

A TEMPORAL DATABASE MODEL

USING NESTED RELATIONS

Georgia Garani

A Thesis Submitted in Fulfilment of the Requirements for the Degree of

Doctor of Philosophy

in the

UNIVERSITY OF LONDON

October, 2003

School of Computer Science and Information Systems

BIRKBECK COLLEGE

2

“Kaˆ crÒnoj mšn ™sti tÕ di£sthma

kaq' Ö pr£tteta… ti.”

’OlumpiÒdwroj, Commentarii in Ecclesiasten,
Vol. 98, p. 508, l. 8 (Migne, Patrologia Graeca)

3

ABSTRACT

Relaxing the First Normal Form (1NF) assumption of relational databases

gives rise to Non-First Normal Form relations or nested relations for short.

Nested relations overcome a number of problems that the apparently

reasonable restriction of 1NF condition causes.

The need to support time in database systems, in order to model temporal

events in the real world, has been addressed over the last two decades,

reflecting the importance of that for almost every computer system application.

This thesis combines the features of previous nested and temporal models

to develop a new integrated Temporal Nested Model (TNM).

TNM is a temporal, nested, attribute timestamping, heterogeneous database

model, where time is represented as temporal elements. It is defined as an

extension of a Nested Relational Model (NRM) which is also formally defined in

the thesis.

All the operations of the NRM are formalised. The recursive rename

operation for nested relations is defined for the first time. A recursive natural

join operation is also formally defined, to cover all the different cases of the

common attributes that participate in the join of two nested relations. This

natural join operation is more general than all other natural join operations

that have been defined so far.

The operations of NRM are next extended in order to support the temporal

dimension of the TNM. Formal definitions for all the operations of the TNM are

given and the operations are proved to be closed.

A formal proof is given which shows that the TNM is a superset of the

Conventional Relational Model.

A number of examples of the management of temporal nested data using

the TNM are also given. The queries illustrate the features of the temporal

nested relational algebra, together with the expressive power of the new model

and the ease of use of the algebra.

Finally, a comparison with other temporal models is given and the

capabilities of the TNM are discussed.

4

A prototype implementation has also been undertaken in Miranda to

illustrate the functionality of the models defined in this thesis.

5

CONTENTS

ABSTRACT ...3

ACKNOWLEDGMENTS ..10

1. INTRODUCTION...11

1.1 BACKGROUND... 11
1.2 MOTIVATION OF THE THESIS .. 14
1.3 CONTRIBUTION OF THE THESIS... 15
1.4 OUTLINE OF THE THESIS.. 16

2. LITERATURE SURVEY ..18

2.1 INTRODUCTION ... 18
2.2 NON-TEMPORAL NESTED MODELS.. 18

2.2.1 Abiteboul and Bidoit’s model ..20
2.2.2 Roth, Korth and Silberschatz’s model..23
2.2.3 Colby’s model...24
2.2.4 Deshpande and Larson’s model..27
2.2.5 Levene’s model...28
2.2.6 Liu, Ramamohanarao and Chirathamjaree’s model...30

2.3 TEMPORAL MODELS... 32
2.3.1 Tansel’s model..35
2.3.2 Gadia’s model ..39
2.3.3 Clifford’s model ...43
2.3.4 McKenzie’s model..48
2.3.5 Snodgrass’s model...50
2.3.6 Jensen and Snodgrass’s model..52
2.3.7 Lorentzos’s model..54
2.3.8 TSQL2 ..58

2.4 SUMMARY.. 61

3. DESIGN CONSIDERATIONS ..62

3.1 INTRODUCTION ... 62
3.2 BASIC TEMPORAL DEFINITIONS... 62

3.2.1 Basic concepts of time ...63

6

3.2.2 Temporal elements...63
3.2.3 Attributes and time...65

3.3 CATEGORISATION OF TEMPORAL DATABASE MODELS.. 65
3.3.1 Valid time versus Transaction time ..65
3.3.2 Tuple timestamping versus Attribute timestamping...67
3.3.3 Homogeneous models versus Heterogeneous models...72
3.3.4 Points versus Intervals..73

3.4 THE STATIC PROPERTIES OF THE MODEL... 74
3.5 THE RUNNING EXAMPLE OF THE THESIS .. 76

3.5.1 The nested database example..77
3.5.2 The temporal nested database example...81

3.6 SUMMARY.. 84

4. THE NESTED RELATIONAL MODEL (NRM)...85

4.1 INTRODUCTION ... 85
4.2 BASIC CONCEPTS AND TERMINOLOGY.. 86
4.3 OPERATIONS IN THE NRM .. 92

4.3.1 The Recursive Nested Union Operation (∪∪)..93
4.3.2 The Recursive Nested Difference Operation (--) ..95

4.3.3 The Recursive Nested Intersection Operation (∩∩)...96
4.3.4 The Recursive Nested Projection Operation (ππ)...97

4.3.5 The Recursive Nested Selection Operation (σσ)...98
4.3.6 The Recursive Unnest Operation (µµ) ... 100
4.3.7 The Recursive Nest Operation (vv)... 100

4.3.8 The Recursive Nested Rename Operation (ρρ) .. 101

4.3.9 The Recursive Nested Cartesian Product Operation (××).. 103
4.3.10 The Recursive Nested Natural Join operation (><><).. 105

4.3.11 The Recursive Nested Θ-Join Operation (><Θ
><)... 126

4.3.12 The Recursive Nested Division Operation (÷÷) ... 127
4.3.13 Functions.. 127

4.4 SUMMARY.. 128

5. THE TEMPORAL NESTED MODEL (TNM) .. 130

5.1 INTRODUCTION ... 130
5.2 REPRESENTATION OF TNM RELATIONS ... 130
5.3 OPERATIONS IN THE TNM... 131

5.3.1 The Recursive Temporal Nested Union Operation (∪t
∪)... 132

5.3.2 The Recursive Temporal Nested Difference Operation (–t
-) ... 134

5.3.3 The Recursive Temporal Nested Intersection Operation (∩t
∩) .. 135

7

5.3.4 The Recursive Temporal Nested Projection Operation (πt
π)... 136

5.3.5 The Recursive Nested TimeSlice Operation (ss) .. 137

5.3.6 The Recursive Temporal Nested Selection Operation (σt
σ)... 139

5.3.7 The Recursive Temporal Unnest Operation (µt
µ) .. 140

5.3.8 The Recursive Temporal Nest Operation (?t
?) ... 140

5.3.9 The Recursive Temporal Nested Rename Operation (ρ t
ρ)... 141

5.3.10 The Recursive Temporal Nested Cartesian Product Operation (×t
×).. 141

5.3.11 The Recursive Temporal Nested Natural Join Operation (><t
><) ... 142

5.3.12 The Recursive Temporal Nested Θ-Join Operation (><tT
><).. 147

5.3.13 The Recursive Temporal Nested Division Operation (÷t
÷).. 147

5.3.14 Temporal Functions... 147
5.4 CLOSURE PROPERTY OF OPERATIONS... 148
5.5 SUMMARY.. 150

6. MODEL IN USE... 152

6.1 INTRODUCTION ... 152
6.2 MANAGEMENT OF NESTED DATA.. 152
6.3 MANAGEMENT OF TEMPORAL NESTED DATA.. 160
6.4 SUMMARY.. 174

7. MAPPING THE CONVENTIONAL RELATIONAL MODEL (CRM) TO THE TNM......... 175

7.1 INTRODUCTION ... 175
7.2 COMPARISONS OF DATABASE MODELS... 175
7.3 THE CONVENTIONAL RELATIONAL MODEL (CRM).. 177

7.3.1 Data types-Domains... 177
7.3.2 Databases... 178
7.3.3 Structures... 178
7.3.4 Relational Operators.. 178
7.3.5 Operations.. 178
7.3.6 Functions.. 179

7.4 THE NESTED RELATIONAL MODEL (NRM).. 179
7.4.1 Data types-Domains... 179
7.4.2 Databases... 179
7.4.3 Structures... 180
7.4.4 Relational Operators.. 180
7.4.5 Operations.. 180
7.4.6 Functions.. 181

7.5 MAPPING THE CRM TO THE NRM... 181
7.5.1 Data types - Domains... 181

8

7.5.2 Databases... 181
7.5.3 Structures... 182
7.5.4 Relational Operators.. 182
7.5.5 Operations.. 182
7.5.6 Functions.. 185

7.6 THE TEMPORAL NESTED MODEL (TNM) ... 186
7.6.1 Data types-Domains... 186
7.6.2 Databases... 186
7.6.3 Structures... 187
7.6.4 Relational Operators.. 187
7.6.5 Operations.. 187
7.6.6 Functions.. 187

7.7 MAPPING THE NRM TO THE TNM... 188
7.7.1 Data types - Domains... 188
7.7.2 Databases... 188
7.7.3 Structures... 188
7.7.4 Relational Operators.. 188
7.7.5 Operations.. 189
7.7.6 Functions.. 189

7.8 MAPPING THE CRM TO THE TNM... 189
7.9 SUMMARY.. 190

8. COMPARISON WITH OTHER MODELS .. 191

8.1 INTRODUCTION ... 191
8.2 CLASSIFICATION OF MODELS... 191
8.3 EVALUATION CRITERIA... 194
8.4 EVALUATION OF VALID TIME ALGEBRAS... 198
8.5 SUMMARY.. 207

9. CONCLUSION AND FUTUR E RESEARCH.. 208

9.1 CONCLUDING REMARKS.. 208
9.2 FUTURE RESEARCH.. 210

REFERENCES ... 212

APPENDICES .. 224

A. FORMAL SYNTAX OF THE TNM ALGEBRA.. 225

B. PROTOTYPE IMPLEMENTATION .. 229

B.1 INTRODUCTION... 229

9

B.2 IMPLEMENTATION.. 229
B.2.1 Description of files ... 230
B.2.2 Declaration of tables... 231
B.2.3 Functions... 233

B.3 MIRANDA CODE... 235
B.4 ILLUSTRATION EXAMPLES.. 259

10

ACKNOWLEDGMENTS

A number of people have helped me significantly through out all these years

of my research. The contribution of my supervisor, Dr Roger Johnson, to this

work, is inestimable. He was always supportive, encouraging and patient,

willing to give his guidance and advice to every problem that arose. Professor

George Loizou, Head of the Computer Science Department of Birkbeck College,

has helped me significantly with his unique way of parental interest and

support. I am also grateful to Nikos Lorentzos, Associate Professor of the

Agricultural University of Athens, for many discussions and constructive

comments and suggestions on my work. Furthermore, many thanks are also

due to the external examiner of this thesis, Professor Peter Gray, for his very

helpful comments which were much appreciated.

I would also like to thank the System Group of the Computer Science

Department and especially Phil Gregg and Andrew Watkins, for providing me

with all the necessary computing facilities and Ms Betty Walters, the executive

officer of the Computer Science Department, for providing an excellent working

environment in which I was pleased to study.

Lastly and most importantly, my family deserves many thanks. I am

indebted to my parents, Elias and Katerina, for their emotional and financial

support. They were always so close to me, ready to share and solve my

problems and worries. Angelos and Christina Efstathiou have been excellent

parents in law. I would like to thank them for their moral support and

patience. My sister, Myrto, has been wonderfully understanding and

encouraging through out this long process.

There are not enough words to thank my husband, Dr Athanasios

Efstathiou, for what he has offered me all these years. He was the source of

inspiration and power for me. He has given me boundless love, support, and

encouragement, which was so important for the completion of this research.

Without him this work would not have been made possible. This thesis is

dedicated to him.

The work documented in this thesis was partially funded by Birkbeck

College Fees Awards Scheme for which I express my thanks.

11

CHAPTER 1

1. INTRODUCTION

1.1 Background

Time is a ubiquitous feature of real world phenomena. Every activity or

change in the real world takes place in the context of time both at the

microscopic and macroscopic level. Since prehistoric eras, people in every

culture have been preoccupied with measuring and recording the passage of

time. Today, in an age dominated by technology and information systems, the

recording of time is even more vital and essential since only few real world

applications do not have a temporal component.

Particularly in the field of database technology, the storage of data without

a temporal dimension could signify, in the worst case, a vain attempt at

recording information since information that changes over time cannot be

recorded. Conventional databases without a temporal dimension record single

states of real world phenomena. Every change of data, whether deletion,

insertion or update, transitions the database from one state to another state.

In consequence, past database states are not retained, resulting in a number

of limitations:

§ The evolution of real world phenomena over time cannot be recorded.

§ Only queries that concern the current state of the database can be

answered.

§ Real world changes that will occur in the future or have occurred in the

past cannot be recorded.

§ Lack of functions to express common queries such as common points of

two overlapping time intervals.

Over the years, organisations and researchers have been trying to solve this

highly demanding problem of time by providing special, application dependent

facilities. In the most basic approaches, time was treated as another field in a

12

database table and queries concerning time were expressed with conventional

SQL queries. These queries have an increased complexity, are error-prone,

time consuming to formulate and lack expressive power.

The development of generalised facilities for the direct support of time in

databases has been inevitable. Consequently, in the last twenty years there

has been a growing interest in extending data models to incorporate the time

dimension. Database management systems providing support for the storage

and retrieval of time-dependent data are called temporal database

management systems and the corresponding databases, temporal databases.

Time in temporal databases can be expressed in many different ways; it

may be of interest to record the exact time when an event happened or the

period in which an event took place or the duration of an event or even the

periodicity of an incident – the frequency with which an incident occurs in

time. Time is used to distinguish between past, present or future states. The

recording of time allows the identification when facts are true in the modelled

reality (valid time) or when facts are current in the database (transaction time).

Time can stamp either tuples (tuple timestamping) or attributes (attribute

timestamping) in relations. This diversity has produced many different

temporal database models over the last twenty years.

In chapter 2 there is a detailed review of those temporal data models which

relate most closely to the work in this thesis. In order to provide the reader

with a general introduction to work in the wider area, there follows now a

short overview of developments across the whole field of temporal databases.

The first attempt to formally define a temporal database model was appeared

in [Ben82]. Ben-Zvi calls his model Time Relational Model (TRM) and also

proposes a query language for it. His model supports both valid and

transaction time. TRM is a tuple timestamping model with five additional

implicit time attributes, effective -time-start, effective -time-stop, registration-

time-start, registration-time-stop and deletion-time. Static relation states as

well as temporal states can be supported in his model. His temporal relational

algebra is extremely limited. He defines a new operation, Time-View, which

produces a relation state from a temporal state. Every operation defined in

Ben-Zvi’s algebra uses this new operation to construct a conventional relation

to which standard relational operations can be applied. Consequently, Ben-Zvi

does not provide a temporal formalism or a set of temporal query facilities.

13

Since this first attempt, a plethora of papers about temporal databases have

appeared in the literature. Bibliographies about temporal databases have been

published over the years showing the considerable activity of researchers in

this field ([BADW82], [Mck86], [SS88], [Soo91], [Kli93], [TK96] and [WJW97]).

Gadia, Tansel, Clifford, Lorentzos, McKenzie, Snodgrass, Jensen, to name just

a few, have worked extensively in this field and made significant contributions.

They have all contributed to the general understanding of the subject and

have helped in the development of alternative temporal database modelling

approaches and in more or less uniformity in the definitions of basic concepts

and terms.

In 1993 the first book on temporal databases appeared ([TCG+93]). It is a

collection of papers by the pioneers in the field covering different aspects of

temporal databases such as formalisations of new temporal data models,

temporal query languages and their completeness as well as the

implementation of temporal database management systems. A glossary of

temporal database concepts is included in this book as a result of e-mail

discussions among the temporal database community. This glossary has since

been revised and the latest version can now be found at

http://www.cs.auc.dk/~csj/Glossary. A special issue of the IEEE

Transactions on Data and Knowledge Engineering was devoted to temporal

and real-time databases in August 1995. In 2000 a book was published on

time granularities in databases, which is vital when designing and

implementing databases supporting temporal data ([BJW00]). In 2003 another

book was published, showing the endlessly interest on the temporal data and

the relational model. It is a detailed investigation into the application of

interval and relation theory to the problem of temporal database management

([DDL03]).The first international workshop on an Infrastructure for Temporal

Databases was organised in 1993 in Arlington, Texas, followed by the 1995

International Workshop on Temporal Databases held in Zurich ([CT95]) and

two Dagstuhl Seminars, one on Temporal Databases in 1997 ([EJS97]) and

another on Integrating Spatial and Temporal Databases in 1998

(http://timelab.co.umist.ac.uk/events/dag98/). These workshops brought

together researchers interested in the development of tools for the

management of temporal data. In 2001 another symposium was held at

14

Redondo Beach, CA ([JSST01]) concerning both spatial and temporal

databases.

In parallel with these developments, the temporal database research

community has worked on the specification of a temporal query language. A

significant work has been done by a committee comprising twenty one

members residing in eight different countries that proposed a consensus

temporal extension to SQL-92, called TSQL2 ([Sno95]), which has not become

a standard.

A new data type “PERIOD” has been included in SQL/Temporal, which is

not yet a standard. Currently, there are no plans to publish a temporal

 SQL standard.

Another book recently published by Snodgrass ([Sno00]) deals with the

development of temporal database applications in SQL.

The activity described above clearly shows the importance of temporal

databases and the interest of the database research community in the subject.

It is remarkable, therefore, that there is still no widely accepted temporal

query language and implementation available to users. Furthermore, the

research field is still active, since answers have not yet been given to a variety

of questions important in this area. These aspects include the definition of a

data model that can support the essential semantics of time-varying relations,

temporal data presentation, temporal data storage, efficient temporal query

evaluation and temporal implementation strategies.

1.2 Motivation of the Thesis

A plethora of incompatible temporal data models have been proposed so far.

Some of them are simple extensions to the Conventional Relational Model and

others contain quite complicated new proposals. Their differences arise

because of their varying support on the following:

§ homogeneous or heterogeneous relations (having attribute values

defined for the same or different time intervals in a tuple respectively),

§ tuple or attribute timestamping representation,

§ valid time (historical models), transaction time (rollback models) or valid

and transaction time (bitemporal models),

15

§ time representation as time points, time intervals or time elements (sets

of time intervals),

§ 1NF or N1NF relations.

This diversity exacerbates the already complex problem of modelling time in

databases.

The motivation of this thesis is to define a model which would provide as

few representation constraints as possible and at the same time, as much

expressive power as possible. For this reason, features that would tend to limit

the representational capabilities of the model are rejected. Therefore, it is

claimed that the model defined in this thesis is based on features that are

more general than previous models. In pursuit of this objective, heterogeneous

relations have been chosen rather than homogeneous, attribute timestamping

rather than tuple timestamping, time elements rather than time points and

time intervals, and finally N1NF rather than 1NF. Each of the four

characteristics chosen is a generalisation of the option declined.

To conclude, the objective of this thesis is to design a model that achieves a

balanced combination of expressive power with ease of representation, use and

understanding.

1.3 Contribution of the Thesis

The major contributions of this thesis are the following:

1. A Temporal Nested valid time relational Model (TNM) is formalised for

the representation of temporal and nested data. For the manipulation of these

data TNM algebra is formally defined. It is proved that all the operations of

the algebra are closed. Additionally, TNM is proved to be a consistent

extension of the CRM (Conventional Relational Model).

2. TNM is a well-defined model that achieves a very high rating against

evaluation criteria. The criteria, derived from previous research in the field

([Mck88]), are mutually compatible and well established. The advantages of

TNM against other previous proposed temporal models are thus demonstrated.

3. A Nested Relational Model (NRM) is formalised for the representation of

nested data. A recursive algebra for NRM is proposed. All the operations are

formally defined, including also the rename operation for nested relations.

NRM is proved to be a superset of the CRM.

16

4. The nested generalised natural join operation is formally defined

recursively for nested relations for the first time. The generalised natural join

can be applied to all pairs of “joinable” nested relations independently of the

number of the common attributes between the two relations and their types,

i.e. atomic or relation-valued at either the top or lower levels (same or

different) of the two relations. Six distinct cases are identified, distinguished

by the above-mentioned properties of the common attributes participating in

the natural join operation.

5. The temporal nested generalised natural join operation is formally

defined as a consistent extension of the generalised natural join operation for

nested relations.

The full expressive power of TNM is demonstrated by a series of examples.

To conclude, the result of this research is an integration of temporal and

nested database models producing a formally defined generalised temporal

nested database model, in which not only temporal data but also all other

static data can be nested to any finite depth so that the full power of the

nested and temporal features can be exploited within one model.

1.4 Outline of the Thesis

The remainder of this thesis is organised in eight chapters.

Chapter 2 presents a survey of relevant existing database models. The

chapter is divided into two parts. In the first part, six N1NF models are

described and their most important characteristics are presented. The natural

join operation is described for each of these models and specific deficiencies

are discussed. These shortcomings motivate the generalised nested natural

join proposed in chapter 4.

Eight different representative research approaches in the field of temporal

databases are presented in the second part of this chapter. The temporal

models of these approaches are described and the same example relation is

presented in each of these models to illustrate the differences in their

representational capabilities. Deficiencies of these models are also identified.

17

In Chapter 3 basic temporal definitions used in the thesis are given, the

properties of the model defined in the subsequent chapters are described and

the design decisions justified.

The Nested Relational Model, NRM, is formalised in Chapter 4. All the

operations of the model are defined recursively. An extended definition of the

generalised natural join operation for nested relations is provided.

In Chapter 5 the Temporal Nested relational Model, TNM, is formalised. The

algebra of the TNM is formally defined and all the operations are proved to be

closed.

The full expressive power of TNM is demonstrated by a series of examples in

Chapter 6.

In Chapter 7 it is proved that NRM and TNM are consistent extensions of

the Conventional Relational Model.

In Chapter 8 the temporal models described in Chapter 2 and TNM are

evaluated against 22 compatible criteria. It is shown that TNM satisfies the

majority of these criteria.

Finally, Chapter 9 summarises the achievements of this thesis and points

out directions for possible future research.

Two appendices have also been included in the thesis. Appendix A contains

a formal syntax of the TNM algebra. In Appendix B a brief description of the

prototype implementation that has been undertaken in Miranda is included,

as well as selected parts of the code and examples presented in the thesis,

occasionally with their results.

18

CHAPTER 2

2. LITERATURE SURVEY

2.1 Introduction

A number of researchers have made proposals to relax the First Normal

Form (1NF) assumption using the Non-First Normal Form (N1NF or NF2)

relations to solve problems in new applications such as text processing,

engineering design systems and office automation and thus overcome a

number of limitations imposed by the apparently reasonable restriction that

1NF causes. In section 2.2 the advantages of the Non-First Normal Form

relational database model are presented and different approaches to support it

are described.

At the same time, in the last two decades many papers have appeared

which address the problem of supporting time in database management

systems. Numerous researchers have discussed the problem of modelling the

time dimension of events that occur in the real world which is very important

to almost every computer system application including banking, medical

records and accounting. To solve this vital and highly demanding problem,

they have proposed a variety of techniques that have addressed it from

different viewpoints. Different approaches for the incorporation of time in

database systems are presented in 2.3, where models introduced by a number

of researchers are described.

2.2 Non-Temporal Nested Models

The Non-First Normal Form relational database model, or more simply the

nested relational model, allows relations to have attributes which can have

non-atomic values, i.e. the latter are themselves relations, subrelations of the

19

relation to which they belong. The NF2 model provides the basis for the object-

oriented database model. Many models ([JS82], [FT83], [AB86], [SS86], [TF86],

[RKS88]) have been defined since 1977, when Makinouchi ([Mak77]) proposed,

for the first time, the relaxation of the 1NF assumption.

In spite of the large number of NF2 models, only a few query languages have

been proposed for the management of non-first normal form relations (e.g.

[RKB87], [LD98] and [WTWL96]) by reason of its difficulty. These are

extensions of existing query languages, SQL and Query by Example. To the

knowledge of the author of this thesis, [LD98] is the most recent. In [LD98], a

Query by Example language for nested tables, called QBEN, has been

described which allows the formulation of complex queries.

The use of a NF2 model eliminates many problems. The NF2 model enables

data about an object to be represented within one relation rather than

distributing it over several relations. One major advantage is the fact that join

operations which are substantially expensive in terms of execution time can be

avoided.

The Non-First Normal Form database models that have been developed so

far can be divided into two categories. Models of the first category are called

non-recursive models (e.g. [JS82], [TF86], [OOM87]) and those of the second

category are called recursive models (e.g. [SS86], [AB86], [RKS88], [Col90],

[Lev92], [LR94a]). The two approaches are distinguished by the recursive or

non-recursive nature of the operators that have been defined by the distinct

researchers. The difference is that recursive operators can be applied

repeatedly to the subrelations at the different levels of a relation, while the

non-recursive operators cannot. In section 4.3 of this thesis the superiority of

the recursive models compared to the non-recursive ones is explained and

justified.

Previous research on some of the most important NF2 recursive models is

reviewed below in chronological order. Non-recursive models are not discussed

since, as explained in section 4.3, they are not preferred. The natural join

operator is examined in detail for each model. The ability to join two or more

relations is one of the most powerful features of relational systems ([Dat00]).

However, the natural join operation is the most complicated operation

involving nested relations since it is a binary operation and can be performed

between a relation or a subrelation of a relation and another relation or

20

subrelation of it. The relations that participate in the natural join operation

must have common attributes that can be either atomic or relation-valued

(subrelations) and which can be either at the top level of the relations or at

some lower level, either the same or not. Several researchers (e.g. [AB86],

[Col90], [DL91], [Lev92], [LC96], [RKS88]) have defined natural join operations

between two nested relations. However, to the author’s knowledge, all the

definitions given so far have a very limited functionality as is explained in

subsequent sections.

2.2.1 Abiteboul and Bidoit’s model

In [AB86], Abiteboul and Bidoit present a Non-First Normal Form database

model called the Verso model. The data structure and operations of the model

are formally defined. The main characteristic of the proposed algebraic query

language is that it allows data restructuring. Five unary operations (extension,

projection, selection, restriction and renaming) and five binary ones (union,

intersection, difference, join and cartesian product) are introduced as well as a

restructuring operation. They claim that these operations all together are as

powerful as the conventional relational algebra.

In the Verso model, a format specifies the underlying structure of a Verso

instance (a generalisation of a relational instance).

The extension operation is not formally defined. The projection operation

presented in this model is not a generalisation of the projection for flat

relations, since the only projection that can be performed for a flat relation is

over the whole relation. However, arbitrary projections can be achieved but

they usually require a restructuring of the original relation. Two versions of

the selection operation are defined in [AB86]. Firstly, a simple version of the

selection operation, the Verso-selection, is introduced and later an extension

of the selection, called the “super-selection” which can be expressed by the

Verso-selection, projection, and join operations. The restriction operation is

itself restricted in that it can be applied only to the “root” of the format.

They also define a join operation. It can be performed only between

instances over compatible formats. Two relations have compatible formats when

they have the same atomic attributes at the top level of their schemes. To

overcome several limitations apparent with this definition, they introduce the

21

restructuring operation which allows for the structure of a relation to be

modified. However, the restructuring operation is not a nonloss operation.

Therefore, three format transformations are defined which characterise a

format dominance (one format is dominated by another one iff each instance

over the first format can be represented by an instance over the second format

containing the same information). These format transformations are root and

branch permutation, compaction and extension. However, these format

transformations cannot transform entirely the structure of all relations.

As a consequence of the limitations of the join and resructuring operation,

join operations of practical interest cannot be formulated. An example is given

below which shows that the join operation between two relations cannot be

performed even after restructuring the relations.

Example 2.1: Suppose that two relations are given: the TRAINING_1

relation (Fig. 2.1) and the DEPT_1 relation (Fig. 2.2). TRAINING_1 relation has

two attributes, COMPANY and PROGRAMME. COMPANY is an atomic

attribute that represents the company name and PROGRAMME is a

subrelation which contains two attributes, TRN atomic attribute which

denotes the trainer’s name and CODE′ which is a subrelation containing only

one atomic attribute CODE, which shows the codes of the courses a trainer

has taught. Relation TRAINING_1 has the following scheme: TRAINING_1 =

COMPANY PROGRAMME(TRN CODE′(CODE)) (for more explanations about

this notation see section 4.2).

Relation DEPT_1 has three attributes, two atomic, D and DN, and one

nested, UNIT. UNIT has three attributes, the atomic attributes UN and UD and

the nested attribute TRAINER having two attributes, the atomic attribute TRN

and the nested attribute C having the atomic attributes CN and Y.

Semantically, D is the department number, DN is the department name, UN is

the unit number, UD is the unit description, TRN is the trainer’s name for

each course, CN is the course number that each trainer has given in year Y.

Relation DEPT_1 has the following scheme: DEPT_1 = D DN UNIT(UN UD

TRAINER(TRN C(CN Y))).

22

 PROGRAMME

COMPANY TRN CODE ′

 CODE

 Jack xx0

 Apple Mark xy1

 xy2

 xy1

IBM Tim xx2

 Microsoft Karen xx1

 Fig. 2.1: TRAINING_1

 UNIT
D DN UN UD TRAINER
 TRN C
 CN Y

 511 Software 1 75
 Engineering Mark 2 76
 5 79
 1 Research Karen 1 82
 552 Basic Research 2 79
 Tim 5 79
 2 76
 678 Planning Mark 4 82
 650 Design Karen 1 75
 2 Development 780 Maintenance Tim 3 82
 Mark 2 76
 2 81
 981 Planning Jack 3 82
 5 79
 Fig. 2.2: DEPT_1

Suppose that we want to find the names of the companies (COMPANY) for

which trainers (TRN) have taught courses to technical employees together with

the course number of each course (CN). The two relations must be joined on

TRN, their common atomic attribute. However, TRN is at different nesting

levels in the two relations and is not at the top level of any of them. Therefore,

restructuring operations must be applied to both relations to transform their

structure, in order to “move” TRN at the top level. However, this is not possible

in [AB86]. This is because root permutation, branch permutation, compaction

and extension can either move the attributes at the same nesting level or at

23

lower nesting levels. The conclusion is that the join operation has limited

capabilities.

The cartesian product operation (defined after the join operation) requires

the first operand to be an instance over a flat relation and this is again a

significant weakness.

The algebra that they define is very elaborate. New definitions and notations

are given, even for the simplest concepts, such as a (Verso) instance over a

format. Furthermore, the key feature of their model, the restructuring

operation, cannot reconstruct entirely the structures of the relations without

loss of information, even when using a combination of all three

transformations, root and branch permutations, compactions and extensions,

as has been demonstrated above by Example 2.1. As a result, the potentiality

of the operation is limited to a restricted spectre of cases.

2.2.2 Roth, Korth and Silberschatz’s model

An extended relational calculus and an equivalent algebra for Non-First

Normal Form relations was defined in [RKS88] in order to unify the various

theories of Non-First Normal Form databases that had been proposed up to

that time.

The Partitioned Normal Form (PNF) property is defined for nested relations.

A relation R is in PNF if all the atomic attributes of R form a key for the

relation and recursively, each relation-valued attribute of the relation is also in

PNF. As a result, nested relations can be divided into those in PNF and those

not in PNF. [RKS88] shows that relations in PNF have some good properties

compared to other relations. However, in general, relations in PNF impose two

important restrictions, that there is at least one atomic attribute at every

nesting level of the relation and also that relation-valued attributes cannot be

part of the key.

Two new operators, nest and unnest, are added to the basic set of

operators. The basic algebra operators, union, intersection, difference,

cartesian product, natural join and projection are extended to work within the

class of PNF relations. However, in [LL91] it has been proved that the extended

projection of a nested relation in PNF is not a precise generalisation of the

standard projection operator with respect to unnesting, as it is claimed in

24

[RKS89]. Union, intersection and difference are defined recursively. Cartesian

product remains unchanged. Natural join is defined recursively. According to

the definition, two tuples contribute to the natural join if the extended

intersection of their projections over common attributes is not empty. This

extended natural join can be performed either between relations which have

common attributes at the top level of their scheme or between relations whose

only common attributes are attributes of a common higher-order attribute.

However, the case where the common attributes, either atomic or relation-

valued, are at lower nesting levels, the same or different, in the two relations,

is not covered. The extended projection is a normal projection followed by a

tuplewise extended union of the result. The union merges tuples that agree on

the zero-order names left in the projected relation. Finally, the selection

operator is not extended.

Roth, Korth and Silberschatz also show that PNF relations are closed under

the extended operators. It is important to note that these operators can be

applied to non-PNF relations as well. The result, however, is not always a PNF

relation.

The author of this thesis believes that this approach, proposed to provide a

simple and simultaneously complete model for nested relational databases,

has a number of limitations. These limitations concern firstly, the fact that the

algebraic operators proposed in [RKS88] are defined in such a way that work

within the class of PNF relations. Therefore, they are closed only under PNF

relations. In general, the operators defined in [RKS88] are not closed.

Secondly, some of the defined operations cannot be applied to subrelations of

nested relations as is for example projection, selection, join and cartesian

product operations. Consequently, there are cases that are not covered by this

approach and as a result, advantages of nested based relational approaches

are missed.

