

7.3.2 Databases 

Data, in the databases of the CRM, are perceived as relations, in at least 

1NF format. An example relation in the CRM is shown in Fig. 7.1.  

 

COMPANY TRN CN Y 

Apple Jack 1 75 

Apple Mark 3 82 

IBM Tim 3 82 

IBM Tim 5 79 

Microsoft Karen 2 77 

Fig. 7.1: A relation in the CRM 

7.3.3 Structures 

According to the CRM, the scheme of a conventional relation R is R(Ra1, 

Ra2, ..., Rak) where Ra1, Ra2, ..., Rak are the (atomic) attributes of R and k ≥ 1. 

7.3.4 Relational Operators 

All the well-known comparison operators, {=, ?, <, =, >, =}, are supported 

in the CRM. New operators can also be defined with the aid of these standard 

operators. 

7.3.5 Operations 

The relational operations are the well-known and well-defined union, 

difference, intersection, projection, selection, rename, cartesian product, and 

natural join operations of the CRM. The division operation can be omitted 

since it is not a primitive operation and so it can be expressed in terms of 

other primitive operations (difference, cartesian product and projection). The 

definitions of all the others above -mentioned operations are not included in 

this section since they are standard definitions. 
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7.3.6 Functions 

All the well-known functions, i.e. {+, -, *}, are supported in the CRM. New 

functions can also be defined with the aid of these standard functions. 

7.4 The Nested Relational Model (NRM) 

The components of the NRM are described below. 

7.4.1 Data types-Domains 

Domains are data types of arbitrary internal complexity ([Dat00]). Therefore, 

such domains can consist of relation-type values. Attributes defined on that 

domains are relation-valued attributes, that is, they contain values that are 

relations. 

The domain of a nested attribute is defined recursively below.  

Assume that Rn1, Rn2, …, Rnk are, in general, all the atomic and nested 

attributes that belong to nested attribute Rn and P is the powerset of a set S. 

Definition 7.2 (Nested attribute domain) The domain of a nested 

attribute Rn, DOM(Rn), is defined recursively as 

i) DOM(Rn) ⊆ D, where D is the underlying database domain, for the special 

case where Rn is an atomic attribute. . 

ii) DOM(Rn1) × DOM(Rn2) × … × DOM(Rnk), for k ≥ 1, where Rn1, Rn2, …, Rnk 

are atomic attributes of Rn. 

iii) P(DOM(Rn1)) × P(DOM(Rn2)) × … × P(DOM(Rnk)), for k ≥ 1, where Rn1, Rn2, 

…, Rnk are nested attributes of Rn, in general. 

Note: An atomic attribute can be considered as a special case of a nested 

attribute  case (i). 

7.4.2 Databases 

In the NRM, databases are sets of nested relations. Nested relations do not 

satisfy the 1NF assumption. A relation in the NRM is shown in Fig. 7.2. This 

relation is the equivalent relation in the NRM of the example relation in the 

CRM of Fig. 7.1. 
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    TRAINER    

COMPANY  TRN C 

    CN Y   

        Apple  Jack  1 75   

                                  Mark  3 82   

                                IBM  Tim  3 82   

    5 79   

                                Microsoft  Karen  2 77   

                
Fig. 7.2: A relation in the NRM (TRAINING_5) 

7.4.3 Structures 

Definition 7.3 (Nested Relation Scheme) The scheme of a relation R in 

the NRM is defined recursively as  

RS = R(R1S1, R2S2, ..., RnSn), where n ≥ 1, R1, R2, ..., Rn are the attribute 

names of R, either atomic or relation-valued and  

∅ (empty set)  if Ri is an atomic attribute 

Si =  

(Ri1S i1, Ri2S i2, ..., RikSik)  if Ri is a nested attribute and k ≥ 1 

where 1 ≤ i ≤ n. 

Example 7.1: The scheme of relation TRAINING_5 (Fig. 7.2) is  

TRAINING_5(COMPANY TRAINER(TRN C(CN Y))). 

7.4.4 Relational Operators 

The set of conventional relational comparison operators of the CRM, {=, ?, 

<, =, >, =}, is also supported in the NRM. 

7.4.5 Operations 

The union, difference, intersection, projection, selection, rename, 

cartesian product, natural join and Θ-join recursive operations of the NRM 

have been defined formally in chapter 4. Two additional operations, nest and 

unnest, have also been defined in the NRM. 



   

 

 
 
181 

7.4.6 Functions 

The set of functions in the CRM is also supported in the NRM. 

7.5 Mapping the CRM to the NRM 

The components of the CRM and the NRM, that have been described in 

sections 7.3 and 7.4 respectively, are going to be mapped in this section, in 

order to prove that the NRM is a proper superset of the CRM. 

7.5.1 Data types - Domains 

Proposition 7.1 The set of domains in the CRM is a proper subset of the 

set of domains in the NRM. 

Proof: The nested attribute domain is defined recursively (Definition 7.2). 

Therefore, from that definition, for the special cases i) where k=0, i.e. the 

attribute is atomic or ii) where k ≥ 1, i.e. the attribute is nested consisting of 

atomic attributes only (which can be considered as a flat relation), the nested 

attribute domain definition of the NRM is reduced to the atomic attribute 

domain definition of the CRM (Definition 7.1). 

Consequently, since the set of domains in the NRM can be reduced, for 

specific special cases, to the set of domains in the CRM, the former is a proper 

superset of the set of domains in the CRM.  

7.5.2 Databases 

Proposition 7.2: The set of databases in the CRM is a proper subset of the 

set of databases in the NRM. 

Proof: Databases in the NRM have been introduced in order to relax the 

1NF assumption that is satisfied in the CRM. Thus, the 1NF assumption of flat 

relations is a special case of the general N1NF assumption which characterises 

relations in the NRM.  By definition, a flat relation is also a relation of the 

nested model. Therefore, the set of databases in the NRM is a proper superset 

of the set of databases in the CRM. 
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7.5.3 Structures 

Proposition 7.3: The set of structures in the CRM is a proper subset of the 

set of structures in the NRM. 

Proof: The definition of the scheme in the NRM is given recursively 

(Definition 7.3). For the special case, where S i, for all i, is equal to the empty 

set, the definition is reduced to that of the CRM, since all attributes of the 

relation are atomic. 

7.5.4 Relational Operators 

Proposition 7.4: The set of relational comparison operators in the CRM is 

isomorphic to the set of relational operators in the NRM. 

Proof: The proof is omitted for obvious reasons. 

7.5.5 Operations 

In the following, it is shown by a number of propositions that each 

operation in the NRM is an extended operation of the relevant operation in the 

CRM. Before this is done, some preliminary discussion is necessary, regarding 

the effect of relational operations to the key of relations.  

Let Unary be a unary operation and let R1 = Unary(R0). Then, the first 

obvious remark is that this operation does not have any effect on the key of 

R0, i.e. the key of R0 remains the same. The second one is that the key of R0 

is not inherited to R1. These observations apply to any data model, and to the 

CRM as well. As an example of the second remark, consider a flat relation R0 

and assume that K is its primary key. Then the CRM select operation 

R1=sF(R0), also yields a flat relation, R1. Since R1 is a subset of R0, it follows 

that it does not contain two distinct tuples with identical values for K. 

However, it is not implied by this fact that K is also the key of R1, it is only the 

user who may specify what the key of R1 is. 

As another example, let the scheme of R0 be R0(K, A, B), where K is its key. 

If R1=pA,B(R0), it is known that R1 does not contain duplicate tuples and, 

definitely, it is again the user who may specify its key.  

Hence, the conclusion is that a unary CRM operation does not affect 

the key (if defined) of the input relation and it does not propagate it to the 
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result relation. This same conclusion can also be drawn for binary operations 

of the CRM. Subsequently, the same conclusion can be drawn for any 

operation in any data model, therefore for all the operations of either the NRM 

or the TNM.  

 

Proposition 7.5: The union operation in the NRM is an extended version of 

the union operation in the CRM. 

Proof: The union operation in the NRM is defined recursively (Definition 

4.9). From the recursive definition, it is deduced that for the special case 

where the relations are in 1NF format, the definition is reduced to the non-

recursive union definition for flat relations (case i), since the relations do not 

contain any nested attributes. This definition then, is the definition of the 

union operation in the CRM. 

 

Proposition 7.6: The difference operation in the NRM is an extended 

version of the difference operation in the CRM. 

Proof: The proof is similar to that of Proposition 7.5. 

 

Proposition 7.7: The intersection operation in the NRM is an extended 

version of the intersection operation in the CRM. 

Proof: The proof is similar to that of Proposition 7.5. 

 

Proposition 7.8: The projection operation in the NRM is an extended 

version of the projection operation in the CRM. 

Proof: From Definition 4.13 (case ii):  

ππ(r(Ra1, …, Rak, Rn1Ln1, …, RnmLnm)) = { t| (∃ tr ∈ r)  

((t[Ra1] = tr[Ra1]) ∧ … ∧ (t[Rak] = tr[Rak])  

     ∧ (t[Rn1] = ππ(tr[Rn1]Ln1)) ∧ … ∧ (t[Rnm] = ππ(tr[Rnm]Lnm)))}. 

For the special case where relation r is flat, since all attributes of relation r 

are atomic, RniLni = ∅, for all i (1 ≤ i ≤ m), and the definition of the projection 

operation is reduced to: 

ππ(r(Ra1, …, Rak, Rn1Ln1, …, RnmLnm)) = ππ(r(Ra1, …, Rak)) =  

         { t| (∃ tr ∈ r) ((t[Ra1] = tr[Ra1]) ∧ … ∧ (t[Rak] = tr[Rak]))}, 
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which is the definition of the projection operation in the CRM. So, the 

projection operation in the NRM is an extended version of the projection 

operation in the CRM.  

 

Proposition 7.9: The selection operation in the NRM is an extended 

version of the selection operation in the CRM. 

Proof: The proof is similar to that of Proposition 7.8. For the special case 

where relation r is flat, since all attributes of relation r are atomic, L is empty 

and Definition 4.15 is reduced to: 

iii) σσ(rcLσ) = σ(rc) = σ(rca1, …, cak) = { t| (∃ tr ∈ r)  

((t[Attr(R) - {Ra1, …, Rak}] = tr[Attr(R) - {Ra1, …, Rak}])  

∧ ((t[Ra1] = tr[Ra1]) ∧ ca1 = true)  

∧ … ∧ ((t[Rak] = tr[Rak]) ∧ cak = true))}, 

which is the traditional selection operation for flat relations in the CRM. 

 

Proposition 7.10: The rename operation in the NRM is an extended 

version of the rename operation in the CRM. 

Proof: From Definition 4.20case (ii), the rename of a nested attribute at the 

top level of a relation is: 

ρ[A ← A′](R) = {R1, R2, …, Ri, …, Rn, U
m

k 0=

LA′→Ak, B, …, Z}. 

This definition is reduced to: 

 ρ[A ← A′](R) = {R1, R2, …, R i, …, Rn, A′, B, …, Z}, for the special case where 

the attribute to be renamed, A, is an atomic attribute at the top level of 

relation R, since U
m

k 0=

LA′→Ak = A′ (m=0, i.e. there are not any descendants of A). 

This is equivalent to the rename operation in the CRM. 

 

Proposition 7.11: The cartesian product operation in the NRM is an 

extended version of the cartesian product operation in the CRM. 

Proof: Case (i) (or case (ii), for L=Ø) of Definition 4.22 is the traditional 

cartesian product operation for flat relations in the CRM. 

 

Proposition 7.12: The natural join operation in the NRM is an extended 

version of the natural join operation in the CRM. 
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Proof: The natural join (Definition 4.27) which operates for cases where the 

common atomic or nested attributes belong to different subrelations and at 

different nesting levels in the two relations), ><>< (rL, qM), is defined as follows: 

><>< (rL, qM) = { t| (∃ tr ∈ r) (∃ tq ∈ q)  

  ((t[Attr(Qi′(...(Qi+1)))] = tq[Attr(Qi′(...(Qi+1)))]) 

 ∧ (t[Attr(Ri)] = tr[Attr(Ri)]) 

 ∧ (t[Attr(Qi)] = tq[Attr(Qi)]) 

 ∧ (t[Ri1Qi1] = ><>< (tr[Ri1]Li1, tq[Qi1]Mi1)))} 

This natural join can be reduced to the conventional natural join for flat 

relations if the special case is assumed, where the common attributes R i1 and 

Qi1 are atomic attributes at the top level of the two relations and thus, 

tq[Attr(Qi′(...(Qi+1)))] is empty and t[Ri1Qi1] = ><>< (tr[Ri1]Li1, tq[Qi1]Mi1) = >< (tr[Ri1], 

tq[Qi1]), since Li1 and Mi1 are empty. 

Formally, the above definition, for L and M empty, is reduced to: 

><>< (rL, qM) = >< (r, q) = { t| (∃ tr ∈ r) (∃ tq ∈ q)  

   ((t[Attr(Ri)] = tr[Attr(Ri)]) 

  ∧ (t[Attr(Qi)] = tq[Attr(Qi)]) 

   ∧ (t[Ri1] = tr[Ri1] = tq[Qi1]))} 

which is the traditional definition of the natural join operation in the CRM. 

7.5.6 Functions 

Proposition 7.13: The set of functions in the CRM is isomorphic to the set 

of functions in the NRM. 

Proof: The proof is omitted for obvious reasons. 

 

Proposition 7.14: The NRM is a superset of the CRM. 

Proof: This is a result of Propositions 7.1-7.13 since, as it has been 

explained in section 7.2, in order to prove that a database model is a superset 

of another database model, it is necessary and sufficient to prove that every 

property of the latter (data types, databases, structures, operators, operations 

and functions) is also a property of the former.  
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7.6 The Temporal Nested Model (TNM) 

The components of the TNM are described below. 

7.6.1 Data types-Domains 

The set of underlying domains in the TNM is similar to the set of underlying 

domains in the NRM (see section 7.4.1), augmented with the set of domains of 

temporal elements.  

The domain of a temporal nested attribute is defined recursively below.  

Let Rtn be a temporal nested attribute of R and {Rtn1, Rtn2, …, Rtnk} all the 

attributes of Rtn, in general (k ≥ 0). Let also, P(TE) be the powerset of TE, the 

temporal elements. Then,  

Definition 7.4 (Temporal nested attribute domain) If Rtn is a temporal 

nested attribute and i is its nesting level, then DOM(Rtn), the domain of Rtn, is: 

(i) for i = 0, DOM(Rtn) ⊆ D, where D is the underlying domain (k=0) 

(ii) for i = 1, DOM(Rtn1) × DOM(Rtn2) × … × DOM(Rtn(k-1)) × DOM(Rtnk) = 

DOM(Rtn1) × DOM(Rtn2) × … × DOM(Rtn(k-1)) × P(TE) since it is assumed 

that Rtn1, Rtn2, …, Rtn(k-1) are atomic attributes of Rtn and Rtnk is the 

temporal attribute of Rtn (k ≥ 1). 

(iii) for i > 1, P(DOM(Rtn1)) × P(DOM(Rtn2)) × … × P(DOM(Rtnk)), where k ≥ 1. 

7.6.2 Databases 

In the TNM, databases are sets of temporal nested relations. A relation in 

the TNM is shown in Fig. 7.3. This relation is the temporal analogue relation of 

the example relation in the NRM of Fig. 7.2. 

 
      TRAINER   

COMPANY  TRN    C   

    CN Y CN_PERt   

         Apple  Jack  1 75 [3/2/1975, 6/5/1975) ∪ [10/9/1975, 20/12/1975)   

                                      Mark  3 82 [23/3/1982, 17/7/1982)   

                                    IBM  Tim  3 82 [1/4/1982, 15/10/1982)   

    5 79 [1/9/1979, 4/11/1979)   

                                    Microsoft  Karen  2 77 [8/6/1977, 27/8/1977)   

                  
Fig. 7.3: A relation in the TNM 
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7.6.3 Structures 

The scheme of a relation R in the TNM is defined recursively as in the NRM 

(Definition 7.3). The definition remains the same, even when the recursive 

procedure reaches nesting levels where temporal attributes are. The temporal 

attributes are regarded as typical atomic attributes for the definition of the 

scheme of a relation in the TNM. 

7.6.4 Relational Operators 

The set of all the well-known relational operators of the CRM, {=, ?, <, =, >, 

=}, is also supported in the TNM. Furthermore, additional operators are also 

supported in the TNM, i.e. BEFORE, AFTER, MEETS, OVERLAPS, COVERS, 

mentioned in section 6.3. More specifically, the comparison operators that 

involve attributes of a domain other than temporal element also remain the 

same in the model defined. Besides, for comparisons between temporal 

attributes, the operators that are used are: =, ≠, BEFORE, AFTER, MEETS, 

COVERS, OVERLAPS. 