2.2.3 Colby’s model

A recursive algebra for nested relations is defined by Colby in [Col90]. The

classical operators are extended with recursive definitions in order to be used

with subrelations of relations as well as with relations. As a result,

restructuring or other operators which would be used as a “navigator” are

25

avoided (as is for example the subrelation constructor in [DL91] which

provides navigational ability; for more explanations about the subrelation

constructor see below in Deshpande and Larson’s model). However, the nest

and unnest operations are occasionally needed for accessing subrelations.

Therefore, nest and unnest operations are defined recursively. The difference

from nest and unnest operations defined in previous models is that they can

be applied to subrelations directly, without transforming any other attribute of

the relation. This is achieved by the assistance of a nest and an unnest list

which are defined exactly for this purpose.

Union, intersection and difference are defined in two different ways. In the

first way, non-recursive definitions are used, exactly as in [TF86], where only

entire tuples participate in the operations, but not subrelations. The second

way involves recursive definitions similar to those defined in [AB84], [DL87]

and [RKS88], where the operations can be applied recursively to the

subrelations of the tuples that share common key attributes. However, the

PNF assumption, defined in [RKS88], is not made. Selection and projection

operations are defined using the notions of a select and a project list

respectively. They can be performed recursively at all levels of a nested relation

without restructuring.

The cartesian product operation can be performed recursively between a

relation and either another relation or a subrelation of another relation.

Colby defines the join operation recursively, for two cases, firstly where the

common subrelations are at the top level in both relations that participate in

the join and secondly where the common attributes are atomic which, while

not at the top level in the first relation, are at the top level in the second. The

second case requires the use of a join path that behaves as the guide-line

which penetrates the different nesting levels of the first relation. Colby also

suggests that it does not make sense to perform a join operation between

subrelations which are not at the top level of two different relations. However,

it is shown below (Example 2.2) that this is not correct since there are cases

where such a join operation is meaningful and can take place between two

subrelations of two relations.

Example 2.2: Consider the example database, which contains two

relations, the TRAINING_2 relation (Fig. 2.3) and the DEPT_2 relation (Fig. 2.4)

Both relations are modified versions of relations TRAINING_1 (Fig. 2.1) and

26

DEPT_1 (Fig. 2.2) respectively. Relation TRAINING_2 has the following scheme:

TRAINING_2 = COMPANY TRAINER(TRN C (CN Y)). Relation DEPT_2 has the

following scheme: DEPT_2 = D DN UNIT(UN UD C(CN Y)).

 TRAINER

COMPANY TRN C

 CN Y

 Jack 1 75

Apple 2 76

 1 82

 Mark 3 82

 2 79

 3 82

IBM Tim 5 79

 4 82

 Microsoft Karen 2 77

 2 81

 Fig. 2.3: TRAINING_2

 UNIT

D DN UN UD C

 CN Y

 1 75

 511 Software 2 76

 Engineering 5 79

 1 Research 552 Basic 1 82

 Research 2 79

 678 Planning 2 76

 4 82

 650 Design 1 75

 2 77

 2 Development 780 Maintenance 3 82

 981 Planning 2 81

 3 82

 Fig. 2.4: DEPT_2

Suppose that we want to find the names of the trainers and the

departments in which they have taught at least one course. The two relations

have to be joined on attribute C which is a subrelation in both relations.

Therefore, there are cases (although complicated) where the join operation

between common subrelations not at the top level of two different relations

should be performed and is really meaningful.

Colby also demonstrates the equivalence of the recursive and the non-

recursive algebras. Finally, some limitations of the model are briefly discussed.

27

These limitations refer to the weakness of the presented recursive algebra to

support arbitrary algebraic expressions in lists (select lists, project lists etc.) of

the operators, such as comparisons of values of compatible attributes situated

at different nesting levels in a relation. As a result, there are still cases where

the use of nest and unnest operators is necessary.

2.2.4 Deshpande and Larson’s model

An algebra for nested relations is presented in [DL91] which is an improved

version of the one proposed by Schek and Scholl ([SS86]). Non-recursive

union, difference, select, cartesian product, project, subrelation constructor,

rename and PNF-Transformer operators are defined first.

Operations on subrelations at any level take place with the aid of a new

operator called the subrelation constructor. The subrelation constructor can

transform the interior of a nested relation.

The PNF-Transformer operator transforms recursively a nested relation into

a nested relation in Partitioned Normal Form (PNF). The select operator is

extended to include set comparisons and relational algebra expressions over

the relation-valued attributes. However, comparisons can only take place if the

attributes that participate in the selection predicate are in the scope of the

operand relation. As it is defined in [DL91], the scope of a pathname consists

of all the other attributes which are “seen” as one traverses the path starting

at the root of the scheme diagram of R and ending at the subrelation identified

by the pathname.

With the project operator, if the project list contains two or more relation-

valued attributes, the cartesian product of their instances is computed in the

same tuple firstly and then the result relation is formed.

In addition, set operators, project, join, nest and unnest are defined

recursively. These operators preserve PNF. Consequently, they inherite the

limitations discussed in section 2.2.2.

Null values are also supported.

Deshpande and Larson ([DL91]) briefly present a join operation for nested

relations. It is defined formally using a non-recursive cartesian product

operation for nested relations.

28

Aggregate functions are included in their algebra, as opposed to all the

other proposed models.

In order to keep the proposed algebra as simple as possible, they make

some assumptions which restrict the expressive power of the model.

Overall, it is this author’s opinion that this approach is incomplete since

not all the different cases are taken into consideration under the pretext of

simplicity, as has been explained above, as for example for the cases of the

selection and join operations. In addition, the subrelation constructor

overcomes some problems caused by the fact that the operators are not

recursive, at the cost that occasionally this operator has to be invoked one or

more times in the formulation of queries. Clearly, this invocation increases the

execution time to answer queries.

2.2.5 Levene’s model

Levene in [Lev92] presents the nested Universal Relation Model (nested UR

model) which forms an extension of the classical UR model to nested relations.

Levene claims that the nested UR model provides logical data independence,

since users can view the nested database as if it was composed of a single

nested relation. Null values are also taken into consideration in the formalised

proposed model. The nested UR model is defined using the tools provided by

the null extended nested relational model which was defined earlier in [Lev92].

For the null extended nested relational model, null extended domains and

null extended relations are defined. A typical nested relation in the nested

model proposed by Levene can be seen in Fig. 2.6, over the nested relation

scheme (NRS) of Fig. 2.7. The nested relation TRAINING* corresponds to

nested relation TRAINING_3 of Fig. 2.5.

Note: In NRS, the names of the relation-valued attributes, like the names of

the nested relations, are followed by *.

29

 TRAINER

COMPANY TRN CODE ′ DEPT_DIVISION

 CODE

 Jack xx0 Administration

 Apple Mark xy1 Development

 xy2

 xy1 Customer Services

IBM Tim xx2

 Microsoft Karen xx1 Technical Support

 Fig. 2.5: TRAINING_3

 (TR? (CODE)* DEPT_DIVISION)*

COMPANY TRN (CODE)* DEPT_DIVISION

 CODE

Apple Jack xx0 Administration

 Mark xy1

xy2

 Development

IBM Tim xy1

xx2

 Customer Services

Microsoft Karen xx1 Technical Support

Fig. 2.6: TRAINING* relation in Levene’s model

(corresponds to relation TRAINING_3 of Fig. 2.5)

Fig. 2.7: The scheme tree of relation TRAINING*

A null extended algebra for the null extended nested relational model is

defined. One of the main features that the null extended algebra provides, is

the fact that the user does not need to know the structure of the nested

relations in order to express a query in that algebra. All the basic operators of

the algebra are defined extensively. Additionally, three operators, the null

extended join, the null extended outer join and the null extended total

COMPANY

CODE

TRN DEPT_DIVISION

30

projection are defined as extended versions of the corresponding operators of

the UR model to nested relations.

The null extended join is more general than other previously defined joins

for nested relations since it supports null values. However, according to the

definition, not all relations can be joined together. In order to perform a join

between two relations, the two relations must be joinable (joinable relations in

Levene’s model are a generalisation of compatible formats (see [AB86]), since

they are not restricted to have the same attributes in their root nodes). If not,

two restructuring operations must be applied, namely empty node insertion

and root weighting, which transform the schemes of the relations to joinable

NRSs. Clearly, restructuring operations are expensive operations in terms of

optimisation and aggravate the performance of already computationally

complex join operations in nested relations. Additionally, as shown in chapter

4 of this thesis where the NRM is proposed, the join operation defined there

can be applied to all nested relations having one or more common attributes,

without the need of applying a restructuring operation prior to performing the

join (see also section 2.2.1). Therefore, the use of restructuring operations in

the definition of the join operation is estimated to be a limitation in Levene’s

model.

Levene also examines null extended data dependencies and more

specifically null functional dependencies, null extended functional

dependencies and null extended join dependencies. Following this, null

extended lossless decomposition and the extended chase procedure for nested

relations are also defined. Finally, the special case when the nested database

consists of a single nested relation is investigated.

Lastly, the motivation of [Lev92] is the solution of the problem of incomplete

information; therefore, [Lev92] has to be evaluated from this point of view.

Further, e ven the problem of defining the join operation of two nested relations

is solved with the help of the insertion of empty nodes. The author of the

present thesis estimates that this approach could be avoided.

2.2.6 Liu, Ramamohanarao and Chirathamjaree’s model

In [LR94a] and [LR94b], Liu and Ramamohanarao present an algebra for

nested relations. The definitions of selection, projection and intersection are

31

extended to support nested relations. A natural join is defined for cases where

the two relations have two common nested attributes at the top level. An

extended cartesian product is defined which combines two relational operands

with common higher-order attributes not only at the top level but also at the

subschema levels. In addition, a path-dependent cartesian product is defined

as an extension of the extended cartesian product, which is defined at the

interior of the subschemes that are specified in the given paths. A new join

operator, called P-join, is introduced as a combination of the extended natural

join and a recursive join. Two versions of the P-join are distinguished: the P-

join operator with a single join path and the P-join operator with multiple join

paths. These definitions are defined as a combination of three other nested

relation operations: cartesian product, selection and projection. In their

approach two nodes are selection-comparable when one of the two nodes is a

child of an ancestor of the other node. The P-join operation can be performed

only when the common attributes appear on selection-comparable nodes in

the scheme tree of the relation which results from the execution of the

cartesian product operation between the two relations which participate in the

join operation (P-join condition). Therefore, the functionality of the join

operation is very limited. Specifically, according to their Decomposition P-join

definition (which is a different name for the P-join operator with multiple join-

paths) firstly, the two schemes must be decomposed into pairs of subschemes

that satisfy the P-join condition. Then, the P-join operator is applied to each

pair of subschemes that contain the common attributes and finally, the

natural join is performed on the result relations. However, the subschemes of

the same relation need to contain at least one common atomic attribute at

their top level. Therefore, relations containing only nested attributes at the top

level cannot be joined, even when they have one or more common attributes,

as shown in the following example.

Example 2.3: Relations R and Q in Fig. 2.8 have been borrowed from

[LR94a], where a join operation is illustrated. Now, it is noticed that if the two

relations do not contain any atomic attribute at the top level of their schemes,

i.e. the attributes A and I from relations R and Q respectively, then, the join

operation cannot be performed since it is not possible to decompose each

relation such that the intersection of all subschemes contains at least one

32

common atomic attribute at the top level to fulfil the condition that must hold

according to the formal definition of the Decomposition P-join operation.

R

 A X Y U

 B C Z D E K

 I J

Q

 I Y′ V

 D F K G

Fig. 2.8: Schemes of relations R and Q as can be found in [LR94a]

Liu and Chirathamjaree in [LC96] revise the P-join operator proposed in

[LR94a] and present an algorithm that computes the P-join operator. They also

evaluate its estimated cost.

In the opinion of the author of this thesis, the approach, whose main

motivation is to give a more efficient and powerful definition of the join

operation for nested relations, provides a restricted and complicated approach

to the problem. The conditions that must be satisfied: i) selection-comparable

nodes applied to the common attributes and ii) atomic attributes at the top

levels in both relations that participate in the join, as well as the fact that the

case when the common attributes are nested attributes either at the top or

lower levels of the two relations, whether the same or different, is not

discussed, provide a restricted way of performing the join operation.

2.3 Temporal Models

Current approaches to the management of temporal data can be categorised

by reference to the following characteristics:

33

1) The time at which a piece of data is estimated to be true in the real world

is called valid time. A relation, in which both data and its time of validity is

recorded, is called a historical relation. It has been the subject of extensive

research principally by [Cli82], [CC87], [Gad88], [LJ88b], [TG89] and [Sar90].

The time at which a piece of data is stored in a relation is called transaction

time. If both this data and its transaction time are recorded in a relation then

this relation is called a rollback relation ([SA86]).

If both valid and transaction times are recorded in a relation, the relation is

called a bitemporal relation ([Sno87], [MS91], [Gad92]) (for more about valid

time and transaction time see section 3.3.1).

2) Temporal database proposals are characterised by the alternative of

associating timestamps with tuples or with individual attributes. Therefore,

temporal models are divided into two categories: tuple timestamping and

attribute timestamping. In tuple timestamping ([Ahn93], [Sar90]) each tuple

is augmented by one or two attributes for the recording of timestamps. One

additional attribute can be used to record either the time point at which the

tuple becomes valid or the time at which the data is valid. Two additional

attributes are used to record the start and stop time points of the

corresponding time interval of validity of the corresponding data. This is

discussed further below, in point 4 of this section.

The alternative is attribute timestamping ([Tan86], [Gad92]), when the time

is associated with every attribute which is time-varying. Note that it is not

necessary for every attribute to be time-varying in an attribute timestamping

approach. Consequently, a history is formed for each time-varying attribute

within each tuple. As a result, the degree of the relation is reduced by one or

two compared with the tuple timestamping equivalent relation since

timestamps are part of the attribute values (for more about tuple

timestamping and attribute timestamping relations see section 3.3.2).

Temporal relations can also be divided into 1NF relations ([Sar90]) and

N1NF relations ([TG89]). Commonly tuple timestamping relations are 1NF,

whereas attribute timestamping relations can form N1NF relations, or using

different words, nested relations.

In Fig. 2.9 a relation is represented in tuple timestamping format while in

Fig. 2.10 the same data is represented using attribute timestamping format.

34

COMPANY TRN CN PERIOD

Apple Jack 5.2 [2/11/1994, 25/4/1995) ∪ [7/8/96, 1/1/2010)

Apple Mark 3.3 [2/1/1992, 8/11/1996)

Apple Mark 3.5 [30/4/1995, 1/1/2010)

IBM Tim 5.2 [19/3/1997, 21/4/1997)

IBM Tim 5.0 [17/12/1995, 1/1/2010)

Microsoft Karen 3.3 [25/6/1996, 1/1/2010)

Fig. 2.9: Relation T_TRAINING in tuple timestamping format

COMPANY TRN CN

Apple [2/1/1992, 1/1/2010) Jack [2/11/1994, 25/4/1995) ∪ [7/8/1996,

1/1/2010)

Mark [2/1/1992, 1/1/2010)

5.2 [2/11/1994, 25/4/1995) ∪ [7/8/1996,

1/1/2010)

3.3 [2/1/1992, 8/11/1996)

3.5 [30/4/1995, 1/1/2010)

IBM [17/12/1995,

1/1/2010)

Tim [17/12/1995, 1/1/2010) 5.2 [19/3/1997, 21/4/1997)

5.0 [17/12/1995, 1/1/2010)

Microsoft [25/6/1996,

1/1/2010)

Karen [25/6/1996, 1/1/2010) 3.3 [25/6/1996, 1/1/2010)

Fig. 2.10: Relation T_TRAINING in attribute timestamping format

3) Temporal database systems can be homogeneous or heterogeneous. A

temporally homogeneous ([Gad88]) database is a database which is

restricted to having temporal relations in which the lifespans of all attribute

values – i.e. the time over which they are defined- in every tuple are identical.

Models that employ tuple timestamping rather than attribute timestamping

are necessarily temporally homogeneous since only temporally homogeneous

relations are possible. It is obvious that homogeneous tuples are a subclass of

heterogeneous tuples where the attributes in each tuple are defined over the

same time period.

In a database with a temporally heterogeneous relational data model the

lifespans of the attribute values in each tuple can be different ([JJ92]).

4) Temporal databases can also be characterised by the way time is

expressed. Two basic approaches have been proposed. The first is to record

time at two attributes, Start and Stop, which represent the boundary points

of each attribute or tuple’s interval of validity ([Ben82], [Sno87]).

In the second approach, time is recorded in just one attribute as an

interval ([Lor88]).

Fig. 2.9 shows a relation where time is represented in terms of union of time

intervals (PERIOD attribute) in contrast to Fig. 2.11 which uses start and stop

points to represent the same time data.

35

COMPANY TRN CN START STOP

Apple Jack 5.2 2/11/1994 25/4/1995

Apple Jack 5.2 7/8/1996 1/1/2010

Apple Mark 3.3 2/1/1992 8/11/1996

Apple Mark 3.5 30/4/1995 1/1/2010

IBM Tim 5.2 19/3/1997 21/4/1997

IBM Tim 5.0 17/12/1995 1/1/2010

Microsoft Karen 3.3 25/6/1996 1/1/2010

Fig. 2.11: Relation T_TRAINING where time is represented as two attributes,

START and STOP

In the relation T_TRAINING in Fig. 2.11 stop points correspond to the end

points of the intervals in PERIOD attribute of the relation in Fig. 2.9.

In the next sections, various temporal database models are presented and

discussed. However, the discussion is restricted only to those models that

support valid time because transation time is beyond the objective of the

present thesis.

2.3.1 Tansel’s model

Tansel has produced many papers over the last 15 years, presenting new

temporal database models. His interest is focused particularly on the area of

N1NF attribute timestamping models.

In his first model ([CT85], [Tan86], [Tan87] and [TAO89]), N1NF relations

with a maximum of one nesting level are supported. A relation can contain

four different types of attributes: atomic, set-valued, triplet-valued or set

triplet-valued attributes. In the last two types of attributes, attribute values

are stored along with either time points at which these values are obtained or

time intervals over which these values are valid. Pack, unpack, triplet-

formation and triplet-decomposition operations are defined to manipulate

historical relations and together with the basic operations of the relational

algebra form the elementary operations of the new proposed historical

relational algebra. In addition, drop-time and slice operations are defined in

terms of the elementary operations. The new operations transform one

attribute type to another or apply a version of the selection operation to the

time domain of a time-varying attribute respectively. Historical relations are

36

first normalised and then algebraic and calculus operations are applied

([Tan86]).

Aggregation operations for historical relational databases are discussed in

[TA86] and [Tan87]. The aggregate formation operation, which has been

defined by Klug in [Klu82] for N1NF relations, is also used by Tansel. The

aggregate formation operation partitions the relation so that all tuples in the

same partition have the same value for a specific attribute and then, the

aggregate function is applied to each of these partitions. A new operation is

defined, named enumeration, which returns the relation instance of a

historical relation at a specified time period. Aggregate functions can be

directly applied to the result of the enumeration operation.

In [TG89] a temporal database model supporting nested relations is

informally defined. The unnest, nest, projection, union, difference,

intersection, cartesian product, selection, join, slice and transfer-time

operations of the historical relational algebra are briefly described but formal

definitions are not given for any of these operations. Structuring of nested

historical relations is reviewed and the equivalence between attribute

timestamping and tuple timestamping relations is discussed. Although in

[TG89] the model supports the general case, where nested relations can have

arbitrary levels of nesting, it is presented in a very informal way.

In [TT97] a non-homogeneous, N1NF model is presented where only one

level of nesting is allowed. A nested relational tuple calculus, called NTC, is

defined. NTC is compared to other temporal query languages in order to show

the ascendancy of its expressive power over the other languages.

His most recently proposed temporal database model is presented in

[Tan97]. This model is the most complete published so far and eliminates

some of the shortcomings that previous versions presented by Tansel had

suffered from and for this reason it is now discussed in detail.

Tansel in [Tan97] proposes a temporal, attribute timestamping relational

data model where N1NF relations are allowed and only valid time is involved.

Relations in the model can have arbitrarily many levels of nesting. Non-

homogeneous relations are also allowed in the model. Time is attached to

every time-varying attribute forming temporal atoms with the corresponding

temporal data values. Therefore, temporal atoms are ordered pairs of the form

<t, v>, where v is an attribute value and t is either a temporal set or a time

37

interval and it denotes the time period t for which v is valid. Fig. 2.12 shows

relation T_TRAINING in Tansel’s model representation.

 TRAINER

COMPANY TRN CN-H

 CN

Apple Jack

Mark

<{[2/11/1994, 25/4/1995) ∪ [7/8/1996, 1/1/2010)}, 5.2>

<{[2/1/1992, 8/11/1996)}, 3.3>

<{[30/4/1995, 1/1/2010)}, 3.5>

IBM Tim <{[19/3/1997, 21/4/1997)}, 5.2>

<{[17/12/1995, 1/1/2010)}, 5.0>

Microsoft Karen <{[25/6/1996, 1/1/2010)}, 3.3>

Fig. 2.12: Relation T_TRAINING in Tansel’s model

In [Tan97] a temporal relational calculus which has been previously

proposed in [TT97] is described and a temporal relational algebra is presented.

Formal definitions for the selection, unnesting, nesting, temporal atom

decomposition, temporal atom formation, slice, drop-time and diagonalisation

operations are given.

A temporal atom decomposition operation creates a new relation from the

original relation, with its degree increased by one, where one attribute

containing temporal atoms is split into two attributes, one containing the

temporal data and the other the corresponding attribute values.

Temporal atom formation is exactly the opposite operation, where the

degree of the result relation is reduced by one compared to the original

relation and a new attribute is created consisting of temporal atoms by

combining two different attributes of the original relation, one consisting of

atomic attribute values and the other of temporal sets.

The slice operation is a modified version of the slice operation that has been

defined in [CT85]. It creates a new relation from the original relation, where

the temporal set part of one attribute is combined with the temporal set part of

another attribute by computing their union, intersection or difference.

The drop-time operation, as the name denotes, derives a new relation from

the original one, where the temporal set part of an attribute containing

temporal atoms is “dropped”. Thus, the specific attribute is converted from a

temporal one to a static one.

38

The diagonalisation operation returns a new relation consisting of two

copies of the original relation, one next to the other, so that one copy serves as

a key to the other copy.

Definitions for the union, intersection, difference, projection and cartesian

product operations are not given, since they are exactly the same as in the

relational algebra. Tansel in [Tan97] claims that the definition of the join

operation can be derived from other elementary operations of the temporal

relational algebra, as in the case of the traditional relational algebra. For this

reason the join definition is omitted from [Tan97]. However, in the opinion of

the author of this thesis this is a major omission from the presented model,

since the join operation for temporal attribute timestamping N1NF relations is

much more complicated than the traditional join operation. It requires a

detailed study for a formal and complete definition in order to cover all the

different cases that can arise in connection with the type of the common

attributes that participate in the join operation and the nesting levels at which

the common attributes are found (see section 5.3.11).

The equivalence of the temporal relational calculus and the temporal

relational algebra is also proved.

In addition, two operations transforming the structure of the nested

temporal relations are defined, named branch unnest and branch nest

operations. The two operations convert nested temporal relations to 1NF

relations and vice versa. Tansel claims that the two operations are inverses of

each other.

The collapse operation is another operation defined in [Tan97]. This

operation has been introduced to solve the problem of producing weak

relations. The collapse operation merges tuples that are the same, after

applying drop-time operations to all the attributes of the relation that consist

of temporal atoms. The temporal sets of these tuples are computed by taking

the union of the temporal sets of the merged tuples. As a result, weak

relations are transformed to standard relations.

Collapsed versions of the set operations are also defined. More specifically,

notations for collapsed union, collapsed intersection and collapsed difference

are given. These operations apply set operations on the temporal set

components of tuples in the operand relations in case they have the same

static tuple. These operations produce standard nested temporal relations only

39

when they are applied to standard nested temporal relations. Otherwise, they

produce weak relations. Besides, the operand relation must contain at least an

atomic attribute at the top level to play the role of a key since these operations

are intended to work on the whole data of an object.

Collapse, slice and drop-time operations are redundant operations, since

they can be derived from other basic operations; however, they are included in

[Tan97] since they are convenient and useful.

Aggregate functions are not included in [Tan97]. Moreover, Tansel does not

provide a detailed presentation of predicates for the manipulation of temporal

data.

Temporal query languages for the nested temporal relations,

implementation issues and query investigation are not included in [Tan97].

Overall, in the author’s opinion, the model is the most complete attribute

timestamping model presented. Undoubtedly, the researcher has a wide

experience of the subject, since his research started formally more than 15

years ago and he is one of the pioneers in defining attribute timestamping

models. However, the model has some shortcomings which have been

mentioned above. A fuller evaluation of the features of this model is given in

chapter 8.

2.3.2 Gadia’s model

Gadia has a parallel activity with Tansel. His first paper about temporal

databases ([GV85]) appears at about the same time as Tansel’s ([CT85]). Since

then, he has written more than one dozen of papers concerning a new

relational temporal database model and a query language.

Gadia emphasises the homogeneity property. In all his papers N1NF

attribute timestamping relations are used.

In [GV85] a query language, called HTQUEL, is presented for a temporal

model proposed by Gadia in [Gad88] (it appeared in the literature 3 years

later). His homogeneous temporal relational database model is defined as a

temporal parameterisation of static relations. Attribute values are represented

as single valued functions of time. The temporal element is the basic data type

to model time in his approach. He also introduces the notion of a temporal

assignment to express the changing value of an attribute with time. According

40

to his definition, a temporal assignment to an attribute is a function from a

temporal element into the domain of that attribute. Gadia’s temporal

assignment corresponds to Tansel’s set-triplet-valued assignment. Key

attribute values in a tuple of a relation in his model do not change with time

(see also [Gad92]). The author of this thesis believes that this is a significant

limitation of this particular model since there are cases in the real world to be

modelled where key attributes change with time. For an example of a case

where the key attribute of a relation is time-varying see Fig. 2.13.

Semantically, the relation in Fig. 2.13 shows the addresses of a number of

people. The first two tuples of the relation represent the same person.

However, the change of the name is due to the fact that this person got

married and so her name changed. Therefore, the key attribute, NAME, is a

time-varying attribute.

NAME ADDRESS

Anna Black [d1, d6)

52, Ladbroke Grove [d1, d3)

11, Homer Street [d3, d6)

Anna Scott [d6, d10) 34, Regent Square [d6, d10)

Tom Thomas [d3, d10) 20, Holland Park [d3, d10)

Fig. 2.13: A relation where the key attribute (NAME) changes with time

An example of a relation in Gadia’s model is shown in Fig. 2.14. It must be

noted that future time is not supported in Gadia’s model since he assumes in

[GN98] that “the universe of time consists of an interval [0, NOW] of instants

with a linear order ≤ on it. NOW denotes the current instant of time”.

Therefore, the future time point ‘31/12/2009’ is replaced by ‘NOW’ in Fig.

2.14.

COMPANY TRN CN

[2/1/1992, NOW] Apple [2/11/1994, 24/4/1995] ∪ [7/8/1996, NOW] Jack

[2/1/1992, NOW] Mark

[2/11/1994, 24/4/1995] ∪ [7/8/1996, NOW] 5.2

[2/1/1992, 7/11/1996] 3.3

[30/4/1995, NOW] 3.5

[17/12/1995, NOW] IBM [17/12/1995, NOW] Tim [19/3/1997, 20/4/1997] 5.2

[17/12/95, NOW] 5.0

[25/6/1996, NOW]

Microsoft

[25/6/1996, NOW] Karen [25/6/1996, NOW] 3.3

Fig. 2.14: Relation T_TRAINING in Gadia’s model

41

A relational algebra and a tuple calculus are presented for this model

([Gad88]) and their equivalence is proved. All the relational algebraic

expressions are defined recursively.

The notion of weakly equal relations, which has been introduced in

[Gad86b], is used throughout his papers. This definition is based on the fact

that when two temporal relations have the same snapshots then, in a way,

their information content is the same. Snapshots are very important in Gadia’s

model, since temporal databases are considered as time-varying static

databases. Therefore, snapshots are considered as basic building blocks to his

model and are used to extend properties of static relations to their temporal

counterparts. However, it is arguable that the concept of snapshots may cause

a wrong impression by suggesting that there is a certain implicit structure in

every temporal relation.

A temporal selection operation is introduced in [Gad86b]. It is the natural

restriction of a relation to a temporal element. Temporal selection is similar to

the slice operation introduced by Tansel in [TG89].

As mentioned above, Gadia’s model is a homogeneous model. His basic

argument for the homogeneity requirement is that the snapshot relation of a

homogeneous relation is a static relation without nulls. However, this is only

the case when the corresponding snapshots relations are in 1NF. When N1NF

relations are supported nulls can be omitted from snapshots naturally. Gadia

admits that the homogeneity assumption causes many problems. He mentions

in [Gad86a]: “The homogeneity requirement is a severe restriction in modelling

real life situation”. In addition, in a homogeneous model, the cross product

operation is a limited version operation since it can be applied only to

homogeneous tuples. For that reason, he introduces the multihomogeneity

assumption ([Gad86a]), where a relation consists of a finite set of schemes and

each tuple is homogeneous in each of these schemes. Gadia claims that

multihomogeneous models can model a significant part of the real world.

However, it is undoubtedly true that multihomogeneity, although it is more

powerful than homogeneity, is more restricted than heterogeneity since the

latter forms the general case and can model the real world without any

limitation.

The temporal database model presented in [Gad88] is generalised in [GY88]

to support N orthogonal temporal dimensions. A discussion is also given about

42

how to give a precise classification of errors and updates. A kind of

restructuring operation is also introduced, which changes the key of a relation

to create a new relation weakly equal to the one from which it is derived.

In [GY91], a N1NF tuple calculus is introduced, called TCAL, based on

Gadia’s N1NF homogeneous temporal model. TCAL is compared to the 1NF

tuple calculus TQuel, which has been proposed by Snodgrass in [Sno87].

Gadia argues that TCAL is more powerful than TQuel.

Gadia in [GNP92] describes informally the restructuring, union, difference,

projection, selection and cross product operations. However, the most

important and also most complicated operation, the join operation, has not

been studied in detail, in any of his papers. Besides, in [GNP92], an

incomplete model is introduced as a generalisation of the complete information

temporal database model which has been presented in [GY88].

In his recent paper ([GN98]), Gadia uses the temporal model that was

defined in his earlier papers and which has been described above, to discuss

algebraic identities and query optimisation. The model is called a parametric

model since databases in it can be viewed as a parametrisation of classical

databases. In [GN98], homogeneous relations are divided into two categories:

unihomogenous and multihomogeneous relations. Unihomogeneity is when

the parametrisation of classical databases is with respect to a single time line

and multihomogeneity with respect to more than one time line. Gadia’s model

is unihomogeneous from that point of view. The relational operators for the

model are described but not all of them are formally defined. The projection

operation needs special attention, since there are two cases: the internal

projection and the user projection, depending on whether the resulting

projected relation contains a key or not. This is a consequence of the fact that

in the parametric model keys play a critical role since a user thinks in terms of

relations that have keys. In addition, the natural join is briefly described for

the first time. With regard to the cross product operation only a restricted

version is discussed, the unihomogeneous cross product.

Future time is not taken into consideration in any of his papers.

As mentioned above, in Gadia’s model relations are in N1NF. Relations

having more than one nesting level are not discussed at all, in any of his

papers.

43

Generally, the model proposed by Gadia provides a limited representation

capability and lacks flexibility for the following reasons:

§ only one nesting level is supported,

§ it is homogeneous,

§ null values are not supported,

§ relational operators are not formalised,

§ the join operation is not defined.

Therefore, in the author’s opinion it is incomplete.

2.3.3 Clifford’s model

Clifford was another pioneer in the area of temporal databases and the first

to suggest incorporating the time dimension at the attribute level.

Unfortunately, his sudden death signified the end of an important line of

research in this field.

His first paper appeared in 1982 ([Cli82]). In [CW83], a formal theory (the

Historical Database Model-HDBM) of database semantics that includes time is

developed as well as a calculus-based query language. The formulation of an

intensional logic is used for this purpose. The tuples of relations are

timestamped with the help of a new attribute named STATE. In addition, a

special Boolean-valued attribute, EXISTS?, is introduced to indicate which

entities exist or not at any given state. The two new attributes are not ordinary

attributes, but are built-in parts of the model.

HDBM is explored further in [CT85] but this time from the operational point

of view using a relational algebra. The temporal dimension is incorporated into

the model at the attribute level. Relations are in N1NF since attributes that are

time-varying have complex domains. Attributes can be either constants, time-

varying or temporal. However, key attributes in a relation must be constant. In

addition, each relation has a lifespan related to it. The lifespan represents the

time period over which the objects are being modelled in the relation. An

example relation in Clifford’s model is given in Fig. 2.15.

44

LAWYER STUDIO SALARY lifespan

Howell 1924 MGM
1930 Paramount

1939 MGM

1924 30000
1925 35000

1926 ?
1937 40000

1938 ?

{[1924, 1939]}

Rosen 1912 Universal
1923 Warner Br

1930 ?
1945 Rko

1945 70000
1946 ?

1952 80000

{[1912, 1952]}

Mcmanus 1923 Warner Br 1923 35000
1924 ?

1926 40000

{[1923, 1926]}

Fig. 2.15: Relation LAWYERS in Clifford’s model ([CC87])

A discussion about various problems that arise when trying to define

relational operations for historical databases is presented. More specifically,

projection, selection, time-slice, join and when operations are discussed and

examples are presented where the problems are demonstrated.

Formal definitions of these operations have been provided in [CC87]. Four

different kinds of join are examined: T -join, equijoin, natural-join and time-

join. All attributes are functions from time points to simple domains with the

assignment of a lifespan to each attribute. Besides the lifespan of each

attribute, each tuple is assigned a lifespan, too. Union, intersection and

difference are defined over merge-compatible relations. Two relations are

merge-compatible when they are union-compatible and at the same time, they

have the same key. Depending on whether a historical relation is to be

reduced to the value or the time dimension, two versions of the selection

operation are defined, the select-if and the select-when operations respectively.

Likewise, time-slice has two variations, static and dynamic. The static version

returns a relation reduced to tuples consisting of those parts (of the tuples)

defined over a specified lifespan. In contrast, in the dynamic version, lifespans

for each tuple are not specified but are determined by the set of times that a

specified attribute for that tuple maps to. The when operation returns the set

of times during which a specific condition is satisfied in a given relation.

Clifford argues that tuple and attribute lifespans provide time-varying data

and schemes in the model and a “suitable level of user control over the

temporal dimension of the data”. However, in the author’s opinion, this model

generates many problems. Assume that it is intended to represent the data of

relation T_TRAINING (Fig. 2.9) in Clifford’s model. After careful consideration it

can be seen that this is not feasible, since in his model, all values of the

45

attributes in a relation are viewed as functions from time points to simple

domains. Therefore, since in this particular example each company may have

employed more than one trainer at the same time and since each trainer may

teach more than one course for overlapping periods of time (which is a logical

assumption), the entire history of each trainer could not have been recorded in

just one tuple but, on the contrary, can only be represented by a series of

tuples. In the general case, since attribute values are functions from a lifespan

on to a value domain, Clifford’s model is effective only when there is a one-to-

one relationship between the key attributes’ values and each other attribute

value for the same time in each tuple. This contradicts one of the main

reasons for representing data in a relation using attribute timestamping

approach, since data related to a single object is not represented in the same

tuple but on the contrary, is split into different tuples. Consequently, relation

T_TRAINING could be expressed in Clifford’s model but in a way that is

impractical and to no real benefit. To demonstrate this, part of the

T_TRAINING relation represented in Clifford’s model is shown in Fig. 2.16,

where the problems that appear with this kind of representation are obvious.

In addition, the key of such a relation is not easy to define, since key

attributes in HRDM must be constant-valued. Even if it is assumed that the

COMPANY attribute is constant-valued, the key for the relation could not be

that attribute, because of the previous comment that the entire history of an

object (in this specific case, the COMPANY object) would be split up in many

tuples (see Fig. 2.16).

COMPANY TRN CN lifespan

Apple 2/11/1994 Jack

25/4/1995 ?

7/8/1996 Jack

2/11/1994 5.2

25/4/1995 ?

7/8/1996 5.2

{[2/11/1994, 24/4/1995] ∪ [7/8/1996, 31/12/2009]}

Apple 2/1/1992 Mark 2/1/1992 3.3 {[2/1/1992, 7/11/1996]}

Apple 2/1/1992 Mark 30/4/1995 3.5 {[2/1/1992, 31/12/2009]}
.
. .

.

. .
.
. .

.

. .
Fig. 2.16: Relation T_TRAINING in Clifford’s model

Therefore, HRDM has a limited capability and expressiveness. Also, one

contradiction is the fact that, although key attributes must be constant-

valued, a lifespan is also assigned to them. In fact, every attribute must have a

46

lifespan associated with it, even if that attribute is constant or temporal, a

statement which is also a contradiction.

Clifford’s research in temporal databases continues in [CCT94] where two

categories of historical database models are defined, temporally grouped and

temporally ungrouped models, to distinguish between the two different

modelling capabilities achieved by incorporating the temporal dimension at the

tuple level or at the attribute level respectively. Temporally grouped models are

those models which represent data in groups of related temporal values, while

temporally ungrouped models cannot support this kind of grouping. Therefore,

temporally ungrouped models are 1NF models; however, temporally grouped

models are not fully N1NF models but only in the way they incorporate the

temporal dimension. Clifford proposes the corresponding notions of historical

relational completeness for each of these two categories.

Clifford shows that temporally ungrouped models can only have the same

expressive power as the temporally grouped models if they are extended with a

grouping mechanism; otherwise they are less expressive than temporally

grouped models. This grouping procedure adds a special attribute to an

ungrouped relation. The new attribute assigns a kind of identity to each tuple,

which is why it is called a “group-id attribute”. Three different languages are

defined for the temporally ungrouped models: a temporal logic, a logic with

explicit reference to time and a temporal algebra. He relaxes the previous

assumption he has made for the HRDM that key attributes must be constant-

valued, by assuming that key attributes need not be constant over time.

However, the key notion in temporally ungrouped models creates many

problems, for example, without knowledge of the key, tuples which describe

the same object cannot be grouped together, since there is no way to associate

them. In addition, if the key is not required to be constant over all times (and

there is no reason to require this), there would be no way at all to group

related tuples (i.e., tuples describing the same object) ([CCT94]). For the

temporal algebra the following operators are defined: select, project, cartesian

product, set difference, union, future linear recursive operator and past linear

recursive operator. Future and past linear recursive operators are needed to

be able to simulate until/since operators in temporal calculus. The definition

of the temporal join operation is omitted since it is said that it can be

expressed in terms of cartesian product, select and project operators.

47

Temporally grouped models include the temporal component in their

structures directly. Temporally grouped completeness is defined with the

support of the Lh calculus. Lh is reduced to the standard relational calculus

when the temporal dimension is not included in the model. The HRDM is a

temporally grouped data model. However, it is not temporally grouped

complete, since there are queries which cannot be expressed in an equivalent

expression of the HRDM algebra. In [CCT94], Clifford shows that temporally

grouped and temporally ungrouped models do not provide the same modelling

and querying capabilities and that temporally grouped models have

supremacy over temporally ungrouped models. He concludes by saying that

there is no complete algebra defined for a temporally grouped data model.

Clifford’s work for temporally grouped and ungrouped models is developed

further in [CCGT95]. An algebra for a temporally grouped inhomogeneous –i.e.

where the homogeneity assumption is relaxed- and multisorted –i.e. it allows

attribute values of all three sorts: user-defined time, time-invariant and time-

variant attributes- model is defined. The standard relational operators, union,

difference, cartesian product, projection and selection, are extended to support

the temporal dimension. In addition, two active -domain operators, the tdom(R)

and vdom(R), which compute the temporal and value domains of a relation R

respectively, as well as the timeslice operator which restricts the lifespans of

attributes that are functions from time points to simple domains, are defined.

Coalescing and restructuring notions are also discussed ([CCGT95]). The

coalescing operation merges in one tuple snapshot equivalent tuples. In

[CCGT95] it is reported that this operation is meaningless in temporally

grouped models. In this author’s opinion this is incorrect, since there are

cases, especially after the execution of an operation or a series of operations,

where coalescing is necessary in order to “coalesce” tuples into a single tuple.

A regrouping operation for temporally grouped relations is also discussed.

An important comment is made in [CCGT95], that the regrouping operation

from one attribute to another is possible only when each one functionally

determines the other. It is also said that regrouping is not a useful operation

for temporally grouped relations and that is why it is not formally defined.

However, in the opinion of the author of this thesis, there are cases where the

regrouping operation is needed, as can be seen in chapter 6 of this thesis (e.g.

Query 17).

48

Finally, in [CCT96] several examples are given in order to demonstrate the

differences between temporally grouped and temporally ungrouped models

when updating and querying data. This paper also repeats the claim for the

supremacy of temporally grouped models over temporally ungrouped models.

2.3.4 McKenzie’s model

McKenzie extends the relational algebra to support both temporal

dimensions, valid time and transaction time ([Mck88]). In this review, only

valid time will be discussed, since transaction time is not examined in this

thesis and it has been proved by many researchers that the two aspects of

time are orthogonal and can be studied separately.

McKenzie defines a historical algebra supporting valid time by extending the

snapshot algebra. The design decisions made in order to define this algebra

can be summarised to the following points:

§ valid time is associated with attributes,

§ valid time is represented as a set of chronons,

§ attributes’ value parts must be atomic-valued,

§ attributes’ valid time parts may be set-valued (relations are not

necessarily in 1NF),

§ timestamps of attributes in a given tuple may be different (non-

homogeneous relations),

§ traditional relational operators have been extended to support valid

time directly,

§ temporal nulls are allowed for some attributes of a given tuple; however,

not all attributes of a given tuple can contain temporal nulls

simultaneously,

§ no two tuples of a given relation can be value equivalent (value-

equivalence property).

In Fig. 2.17, an example of a relation in McKenzie’s model is shown.

49

COMPANY TRN CN

Apple {2/1/1992, 3/1/1992, …, 31/12/2009} Jack {2/11/1994, 3/11/1994, …, 24/4/1995,

7/8/1996, 8/8/1996, …, 31/12/2009}

5.2 {2/11/1994, 3/11/1994, …, 24/4/1995,

7/8/1996, 8/8/1996, …, 31/12/2009}

Apple {2/1/1992, 3/1/1992, …, 31/12/2009} Mark {2/1/1992, 3/1/1992, …, 31/12/2009} 3.3 {2/1/1992, 3/1/1992, …, 7/11/1996}

Apple {2/1/1992, 3/1/1992, …, 31/12/2009} Mark {2/1/1992, 3/1/1992, …, 31/12/2009} 3.5 {30/4/1995, 1/5/1995, …, 31/12/2009}

IBM {17/12/1995, 18/12/1995, …, 31/12/2009} Tim {17/12/1995, 18/12/1995, …, 31/12/2009} 5.2 {19/3/1997, 20/3/1997, …, 20/4/1997}

IBM {17/12/1995, 18/12/1995, …, 31/12/2009} Tim {17/12/1995, 18/12/1995, …, 31/12/2009} 5.0 {17/12/1995, 18/12/1995, …, 31/12/2009}

Microsoft {25/6/1996, 26/6/1996, …, 31/12/2009} Karen {25/6/1996, 26/6/1996, …, 31/12/2009} 3.3 {25/6/1996, 26/6/1996, …, 31/12/2009}

Fig. 2.17: Relation T_TRAINING in McKenzie’s model

From the above example it can be easily seen that McKenzie’s model suffers

from some disadvantages. One of the main weaknesses of his model is the

redundancy caused by the value parts of attributes not be ing set-valued.

Another problem is caused by the representation of time as a set of chronons.

As shown in Fig. 2.17 where time is represented in days, the listing of all the

days of an interval can be inappropriate when time intervals represent a long

length of time.

Formal definitions for union, difference, cartesian product, selection and

projection operations are provided as simple extensions of the corresponding

operations of the snapshot algebra for snapshot relations with the addition of

the appropriate treatment of the timestamps of the corresponding attributes.

The projection operation has two versions: projection on a subset of attributes

(the traditional projection operation) and projection on expressions, where

tuples are projected on new attributes. The closure property of the projection

operation is maintained with the restriction that tuples having empty valid

component for all tuple components are removed. Therefore, the projection

operation defined in [Mck88] is not an information nonloss operation.

A new operator is defined, called the historical derivation operator, as a

combination of temporal selection and projection on the timestamps of the

tuples’ attributes. Specifically, for each tuple a new valid time component is

calculated for each attribute as a function of specific intervals in the

timestamps of the tuples’ attributes.

Aggregation and unique aggregation are the two operators defined to

compute aggregates, i.e. a summary of data contained in a given relation.

Historical intersection, T -join, historical natural join and quotient are

formally defined in terms of the union, difference, cartesian product, selection,

projection and derivation operators and examples are given.

50

The historical algebra is defined so as to satisfy as many of the list of 29

evaluation criteria which are defined in [Mck88]. All but 3 of these criteria are

also presented and discussed in detail in [MS91] where it is argued that “they

are well defined, have an objective basis for being evaluated and are arguably

beneficial”. A more extended discussion of these criteria can be found in

chapter 8 of this thesis.

The possibility of extending the algebra to support set-valued attributes is

also discussed. McKenzie proposes to use the approach presented in [SS86],

where an algebra to support N1NF relations is defined as an extension of the

snapshot algebra. The operations can then be recursively defined. However, he

has not continued his research in this direction, although he recognises the

benefits from such an approach.

2.3.5 Snodgrass’s model

Snodgrass has made a major contribution in the area of temporal

databases. Two main points distinguish his work in the field; firstly, he

published a number of early papers where his main concern was to define a

basic terminology for the field and a taxonomy of time in databases as well as

surveys and reports of other temporal query languages and models supporting

time-varying data that have been proposed over the years ([SA85], [SA86],

[Sno86], [Sno90], [Sno92] and [SJS95]) and secondly, he has presented

implementation approaches for time-oriented databases in his recent

published book ([Sno00]), where a time-varying database application is

developed in SQL.

In [Sno87], Snodgrass proposes TQUEL, a temporal extension of QUEL,

which is now briefly discussed. The snapshot relational database model is

used for the development of the semantics of TQUEL, since it is simple, well

defined and has already been implemented.

The semantics for the TQUEL statements are also presented. TQUEL

supports both transaction and valid times. Rollback queries supporting

transaction time use the “as of” clause, while historical queries supporting

valid time use the “valid” clause. The “valid” clause has two variants, the “valid

at” for event relations and the “valid from … to …” for interval relations. The

51

“when” clause of TQUEL is the temporal equivalent of the “where” clause of

QUEL.

Both transaction and valid times can be represented as intervals (interval

relations). The starting time of the interval is denoted by the “begin of”, while

the stopping time is denoted by the “end of” operators. However, relations can

be event relations as well. The operators “overlap”, “precede” and “extend” can

be used in temporal predicates and expressions contained in the “valid”

clause.

Relations can be either snapshot, rollback, historical or temporal. The

“persistent” keyword is used for rollback or temporal relations, the “interval”

or “event” keywords for historical or temporal relations; otherwise the relation

is snapshot.

Finally, the paper compares TQUEL to ten other temporal query languages

against 17 properties and is shown to satisfy most of them. These properties

are discussed extensively in chapter 8 of this thesis.

TQUEL also supports new aggregates, which are formally defined in

[SGM93], as well as all the aggregates supported in QUEL. These new

temporal aggregates are: first, last, rate, var, earliest, latest and rising. The

semantics of these aggregates can be found in [SGM93]. An approach

(algorithm) for computing TQUEL aggregates is also given.

A typical relation supported by TQUEL is shown in Fig. 2.18.

VALID TIME COMPANY TRN CN

(FROM) (TO)

Apple Jack 5.2 2/11/1994 25/4/1995

Apple Jack 5.2 7/8/1996 1/1/2010

Apple Mark 3.3 2/1/1992 8/11/1996

Apple Mark 3.5 30/4/1995 1/1/2010

IBM Tim 5.2 19/3/1997 21/4/1997

IBM Tim 5.0 17/12/1995 1/1/2010

Microsoft Karen 3.3 25/6/1996 1/1/2010

Fig. 2.18: Relation T_TRAINING in Snodgrass’s model (a historical relation)

Snodgrass reports both in [Sno87] and in [Sno92] that TQUEL is based on

the temporal algebra proposed in [Mck88], therefore many of the same

remarks can be applied as to McKenzie’s model. However, although in

McKenzie’s model the valid time parts of attributes can be set-valued, this is

52

not discussed by Snodgrass. Furthermore, since key attributes are not defined

in his work, it is unclear if the above representation of the T_TRAINING

relation (Fig. 2.18) is correct, since two of the tuples have equal values for all

their atomic attributes. Other differences can also be found between

McKenzies’s temporal algebra and Snodgrass’s temporal query language. An

example is the association of valid time with attributes and the support of

N1NF relations in McKenzie’s model; therefore, TQUEL cannot be based on

this temporal algebra without some modifications, which are not discussed in

the paper.

In summary, Snodgrass appears to be more concerned about the

implementation side of temporal databases and so, from the theoretical point

of view, his work is not well defined and lacks formalisation.

2.3.6 Jensen and Snodgrass’s model

Jensen and Snodgrass have collaborated for a number of years in the area

of temporal databases and they have produced a significant number of papers

about the understanding of the semantics of temporal data. Jensen’s most

important publications can also be found in [Jen00].

Their major contribution in this field is the development of a new temporal

model, called the Bitemporal Conceptual Model (BCDM) ([JS92]). This new

model supports both valid and transaction time. However, it is presented here

since valid time relations can be seen as special cases of bitemporal relations

supporting only valid time.

Relations in BCDM are considered from a conceptual standpoint rather

than from the representational one used with all the other proposed temporal

data models. Nevertheless, in [JS96a] it is mentioned that the term

“conceptual” does not make the formalism of the new proposed model different

from that of the other temporal data models. On the contrary, it is used to

underline the design and query language capabilities of the new model.

Relations in BCDM use tuple timestamping, since they consist of a set of

tuples and each tuple includes an implicit attribute value, comprising an

ordered pair of integers, denoting when the fact represented by this specific

tuple is true in the modelled reality (valid time) and when it is current in the

stored relation (transaction time). Therefore, time is represented in BCDM as

53

temporal elements. Consequently, each single tuple represents the whole

history of a fact. Moreover, relations in BCDM are in N1NF, since the

timestamps associated with the tuples are sets of time chronons. Obviously,

only homogeneous tuples are supported in the model.

Two operators are also defined, named the transaction-timeslice operator

and the valid-timeslice operator, which take as arguments a bitemporal

relation and either transaction or valid time and return a valid time relation or

a transaction time relation, respectively, consisting of all tuples valid during

the time value.

The following table (Fig. 2.19) represents the valid time T_TRAINING relation

in their model.

COMPANY TRN CN T

Apple Jack 5.2 {2/11/1994, 3/11/1994, …, 24/4/1995, 7/8/1996, 8/8/1996, …, 31/12/2009}

Apple Mark 3.3 {2/1/1992, 3/1/1992, …, 7/11/1996}

Apple Mark 3.5 {30/4/1995, 1/5/1995, …, 31/12/2009}

IBM Tim 5.2 {19/3/1997, 20/3/1997, …, 20/4/1997}

IBM Tim 5.0 {17/12/1995, 18/12/1995, …, 31/12/2009}

Microsoft Karen 3.3 {25/6/1996, 26/6/1996, …, 31/12/2009}

Fig. 2.19: Relation T_TRAINING in Jensen and Snodgrass’s model

(valid time relation)

An algebra is also defined at the conceptual level for the BCDM ([JSS92]).

Thus, the projection, selection, union, difference and natural join operations

are formally defined. Two transformation functions are also defined, named

coalescing and elimination of repetition transformations. The coalescing

transformation takes value-equivalent tuples with overlapping or adjacent

temporal elements and converts them to a single tuple. The elimination of

repetition transformation reduces temporally redundant information (a

bitemporal relation instance has temporally redundant information if it

contains two distinct tuples that are value-equivalent and have timestamps

that encode overlapping regions in bitemporal space), possibly at the expense

of adding more tuples, since the transformation may partition the region

covered by the argument rectangles on either transaction time or valid time

([JS96a]).

Three representations of bitemporal relations are examined which map to

and from the conceptual bitemporal relations of BCDM. These are a tuple

54

timestamped 1NF representation scheme, a backlog based representation

scheme composed of 1NF timestamped change requests (either insertion

requests or deletion requests but never update requests) and a N1NF attribute

value timestamped representation scheme.

The BCDM forms the basis for the TSQL (Temporal Structured Query

Language) proposal, an extension of SQL. Jensen and Snodgrass claim that

the conceptual bitemporal data model that they have proposed is useful when

time-varying semantics need to be expressed.

BCDM, although it retains the simplicity of the relational model, is inferior

to other temporal proposed models from the representational point of view,

because of the large number of timestamps that each tuple contains and the

representation of timestamps as bitemporal elements ([JS99]).

An important research contribution is made by Jensen and Snodgrass in

the area of dependency theory (temporal normal forms and temporal keys) for

temporal databases in terms of BCDM schemas ([JSS94]). However, it is not

discussed here since it is beyond the objective of the present thesis.

Furthermore, they examine and categorise temporal relations according to

all possible different relative positions between valid and transaction

timestamps; they call this “taxonomy of specialized properties of either event

or interval temporal relations” ([JS94]).

Finally, in [JS96b] they introduce surrogates to represent real-world entities

in the database, lifespans of attributes, derivation functions that compute new

values from stored attribute values and observation and update patterns for

time-varying attributes. All these notions provide different semantics for time-

varying attributes and can be used in the design of database schemas.

To conclude, Jensen and Snodgrass have made an important contribution

to the field of temporal databases. However, their proposed model, the BCDM,

has shortcomings in its internal representation and in the display of temporal

data to users, as discussed above.

2.3.7 Lorentzos’s model

Lorentzos is well known for his significant work on interval data which

concerns not only temporal databases but also other areas of databases, such

as spatial ([LTR99], [LRT99]) and spatio-temporal databases ([LSYK99],

55

[RLT01], [RL01]), soil information systems ([LK89]), CAD, cartography and

engineering. He has studied in depth the notion of generic intervals which

form an important component in all the above mentioned applications.

Additionally, he has used his results to extend the relational model to support

temporal data, since time intervals are one of the many different generic

intervals that can be used in databases. For this reason his work is discussed

here in some detail.

In [Lor88], Lorentzos presents a detailed and formal extension of the

relational model to support generic intervals. Different properties of the

intervals are studied. One basic principle is the Duality Principle which says

that every 1-dimensional point is isomorphic to an elementary interval. He

also defines all possible relative positions between two 1-dimensional intervals

(see also [LJ88a]) and then, extends his definitions to n-dimensional intervals.

Firstly, he defines the Interval Relational Model (IRM) which supports n-

dimensional intervals and afterwards the Interval Extended Relational Model

(XRM) which allows both intervals and points to be recorded. Union,

difference, projection and cartesian product operations of the XRM are the

same as that for the Conventional Relational Model (CRM). In the selection

operation new predicates can be used for the comparison of two intervals. The

new operations, compute, fold, extend and unfold, that are defined in the XRM

are explained further below. The join operation is also formally defined.

Another operation introduced in [LM94], called normalise, returns a relation

where duplicate tuples are eliminated and adjacent or overlapping intervals

are merged into one. It is a combination of unfold and fold operations. XRM is

proved to be a proper superset of the CRM. The expressive power of the XRM

is also demonstrated by a number of examples. Finally, he examines the new

proposed model semantically, by defining the Interval and the Point

Functional Dependencies, the key of an XRM relation and two new normal

forms, the P and Q normal forms.

The management of 2-d interval relations is also discussed in [LM94] and

new efficient algorithms are proposed for the normalisation, insertion and

deletion of 2-d interval data. The normalise operation produces canonical

interval relations, i.e. normalised representation of interval relations in which

there is no duplication of data, as defined in [LPS94]. Additionally, two

operations are defined, p-union and p-diff, counterparts to the set-union and

56

set-difference operations of the CRM but which return canonical relations.

These operations are then transformed to the optimised s-union and s-diff

operations which also maintain the property of canonicity. Formal proofs of

this property for the above mentioned operations, p-union, p-diff, normalise, s-

union and s-diff, can be found in [LPS95].

In an interesting paper, [LM95], it is shown that some of the known

temporal data models, which have been proposed over the years, can be used

in other areas than temporal databases by replacing the set of Time values by

other sets. This is a very important observation since it means that some

particular attributes or parts of attributes can be interpreted equally well

either as time or as another type of data. Furthermore, temporal data models

are evaluated against some properties which are identified in the same paper

for valid time 1NF and N1NF models. Finally, two new models are mentioned,

I-1NF and I-NESTED models, supporting interval data management but are

not discussed further or formalised.

An extension of SQL, called IXSQL, for the management of interval data is

proposed in [LM97], based on the algebra described above for a 1NF model.

Generic intervals are used as a new primitive data type. Relations can contain

more than one interval attribute. New interval predicates, interval value

functions and interval set functions are also introduced and formally defined.

The concept of the key of an interval relation is also supported.

His proposed model can be used directly as a temporal model where time is

treated as generic data type and not as a “stamp” for the related data values.

Lorentzos’s temporal model, called TRA (a model for a Temporal Relational

Algebra) ([LJ87], [JL87], [LJ88b]), is presented briefly below. The model is a

minimal extension of the Conventional Relational Model. It is simple since 1NF

is maintained. Data valid at some specific time either in the past, present or

future can be supported in this model and the corresponding time can be

represented equally well either as time points or as time intervals.

An example of a relation in Lorentzos’s model is shown in Fig. 2.20.

57

COMPANY TRN CN PERIOD

Apple Jack 5.2 [2/11/1994, 25/4/1995)

Apple Jack 5.2 [7/8/1996, @)

Apple Mark 3.3 [2/1/1992, 8/11/1996)

Apple Mark 3.5 [30/4/1995, @)

IBM Tim 5.2 [19/3/1997, 21/4/1997)

IBM Tim 5.0 [17/12/1995, @)

Microsoft Karen 3.3 [25/6/1996, @)

Fig. 2.20: Relation T_TRAINING in Lorentzos’s model

Four new operations are defined: compute, fold, extend and unfold.

Compute is defined so that functions can be used in the new model. Fold

returns a relation where time is represented as time intervals from an input

relation where time is represented as time points. Extend returns a relation

from an initial relation which contains a new attribute consisting of all the

time points that are extracted from the time intervals. Unfold is the inverse of

the fold operation. Fold and unfold operations should not be confused with the

nest and unnest operations of the N1NF models, since fold returns intervals

from consecutive points while nest returns sets of attribute values. The

cartesian product operation is also discussed in TRA. The result of the

cartesian product operation of two time interval relations is a relation having

four time attributes. This kind of relation is useful when periodic events need

to be supported. An implementation is also briefly described.

Lorentzos’s model is simple and more general than the other proposed

models since temporal relations are one of the many different types of

relations that it can support. Therefore, XRM cannot be considered as a pure

temporal database model. However, it can be used for the representation of

valid time relations as has been demonstrated.

In Lorentzos’s model, attributes are timestamped since more than one time

interval attribute can coexist in the same relation referring to different data.

However, relations are maintained in 1NF. This causes a number of problems.

Firstly, it is not representationally clear with which attributes each timestamp

is associated. Secondly, data regarding the same object is not included in the

same tuple. Indeed, they are contained in different tuples and, as a result, the

history of an object does not consist of a single tuple but is split up into many.

As a consequence, even though this specific representation is 1NF attribute

58

timestamping, it does not take full advantage from either the 1NF or the

attribute timestamping approach.

Further, fold and unfold operations must be used in temporal selection and

temporal projection operations of the algebra and, as a result, these operations

can be time and space consuming.

Nevertheless, his interesting results about generic intervals and points can

easily be used as the groundwork for any study of temporal database models.

2.3.8 TSQL2

TSQL2 ([Sno95]) is a temporal extension to SQL-92 produced by a research

community consisting of twenty-one members of eight different countries. It

has been designed to query and manipulate time-varying data stored in a

relational database.

The features of TSQL2 are summarised below:

§ It is a language defined on a conceptual data model.

§ It is based on a tuple timestamping data model.

§ It supports three types of time, user-defined, valid and transaction.

§ Time can be expressed either as a set of time instants (instant set) or as

a union of non-adjacent and non-overlapping periods (elements). Note

however, that temporal valid time can be expressed either as set of instants

or as temporal elements, but transaction time can be expressed only as

temporal elements.

§ Six kinds of relations are supported: snapshot relations that support

only user-defined time and neither valid nor transaction time, valid time

state relations which support only valid time elements, valid time event

relations which support only valid time instant sets, transaction time

relations that support only transaction time elements, bitemporal state

relations which support bitemporal elements and bitemporal event relations

which support bitemporal instant sets.

§ Valid time and transaction time are recorded in implicit attributes.

§ Only one implicit attribute is allowed in a relation.

§ TSQL2 is based on homogeneous tuples.

§ Value-equivalent tuples, i.e. tuples having identical values for all their

explicit attributes, are not allowed in a relation.

59

It is worth noting that the algebra underlying TSQL2 was defined after the

language definition of TSQL2. An example of a relation in TSQL2 is shown in

Fig. 2.21.

COMPANY TRN CN V

Apple Jack 5.2 [2/11/1994, 24/4/1995] ∪ [7/8/1996, 31/12/2009]

Apple Mark 3.3 [2/1/1992, 7/11/1996]

Apple Mark 3.5 [30/4/1995, 31/12/2009]

IBM Tim 5.2 [19/3/1997, 20/4/1997]

IBM Tim 5.0 [17/12/1995, 31/12/2009]

Microsoft Karen 3.3 [25/6/1996, 31/12/2009]

Fig. 2.21: Relation T_TRAINING in TSQL2 (valid time state relation)

The scheme of the T_TRAINING relation is: T_TRAINING = {COMPANY, TRN,

CN | V}, where attributes COMPANY, TRN, CN are explicit and V is an implicit

timestamp attribute distinguished from the explicit attributes by the symbol |.

Since V is an implicit attribute that contains valid time elements, T_TRAINING

relation is a valid time state relation in TSQL2.

Although time in a tuple is not atomic in general, a 1NF tuple timestamping

data model is assumed. This statement is justified in [Sno95] as follows: “The

conceptual model and algebra are not meant for physical implementation due

to the N1NF nature of the model. We therefore show how the semantics of the

conceptual algebra can be supported with a 1NF representational model and

accompanying algebra. The 1NF nature of this representation allows the use,

or adaptation of, many well-established query optimisation and evaluation

techniques”. The algebra described briefly below is the conceptual algebra.

Besides, only valid time relations are discussed in this section, since

transaction time and bitemporal relations are out of interest in the present

thesis.

The snapshot relational algebra is extended to accommodate the TSQL2

characteristics. Six sets of relational algebra operators are defined to support

the six different types of relations that TSQL2 supports.

Three new operators that do not have snapshot analogues are introduced in

the set of valid time state operators and together with seven operators that are

generalisations of the corresponding snapshot operators form the operators of

the algebra.

60

Projection, selection, theta-join, left outer-join, union, difference, rename,

ATVS, BS which transforms a valid time state relation into a bitemporal state

relation and SNVS which transforms a valid time state relation into a snapshot

relation and slice form the set of valid time state operators. The set of valid

time event operators consists of the same ten operators. The definitions of

valid time state and valid time event operators are almost identical.

Coalescing is the process of collapsing all value-equivalent tuples into a

single tuple.

However, the slice operator may produce non-coalesced tuples. Therefore, it

violates the restriction that value-equivalent tuples are not allowed in the data

model since it can produce value-equivalent tuples. Hence, it is not a closed

operation.

The definition of the join operation between a snapshot relation and a valid

time state relation is missing in the TSQL2 algebra. Besides, snapshot

relations cannot be transformed to valid time relations, due to the lack of

relevant operators.

TSQL2 supports only one valid time dimension since only one implicit valid

time attribute is allowed in each valid time state or in each valid time event

relation. This imposes restrictions to the modelling of temporal data. For

example, if two or more valid times must be recorded in a valid time state or

valid time event relation, then, only one of them can be implicit and the

remainder have to be recorded in explicit attributes. Therefore, relations with

multiple valid time attributes do not have a uniform way of representation. To

extend the previous remark, when a binary operation has to be performed

between two relations that both have multiple valid time attributes then, there

are many different ways to formulate it, depending on which of these valid

time attributes is implicit in both relations.

Another limitation of the model is that a temporal relation must always

have at least one explicit attribute. In addition, implicit attributes do not

participate in the key of the relation. Therefore, the key of a relation consists of

explicit attributes only.

Although it was proposed to become a standard, this did not occur. The

above stated limitations can justify this statement.

61

2.4 Summary

The two fundamental characteristics that compose the database model

proposed in this thesis, N1NF and the temporal features have been discussed.

Several different approaches to the support of N1NF relations have been

presented and extensively reviewed. Various problems that these approaches

encounter have been explained and demonstrated by examples.

Various temporal database models have also been reviewed. The

presentation of these models is not based on a specific piece of work but on

the overall research which has been conducted by each researcher over the

years of relevant activity in the subject. The main shortcomings of each

approach have also been discussed.