7.6.5 Operations 

The TUnion, TDifference, TIntersection, TProjection, TSelection, 

TCartesianProduct and TNaturalJoin recursive operations of the TNM have 

been defined formally in chapter 5. Furthermore, a new operation, the 

TimeSlice operation, has been also defined in that chapter. 

7.6.6 Functions 

The set of all the functions in the CRM is also supported in the TNM when 

atomic attributes are involved. However, these functions cannot be applied to 

temporal elements. TNM has to be extended to include functions between 

temporal elements. 
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7.7 Mapping the NRM to the TNM 

The components of the NRM and the TNM, that have been described in 

sections 7.4 and 7.6 respectively, are going to be mapped in this section, in 

order to prove that the TNM is a proper superset of the NRM. 

7.7.1 Data types - Domains 

Proposition 7.15 The set of domains in the NRM is a proper subset of the 

set of domains in the TNM. 

Proof: Definition 7.4, for the special case where the temporal nested 

attribute, R tn, does not include any temporal attributes is reduced to Definition 

7.2.  Consequently, from the definition, since the set of domains in the TNM 

can be reduced for some certain cases, to the set of domains in the NRM, the 

former is a proper superset of the corresponding set of domains in the NRM.  

7.7.2 Databases 

Proposition 7.16: The set of databases in the NRM is a proper subset of 

the set of databases in the TNM. 

Proof: Databases in the TNM are sets of temporal nested relations (see 

section 7.6.2). For the special cases, where all the data that they contain are 

invariable over time, the relations do not include any temporal attributes and 

they are converted to relations isomorphic to the nested relations of the NRM. 

7.7.3 Structures 

Proposition 7.17: For each structure in the NRM there is at least one 

structure in the TNM. 

Proof: See section 7.6.3. 

7.7.4 Relational Operators 

Proposition 7.18: The set of relational operators in the TNM is a proper 

superset of the set of relational operators in the NRM. 
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7.7.5 Operations 

Proposition 7.19: The operations in the TNM are extended versions of the 

corresponding operations in the NRM. 

Proof: By its definition (chapter 5), the TNM is an extension of the NRM. 

Each operation of the TNM can be reduced to the corresponding operation of 

the NRM for cases where the relations that participate in the operations do not 

contain any temporal attributes (i.e. all data are invariable over time).  

7.7.6 Functions 

Proposition 7.20: The set of functions in the TNM is a proper superset of 

the set of functions in the NRM. 

Proof: All the CRM functions are used in the NRM and in the TNM when 

atomic attributes are involved. In other words, the functions that involve 

attributes of a domain other than temporal element do remain the same in the 

models defined.  

 

Proposition 7.21: The TNM is a superset of the NRM. 

Proof: This is implied from Propositions 7.14-7.20. 

7.8 Mapping the CRM to the TNM 

It is now time to prove the following proposition. 

Proposition 7.20: The TNM is a superset of the CRM. 

Proof: The following proposition is true: 

TNM ⊃ NRM (Proposition 7.21)  (a) 

In addition, the TNM has been defined as an extension of the XRM 

([Lor88]), since for all nesting levels in relations in the TNM, where the 

temporal attributes occur, the behaviour at these levels is the same as in 

relations in the XRM and the operations are defined precisely as those in 

[Lor88] for the XRM. Consequently, the following proposition is also valid: 

TNM ⊃ XRM     (b) 

From (a) and (b) is concluded the following: 

TNM ⊃ NRM ∪ XRM   (c) 

Furthermore, it is true that: 
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NRM ⊃ CRM (Proposition 7.14),  (d) 

XRM ⊃ CRM (from [Lor88])  (e) 

From (c), (d) and (e) is deduced that: 

TNM ⊃ CRM  

7.9 Summary 

In this chapter it has been shown that the TRN is a superset of the CRM. 

The general method that has been adopted for this proof is the mapping of two 

data models presented in [TL82]. The basic features of the two models that 

have been compared are the data types, the databases, the structures, the 

operators, the operations and the functions of the models. The comparisons 

have formally proved that the CRM is a subset of the TNM or using different 

words, that the TNM is a consistent extension of the CRM. 
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CHAPTER 8 

8. COMPARISON WITH OTHER MODELS 

8.1 Introduction 

In chapter 2, a number of different database models have been presented 

and discussed, nested as well as temporal. In this chapter, these models are 

grouped into different categories, according to some of their basic properties. 

Thus, four tables are given in section 8.2 where these models are classified 

according to their characteristics.  

A number of criteria which can be used to evaluate the relative merits of 

some of the most important temporal models which have been proposed 

throughout the years, are presented in 8.3. These criteria have been derived 

from previous research in this field (see [Mck88]). However, in what follows, 

some of them have been revised, since approaches to the evaluation of 

temporal models have advanced. The criteria have also been restricted to 

address valid time algebras only. In addition, they have been grouped into four 

general categories according to their semantics.  

Finally, the evaluation of valid time algebras against these criteria is given 

in section 8.4 where TNM is also included and compared to other previous 

proposed algebras. The advantages of TNM against the other algebras can thus 

be demonstrated. A discussion follows that explains and comments on the 

results. 

8.2 Classification of Models 

A detailed analysis of different proposed data models has been presented 

and discussed in chapter 2 of this thesis. These models are examples of either 

nested models or temporal models. These areas form two important research 
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topics in database systems. The present thesis has tried to join these two 

different fields by proposing a new temporal and nested data model, the TNM.  

In what follows, some of the most interesting proposed models are classified 

according to various criteria. These criteria have been discussed in chapter 3 

of this thesis where the design decisions were explained and justified. 

• The table in Fig. 8.1 groups the models according to two basic 

characteristics, the static or temporal features of the models and the normal 

or nested form of the models. 

 

 1NF N1NF 

Non-Temporal 

(Static) 

Codd Scheck and Scholl 

Özsoyoglu, Özsoyoglu and Matos 

Abiteboul and Bidoit 

Roth, Korth and Silberschatz 

Colby 

Deshpande and Larson 

Liu, Ramamohanarao and Chirathamjaree 

Levene 

Garani 

Temporal Snodgrass 

Lorentzos 

Tansel 

Gadia 

Clifford 

McKenzie 

Jensen and Snodgrass 

TSQL2 

Garani 

Fig. 8.1: Classification of relational database models 

 

It can be seen that the majority of researchers have chosen the nested form 

in preference to the first normal form since, although it is more complicated to 

define and use, it provides a more effective way of defining a database model. 

• Another table is given in Fig. 8.2 where static nested models are classified 

according to whether they support one level or multiple levels of nesting. 
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One level of nesting Many levels of nesting 

Scheck and Scholl 

Özsoyoglu, Özsoyoglu and Matos 

Abiteboul and Bidoit 

Roth, Korth and Silberschatz 

Colby 

Deshpande and Larson 

Liu, Ramamohanarao and Chirathamjaree 

Levene 

Garani 

Fig. 8.2: Classification of nested models 

 

• The third table, Fig. 8.3, groups temporal nested models according to 

whether they are fully N1NF models (second column) or they are N1NF models 

only in the way they incorporate the temporal dimension (first column). They 

both correspond to what Clifford calls temporally grouped models (TG) in 

[CCT94], namely “models that provide built-in support for the grouping of 

related temporal values”.  

 

Partly N1NF 

(Temporal dimension) 

Fully N1NF 

 

Gadia 

Clifford 

McKenzie 

Jensen and Snodgrass 

TSQL2 

Tansel 

Garani 

Fig. 8.3: Classification of temporal nested models 
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• Temporal models are divided into tuple timestamping and attribute 

timestamping models in Fig. 8.4. 

 

Tuple timestamping Attribute timestamping 

Snodgrass 

Jensen and Snodgrass 

TSQL2 

Tansel 

Gadia  

Clifford 

McKenzie 

Lorentzos 

Garani 

Fig. 8.4: Classification of temporal models 

8.3 Evaluation Criteria 

Several researchers have introduced criteria which must be satisfied by 

each of the new proposed temporal database models ([CT85], [Sno87], 

[Mck88]). In this section, these criteria are going to be discussed, analysed and 

classified according to their semantics. A number of these criteria will be 

shown to be inappropriate for the evaluation of the relative merit of the 

temporal algebras. In addition, the criteria are restricted to those that concern 

algebras which support valid time and so some of the previously proposed 

criteria are not applicable to the present discussion. 

The most detailed presentation of the desirable criteria for a temporal model 

can be found in [Mck88]. Therefore, these criteria are listed in Fig. 8.5, for a 

later discussion. 
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1. All attributes in a tuple are defined for the same interval(s) 

2. Consistent extension of the snapshot algebra 

3. Data periodicity is supported 

4. Each collection of valid attribute values is a valid tuple 

5. Each set of valid tuples is a valid relation state 

6. Formal semantics is specified 

7. Has the expressive power of a temporal calculus 

8. Historical data loss is not an operator side-effect 

9. Implementation exists 

10. Includes aggregates 

11. Incremental semantics defined 

12. Intersection, Θ-join, natural join and quotient are defined 

13. Is, in fact, an algebra 

14. Model doesn’t require null attribute values 

15. Multi-dimensional timestamps are supported 

16. Optimisation strategies are available 

17. Reduces to the snapshot algebra 

18. Restricts relation states to first-normal form 

19. Supports a three-dimensional visualisation of historical states and 

operations 

20. Supports basic algebraic equivalence 

21. Supports relations of all four classes (snapshot, rollback, historical 

or temporal relations) 

22. Supports scheme evolution (transaction time model) 

23. Supports static attributes 

24. Supports rollback operations (rollback relations must be able to roll 

back to past states for query evaluation) 

25. Treats valid time and transaction time orthogonally 

26. Tuples, not attributes, are timestamped 

27. Unique representation of each historical state 

28. Unisorted (not multisorted) 

29. Update semantics is specified 

 

Fig. 8.5: Criteria for evaluating temporal algebras in [Mck88]
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A number of criteria in [Mck88] (Fig. 8.5) are mutually incompatible. 

Specifically, the following criteria are mutually incompatible: criterion 19 and 

criteria 26, 1 and 20; criteria 5 and 27; criteria 19 with 27 and 18 (an algebra 

can be defined that satisfies any two of these criteria but not all three 

simultaneously). 

Since only valid time algebras are considered in the present thesis some of 

the criteria listed in Fig. 8.5 are not applicable and so can be omitted. These 

are criteria 21, 22, 24 and 25. Furthermore, criteria 11, 19 and 29 are also 

excluded from the present discussion since they are outside the scope of the 

present work although they  could be the subject of future research.  

Additionally, criteria 1, 18, 26 and 27 are considered inappropriate. This 

results from the various advantages that heterogeneous N1NF attribute 

timestamping temporal models offer, as has been explained in section 3.3 of 

this thesis. The fact that the majority of the proposed temporal models are 

heterogeneous N1NF attribute timestamping models, in spite of the 

complicated definitions of their algebraic operators, makes out a case for the 

above decision. Therefore, criterion 27 is not included and criteria 1, 18 and 

26 have been reversed. Hence, they are converted to the following criteria: 

Criterion 1: Heterogeneous tuples are supported 

Criterion 18: Relations are in N1NF 

Criterion 26: Attributes are timestamped 

The full list of the revised criteria can now be found in Fig. 8.6. 
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1. Heterogeneous tuples are supported  

2. Consistent extension of the snapshot algebra 

3. Data periodicity is supported 

4. Each collection of valid attribute values is a valid tuple 

5. Each set of valid tuples is a valid relation state 

6. Formal semantics is specified 

7. Has the expressive power of a temporal calculus 

8. Historical data loss is not an operator side-effect 

9. Implementation exists 

10. Includes aggregates 

11. Intersection, Θ-join and natural join are defined 

12. Is, in fact, an algebra 

13. Model doesn’t require null attribute values 

14. Multi-dimensional timestamps are supported 

15. Optimisation strategies are available 

16. Reduces to the snapshot algebra 

17. Relations are in N1NF 

18. Supports basic algebraic equivalence 

19. Supports static attributes 

20. Attributes are timestamped 

21. Unisorted (not multisorted) 

22. Recursive definition of operations 

 

Fig. 8.6: Compatible criteria for evaluating valid time algebras 

 

 

The criteria are now mutually compatible in contrast to the set of criteria in 

[Mck88], where certain subsets are incompatible as has been mentioned 

above. 

Please note that criterion 17 implies fully N1NF relations (see Fig. 8.3) and 

also that quotient operation is not included in criterion 11 since it can be 

derived from other operations and it has not been defined in any of the 

temporal database models proposed to date, as far as the author of this thesis 
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is aware. One additional criterion has been included in the list, concerning the 

recursive definition of operations. The advantages of the recursive algebraic 

definitions compared to the corresponding non-recursive ones have been 

discussed in section 4.3 of this thesis. 

The 22 criteria of table in Fig. 8.6 can now be classified into 4 major 

categories according to their semantics. These categories concern the 

simplicity, the formality and expressiveness of the algebras, the representation 

choices and the support of some additional characteristics and are shown in 

Fig. 8.7. 

 

 

Ø Simplicity of the snapshot model 

Criteria: 2, 16, 19 

 

Ø Formally defined algebra 

Criteria: 6, 8, 10, 11, 12, 18, 22 

 

Ø Representation properties 

Criteria: 1, 4, 5, 13, 17, 20, 21 

 

Ø Support of remainder characteristics 

  Criteria: 3, 7, 9, 14, 15 

 

Fig. 8.7: Classification of criteria 

 

 

8.4 Evaluation of Valid Time Algebras 

As discussed in chapter 2 of this thesis, various researchers have proposed 

temporal models. These models differ from each other in a number of 

characteristics concerning the representation as well as the definitions of the 

algebra supported and some other additional features for each of these 

models.  
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In what follows, a comparison of different temporal database models is 

made based on the criteria listed in section 8.3 (Fig. 8.6).  Nine temporal 

database models are compared and evaluated against these criteria. These 

models are the models presented in chapter 2 of this thesis since they are 

considered to be the most important ones. Most of the researchers that 

proposed these models have produced a number of papers throughout the 

years of their research. Consequently, they proposed a temporal model which 

they subsequently improved. The most recent versions of these models are 

taken into consideration. 

In the following table (Fig. 8.8) the references in which a description of each 

of these models can be found, together with the model name, are given for 

each of the researchers.  

 

Identifier Citation Data Model 

Tansel [Tan93], [Tan97] TRA and TRC  

Gadia [GN98] Parametric model 

Clifford [CCGT95] MTGhi 

McKenzie [Mck88] - 

Snodgrass [Sno87], [Sno93], [SGM93] TQUEL 

Jensen and Snodgrass [Jen00] BCDM 

Lorentzos [LM97] IXSQL 

Snodgrass et al. [Sno95] TSQL2 

Garani present thesis TNM 

Fig. 8.8: Temporal data models 
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   1NF Partly N1NF Fully N1NF 

 No. Criteria Snodgrass Lorentzos Gadia Clifford McKenzie Jensen 
and 

Snodgrass 

TSQL2 Tansel  Garani 

1. Consistent 
extension of the 
snapshot algebra 

Y Y Y Y Y Y Y ? Y 

2. Reduces to the 
snapshot algebra 

? P ? Y Y Y Y Y Y 

 
 
Simplicity of 
the snapshot 
model  3. Supports static 

attributes 
N Y 

 
N Y Y N Y Y Y 

4. Formal 
semantics is 
specified 

N Y P P Y Y P P Y 

5. Includes 
aggregates 

Y Y N N Y N P N Y 

6. Historical data 
loss is not an 
operator side-
effect 

? Y ? P Y N N ? Y 

7. Intersection and 
join are defined 

N N P N Y Y Y N Y 

8. Is, in fact, an 
algebra 

N Y N N Y Y Y Y Y 

 
 
 
 

 
Formally 
defined algebra 

9. Supports basic 
algebraic 
equivalences 

N Y P P P P P P Y 

 10. Recursive 
definition of 
operations 

N/A N/A N/A N/A N/A N/A N/A N Y 

11. Heterogeneous 
tuples are 
supported 

N Y N N Y N N Y Y 

12. Each collection 
of valid attribute 
values is a valid 
tuple 

N Y N N N N N Y Y 

13. Each set of valid 
tuples is a valid 
relation state 

Y Y N N N N N Y Y 

14. Model doesn’t 
require null 
attribute values 

Y Y N N Y Y Y Y Y 

15. Relations are in 
fully N1NF 

N N N N N N N Y Y 

16. Attributes are 
timestamped 

N Y Y Y Y N N Y Y 

 
 
 
 
 
 
 
 
 

Representation 
properties 

17. Unisorted Y Y N N N N Y Y Y 
18. Data periodicity 

is supported 
N Y N N N N N N N 

19. Implementation 
exists 

Y P N N P N P N P 

20. There is an 
equivalent 
temporal 
calculus 

Y N N Y Y N Y Y N 

 
 
 

Support of 
remainder 
characteristics 

21. Algebraic 
transformation 
optimisation 
strategies are 
available 

P Y Y N P P N N P 

 22. Multi-
dimensional 
timestamps are 
supported 

N Y N N N N N N Y 

 

Y: Yes 

N: No 

P: Partially satisfied 

?: Not specified 

N/A: Not applicable 

Fig. 8.9: Evaluation of valid time algebras against specific criteria 
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In Fig. 8.9 the valid time algebras proposed by Tansel, Gadia, Clifford, 

McKenzie, Snodgrass, Jensen and Snodgrass, Lorentzos, Snodgrass et al. 