This chapter provides a motivation for the chapters that follow, where a new

temporal nested model is formalised.

62

CHAPTER 3

3. DESIGN CONSIDERATIONS

3.1 Introduction

In chapter 2 the temporal database models have been categorised according

to certain properties that distinguish them and the most important proposals

for temporal database models have been reviewed.

In this chapter the properties of the nested temporal model defined in this

thesis are described and the decisions that have been made are justified.

Firstly, the various temporal features that characterise temporal models are

outlined. More explicitly, they concern:

§ the semantics of time representation (valid time/transaction time),

§ whether timestamping is applied to a tuple or to individual attributes

(tuple timestamping/attribute timestamping),

§ whether attribute values are defined for the same or different time

period in the same tuple (homogeneous tuple/heterogeneous tuple),

§ whether time is represented as points or intervals (single

chronons/intervals/temporal elements).

For each of these features the alternative approaches are discussed and

their advantages and disadvantages are reviewed. The static properties of the

model proposed in this thesis are then given and finally, the running example

used in this thesis is introduced.

3.2 Basic Temporal Definitions

Time is naturally continuous. In databases it can be treated either as

continuous, i.e. isomorphic to real numbers, or as discrete, i.e. isomorphic to

natural numbers. Both views of time assume that time is linearly ordered.

63

Discrete time has commonly been adopted by the research community in

temporal databases for two reasons: it is simple and easy to be implemented

([TCG+93]).

Therefore, time is interpreted in this thesis as discrete. T = {0, t1, t2, …, tn}

represents the set of ordered and equally spaced time points. 0 represents the

least time instance and tn represents the greatest time instance. Time units

are application dependent.

Some basic temporal terms that are going to be used in the rest of this

thesis are now defined.

3.2.1 Basic concepts of time

Definition 3.1 (Time domain) A time domain is a non-empty, finite, totally

ordered set of consecutive elements of the same time type (e.g. years, hours,

minutes, seconds). � ([LJ88b])

Definition 3.2 (Time point) The elements of a time domain are called time

points. �

Definition 3.3 (Chronon) Chronon is the shortest non-decomposable unit of

time (i.e. the time period between two consecutive time points) supported by a

temporal database management system. �

Definition 3.4 (Time interval, TI) Time interval is the finite set of

consecutive time points between two given time points.

TI = [ti, tj) = {tk | tk ∈ T, ti ≤ tk < tj } where T is defined as the set of time

points. �

Time intervals are closed to the left and open to the right ([LJ88b]).

Definition 3.5 (Time interval’s start point, start) Start point of a time

interval is the minimum boundary point of a time interval (ti - Definition 3.4). �

Definition 3.6 (Time interval’s stop point, stop) Stop point of a time

interval is the maximum boundary point of a time interval (tj - Definition 3.4).

�

Note that the stop point does not belong to the interval.

3.2.2 Temporal elements

Definition 3.7 (Temporal element, TE) Temporal element is a finite set of

disjoint and non-adjacent time intervals. �

64

Example 3.1: TE = {[1, 5), [8, 9), [15, 23)}.

Definition 3.8 (Temporal element’s start point, START) The START point

of a temporal element is the minimum start point of all the start points of the

time intervals that belong to this temporal element.

TE = {[t1START, t1STOP), [t2START, t2STOP), …, [tkSTART, tkSTOP)}, where k=1.

START(TE) = MIN{t1START, t2START, …, tkSTART } �

Definition 3.9 (Temporal element’s stop point, STOP) The STOP point of

a temporal element is the maximum stop point of all the stop points of the

time intervals that belong to this temporal element.

TE = {[t1START, t1STOP), [t2START, t2STOP), …, [tkSTART, tkSTOP)}, where k=1.

STOP(TE) = MAX{t1STOP, t2STOP, …, tkSTOP } �

Temporal elements are closed under the set theoretic operations of union,

difference and intersection, which are defined next.

Let TE1 and TE2 be two temporal elements. Then, the following definitions

are given:

Definition 3.10 (Union of temporal elements, ∪TE)

It is the temporal element defined as:

TE1 ∪TE TE2 = { t | t ∈ TE1 ∨ t ∈ TE2} �

Example 3.2: {[22/1/1994, 29/6/1994), [3/10/1995, 25/12/1995),

[11/3/1996, 15/8/1998)} ∪TE {[1/1/1994, 3/4/1994), [30/12/1995,

20/7/1997)} = {[1/1/1994, 29/6/1994), [3/10/1995, 25/12/1995),

[30/12/1995, 15/8/1998)}

Definition 3.11 (Difference of temporal elements, -TE)

It is the temporal element defined as:

TE1 -TE TE2 = { t | t ∈ TE1 ∧ t ∉ TE2} �

Example 3.3: {[22/1/1994, 29/6/1994), [3/10/1995, 25/12/1995),

[11/3/1996, 15/8/1998)} -TE {[1/1/1994, 3/4/1994), [30/12/1995,

20/7/1997)} = {[3/4/1994, 29/6/1994), [3/10/1995, 25/12/1995),

[20/7/1997, 15/8/1998)}

Definition 3.12 (Intersection of temporal elements, ∩TE)

It is the temporal element defined as:

TE1 ∩TE TE2 = = { t | t ∈ TE1 ∧ t ∈ TE2} �

65

Example 3.4: {[22/1/1994, 29/6/1994), [3/10/1995, 25/12/1995),

[11/3/1996, 15/8/1998)} ∩TE {[1/1/1994, 3/4/1994), [30/12/1995,

20/7/1997)} = {[22/1/1994, 3/4/1994), [11/3/1996, 20/7/1997)}

3.2.3 Attributes and time

Definition 3.13 (Temporal attribute) An attribute is a temporal attribute if

it is defined on the domain of temporal elements. �

Definition 3.14 (Time-invariant attribute) Time-invariant attribute is an

attribute whose values are not associated with timestamps. �

Time-invariant attributes can be updated e.g. in the case of an error, but a

database does not keep a history of it.

Definition 3.15 (Time-varying attribute) Time-varying attribute is an

attribute whose values are associated with timestamps. �

Definition 3.16 (Timestamp) A timestamp is a time value associated with a

timestamped object (i.e., an attribute value or tuple). � ([TCG+93])

Definition 3.17 (Lifespan) The lifespan of a database object is the time

over which the object is defined. � ([JDB+98])

3.3 Categorisation of Temporal Database Models

Temporal data models can be categorised according to their distinguishing

characteristics. These have been discussed briefly in section 2.3.

The decision to include specific features in a temporal data model depends

on the overall benefits that each one provides.

The advantages and disadvantages of the different approaches to temporal

database models are presented next. Also, section 3.4 gives an overall

assessment of the features of the new model.

3.3.1 Valid time versus Transaction time

Two different kinds of time that can be stored in temporal databases have

been widely accepted by the temporal database community, valid time and

transaction time. The majority of the temporal models that have been

presented in the literature consider only valid time.

66

Databases model reality. Consequently, when the time dimension of

different facts is modelled in a database, the most important issue is to model

the time when these facts are true in the modelled reality. This time, in

temporal database terminology, is called valid time.

It should noted that including valid time in a database, while it provides a

history of the values in a tuple, does not provide a log of changes to those

values. Thus, if an incorrect value is entered for an attribute and is

subsequently amended, no record of the earlier incorrect value will exist once

the correction has been made. In other words, past versions of the database

are lost.

As mentioned in [MS91], valid time is a multifaceted aspect of time since

the existence of a single object or relationship may be defined by using

different times. An example of this property is the time must is stored in

barrels and the time wine is ready for consumption may both be used in

specifying the wine’s production (in natural and not industrialised conditions).

From the literature it can be seen that the support of valid time has

produced the most interesting problems and for this reason most proposed

algebras address it.

Transaction time was introduced later than valid time. Transaction time

represents the time at which the data remains stored in the database and

therefore it stores versions of relations and not histories of modelled reality.

Therefore, transaction time errors cannot be corrected since the transaction

time data forms a temporal record of the values actually stored in the

database whether or not they are a correct representation of the real world.

Mistakes can be eliminated only by creating a new correct record with a later

transaction time. Another difference between transaction and valid time is

that, in the former, future time is not supported since it has no meaning,

whereas in the latter predictions and knowledge of the future do make sense

and are allowed.

It has been shown that the two time dimensions are orthogonal, so they can

be studied separately ([Sno87]). However, the results of some research on valid

time databases are relevant to transaction time databases and vice versa, at

least on issues concerning some basic temporal concepts, for example

operations on time intervals.

67

3.3.2 Tuple timestamping versus Attribute timestamping

All tuple timestamping models proposed so far maintain the 1NF property at

least concerning the non-temporal attributes. N1NF tuple timestamping

models exist, e.g. [Sar90] and [JS99]; however, only the temporal attributes

are nested (time in a tuple is represented as a set of time points). All other

attributes are atomic and so these models have been defined by adding a

temporal attribute to 1NF relations. If a tuple timestamping model supports

nested data, other than nested time data, then whenever any nested data

changes, the whole tuple must be replicated with the updated attribute value

and associated tuple timestamp. Therefore, real N1NF tuple timestamping

models are not feasible, since time-varying nested attributes cannot be

supported efficiently.

In contrast, attribute timestamping models support N1NF. 1NF attribute

timestamping models can exist but do not take full advantage of the features

that attribute timestamping provides, since the history of an object (attribute)

cannot be maintained within a single tuple, therefore they have not been

proposed thus far.

Saying that, it is important to mention Lorentzos’ 1NF model. His model can

be used to support either tuple or attribute timestamping. He does not

endorse either in [Lor88]. However, his model has been considered as a 1NF

attribute timestamping model by several researchers as in [Mck88]. A features’

analysis of Lorentzos and all the other major models is given in chapter 8.

As has been mentioned in chapter 2, several models have been proposed

which are based on the tuple timestamping approach. This approach,

although popular, has a number of shortcomings which are summarised

below. It should be noted that a number of shortcomings as well as a number

of advantages are derived directly from the 1NF property of tuple timestamping

relations.

1. It can support only homogeneous tuples. A temporal tuple is

homogeneous if the lifespans of all attribute values within it are identical.

Since with tuple timestamping there is only one timestamp per tuple it is

necessarily homogeneous. Consequently, the expressive power of the model is

limited, because attribute values with different lifespans within the same tuple

cannot be supported.

68

In Fig. 3.1 the name of a person may change, for example a woman’s name

after marriage. However, the ID remains the same since it is unique for each

person. NULL values in the ADDRESS attribute mean that for that specific

time interval (TIME attribute) the address of that person is unknown. The

existence of NULL values is unavoidable in this relation since attribute values

within the same tuple must have same lifespans.

ID NAME ADDRESS TIME

1 Anna Black NULL [d1, d3)

1 Anna Black 52, Ladbroke Grove [d3, d5)

1 Anna Black NULL [d5, d6)

1 Anna Scott NULL [d6, d8)

1 Anna Scott 34, Regent Square [d8, d10)

2 Tom Thomas 20, Holland Park [d3, d10)

Fig. 3.1: Tuple timestamping (homogeneous) relation with time represented as

time intervals

2. With tuple timestamping, one new attribute must be added to the

relation to represent time when the time domain is expressed using intervals

(Fig. 3.1) and two attributes are needed if it is expressed using start and stop

points (Fig. 3.2). Consequently, since the number of attributes in the relation

increases, relations require in general more storage space.

ID NAME ADDRESS START STOP

1 Anna Black NULL d1 d3

1 Anna Black 52, Ladbroke Grove d3 d5

1 Anna Black NULL d5 d6

1 Anna Scott NULL d6 d8

1 Anna Scott 34, Regent Square d8 d10

2 Tom Thomas 20, Holland Park d3 d10

Fig. 3.2: Tuple timestamping (homogeneous) relation with time represented

as start and stop points

3. Necessarily with tuple timestamping the key must be extended to include

time even if the key attribute itself is time-invariant. For example, in Fig. 3.2

in order to retrieve a single name and address it is necessary to specify values

not only for the ID but for the required time point or time interval as well.

4. By their definition, temporal 1NF models do not support multivalued

attributes except perhaps the attributes in which time is recorded.

69

5. When more than one attribute is time-varying there can still only be one

time domain in a tuple. This results in either the relation having to be

vertically partitioned to give one relation per time-varying attribute or

introducing a new tuple each time a data item is amended, with consequent

duplication of data and the appearance of NULL values (Fig. 3.1).

In Fig. 3.1 it is obvious that for the first three attributes (ID, NAME,

ADDRESS) a number of pieces of data are repeated.

6. If a relation contains two or more time-varying attributes, it is not

obvious following an update which attribute value has changed in the newly

created tuple (see Fig. 3.1). Therefore, each attribute value has to be compared

to the corresponding attribute value of the previous tuple to identify any

change that may happen.

7. The use of NULL values and data duplication can be eliminated but this

results in fragmented relations with very few attributes in each table, as in Fig.

3.3. As a consequence, these relations have less expressive modelling power.

Fig. 3.3: The data of the table in Fig. 3.1 in two fragmented tables

This approach results in a wide gulf between the logical unit of data and its

physical representation. This is a serious disadvantage for all proposed query

languages based on this approach because much effort is needed to link

together related pieces of data from different relations when queries are

executed. Additionally, the join operation which is used to associate data from

different relations is an expensive operation and should be avoided when

possible.

However, the benefits that tuple timestamping offers are very important and

also have to be mentioned.

1. Tuple timestamping relations can be represented uniquely in contrast

to nested relations used for attribute timestamping models. In other words,

the structure of each relation does not need to be changed, apart for the order

ID ADDRESS TIME

1 52, Ladbroke Grove [d3, d5)

1 34, Regent Square [d8, d10)

2 20, Holland Park [d3, d10)

ID NAME TIME

1 Anna Black [d1, d6)

1 Anna Scott [d6, d10)

2 Tom Thomas [d3, d10)

70

of the attributes in the relation (attributes in a relation are unordered). The

benefits of the above proposition are that no restructuring operations are

needed in order to transform the structure of a tuple timestamping relation

and in addition it is impossible for two relations with different schemes to be

equivalent.

2. In general, the users can easily understand the structure of a temporal

database which consists only of tuple timestamping relations and express

queries using this approach.

3. Algebraic operations can be defined straightforwardly as a simple

extension of corresponding operations of the conventional relational algebra

because of the 1NF property.

4. An approach where tuple timestamping relations are used can be

implemented more easily.

5. Traditional functional dependencies can be applied to a tuple

timestamping relation since it is at least in 1NF.

In summary, the tuple timestamping approach has all the advantages of

traditional relational databases.

Attribute timestamping models append at each update a new attribute

value together with its timestamp to the updated tuple by means of a nested

relation for each time-varying attribute.

Attribute timestamping relations present a number of shortcomings. Some

of these shortcomings are caused by the nested feature of the relations that an

attribute timestamping database model involves. These are:

1. The structure of a nested relation is difficult to be understood. More

explicitly, the larger the number of nesting levels a nested relation has, the

more complex its structure and hence, it becomes harder to understand.

2. A consequence of the above proposition is that queries can become very

complex, even in those cases where only one relation is involved.

3. An implementation of an attribute timestamping model is more complex

than one for a corresponding tuple timestamping model.

4. Definitions of algebraic operations for an attribute timestamping

temporal database model can become very complicated, since relations in

general, can consist of a finite but unknown number of nesting levels.

71

5. Particularly for the join operation when it is required, it is extremely

difficult both to define and implement.

6. An attribute timestamping nested relation can be represented in many

different ways, using different structures. In other words, different schemes

can lead to equivalent relations which may cause confusion. In addition,

restructuring operations must be defined.

7. Traditional functional dependencies cannot be applied in attribute

timestamping nested relations, since they are in N1NF and so new functional

dependencies must be defined in ways analogous to [Lev92].

Nevertheless, the attribute timestamping approach offers significant

advantages over tuple timestamping:

1. It can support N1NF or nested relations as shown in Fig. 3.4 where

tuples have a set of composite values for NAME and ADDRESS attributes. (The

relation in Fig. 3.4 represents the same data as the relation in Fig. 3.1).

ID NAME ADDRESS

1 Anna Black [d1, d6)

Anna Scott [d6, d10)

52, Ladbroke Grove [d3, d5)

34, Regent Square [d8, d10)

2 Tom Thomas [d3, d10) 20, Holland Park [d3, d10)

Fig. 3.4: N1NF attribute timestamping heterogeneous relation

A number of the following advantages are derived directly from the nested

character of attribute timestamping relations.

2. The attribute timestamping model can support temporally heterogeneous

data. However, such a model can still be used to represent a temporally

homogeneous model by the use of appropriate temporal constraints. Fig. 3.4

shows a heterogeneous attribute timestamping model in which the lifespan of

NAME attribute for ID=1 is [d1, d10) but the lifespan of ADDRESS attribute for

the same ID is [d3, d5) ∪ [d8, d10).

3. In attribute timestamping models, the attribute values are functions of

time. Therefore, the fragmentation of an object description is avoided since the

whole history of an object is modelled in one single tuple and as a result this

gives a more natural view of data.

Naturally, the time domain of attribute values is a temporal element. Even if

the time domain is physically fragmented as in Fig. 3.4 where the time domain

72

of the ADDRESS attribute for ID=1 is [d3, d5) ∪ [d8, d10), the attribute data

values can stay in the database as a single logical object. In addition, NULL

values are avoided, in contrast to the situation when tuple timestamping is

used. Thus, the integrity of the temporal history is maintained.

4. Within one relation many functionally independent attributes can be

simultaneously time-varying as in Fig. 3.4 where NAME and ADDRESS

attributes are both independently time-varying. In addition, time-varying

attributes can be expressed using different time domains (i.e. time domains of

different time types e.g. years, days, months, seconds) in the same relation.

5. Time-invariant attributes are not encumbered with a timestamp as in

tuple timestamping models.

6. With attribute timestamping, duplication of time-invariant data is

avoided, thus saving storage space and avoiding the update anomalies which

are a consequence of data redundancy.

7. Usually, a change occurs not to the values of all attributes in the same

tuple but only to the values of a small subset of the attributes. Consequently,

in the attribute timestamping approach, when attribute values change, the

new attribute values can be inserted into the same tuple thus, avoiding the

creation of a new tuple.

8. Within nested relations temporal semantics are explicitly represented.

In summary, the same data represented in attribute timestamping format

can be stored in a single table in contrast to the use of tuple timestamping

where they are represented either in one table with duplicated data and null

values or in two or more tables. As a result, attribute timestamping models

provide a more natural view, closer to how a user might perceive reality and

consequently likely to be easier to design or query.

3.3.3 Homogeneous models versus Heterogeneous models

As has been described in section 2.3, temporally homogeneous database

models involve relations where all attribute values in the same tuple have been

defined over the same lifespan, whereas in temporally heterogeneous database

models relations have tuples with different lifespans of the attribute values

73

within them. Therefore, a more complete representation of the real world is

allowed when heterogeneous tuples are used.

Homogeneity is a natural consequence of tuple timestamping models.

Therefore, in all proposed tuple timestamping models, homogeneity is an

implicit feature. Although algebraic operations in homogeneous relations are

easy to define they have some restrictions on their expressive power.

Additionally, a homogeneous relation needs more storage space since the

number of tuples that are required to describe the same information is larger

than in an equivalent heterogeneous relation. Another important drawback of

homogeneity is the fact that certain pieces of data cannot be modelled. For

example, if a father dies before his child is born the lifespan of the father does

not intersect with that of the child. Consequently, a tuple (f, c) cannot be

recorded in relation Parent(Father, Child).

In contrast, attribute timestamping models are more flexible since they can

be either homogeneous or heterogeneous.

Although a number of researchers have defined homogeneous temporal

models, some of them have tried to relax this assumption ([Gad86a]) because

of the various problems it causes.

Homogeneous models can be defined as a special case of heterogeneous

models. Therefore, heterogeneous models form the general case for the time

domains of attributes in the same tuple of a given relation.

3.3.4 Points versus Intervals

The way in which time is represented in temporal databases has been

extensively studied (e.g. [Lor88], [Tom96]). There are three different

approaches to represent it: a single time point, two time points which

represent an interval and a set of time intervals which form a temporal

element ([CC87], [Gad88], [MS91], [TCG+93]).

Although in some of the first proposals for temporal database models, time

is expressed using single time points (i.e. events), as for example in [CC87],

[Ari86] and [SS87], the majority of the temporal models use intervals and

temporal elements to represent time (e.g. [Lor88], [Mck88], [BG93], [Tan97]).

There are many reasons that lead to this approach. Firstly, a time point

denotes either the start or the end of the lifespan of an object (relation, tuple

74

or attribute). In order to store the whole history of the object, two different

attributes need to be added in the relation, i.e. the start point and the stop

point, so that the lifespan of that object can be shown. In contrast, time

intervals contain the complete information about the lifespan of an object in a

“compact style”. In the literature, a complete study of intervals has been given,

where an algebra has been described for their manipulation and the

operations defined have been proved to be closed ([Lor88]).

A temporal element is defined as the union of disjoint and non-adjacent

time intervals. Therefore, in respect of its semantics, a temporal element and

its time intervals can be used interchangeably. However, a relation where time

is represented by time intervals requires more storage space than the

equivalent one where temporal elements are used. This is because the number

of tuples in the former relation, in general, is larger than in the latter case,

where more than one tuple can be combined into a single tuple if they have

the same atomic values for all their attributes, even if they are defined over

disjoint and non-adjacent time intervals. In other words, temporal elements

enable the entire history of an object to be presented in a single tuple.

However, it is also important to observe that the definition of algebras is

more complex when time intervals and temporal elements are used since extra

properties and operations must be defined for their support of time intervals

([Lor88]).

It can be proved straightforwardly that a time point is a special case of a

time interval and a time interval is a special case of a temporal element (the

former is called the Duality Principle ([Lor88]).

A detailed study of point and interval types can be found in [DDL03].

3.4 The Static Properties of the Model

The model proposed in this thesis is a temporal nested relational model,

called the Temporal Nested Model (TNM). Relations can be nested to any finite

depth. The basic motivation is to define a temporal model with as few

constraints as possible for the user. For this reason, the model is defined in

such a way that the user can express the data as naturally and as easily as

possible, using as few relations as possible and as a consequence as few join

operations as possible.

75

The proposed model is neither a tuple timestamping model nor an attribute

timestamping model with the traditional meaning of the words. However, TNM

combines the advantages of tuple timestamping and attribute timestamping

models and minimises the limitations of these two approaches.

In the proposed model, temporal elements which timestamp attribute values

form temporal attributes (see Definition 3.13). Each atomic attribute which

changes over time has a temporal attribute connected with it which shows for

each tuple the time period over which each value of the atomic attribute is

valid. Temporal attributes in the same relation can be defined over different

time domains. The atomic attribute and the corresponding temporal attribute,

referred to together as a temporal nested attribute, form a temporal nested

subrelation in the general case. However, temporal attributes may also appear

at the top level of relations. Therefore, time-varying attributes are timestamped

by taking advantage of the nested feature of the model.

Temporal nested subrelations can contain other temporal or non-temporal

subrelations as well.

Nested attributes in TNM can contain time-varying attributes, atomic time-

invariant attributes or even both. Compound keys are supported. Key

attributes can be time-varying. A nested attribute can be a key attribute.

Example 3.5: An example of a nested key attribute is shown in Fig. 3.5.

The key of that relation is the nested attribute NAME. Semantically, since a

name of a person can change with time, as for example a woman’s name after

marriage, the whole tuple of this nested attribute, as a single object, uniquely

identify the corresponding tuple of the relation.

NAME ADDRESS COURSE

N N_PERIOD A A_PERIOD

Anna Black

Anna Scott

[d1, d6)

[d6, d10)

50, Homer St.

34, Porchester Sq.

[d3, d6)

[d8, d10)

Ph.D.

Tom Thomas [d3, d7) 20, Holland Pk. [d3, d7) B.Sc.

Fig. 3.5: A nested relation with key the nested attribute NAME

One important feature of the model is that, when the key is time-varying, a

single timestamp is applied to the whole key, whether a simple nested

attribute or a compound key. The timestamp of the key provides a lifespan for

the tuple in these cases. This is similar to Clifford and Croker’s proposal for

76

timestamping each whole tuple in addition to each time-varying attribute

([CC87]). However, the model proposed in this thesis makes use of temporally

heterogeneous tuples rather than the homogeneous tuples they suggested.

Time in TNM is represented by temporal elements.

The representation used in TNM is believed by the author of this thesis to

have many advantages compared to the previously described models where the

time domain of an attribute value is part of the same attribute as that value.

Firstly, data describing an object is not fragmented into many relations, since

they can be nested within the same relation. Moreover, extra operations such

as Temporal Atom Decomposition, Temporal Atom Formation and Drop-Time

([Tan97]), which have been briefly described in section 2.3.1, can be avoided.

In addition, when the relation is viewed from the external level it can be

characterised as an attribute timestamping relation, while at an internal level

(that of a temporal subrelation) it can be viewed as a tuple timestamping

relation. The advantage of this approach is that atomic values and time values

form different attributes and so can be referenced separately which is very

important since they have different properties. Key attributes are not

necessarily time-varying. However, TNM allows this potentiality for cases

where it is appropriate semantically.

3.5 The Running Example of the Thesis

Two databases are used as examples in the thesis. The first one does not

contain any temporal data while the second one does. However, the two

examples contain similar information with the addition of temporal attributes

in the second case. The nested database example is used to illustrate the NRM

and the temporal nested database example is used for the TNM. The two

databases are shown below and some explanation is given. In the examples in

chapters 4, 5 and 6 there are cases where relations from the two databases are

used in a slightly modified form for the sake of the examples. These will be

indicated when they are used.

77

3.5.1 The nested database example

The running nested database example of the thesis consists of seven

relations TRAINING, DEPT, LOCATION, CASH-POINT, EMPLOYMENT,

PAYMENT and COURSE (Fig. 3.6-3.12). All these relations are nested

relations. An explanation of the running example is now given in order to

introduce the reader to the example which will be used in the rest of this

thesis.

Relation TRAINING (Fig. 3.6) holds data about courses and trainers

provided by IT companies. It consists of one atomic attribute, COMPANY, and

one nested attribute, TRAINER. Attribute TRAINER in turn, consists of one

atomic attribute, TRN, and one nested attribute, COURSE. Subrelation

COURSE consists of one atomic attribute, CODE, and one nested attribute, C,

which consists of two atomic attributes, CN and Y.

Semantically, the attributes of the TRAINING relation have the following

meaning: COMPANY - company name, TRN - trainer name, CODE - course

code, CN - course numberY - year in which the course was taken. A specific

course can be identified uniquely by both course number (CN) and year (Y); a

specific course consists of a number of different topics (see rel. COURSE-Fig.

3.12) which can be given by different trainers belonging to different

companies.

Relation DEPT (Fig. 3.7) holds data about the different departments of a

company as well as the trainers who have given courses to the staff of these

departments. DEPT consists of three attributes, the atomic attributes D and

DN and the nested attribute UNIT. Subrelation UNIT consists of three

attributes, the atomic attributes UN and UD and the nested attribute

COURSE_DETAILS. COURSE_DETAILS consists of two atomic attributes, TRN

and COMPANY and one nested attribute, the C attribute. Subrelation C

contains two atomic attributes, CN and Y.

The semantics of the attributes of relation DEPT are: D - department

number, DN - department name, UN – unit number, UD – unit description,

TRN – trainer name, COMPANY – company name, CN - course number and Y -

year in which the course was taken. Relation DEPT (Fig. 3.7) is a modified

version of relation DEPT in [SS86].

78

Relation LOCATION (Fig. 3.8) contains data about branches of different

companies. It consists of one atomic attribute, COMPANY, and one nested

attribute, ANNEX. Subrelation ANNEX consists of two atomic attributes,

BUILDING and ADDRESS.

The attributes of relation LOCATION have the following semantics:

COMPANY –company name, BUILDING – building name and ADDRESS –

street name.

Relation CASH-POINT (Fig. 3.9) has data about cash-points that different

banks own. CASH-POINT consists of two attributes, the atomic attribute BANK

and the nested attribute BRANCH. Attribute BRANCH consists of two atomic

attributes, SORT_CODE and ADDRESS.

The semantics of the attributes of relation CASH-POINT are: BANK – bank

name, SORT_CODE – sort code of the branch and ADDRESS – street name.

Relation EMPLOYMENT (Fig. 3.10) contains data about the employees that

work for different companies. EMPLOYMENT consists of two attributes, the

atomic attribute NAME and the nested attribute JOB. Attribute JOB consists

of two atomic attributes, COMPANY and JOB_DESCRIPTION.

Semantically, the meaning of the attributes of relation EMPLOYMENT is:

NAME – employee name, COMPANY – company name, JOB_DESCRIPTION –

job description.

Relation PAYMENT (Fig. 3.11) shows the salaries that different companies

give for different jobs. PAYMENT consists of two attributes, the atomic

attribute SALARY and the nested attribute JOB. Attribute JOB consists of two

atomic attributes, COMPANY and JOB_DESCRIPTION.

The semantics of the attributes of relation PAYMENT are: SALARY – salary

range, COMPANY – company name, JOB_DESCRIPTION – job description.

Relation COURSE (Fig. 3.12) contains data about the different courses that

took place. It consists of four attributes, nested attributes C and SUBJECT

and atomic attributes COURSE_DURATION and TITLE. Attribute C consists of

two atomic attributes, CN and Y, and attribute SUBJECT consists of one

atomic attribute, the TOPICS attribute.

Semantically, the meaning of the attributes of relation COURSE is: CN -

course number, Y - year in which the course was taken, COURSE_DURATION

– course duration (number of hours), TITLE – course title and TOPICS – course

topics.

79

 TRAINER

COMPANY TRN COURSE

 CODE C

 CN Y

 Jack xx0 1 75

Apple 2 76

 xy1 1 82

 Mark 3 82

 xy2 2 79

 xy1 3 82

 IBM Tim xx2 5 79

 4 82

 Microsoft Karen xx1 2 77

 2 81

 Fig. 3.6: TRAINING

 UNIT

D DN UN UD COURSE_DETAILS

 TRN COMPANY C

 CN Y

 511 Software 1 75

 Engineering Mark Apple 2 76

 5 79

 1 Research 1 82

 552 Basic Research Karen Microsoft 2 79

 Tim IBM 5 79

 2 76

 678 Planning Mark Apple 4 82

 650 Design Karen Microsoft 1 75

 2 Development 780 Maintenance Tim IBM 3 82

 Mark Apple 2 76

 2 81

 981 Planning Jack Apple 3 82

 5 79

 Fig. 3.7: DEPT

80

COMPANY ANNEX

 BUILDING ADDRESS

TOSHIBA North Building Porchester Rd.

IBM Maple House Kendal Av.

 Main Building Danebury Rd.

Microsoft Pegasus House Ashford St.

 Queen’s Building Park Rd.

Fig. 3.8: LOCATION

BANK BRANCH

 SORT_CODE ADDRESS

Barclays 386600 Ashford St.

NatWest 560045 Park Rd.

 560038 Porchester Rd.

Lloyd’s 478202 Ashford St.

 478210 Park Rd.

 Fig. 3.9: CASH-POINT

NAME JOB

 COMPANY JOB_DESCRIPTION

Anna Microsoft Secretary

 TOSHIBA Secretary

Paul IBM Software Engineer

 Microsoft Programmer

Mark Apple Director

Fig. 3.10: EMPLOYMENT

SALARY JOB

 COMPANY JOB_DESCRIPTION

15,500-19,500 TOSHIBA Secretary

 Apple Secretary

18,000-23,000 Microsoft Programmer

 Microsoft Secretary

25,000-30,000 Apple Director

Fig. 3.11: PAYMENT

81

 C COURSE_DURATION TITLE SUBJECT

 CN Y TOPICS

 1 75 Access

 2 77 80 Computer Skills Word

 Excel

 2 82 120 Multimedia Power Point

 3 82 Internet

 2 79 20 Programming C++

 JAVA

Fig. 3.12: COURSE

3.5.2 The temporal nested database example

The running temporal nested database example consists of five relations,

T_TRAINING, T_DEPT, T_LOCATION, T_CASH-POINT and T_COURSE (Fig.

3.13-3.17). All relations are temporal nested relations. These relations are

modified versions of the corresponding nested relations described in section

3.5.1 (Fig. 3.6-3.9, 3.12). For this reason only the new attributes that have

been introduced in the temporal nested version of the example are explained

in this section.

Relation T_TRAINING (Fig. 3.13) contains data about trainers. More

precisely, it shows in which companies they work, which courses they have

taught and the period of time over which each course was taking place.

Attribute TRAINER is a temporal nested attribute, which consists of one

atomic attribute, TRN, and one temporal nested attribute, COURSE.

Subrelation COURSE consists of one atomic attribute, CN, and one temporal

attribute, CN_PER t attribute. Semantically, the meaning of the new or different

attributes is: CN – course number (a course consists of a number of different

topics (see relation T_COURSE below-Fig. 3.17) which can be given by different

trainers belonging to different companies), CN_PER t – duration of each course.

Relation T_DEPT (Fig. 3.14) contains data about a company’s staff.

Attribute STAFF is a temporal nested attribute. It consists of three attributes,

the atomic attributes UN and UD and the temporal nested attribute

COURSE_DETAILS. COURSE_DETAILS consists of one atomic attribute,

SNAME, one temporal attribute, STAFF_PER t and one temporal nested

82

attribute, COURSE. Subrelation COURSE contains one atomic attribute, CN,

and one temporal attribute, CN_PER t. The semantics of the new attributes is:

SNAME - staff name, STAFF_PER t – period of staff employment, CN_PER t -

duration of each course.

Relation T_LOCATION (Fig. 3.15) is very similar to its corresponding nested

version, the LOCATION relation (Fig. 3.8). The only difference is that the

ANNEX attribute is a temporal nested attribute which consists of two atomic

attributes, BUILDING and ADDRESS and one temporal attribute,

ADDRESS_PERt. The semantics of the new attribute is the following:

ADDRESS_PERt – time during which a company’s annex was at a specific

address.

Similarly, the only difference between relation T_CASH-POINT (Fig. 3.16)

and its corresponding nested version, the CASH-POINT relation (Fig. 3.9) is

that attribute BRANCH of relation T_CASH-POINT is a temporal nested

attribute which consists of three attributes, the atomic attributes SORT_CODE

and ADDRESS and the temporal attribute ADDRESS_PER t. The semantics of

the new attribute is: ADDRESS_PERt – time period of a bank’s branch at a

specific address.

In relation T_COURSE (Fig. 3.17) the nested attribute C of nested relation

COURSE (Fig. 3.12) has been replaced by the temporal nested attribute

COURSE. Attribute COURSE consists of one atomic attribute, CN and one

temporal attribute, CN_PER t. The semantics of the new attribute is: CN_PER t –

duration of each course.

 TRAINER

COMPANY TRN COURSE

 CN CN_PERt

 Jack 5.2 [2/11/1994, 25/4/1995) ∪ [7/8/1996, 1/1/2010)

 Apple Mark 3.3 [2/1/1992, 8/11/1996)

 3.5 [30/4/1995, 1/1/2010)

 5.2 [19/3/1997, 21/4/1997)

IBM Tim 5.0 [17/12/1995, 1/1/2010)

 Microsoft Karen 3.3 [25/6/1996, 1/1/2010)

 Fig. 3.13: T_TRAINING

83

 STAFF

D DN UN UD COURSE_DETAILS

 SNAME STAFF_PERt COURSE

 CN CN_PERt

 Paul [13/5/1994, 5/9/1996) 5.2 [1/2/1995, 24/6/1995)

 511 Software 5.0 [27/8/1995, 30/1/1996)

 Engineering Peter [26/2/1996, 1/1/2010) 3.5 [1/1/1998, 28/10/1998)

 1 Research Anna [30/4/1994, 27/8/1995) 3.1 [1/7/1995, 1/8/1995)

 552 Basic ∪ [4/6/1997, 19/11/1998) 3.3 [29/9/1997, 10/2/1998)

 Research Mary [15/5/1995, 1/1/2010) 3.3 [17/1/1997, 28/4/1997)

 678 Planning Katy [24/1/1994, 10/7/1995) 3.2 [22/4/1995, 15/5/1995)

 5.4 [13/2/1994, 4/3/1995)

 650 Design Steve [2/1/1995, 27/6/1998) 5.0 [18/3/1996, 1/7/1996)

 2 Development 780 Maintenance Helen [14/2/1996, 1/1/2010) 3.5 [17/8/1997, 1/1/2010)

 Pat [21/6/1995, 31/1/1996) 2.2 [18/9/1995, 10/10/1995)

 Fig. 3.14: T_DEPT

COMPANY ANNEX
 BUILDING ADDRESS ADDRESS_PERt

Toshiba North Building Porchester Rd. [3/8/1995, 1/1/2010)

IBM Maple House Kendal Av. [17/1/1996, 22/5/1998)

 Main Building Danebury Rd. [10/6/1998, 1/1/2010)

Microsoft Pegasus House Ashford St. [29/10/1994, 4/4/1997)

 Queen’s Building Park Rd. [18/3/1995, 1/1/2010)

Fig. 3.15: T_LOCATION

BANK BRANCH

 SORT_CODE ADDRESS ADDRESS_PERt

Barclays 386600 Ashford St. [16/11/1995, 23/12/1998)

NatWest 560045 Park Rd. [1/2/1993, 10/8/1998)

 560038 Porchester Rd. [6/5/1994, 20/2/1995)

Lloyd’s 478202 Ashford St. [23/7/1995, 1/1/2010)

 478210 Park Rd. [16/6/1995, 1/1/2010)

Fig. 3.16: T_CASH-POINT

84

COURSE COURSE_DURATION TITLE SUBJECT

CN CN_PERt TOPICS

 Power Point

 5.0 [27/8/1995, 30/1/1996) 35 Presentation Skills Word

 Outlook Express

 3.3 [17/1/1997, 28/4/1997) 15 Multimedia Power Point

 Internet

 3.5 [17/8/1997, 10/1/2001) Access

 5.4 [1/1/1995, 6/3/1995) 180 Computer Skills Excel

 5.2 [13/2/1994, 4/3/1995) 80 Programming C++

 JAVA

Fig. 3.17: T_COURSE

3.6 Summary

When the time dimension is added to database models it provides

opportunities for having a number of different approaches to temporal

database models. These approaches can be distinguished from each other by

their answers to the following questions:

1. Semantically, does time represent valid time or transaction time?

2. Does the model use tuple timestamping or attribute timestamping?

3. Are the tuples temporally homogeneous or heterogeneous?

4. Is time represented by single chronons, intervals or temporal elements?

The advantages and disadvantages of each of these characteristics have

been examined and the properties of the model proposed in the present thesis

have been given.

In the last section of this chapter the running example, which is going to be

used in the rest of this thesis to demonstrate the various features and

algebraic operations of the model, is described.

85

CHAPTER 4

4. THE NESTED RELATIONAL MODEL

(NRM)

4.1 Introduction

A new non-temporal nested relational model is defined in this chapter,

called the Nested Relational Model, NRM. Relations in NRM can be nested to

any finite depth.

The operations of the model are formally defined. Union, difference,

intersection, projection, selection, unnest, nest, rename, cartesian product,

natural join and T –join operations are recursively defined. For each definition,

an example is presented in order to make it clearer. For the first time, the

natural join operation is defined for any pair of nested relations which have

one or more attributes in common, even when they are in different

subrelations and at different nesting levels in each relation. The generalisation

of natural join uses one or more of the six distinct cases of the nested natural

join operation which are identified in this chapter, distinguished by certain

properties of the attributes in the join paths between the relations that

participate in the join operation. These properties depend on whether an

attribute is either atomic or relation-valued and on whether it is at either the

top level or lower level (same or different) of the two relations. The

generalisation of natural join is shown to be applicable to all joinable nested

relations. The recursive rename operation for nested relations is also formally

defined for the first time. Formal definitions for aggregate functions for nested

relations are also included in NRM.

It is important to emphasise that the NRM constitutes the base for the

equivalent temporal nested model, TNM, which is defined in the next chapter,

86

but in addition, forms by itself, a well-defined complete model for nested

relations.

4.2 Basic Concepts and Terminology

In order to introduce the Nested Relational Model (NRM) in the next

section it is necessary to present firstly the basic concepts and terminology

that are going to be used. Some of the following definitions have been used

before by the database community. However, a repetition of these definitions

at the present point is necessary for completeness. Moreover, some terms and

notation are introduced for the first time in the present thesis in order to

provide the essential formalisation of the presented model.

Definition 4.1 (Relation-valued attributes or nested attributes)

Relation-valued attributes or nested attributes are attributes which contain

non-atomic values. �

Relation-valued attributes or nested attributes can be considered as

subrelations of the relations to which they belong.

Definition 4.2 (Non-first normal form relations or nested relations)

Non-first normal form relations or nested relations are relations which contain

relation-valued attributes or nested attributes. �

In this thesis, relations with atomic attributes only will be called flat

relations, whereas relations that contain relation-valued attributes or only

atomic attributes will be referred to as nested relations. In other words, in this

thesis, flat relations are considered as special cases of nested relations.

Furthermore, attributes that contain non-atomic values will be referred to as

nested attributes and attributes that contain only atomic values will be called

atomic attributes.

Attr(R) is the set of attributes of relation r with scheme name R, i.e. Attr(R) =

{R1, R2, ..., Rn}, where n ≥ 1 and R1, R2, ..., Rn are the attributes of R, either

atomic or nested.

Definition 4.3 (Tree structure) Every nested relation r with relation

scheme R can be represented as a tree with root node R. All the nested

attributes of the relation are the non-leaf nodes of the tree and all the atomic

attributes form the leaf nodes of the tree. �

87

The tree structure is a very useful representation of a nested relation since

the scheme of a nested relation can become complex and so the tree offers a

clear graphical representation of the nested structure.

Example 4.1: The tree structure of the TRAINING relation (Fig. 3.6) is

shown in Fig. 4.1.

TRAINING

COMPANY TRAINER

 TRN COURSE

 CODE C

CN Y

Fig. 4.1: Tree representation of relation TRAINING

Definition 4.4 (Nesting levels of a relation) The number of nesting levels

of a relation is equal to the maximum number of nodes to be passed through

starting from the root to reach any atomic attribute in the tree representation.

The root of the relation is by definition at nesting level 0. �

Example 4.2: The nesting levels of relation TRAINING (Fig. 4.1) are 4.

Consequently, the nesting level of an attribute in a relation can be

computed by counting the number of nodes which must be passed through

from the root node to get to that attribute. For example, atomic attribute TRN

of relation TRAINING (Fig. 4.1) is at nesting level 2.

Definition 4.5 (Common attributes between two relations) Two (flat or

nested) relations have an atomic attribute in common if they both contain an

atomic attribute which has the same name and domain in both relations. Two

nested relations have a nested attribute in common if they both contain a

nested attribute which has the same name and the same scheme (the same

attributes with the same names defined over the same domains). �

The above definition can be applied recursively for nested attributes

containing one or more nested attributes.

88

The path of an attribute is defined recursively below.

Definition 4.6 (Path) Let LAn→Aj be the path of nested or atomic attribute A j

belonging to nested attribute An, which is a child of the root of relation R.

Then, LAn→Aj is defined as follows:

i) LAn→Aj = An, where Aj = An

ii) LAn→Aj = An(LAn+1→Aj), where An+1 is an attribute of An either equal to or

containing Aj. �

Then, the set of all attributes (atomic and nested) of R can be defined as

Attr(R) = {Ra1, Ra2, …, Rap, Rn1, …, Rni, …, Rnq}

 = {Ra1, Ra2, …, Rap, Rn1, …, U
m

k 0=

LRni → Rni
k
, …, Rnq}

where:

§ Ra1, Ra2, …, Rap are atomic attributes at nesting level 1 of relation R (p

≥ 0),

§ Rn1, …, Rni, …, Rnq are nested attributes at nesting level 1 of relation

R (1 ≤ i ≤ q),

 Rni for k = 0

§ Rni
k
=

Rni
k
 for k ≠ 0 (i.e. an attribute that has nested attribute

Rni as its ancestor)

§ m is the number of descendants’ attributes of nested attribute Rni.

Example 4.3: The path is used for the definition of an attribute in a nested

relation, in contrast to flat relations, since the whole path of an attribute is

needed in order to identify that specific attribute. As an example, consider the

nested relation DEPT (Fig. 3.7) with tree structure in Fig. 4.2.

89

DEPT

D DN UNIT

 UN UD COURSE_DETAILS

 TRN COMPANY C

 CN Y

Fig. 4.2: Tree representation of relation DEPT

Then, the set of all attributes of relation DEPT is the following:

Attr(DEPT) = {D, DN, UNIT, UNIT(UN), UNIT(UD), UNIT(COURSE_DETAILS),

UNIT(COURSE_DETAILS(TRN)),

UNIT(COURSE_DETAILS(COMPANY)),

UNIT(COURSE_DETAILS(C)),

UNIT(COURSE_DETAILS(C(CN))),

UNIT(COURSE_DETAILS(C(Y)))}

and the path of the atomic attribute CN is:

LUNIT→CN = UNIT(LCOURSE_DETAILS→CN) = UNIT(COURSE_DETAILS(LC→CN)) =

UNIT(COURSE_DETAILS(C(LCN→CN))) = UNIT(COURSE_DETAILS(C(CN))).

From the above example, it is apparent that the name of an attribute by

itself is not enough in general to uniquely identify the attribute, since in

nested relations an attribute is fully defined by reference to both its name and

its position in the tree structure of the relation in which it belongs. In addition,

there are cases in which two common attributes belong in the same relation

but in different subrelations, as for example in the result relation of a join

operation. Consequently, the only way for the two attributes to be

distinguished from one another is by their paths. Therefore, the path of an

attribute shows whether the attribute belongs to a nested attribute or not, as

well as the nesting level of it. The path of an attribute identifies the attribute

uniquely.

90

Definition 4.7 (Two nested relations having the same scheme) Two

nested relations have the same scheme iff they contain only common

attributes (atomic and/or nested) -see Definition 4.5. �

An attribute or set of attributes whose values uniquely identify each entity

in an entity set is called a key for that entity set ([Ull95]). For the case of a

nested database model, entity sets are nested relations and the definition of

the key must be expanded in order to support nested attributes as well.

Informally, a nested relation can have either atomic or nested attributes or

even a conbination of atomic and nested attributes as a key. Semantically, a

nested attribute is a key of a nested relation, when each set of values of the

nested attribute that belongs to the same tuple, uniquely identifies that tuple.

That implies that each of these set of values of the nested attribute

distinguishes, as an entirety, solely the tuple in which it belongs.

Formally, the definition of a key of a nested relation is given below:

Definition 4.8 (Key of a nested relation) The key of a nested relation r

with relation scheme R, can be a set K consisting of atomic and/or nested

attributes of R such that for any two tuples ti and tj in the relation the

following constraint is valid at all times: t i[K] ≠ tj[K], where i ≠ j and with the

additional property that removing any attribute from K leaves a set of

attributes that is not a key of R. �

Example 4.4: An example of a nested key attribute can be found in section

3.4 (Fig. 3.5).

It is considered, by the author of this thesis, that an approach where nested

attributes are allowed to be part of key attributes is an important benefit for a

nested model. Nested models, where nested attributes are not allowed to be

part of key attributes, have a significant limitation, since relations, as the one

presented in Fig. 3.5, cannot be supported. Therefore, there are cases that are

not covered by such an approach.

Many authors have adopted the PNF assumption, defined by Roth, Korth

and Silberschatz in [RKS88], in their approaches. A relation is in PNF when

all the atomic attributes of the relation participate in the key of the relation

and in addition, each nested attribute of the relation is also in PNF (see

section 2.2.2). The PNF assumption presupposes that nested attributes cannot

91

form part of a key in a nested relation, a significant restriction of a nested

database model, as explained above.

Consequently, in the nested model defined in the present thesis, the

relaxing of the restriction that other nested models impose, to allow nested

attributes as part of the key, is a considerable extension and thus, an

important benefit that the NRM offers.

In addition, time is allowed in key. There are two major objections for this

approach:

1) Key should be short.

This is correct from the point of efficiency. From a theoretical point of view,

however, the relational model does not impose any restriction of the form

'attributes of data type A are not allowed to participate in the key'. Therefore,

since the work in the present thesis is the definition of a relational algebra and

not the development of efficient methods, the allowance of union of intervals to

be part in the key is absolutely correct.

2) Key should have a fixed length.

This also relates to e fficiency. Again, however, the relational model does not

impose any restriction related to the size of data that is recorded in an

attribute. Hence, the same applies to an attribute that participates in a key. If

implementation issues are considered, however, two solutions are presented

below:

Assume that one table is R (T, A, B) and the key is T, of variable length.

1st Solution (Best Solution):

In a way not seen by the user, this table is internally maintained as

R(Id, T, A, B). For the system, the key is Id and now, this key has a fixed size.

This Id is not seen by the user. For the user, however, the key is T.

Note: In SQL BLOB data types are supported now. They have varying length

and enable recording images etc. They are not allowed to participate in the

key. One disadvantage is that relations with attributes of a BLOB type may

not be involved in UNION, EXCEPT and other operations.

Note that normally, commercial DBMSs use to consider an extra column in

addition to those of users. For example, INGRES has such a column (ColID),

where the systems records automatically a unique tuple identifier.

92

2nd Solution:

In a way not seen by the user, this table is internally maintained in two

tables:

R(Id, A, B) with key Id and Time(Id, T) with key Id.

Now, key has a fixed size and the system performs a join, whenever

necessary, in order to maintain the table or reply a query.

4.3 Operations in the NRM

The operations in the NRM are introduced in this section. The algebra of the

non-temporal nested model forms the heart of the temporal nested model,

TNM, which will be formally presented in the next chapter. It is important to

emphasise at this point that the NRM is not just a model designed to

constitute the base for the equivalent temporal one, but forms by itself, a well-

defined complete model for nested relations.

The algebraic operations of the NRM are defined recursively.

Recursive algebraic definitions in nested models are undoubtedly preferable

to the corresponding non-recursive ones. This is based on the following facts:

1) The non-recursive algebras allow operations only on entire tuples. In

contrast, recursive algebras allow the direct manipulation of tuples either at

the top level or at lower levels of the nested relations.

2) When an attribute at a lower nesting level of the nested relation needs to

be accessed, because it participates in an operation expressed in a non-

recursive algebra, one or more unnesting operations need to be applied

resulting in the creation of many additional tuples. The non-recursive

operation can then be performed and finally the relation is nested again.

However, one of the main motivations for a model consisting of nested

relations is the reduction in the number of tuples processed.

3) In the non-recursive algebras, queries can become long and complicated,

while in the recursive algebras queries will be shown to be compact, simpler

and more naturally expressed.

4) Restructuring operations are not required with recursive algebras unlike

non-recursive ones.

5) Traditional query optimisation techniques can be used with recursive

algebras. In contrast, nest and unnest operations which have to be used

93

frequently in non-recursive algebras, are not, in general, inverse operations.

Therefore, traditional query optimisation techniques can be applied to queries

which are expressed using recursive algebras since recursive operations can

be performed at any nesting level without using nest or unnest operations

([Lev92]).

However, it has been shown that the recursive and non-recursive algebras

are equivalent in expressive power ([Col90]).

All of the relational algebra operations defined for flat relations are now

redefined using recursive definitions for nested relations. The “base case” of

each recursive operator has the same definition as the non-recursive one; i.e.,

the recursive definition can be reduced to the non-recursive one when

relations do not contain any nested attributes.

4.3.1 The Recursive Nested Union Operation (∪∪)

Let r and q be two nested (in general) relations with relation schemes R and

Q respectively. Assume that the two relations have the same relation scheme

i.e. R = Q = {S(R), R1, R2, …, Rn} where S(R) is the set containing all the key

nested attributes and all the atomic attributes of R and Q (the same for the

two relations) and {R1, R2, …, Rn} are the non-key nested attributes of R and Q.

Assume also that Attr(R) is the set of all attributes (atomic and nested) of the

two relations, tr is a tuple in relation r, tq is a tuple in relation q and t is a

tuple in the result relation (r ∪∪ q).

Then, the union of the two relations r and q is defined as follows:

Definition 4.9 (Recursive Nested Union)

i) Non-recursive union for flat relations (r ∪ q)

r ∪ q = { t| ((∃ tr ∈ r) (t[Attr(R)] = tr[Attr(R)]))

 ∨ ((∃ tq ∈ q) (t[Attr(R)] = tq[Attr(R)]))}

ii) Recursive union for nested relations (r ∪∪ q)

r ∪∪ q = { t| (∃ tr ∈ r) (∃ tq ∈ q) ((t[S(R)] = tr[S(R)] ∪ tq[S(R)])

∧ ((t[R1] = tr[R1] ∪∪ tq[R1]) ∧…∧ (t[Rn] = tr[Rn] ∪∪ tq[Rn])))} �

Example 4.5: Let relations TRAINING_2 (Fig. 4.3) and TRAINING_4 (Fig.

4.4) be two modified versions of relation TRAINING (Fig. 3.6) having the same

scheme. Please note that relation TRAINING_2 is the same as that of Fig. 2.3

94

(section 2.2.3). However, the reason for this repetition is to simplify the

reading of this specific example.

In both relations, TRAINING_2 and TRAINING_4, S(TRAINING_2) =

S(TRAINING_4) = COMPANY.

The union of the two relations, according to the above definition, is shown

in Fig. 4.5.

Fig. 4.3: TRAINING_2

Fig. 4.4: TRAINING_4

 TRAINER

COMPANY TRN C

 CN Y

 Jack 1 75

Apple 2 76

 1 82

 Mark 3 82

 2 79

 3 82

IBM Tim 5 79

 4 82

 Microsoft Karen 2 77

 2 81

 TRAINER

COMPANY TRN C

 CN Y

 Jack 6 82

Apple 2 76

 Mark 3 82

 2 79

 IBM Tim 5 84

 Microsoft Karen 2 77

 2 81

95

 TRAINER

COMPANY TRN C

 CN Y

 1 75

Apple Jack 2 76

 6 82

 1 82

 Mark 3 82

 2 79

 3 82

IBM Tim 5 79

 4 82

 5 84

 Microsoft Karen 2 77

 2 81

Fig. 4.5: TRAINING_2 ∪∪ TRAINING_4

4.3.2 The Recursive Nested Difference Operation (--)

Let r and q be two nested (in general) relations with relation schemes R and

Q respectively. Assume that the two relations have the same relation scheme

{S(R), R1, R2, …, Rn}, where S(R) is the set of all the key nested attributes and

all the atomic attributes of R and Q (the same for the two relations) and {R1,

R2, …, Rn} are the non-key nested attributes of R and Q. Assume also that

Attr(R) is the set of all attributes (atomic and nested) of the two relations, tr is

a tuple in relation r, tq is a tuple in relation q and t is a tuple in the result

relation (r -- q).

Then, the difference of the two relations r and q is defined as follows:

Definition 4.10 (Recursive Nested Difference)

i) Non-recursive difference for flat relations (r - q)

r - q = { t| (∃ tr ∈ r) (∀ tq ∈ q) ((t[Attr(R)] = tr[Attr(R)])

∧ (t[Attr(R)] ≠ tq[Attr(R)]))}

ii) Recursive difference for nested relations (r –- q)

r -- q = { t| ((∃ tr ∈ r) (∀ tq ∈ q)

((t[S(R)] = tr[S(R)] - tq[S(R)]) ∧ (t[R1] = tr[R1]) ∧…∧ (t[Rn] = tr[Rn])))

∨ ((∃ tr ∈ r, ∃ tq ∈ q) ((t[S(R)] = tr[S(R)] = tq[S(R)])

∧ (t[R1] = tr[R1] -- tq[R1]) ∧…∧ (t[Rn] = tr[Rn] -- tq[Rn])))} �

96

Example 4.6: The difference of the two relations TRAINING_2 (Fig. 4.3) and

TRAINING_4 (Fig. 4.4) is shown in Fig. 4.6.

Fig. 4.6: TRAINING_2 -- TRAINING_4

4.3.3 The Recursive Nested Intersection Operation (∩∩)

The intersection of two nested (in general) relations r and q, having the

same scheme R is a nested relation with scheme R that contains only the

tuples which have exactly the same values in every attribute in both relations.

Formally, let r and q be two nested relations with relation schemes R and Q

respectively. Assume that the two relations have the same relation scheme R

and let S(R) be all the key attributes of the relations (atomic and nested) and

all the non-key atomic attributes of the relation scheme R. Let {R1, ..., Rn} be

all the non-key nested attributes of R. Assume also that Attr(R) is the set of all

attributes (atomic and nested) of the two relations, t r is a tuple in relation r, tq

is a tuple in relation q and t is a tuple in the result relation (r ∩∩ q).

Then, the intersection of the two relations r and q, is defined as follows:

Definition 4.11 (Recursive Nested Intersection)

i) Non-recursive intersection for flat relations (r ∩ q)

r ∩ q = { t| (∃ tr ∈ r) (∃ tq ∈ q) (t[Attr(R)] = tr[Attr(R)] = tq[Attr(R)])}

ii) Recursive intersection for nested relations (r ∩∩q)

r ∩∩ q = { t| (∃ tr ∈ r) (∃ tq ∈ q) ((t[S(R)] = tr[S(R)] ∩ tq[S(R)])

 ∧ ((t[R1] = tr[R1] ∩∩ tq[R1]) ∧ ... ∧ (t[Rn] = tr[Rn] ∩∩ tq[Rn])))} �

Example 4.7: The intersection of the two relations TRAINING_2 (Fig. 4.3)

and TRAINING_4 (Fig. 4.4) is shown in Fig. 4.7.

 TRAINER

COMPANY TRN C

 CN Y

 Apple Jack 1 75

 Mark 1 82

 3 82

IBM Tim 5 79

 4 82

97

Fig. 4.7: TRAINING_2 ∩∩ TRAINING_4

4.3.4 The Recursive Nested Projection Operation (π π)

Let r be a nested (in general) relation with relation scheme R and let {Ra1, …,

Rak} be the subset of atomic attributes of R which are going to be projected and

{Rn1, …, Rnm} the subset of nested attributes of R which are going to be

projected either fully or attributes belonging to these nested attributes (k, m ≥

0).

In order to define the projection operation, the term project list needs to be

defined firstly. In general, a project list is a list of project paths. A project path

of an attribute which is going to be projected is the path of that attribute (see

Definition 4.6).

Definition 4.12 (Project list) Lπ is a project list of R if

i) Lπ is empty (the project list of an atomic attribute is empty).

ii) Lπ is of the form (Rn1Ln1, …, RnmLnm), where Ln1, …, Lnm are project lists of

nested attributes Rn1, …, Rnm respectively. �

Then, the projection operation in a nested relation r, ππ(rLπ), where t r is a

tuple in relation r and t is a tuple in the result relation, is defined as follows:

Definition 4.13 (Recursive Nested Projection)

i) π(r) = r

ii) ππ(r(Ra1, …, Rak, Rn1Ln1, …, RnmLnm)) = { t| (∃ tr ∈ r)

 ((t[Ra1] = tr[Ra1]) ∧ … ∧ (t[Rak] = tr[Rak])

 ∧ (t[Rn1] = ππ(tr[Rn1]Ln1)) ∧ … ∧ (t[Rnm] = ππ(tr[Rnm]Lnm)))} �

Example 4.8: Given relation TRAINING_2 (Fig. 4.3) consider the following

query: “Retrieve the course numbers for the courses that each company has

run”. The result is shown in Fig. 4.8.

 TRAINER

COMPANY TRN C

 CN Y

 Apple Jack 2 76

 Mark 3 82

 2 79

 Microsoft Karen 2 77

 2 81

98

Fig. 4.8: ππ(TRAINING_2(COMPANY, TRAINER(C(CN))))

4.3.5 The Recursive Nested Selection Operation (σσ)

Let r be a nested (in general) relation with relation scheme R and let Ra =

{Ra1, …, Rak} and Rn = {Rn1, …, Rnm} be the subsets of all atomic and nested

attributes of R respectively that participate in the selection operation, where k

and m are less than or equal to the number of atomic and nested attributes at

the top level in the relation R, respectively. Let also, c be a set of conditions in

R, which is of the form {ca, cn} where ca={ca1, …, cak} is a set of conditions which

must be true for the atomic attributes Ra1, …, Rak of R respectively and cn

={cn1, …, cnm} is a set of conditions that must hold for the nested attributes

Rn1, …, Rnm of R respectively. When both sets of conditions are applied

simultaneously then, the result is obtained by computing the intersection of

the two results. In addition, the condition can be no matter complicated, as for

example equality of nested attributes. If, two multi-valued nested attributes

are compared for equality, they are treated as sets so, since each nested

attribute is, in fact, a relation, equal tuples are searched at the level of the

nested relations.

In order to define the selection operation, the term select list needs to be

defined firstly. In general, a select list is a list of select paths. A select path of

an attribute that is going to participate in the selection, is the path of that

attribute (see Definition 4.6). The select list is defined recursively.

Definition 4.14 (Select list) Lσ is a select list of R if

i) Lσ is empty (all the atomic attributes of relation r have empty select lists).

 TRAINER

COMPANY C

 CN

 1

 2

 Apple 1

 3

 2

 3

IBM 5

 4

 Microsoft 2

 2

99

ii) Lσ is of the form (Rn1Ln1, …, RnmLnm) where Ln1, …, Lnm are select lists of

nested attributes Rn1, …, Rnm respectively. �

Then, a selection operation of the relation r, where t r is a tuple in relation r

and t is a tuple in the result relation, is defined as follows:

Definition 4.15 (Recursive Nested Selection)

i) σ(rca1, …, cak) = { t| (∃ tr ∈ r)

((t[Attr(R) - {Ra1, …, Rak}] = tr[Attr(R) - {Ra1, …, Rak}])

∧ ((t[Ra1] = tr[Ra1]) ∧ ca1 = true)

∧ … ∧ ((t[Rak] = tr[Rak]) ∧ cak = true))}

ii) σσ(rcn1, …, cnmLσ) = { t| (∃ tr ∈ r)

((t[Attr(R) - {Rn1, …, Rnm}] = tr[Attr(R) - {Rn1, …, Rnm}])

∧ (t[Rn1] = σσ(tr[Rn1]cn1Ln1) ≠ ∅)

∧ … ∧ (t[Rnm] = σσ(tr[Rnm]cnmLnm) ≠ ∅))}

In the general case, the selection operation can be defined as the

intersection of the two previously defined cases as follows:

σσ(rcLσ) = σσ(rca1, …, cak, cn1, …, cnmLσ) = σ(rca1, …, cak) ∩ σσ(rcn1, …, cnmLσ) �

Example 4.9: Given relation TRAINING_2 (Fig. 4.3) consider the following

query: “Find all the information of the TRAINING_2 relation of those courses

that have been given by trainers Mark or Tim during the year 1982”.

Fig. 4.9: σσ(TRAINING_2((TRAINER(TRN) = ‘Mark’ OR ‘Tim’) AND (TRAINER(C(Y)) = 82)))

The unnest operation (section 4.3.6) as well as the nest operation (section

4.3.7) are restructuring operations, since they change the scheme of the

relation in which they are applied.

 TRAINER

COMPANY TRN C

 CN Y

 Apple Mark 1 82

 3 82

 IBM Tim 3 82

 4 82

100

4.3.6 The Recursive Unnest Operation (µµ)

Let r be a nested (in general) relation with relation scheme R.

Definition 4.16 (Unnest list) Lµ is an unnest list of R if it is of the form

i) Ri, where Ri is a nested attribute of R at the top level.

ii) (RiLi) where Li is an unnest list of the nested attribute Ri. �

Let Attr(R) be the set of all attributes of R and R i a nested attribute of R, at

the top level of R. Let also, t r be a tuple in relation r and t a tuple in the result

relation. Then, the unnest operation, µµ(rLµ), is defined as follows (see also

[Col90]):

Definition 4.17 (Recursive Unnest)

i) µ(rRi) = { t| (∃ tr ∈ r) ((t[Attr(R) - Ri] = tr[Attr(R) - Ri]) ∧ (t[Ri] ? tr[Ri]))}

ii) µµ(rRiLi) = { t| (∃ tr ∈ r) ((t[Attr(R) – Ri] = tr[Attr(R) – Ri])

 ∧ (t[Ri] = µµ(tr[Ri]Li)))} �

Example 4.10: The result of unnesting relation TRAINING (Fig. 3.6) on the

COURSE attribute, i.e. µµ(TRAININGTRAINER(COURSE)), is shown in Fig. 4.10.

 TRAINER

COMPANY TRN CODE C

 CN Y

 Jack xx0 1 75

 2 76

 Apple Mark xy1 1 82

 3 82

 Mark xy2 2 79

 Tim xy1 3 82

 IBM Tim xx2 5 79

 4 82

 Microsoft Karen xx1 2 77

 2 81

 Fig. 4.10: µµ(TRAININGTRAINER(COURSE))

4.3.7 The Recursive Nest Operation (vv)

Let r be a nested (in general) relation with relation scheme R.

Definition 4.18 (Nest list) Lv is a nest list of R if it is of the form

101

i) (R1, …, Rn) where R1, …, Rn are attributes of R, either atomic or nested at

the top level of R.

ii) (RiLi) where Li is a nest list of the nested attribute Ri. �

Let Attr(R) be the set of all attributes of R and An = {R1, …, Rn} the set of

attributes of R that are going to be nested to form a new nested attribute A.