(TSQL2) and Garani have been evaluated against the 22 criteria presented in 

section 8.3. The following results can be derived: 

 

Snodgrass’s model is a tuple calculus and query language rather than an 

algebra. Consequently, formal semantics are not defined for the algebra and so 

it is not clear if it can reduce to the snapshot algebra. Static attributes are not 

supported since the model uses tuple timestamping. Also, it is not clear 

whether or not historical data loss is an operator side effect and whether it 

supports basic algebraic equivalence. The model is homogeneous since it uses 

tuple timestamping and relations are in 1NF. Any collection of valid attribute 

values is not a valid tuple since the implicit attributes that specify the end 

points of a tuple’s timestamp must be time ordered. Data periodicity and 

multi-dimensional tuples are not supported. Optimisation techniques are 

investigated in the context of TQUEL in [AS86]. 

 

Lorentzos’s model partially satisfies criterion 2 that TRA reduces to the 

snapshot algebra given that the reduction to the snapshot algebra could be 

achieved by the insertion of null values since attribute timestamps are 

heterogeneous. In Lorentzos’ model time-varying and time-invariant attributes 

are allowed. Also, no temporal calculus is proposed. Historical versions of 

intersection and join are not defined but they can be deduced. Relations in 

Lorentzos’s model must be in 1NF. Multi-dimensional timestamps seem to be 

supported in his algebra, although he does not discuss this particular effect in 

[LM97]. Finally, optimisation strategies are available. 

 

Gadia’s parametric model is a homogeneous model where all attributes are 

timestamped. As such, all attribute values are defined over a specific time 

period and so they cannot behave as static attributes but as time-varying 

ones. Another consequence of homogeneity is that, in general, each set of valid 

attribute values is not a valid tuple, because the valid time components of the 

attributes do not, in general, fulfil the homogeneity property. Any set of tuples 

does not form a valid relation since relations in the parametric model are 



   

 

 
 
202 

required to have keys which play a vital role in the model. It is not clear from 

the definition of the model in [GN98] if the model can be reduced to the 

snapshot algebra nor if it has the expressive power of a temporal calculus. 

Formal semantics is only partially specified for the algebra. The majority of the 

algebraic operations have been defined informally. Intersection and T-join are 

not defined and natural join is only informally defined. Basic algebraic 

tautologies are partially supported as shown in [GN98].  

It is not clear if historical data loss is an operator side effect. The 

homogeneity assumption imposes the requirement for null attribute values. 

Aggregates are not included in the model. 

Gadia’s model is multisorted since it includes three types of expressions, 

relational expressions, domain expressions and Boolean expressions. 

No implementation has been reported. 

Optimisation issues are taken into account in his algebra and an algorithm 

is defined which transforms a query to an equivalent more efficient one. Data 

periodicity is not considered and the same is also true for multi-dimensional 

timestamps. 

 

In Clifford’s model formal semantics is specified for some of the operators 

although some operators are not defined at all, as for example the intersection 

and join operations. Consequently, it is unclear if historical data loss is an 

operator side effect or not for these operations. For all the other operations  

defined in [CCGT95] this criterion is satisfied.  

Basic algebraic equivalences seem to hold in his model since the basic 

temporal operators defined in [CCGT95] correspond to the standard relational 

operators of the snapshot relational algebra. However, it is not fully clear. 

Each collection of valid attribute values is not a valid tuple since the 

homogeneity property needs to be satisfied; moreover, each set of valid tuples 

is not a valid relation state because key attributes cannot have the same time 

components for two equal key values.   

The algebra is multisorted since some operations return relations but one 

operation, lifespan, returns a scalar value, i.e. not a relation. Data periodicity, 

multi-dimensional timestamps and aggregates are not supported. The same 

stands also for an implementation and an optimisation scheme.  
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Overall, Clifford’s model ([CCGT95]) is clearly superior to the one he 

previously proposed in [CC87] and which was evaluated in [Mck88] and 

[Lor88]. 

 

McKenzie includes an evaluation of his model ([Mck88]) against the specific 

criteria in [Mck88]. A brief description is also included here for completeness 

reasons and since the list with the criteria has been slightly modified.  

The model allows non-homogeneous attribute timestamps; therefore, it can 

reduce to the snapshot algebra only through the introduction of distinguished 

nulls when taking snapshots. The distributive property of the cartesian 

product operation over difference is not supported in McKenzie’s model. All the 

other basic algebraic equivalences are applied. Value-equivalent tuples are not 

allowed in a relation; therefore, by reason of this restriction, any arbitrary 

collection of valid attribute tuples is not a valid relation state. Any set of valid 

attribute values does not form a valid tuple since the algebra does not allow 

empty timestamps for all attributes in the same tuple. 

The algebra is multisorted since it defines operators on both snapshot 

states and historical states. 

Data periodicity and multi-dimensional timestamps are not supported. An 

implementation (a prototype of the algebra without aggregates) has been 

undertaken. Optimisation strategies based on the algebraic equivalences are 

available. However, other optimisation techniques have not been investigated 

but only briefly discussed. 

 

Jensen and Snodgrass’s BCDM model is defined as a consistent extension 

of the snapshot algebra and since it is a tuple timestamping model, it satisfies 

the criterion that it reduces to the snapshot algebra. In a tuple timestamping 

model such as this one, static attributes cannot be supported since every 

attribute value in a tuple has a temporal element associated with it. An 

equivalent temporal calculus is not defined in their model. Historical data loss 

is an operator side effect of their cartesian product operation since the model 

is tuple timestamping and the cartesian product is defined using intersection 

semantics. Basic algebraic equivalences are supported only for the operations 

that have been defined as extensions of the corresponding snapshot 

operations. Each tuple consists of a number of explicit attribute values and an 
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implicit timestamp value; thus, every collection of valid attribute values does 

not guarantee that it can create a valid tuple. It is a homogeneous model since 

tuples are timestamped. However, it is N1NF since the timestamps associated 

with the tuples can be sets of time chronons. Value-equivalent tuples are not 

allowed in the model and so any arbitrary set of valid tuples cannot be a valid 

relation state.  

The model is multisorted with the following object types: valid time relation 

states, transaction time relation states and bitemporal relation states. Data 

periodicity, aggregates and multi-dimensional timestamps are not supported. 

Optimisation strategies can be performed since the model is defined as an 

extension of the snapshot model but no more details are given. Finally, an 

implementation and an equivalent calculus do not exist. 

 

In TSQL2 formal semantics, aggregates and basic algebraic equivalences are 

partially included. Historical data loss is an operator side-effect since the 

cartesian product operation is defined using intersection semantics and so the 

valid time components of each relation are restricted in the result relation. 

Only homogeneous tuples are supported in the model. Each collection of valid 

attribute values is not a valid tuple since each tuple consists of a number of 

explicit attribute values and an implicit timestamp value. Each set of valid 

tuples is not a valid relation state since value-equivalent tuples are not 

allowed in the model. Relations are partly in N1NF since only time can be 

expressed as a set of time instants. In TSQL2 tuples are timestamped. Data 

periodicity and multi-dimensional timestamps are not supported. TSQL2 has 

been implemented partly through the development of Tiger, an advanced 

temporal database system ([BJ96]). Finally, algebraic transformation 

optimisation strategies are not available. 

 

Tansel does not prove that his algebra (TRA) is a consistent extension of the 

snapshot algebra. Formal semantics is not specified for some of his algebraic 

operations (i.e. union, intersection, difference, projection, cartesian product). 

He claims that they are defined in exactly the same way as they are in the 

relational algebra. However, temporal atoms need a special treatment when 

these operations are performed in his model. The join operation is not formally 

defined. Basic algebraic equivalences are not discussed in his model. 
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Nevertheless, since in his definition of the algebra he claims that some 

operations are the same as traditional relational operations and the 

commutative, associative and distributive equivalences hold, it could be said 

that criterion 9 is partially supported. All the operations of his algebra are 

defined non-recursively. 

There is no support of temporal aggregates and implementation and 

optimisation issues are not included. Data periodicity and multi-dimensional 

timestamps are not supported. 

 

TNM supports all the evaluation criteria but two. These are data periodicity 

and a temporal calculus.  A detailed justification follows where the satisfying 

criteria are explained by cross-references to earlier sections.  

TNM is proved to be a consistent extension of the snapshot algebra in 

section 5.3 where all the operations are formally defined as extended versions 

of the corresponding operations in the NRM and as a consequence of the 

corresponding operations in the CRM (see also Proposition 7.19 in section 

7.7.5 and Propositions 7.5-7.12 in section 7.5.5). 

The reducibility to the snapshot algebra can also be derived from section 

5.3 and chapter 7. 

By definition, static attributes are supported in the TNM model. The same is 

also true for crtiteria 11, 15 and 16. 

Historical data loss is not an operator side-effect in TNM, since all valid time 

information input to an operator is preserved in the operator’s output as can 

be easily proved by the formal definitions of the operations, unless the 

operation being performed dictates removal (e.g. time-slice, intersection). In 

addition, the cartesian product operation has not been defined using 

intersection semantics (as is the case in other models, e.g. [Gad88]]) and 

therefore, historical data is preserved in that operation as well. 

Formal semantics is specified in chapter 5. Aggregates are included in 

section 4.3.13. Intersection and join operations are defined in sections 5.3.3 

and 5.3.11-12 respectively.  

It is, in fact, an algebra, since the types of the objects supported, as well as 

the allowable operations have been defined. In addition, all operations are 

closed, as it is proved in section 5.4. 

All the operations of the TNM have been defined recursively in chapter 5. 
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Basic algebraic equivalences are also supported in TNM. For example, the 

following algebraic equivalences can easily be proved to hold. 

R ∪t
∪ Q ≡ Q ∪t

∪ R 

R ×t
× Q ≡ Q ×t

× R 

σt
σ((σt

σ(rc1))c2) ≡ σt
σ((σt

σ(rc2))c1) 

R ∪t
∪ (Q ∪t

∪ S) ≡ (R ∪t
∪ Q) ∪t

∪ S 

σt
σ((R ∪t

∪ Q)c) ≡ σt
σ(Rc) ∪t

∪ σt
σ(Qc) 

In the TNM, each collection of valid attribute values is a valid tuple, since 

the value of an attribute is independent of the value of other attributes in a 

tuple, except for key. This is also possible of the fact that tuples of valid 

relations in the model can be heterogeneous. Any other attribute dependence 

constraints are not imposed in TNM. 

Also, each set of valid tuples is a valid relation state, since there are not any 

constraints in the way a TNM relation has been defined, except the fact that 

tuples with identical values for all their atomic attributes are coalesced; 

therefore, tuples with identical values for their atomic attributes can neither 

overlap nor be adjacent in time. 

TNM is a heterogeneous model and as such, null attribute values are not 

required.  

It is unisorted, since it defines only one object type, the temporal nested 

relation. All operations take as input and provide as output a single type of 

object, the temporal nested relation. 

In addition, optimisation strategies are only available when based on the 

algebraic equivalences, since basic algebraic equivalences already provides 

algebraic transformation optimisations. A detailed study of optimising 

algebraic expressions can be found in [Gra84]. 

Multi-dimensional timestamps are supported. Although there are not such 

examples in the thesis, there are not any constraints in the allowed number of 

temporal attributes associated with an attribute in relations of the TNM model. 

On the contrary, all the operations have been defined in such a way to support 

more than one temporal attributes connected to the same attribute (section 

5.3). 

                                                                                                                                                                                                                 

Overall, the following can be noticed: 
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§ TNM performs better than the majority of other temporal database 

models. 

§ TNM does not support data periodicity; however, this is outperformed 

by the fact that it is a nested model and therefore more powerful. 

§ TNM is comparable with Tansel’s model, but one major advantage is 

that its operations are recursive and this simplifies the formulation of 

queries.  

8.5 Summary 

The plethora of different models proposed in the area of temporal databases 

demands the evaluation of these models and their comparison. Temporal 

database models must satisfy a minimum set of properties. These properties 

concern the preservation of the simplicity of the snapshot model, the algebra 

supported by each model, the representation capabilities of the model and 

some additional characteristics referring to the proposed models.  

In this chapter nine different temporal database models have been 

evaluated against 22 criteria. These criteria are well defined and compatible. It 

has been shown that the model proposed in this thesis, TNM, satisfies the 

large majority of the criteria and exceeds all the other temporal models. 
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CHAPTER 9 

9. CONCLUSION AND FUTURE RESEARCH 

9.1 Concluding Remarks 

In spite of the considerable activity in the area of temporal databases in the 

last two decades and the plethora of new proposed temporal database models, 

no temporal database model has achieved the same level of acceptance as 

Codd’s relational model in the world of conventional databases.  

Different temporal database models have been proposed. They differ 

significantly in the proposed structure of their relations relating to 

incorporation of the temporal component as well as in the algebras they 

define. They utilise either 1NF tuple timestamping, 1NF attribute 

timestamping, N1NF tuple timestamping or N1NF attribute timestamping 

relations supporting either time points, time intervals or temporal elements. 

They all present a number of advantages as well as a number of deficiencies.  

However, the majority of N1NF attribute timestamping models do not 

include nesting of data other than temporal data. Therefore, their relations can 

be nested only in the way they incorporate the temporal dimension. This limits 

their expressive power and representational capabilities. Because of the 

complexity, little research has been done in the area of “real” N1NF attribute 

timestamping temporal database models where all sort of data can be nested 

([Tan97]). Therefore, there is still a lot of work to be done in this specific area 

of temporal database research concerning the structure of nested relations 

and the corresponding algebra. 

The research reported in this thesis has attempted to fill this gap by 

defining a new temporal nested valid time relational model, the TNM. TNM is 

an attribute timestamping heterogeneous model which supports temporal 

elements not as part of the temporal atoms as in [Tan97] but as distinct 
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temporal attributes. Additional operations to extract the temporal part of a 

temporal atom are thus avoided since the temporal nested version of the 

traditional projection operation can be used instead. Moreover, in TNM, 

unnest and nest operations do not need to be performed before or after the 

execution of any other operation that concerns an attribute that is not at the 

top level of the relation, as is the case in [Tan97]. Operations can be performed 

at any level of the TNM relations directly. 

TNM has been defined as a superset of NRM, a new Nested Relational Model 

also been defined in this thesis. NRM, in its turn, is a superset of the 

Conventional Relational Model. This is an important property of the two new 

models.  

The algebras of both NRM and TRM have been defined recursively. The 

major contributions relating to the NRM are the formal definitions of the 

rename and natural join operations. Particularly for the natural join operation, 

a generalised natural join operation has been defined that can join any pair of 

joinable nested relations. The generalised natural join operation for nested 

relations uses one or more of the six cases of natural join which have also 

been defined in the thesis. These cases can be distinguished by the type of the 

common attributes, i.e. atomic or nested attributes and their positions 

(nesting levels) in the relation scheme. 

This generalised natural join operation has been extended to support the 

temporal dimension. Consequently, the temporal nested generalised natural 

join operation has been defined for the TNM. All the other operations of the 

TNM have also been formally defined and proved to be closed, which is an 

important property of the proposed model. 

The expressive power of TNM has been demonstrated by a number of 

examples. 

Finally, TNM has been compared with eight other temporal models using a 

set of 22 compatible criteria. The advantages of TNM over other models have 

been illustrated in chapter 8.  

In conclusion, this research proposes a temporal database model that 

combines the nested features with the temporal dimension to generalise 

temporal relational databases. 
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9.2 Future Research 

It is not claimed in the thesis that all the issues related to the problem of 

defining a temporal database model have been resolved. Further research is 

still needed in several areas.  