Let also, tr be a tuple in relation r, t a tuple in the result relation and s a

tuple of the new nested attribute A. Then, the nest operation, vv(rLv→A), is

defined as follows (see also [Col90]):

Definition 4.19 (Recursive Nest)

i) v(rAn→A) = { t| (∃ tr ∈ r) ((t[Attr(R) - An] = tr[Attr(R) - An])

∧ (t[A] = {s[An] | (s ? r) (s[Attr(R) - An] = tr[Attr(R) - An])}))}

ii) vv(r(RiLi) →A) = { t| (∃ tr ∈ r) ((t[Attr(R) – Ri] = tr[Attr(R) – Ri])

 ∧ (t[Ri] = vv(tr[Ri]Li→A)))} �

Example 4.11: In order to return to relation TRAINING (Fig. 3.6) from the

relation µµ(TRAININGTRAINER(COURSE)) of Fig. 4.10, a nest operation needs to be

performed, i.e. vv(µµ(TRAININGTRAINER(COURSE))TRAINER(CODE, C) → TRAINER(COURSE)).

4.3.8 The Recursive Nested Rename Operation (ρρ)

The rename operation takes a specified relation and returns another that is

identical to the given one except that at least one of its attributes has a

different name ([Dat00]). The rename operation is useful before or after

performing a number of operations, as for example for cases when there are

duplicate names in the result relation after performing a join operation of two

relations, or when the cartesian product operation is performed between two

relations having attributes with the same name. When a rename operation

takes place only the heading of the relation changes, the body (instance)

remains the same.

Let r be a nested (in general) relation with relation scheme R = {R1, R2, …,

Ri, …, Rn, A, B,…, Z}, where R1, R2, …, R i, …, Rn are atomic attributes and A,

B, …, Z are nested attributes at the top level of relation R.

Then, the rename operation ρρ of relation r is defined as follows:

Definition 4.20 (Recursive Nested Rename)

i) Rename of an atomic attribute Ri to Ri´ at the top level of relation R

 ρ[Ri ← Ri´](R) = {R1, R2, …, Ri´, …, Rn, A, B, …, Z}

102

ii) Rename of a nested attribute A to A′ at the top level of relation R

 ρ[A ← A′](R) = {R1, R2, …, Ri, ..., Rn, U
m

k 0=

LA´→Ak, B, …, Z}

where m is the number of attributes that are descendants of A and for m =

0, A′ = A0 (atomic attribute at the top level of R) and case (ii) reduces to case (i).

iii) Rename of an atomic or nested attribute Ai to Ai′ at a lower level of

relation R

 ρρ[Ai ← Ai′](R) = {R1, R2, …, R i, …, Rn, A, A1, …, U
m

k 0=

LA→Ai′k, B, …, Z}, where

A1 is a child attribute of nested attribute A, A i is an attribute at a lower level of

relation R belonging to nested attribute A and m is the number of descendants

that Ai has (m = 0, when atomic, in which case Ai′0 = Ai′). �

When more than one attribute has to be renamed the definition is recursive,

as follows:

ρρ[Ra1←R′a1, …, Rak←R′ak, Rn1←R′n1, …, Rnm←R′nm, Rl1←R′l1, …, Rlp←R′lp](R) =

(ρρ[Rlp←R′lp](…(ρρ[Rl1←R′l1](ρ[Rnm←R′nm](…(ρ[Rn1←R′n1](ρ[Rak←R′ak](…(ρ[Ra1←R′a1]

(R))))))))))

where Ra1, …, Rak are atomic attributes at the top level of relation R, Rn1, …,

Rnm are nested attributes at the top level of relation R and R l1, …, Rlp are either

atomic or nested attributes at lower levels (different, in general) of relation R

and k, m, p ≥ 0. The names of the attributes having primes denote the new

names that these attributes are going to be renamed.

Example 4.12: Consider the relation DEPT with tree structure in Fig. 4.2

and let attribute UD be renamed as UD′ and attribute C as C′. Then, the

rename operation is defined as follows:

ρρ[UD ← UD′, C ← C′](DEPT) =

ρρ[C ← C′](ρρ[UD ← UD′](DEPT)) =

ρρ[C ← C′]({D, DN, UNIT, UNIT(UN), UNIT(UD′), UNIT(COURSE_DETAILS),

UNIT(COURSE_DETAILS(TRN)), UNIT(COURSE_DETAILS(COMPANY)),

UNIT(COURSE_DETAILS(C)), UNIT(COURSE_DETAILS(C(CN))),

UNIT(COURSE_DETAILS(C(Y)))}) =

{D, DN, UNIT, UNIT(UN), UNIT(UD′), UNIT(COURSE_DETAILS),

UNIT(COURSE_DETAILS(TRN)), UNIT(COURSE_DETAILS(COMPANY)),

103

UNIT(COURSE_DETAILS(C′)), UNIT(COURSE_DETAILS(C′(CN))),

UNIT(COURSE_DETAILS(C′(Y)))}

The tree structure of relation DEPT after the renaming of attributes UD and

C is shown in Fig. 4.11.

 DEPT

D DN UNIT

 UN UD′ COURSE_DETAILS

 TRN COMPANY C′

 CN Y

Fig. 4.11: The tree representation of relation DEPT after the renaming of

attributes UD and C to UD′ and C′ respectively

4.3.9 The Recursive Nested Cartesian Product Operation (××)

Let R be a relation scheme of relation r.

Definition 4.21 (Join path) L is a join path of R if either:

(i) L is empty or

(ii) L = RiLi where Ri is a nested attribute of R and Li is a join path of R i. �

([Col90])

The join path can be represented as a branch of the tree structure of some

nested relation R starting from a child of the root of the tree and going down to

some node of the tree that represents either an atomic or nested attribute. In

other words, the join path consists of all the nodes that are passed in order to

reach a specific attribute.

Example 4.13: In relation DEPT (Fig. 3.7) an example of a join path is

UNIT(COURSE_DETAILS(TRN)). The tree structure of the relation DEPT is

shown in Fig. 4.2.

Let r and q be two nested (in general) relations with relation schemes R and

Q respectively and let Attr(R) be all the attributes (atomic and nested) of R,

104

Attr(Q) all the attributes (atomic and nested) of Q and L a join path of R. Let,

also, R i be a nested attribute of R, L i a join path of R i, tr a tuple in relation r, tq

a tuple in relation q and t a tuple in the result relation. The cartesian product

operation can be applied either at the top level of both relations or between a

lower nesting level of a relation and the top level of another relation. The first

case is exactly the same as the standard cartesian product for flat relations.

So, the cartesian product of two relations r and q is defined as follows (see

also [Col90]):

Definition 4.22 (Recursive Nested Cartesian Product)

i) × (r, q) = { t ≡ (t[Attr(R)], t[Attr(Q)])|

 (∃ tr ∈ r, ∃ tq ∈ q) ((t[Attr(R)] = t r[Attr(R)]) ∧ (t[Attr(Q)] = tq[Attr(Q)]))}

ii) ×× (rL, q) = ×× (r(RiLi), q) ≡ ×× (q, r(RiLi)) =

{ t| (∃ tr ∈ r) ((t[Attr(R) –{Ri}] = tr[Attr(R) – {Ri}]) ∧ (t[Ri] = ×× (tr[Ri]Li, q)))} �

An example follows where the second case is demonstrated.

It follows from the formal definition of the recursive nested cartesian

product operation that the result relation of the cartesian product of nested

relations r and q consists of the attributes of relation r plus the attributes of

relation q. In addition, the commutative property is again satisfied, as is the

case in the CRM. Thus, it is always valid:

×× (r(RiLi), q) ≡ ×× (q, r(RiLi))

Example 4.14: The cartesian product operation is performed between the

COURSE attribute of relation TRAINING (Fig. 3.6) and the CASH-POINT

relation (Fig. 3.9). Due to the large number of tuples in the result relation, only

a part of it is displayed in Fig. 4.12.

Note that, in case the operands of the cartesian product are interchanged,

the result remains exactly the same.

105

 (TRN (CODE C BANK BRANCH))

COMPANY TRN (CODE C BANK BRANCH)

 CODE C BANK BRANCH

 CN Y SORT_CODE ADDRESS

 xx0 1 75 Barclays 386600 Ashford St.

 2 76

 Jack xx0 1 75 NatWest 560045 Park Rd.

 2 76 560038 Porchester Rd.

 xx0 1 75 Lloyd’s 478202 Ashford St.

 2 76 478210 Park Rd.

 xy1 1 82 Barclays 386600 Ashford St.

Apple 3 82

 xy1 1 82 NatWest 560045 Park Rd.

 3 82 560038 Porchester Rd.

 xy1 1 82 Lloyd’s 478202 Ashford St.

 3 82 478210 Park Rd.

 Mark xy2 2 79 Barclays 386600 Ashford St.

 xy2 2 79 NatWest 560045 Park Rd.

 560038 Porchester Rd.

 xy2 2 79 Lloyd’s 478202 Ashford St.

 478210 Park Rd.

 .

.

.

.

 .

.

.

.

 .

.

.

.

 .

.

.

.

.

.

.

.

 .

.

.

.

 .

.

.

.

.

.

.

.

Fig. 4.12: ×× (TRAINING(TRAINER(COURSE)), CASH-POINT)

Note: As can be seen from the above example, the cartesian product

operation is not often a semantically meaningful operation. However, it helps

in defining the join operation (see sections 4.3.10 and 4.3.11), since the join is

a special case of a cartesian product operation and for this reason it is

included here.

4.3.10 The Recursive Nested Natural Join operation (><><)

The natural join operation is the most complicated operator, especially in

nested models, since the two relations which participate in the natural join

can have multiple common attributes (atomic or nested) which can be in

106

different subrelations and at different nesting levels in each of the two joined

relations.

When the two nested relations which participate in the natural join

operation have two or more (atomic or nested) attributes in common in

different subrelations and at different levels of nesting in each relation, the

natural join operation can be informally stated as follows:

Step 1: Define a join path for each relation.

Step 2: Join the two relations using one of the six cases (formally defined

later).

Step 3: In the resulting relation choose another pair of common attributes.

Step 4: Construct the paths for both attributes.

Step 5: Find the first different nodes on the paths progressing towards the

common attributes.

Step 6: Assume that these two nodes are the root nodes of the two

subrelations that are going to be joined.

Step 7: Perform the natural join of the two subrelations according to one of

the six cases.

Step 8: Repeat the steps 3 to 7 until no more common attributes are in the

result relation. �

Note: When the natural join operation is performed the result relation may

contain one or more new subrelations, which are created by joining two

subrelations of the two original relations. The names of these new subrelations

are formed from the attributes of which they are composed and are then

enclosed in parentheses.

An example of the general case of the recursive nested natural join

operation is given below.

Example 4.15: Consider the relations TRAINING_1 (Fig. 2.1) and DEPT (Fig.

3.7) and suppose that the following query is given: “In which years has the

course with code number xy1 been taught?”.

The two relations must be joined in order to answer this query. To do this,

the 8-step algorithm, which was described earlier, must be executed.

The two relations TRAINING_1 and DEPT are joined on two pairs of common

attributes. The two pairs are: (PROGRAMME(TRN),

UNIT(COURSE_DETAILS(TRN))) and (COMPANY,

107

UNIT(COURSE_DETAILS(COMPANY))), where the first attribute of each pair

belongs to relation TRAINING_1 and the second belongs to relation DEPT.

Step 1: Initially, one of the pairs of join paths given above must be selected.

For our example, the first join paths are PROGRAMME(TRN) and

UNIT(COURSE_DETAILS(TRN)) for relations TRAINING_1 and DEPT

respectively.

Step 2: The natural join is performed according to Case 3b (defined later)

where the two common atomic attributes are not at the same nesting levels in

the two joined relations. The tree representation of the result relation x1 is

shown in Fig. 4.13.

x1

 D DN (UN UD (COMPANY TRN CODE′ C)COMPANY)

 UN UD (COMPANY TRN CODE′ C) COMPANY

COMPANY TRN CODE′ C

 CODE CN Y

Fig. 4.13: The tree representation of relation x1

Step 3: In the result relation only the attribute COMPANY appears twice.

Step 4: The paths for these two attributes, with the same name COMPANY,

are: (UN UD (COMPANY TRN CODE′ C)COMPANY)(COMPANY) and (UN UD

(COMPANY TRN CODE′ C)COMPANY)((COMPANY TRN CODE′ C) (COMPANY)).

Step 5: For these two attribute occurrences the first different nodes starting

from the root are the (COMPANY TRN CODE′ C) attribute and the COMPANY

attribute.

Step 6: So, the two subrelations that must be joined are the subrelation

with root node (COMPANY TRN CODE′ C) and the subrelation which has only

the atomic attribute COMPANY.

Step 7: The natural join operation is performed according to Case 1, which

is described below.

108

The tree representation of the result relation is shown in Fig. 4.14 and the

result relation of the natural join operation in Fig. 4.15.

 x2

 D DN (UN UD (COMPANY TRN CODE′ C))

 UN UD (COMPANY TRN CODE′ C)

 COMPANY TRN CODE′ C

 CODE CN Y

Fig. 4.14: The tree representation of the result relation

x2= ><>< (TRAINING_1, DEPT)

109

 (UN UD (COMPANY TRN CODE ′ C))

D DN UN UD (COMPANY TRN CODE ′ C)

 COMPANY TRN CODE ′ C

 CODE CN Y

 511 Software Apple Mark xy1 1 75

 Engineering xy2 2 76

 5 79

 1 Research 678 Planning Apple Mark xy1 2 76

 xy2 4 82

 552 Basic IBM Tim xy1 5 79

 Research xx2

 Microsoft Karen xx1 1 82

 2 79

 981 Planning Apple Jack xx0 2 81

 3 82

 5 79

 2 Development 780 Maintenance Apple Mark xy1 2 76

 xy2

 IBM Tim xy1 3 82

 xx2

 650 Design Microsoft Karen xx1 1 75

 Fig. 4.15: The result relation x2 = ><>< (TRAINING_1, DEPT)

Definition 4.23 (Generalised Natural Join) Let r and q be two nested

relations with relation schemes R and Q respectively and let A = {A0, A1, …, Aj}

be the set of all common attributes that the two relations have, where A0, A1,

…, Aj are atomic or nested attributes either at the top or lower levels in the two

relations. Then, the generalised natural join is defined as follows:

><>< (r, q) = ><>< (sjLsjAj, s′jLs′jAj)(…(><>< (s1Ls1A1, s′1Ls′1A1)(><>< (rLrA0, qLqA0))))

where ><>< (rLrA0, qLqA0) = x1, ><>< (s1Ls1A1, s′1Ls′1A1) = x2, …, ><>< (sjLsjAj, s′jLs′jAj) =

xj+1 and (s1, s′1),…, (sj, s′j) pairs, are subrelations of x1, …, xj respectively with

their root node being the first different nodes along the paths to the common

attributes A1, …, Aj respectively. �

110

Fig. 4.16 shows all the different cases which are analysed below giving their

formal semantics. Formal definitions are given even for the simplest cases in

order to have a unified representation of the nested natural join operation.

The nested natural join operation presented in this section is defined

recursively. The six cases which are examined in detail can be grouped into

two more general categories. The first category involves joining two nested

relations which have atomic attributes in common and the second involves

joins between two nested relations which have nested attributes in common,

i.e. subrelations. In each category three cases are examined depending on the

join paths of the relations to be joined.

Category 1 Category 2

1st relation

2nd relation

atomic

attribute

top level

atomic attribute

not top level

 1st relation

2nd relation

nested

attribute

top level

nested attribute

not top level

atomic

attribute

top level

Case 1 Case 2 nested

attribute

top level

Case 4 Case 5

atomic

attribute

not top level

Case 2 Case 3a

 (same level)

Case 3b

(not same level)

 nested

attribute

not top

level

Case 5 Case 6a

(same level)

Case 6b

(not same level)

Fig. 4.16: The different cases of common attributes between two relations

that participate in the nested natural join operation

The two tables in Fig. 4.16 can be represented in a different way. In the

general case, the recursive nested natural join operation, written as ><>< (rL,

qM), where L, ̄and M,¯ are the lengths of the join paths L and M recursively,

can be distinguished in the following different cases:

111

 i) L, ̄= ∅, M,¯= ∅ Case 1 / Case 4

ii) (L, ̄≠ ∅, M,¯ = ∅) ∨ (L, ̄= ∅, M,¯ ≠ ∅) Case 2 / Case 5

 ><>< (rL, qM) = iii) L, ,̄ M,¯ ≠ ∅ ∧ L, ̄= M,¯ Case 3a / Case 6a

iv) L, ,̄ M,¯ ≠ ∅ ∧ L, ̄≠ M,¯ Case 3b / Case

6b

Fig. 4.17

Case 1: Join a nested (or flat) relation to another nested (or flat) relation

which have one or more atomic attributes at the top level in common

This natural join is exactly the same as the standard natural join for flat

relations. If either of the relations are nested (they contain subrelations), when

the natural join operation is performed, the subrelations behave like common

(atomic) attributes.

Definition 4.24: Let r and q be two relations (nested, in general) with

relation schemes {R1, R2, ..., A1, …, Aj, ..., Rn} and {Q1, Q2, ..., A1, …, Aj, ..., Qm}

respectively where j > 0 and n, m ≥ j and different in general. The two relations

r and q have in common the atomic attributes A1, …, Aj. Then, >< (r, q) is

defined as follows:

 >< (r, q) = { t | (∃ tr ∈ r) (∃ tq ∈ q)

 ((t[A1, ..., Aj] = tr[A1, …, Aj] = tq[A1, …, Aj])

 ∧ (t[Attr(R) - {A1, …, Aj}] = tr[Attr(R) - {A1, …, Aj}])

 ∧ (t[Attr(Q) - {A1, …, Aj}] = tq[Attr(Q) - {A1, …, Aj}]))} �

Case 2: Join two nested relations having one or more atomic attributes in

common which in one relation are atomic attributes of a subrelation of the

relation and in the other are at the top level

This definition is the same as Colby’s recursive definition of the natural join

operation ([Col90]), where the join path of the one relation is not empty, but is

defined from the subrelation of the relation which participates in the natural

join operation (this subrelation contains at a lower level the common atomic

112

attributes). In this case, the result relation consists of all the attributes of the

one relation except the subrelation which participates in the natural join

operation and the remaining attributes of the result are computed by joining

the subrelation of that relation to the other relation. If the join path is empty,

the natural join is performed according to Case 1. If it is not, the same

procedure is followed as before until the join path becomes empty. Thus, the

natural join operation is applied recursively.

Definition 4.25: Let r and q be two nested relations (in general) with

relation schemes {R1, R2, ..., Ri, …, Rn} and {Q1, Q2, …, A1, …, Aj …, Qm}

respectively where i, j > 0, n ≥ i and m ≥ j. Assume without loss of generality

that the two relations have in common one or more atomic attributes which in

the one relation belong to the nested attribute R i and in the other relation are

the atomic attributes A1, …, Aj. Further, let rL represent relation r with join

path L. Then, ><>< (rL, q) is defined as follows:

><>< (rL, q) = ><>< (q, rL) = ><>< (r(RiLi), q) = { t | (∃ tr ∈ r)

 ((t[Attr(R) - {Ri}] = tr[Attr(R) - {Ri}])

 ∧ (t[Ri] = ><>< (tr[Ri]Li, q) ≠ ∅))} �

Case 3: Join a nested relation to another nested relation which have one or

more common atomic attributes which belong in different subrelations of the two

relations (but in the same subrelation in each relation)

There are two subcases depending on whether or not the nesting levels of

the common atomic attributes in the different subrelations of the two relations

are the same.

Case 3a: The common atomic attributes are at the same nesting level in the

two joined relations

In this case, the result relation consists of all the attributes of the two

relations which do not take part in the natural join operation and a new

subrelation, which is formed by joining the subrelations which contain the

common atomic attributes, by applying this method recursively until the

common atomic attributes are reached. Only the tuples which have equal

values in the common attributes are then selected.

113

Definition 4.26: Let r and q be two nested relations with relation schemes

R = {R1, R2, ..., R i, ..., Rn} and Q = {Q1, Q2, ..., Q j, ..., Qm} respectively where i, j

> 0, n ≥ i and m ≥ j. Suppose that at least the attributes R i and Qj of the two

relations r and q respectively are nested attributes and that they contain the

common atomic attributes.

Let L be a join path of R and let M be a join path of Q. L is of the form R iLi

where L i is a join path of R i and M is of the form Q jMj where Mj is a join path of

Qj. Then, ><>< (rL, qM) is defined as follows:

><>< (rL, qM) = ><>< (r(RiLi), q(QjMj)) = { t| (∃ tr ∈ r) (∃ tq ∈ q)

 ((t[Attr(R) - {Ri}] = tr[Attr(R) - {Ri}])

 ∧ (t[Attr(Q) - {Qj}] = tq[Attr(Q) - {Qj}])

 ∧ (t[RiQj] = ><>< (tr[Ri]Li, tq[Qj]Mj) ≠ ∅))} �

As shown above, the different levels of nesting are traversed until the

subrelations which contain the common atomic attributes are reached. The

common subrelations can then be joined using Definition 4.24.

Example 4.16: Consider the relations LOCATION (Fig. 3.8) and CASH-

POINT (Fig. 3.9) and suppose that the following query is given: “Which banks

have cash-points on the same road as Microsoft has a branch?”. In order to

answer this query the natural join of the two relations must be computed. The

common attribute is the atomic attribute ADDRESS which belongs in different

subrelations of the two relations -in relation LOCATION in the subrelation

ANNEX and in relation CASH-POINT in the subrelation BRANCH- but in each

case at nesting level 2. The result relation is shown in Fig. 4.18.

COMPANY (BUILDING ADDRESS SORT_CODE) BANK

 BUILDING ADDRESS SORT_CODE

 TOSHIBA North Building Porchester Rd. 560038 NatWest

 Microsoft Pegasus House Ashford St. 386600 Barclays

 Microsoft Queen’s Building Park Rd. 560045 NatWest

 Microsoft Pegasus House Ashford St. 478202 Lloyd’s

 Queen’s Building Park Rd. 478210

 Fig. 4.18: ><>< (LOCATION, CASH-POINT)

Case 3b: The common atomic attributes are not at the same nesting level in

the two joined relations

114

In this case, the tree representations of the two relations that take part in

the natural join operation can help us to design the scheme tree of the result

relation since even the simplest relations in this case are complex (the nesting

levels of the relations are at least two and not necessarily the same).

The result relation is constructed iteratively. It consists of the common

atomic attributes and all its siblings from both joined relations. The parent

nodes of the atomic attributes in common in the two joined relations form the

parent node of the common attributes and all its siblings. The siblings of the

parent nodes remain siblings of the result parent node. The same procedure is

followed until the root of both relations is reached, so that the hierarchy of the

joined relations is maintained in the result relation.

Let r and q be two nested relations with relation schemes

R = {Ri1(R(i-1)1(...(R21(A11...A1j R1j+1…R1n)...R2k)...)R(i-1)l)...Rim} and

Q = {Qi′1(Q(i′-1)1(...(Q21(A11...A1jQ1j+1…Q1n′)...Q2k′)...)Q(i′-1)l′)...Qi′m′} respectively where

i, n, k, l, m, j, i ′, n′, k′, l′ and m′ are positive integers, not equal in general. The

common atomic attributes are the attributes A11, …, A1j. All the other

attributes which do not form the join paths can be atomic or non-atomic but

since they do not participate in the natural join operation, this is of no

consequence.

Assume that: i) i≠i′, which means that the two relations have different levels

of nesting (in fact, the assumption is i < i ′ without loss of generality) and ii) the

common atomic attributes A11 … A1j are the first attributes in the subrelations

in which they belong and these subrelations are the first attributes of the

subrelations in which they belong and so on, since the order of the attributes

at the same nesting level and in the same subrelation is not significant.

In Fig. 4.19 and 4.20 the tree representations of the two relations are

shown.

115

R

 Ri1 Ri2 ... Rim

 R(i-1)1 R(i-1)2 ... R(i-1)l

.

R31 ...

 R21 R22 ... R2k

 A11 … A1j R1j+1 ... R1n

Fig. 4.19: The tree representation of relation r

 Q

Qi′1 Qi′2 ...Qi′m′

 Q(i′-1)1 Q(i′-1)2 … Q(i′-1)l′

.
Qi1 …

Q(i-1)1 …
. … . .

Q31 ...

 Q21 Q22 ... Q2k′

 A11… A1j Q1j+1 ...Q1n′

Fig.4.20: The tree representation of relation q

For definition purposes the following is assumed: a name is given for all

attributes belonging at the same nesting level and that are not part of the join

paths in the two relations.

116

Thus, for relation R:

Ri = Ri2 ... Rim

Ri-1 = R(i-1)2 ... R(i-1)l

...

R2 = R22 ... R2k

R1 = R1j+1 ... R1n

and similarly for relation Q:

Qi′ = Qi′2 ... Qi′m′

Qi′-1 = Q(i′-1)2 ... Q(i′-1)l′

...

Qi+1 = Q(i+1)2 ... Q(i+1)p′

Qi = Qi2 ... Qiq′

...

Q2 = Q22 ... Q2k′

Q1 = Q1j+1 ... Q1n′

Then, ><>< (rL, qM) is defined as follows:

Definition 4.27:

><>< (rL, qM) = { t| (∃ tr ∈ r) (∃ tq ∈ q)

((t[Attr(Qi′(...(Qi+1)))] = tq[Attr(Qi′(...(Qi+1)))])

 ∧ (t[Attr(Ri)] = tr[Attr(Ri)])

 ∧ (t[Attr(Qi)] = tq[Attr(Qi)])

 ∧ (t[Ri1Qi1] = ><>< (tr[Ri1]Li1, tq[Qi1]Mi1)))} �

The result relation s has the following scheme:

S = {Qi′1 (Q(i′-1)1 (... (Q(i+1)1 (x (... (z (A11 …A1j R1j+1...Q1j+1...) R22...Q22...)...)

 Ri2...Qi2...)Q(i+1)2...)...)Q(i′-1)2...)Qi′2...}

The tree representation of the result relation s is given in Fig. 4.21.

117

S

 Qi′1 Qi′2 ... Qi′m′

Q(i′-1)1 Q(i′-1)2 ... Q(i′-1)l′
. . .

Q(i+1)1 ...

 x Ri2 ... Qi2 ...
. . .
y ...

 z R22 ... Q22 ...

 A11… A1j R1j+1 ... Q1j+1 ...

Fig. 4.21: The tree representation of the result relation s = ><>< (rL, qM)

The x, y, and z nodes represent nested subrelations and so, conventionally

are given names reflecting the attributes which they contain. Thus, for

example z = (A11… A1j R1j+1 ... R1n Q1j+1 ... Q1n′).

Example 4.17: Suppose that relations TRAINING_1 (Fig. 2.1) and DEPT_1

(Fig. 2.2) are given. Consider the query: “Retrieve the names of the companies

and the years for which trainers have taught courses to technical employees

together with the code number of each course”. A natural join operation is

required in order to answer this query. The natural join operation is performed

according to Definition 4.27. The scheme tree of the result relation of the

natural join operation of the two relations DEPT_1 and TRAINING_1 is shown

in Fig. 4.22 and the result table in Fig. 4.23.

118

x3

 D DN (COMPANY UN UD (TRN CODE′ C))

 COMPANY UN UD (TRN CODE′ C)

 TRN CODE′ C

 CODE CN Y

Fig. 4.22: The tree representation of the result relation

x3 = ><>< (TRAINING_1(PROGRAMME(TRN)), DEPT_1(UNIT(TRAINER(TRN))))

 (COMPANY UN UD (TRN CODE ′ C))

D DN COMPANY UN UD (TRN CODE ′ C)

 TRN CODE ′ C

 CODE CN Y

 Apple 511 Software xy1 1 75

 Engineering Mark xy2 2 76

 5 79
 1 Research Apple 678 Planning Mark xy1 2 76

 xy2 4 82

 IBM 552 Basic Tim xy1 5 79

 Research xx2

 Microsoft 552 Basic Karen xx1 1 82

 Research 2 79

 Apple 981 Planning Jack xx0 2 81

 3 82

 5 79

 2 Development Apple 780 Maintenance Mark xy1 2 76

 xy2

 IBM 780 Maintenance Tim xy1 3 82

 xx2

 Microsoft 650 Design Karen xx1 1 75

 Fig. 4.23: The result relation

x3 = ><>< (TRAINING_1(PROGRAMME(TRN)), DEPT_1(UNIT(TRAINER(TRN))))

119

Case 4: Join two nested relations which have one or more subrelations at

the top level in common

The natural join definition presented here is a slightly modified version of

Colby’s natural join definition ([Col90]). The natural join of two relations,

which have one or more nested attributes at the top level in common, is a new

relation which consists of tuples which share the same values of the common

nested attributes and all the other attributes (atomic or nested) have as values

the corresponding values of the non-shared attributes of the two relations

which participate in the natural join operation. Subsequently, the scheme of

the result relation is composed of the nested attributes in common of the two

joined relations and all the remaining attributes of the two joined relations

which are not in common.

Let r and q be two nested relations with relation schemes {R1, R2, ..., A1, …,

Aj, ..., Rn} and {Q1, Q2, ..., A1, …, Aj, ..., Qm} respectively where j > 0 and n, m ≥

j and different in general. The two relations r and q have in common the

nested attributes A1, …, Aj at the top level. Then, >< (r, q) is defined as follows:

Definition 4.28:

>< (r, q) = { t | (∃ tr ∈ r) (∃ tq ∈ q)

 ((t[Attr(R) - {A1, …, Aj}] = tr[Attr(R) - {A1, …, Aj}])

 ∧ (t[Attr(Q) - {A1, …, Aj}] = tq[Attr(Q) - {A1, …, Aj}])

 ∧ (t[A1, …, Aj] = ><(tr[A1, …, Aj], tq[A1, …, Aj])

 = (A1r ∩∩ A1q) ∧ ... ∧ (Ajr ∩∩ Ajq)))} �

where A1r, ..., A jr are the common nested attributes of relation r and A1q, ..., Ajq

are the common nested attributes of relation q.

The recursive nested intersection of two nested relations has been defined

in section 4.3.3 (see Definition 4.11).

Example 4.18: Consider the relations EMPLOYMENT (Fig. 3.10) and

PAYMENT (Fig. 3.11) and the query “What is the scale of payment for Anna?”

which can be answered by applying the natural join operation to the two

relations. The joined attribute is the subrelation JOB which is at the top level

in both relations. The result relation is given in Fig. 4.24.

120

NAME JOB SALARY

 COMPANY JOB_DESCRIPTION

Anna TOSHIBA Secretary 15,500-19,500

 Anna Microsoft Secretary 18,000-23,000

 Paul Microsoft Programmer 18,000-23,000

 Mark Apple Director 25,000-30,000

 Fig. 4.24: >< (EMPLOYMENT, PAYMENT)

Case 5: Join two nested relations which have one or more subrelations in

common which in the one relation are subrelations of a subrelation of a relation

and in the other relation are at the top level

This natural join is similar to Case 2 where the join path of one relation is

not empty but instead of atomic attributes in common the two relations have

subrelations in common. Therefore, the natural join operation is performed as

in Case 2, the only difference being that the common attributes A1 … Aj in

relation R are nested attributes that belong to subrelation R i while in the other

relation Q are the nested attributes A1 … Aj at the top level (see Definition

4.25). The result relation consists of all the attributes of the first relation

except the subrelation which participates in the natural join operation and the

remaining attribute of the result is computed by joining the subrelation of the

first relation to the second relation. When the final iteration down the join

path is reached, the natural join is performed according to Definition 4.28

where the first relation consists only of the common subrelations.

Case 6: Join two nested relations which have one or more common

subrelations which belong at different subrelations of the two relations (but in

the same subrelation in each relation)

In this case, both relations which participate in the natural join operation

have non-empty join paths. As in Case 3, two subcases can be distinguished,

depending on whether or not the common subrelations are at the same

nesting level in the two joined relations.

121

Case 6a: The common subrelations are at the same nesting level in the two

joined relations

In this case, the resulting relation consists of all the attributes of the two

relations which do not take part in the natural join operation and a new

subrelation is formed by joining the subrelations which contain the

subrelations in common, and by applying this method recursively, until the

subrelations in common are reached from which only the subtuples which

have equal values are selected (intersection operation is applied – see

Definition 4.11).

Let r and q be two nested relations with relation schemes R = {R1, R2, ..., Ri,

..., Rn} and Q = {Q1, Q2, ..., Q j, ..., Qm) respectively where i, j > 0, n ≥ i and m ≥

j. Suppose that the attributes Ri and Qj of the two relations r and q

respectively are nested and that they contain the common subrelations.

Let L be a join path of R and M be a join path of Q. L is of the form RiLi

where L i is a join path of R i and M is of the form Q jMj where Mj is a join path of

Qj. Then, ><>< (rL, qM) is defined as follows:

Definition 4.29:

><>< (rL, qM) = ><>< (r(RiLi), q(QjMj)) = { t| (∃ tr ∈ r) (∃ tq ∈ q)

 ((t[Attr(R) - {Ri}] = tr[Attr(R) - {Ri}])

 ∧ (t[Attr(Q) - {Qj}] = tq[Attr(Q) - {Qj}])

 ∧ (t[RiQj] = ><>< (tr[Ri]Li, tq[Qj]Mj) ≠ ∅))} �

As shown above, the different levels of nesting are traversed until the

common subrelations are reached. The common subrelations can then be

joined using Definition 4.28, with the two relations participating in the natural

join operation consisting only of the common subrelations and so this natural

join is equal to the intersection of the common subrelations (see also section

4.3.3).

Example 4.19: Consider the example database, which contains two

relations, the DEPT_2 relation (Fig. 4.25) and the TRAINING_2 relation (Fig.

4.3). Both relations are modified versions of relations DEPT (Fig. 3.7) and

TRAINING (Fig. 3.6) respectively. Relation DEPT_2 has the following scheme:

DEPT_2 = D DN UNIT(UN UD C(CN Y)). The tree representation of the relation

DEPT_2 is shown in Fig. 4.26. Relation TRAINING_2 has the following scheme:

122

TRAINING_2 = COMPANY TRAINER(TRN C (CN Y)). The tree representation of

the relation TRAINING_2 is given in Fig. 4.27.

Consider the following query: “Find the departments for which Tim has

taught courses to their employees”. To answer this query the natural join

operation is needed to be performed according to the above definition. The

scheme tree of the result relation is shown in Fig. 4.28 and the result table in

Fig. 4.29.

 UNIT

D DN UN UD C

 CN Y

 1 75

 511 Software 2 76

 Engineering 5 79

 1 Research 552 Basic Research 1 82

 2 79

 678 Planning 2 76

 4 82

 650 Design 1 75

 2 77

 2 Development 780 Maintenance 3 82

 981 Planning 2 81

 3 82

 Fig. 4.25: DEPT_2

DEPT_2

D DN UNIT

 UN UD C

CN Y

Fig. 4.26: The tree representation of relation DEPT_2

123

TRAINING_2

 COMPANY TRAINER

 TRN C

 CN Y

Fig. 4.27: The tree representation of relation TRAINING_2

 x4

 D DN (UN UD C TRN) COMPANY

 UN UD C TRN

 CN Y

Fig. 4.28: The tree representation of the result relation

x4 = ><>< (DEPT_2(UNIT(C)), TRAINING_2(TRAINER(C)))

124

 (UN UD C TRN)

D DN UN UD C TRN COMPANY

 CN Y

 511 Software Engineering 1 75 Jack

1 Research 2 76 Apple

 552 Basic Research 1 82 Mark

 2 79

 678 Planning 2 76 Jack

 1 Research 511 Software Engineering 5 79 Tim IBM

 678 Planning 4 82 Tim

 2 Development 650 Design 1 75 Jack

 780 Maintenance 3 82 Mark Apple

 981 Planning 3 82 Mark

 2 Development 780 Maintenance 3 82 Tim IBM

 981 Planning 3 82 Tim

 2 Development 650 Design 2 77 Karen Microsoft

 981 Planning 2 81 Karen

 Fig. 4.29: The result relation

x4 = ><>< (DEPT_2(UNIT(C)), TRAINING_2(TRAINER(C)))

Case 6b: The common subrelations are at different nesting levels in the two

joined relations

This case is similar to Case 3b. Once again, the tree representations of the

two relations that take part in the natural join operation can help to the

designing of the scheme tree of the result relation. The resulting relation is

constructed iteratively and consists of the common subrelations together with

all its siblings starting from the bottom. One level up, the parent nodes of the

subrelations in common in the two joined relations form the parent node of

the common subrelations and all its siblings. The siblings of the parent nodes

are still siblings of the result parent node. The same procedure is followed

until the root of both relations is reached, so that the hierarchy of the joined

relations is maintained in the result relation as well.

Let r and q be two nested relations with relation schemes

R = {Ri1(R(i-1)1(...(R21(A11...A1j R1j+1…R1n)...R2k)...)R(i-1)l)...Rim} and

125

Q = {Qi′1(Q(i′′-1)1(...(Q21(A11... A1j Q1j+1…Q1n′)...Q2k′)...)Q(i′-1)l′)...Qi′m′} respectively

where i, n, k, l, m, j, i′, n′, k′, l′ and m′ are positive integers, not equal in

general. The common subrelations are the subrelations A11 … A1j. All the other

attributes which do not form the join paths can be atomic or nested but since

they do not participate in the natural join operation, this makes no difference.

The same assumption is made as in Case 3b, i.e. i) i≠i′, which means that the

two relations have, in general, different levels of nesting (in fact, the

assumption is i < i′ without loss of generality) and ii) the common subrelations

A11 … A1j are the first attributes in order of the subrelations in which they

belong and these subrelations are the first attributes of the subrelations in

which they belong and so on, since the order of the attributes at the same

nesting level and in the same subrelation is insignificant.

The formal definition is not given here, since it is the same as Definition

4.27.

Example 4.20: In the following example the DEPT_2 relation (Fig. 4.25) is

joined to the TRAINING relation (Fig. 3.6) in order to answer the following

query: “Find the departments for which trainers Mark and Karen have taught

courses to their employees and the code of these courses”. The scheme tree of

the result relation is shown in Fig. 4.30 and the result relation in Fig. 4.31.

 x5

 COMPANY (TRN (CODE C UD UN) D DN)

 TRN (CODE C UD UN) D DN

 CODE C UD UN

 CN Y

Fig. 4.30: The tree representation of the result relation

x5 = ><>< (DEPT_2(UNIT(C)),TRAINING(TRAINER(COURSE(C))))

126

 (TRN (CODE C UD UN) D DN)

COMPANY TRN (CODE C UD UN) D DN

 CODE C UD UN

 CN Y

 xx0 1 75 Software 511

 Jack 2 76 Engineering 1 Research

 xx0 2 76 Planning 678

 Mark xy1 1 82 Basic Research 552 1 Research

 Apple xy2 2 79 Basic Research 552

 Jack xx0 1 75 Design 650 2 Development

 Mark xy1 3 82 Maintenance 780 2 Development

 xy1 3 82 Planning 981

 Tim xx2 5 79 Software Engineering 511 1 Research

 IBM xx2 4 82 Planning 678

 Tim xy1 3 82 Maintenance 780 2 Development

 xy1 3 82 Planning 981

 Microsoft Karen xx1 2 77 Design 650 2 Development

 xx1 2 81 Planning 981

 Fig. 4.31: The result relation

x5 = ><>< (DEPT_2(UNIT(C)),TRAINING(TRAINER(COURSE(C))))

4.3.11 The Recursive Nested Θ-Join Operation (><Θ
><)

The Θ-join operation is a special case of the join operation where the two

relations are joined on the basis of some comparison operator other than

equality.

It can be expressed by applying a selection operation to the result of the

cartesian product operation of two relations. The cartesian product is applied

at the top levels of the two nested relations and then, a recursive nested

selection operation follows which compares two attributes in the resulting

relation. The two attributes need not be at the same nesting level in the

resulting relation. The recursive nested selection operation is defined in

section 4.3.5.

127

Let r and q be two nested (in general) relations with relation schemes R and

Q respectively. Let also, X and Y be two atomic attributes belonging to

relations R and Q respectively and Θ the condition that they must satisfy.

Assume, without loss of generality, that Y belongs to a deeper nesting level

than X and LσY′→Y is the select path of Y starting at node Y′ which is at the

same nesting level as X (when X and Y are at the same nesting level the select

path is empty). So, the recursive nested Θ–join operation of the two relations r

and q is defined as follows:

Definition 4.30 (Recursive Nested Θ-Join)

r ><Θ
>< q = σσ((r × q)X Θ Y Lσ Y′→Y) �

4.3.12 The Recursive Nested Division Operation (÷÷)

The division operation has not been addressed in any of the previous

proposed algebra for nested models as far as the author of this thesis is aware.

It is believed that this is due to the following reasons:

1. the division operation is not a primitive operation,

2. it is not often used,

3. it is not implemented in any commercial product,

4. it is, by nature, hard to define.

The division operation can be expressed as a number of projections,

differences and a cartesian product operation between two relations.

4.3.13 Functions

Beyond the above relational algebra operations, many authors define

additional operations that enable the use of scalar functions ([Lor88]) and

aggregate functions ([Klu82], [Tan86]).

For simplicity reasons, in the present thesis, such functions are

incorporated directly within the remainder relational algebra operations.

Scalar functions are used in the sequel wherever necessary, but their

definitions have been omitted as obvious.

On the other hand, aggregate functions for nested relations have not been

discussed in any other model presented in chapter 2, but in [DL91]. Saying

that, it is important to mention that, outside the relational world, the object

128

database world and the functional data model may both be capable of dealing

with sets of objects [DS85]. However, the whole perspective of the present

thesis is completely relational and so, a functional or object data model is out

of its scope.

 Aggregate functions are redefined below.

Let f be a nested aggregate function (f ? {N-MAX, N-MIN, N-SUM, N-AVG, N-

COUNT}, where N-MAX, N-MIN, N-SUM, N-AVG and N-COUNT are the nested

versions for the corresponding aggregate functions MAX, MIN, SUM, AVG and

COUNT for flat relations), f ′ an aggregate function for flat relations (f′ ? {MAX,

MIN, SUM, AVG, COUNT}), r a nested relation, X an atomic or nested attribute

at a lower nesting level of r, Par the parent attribute of atomic attribute Y of r

(Y is at the same or higher nesting level than X and it is the attribute over

which attribute X is summarised) and X/Y denotes that attribute X is

summarised over attribute Y. Then, f[X/Y](r) is defined as follows:

Definition 4.31 (Nested Aggregate Function)

f[X/Y](r) = f′({ti[X] | ti ? t, t ? Par(Y) ∧ ti[X] ≠ null}) �

Note: Attribute X can be a nested attribute only when the nested aggregate

function f is N-COUNT. For all other cases, X attribute must be an atomic

attribute.

For an example see Query 7 in section 6.2 of chapter 6.

4.4 Summary

In this chapter, a database model and algebra have been defined for nested

relations of arbitrary nesting levels.

All the operators have been recursively defined. As a result, there is no need

to flatten the nested relations when a series of operations are executed and so

the data redundancy and duplication caused by unnesting relations is

avoided. Furthermore, the representation of the data is claimed to be in a

“natural form”, since even complex objects can be modelled in one relation and

thus, it is easier for users to understand when working with the data.

A detailed presentation and definitions of the rename and natural join

operations for nested relations have been included in this chapter. In

particular, a systematic review of the various forms of natural join between

nested relations and subrelations is given. Six distinct cases of natural join

129

have been analysed according to the positions and types of the common

attributes that participate in the natural join operation.

NRM is the tool that is going to be used to build the temporal nested model

in the next chapter. However, by itself, it provides a complete model for nested

relations.

130

CHAPTER 5

5. THE TEMPORAL NESTED MODEL (TNM)

5.1 Introduction

The Temporal Nested Model (TNM) is defined in this chapter, as an

extension of the NRM presented in chapter 4. Relations can be nested to any

finite depth as in the NRM. In the general case, time is represented as

temporal elements that form temporal attributes, which together with the

corresponding time-varying attributes form temporal nested attributes.

Therefore, the temporal dimension of the model is nested and is not integral

with the corresponding time-dependent value as in other previous proposed

temporal nested models (e.g. [Tan97]). As a result, the full power of the nested

model is gained and simultaneously temporal elements can be readily

referenced with or without their associated time-varying attribute values.

All the operations of the algebra for the TNM are defined recursively. In

particular, a detailed definition of the natural join operation for temporal

nested relations is presented where different cases are examined. These cases

are distinguished by the types (atomic, temporal, nested or temporal nested

attributes) and the nesting levels of the common attributes that participate in

the natural join operation.

A formal syntax of the TNM algebra is also given in Appendix A.

Finally, the operations of the TNM are proved to be closed.

5.2 Representation of TNM Relations

A relation in the TNM is a temporal nested relation which can be

represented either in a tabular representation (see Fig. 3.13-3.17) or in a tree

representation. Specifically, for the tree representation, a relation R in the

131

TNM can be described as a tree with root node R and with all the nested and

temporal nested attributes, Rn and Rtn respectively, as non-leaf nodes of the

tree and all the atomic and temporal attributes, Ra and Rt respectively, as

leaves of the tree. In order for the attributes Ra and Rt to be distinguished, all

the temporal attributes have a special indication on their names, the subscript

t. Thus, it is easy to distinguish atomic and temporal attributes between

themselves and treat them differently (see the algebraic operations of the TNM

in section 5.3).

An example follows where a tree representation of a temporal nested

relation is given.

Example 5.1: The tree structure of relation T_LOCATION (Fig. 3.15) is

shown in Fig. 5.1.

T_LOCATION

COMPANY ANNEX

BUILDING ADDRESS ADDRESS_PERt

Fig. 5.1: The tree representation of relation T_LOCATION

5.3 Operations in the TNM

In this section, the operations of the algebra of the NRM, which were

defined in section 4.3, are extended to support temporal data.

In the general case, temporal data are represented as temporal attributes

connected to the corresponding time-varying attributes. Each time-varying

attribute together with the corresponding temporal attribute form a temporal

nested attribute.

The operations of the algebra that are defined next are named according to

their common names with the prefix “T” to denote their temporal version.

A formal syntax of all the TNM operations is given in Appendix A. Formally,

this defines well-formed formulae (WFF), i.e. formulae that are grammatically

correct using BNF grammar ([Gra84]).

132

For sections 5.3.1, 5.3.2 and 5.3.3, let r and q be two temporal nested

relations with the same relation scheme R. Let Attr(Ra) be all the atomic

attributes, Attr(Rn) all the nested attributes that do not contain temporal

attributes, Attr(Rt) all the temporal attributes, Attr(Rtn) all the nested attributes

that contain temporal attributes of R and Attr(S) the set of all the atomic

attributes and all the key temporal, nested and temporal nested attributes of R

and Q. Let tr be a tuple in relation r, tq a tuple in relation q and t a tuple in the

result relation.

5.3.1 The Recursive Temporal Nested Union Operation (∪t
∪)

The union of two temporal nested relations r and q, r ∪t
∪ q, is a new

temporal nested relation with identical headings to relations r and q,

consisting of all tuples appearing in either or both of the two relations and, in

addition, for all those tuples with the same values for all the atomic attributes,

the temporal elements for all the temporal attributes are computed by taking

the unions of the temporal elements of the corresponding temporal attributes

of the two relations r and q (see Definition 3.10).

Then, the recursive temporal nested union of the two relations r and q, r ∪t
∪

q, can be formally defined as follows:

Definition 5.1 (TUnion)

i) Non-recursive union for temporal flat relations (r ∪t q)

 r ∪t q = { t| ((∃ tr ∈ r) (∃ tq ∈ q) ((t[Attr(Ra)] = tr[Attr(Ra)] = tq[Attr(Ra)])

 ∧ (t[Attr(Rt)] = tr[Attr(Rt)] ∪TE tq[Attr(Rt)])))

 ∨ ((∃ tr ∈ r) ((t[Attr(Ra)] = tr[Attr(Ra)]) ∧ (t[Attr(Rt)] = tr[Attr(Rt)])))

 ∨ ((∃ tq ∈ q) ((t[Attr(Ra)] = tq[Attr(Ra)]) ∧ (t[Attr(Rt)] = tq[Attr(Rt)])))}

ii) Recursive union for temporal nested relations (r ∪t
∪ q)

 r ∪t
∪ q = { t| (∃ tr ∈ r) (∃ tq ∈ q) ((t[Attr(S)] = tr[Attr(S)] ∪ tq[Attr(S)])

 ∧ (t[Attr(Rt)] = tr[Attr(Rt)] ∪TE tq[Attr(Rt)])

 ∧ (t[Attr(Rn)] = tr[Attr(Rn)] ∪∪ tq[Attr(Rn)])

 ∧ (t[Attr(Rtn)] = tr[Attr(Rtn)] ∪t
∪ tq[Attr(Rtn)]))} �

Example 5.2: The two tables T_TRAINING (Fig. 5.2) and T_TRAINING_1 (Fig.

5.3) are given. In both relations, Attr(S) = COMPANY. The semantics of these

two tables are given in subsection 3.5.2 of chapter 3. Please note that relation

T_TRAINING is the same as that of Fig. 3.13. However, the reason for this

133

repetition is to simplify the reading of this specific example. Fig. 5.4 shows the

result table of the TUnion of these two relations.

 TRAINER

COMPANY TRN COURSE

 CN CN_PERt

 Jack 5.2 [2/11/1994, 25/4/1995) ∪ [7/8/1996, 1/1/2010)

 Apple Mark 3.3 [2/1/1992, 8/11/1996)

 3.5 [30/4/1995, 1/1/2010)

 5.2 [19/3/1997, 21/4/1997)

IBM Tim 5.0 [17/12/1995, 1/1/2010)

 Microsoft Karen 3.3 [25/6/1996, 1/1/2010)

 Fig. 5.2: T_TRAINING

 TRAINER

COMPANY TRN COURSE

 CN CN_PERt

 Apple Mark 3.3 [10/10/1993, 1/1/2010)

 3.7 [8/10/1992, 15/5/1994)

 Mark 4.1 [1/9/1995, 1/1/2010)

IBM 5.5 [13/8/1996, 28/7/1998)

 Microsoft Karen 3.3 [5/7/1997, 18/3/1998)

 Fig. 5.3: T_TRAINING_1

 TRAINER

COMPANY TRN COURSE

 CN CN_PERt

 Jack 5.2 [2/11/1994, 25/4/1995) ∪ [7/8/1996, 1/1/2010)

 Apple 3.3 [2/1/1992, 1/1/2010)

 Mark 3.5 [30/4/1995, 1/1/2010)

 3.7 [8/10/1992, 15/5/1994)

 Tim 5.2 [19/3/1997, 21/4/1997)

IBM 5.0 [17/12/1995, 1/1/2010)

 Mark 4.1 [1/9/1995, 1/1/2010)

 5.5 [13/8/1996, 28/7/1998)

 Microsoft Karen 3.3 [25/6/1996, 1/1/2010)

 Fig. 5.4: T_TRAINING ∪t
∪ T_TRAINING_1

134

5.3.2 The Recursive Temporal Nested Difference Operation (–t-)

The difference of two temporal nested relations r and q, r –t- q, is a new

temporal nested relation with identical headings to relations r and q,

consisting of all tuples appearing in relation r but not in relation q and in

addition, for all those tuples with the same values for all the atomic attributes,

the temporal elements for all the temporal attributes are computed by taking

the differences of the temporal elements of the corresponding temporal

attributes of the two relations r and q (see Definition 3.11). In the resulting

relation, tuples having empty temporal elements must be discarded. Then, the

recursive temporal nested difference of the two relations r and q, r –t- q, can be

formally defined as follows:

Definition 5.2 (TDifference)

i) Non-recursive difference for temporal flat relations (r -t q)

r -t q = { t| ((∃ tr ∈ r) (∀ tq ∈ q) ((t[Attr(Ra)] = tr[Attr(Ra)])

∧ (t[Attr(Ra)] ≠ tq[Attr(Ra)])

 ∧ (t[Attr(Rt)] = tr[Attr(Rt)])))

 ∨ ((∃ tr ∈ r, ∃ tq ∈ q) ((t[Attr(Ra)] = tr[Attr(Ra)] = tq[Attr(Ra)])

 ∧ (t[Attr(Rt)] = (tr[Attr(Rt)] -TE tq[Attr(Rt)]) ≠ ∅)))}

ii) Recursive difference for temporal nested relations (r –t- q)

r –t- q = { t| ((∃ tr ∈ r) (∀ tq ∈ q) ((t[Attr(S)] = tr[Attr(S)] – tq[Attr(S)])

 ∧ (t[Attr(R) – Attr(S)] = tr[Attr(R) – Attr(S)])))

 ∨ ((∃ tr ∈ r) (∃ tq ∈ q) ((t[Attr(S)] = tr[Attr(S)] = tq[Attr(S)])

 ∧ (t[Attr(Rt)] = (tr[Attr(Rt)] -TE tq[Attr(Rt)]) ≠ ∅)

 ∧ (t[Attr(Rn)] = tr[Attr(Rn)])

 ∧ (t[Attr(Rtn)] = tr[Attr(Rtn)])))

∨ ((∃ tr ∈ r, ∃ tq ∈ q) ((t[Attr(S)] = tr[Attr(S)] = tq[Attr(S)])

 ∧ (t[Attr(Rt)] = tr[Attr(Rt)] = tq[Attr(Rt)])

 ∧ (t[Attr(Rn)] = tr[Attr(Rn)] –- tq[Attr(Rn)])

 ∧ (t[Attr(Rtn)] = tr[Attr(Rtn)] –t- tq[Attr(Rtn)])))} �

135

Example 5.3: The TDifference of relations T_TRAINING (Fig. 5.2) and

T_TRAINING_1 (Fig. 5.3) is shown in Fig. 5.5.

 TRAINER

COMPANY TRN COURSE

 CN CN_PERt

 Jack 5.2 [2/11/1994, 25/4/1995) ∪ [7/8/1996, 1/1/2010)

 Apple 3.3 [2/1/1992, 10/10/1993)

 Mark 3.5 [30/4/1995, 1/1/2010)

 Tim 5.2 [19/3/1997, 21/4/1997)

IBM 5.0 [17/12/1995, 1/1/2010)

 Microsoft Karen 3.3 [25/6/1996, 5/7/1997) ∪ [18/3/1998, 1/1/2010)

 Fig. 5.5: T_TRAINING –t- T_TRAINING_1

5.3.3 The Recursive Temporal Nested Intersection Operation (∩t
∩)

The intersection of two temporal nested relations r and q, r ∩t
∩ q, is a new

temporal nested relation with identical headings to relations r and q,

consisting of all tuples appearing in both of the relations r and q and in

addition, for all those tuples with the same values for all the atomic attributes,

the temporal elements for all the temporal attributes are computed by taking

the intersections of the temporal elements of the corresponding temporal

attributes of the two relations r and q (see Definition 3.12). In the resulting

relation, tuples having empty temporal elements must be discarded. Then, the

recursive temporal nested intersection of the two relations r and q, r ∩t
∩ q, is

defined as follows:

Definition 5.3 (TIntersection)

i) Non-recursive intersection for temporal flat relations (r ∩t q)

r ∩t q = { t| (∃ tr ∈ r) (∃ tq ∈ q) ((t[Attr(Ra)] = tr[Attr(Ra)] = tq[Attr(Ra)])

 ∧ (t[Attr(Rt)] = (tr[Attr(Rt)] ∩TE tq[Attr(Rt)]) ≠ ∅))}

136

ii) Recursive intersection for temporal nested relations (r ∩t
∩ q)

r ∩t
∩ q = { t| (∃ tr ∈ r) (∃ tq ∈ q) ((t[Attr(S)] = tr[Attr(S)] ∩ tq[Attr(S)])

 ∧ (t[Attr(Rt)] = (tr[Attr(Rt)] ∩TE tq[Attr(Rt)]) ≠ ∅)

 ∧ (t[Attr(Rn)] = tr[Attr(Rn)] ∩∩ tq[Attr(Rn)])

 ∧ (t[Attr(Rtn)] = tr[Attr(Rtn)] ∩ t
∩ tq[Attr(Rtn)]))} �

Example 5.4: The TIntersection of relations T_TRAINING (Fig. 5.2) and

T_TRAINING_1 (Fig. 5.3) is shown in Fig. 5.6.

 TRAINER

COMPANY TRN COURSE

 CN CN_PERt

 Apple Mark 3.3 [10/10/1993, 8/11/1996)

 Microsoft Karen 3.3 [5/7/1997, 18/3/1998)

 Fig. 5.6: T_TRAINING ∩t
∩ T_TRAINING_1

5.3.4 The Recursive Temporal Nested Projection Operation (π t
π)

The projection operator gives as a result a “vertical” subset of a given

relation. TProjection is similar to the recursive nested projection operation. It

can be expressed at all levels without restructuring. In the resulting relation,

tuples having the same values for all the atomic attributes are coalesced, by

taking the unions of the temporal elements of their corresponding temporal

attributes (see Definition 3.10).

Let r be a temporal nested relation with relation scheme R. Let Attr(Ra) =

{Ra1, …, Rak} be the subset of all the atomic attributes of R which are going to

be projected, Attr(Rn) = {Rn1, …, Rnm} the subset of all the nested attributes of R

which are going to be projected either fully or attributes belonging to these

nested attributes with Ln1, …, Lnm their project paths respectively, either empty

or not, and Attr(Rt) the subset of all the temporal attributes of R which are

going to be projected. Let Attr(Rtn) = {Rtn1, …, Rtnm′} be the subset of all the

temporal nested attributes of R which are going to be projected either fully or

attributes belonging to these temporal nested attributes (Ltn1, …, Ltnm′ are the

project paths of attributes Rtn1, …, Rtnm′ respectively, either empty or not).

Atomic and temporal attributes behave the same way for the projection

operation.

137

Then, the recursive temporal nested projection in the relation r, πt
π(rLπ),

where Lπ is a project list of R (see Definition 4.12), t r a tuple in relation r and t

a tuple in the resulting relation, is defined as follows:

Definition 5.4 (TProjection)

i) Projection of the whole temporal nested relation (πt(r))

πt(r) = r

ii) Non-recursive projection of a temporal nested attribute R tn at the top level

of R consisting of subsets Attr(Ra), Attr(Rn) and Attr(Rt) of atomic, nested and

temporal attributes respectively at its top nesting level (πt(r(Rtn)))

πt(r(Rtn)) = { t| (∃ tr ∈ r) ((t[Attr(Ra)] = tr[Attr(Ra)])

 ∧ (t[Attr(Rn)] = tr[Attr(Rn)])

 ∧ (t[Attr(Rt)] = tr[Attr(Rt)]))}

iii) Recursive projection for temporal nested relations (πt
π(rLπ))

πt
π(rLπ) = πt

π(r(Ra1, …, Rak, Attr(Rt), Rn1Ln1, …, RnmLnm, Rtn1Ltn1, …, Rtnm′Ltnm′))=

{ t| (∃ tr ∈ r) ((t[Ra1] = tr[Ra1]) ∧ … ∧ (t[Rak] = tr[Rak])

 ∧ (t[Attr(Rt)] = tr[Attr(Rt)])

 ∧ (t[Rn1] = ππ(tr[Rn1]Ln1)) ∧ … ∧ (t[Rnm] = ππ(tr[Rnm]Lnm))

 ∧ (t[Rtn1] = πt
π(tr[Rtn1]Ltn1)) ∧ … ∧ (t[Rtnm′] = πt

π(tr[Rtnm′]Ltnm′)))} �

Example 5.5: The result relation of the TProjection operation of attributes

COMPANY and COURSE in relation T_TRAINING (Fig. 5.2) is shown in Fig.

5.7.

COMPANY COURSE

 CN CN_PERt

 5.2 [2/11/1994, 25/4/1995) ∪ [7/8/1996, 1/1/2010)

Apple 3.3 [2/1/1992, 8/11/1996)

 3.5 [30/4/1995, 1/1/2010)

 5.2 [19/3/1997, 21/4/1997)

IBM 5.0 [17/12/1995, 1/1/2010)

 Microsoft 3.3 [25/6/1996, 1/1/2010)

 Fig. 5.7: πt
π(T_TRAINING(COMPANY, TRAINER(COURSE)))

5.3.5 The Recursive Nested TimeSlice Operation (ss)

TProjection cannot be used to “project” a relation along a given temporal

element, i.e. how a relation looks like at a given temporal element. A new

138

operation needs to be defined, namely TimeSlice, which takes the intersection

of the given temporal element and each temporal element of the relation (see

Definition 3.12). In the resulting relation, tuples having empty temporal

elements are not considered. The TimeSlice operation is similar to the Slice

operation proposed by Tansel ([Tan86]).

Let r be a temporal nested relation with relation scheme R. Let, also,

Attr(Ra,n) be all the atomic and nested attributes, Attr(Rtn) = {Rtn1, …, Rtnm} all

the temporal nested attributes at the top level of R, Attr(Rt) all the temporal

attributes, TE a temporal element, t r a tuple in relation r and t a tuple in the

result relation.

Definition 5.5 (TimeSlice)

i) Non-recursive timeslice for a temporal nested attribute R tn (with Attr(Ra,n)

and Attr(Rt) at the top level) of a temporal nested relation r along a given

temporal element TE (sTE(t[Rtn]))

sTE(t[Rtn]) = { t| (∃ tr ∈ r) ((t[Attr(Ra,n)] = tr[Attr(Ra,n)])

 ∧ ((t[Attr(Rt)] = tr[Attr(Rt)] ∩TE TE) ? Ø))}

ii) Recursive timeslice for temporal nested relations along a given temporal

element TE (ss
TE(r))

ss
TE(r) = { t| (∃ tr ∈ r) ((t[Attr(Ra,n)] = tr[Attr(Ra,n)])

 ∧ ((t[Attr(Rt)] = tr[Attr(Rt)] ∩TE TE) ? Ø)

 ∧ (t[Rtn1] = ss
TE(tr[Rtn1])) ∧ … ∧ (t[Rtnm] = ss

TE(tr[Rtnm])))} �

Example 5.6: In Fig. 5.8 the TimeSlice of relation T_TRAINING (Fig. 5.2) for

the temporal element [3/12/1996, 28/9/1997) is shown.

 TRAINER

COMPANY TRN COURSE

 CN CN_PERt

 Jack 5.2 [3/12/1996, 28/9/1997)

 Apple Mark 3.5 [3/12/1996, 28/9/1997)

 5.2 [19/3/1997, 21/4/1997)

IBM Tim 5.0 [3/12/1996, 28/9/1997)

 Microsoft Karen 3.3 [3/12/1996, 28/9/1997)

 Fig. 5.8: ss
 [3/12/1996, 28/9/1997)(T_TRAINING)

139

5.3.6 The Recursive Temporal Nested Selection Operation (σt
σ)

The selection operation extracts specified tuples from a given relation r that

satisfy a specified condition. In addition to the standard selection operation,

TSelection can use special temporal comparison operators when the specified

condition involves relative positions among temporal elements or among time

points and temporal elements (i.e. BEFORE, AFTER, MEETS, OVERLAPS,

COVERS defined in [Lor88]).

Let r be a temporal nested relation with relation scheme R, Attr(R) be all the

attributes of R and let Attr(Ra) be the subset of all the atomic attributes,

Attr(Rt) the subset of all the temporal attributes, Attr(Rn) the subset of all the

nested attributes and Attr(Rtn) the subset of all temporal nested attributes of R

that participate in the selection operation. Let also c be a set of conditions in

R, which is of the form {ca, ct, cn, ctn}, where ca is a set of conditions which

must be true for the subset Attr(Ra), ct a set of conditions which must be true

for the subset Attr(Rt), cn a set of conditions which must be true for the subset

Attr(Rn) and ctn a set of conditions which must be true for the subset Attr(Rtn).

As has been mentioned above, ct can be a set of predicates for temporal

elements. Furthermore, it is important to notice that c tn concerns, eventually,

the lowest nesting level of atomic and temporal attributes, since temporal

nested attributes consist of atomic and temporal attributes. Then, the

recursive temporal nested selection of relation r, where Lσ is a select list of r

(see Definition 4.14), tr a tuple in relation r and t a tuple in the resulting

relation is defined as follows:

Definition 5.6 (TSelection)

i) Non-recursive selection concerning the set of temporal attributes Attr(Rt)

that occur at the top level of a temporal nested relation r (σt(rct))

σt(rct) = { t| (∃ tr ∈ r) ((t[Attr(R) – Attr(Rt)] = tr[Attr(R) – Attr(Rt)])

 ∧ (t[Attr(Rt)] = tr[Attr(Rt)]) ∧ (ct = true))}

140

ii) Recursive selection concerning the set of temporal nested attributes

Attr(Rtn) (σt
σ(rctn1, …, ctnm′L′

σ))

σt
σ(rctn1, …, ctnm′L′

σ) = { t| (∃ tr ∈ r)

((t[Attr(R) – Attr(Rtn)] = tr[Attr(R) - Attr(Rtn)])

∧ (t[Rtn1] = σt
σ(tr[Rtn1]ctn1Ltn1) ≠ ∅)

∧ … ∧ (t[Rtnm′] = σt
σ(tr[Rtnm′]ctnm′Ltnm′) ≠ ∅))}

iii) Recursive selection for temporal nested relations (σt
σ(rcLσ))

σt
σ(rcLσ) = σ(rca1, …, cak) ∩ σt(rct) ∩ σσ(rcn1, …, cnmLσ) ∩ σt

σ(rctn1, …, ctnm′L′
σ) �

Example 5.7: Assume that the following query is given: “Find all

information for trainers Mark and Tim and for courses that took place for

period overlapping the time interval [1/1/1997, 1/1/1998) from the

T_TRAINING table (Fig. 5.2). The result table is given in Fig. 5.9.