The areas for future work are briefly discussed below: 

 

§ Support of transaction time 

Transaction time concerns the time an event is stored in the database. 

Transaction time has not been studied as much as valid time in the literature. 

Therefore, an interesting direction for research is the extension of TNM to 

support, in addition, transaction time.  

 

§ Definition of a query language 

As briefly described in Chapter 1 of the thesis, several attempts have been 

made to define a temporal query language, for example TQuel ([Sno93]), SQLT 

([Tan93b]) and TSQL2 ([Sno95]). Further research is needed to define a query 

language as an extension of SQL to support the temporal nested features of 

TNM and to evaluate it in comparison to other existed temporal query 

languages. 

 

§ Optimisation strategies 

Optimisation techniques for the efficient evaluation of queries in the TNM 

can be developed. Particularly for the generalised temporal nested natural join 

operation further research is needed so that it can be optimised. 

  

§ Functional dependencies 

Temporal functional dependencies have been studied by several researchers 

([TG89], [NA89], ([Lor91]). A review of the different types of dependencies 

proposed for temporal databases can be found in [JSS94]. An interesting 

direction of research is the study of functional dependencies for the TNM. 

Since TNM combines temporal and nested features, previous research of both 

temporal and nested functional dependencies must be considered for this 

study.  
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§ Management of spatial data 

Spatial databases (the handling of data related to space in the databases) 

have been an active area of research over the last two decades in parallel with 

temporal databases. Spatial databases have been studied either independently 

or when integrated with temporal databases (spatiotemporal databases). An 

interesting topic in this field is the development of a spatiotemporal model and 

query language.  

Therefore, the incorporation of spatial data to TNM is an additional 

challenge. It seems likely that TNM can be extended to provide a 

spatiotemporal nested model by including the spatial dimension in an 

analogous way to the temporal dimension.  

 

§ Temporal extensions in XML 

XML (Extensible Markup Language) is emerging as the new standard for the 

exchange of data with structures on the Web. Therefore, its main 

characteristic is that it is naturally nested. Structures in XML can be nested to 

any finite depth. 

Since the contents of XML documents may change with time and past 

versions of them may also be of interest, the definition of a data model for 

temporal XML documents is important. Therefore, given that TNM supports 

nested data, a promising direction of research is to use the results arising 

from this research, to extend the XML standard to include temporal 

functionalities. 
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APPENDIX A 

A. FORMAL SYNTAX OF THE TNM ALGEBRA 

expression  

:: = one-relation-expression| two-relation-expression 

 

one-relation-expression  

:: = temporal-nested-renaming | temporal-nested-selection |     

 temporal-nested-projection | time-slice | temporal-unnest | temporal-nest 

 

two-relation-expression  

:: = temporal-nested-projection binary-operation expression 

 

temporal-nested-renaming 

 :: = ρt
ρ [attribute-commalist1] (term) 

 

attribute-commalist1 

 :: = fattribute ← fattribute | fattribute ← fattribute, attribute-commalist1 

 

fattribute 

 :: = attribute1 | function4(attribute1) 

 

attribute1 

 :: = attribute | nested-aggregate-attribute 

 

attribute 

 :: = basic-attribute | nested-attribute 

 

basic-attribute 

 :: = atomic-attribute | ta | function1(ta) 
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nested-aggregate-attribute 

 :: = function3[attribute/basic-attribute] 

 

function3 

 :: = N-MAX | N-MIN | N-SUM | N-COUNT | N-AVG 

 

function4 

 :: = MAX | MIN | AVG | COUNT | SUM 

 

term 

 :: = relation | (expression) 

 

temporal-nested-projection 

 :: = πt
π (term (attribute-commalist2)) | term 

 

attribute-commalist2 

:: = fattribute | fattribute, attribute-commalist2 

 

binary-operation 

 :: = ∪ t
∪ | ∩t

∩ | −t
− | ×t

× | ><t
>< | ><tT

>< 

 

temporal-nested-selection 

 :: = σt
σ (term comparison) 

 

comparison 

 :: = attribute-term | attribute-term  logical-operator comparison 

 

logical-operator 

:: = AND | OR | AND NOT | OR NOT 

 

attribute-term 

 :: = attribute-term1 | temporal-attribute-term 
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attribute-term1 

 :: = FAA θ FAA 

 

FAA 

 :: = constant | atomic-attribute | attribute-term1 | nested-aggregate-attribute

 

θ 

 :: = <  | > | = | <= | >= | ≠ 

 

temporal-attribute-term 

 :: = FTA temporal-operator FTA | FTA 

 

FTA 

 :: = constant | ta | function1(ta) | temporal-attribute-term 

 

ta 

 :: = temporal-attribute1 | function2(temporal-attribute1) 

 

temporal-attribute1 

 :: = temporal-attribute | temporal-attribute temporal-operator1 temporal-attribute

 

temporal-operator1 

  : = ∪TE | ∩TE | −TE 

 

function1 

 :: = MAX | MIN 

 

function2 

 :: = DURATION | START | STOP 
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temporal-operator 

 :: = BEFORE | AFTER | MEETS | COVERS | OVERLAPS | = 

 

time-slice 

 :: = ssTE (term) 

 

TE 

 :: = temporal-element 

 

temporal-unnest 

 :: = µt
µ(termnested-attribute) 

 

temporal-nest 

:: =  νt
ν(termattribute-commalist2→nested-attribute) 
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APPENDIX B 

B. PROTOTYPE IMPLEMENTATION 

B.1 Introduction 

To illustrate the functionality of the models defined in this thesis, a 

prototype implementation has been undertaken in Miranda  

Miranda is a functional programming language which runs under UNIX. It 

is used especially in the areas of proof systems and specification, as a vehicle 

for rapid software prototyping, and for teaching functional programming 

[CMP95]. It makes use of lazy semantics. This permits the use of potentially 

infinite data structures. Miranda also supports an elegant style of problem 

decomposition. A program, actually a script, is a collection of equations 

defining various functions and data structures.  

Issues related to the implementation, the files of Miranda, and the 

declaration of tables and functions are briefly discussed in this appendix. 

Selected parts of the code are also listed. Finally, examples presented in the 

thesis, occasionally with their results, are included.  

B.2 Implementation 

The most important operations have been implemented. In particular, the 

four non-temporal operators, rename, projection, selection and cartesian 

product have been fully implemented. The same is also true for their temporal 

versions. Limitations on the implementation of join are outlined as follows.  

In the non-temporal nested join only one nested column is allowed at each 

nesting level. Within the framework of a prototype, this is considered to be a 

reasonable assumption, to ease implementation. 
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Another limitation is that all the six cases of the join operator allow joining 

on only one pair of columns. This is also considered to be a reasonable 

assumption within a prototype implementation. Note in particular that an 

attempt, to implement a join on two columns, would require an almost entire 

revision of the whole development. This is due to the fact that the join operator 

is a top-level function that calls other functions. Hence, changes to the 

structures of join would have to be reflected to the functions it calls. Given 

also that these functions call others, a cascade of revisions would then have to 

follow. 

A side effect of joining on only one common column is that the temporal 

nested join operator has not been implemented either. The reason is that this 

last operator requires joining on relations that have at least two common 

attributes, one of which must be temporal. Note however that, if the 

hypothetical case of joining on two common attributes had been implemented, 

the temporal nested join would have required only a trivially simple additional 

piece of code, to compute the intersection of the corresponding temporal 

elements in the two temporal columns. Note on the other hand that relevant 

implementation, such as the union of temporal elements, has already been 

incorporated in the implementation of other operations, such as selection and 

projection. 

Finally, some functions, START, STOP, COUNT etc, have not been 

implemented either. Given however, that these functions do not play a critical 

role relevant to the primary objectives of the thesis, it is considered that their 

omition can fully be neglected.  

Overall, it is considered that, in spite of the above -stated implementation 

limitations, the prototype serves satisfactorily as a proof of concept, in that a 

fuller implementation would not contribute substantially more with respect to 

the objectives of this thesis. 

B.2.1 Description of files  

The implementation consists of fourteen (14) Miranda files, 

relationalFile0.m - relationalFile12.m and main.m. The main.m file includes all 

the other files and compiles them automatically. Some more files contain 

sample code, in particular all the example relations of the thesis. All the files 



   

 

 
 
231 

contain comments that explain the functionality to a reasonable degree. A 

brief description of them is given below: 

 

File name  Description 

main.m  It contains all the top level calls.  

relationalFile0.m It contains type definitions used throughout this  

implementation.  

relationalFile1.m It includes general methods, used throughout the 

implementation, and time manipulation functions. 

relationalFile2.m It contains basic functions for selection, projection and  

cartesian product operators. 

relationalFile3.m It contains basic functions for the selection operator.  

relationalFile4.m It contains basic functions for the join operator. 

relationalFile5.m It contains basic functions for the rename operator. 

relationalFile6.m It contains case 1 of the join operator. 

relationalFile7.m It contains case 2 of the join operator. 

relationalFile8.m It contains cases 3a and 3b  of the join operator. 

relationalFile9.m It contains case 4 of the join operator. 

relationalFile10.m It contains case 5 of the join operator. 

relationalFile11.m It contains cases 6a and 6b of the join operator. 

relationalFile12.m It identifies the most suitable method for operator join. 

B.2.2 Declaration of tables  

There are several ways to introduce tables in Miranda. The current 

implementation has chosen the user-defined type representation because it is 

more generic, powerful and extensible, eg. NumberColumn "Id" 1, .... A 

relational table is represented as a list of such entries: 

Relation "Emp" [[NumberColumn "Id" 1, StringColumn "Name" "James"], 

  [NumberColumn "Id" 2, StringColumn "Name" "Jack"], ...] 

Column types may be numerical, char list or Boolean. Since user-defined 

types are used to represent columns, the column definition can be extended to 

any desired level of complexity, although this can occasionally be 

cumbersome.  

Time columns are defined as follows: 
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time == (num, num, num) 

timeInterval == (time, time) 

temporalElement == [timeInterval] 

Therefore, the main type definitions of a database table, columnType, are: 

columnType ::=  NC string num | 

                        SC string string | 

                       BC string bool | 

                    RC relationalTable| 

                    TC temporalElement 

As an example, the nested relation LOCATION (Fig. 3.8) is declared as 

follows. 

 

location :: relationalTable 

location = Relation "LOCATION"  

[[SC "COMPANY" "Toshiba", RC (Relation "ANNEX"  

[[SC "BUILDING" "North Building", SC "ADDRESS" "Porchester Rd."]])], 

[SC "COMPANY" "IBM", RC (Relation "ANNEX"  

[[SC "BUILDING" "Maple House", SC "ADDRESS" "Kendal Av."],  

[SC "BUILDING" "Main Building", SC "ADDRESS" "Danebury Rd."]])], 

[SC "COMPANY" "Microsoft", RC (Relation "ANNEX"  

[[SC "BUILDING" "Pegasus House", SC "ADDRESS" "Ashford St."],  

[SC "BUILDING" "Queen's Building", SC "ADDRESS" "Park Rd."]])]] 

 

The temporal version of LOCATION relation, T_LOCATION (ref. Fig. 3.15), is 

declared as follows. 

 

tlocation :: relationalTable 

tlocation = Relation "T_LOCATION"  

[[SC "COMPANY" "Toshiba", RC (Relation "ANNEX"  

[[SC "BUILDING" "North Building", SC "ADDRESS" "Porchester Rd.",  

TC "ADDRESS_PER" [((3, 8, 1995), (1, 1, 2010))]]])], 

[SC "COMPANY" "IBM", RC (Relation "ANNEX"      

[[SC "BUILDING" "Maple House", SC "ADDRESS" "Kendal Av.",  

TC "ADDRESS_PER" [((17, 1, 1996), (22, 5, 1998))]],  

[SC "BUILDING" "Main Building", SC "ADDRESS" "Danebury Rd.",  
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TC "ADDRESS_PER" [((10, 6, 1998), (1, 1, 2010))]]])], 

[SC "COMPANY" "Microsoft", RC (Relation "ANNEX"  

[[SC "BUILDING" "Pegasus House", SC "ADDRESS" "Ashford St.",  

TC "ADDRESS_PER" [((29, 10, 1994), (4, 4, 1997))]],  

[SC "BUILDING" "Queen's Building", SC "ADDRESS" "Park Rd.",  

TC "ADDRESS_PER" [((18, 3, 1995), (1, 1, 2010))]]])]] 

B.2.3 Functions 

The main functions that have been developed are summarized below. Note 

that many auxiliary functions have also been developed, to support the main 

functions.  

 

Function Name  Description 

TableProjection It selects a given subset of columns in a table.  

tableProduct  It calculates the cartesian product of two  

tables. 

rename   It renames one or more columns in a table. 

selectFrom  It selects entries from a table that satisfy a  

condition. 

selectNotIn  It selects entries from a table that do not  

satisfy a condition. 

joinTables   It joins two tables on a pair of columns. 

 

The temporal functions below are used to manipulate time.  

 

Temporal function Description  

areDisjoint    It tests whether two time intervals are disjoint. 

equals   It tests whether two time intervals are equal. 

before    It tests whether a time interval is before another.  

after    It tests whether a time interval is after another.  

meets    It tests whether the start (end) point of the first  

time interval is the same with the end (first) point of 

the second.  

inBetween   It tests whether a time point is between the start  
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and end point of a time interval. 

overlaps   It tests whether two time intervals overlap.  

covers    It tests whether a time interval covers another time.  

tUnion   It calculates the union of two time intervals. 

tIntersect   It calculates the intersection of two time intervals. 

If the time intervals are disjoint it returns the empty 

list.  

tDifference   It calculates the difference of two time intervals. 

tECovers  It tests whether the first temporal element, which 

consists of one time interval, covers all the time 

intervals of the second temporal element.  

tEAfter It tests whether the first temporal element, which 

consists of one time interval, is after every time 

interval of the second temporal element.  

tEBefore   It tests whether the first temporal element, which  

consists of one time interval, is before every time  

interval of the second temporal element. 

tEMeets   It tests whether the first temporal element, which  

consists of one time interval, meets at least one  

time interval of the second temporal element. 

tEOverlaps   It tests whether the first temporal element, which  

consists of one time interval, overlaps with at least 

one time interval of the second temporal element. 

 

Some application examples of the listed functions are the following. 

areDisjoint ((21, 3, 2003), (23, 3, 2003)) ((11, 4, 2001), (5, 6, 2002)) 

inBetween((21,3,2003),(23,3,2003))(5,6,2002) 

tDifference((21,3,2003),(23,3,2003))((11,4,2001),(5,6,2002)) 

tEAfter((1,1,2003),(3,3,2003))[((30,4,1994),(27,8,1995)),((4,6,1997),(19,11,1998))] 

tECovers((1,1,2003),(3,3,2003))[((30,4,1994),(27,8,1995)),((4,6,1997),(19,11,1998))] 
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B.3 Miranda Code 

Part of the code, that has been developed, is listed in this section. In 

particular, the section contains the whole of the code in files relationalFile0.m 

and main.m and selected parts of the code in the remainder files. 

 

|| File name: relationalFile0.m 

|| This file contains type definitions used throughout this prototype implementation.  
|| +++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
|| string: Type definition for a list of characters. 
 
string == [char] 
 
|| columnType: Main type definition for a database table. 
|| A simp le relational table here includes numerical, string and 
|| boolean types. Further types (user defined) may be included. 
|| NC stands for Numerical type Column. 
|| SC stands for String type Column. 
|| BC stands for Boolean type Column. 
|| RC stands for Recursive type Column. 
|| TC stands for Temporal type Column. 
 
columnType ::= NC string num | 

SC string string | 
BC string bool | 
TC string temporalElement | 
RC relationalTable 

 
|| _________________________________________________________ 
|| tableEntry: In our model, each table entry is a list of column  
|| values. 
 
tableEntry == [columnType] 
 
|| _________________________________________________________ 
|| relationalTable: The main definition of a relational table. 
|| A relational table here is created using a constructor (Relation), 
|| a string identifier (tag) to hold the name of the table and a list 
|| of entries for each row of the table. 
 
relationalTable ::= Relation string [tableEntry] 
 
|| _________________________________________________________ 
|| boolFunction: Definition of all functions applied to column which 
|| return True or False. These functions are used to select column  
|| based on function values. 
 
boolFunction ::=NF (num -> bool) | 

SF (string -> bool) | 
BF (bool -> bool) | 

                             TF (temporalElement -> bool) 
 
|| _________________________________________________________ 
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|| strBoolPair: Pair definition to hold a boolean function and the 
|| name tag of the column to which the function must apply. 
 
strBoolPair == (string, boolFunction) 
 
|| _________________________________________________________ 
|| columnEntryTuple: Auxiliary tuple type of a table column  
|| and a table entry. 
|| Used to join two tables. 
 
columnEntryTuple == (columnType, tableEntry) 
 
|| _________________________________________________________ 
|| doubleEntryTuple: Auxiliary tuple type of two table entries. 
|| Used to join two tables. 
 
doubleEntryTuple == (tableEntry, tableEntry) 
 
|| _________________________________________________________ 
|| stringEntryListTuple: Auxiliary tuple type of a string and a list 
|| of table entries. 
|| Used to join two tables. 
 
stringEntryListTuple == (string, [tableEntry]) 
 
|| _________________________________________________________ 
|| strEntryEntryTuple: Auxiliary tuple type of a string and two 
|| table entries. 
|| Used to join two tables. 
 
strEntryEntryTuple == (string, tableEntry, tableEntry) 
 
|| _________________________________________________________ 
|| stringEntryTuple: Auxiliary tuple type of a string and a table Entry. 
|| Used to join two tables. 
 
stringEntryTuple == (string, tableEntry) 
 
|| _________________________________________________________ 
|| doubleEntryListTuple: Auxiliary tuple type of two lists of table 
|| entries. 
|| Used to join two tables. 
 
doubleEntryListTuple == ([tableEntry], [tableEntry]) 
 
|| _________________________________________________________ 
|| stringTableTuple: Auxiliary tuple of a string and a relational 
|| table. 
|| Used to join two tables. 
 
stringTableTuple == (string, relationalTable) 
 
|| _________________________________________________________ 
|| joinTriple: Auxiliary tuple of a num, a bool and a string. 
|| Used to join two tables. 
 
joinTriple == (num, bool, string) 
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|| _________________________________________________________ 
|| strStrTuple: Pair definition to hold two strings. 
 
strStrTuple == (string, string) 
 
|| _________________________________________________________ 
|| Time-related definitions: 
 
|| time: Defines a time point consisting of day, month and year. 
 
time == (num, num, num) 
 
|| _________________________________________________________ 
|| timeInterval: Defines a time interval consisting of a start point 
|| (included) and a stop point (excluded). 
 
timeInterval == (time, time) 
 
|| _________________________________________________________ 
|| temporalElement: Defines a list of time intervals. 
 
temporalElement == [timeInterval] 
 
|| _________________________________________________________ 
|| tETuple: a 2-tuple of temporal elements. 
 
tETuple == (temporalElement, temporalElement) 
 
|| _________________________________________________________ 
|| Helper types for time manipulations: 
 
|| timeList: Defines a list of time points. 
 
timeList == [time] 
 
|| _________________________________________________________ 
|| doubleNum: Defines a tuple of 2 numerical values. 
 
doubleNum == (num, num) 
 
 

|| File name: relationalFile1.m 

|| Includes general methods used throughout this prototype implementation. 
 
%include "relationalFile0.m"  
 
|| +++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
|| addEntry: Dynamically adds a new entry to a table. 
 
addEntry :: tableEntry -> relationalTable -> relationalTable 
 
|| _________________________________________________________ 
|| deleteEntry: Dynamiccally removes an existing entry from a table. 
 
deleteEntry :: tableEntry -> relationalTable -> relationalTable 
 



   

 

 
 
238 

|| _________________________________________________________ 
|| remove: Multi-type function to remove an element from  a list. 
 
remove :: * -> [*] -> [*] 
 
|| _________________________________________________________ 
|| colName: gives the column name of a column type. 
 
colName :: columnType -> string 
 
|| _________________________________________________________ 
|| isRecColumn: Tests a column to see whether it is a nested table. 
 
isRecColumn:: columnType -> bool 
 
|| _________________________________________________________ 
|| isTempColumn: Tests a column to see whether it is a temporal column. 
 
isTempColumn :: columnType -> bool 
 
|| _________________________________________________________ 
|| count: Couns the number of elements in a list. 
 
count :: [*] -> num 
 
|| _________________________________________________________ 
|| areEqual: Checks two lists for equality. 
|| Two lists are equal if they have the same members 
|| regardless of their orders. 
 
areEqual :: [*] -> [*] -> bool 
 
|| _________________________________________________________ 
|| memberOfEntryList: Checks whether an entry is a member of an entry list. 
 
memberOfEntryList :: tableEntry -> [tableEntry] -> bool 
 
|| _________________________________________________________ 
|| areEqualEntries: Cheks whether two entries are equals. 
 
areEqualEntries :: tableEntry -> tableEntry -> bool 
 
|| _________________________________________________________ 
|| isSubsetOf: Checks whether an entry is the subset of another entry. 
 
isSubs etOf :: tableEntry -> tableEntry -> bool 
 
|| _________________________________________________________ 
|| getColName: Top level call to remove parenthesis from column names. 
 
getColName :: string -> string 
 
|| _________________________________________________________ 
|| getColName2: Removes ')' from a column name. 
 
getColName2 :: string -> string 
 
|| _________________________________________________________ 
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|| getColName3: Removes all '(' from a column name. 
 
getColName3 :: string -> string -> string 
 
|| _________________________________________________________ 
|| retainColNames: Removes all parenthesis and extra tags from column names 
|| in a table. 
 
retainColNames :: relationalTable -> relationalTable 
 
|| _________________________________________________________ 
|| retainColNames2: Removes all parenthesis and extra tags from column names 
|| in a table entry list. 
 
retainColNames2 :: [tableEntry] -> [tableEntry] 
 
|| _________________________________________________________ 
|| retainColNames3: Removes all parenthesis and extra tags from column names 
|| in a table entry. 
 
retainColNames3 :: tableEntry -> tableEntry 
 
|| _________________________________________________________ 
|| retainColNames4: Removes all parenthesis and extra tags from a column name. 
 
retainColNames4 :: columnType -> columnType 
 
|| _________________________________________________________ 
|| Time manipulation functions: 
 
|| _________________________________________________________ 
|| day: Gives the day part of a time point. 
 
day :: time -> num 
 
|| _________________________________________________________ 
|| month: Gives the month part of a time point. 
 
month :: time -> num 
 
|| _________________________________________________________ 
|| year: Gives the year part of a time point. 
 
year :: time -> num 
 
|| _________________________________________________________ 
|| start: Gives the start point of a time interval. 
 
start :: timeInterval -> time 
 
|| _________________________________________________________ 
|| stop: Gives the end point of a time interval. 
 
stop :: timeInterval -> time 
 
|| _________________________________________________________ 
|| tEStarts: Gives a list of start points of a given list 
|| of time intervals. 
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tEStarts :: temporalElement -> timeList 
 
|| _________________________________________________________ 
|| tEStops: Gives a list of end points of a given list 
|| of time intervals. 
 
tEStops :: temporalElement -> timeList 
 
|| _________________________________________________________ 
|| compareTime: Compares 2 time points for a boolean comparison. 
 
compareTime :: (num -> num -> bool) -> time -> time -> bool 
 
|| _________________________________________________________ 
|| compareTime2: Compares 2 num tuples for a boolean comparison. 
 
compareTime2 :: (num -> num -> bool) -> doubleNum -> doubleNum -> bool 
 
|| _________________________________________________________ 
|| lessOf:: Given two time points chooses the earlier one.  
 
lessOf :: time -> time -> time 
 
|| _________________________________________________________ 
|| moreOf:: Given two time points chooses the later one. 
 
moreOf :: time -> time -> time 
 
|| _________________________________________________________ 
|| tEStartPoint: Gives the minimum start point of a list of start 
|| points. 
 
tEStartPoint :: timeList -> time 
 
|| _________________________________________________________ 
|| tEStopPoint: Gives the maximum end point of a list of end 
|| points. 
 
tEStopPoint :: timeList -> time 
 
|| _________________________________________________________ 
|| tEStart: Gives start point of a temporal element. 
 
tEStart :: temporalElement -> time 
 
|| _________________________________________________________ 
|| tEStop: Gives stop point of a temporal element. 
 
tEStop :: temporalElement -> time 
 
|| _________________________________________________________ 
|| areDisjoint: Checks 2 time intervals to see whether they are disjoint. 
 
areDisjoint :: timeInterval -> timeInterval -> bool 
 
|| _________________________________________________________ 
|| equals: Checks 2 time intervals t1 and t2 to see whether they are equal. 
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equals :: timeInterval -> timeInterval -> bool 
 
|| _________________________________________________________ 
|| before: Checks 2 time intervals t1 and t2 to see whether t1 is before t2. 
 
before :: timeInterval -> timeInterval -> bool 
 
|| _________________________________________________________ 
|| after: Checks 2 time intervals t1 and t2 to see whether t1 is after t2. 
 
after :: timeInterval -> timeInterval -> bool 
 
|| _________________________________________________________ 
|| meets: Checks 2 time intervals t1 and t2 to see whether t1's start point 
|| (end point) is the same as t2's end point (start point). 
 
meets :: timeInterval -> timeInterval -> bool 
 
|| _________________________________________________________ 
|| Maybe needed: \/ (compareTime (=) d a) 
 
|| _________________________________________________________ 
|| inBetween: Checks a time interval ti and a timepoint t to see whether t lies 
|| between start point and end point of ti. 
 
inBetween :: timeInterval -> time -> bool 
 
|| _________________________________________________________ 
|| overlaps: Checks 2 time intervals t1 and t2 to see whether t1 and t2 overlap. 
 
overlaps :: timeInterval -> timeInterval -> bool 
 
|| _________________________________________________________ 
|| covers: Checks 2 time intervals t1 and t2 to see whether t1 covers t2. 
 
covers :: timeInterval -> timeInterval -> bool 
 
|| _________________________________________________________ 
|| tUnion: Calculates the union of two time intervals. 
 
tUnion :: timeInterval -> timeInterval -> temporalElement 
 
|| _________________________________________________________ 
|| union: Calculates the union of two temporal elements. 
 
union :: temporalElement -> temporalElement -> temporalElement 
 
|| _________________________________________________________ 
|| union2: Checks a time interval against a list of time intervals to find 
|| all possible unions. 
 
union2 :: timeInterval -> temporalElement -> temporalElement -> tETuple 
 
|| _________________________________________________________ 
|| tIntersect: Calculates the intersection of two time intervals. 
|| It will return an empty list if time intervals are disjoint. 
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tIntersect :: timeInterval -> timeInterval -> temporalElement 
 
|| _________________________________________________________ 
|| intersect: Calculates the intersection of two temporal elements. 
 
intersect :: temporalElement -> temporalElement -> temporalElement 
 
|| _________________________________________________________ 
|| intersect2: Checks a time interval against a list of time intervals to find 
|| all possible intersections. 
 
intersect2 :: timeInterval -> temporalElement -> temporalElement 
 
|| _________________________________________________________ 
|| tDifference: Calculates the difference of two time intervals. 
 
tDifference :: timeInterval -> timeInterval -> temporalElement 
 
|| _________________________________________________________ 
|| tDifference2: Calculates the difference of two overlapping time intervals. 
 
tDifference2 :: timeInterval -> timeInterval -> temporalElement 
 
|| _________________________________________________________ 
|| difference: Calculates the difference of two temporal elements. 
 
difference :: temporalElement -> temporalElement -> temporalElement 
 
|| _________________________________________________________ 
|| difference2: Checks a time interval against a list of time intervals to find 
|| all possible differences. 
 
difference2 :: timeInterval -> temporalElement -> temporalElement 
 
|| _________________________________________________________ 
|| Union functions based on temporal elements: 
 
|| _________________________________________________________ 
|| getUnion: Gets the union of two table entries based on their 
|| temporal elements. 
|| Calls getUnion2 function to do the actual work.  
 
getUnion :: tableEntry -> tableEntry -> [tableEntry] 
 
|| _________________________________________________________ 
|| extractTemp: Separates temporal and non-temporal columns of a table entry. 
 
extractTemp :: tableEntry -> tableEntry -> tableEntry -> doubleEntryTuple 
 
|| _________________________________________________________ 
|| getUnion2: Gets the union of two table entries by getting the union 
|| of their temporal elements. 
 
getUnion2 :: doubleEntryTuple -> doubleEntryTuple -> [tableEntry] 
|| _________________________________________________________ 
|| getTempUnion: Gets the union of two lists of temporal elements. 
|| Calls getTempUnion2 function to do the actual work. 
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getTempUnion :: tableEntry -> tableEntry -> tableEntry 
 
|| _________________________________________________________ 
|| getTempUnion2: Given a columnType x, finds an element in a list 
|| of temporal elements to get their union. If nothing is found, an 
|| error is printed. 
 
getTempUnion2 :: columnType -> tableEntry -> tableEntry 
 
|| _________________________________________________________ 
|| getAllUnion: Gets the union of table entries at the top level. 
|| Calls getAllUnion2 function. 
 
getAllUnion :: relationalTable -> relationalTable 
 
|| _________________________________________________________ 
||getAllUnion2: Gets the union of lists of table entries. 
 
getAllUnion2 :: [tableEntry] -> [tableEntry] -> [tableEntry] 
 
|| _________________________________________________________ 
|| getAllUnion3: Gets the union of a table entry and a list of table entries. 
 
getAllUnion3 :: tabl eEntry -> [tableEntry] -> [tableEntry] 
 
|| _________________________________________________________ 
|| merge1: Gets the union of table entries for a relational table. 
 
merge1 :: relationalTable -> relationalTable 
 
|| _________________________________________________________ 
|| merge2: Gets the union of table entries recursively. 
 
merge2 :: [tableEntry] -> [tableEntry] 
 
|| _________________________________________________________ 
|| merge3: Gets the union of two table entries.   
 
merge3 :: tableEntry -> tableEntry 
 
|| _________________________________________________________ 
|| merge4: Gets the union of a recursive column.  
 
merge4 :: columnType -> columnType 
 
|| _________________________________________________________ 
|| tEBefore: Checks a time interval (ti) and a temporal element (te) to see whether t1 is before te1. 
 
tEBefore :: timeInterval -> temporalElement -> bool 
 
|| _________________________________________________________ 
|| tEAfter: Checks a time interval (ti) and a temporal element (te) to see whether t1 is after te1. 
 
tEAfter :: timeInterval -> temporalElement -> bool 
 
|| _________________________________________________________ 
|| tEMeets: Checks a time interval (ti) and a temporal element (te) to see whether ti meets te. 
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tEMeets :: timeInterval -> temporalElement -> bool 
 
|| _________________________________________________________ 
|| tEOverlaps: Checks a time interval (ti) and a temporal element (te) to see whether ti and te overlap. 
 
tEOverlaps :: timeInterval -> temporalElement -> bool 
 
|| _________________________________________________________ 
|| tECovers: Checks a time interval (ti) and a temporal element (te) to see whether ti covers te. 
 
tECovers :: timeInterval -> temporalElement -> bool 
 
 
 
|| File name: relationalFile2.m 
 
%include "relationalFile0.m"  
%include "relationalFile1.m"  
 
|| +++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
|| isColumnTag: Simple method to identify a column using its tag. 
 
isColumnTag :: string -> columnType -> bool 
 
|| _________________________________________________________ 
|| resolvePath: Creates full path name for columns in a table. 
 
resolvePath:: relationalTable -> relationalTable 
 
|| _________________________________________________________ 
|| resolvePath2: Creates full path names for a list of entries  
|| given a string and a depth. 
 
resolvePath2 :: string -> num -> [tableEntry] -> [tableEntry] 
 
|| _________________________________________________________ 
|| resolvePath3: Creates full path names for a list of columns given 
|| a string and a depth. 
 
resolvePath3 :: string -> num -> tableEntry -> tableEntry 
 
|| _________________________________________________________ 
|| resolvePath4: Creates full path names for a column given 
|| a string and a depth. 
 
resolvePath4 :: string -> num -> columnType -> columnType 
 
|| _________________________________________________________ 
|| rpar: Generates a given number of closing parenthesis. 
 
rpar :: num -> string 
 
|| _________________________________________________________ 
|| selectCol: Used to select a column recursively based on its tag. 
 
selectCol :: string -> columnType -> tableEntry 
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|| _________________________________________________________ 
|| selectEntryByStr: Selects all columns from a list of columns using 
|| the given column tag. 
 
selectEntryByStr :: string -> tableEntry -> tableEntry 
 
|| _________________________________________________________ 
|| selectEntryByStrLst: Selects a list of columns whose names are 
|| provided by a list of string tags. 
 
selectEntryByStrLst :: [string] -> tableEntry -> tableEntry 
 
|| _________________________________________________________ 
|| selectEntryLstByStrLst: Selects entries from a given entry list 
|| whose names are provided by a list of tags. 
 
selectEntryLstByStrLst :: [string] -> [tableEntry] -> [tableEntry] 
 
|| _________________________________________________________ 
|| tableProjection2: Selects a subset of table entries based on given 
|| column names after all recursive column names have been resolved. 
 
tableProjection2 :: [string] -> relationalTable -> relationalTable 
 
|| _________________________________________________________ 
|| flattenRelTable: Flattens a relational table by calling helper 
|| function flattenEntryList. 
 
flattenRelTable :: relationalTable -> relationalTable 
 
|| _________________________________________________________ 
|| flattenEntryList: Flattens a list of table entries by calling helper 
|| function flattenColumnList. 
 
flattenEntryList :: [tableEntry] -> [tableEntry] 
 
|| _________________________________________________________ 
|| flattenColumnLis t: Flattens a list of columns by calling helper 
|| function flattenColumn. 
 
flattenColumnList :: [columnType] -> [columnType] 
 
|| _________________________________________________________ 
|| flattenColumn: Flattens recursive columns. 
 
flattenColumn :: columnType -> [columnType] 
 
|| _________________________________________________________ 
|| tableProduct2: Product of two relational tables at the top level. 
|| All possible combinations of table entries are included. 
|| No recursive application involved.  
 
tableProduct2 :: relationalTable -> relationalTable -> relationalTable 
 
|| _________________________________________________________ 
|| tableProduct3: Product of a table with an inner table of another table. 
|| All possible combinations of table entries are included. 
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tableProduct3 :: relationalTable -> (string, relationalTable) -> relationalTable 
 
|| _________________________________________________________ 
|| tableProduct4: Applies the product of a table to a list of table entries 
|| for recursive application. 
 
tableProduct4 :: relationalTable -> string -> [tableEntry] -> [tableEntry] 
 
|| _________________________________________________________ 
|| tableProduct5: Applies the product of a table to a list of table columns 
|| for recursive application. 
 
tableProduct5 :: relationalTable -> string -> tableEntry -> tableEntry  
 
|| _________________________________________________________ 
|| tableProduct6: Applies the product to a recursive column which holds the 
|| required inner table. 
 
tableProduct6 :: relationalTable -> columnType -> columnType 
 
|| _________________________________________________________ 
|| tableProduct7: Applies the product to a recursive column if the inner table is  
|| the one required. 
 
tableProduct7 :: relationalTable -> string -> columnType -> columnType 
 
|| _________________________________________________________ 
|| getRecTableNames: Gets the name of a table and calls getRecTableNames2 
|| to get the names of all recursive tables. 
 
getRecTableNames :: relationalTable -> [string] 
 
|| _________________________________________________________ 
|| getRecTableNames2: Gets table names recursively for a list of table entries. 
 
getRecTableNames2 :: [tableEntry] -> [string] 
 
|| _________________________________________________________ 
|| getRecTableNames3: Gets table names recursively for a list of columns. 
 
getRecTableNames3 :: tableEntry -> [string] 
 
|| _________________________________________________________ 
|| getRecTableNames4: Gets the name of a table column if it is an inner table. 
 
getRecTableNames4 :: columnType -> [string] 
 
 
 
|| File name: relationalFile3.m 
 
%include "relationalFile0.m"  
%include "relationalFile1.m"  
%include "relationalFile2.m"  
 
|| +++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
|| selectColByPair: Applies a boolean function to a column identified 
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|| by column tag: return True if the application off function on 
|| column is true, false otherwise. Also returns false if the function 
|| is not of the right type. 
 
selectColByPair :: strBoolPair -> columnType -> (bool, columnType) 
 
|| _________________________________________________________ 
|| selectEntryByPair: Returns true if the entry list 
|| contains a column whose tag is provided and the application 
|| of the given function on the column is successful. Returns 
|| false otherwise. 
 
selectEntryByPair :: strBoolPair -> tableEntry -> tableEntry -> (bool, tableEntry) 
 
|| _________________________________________________________ 
|| selectEntryByPairLst: Returns true if the application of all 
|| boolean functions prodived on all columns provided are successful. 
|| Returns false otherwise. 
 
selectEntryByPairLst :: [strBoolPair] -> tableEntry -> (bool, tableEntry) 
 
|| _________________________________________________________ 
|| selectEntryByPairLst2: Returns table entry if the application of all 
|| boolean functions prodived on all columns provided are successful. 
|| Returns an empty list otherwise. 
 
selectEntryByPairLst2 :: [strBoolPair] -> tableEntry -> tableEntry 
 
|| _________________________________________________________ 
|| selectEntryLstByPairLst: Returns all table entries if the application of all 
|| boolean functions prodived on all columns provided are successful. 
|| Returns an empty list otherwise. 
|| Empty lists within empty lists are flattened. 
 
selectEntryLstByPairLst :: [strBoolPair] -> [tableEntry] -> [tableEntry] 
 
|| _________________________________________________________ 
|| extractColNames: Extracts column names from a list of string-boolean function pairs. 
 
extractColNames :: [strBoolPair] -> [string] 
 
|| _________________________________________________________ 
|| getInnerTable: Gets the inner table from a recursive column. 
 
getInnerTable :: columnType -> relationalTable 
 
|| _________________________________________________________ 
|| getTableColumns: Top level function to get a list of table columns recursively. 
|| It calls getAllColumnNames. 
 
getTableColumns :: relationalTable -> [string] 
 
|| _________________________________________________________ 
|| getAllColumnNames: Collects all column names of all entries in a table. 
 
getAllColumnNames :: [tableEntry] -> [string] 
 
|| _________________________________________________________ 
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|| getColumnNames: Collects all non recursive column names of a table entry. 
 
getColumnNames :: tableEntry -> [string] 
 
|| _________________________________________________________ 
|| addListMembers: Adds contents of a list to another list if not already there. 
 
addListMembers :: [*] -> [*] -> [*] 
 
|| _________________________________________________________ 
|| isSubSet: Checks whether a list is a subset of another list. 
 
isSubSet :: [*] -> [*] -> bool 
 
|| _________________________________________________________ 
|| isSelectListValid: Checks whether column names in a select list all 
|| refer to valid column names in a table. 
 
isSelectListValid :: [strBoolPair] -> [tableEntry] -> bool 
 
|| _________________________________________________________ 
|| selectFrom2: Selects all entries in a table which satisfy a given 
|| list of conditions after having all recursive column names resolved. 
 
selectFrom2 :: [strBoolPair] -> relationalTable -> relationalTable 
 
|| _________________________________________________________ 
|| selectNotIn2: Selects all entries in a table which do not satisfy a given 
|| list of conditions after having all recursive column names resolved. 
 
selectNotIn2 :: [strBoolPair] -> relationalTable -> relationalTable 
 
 
 
|| File name: relationalFile4.m 
 
%include "relationalFile0.m"  
%include "relationalFile1.m"  
%include "relationalFile2.m"  
 
|| +++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
|| replaceColumnTag: Replaces a column tag by a new string identifier for 
|| a given column. 
 
replaceColumnTag :: string -> string -> columnType -> columnType 
 
|| _________________________________________________________ 
|| replaceEntryTag: Replaces a column tag by a new string identifier for 
|| a table entry. 
 
replaceEntryTag :: string -> string -> tableEntry -> tableEntry 
 
|| _________________________________________________________ 
|| replaceEntryListTag: Replaces a column tag by a new string identifier for 
|| all table entry list members. 
 
replaceEntryListTag :: string -> string -> [tableEntry] -> [tableEntry] 
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|| _________________________________________________________ 
|| sepColFromEntries: Given a list of table entries, it breaks each entry 
|| into two entries, one containing a given column and the other containing 
|| all other columns. 
 
sepColFromEntries :: string -> [tableEntry] -> [strEntryEntryTuple] 
 
|| _________________________________________________________ 
|| sepColFromEntry: Using a column tag, separates a column from the rest of a 
|| table entry and into a new list. 
 
sepColFromEntry :: string -> tableEntry -> tableEntry -> strEntryEntryTuple 
 
|| _________________________________________________________ 
|| joinColTabLists: Attempts to join two list of table entries recursively. 
 
joinColTabLists :: [strEntryEntryTuple] -> [strEntryEntryTuple] -> [tableEntry] 
 
|| _________________________________________________________ 
|| joinColTabLists2: Attempts to join a table entry recursively with a list 
|| of table entries. 
 
joinColTabLists2 :: strEntryEntryTuple -> [strEntryEntryTuple] -> [tableEntry] 
 
|| _________________________________________________________ 
|| joinColTabLists3: If the joining columns are of the same type and value, it  
|| will join the entries. 
 
joinColTabLists3 :: strEntryEntryTuple -> strEntryEntryTuple -> [tableEntry] 
 
|| _________________________________________________________ 
|| areColumnsEq: Cheks whether two columns are of equal type and value. 
 
areColumnsEq :: columnType -> columnType -> bool 
 
|| _________________________________________________________ 
|| separateNonRec: Separates non recursive and recursive columns into 
|| two different lists. 
 
separateNonRec :: tableEntry -> tableEntry -> tableEntry -> (tableEntry, tableEntry) 
 
|| _________________________________________________________ 
|| removeRecTag: removes RC tag from the begining of a recursive column. 
 
removeRecTag :: columnType -> relationalTable 
 
|| _________________________________________________________ 
|| makeRecTag: Attaches an RC tag to the begining of a recursive column. 
 
makeRecTag :: relationalTable -> columnType  
 
|| _________________________________________________________ 
|| findLevel1: Finds at what level in a table a given column resides. 
 
findLevel1 :: string -> relationalTable -> num -> joinTriple 
 
|| _________________________________________________________ 
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|| findLevel2: Finds at what level in a list of table entries a given column resides. 
 
findLevel2 :: string -> tableEntry -> num -> joinTriple 
 
|| _________________________________________________________ 
|| findLevel3: Finds at what level in a table entry a given column resides. 
|| Used for recursive columns only. 
 
findLevel3 :: string -> tableEntry -> num -> joinTriple 
 
 
|| _________________________________________________________ 
|| tableName: Gives name of a table. 
 
tableName :: relationalTable -> string 
 
|| _________________________________________________________ 
|| recColumnName: Gives name of a recursive column. 
 
recColumnName :: columnType -> string 
 
|| _________________________________________________________ 
|| getLevel: Gets the level at which a column exists. 
|| Used for join operation. 
 
getLevel :: joinTriple -> num 
 
|| _________________________________________________________ 
|| isAtomic: Indicates whether a column is atomic or not. 
|| Used for join operation. 
 
isAtomic :: joinTriple -> bool 
 
|| _________________________________________________________ 
|| getTabName: Gives column name if column is recursive. 
|| returns an empty string for atomic columns. 
|| Used for join operation. 
 
getTabName :: joinTriple -> string 
 
|| _________________________________________________________ 
|| cleanTable: Removes all entries in a table which have empty recursive 
|| columns. 
 
cleanTable :: relationalTable -> relationalTable 
 
|| _________________________________________________________ 
|| cleanEntryList: Removes all entries in a list of table entries which have 
|| empty recursive columns. 
 
cleanEntryList :: [tableEntry] -> [tableEntry] 
 
|| _________________________________________________________ 
|| cleanEntry: Removes an entry if it has an empty recursive column. 
|| It first separates recursive and non recursive columns and then calls  
|| cleanEntry2(). 
 
cleanEntry :: tableEntry -> [tableEntry] 
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|| _________________________________________________________ 
|| cleanEntry2: Removes an entry if it has an empty recursive column. 
|| It calls cleanEntry3() to do the same recursively. 
 
cleanEntry2 :: (tableEntry, tableEntry) -> [tableEntry] 
 
|| _________________________________________________________ 
|| cleanEntry3: Checks a recursive column to see if it needs cleaning. 
 
cleanEntry3 :: tableEntry -> tableEntry 
 
|| _________________________________________________________ 
|| isAnEmptyRec: Checks a recursive column for emptiness. 
 
isAnEmptyRec :: columnType -> bool 
 
 
 
|| File name: relationalFile5.m 
|| This file contains base functions for rename operator 
 
%include "relationalFile0.m"  
 
|| +++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
|| renameColumn: Renames a column heading with a new one. 
 
renameColumn :: strStrTuple -> columnType -> columnType 
 
|| _________________________________________________________ 
|| renameEntry: Renames a column heading for a list of columns. 
 
renameEntry :: strStrTuple -> tableEntry -> tableEntry 
 
|| _________________________________________________________ 
|| renameEntryList: Renames a column heading for a list of table 
|| entries. 
 
renameEntryList :: strStrTuple -> [tableEntry] -> [tableEntry] 
 
|| _________________________________________________________ 
|| renameTableList: Renames column heading of a list of columns for 
|| a list of table entries. 
 
renameTableList :: [strStrTuple] -> [tableEntry] -> [tableEntry] 
 
|| _________________________________________________________ 
|| rename2: Renames column heading of a list of columns for a 
|| relational table. 
 
rename2 :: [strStrTuple] -> relationalTable -> relationalTable 
 
 
 



   

 

 
 
252 

|| File name: relationalFile6.m 
|| Join case 1. 
 
%include "relationalFile0.m"  
%include "relationalFile4.m" 
 
|| +++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
|| joinTables1: Main function to join two normal relational tables based on two 
|| columns of similar types. 
 
joinTables1 :: stringTableTuple -> stringTableTuple -> relationalTable 
 
 
 
|| File name: relationalFile7.m 
|| Join case 2. 
 
%include "relationalFile0.m"  
%include "relationalFile4.m"  
%include "relationalFile6.m"  
 
|| +++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
|| joinTables2: Main function to join a top level and a nested relational table 
|| based on two columns of similar types. 
 
joinTables2 :: stringTableTuple -> stringTableTuple -> num -> relationalTable 
 
|| _________________________________________________________ 
|| joinTables20: 
 
joinTables20 :: stringTableTuple -> stringTableTuple -> num -> relationalTable 
 
|| _________________________________________________________ 
|| joinTables21: 
 
joinTables21 :: stringTableTuple -> stringEntryListTuple -> num -> [tableEntry] 
 
|| _________________________________________________________ 
|| joinTables22: 
 
joinTables22 :: stringTableTuple -> stringEntryTuple -> num -> [tableEntry] 
 
|| _________________________________________________________ 
|| joinTables23: 
 
joinTables23 :: stringTableTuple -> string -> (tableEntry, tableEntry) -> num -> [tableEntry] 
 
|| _________________________________________________________ 
|| joinTables24: 
 
joinTables24 :: stringTableTuple -> string -> tableEntry -> num -> tableEntry 
 
|| _________________________________________________________ 
|| joinTables25: 
 
joinTables25 :: tableEntry -> tableEntry -> [tableEntry] 
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|| File name: relationalFile8.m 
|| Join case 3a and 3b. 
 
%include "relationalFile0.m"  
%include "relationalFile4.m"  
%include "relationalFile6.m"  
 
|| +++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
|| Case 3a: 
 
|| joinTables3a: Top level method to join tables according to case 3a. 
|| Joins 2 nested columns at the same level. 
 
joinTables3a :: stringTableTuple -> stringTableTuple -> num -> relationalTable 
 
|| _________________________________________________________ 
|| joinTables3a2: Joins two tables according to case 3a. 
|| It acts on tables directly and carries the nesting level. 
 
joinTables3a2 :: stringTableTuple -> stringTableTuple -> num -> relationalTable 
 
|| _________________________________________________________ 
|| joinTables3a3: Joins two tables according to case 3a. 
|| It acts on entry lists and carries nesting level. 
 
joinTables3a3 :: stringEntryListTuple -> stringEntryListTuple -> num -> [tableEntry] 
 
|| _________________________________________________________ 
|| joinTables3a4: Joins a table entry with a list of entries recursively. 
 
joinTables3a4 :: stringEntryTuple -> stringEntryListTuple -> num -> [tableEntry] 
 
|| _________________________________________________________ 
|| joinTables3a5: Separates recursive and non recursive columns in table entries for joining. 
 
joinTables3a5 :: stringEntryTuple -> stringEntryTuple -> num -> [tableEntry] 
 
|| _________________________________________________________ 
|| joinTables3a6: Joins two recursive columns. 
 
joinTables3a6 :: stringEntryTuple -> stringEntryTuple -> num -> tableEntry 
 
|| _________________________________________________________ 
|| joinTables3a7: Joins two table entries if the recurive column is not empty. 
 
joinTables3a7 :: tableEntry -> tableEntry -> tableEntry -> [tableEntry] 
 
|| _________________________________________________________ 
|| Case 3b: 
 
|| joinTables3b: Top level method to join tables according to case 3b. 
|| Joins 2 nestted columns at different levels. 
 
joinTables3b :: stringTableTuple -> stringTableTuple -> num -> num -> relationalTable 
   
|| _________________________________________________________ 
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|| joinTables3b2: Method to join tables according to case 3b. 
|| It acts on tables directly and carries the nesting level. 
 
joinTables3b2 :: stringTableTuple -> stringTableTuple -> num -> num -> relationalTable 
 
|| _________________________________________________________ 
|| joinTables3b3: Method to join tables according to case 3b. 
|| It acts on entry lists and carries nesting level. 
 
joinTables3b3 :: stringEntryListTuple -> stringTableTuple -> num -> num -> [tableEntry] 
 
|| _________________________________________________________ 
|| joinTables3b4: Joins a table entry with a list of entries recursively. 
 
joinTables3b4 :: stringEntryTuple -> stringTableTuple -> num -> num -> [tableEntry] 
 
|| _________________________________________________________ 
|| joinTables3b5: Separates recursive and non recursive columns in table entries for joining. 
 
joinTables3b5 :: stringEntryTuple -> stringTableTuple -> num -> num -> tableEntry 
 
 
 
|| File name: relationalFile9.m 
|| Join case 4. 
 
%include "relationalFile0.m"  
%include "relationalFile1.m"  
%include "relationalFile4.m"  
%include "relationalFile6.m"  
%include "relationalFile8.m"  
 
|| +++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
|| joinTables4: Top level function to join two tables according 
|| to case 4. 
 
joinTables4 :: stringTableTuple -> stringTableTuple -> relationalTable 
 
|| _________________________________________________________ 
|| joinTables41: Joins two table entry lists based on case 4. 
|| It recursively applies each element of the first list to the 
|| entire second list. 
 
joinTables41 :: stringEntryListTuple -> stringEntryListTuple -> [tableEntry] 
 
|| _________________________________________________________ 
|| joinTables42: Joins an entry to an entry list based on case 4. 
|| It recursively applied the enttry to each element (entry) of the second list. 
 
joinTables42 :: stringEntryTuple -> stringEntryListTuple -> [tableEntry] 
 
|| _________________________________________________________ 
|| joinTables43: Joins two entries based on case 4. 
 
joinTables43 :: stringEntryTuple -> stringEntryTuple -> [tableEntry] 
 
|| _________________________________________________________ 



   

 

 
 
255 

|| joinTables44: Joins two recursive columns. 
 
joinTables44 :: stringEntryTuple -> stringEntryTuple -> tableEntry 
 
|| _________________________________________________________ 
|| joinTables45: Joins two tables (within recursive columns) based on case 4. 
 
joinTables45 :: stringTableTuple -> stringTableTuple -> relationalTable 
 
|| _________________________________________________________ 
|| joinTables46: Joins two entry lists (within a recursive column) 
|| based on case 4. 
 
joinTables46 :: [tableEntry] -> [tableEntry] -> [tableEntry] 
 
|| _________________________________________________________ 
|| joinTables47: Auxiliary function to join two entry lists according 
|| to case 4. 
 
joinTables47 :: [tableEntry] -> [tableEntry] -> [tableEntry] -> [tableEntry] 
 
|| _________________________________________________________ 
|| joinTables48: Checks whether an entry belongs to an entry list. 
|| If not, it ignores the entry, otherwise, it will record the entry for 
|| future use. 
 
joinTables48 :: tableEntry -> [tableEntry] -> [tableEntry] -> [tableEntry] 
 
 
 
|| File name: relationalFile10.m 
|| Join case 5. 
 
%include "relationalFile0.m"  
%include "relationalFile4.m"  
%include "relationalFile6.m"  
%include "relationalFile9.m"  
 
|| +++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
|| joinTables5: Main function to join a top level and a nested relational table 
|| based on two columns of similar types. 
 
joinTables5 :: stringTableTuple -> stringTableTuple -> num -> relationalTable 
 
|| _________________________________________________________ 
|| joinTables50: 
 
joinTables50 :: stringTableTuple -> stringTableTuple -> num -> relationalTable 
 
|| _________________________________________________________ 
|| joinTables51: 
 
joinTables51 :: stringTableTuple -> stringEntryListTuple -> num -> [tableEntry] 
 
|| _________________________________________________________ 
|| joinTables52: 
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joinTables52 :: stringTableTuple -> stringEntryTuple -> num -> [tableEntry] 
 
|| _________________________________________________________ 
|| joinTables53: 
 
joinTables53 :: stringTableTuple -> string -> (tableEntry, tableEntry) -> num -> [tableEntry] 
 
|| _________________________________________________________ 
|| joinTables54: 
 
joinTables54 :: stringTableTuple -> string -> tableEntry -> num -> tableEntry 
 
|| _________________________________________________________ 
|| joinTables55: 
 
joinTables55 :: tableEntry -> tableEntry -> [tableEntry] 
 
 
 
|| File name: relationalFile11.m 
|| Join case 6a and 6b. 
 
%include "relationalFile0.m"  
%include "relationalFile4.m"  
%include "relationalFile6.m" 
%include "relationalFile8.m"  
%include "relationalFile9.m"  
 
|| +++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
|| Case 6a: 
 
|| joinTables6a: Top level method to join tables according to case 6a. 
|| Joins 2 nested columns at the same level. 
 
joinTables6a :: stringTableTuple -> stringTableTuple -> num -> relationalTable 
 
|| _________________________________________________________ 
|| joinTables6a2: Joins two tables according to case 6a. 
|| It acts on tables directly and carries the nesting level. 
 
joinTables6a2 :: stringTableTuple -> stringTableTuple -> num -> relationalTable 
 
|| _________________________________________________________ 
|| joinTables6a3: Joins two tables according to case 6a. 
|| It acts on entry lists and carries nesting level. 
 
joinTables6a3 :: stringEntryListTuple -> stringEntryListTuple -> num -> [tableEntry] 
 
|| _________________________________________________________ 
|| joinTables6a4: Joins a table entry with a list of entries recursively. 
 
joinTables6a4 :: stringEntryTuple -> stringEntryListTuple -> num -> [tableEntry] 
 
|| joinTables6a5: Separates recursive and non recursive columns in table entries for joining. 
 
joinTables6a5 :: stringEntryTuple -> stringEntryTuple -> num -> [tableEntry] 
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|| _________________________________________________________ 
|| joinTables6a6: Joins two recursive columns. 
 
joinTables6a6 :: stringEntryTuple -> stringEntryTuple -> num -> tableEntry 
 
|| _________________________________________________________ 
|| Case 6b: 
 
|| joinTables6b: Top level method to join tables according to case 6b. 
|| Joins 2 nested columns at different levels. 
 
joinTables6b :: stringTableTuple -> stringTableTuple -> num -> num -> relationalTable 
     
|| _________________________________________________________ 
|| joinTables6b2: Method to join tables according to case 6b. 
|| It acts on tables directly and carries the nesting level. 
 
joinTables6b2 :: stringTableTuple -> stringTableTuple -> num -> num -> relationalTable 
 
|| _________________________________________________________ 
|| joinTables6b3: Method to join tables according to case 6b. 
|| It acts on entry lists and carries nesting level. 
 
joinTables6b3 :: stringEntryListTuple -> stringTableTuple -> num -> num -> [tableEntry] 
 
|| _________________________________________________________ 
|| joinTables6b4: Joins a table entry with a list of entries recursively. 
 
joinTables6b4 :: stringEntryTuple -> stringTableTuple -> num -> num -> [tableEntry] 
 
|| _________________________________________________________ 
|| joinTables6b5: Separates recursive and non recursive columns in table entries for joining. 
 
joinTables6b5 :: stringEntryTuple -> stringTableTuple -> num -> num -> tableEntry 
 
 
 
|| File name: relationalFile12.m 
|| Responsible for finding the most suitable method for join. 
 
%include "relationalFile0.m"  
%include "relationalFile4.m"  
%include "relationalFile6.m"  
%include "relationalFile7.m"  
%include "relationalFile8.m"  
%include "relationalFile9.m"  
%include "relationalFile10.m"  
%include "relationalFile11.m"  
 
|| +++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
|| joinTables0: 
 
joinTables0 :: stringTableTuple -> stringTableTuple -> relationalTable 
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|| File name: main.m 

|| Contains all top level calls. 
 
 
%include "relationalFile0.m"  
%include "relationalFile1.m"  
%include "relationalFile2.m"  
%include "relationalFile3.m"  
%include "relationalFile4.m"  
%include "relationalFile5.m"  
%include "relationalFile6.m"  
%include "relationalFile7.m"  
%include "relationalFile8.m"  
%include "relationalFile9.m"  
%include "relationalFile10.m"  
%include "relationalFile11.m"  
%include "relationalFile12.m"  
%include "samples1.m"  
%include "ttraining.m"  
%include "tcourse.m"  
%include "tcashpoint.m"  
%include "tlocation.m"  
%include "tdept.m"  
 
|| +++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
|| tableProjection: Selects a subset of table entries based on given 
|| column names by first resolving recursive column names and then calling 
|| helper functions tableProjection2 and flattenRelTable. 
 
tableProjection :: [string] -> relationalTable -> relationalTable 
tableProjection x y = getAllUnion (flattenRelTable (tableProjection2 x (resolvePath y))) 
 
|| _________________________________________________________ 
|| tableProduct: Product of two relational tables. 
|| All possible combinations of table entries are included. 
|| Recursive cases included.  
 
tableProduct :: (string, relationalTable) -> (string, relationalTable) -> relationalTable 
tableProduct (a, b) (c, d)  = getAllUnion (tableProduct2 (resolvePath b) (resolvePath d)), if (u & v) 
                             = error "Error: Table product on two inner tables",   if ((~u) & (~v)) 

               = getAllUnion (tableProduct3 (resolvePath b) (c, resolvePath d)), if (u & (~v))                                   
                             = getAllUnion (tableProduct3 (resolvePath d) (a, resolvePath b)),  otherwise 

                 where  u = (a = "")         
v = (c = "") 

 
|| _________________________________________________________ 
|| selectFrom: Selects all entries in a table which satisfy a given 
|| list of conditions by: 
|| 1) resolving all recursive column names, 
|| 2) calling tableProjection2 on the result, 
|| 3) calling flattenRelTable on the result. 
 
selectFrom :: [string] -> [strBoolPair] -> relationalTable -> relationalTable 
selectFrom x y z = getAllUnion (flattenRelTable (tableProjection2 x (selectFrom2 y (resolvePath 
z)))) 
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|| _________________________________________________________ 
|| selectNotIn: Selects all entries in a table which do not satisfy a given 
|| list of conditions by: 
|| 1) resolving all recursive column names, 
|| 2) calling tableProjection2 on the result, 
|| 3) calling flattenRelTable on the result. 
 
selectNotIn :: [string] -> [strBoolPair] -> relationalTable -> relationalTable 
selectNotIn x y z = getAllUnion (flattenRelTable (tableProjection2 x (selectNotIn2 y (resolvePath 
z)))) 
 
|| _________________________________________________________ 
|| joinTables: Main function to join two relational tables of any complexity 
|| based on two columns of similar types. 
 
joinTables :: stringTableTuple -> stringTableTuple -> relationalTable 
joinTables (x, r1) (y, r2) = getAllUnion (retainColNames (joinTables0 (x, resolvePath r1) (y, 
resolvePath r2))) 
 
|| _________________________________________________________ 
|| rename: Renames column heading of a list of columns for a 
|| relational table. It calls rename2 function after resolving 
|| all column names. 
 
rename :: [strStrTuple] -> relationalTable -> relationalTable 
rename x y = getAllUnion (rename2 x (resolvePath y)) 

B.4 Illustration Examples 

The coding in Miranda, of examples presented in the thesis, is given below. 

Occasionally, the result is also given, assuming that it does not occupy much 

space.  

 

Example 4.8 

tableProjection["COMPANY","TRAINING_2(TRAINER(C(CN)))"]t2 

Result: 

Relation "TRAINING_2"  

[[SC "COMPANY" "Apple", RC (Relation "TRAINER"  

[[RC (Relation "C"  

[[NC "TRAINING_2(TRAINER(C(CN)))" 1], 

[NC "TRAINING_2(TRAINER(C(CN)))" 2]])], 

[RC (Relation "C"  

[[NC "TRAINING_2(TRAINER(C(CN)))" 1], 

[NC "TRAINING_2(TRAINER(C(CN)))" 3], 

[NC "TRAINING_2(TRAINER(C(CN)))" 2]])]])], 

[SC "COMPANY" "IBM", RC (Relation "TRAINER"  
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[[RC (Relation "C"  

[[NC "TRAINING_2(TRAINER(C(CN)))" 3], 

[NC "TRAINING_2(TRAINER(C(CN)))" 5], 

[NC "TRAINING_2(TRAINER(C(CN)))" 4]])]])], 

[SC "COMPANY" "Microsoft", RC (Relation "TRAINER"  

[[RC (Relation "C"  

[[NC "TRAINING_2(TRAINER(C(CN)))" 2]])]])]] 

 

Example 4.9:  

A revised version of the example is given, due to the fact that relevant 

implementation is missing (only for ‘Mark’, since OR has not been 

implemented). 

selectFrom["COMPANY","TRAINING_2(TRAINER(TRN))","TRAINING_2(TRAINER(C(CN)))", 

"TRAINING_2(TRAINER(C(Y)))"][("TRAINING_2(TRAINER(TRN))", SF ((=) "Mark")), 

("TRAINING_2(TRAINER(C(Y)))", NF ((=) 82))]t2 

Result: 

Relation "TRAINING_2"  

[[SC "COMPANY" "Apple", RC (Relation "TRAINER"  

[[SC "TRAINING_2(TRAINER(TRN))" "Mark", RC (Relation "C"  

[[NC "TRAINING_2(TRAINER(C(CN)))" 1, NC "TRAINING_2(TRAINER(C(Y)))" 82], 

[NC "TRAINING_2(TRAINER(C(CN)))" 3, NC "TRAINING_2(TRAINER(C(Y)))" 82]])]])]] 

 

Example 4.9: 
A revised version of the example is given, due to the fact that relevant 

implementation is missing (only for ‘Tim’, since OR has not been 

implemented). 

selectFrom["COMPANY","TRAINING_2(TRAINER(TRN))","TRAINING_2(TRAINER(C(CN)))", 

"TRAINING_2(TRAINER(C(Y)))"][("TRAINING_2(TRAINER(TRN))", SF ((=) "Tim")), 

("TRAINING_2(TRAINER(C(Y)))", NF ((=) 82))]t2 

Result: 

Relation "TRAINING_2"  

[[SC "COMPANY" "IBM", RC (Relation "TRAINER" 

 [[SC "TRAINING_2(TRAINER(TRN))" "Tim", RC (Relation "C"  

[[NC "TRAINING_2(TRAINER(C(CN)))" 3, NC"TRAINING_2(TRAINER(C(Y)))" 82], 

[NC "TRAINING_2(TRAINER(C(CN)))" 4, NC "TRAINING_2(TRAINER(C(Y)))" 82]])]])]] 
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Example 4.12: 

rename[("DEPT(UNIT(UD))", "DEPT(UNIT(UD')"), 

("DEPT(UNIT(COURSE_DETAILS(C(CN))))", 

"DEPT(UNIT(COURSE_DETAILS(C'(CN))))"),("DEPT(UNIT(COURSE_DETAILS(C(Y))))", 

"DEPT(UNIT(COURSE_DETAILS(C'(Y))))") ]d 

 

Example 4.14: 

tableProduct("COURSE",t)("", cashpoint) 

 

Other Example: 

tableProduct(“”,cashpoint)(“”,employment) 

 

Example 4.16: 

joinTables("LOCATION(ANNEX(ADDRESS))", location) 

     ("CASH-POINT(BRANCH(ADDRESS))", cashpoint) 

Result: 

Relation "LOCATION/CASH-POINT"  

[[SC "COMPANY" "Toshiba ", SC "BANK" "Natwest", RC (Relation "ANNEX/BRANCH"  

[[SC "ADDRESS" "Porchester Rd.", SC "BUILDING" "North Building", SC "SORT_CODE"  

"560038"]])], 

[SC "COMPANY" "Microsoft", SC "BANK" "Barcklays", RC (Relation "ANNEX/BRANCH"  

[[SC "ADDRESS" "Ashford St.", SC "BUILDING" "Pegasus House", SC "SORT_CODE"  

"386600"]])], 

[SC "COMPANY" "Microsoft", SC "BANK" "Natwest", RC (Relation "ANNEX/BRANCH"  

[[SC "ADDRESS" "Park Rd.", SC "BUILDING" "Queen's Building", SC "SORT_CODE"  

"560045"]])], 

[SC "COMPANY" "Microsoft", SC "BANK" "Lloyd's", RC (Relation "ANNEX/BRANCH"  

[[SC "ADDRESS" "Ashford St.", SC "BUILDING" "Pegasus House", SC "SORT_CODE"  

"478202"], 

[SC "ADDRESS" "Park Rd.", SC "BUILDING" "Queen's Building", SC "SORT_CODE"  

"478210"]])]] 

 

Example 4.17: 

joinTables("TRAINING_1(PROGRAMME(TRN))", t1)("DEPT_1(UNIT(TRAINER(TRN)))",d1) 

 

Example 4.18: 

joinTables("JOB", employment)("JOB", payment) 
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Result: 

Relation "EMPLOYMENT/PAYMENT"  

[[SC "NAME" "Anna", SC "SALARY" "15,500-19,500", RC(Relation "JOB"  

[[SC "COMPANY" "Toshiba ", SC "JOB_DESCRIPTION" "Secretary"]])], 

[SC "NAME" "Anna", SC "SALARY" "18,000-23,000", RC (Relation "JOB"  

[[SC "COMPANY" "Microsoft", SC "JOB_DESCRIPTION" "Secretary"]])], 

[SC "NAME" "Paul", SC "SALARY" "18,000-23,000", RC (Relation "JOB"  

[[SC "COMPANY" "Microsoft", SC "JOB_DESCRIPTION" "Programmer"]])], 

[SC "NAME" "Mark", SC "SALARY" "25,000-30,000", RC (Relation "JOB"  

[[SC "COMPANY" "Apple", SC "JOB_DESCRIPTION" "Director"]])]]  

 

Example 4.19: 

joinTables("C",d2)("C",t2) 

Result: 

Relation "DEPT_2/TRAINING_2"  

[[SC "DN" "Research", NC "D" 1, SC "COMPANY" "Apple", RC (Relation "UNIT/TRAINER"  

[[SC "UD" "Software Engineering", NC "UN" 511, SC "TRN" "Jack", RC (Relation "C"  

[[NC "CN" 1, NC "Y" 75], [NC "CN" 2, NC "Y" 76]])], 

[SC "UD" "Basic Research", NC "UN" 552, SC "TRN" "Mark", RC (Relation "C"  

[[NC "CN" 1, NC "Y" 82], [NC "CN" 2, NC "Y" 79]])], 

[SC "UD" "Planning", NC "UN" 678, SC "TRN" "Jack", RC (Relation "C"  

[[NC "CN" 2, NC "Y" 76]])]])], 

[SC "DN" "Research", NC "D" 1, SC "COMPANY" "IBM", RC (Relation "UNIT/TRAINER"  

[[SC "UD" "Software Engineering", NC "UN" 511, SC "TRN" "Tim", RC (Relation "C"  

[[NC "CN" 5, NC "Y" 79]])], 

[SC "UD" "Planning", NC "UN" 678, SC "TRN" "Tim", RC (Relation "C"  

[[NC "CN" 4, NC "Y" 82]])]])], 

[SC "DN" "Development", NC "D" 2, SC "COMPANY" "Apple", RC (Relation "UNIT/TRAINER"  

[[SC "UD" "Design", NC "UN" 650, SC "TRN" "Jack", RC (Relation "C"  

[[NC "CN" 1, NC "Y" 75]])], 

[SC "UD" "Maintenance", NC "UN" 780, SC "TRN" "Mark", RC (Relation "C"  

[[NC "CN" 3, NC "Y" 82]])], 

[SC "UD" "Planning", NC "UN" 981, SC "TRN" "Mark", RC (Relation "C"  

[[NC "CN" 3, NC "Y" 82]])]])], 

[SC "DN" "Development", NC "D" 2, SC "COMPANY" "IBM", RC (Relation "UNIT/TRAINER"  

[[SC "UD" "Maintenance", NC "UN" 780, SC "TRN" "Tim", RC (Relation "C"  

[[NC "CN" 3, NC "Y" 82]])],  

[SC "UD" "Planning", NC "UN" 981, SC "TRN" "Tim", RC (Relation "C"  
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[[NC "CN" 3, NC "Y" 82]])]])], 

[SC "DN" "Development", NC "D" 2, SC "COMPANY" "Microsoft", RC (Relation "UNIT/TRAINER"  

[[SC "UD" "Design", NC "UN" 650, SC "TRN" "Karen", RC (Relation "C"  

[[NC "CN" 2, NC "Y" 77]])], 

[SC "UD" "Planning", NC "UN" 981, SC "TRN" "Karen", RC (Relation "C"  

[[NC "CN" 2, NC "Y" 81]])]])]]  

 

Example 4.20: 

joinTables("C",d2)("C",t) 

 

Example 5.5: 

tableProjection["COMPANY", "T_TRAINING(TRAINER(COURSE(CN)))", 

"T_TRAINING(TRAINER(COURSE(CN_PER)))"]tt 

Result: 

Relation "T_TRAINING"  

  [[SC "COMPANY" "Apple", RC (Relation "TRAINER"  

[[RC (Relation "COURSE"  

[[NC "T_TRAINING(TRAINER(COURSE(CN)))" 5.2,  

TC "T_TRAINING(TRAINER(COURSE(CN_PER)))" 

[((2,11,1994),(25,4,1995)),((7,8,1996),(1,1,2010))]]])],  

[RC (Relation "COURSE"  

[[NC "T_TRAINING(TRAINER(COURSE(CN)))" 3.3,  

TC "T_TRAINING(TRAINER(COURSE(CN_PER)))" 

[((2,1,1992),(8,11,1996))]],  

[NC "T_TRAINING(TRAINER(COURSE(CN)))" 3.5,  

TC "T_TRAINING(TRAINER(COURSE(CN_PER)))"  

[((30,4,1995),(1,1,2010))]]])]])],  

[SC "COMPANY" "IBM", RC (Relation "TRAINER" 

[[RC (Relation "COURSE"  

[[NC "T_TRAINING(TRAINER(COURSE(CN)))" 5.2, 

TC "T_TRAINING(TRAINER(COURSE(CN_PER)))"  

[((19,3,1997),(21,4,1997))]], 

[NC "T_TRAINING(TRAINER(COURSE(CN)))" 5.0, 

TC "T_TRAINING(TRAINER(COURSE(CN_PER)))"  

[((17,12,1995),(1,1,2010))]]])]])], 

[SC "COMPANY" "Microsoft", RC (Relation "TRAINER"  

[[RC (Relation "COURSE"  

[[NC "T_TRAINING(TRAINER(COURSE(CN)))" 3.3, 
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TC "T_TRAINING(TRAINER(COURSE(CN_PER)))"  

[((25,6,1996),(1,1,2010))]]])]])]]  

 

Example 5.7: 

A revised version of the example is given, due to the fact that relevant 

implementation is missing (only for ‘Tim’, since OR has not been 

implemented). 

selectFrom["COMPANY","T_TRAINING(TRAINER(TRN))","T_TRAINING(TRAIN

ER(COURSE(CN)))","T_TRAINING(TRAINER(COURSE(CN_PER)))"][("T_TRAINI

NG(TRAINER(TRN))",SF((=)"Tim")),("T_TRAINING(TRAINER(COURSE(CN_PER

)))",TF((tECovers ((1,1,1997),(1,1,1998)))))]tt 

Result: 

Relation "T_TRAINING"  

[[SC "COMPANY" "IBM", RC (Relation "TRAINER"  

[[SC "T_TRAINING(TRAINER(TRN))" "Tim", RC (Relation "COURSE"  

[[NC "T_TRAINING(TRAINER(COURSE(CN)))" 5.2,  

TC "T_TRAINING(TRAINER(COURSE(CN_PER)))" [((19,3,1997),(21,4,1997))]]])]])]]  

 

Other Examples (Temporal Cartesian Product):  

tableProduct("COURSE",tt)("", tcashpoint) 

tableProduct(“”,tcashpoint)(“”,tcourse) 

 

Query 1: 

selectFrom ["D", "DEPT(UNIT(UD))", "DEPT(UNIT(COURSE_DETAILS(TRN)))"][(" 

D", NF ((=) 1))]d 

Result: 

Relation "DEPT"  

[[NC "D" 1, RC (Relation "UNIT"  

[[SC "DEPT(UNIT(UD))" "Software Engineering", RC (Relation 

"COURSE_DETAILS"  

[[SC "DEPT(UNIT(COURSE_DETAILS(TRN)))" "Mark"]])], 

[SC "DEPT(UNIT(UD))" "Basic Research", RC (Relation "COURSE_DETAILS"  

[[SC "DEPT(UNIT(COURSE_DETAILS(TRN)))" "Karen"],  

[SC "DEPT(UNIT(COURSE_DETAILS(TRN)))" "Tim"]])], 

[SC "DEPT(UNIT(UD))" "Planning", RC (Relation "COURSE_DETAILS"  

[[SC "DEPT(UNIT(COURSE_DETAILS(TRN)))" "Mark"]])]])]] 
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Query 5: 

selectFrom["COURSE/TRAINING(COURSE/TRAINER(TRN))"][("COURSE/TRAINING(CO

URSE/TRAINER(COURSE/COURSE(TITLE)))", SF ((=) "Computer Skills"))] 

(joinTables("C", t)("C", course)) 

Result: 

Relation "COURSE/TRAINING"  

[[RC (Relation "COURSE/TRAINER"  

[[SC "COURSE/TRAINING(COURSE/TRAINER(TRN))" "Jack"]])], 

[RC (Relation "COURSE/TRAINER"  

[[SC "COURSE/TRAINING(COURSE/TRAINER(TRN))" "Karen"]])]]  

 

Query 6: 

A revised version of the query is given, due to the fact that relevant 

implementation is missing (only for ‘Karen’, since OR has not been 

implemented). 

tableProjection["COMPANY","BANK"](joinTables("TRAINING/LOCATION(ANNEX(AD 

DRESS))",joinTables("COMPANY",selectFrom["COMPANY"][("TRAINING(TRAINER(TRN))" 

,SF((=)"Karen"))]t)("COMPANY",location))("CASH-POINT(BRANCH(ADDRESS))", cashpoint)) 

Result: 

Relation "TRAINING/LOCATION/CASH-POINT"  

[[SC "COMPANY" "Microsoft", SC "BANK" "Barcklays"], 

[SC "COMPANY" "Microsoft", SC "BANK" "Natwest"], 

[SC "COMPANY" "Microsoft", SC "BANK" "Lloyd's"]] 

 

Query 10: 

tableProjection["T_DEPT(STAFF(COURSE_DETAILS(SNAME)))”,"T_DEPT(STAFF(COURS

E_DETAILS(COURSE(CN_PER))))"]td 

Result: 

Relation "T_DEPT"  

[[RC (Relation "STAFF"  

[[RC (Relation "COURSE_DETAILS"  

[[SC "T_DEPT(STAFF(COURSE_DETAILS(SNAME)))" "Paul",  

RC (Relation "COURSE"  

[[TC "T_DEPT(STAFF(COURSE_DETAILS(COURSE(CN_PER))))"  

[((27,8,1995),(30,1,1996)),((1,2,1995),(24,6,1995))]]])], 

[SC "T_DEPT(STAFF(COURSE_DETAILS(SNAME)))" "Peter",  

RC (Relation"COURSE"  

[[TC "T_DEPT(STAFF(COURSE_DETAILS(COURSE(CN_PER))))"  
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[((1,1,1998),(28,10,1998))]]])]])],  

[RC (Relation "COURSE_DETAILS"  

[[SC "T_DEPT(STAFF(COURSE_DETAILS(SNAME)))" "Anna", 

RC (Relation "COURSE"  

[[TC"T_DEPT(STAFF(COURSE_DETAILS(COURSE(CN_PER))))"  

[((29,9,1997),(10,2,1998)),((1,7,1995),(1,8,1995))]]])], 

[SC "T_DEPT(STAFF(COURSE_DETAILS(SNAME)))" "Mary", 

RC (Relation "COURSE"  

[[TC "T_DEPT(STAFF(COURSE_DETAILS(COURSE(CN_PER))))"  

[((17,1,1997),(28,4,1997))]]])]])], 

[RC (Relation "COURSE_DETAILS"  

[[SC "T_DEPT(STAFF(COURSE_DETAILS(SNAME)))" "Katy", 

RC (Relation "COURSE"  

[[TC "T_DEPT(STAFF(COURSE_DETAILS(COURSE(CN_PER))))"  

[((13,2,1994),(4,3,1995)),((22,4,1995),(15,5,1995))]]])]])]])], 

[RC (Relation "STAFF"  

[[RC (Relation "COURSE_DETAILS"  

[[SC "T_DEPT(STAFF(COURSE_DETAILS(SNAME)))" "Steve", 

RC (Relation "COURSE"  

[[TC "T_DEPT(STAFF(COURSE_DETAILS(COURSE(CN_PER))))"  

[((18,3,1996),(1,7,1996))]]])]])], 

[RC (Relation "COURSE_DETAILS"  

[[SC "T_DEPT(STAFF(COURSE_DETAILS(SNAME)))" "Helen", 

RC (Relation "COURSE"  

[[TC"T_DEPT(STAFF(COURSE_DETAILS(COURSE(CN_PER))))"  

[((17,8,1997),(1,1,2010))]]])], 

[SC "T_DEPT(STAFF(COURSE_DETAILS(SNAME)))" "Pat", 

RC (Relation "COURSE"  

[[TC "T_DEPT(STAFF(COURSE_DETAILS(COURSE(CN_PER))))"  

[((18,9,1995),(10,10,1995))]]])]])]])]] 
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Query 11: 

A revised version of the query is given, due to the fact that relevant 

implementation is missing (START has not been implemented). 

tableProjection["T_TRAINING(TRAINER(TRN))","T_TRAINING(TRAINER(COURSE(CN_PE

R)))"]tt 

Result: 

Relation "T_TRAINING"  

[[RC (Relation "TRAINER"  

[[SC "T_TRAINING(TRAINER(TRN))" "Jack", RC (Relation "COURSE"  

[[TC "T_TRAINING(TRAINER(COURSE(CN_PER)))"  

[((2,11,1994),(25,4,1995)),((7,8,1996),(1,1,2010))]]])], 

[SC "T_TRAINING(TRAINER(TRN))" "Mark", RC (Relation "COURSE"  

[[TC "T_TRAINING(TRAINER(COURSE(CN_PER)))"  

[((2,1,1992),(1,1,2010))]]])]])],  

[RC (Relation "TRAINER"  

[[SC "T_TRAINING(TRAINER(TRN))" "Tim", RC (Relation "COURSE"  

[[TC "T_TRAINING(TRAINER(COURSE(CN_PER)))"  

[((19,3,1997),(21,4,1997))]]])]])], 

[RC (Relation "TRAINER"  

[[SC "T_TRAINING(TRAINER(TRN))" "Karen", RC (Relation "COURSE"  

[[TC "T_TRAINING(TRAINER(COURSE(CN_PER)))"  

[((25,6,1996),(1,1,2010)) ]]])]])]]  

 

Query 12: 

A revised version of the query is given, since relevant implementation is 

missing (COUNT has not been implemented). 

selectFrom["T_TRAINING(TRAINER(COURSE(CN)))"] 

       [("T_TRAINING(TRAINER(COURSE(CN)))", 

TF(tEOverlaps((1,1,1998),(1,1,1999))))]tt 

Result: 

Relation "T_TRAINING"  

[[RC (Relation "TRAINER"  

[[RC (Relation "COURSE"  

[[NC "T_TRAINING(TRAINER(COURSE(CN)))" 5.2]])], 

 [RC (Relation "COURSE"  

[[NC "T_TRAINING(TRAINER(COURSE(CN)))" 3.3], 

[NC "T_TRAINING(TRAINER(COURSE(CN)))" 3.5]])]])], 

[RC (Relation "TRAINER"  
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[[RC (Relation "COURSE"  

[[NC "T_TRAINING(TRAINER(COURSE(CN)))" 5.2],  

[NC "T_TRAINING(TRAINER(COURSE(CN)))" 5.0]])]])],  

[RC (Relation "TRAINER"  

[[RC (Relation "COURSE"  

[[NC "T_TRAINING(TRAINER(COURSE(CN)))" 3.3]])]])]] 