 TRAINER

COMPANY TRN COURSE

 CN CN_PERt

 Apple Mark 3.5 [30/4/1995, 1/1/2010)

 5.2 [19/3/1997, 21/4/1997)

IBM Tim 5.0 [17/12/1995, 1/1/2010)

 Fig. 5.9: σt
σ(T_TRAINING (TRAINER(TRN)=‘Mark’ OR ‘Tim’)

AND (TRAINER(COURSE(CN_PER t)) OVERLAPS [1/1/1997, 1/1/1998)))

5.3.7 The Recursive Temporal Unnest Operation (µ tµ)

The definition of the recursive unnest operation for temporal nested

relations is the same as the definition of the recursive unnest operation (µµ) for

nested relations (see Definition 4.17 in section 4.3.6).

5.3.8 The Recursive Temporal Nest Operation (?t?)

The definition of the recursive nest operation for temporal nested relations

is the same as the definition of the recursive nest operation (??) for nested

relations (see Definition 4.19 in section 4.3.7).

141

5.3.9 The Recursive Temporal Nested Rename Operation (ρt
ρ)

The definition of the recursive rename operation for temporal nested

relations is the same as the recursive rename operation for nested relations

(see Definition 4.20 in section 4.3.8).

5.3.10 The Recursive Temporal Nested Cartesian Product

Operation (×t
×)

Let r and q be two temporal nested relations with relation schemes R and Q

respectively. The TCartesianProduct of r and q is a new temporal nested

relation consisting of all possible combinations of tuples of the two relations.

Attributes of relation Q can be placed either next to the last attribute of

relation R, which means that the cartesian product operation operates at the

top level of both relations and so it is exactly the same as the standard

cartesian product operation for flat relations or next to an attribute which is

not at the top nesting level of relation R which means that the cartesian

product operates between a lower nesting level of relation R and the top

nesting level of relation Q.

Let Attr(R) and Attr(Q) be all attributes (atomic, temporal, nested and

temporal nested) of R and Q respectively. Let also, L be a join path of R (see

Definition 4.21), Rtn a temporal nested attribute of R, Ltn a join path of

attribute R tn, tr a tuple in relation r, tq a tuple in relation q and t a tuple in the

resulting relation.

Then, the cartesian product of the two relations r and q, ×t
× (rL, q), is

defined as follows:

Definition 5.7 (TCartesianProduct)

i) Non-recursive cartesian product between two temporal nested relations r

and q when L is empty (×t (r, q))

×t (r, q) = { t ≡ (t[Attr(R)], t[Attr(Q)])| (∃ tr ∈ r, ∃ tq ∈ q) ((t[Attr(R)] = t r[Attr(R)])

 ∧ (t[Attr(Q)] = tq[Attr(Q)]))}

142

ii) Recursive cartesian product between two temporal nested relations r and

q when L is not empty (×t
× (rL, q))

×t
× (rL, q) = ×t

× (r(RtnLtn), q) ≡ ×t
× (q, r(RtnLtn))

= { t| (∃ tr ∈ r) ((t[Attr(R) – {Rtn}] = tr[Attr(R) – {Rtn}])

 ∧ (t[Rtn] = ×t
× (tr[Rtn]Ltn, q)))} �

It follows from the formal definition of the recursive temporal nested

cartesian product operation that the result relation of the cartesian product of

temporal nested relations r and q consists of the attributes of relation r plus

the attributes of relation q.

Note: The definition of the TCartesianProduct operation for temporal nested

relations (Definition 5.7) is the same as the recursive cartesian product

definition for nested relations (see Definition 4.22), since temporal attributes of

the two relations that participate in the TCartesianProduct operation are not

compared by definition but behave like standard atomic attributes.

Furthermore, the commutative property is always valid in the recursive

temporal nested cartesian product operation, as is the case in the recursive

nested cartesian product operation.

5.3.11 The Recursive Temporal Nested Natural Join Operation

(><t
><)

In general, the join operation is a special case of the cartesian product

operation between two relations where the tuples of the two relations

contributing to any given combination, satisfy some specified condition

(selection operation). When the specified condition includes time-varying

attributes, the intersections of the temporal elements of the corresponding

temporal attributes of the two relations are computed (see Definition 3.12). If

the result of the intersection is the empty set, the result tuple is discarded. In

what is described below the specified condition is equality, i.e. a natural join

operation can be performed only when the two temporal nested relations

which participate in the join operation have one or more attributes in

common. Since the attributes in common can be atomic, temporal, nested or

temporal nested either at the top or at a lower nesting level in the two

relations, different cases of natural join have to be examined.

143

The cases can be grouped according to the join paths of the two relations

that are going to be joined and are, in general, the same as for the non-

temporal nested relations presented in Fig. 4.17.

For all the six different cases below, tr is a tuple in relation r, tq a tuple in

relation q and t a tuple in the resulting relation.

Case 1: Join two temporal nested relations which have one or more atomic

and temporal attributes at the top level in common

Definition 5.8: Let r and q be two temporal nested relations with relation

schemes R and Q respectively and Attr(R) and Attr(Q) the sets of all attributes

of R and Q respectively. The two relations r and q have in common the subsets

of atomic and temporal attributes Attr(Ra) and Attr(Rt) respectively. Then, ><t

(r, q) is defined as follows:

><t (r, q) = { t| (∃ tr ∈ r) (∃ tq ∈ q)

((t[Attr(R) - {Attr(Ra), Attr(Rt)}] = tr[Attr(R) - {Attr(Ra), Attr(Rt)}])

∧ (t[Attr(Q) - {Attr(Ra), Attr(Rt)}] = tq[Attr(Q) - {Attr(Ra), Attr(Rt)}])

∧ (t[Attr(Ra)] = tr[Attr(Ra)] = tq[Attr(Ra)])

∧ (t[Attr(Rt)] = (tr[Attr(Rt)] ∩TE tq[Attr(Rt)]) ≠ ∅))} �

Case 2: Join two temporal nested relations having one or more atomic and

temporal attributes in common which in one relation are attributes of a

subrelation of the relation and in the other are at the top level

Definition 5.9: Let r and q be two temporal nested relations with relation

schemes R = {R1, R2, …, Rtn, …, Rk} and Q = {Q1, Q2, …, Attr(Qa), Attr(Qt), …,

Qk′} respectively, where k, k′ > 0 and k ≠ k′ (in general). Let also, Attr(R) and

Attr(Q) be the sets of all attributes of relations r and q respectively. The two

relations have in common one or more atomic and temporal attributes which

in one relation belong to temporal nested attribute R tn and in the other relation

are the subsets Attr(Qa) and Attr(Qt) of atomic and temporal attributes

respectively. Let L be a join path of R. L is of the form R tnLtn where L tn is a join

path of Rtn. Then, ><t
>< (rL, q) is defined as follows:

><t
>< (rL, q) = ><t

>< (q, rL) = ><t
>< (r(RtnLtn), q) = { t| (∃ tr ∈ r)

 ((t[Attr(R) - {Rtn}] = tr[Attr(R) - {Rtn}])

 ∧ (t[Rtn] = ><t
>< (tr[Rtn]Ltn, q) ≠ ∅))} �

144

Note: This definition is the same as Definition 4.25 (Case 2) for non-

temporal nested relations in the NRM.

Case 3: Join two temporal nested relations having one or more atomic and

temporal attributes in common which belong in different subrelations of the two

relations (but in the same subrelation in each relation)

The same two cases can be distinguished here, as in the NRM, depending

on whether or not the nesting levels of the common atomic and temporal

attributes in the different subrelations of the two relations are the same.

Case 3a: The common atomic and temporal attributes are at the same

nesting level in the two joined relations

Definition 5.10: Let r and q be two temporal nested relations with relation

schemes R = {R1, R2, ..., Rtn, …, Rk} and Q = {Q1, Q2, ..., Qtn, …, Qk′} respectively

where k, k′ > 0 and k ≠ k′ (in general). Let also, Attr(R) and Attr(Q) be the sets

of all attributes of relations r and q respectively. Suppose that at least the

attributes Rtn and Qtn of the two relations r and q respectively are temporal

nested attributes and that they contain the common atomic and temporal

attributes.

Let L be a join path of R and M a join path of Q. L is of the form R tnLtn where

Ltn is a join path of Rtn and M is of the form QtnMtn where Mtn is a join path of

Qtn. Then, ><t
>< (rL, qM) is defined as follows:

><t
>< (rL, qM) = ><t

>< (qM, rL) = ><t
>< (r(RtnLtn), q(QtnMtn)) =

{t| (∃ tr ∈ r) (∃ tq ∈ q)

 ((t[Attr(R) - {Rtn}] = tr[Attr(R) - {Rtn}])

 ∧ (t[Attr(Q) - {Qtn}] = tq[Attr(Q) - {Qtn}])

 ∧ (t[RtnQtn] = ><t
>< (tr[Rtn]Ltn, tq[Qtn]Mtn) ≠ ∅))} �

Example 5.8: Suppose that relations T_LOCATION (Fig. 3.15), T_CASH-

POINT (Fig. 3.16) and the following query are given “Which banks have

branches at the same road as the given companies during the same time

period?”.

The result relation is shown in Fig. 5.10.

145

COMPANY (BUILDING ADDRESS ADDRESS_PERt SORT_CODE) BANK

 BUILDING ADDRESS ADDRESS_PERt SORT_CODE

Microsoft Pegasus House Ashford St. [16/11/1995, 4/4/1997) 386600 Barclays

Microsoft Queen’s Building Park Rd. [18/3/1995, 10/8/1998) 560045 NatWest

Microsoft Queen’s Building Park Rd. [16/6/1995, 1/1/2010) 478210 Lloyd’s

 Pegasus House Ashford St. [23/7/1995, 4/4/1997) 478202

Fig. 5.10: ><t
>< (T_LOCATION(ANNEX(ADDRESS, ADDRESS_PERt)),

T_CASH-POINT(BRANCH(ADDRESS, ADDRESS_PERt)))

Case 3b: The common atomic and temporal attributes are not at the same

nesting level in the two joined relations

The definition is the same as Definition 4.27 (Case 3b) for non-temporal

nested relations in the NRM.

Case 4: Join two temporal nested relations which have one or more temporal

nested attributes at the top level in common

Definition 5.11: Let r and q be two temporal nested relations, with relation

schemes R and Q respectively. Let also, Attr(R) and Attr(Q) be the sets of all

attributes of relations r and q respectively. The two relations r and q have in

common the temporal nested attributes Attr(Rtn) = {Rtn1, Rtn2, …, Rtnk} and

Attr(Qtn) = {Qtn1, Qtn2, …, Qtnk} respectively (k > 0) at the top level. Then, ><t (r,

q) is defined as follows:

><t (r, q) = { t| (∃ tr ∈ r) (∃ tq ∈ q)

((t[Attr(R) – Attr(Rtn)] = tr[Attr(R) – Attr(Rtn)])

∧ (t[Attr(Q) – Attr(Qtn)] = tq[Attr(Q) – Attr(Qtn)])

∧ (t[Attr(Rtn)] = ><t (tr[Attr(Rtn)], tq[Attr(Qtn)])

 = ((Rtn1 ∩t
∩ Qtn1) ∧ (Rtn2 ∩t

∩ Qtn2) ∧ … ∧ (Rtnk ∩t
∩ Qtnk)) ? Ø))} �

Case 5: Join two temporal nested relations having one or more subrelations

in common which in one relation are subrelations of a subrelation of a relation

and in the other are at the top level

The definition is the same as Definition 5.9 (Case 2).

146

Case 6: Join two temporal nested relations having one or more common

subrelations which belong at different subrelations of the two relations (but in

the same subrelation in each relation)

Case 6 in the TNM is similar to Case 6 in the NRM (subsection 4.3.10).

In the following example the natural join of two temporal nested relations,

having one common temporal nested attribute belonging to different

subrelations and at different nesting levels in the two relations, is computed.

Example 5.9: Let assume that the T_TRAINING relation (Fig. 3.13) and the

T_DEPT relation (Fig. 3.14) are given. In order to answer the query “Find

which trainers have given courses to which staff members?” the natural join of

the two relations must be computed. The two relations have in common the

temporal nested attribute COURSE which is located at nesting level 2 at the

T_TRAINING relation and at nesting level 3 at the T_DEPT relation. The result

relation is shown in Fig. 5.11.

 (UN UD (SNAME STAFF_PERt COURSE TRN) COMPANY)

D DN UN UD (SNAME STAFF_PERt COURSE TRN) COMPANY

 SNAME STAFF_PERt COURSE TRN

 CN CN_PERt

 511 Software Paul [13/5/1994,5/9/1996) 5.2 [1/2/1995, 25/4/1995) Jack Apple

 Engineering Peter [26/2/1996,1/1/2010) 3.5 [1/1/1998, 28/10/1998) Mark

 1 Research 511 Software

Engineering

 Paul [13/5/1994,5/9/1996) 5.0 [17/12/1995,30/1/1996) Tim IBM

 552 Basic

Research

 Anna [30/4/1994,27/8/1995)

∪

[4/6/1997,19/11/1998)

 3.3 [29/9/1997, 10/2/1998) Karen Microsoft

 Mary [15/5/1995, 1/1/2010) 3.3 [17/1/1997, 28/4/1997) Karen

 2 Development 780 Maintenance Helen [14/2/1996, 1/1/2010) 3.5 [17/8/1997, 1/1/2010) Mark Apple

 650 Design Steve [2/1/1995, 27/6/1998) 5.0 [18/3/1996, 1/7/1996) Tim IBM

Fig. 5.11: ><t

>< (T_TRAINING(TRAINER(COURSE)),

T_DEPT(STAFF(COURSE_DETAILS(COURSE))))

It can be concluded that the only difference between the natural join

operation for temporal nested relations in the TNM, defined in this section,

and the natural join operation for non-temporal nested relations in the NRM,

defined in section 4.3.10, is when it reaches a nesting level where a temporal

147

attribute occurs. In this case, either the Definition 5.8 of Case 1 or the

Definition 5.11 of Case 4 of this section is applied. Therefore, the TJoin

operation of the TNM has been defined as a consistent extension of the

recursive nested natural join operation defined for the NRM.

5.3.12 The Recursive Temporal Nested Θ-Join Operation (><tT
><)

Let r and q be two temporal nested (in general) relations with relation

schemes R and Q respectively. Let X and Y be two atomic or temporal

attributes belonging to relations R and Q respectively and Θ the condition that

they must satisfy. Assume, without loss of generality, that Y belongs to a

deeper nesting level than X and LσY′→Y is the select path of Y starting at node Y′

which is at the same nesting level as X (when X and Y are at the same nesting

level the select path is empty). So, the Θ-TJoin of two relations r and q is

defined as follows:

Definition 5.12 (Θ-TJoin)

r ><tT
>< q = σt

σ((r ×t q) X Θ Y LσY′→Y)

Note: The definition of the Θ-TJoin operation for temporal nested relations

is the same as the definition of the recursive Θ-Join operation for nested

relations (Definition 4.30); the only difference is that the comparison (selection

operation) can be performed also between temporal attributes.

5.3.13 The Recursive Temporal Nested Division Operation (÷t
÷)

The recursive temporal nested division operation is not defined for the same

reasons discussed in section 4.3.12.

5.3.14 Temporal Functions

The START and STOP functions have been defined in section 3.2.2.

Different researchers have defined various temporal functions and a detailed

list can be found in [LM97]. Hence, repetition of such functions is omitted

here. Informal description of the functionality of such functions is given in the

sequel wherever they are used.

148

5.4 Closure Property of Operations

The temporal nested operations defined in section 5.3 are proved, in this

section, to be closed in U, where U is the underlying domain of the temporal

nested relations. For all the following propositions, let r be a temporal nested

relation with relation scheme R(Attr(Ra), Attr(Rt), Attr(Rtn)), where Attr(Ra) =

{Ra1, Ra2, …, Rak} is the set of all atomic attributes (k ≥ 0), Attr(Rt) = {Rt1, Rt2, …,

Rtq} is the set of all temporal attributes (q ≥ 0) and Attr(Rtn) = {Rtn1, Rtn2, …,

Rtnm} is the set of all temporal nested attributes in R (m ≥ 0). Nested attributes

can be considered as a special case of temporal nested attributes and so they

are not included in the relation scheme. Let also, Dai be the underlying domain

of the atomic attribute Rai (where 0 ≤ i ≤ k), Dtp the underlying domain of the

temporal attribute Rtp (where 0 ≤ p ≤ q) and P(DOM(Rtnj)) the underlying

domain of the temporal nested attribute Rtnj (where 0 ≤ j ≤ m).

The underlying domain of relation r is:

Da1 × Da2 × … × Dak × Dt1 × Dt2 × … × Dtq × P(DOM(Rtn1)) × P(DOM(Rtn2)) × … ×

P(DOM(Rtnm)).

Note: A temporal attribute behaves in the same way as an atomic attribute

in the following proofs. However, the domains of temporal attributes are

distinct from those of atomic attributes.

Proposition 5.1 The TUnion operation is closed in U.

Proof: Let q be a temporal nested relation with the same relation scheme

and the same underlying domain as relation r.

Then, the underlying domain of relation s, where s = r ∪t
∪ q, is also Da1 ×

Da2 × … × Dak × Dt1 × Dt2 × … × Dtq × P(DOM(Rtn1)) × P(DOM(Rtn2)) × … ×

P(DOM(Rtnm)), according to Definition 5.1. So, the output of the TUnion

operation is a temporal nested relation with the same scheme and the same

underlying domain as the input relations r and q. Thus, the TUnion operation

is closed in U.

Proposition 5.2 The TDifference operation is closed in U.

Proof: The proof is omitted since is the same as that of the TUnion

operation.

149

Proposition 5.3 The TIntersection operation is closed in U.

Proof: The proof is omitted since is the same as that of the TUnion

operation.

Proposition 5.4 The TProjection operation is closed in U.

Proof: The output of the TProjection operation, πt
π(rLπ), of the temporal

nested relation r, is a temporal nested relation whose underlying domain is a

proper subset of the underlying domain of relation r, according to Definition

5.4. Thus, the TProjection operation is closed in U.

Proposition 5.5 The TimeSlice operation is closed in U.

Proof: The output of the TimeSlice operation, ss
TE(r), of the temporal nested

relation r, is a temporal nested relation whose underlying domain is the

underlying domain of relation r, according to Definition 5.5. Thus, the

TimeSlice operation is closed in U.

Proposition 5.6 The TSelection operation is closed in U.

Proof: The output of the TSelection operation, σt
σ(rcLσ), of the temporal

nested relation r, is a temporal nested relation whose underlying domain is the

underlying domain of relation r, according to Definition 5.6. Thus, the

TSelection operation is closed in U.

Proposition 5.7 The TCartesianProduct operation is closed in U.

Proof: Let q be a temporal nested relation with relation scheme Q(Attr(Qa),

Attr(Qt), Attr(Qtn)), where Attr(Qa) = {Qa1, Qa2, …, Qak′} the set of all atomic

attributes (k′ ≥ 0), Attr(Qt) = {Qt1, Qt2, …, Qtq′} the set of all temporal attibutes in

Q (q′ ≥ 0) and Attr(Qtn) = {Qtn1, Qtn2, …, Qtnm′} the set of all temporal nested

attibutes in Q (m′ ≥ 0). Let also, D′ai′ be the underlying domain of the atomic

attribute Qai′ (where 0 ≤ i′ ≤ k′), D′tp′ the underlying domain of the temporal

attribute Q tp′ (where 0 ≤ p′ ≤ q′) and P(DOM(Qtnj′)) the underlying domain of the

temporal nested attribute Qtnj′ (where 0 ≤ j′ ≤ m′).

The underlying domain of relation q is D ′a1 × D′a2 × … × D′ak′ × D′t1 × D′t2 × …

× D′tq′ × P(DOM(Qtn1)) × P(DOM(Qtn2)) × … × P(DOM(Qtnm′)).

150

Then, the output of the TCartesianProduct operation of the two temporal

nested relations r and q, ×t
× (rL, q), is a temporal nested relation with

underlying domain Da1 × Da2 × … × Dak × Dt1 × Dt2 × … × Dtq × P(DOM(Rtn1)) ×

P(DOM(Rtn2)) × … × P(DOM(Rtnm)) × D′a1 × D′a2 × … × D′ak′ × D′t1 × D′t2 × … × D′tq′

× P(DOM(Qtn1)) × P(DOM(Qtn2)) × … × P(DOM(Qtnm′)), according to Definition 5.7.

So, the output of the TCartesianProduct operation is a temporal nested

relation whose underlying domain is the cartesian product of the underlying

domains of the two input relations, r and q. Thus, the TCartesianProduct

operation is closed in U.

Proposition 5.8 The TJoin operation is closed in U.

Proof: The proof is omitted since is the same as that of the

TCartesianProduct operation.

Proposition 5.9 The Θ-TJoin operation is closed in U.

Proof: The proof is omitted since is the same as that of the

TCartesianProduct operation.

5.5 Summary

In this chapter, a temporal database model (TNM) and algebra have been

defined using nested relations. The advantage of this approach is that it

combines for the first time a simple temporal extension with nested relational

theory, thus exploiting the suitability of the Nested Relational Model for

representing temporal complex objects.

All the operators that are used are recursively defined. The result is that

there is no need to flatten the temporal nested relations when queries are

executed. Data duplication does not occur. Furthermore, the representation of

the data is claimed to be in a “natural form” and thus, it is easier for users to

understand when querying the data.

The most interesting and at the same time difficult operation to define is the

natural join operation. It has been given special consideration in this chapter,

within the scope of the TNM. As in the previous chapter, detailed attention has

been paid to solving the problems that are presented when computing the

151

natural join operation of two relations, due to the dissimilarity of the common

attributes that the two relations might share.

Lastly, the closure property for all the operations of the TNM has been

proved.

152

CHAPTER 6

6. MODEL IN USE

6.1 Introduction

This chapter gives a number of examples of the management of temporal

nested data using the Temporal Nested Model (TNM) described in chapters 3

and 5. The queries illustrate the features of the temporal nested relational

algebra that has been defined also in chapter 5.

The examples are presented incrementally and thus, have been divided in

two different categories; the first one includes queries that involve non-

temporal nested data, showing the expressive power of the NRM, defined in

chapter 4 and the second one deals with temporal nested relations for the

management of temporal nested data, demonstrating the full expressive power

of the TNM.

Note that in the examples that follow, for simplicity reasons, the result

relation is the one obtained after the application of the necessary number of

unnest operations. Moreover, when a new attribute is computed from an

aggregate or scalar function, a new name is given by the user to that new

attribute, without the need of using the rename operation.

6.2 Management of Nested Data

The non-temporal nested model presented in chapter 4, is a well-defined

and formalised nested model where data restructuring operations are avoided.

In this chapter, examples are provided to show the ease of use of the NRM

algebra. Relations have no restrictions on the number of nesting levels they

can contain. The nested model presented, provides a better way of

representing and querying complex data as demonstrated by the queries that

153

follow since they are short and do not require nest, unnest or any other

restructuring operations for the manipulation of nested data.

A number of examples are presented that contain only operations on nested

data, demonstrating how this model works and functions. Queries refer to the

nested database example described in section 3.5 (Fig. 3.6–3.12). For each

query, the resulting relation is also given. In the resulting relation the names

of the new subrelations are derived from the names of the attributes they

contain using a bracketed notation (see also section 4.3.10). For some queries,

comparisons are made with other proposed models, in order to demonstrate

the claimed superiority of the NRM and the weakness of other proposed

algebras to express these queries.

Query 1: What are the descriptions of the units that belong to department

1 and who are the trainers who have given courses to staff members of these

units (ref. to Fig. 3.7)? Display also the value for the department.

ππ((σσ(DEPTD = 1)) D, UD, TRN)

 (UD (TRN))
D UD (TRN)
 TRN
 Software Mark
 Engineering
 1 Basic Research Karen
 Tim
 Planning Mark
 Fig. 6.1: The resulting relation of Query 1

A projection operation on a selected part of the DEPT relation is needed to

answer the above query. Three attributes of the relation are projected which

can be found at different nesting levels; attribute D at nesting level 1 (top

level), attribute UD at nesting level 2 and attribute TRN at nesting level 3.

However, the projection operation takes place as normal, without changing the

structure of the relation using unnest and nest operations and thus, the

nesting arrangement of the relation is maintained in the resulting relation as

well. Therefore, in the resulting relation, D, UD and TRN are still at nesting

levels 1, 2 and 3 respectively, as in the input relation DEPT.

154

Query 2: Find the department names and the companies that have

provided these departments with trainers (ref. to Fig. 2.2, 2.3).

ππ((DEPT_1 ><>< TRAINING_2) DN, COMPANY)

DN (COMPANY)

 COMPANY

Research IBM

Development IBM

Fig. 6.2: The resulting relation of Query 2

Although the two relations that have to be joined, DEPT_1 and

TRAINING_2, contain the common nested attribute TRAINER at different

nesting levels, and also a projection operation is applied to two attributes at

different nesting levels in the resulting relation after performing the natural

join operation, the structure of these complex objects is preserved while

accessing them and the query can be answered easily with two basic

operations, natural join and projection, ignoring the complexity of the

operands. The output relation is nested completely without requiring any

nesting operations.

This query cannot be performed in Abiteboul and Bidoit’s model ([AB86])

since the natural join operation cannot be performed between the TRAINING_2

and DEPT_1 relations, as they do not contain any common atomic attributes

at the top level (see section 2.2.1).

155

Query 3: Find the tuples with course numbers equal to the number of the

department for the whole tuple (ref. to Fig. 3.7).

σσ(DEPTD = CN)

 UNIT

D DN UN UD COURSE_DETAILS

 TRN COMPANY C

 CN Y

 1 Research 511 Software Engineering Mark Apple 1 75

 552 Basic Research Karen Microsoft 1 82

 2 Development 780 Maintenance Mark Apple 2 76

 981 Planning Jack Apple 2 81

 Fig. 6.3: The resulting relation of Query 3

The above query shows the advantage of the selection operation proposed in

section 4.3.5 that allows arbitrary expressions to be specified in the select

condition, as for example equality of values of attributes that are not at the

same nesting level in the relation, without unnesting and nesting the relation.

The query is expressed algebraically in exactly the same way as if the two

compared attributes were at the top level of the original relation.

Query 4: Find the names of the banks and the companies that are situated

at the same road (ref. to Fig. 3.8, 3.9).

νν((µµ(ππ((LOCATION><><CASH-POINT)

 COMPANY,BANK,ADDRESS))(ADDRESS))(COMPANY,BANK)→(COMPANY BANK))

ADDRESS (COMPANY BANK)

 COMPANY BANK

 Porchester Rd. TOSHIBA NatWest

 Ashford St. Microsoft Barclays

 Lloyd’s

 Park Rd. Microsoft Lloyd’s

 NatWest

 Fig. 6.4: The resulting relation of Query 4

156

In this example, and in similar cases, nest and unnest operations are

necessary since they can restructure the relations and as a result, present the

same data in a different format that is required by the given query.

However, extra nest and unnest operations are avoided in the above query

since the natural join and projection operations are defined recursively in the

NRM algebra.

In Abiteboul and Bidoit’s model this query cannot be performed since the

two relations that participate in the natural join operation do not have any

common attributes at the top level.

Query 5: Find the names of the trainers that have given the “Computer

Skills” training course (ref. to Fig. 3.6, 3.12).

ππ((σσ(TRAINING ><>< COURSE) TITLE= “Computer Skills”) TRN)

TRN

Jack

Karen

Fig. 6.5: The resulting relation of Query 5

 One can easily see the advantage of joining subrelations which are at

different nesting levels (in this example, the subrelation C at nesting level 3 in

relation TRAINING and at nesting level 1 in relation COURSE), without the

need to unnest and nest the data and without any other restructuring

operations assumed by other proposed models (e.g. [AB86], [Col90]).

In contrast, in Levene’s model the natural join can be applied only if

relation COURSE is extended with two empty nodes at levels 1 and 2 so that

the common attribute C to appear at the same nesting level 3 in both

relations. Then, the two relations are joinable, according to Levene’s definition

and therefore, can be joined (see also section 2.2.5).

The above example shows that the nested algebra proposed in this thesis

provides a simple way of answering queries, since even just the algebraic

solution of the query can be translated naturally to the above well-phrased

query; moreover, the query does not distinguish between nested and flat

relations, as the query would be expressed in the same way if the two

157

relations, TRAINING and COURSE, were flat relations. This is explained by the

recursive nature of the NRM operations.

Query 6: Find the names of the banks which are located on the same road

as the companies for which Tim or Karen have worked for, together with the

names of these companies (ref. to Fig. 3.6, 3.8, 3.9).

ππ((((σσ(TRAINING(TRN= “Tim” OR TRN = “Karen”))) ><>< LOCATION) ><>< CASH-POINT)

COMPANY, BANK)

COMPANY BANK

Microsoft Barclay’s

Microsoft NatWest

Microsoft Lloyd’s

Fig. 6.6: The resulting relation of Query 6

 This query requires two natural join operations. However, since the

natural join defined in this thesis can be performed between any possible

relations sharing common attributes, it does not involve any preliminary

checks to determine if the two operand relations are qualified for the natural

join. In other models, for example in Colby ([Col90]) or in Abiteboul and

Bidoit’s models ([AB86]), it is not certain if the natural join operation can be

performed between a nested relation and the output of the natural join of two

nested relations, since, as explained in chapter 2 of this thesis, for each of

these models the natural join operation is subject to some restrictions. This,

however, is not discussed either in [Col90] or in [AB86].

 On the other hand, in NRM any possible combination of relations, sharing

at least one common attribute, can be joined.

This query also demonstrates how complex queries can be answered easily

in the query language proposed in this thesis.

158

Query 7: What is the title of the course that has the maximum number of

different topics (ref. to Fig. 3.12)? Display also the the number of different

topics that this course has.

ππ(COURSE(TITLE, N-COUNT[TOPICS/TITLE]←MTOPICS)) ><><

ππ(ππ(COURSE(TITLE, N-COUNT[TOPICS/TITLE]←MTOPICS1))

(MAX(MTOPICS1)) ←MTOPICS)

TITLE MTOPICS

Computer Skills 3

Fig. 6.7: The resulting relation of Query 7

 Aggregate functions for nested attributes have been redefined in chapter 4

(see section 4.3.13).

The above query is expressed in the TNM using the following steps:

STEP 1: In the original relation COURSE, the number of different topics per

title is computed, it is named MTOPICS1 and projected on TITLE and

MTOPICS1 attributes.

STEP 2: From the result of step 1, MAX(MTOPICS1) is computed, named

MTOPICS and projected.

STEP 3: In the original relation COURSE, the number of different topics per

title is computed, it is named MTOPICS and projected on TITLE and MTOPICS.

STEP 4: The results of steps 2 and step 3 are joined together.

Note that, for simplicity reasons, when a new attribute is computed from

an aggregate or scalar function, a new name is given by the user to that new

attribute, without the need of using the rename operation.

It is noteworthy that if the relation COURSE was a flat relation then, the

SUMMARIZE operation would be used to produce the same result in

combination with the traditional aggregate functions COUNT and MAX.

It must be said that this query or any other query containing aggregate

functions on nested attributes cannot be expressed in any other relational

model discussed in chapter 2 apart from [DL91] with the use of an additional

operator, the subrelation constructor.

The query is represented in Deshpande and Larson’s model as follows:

159

π[TITLE, MAX[SUBJECT′]] (? (C, COURSE_DURATION, TITLE, SUBJECT,

SUBJECT′); SUBJECT′ := COUNT[TOPICS](SUBJECT)? (COURSE)) where ? is

the subrelation constructor.

Query 8: Find all trainers who have given more courses than Karen has

(ref. to Fig. 3.6).

ππ((σσ

 (ππ((νν(µµ(πt
π(T_TRAINING(TRN, COURSE))COURSE)(CODE, C)→COURSE))

(TRN, N-COUNT[CN/TRN] ←MCN))

××

 ππ((σσ(TRAININGTRN= “Karen”))(N-COUNT[CN/TRN]←MCN1))) MCN > MCN1) TRN)

 TRN

 Mark

 Tim

Fig. 6.8: The resulting relation of Query 8

Two copies of the TRAINING relation are needed for this query in order to

perform the cartesian product operation between them. However, to make the

query simpler, a projection operation is applied to the first copy of the relation

and an aggregate function is also used to count the number of nested tuples

which corresponds to the number of different courses that each trainer (TRN)

has given. Moreover, an unnest and then a nest operation are also used to a

projected part of the original relation to convert the relation to the right one,

before the computation of the aggregate function. With the second copy of the

relation, a projection is performed on a selection of the relation. The same

aggregate function is also used here, applied to the same attribute as before.

The cartesian product is performed afterwards between a binary relation and a

unary one containing only one tuple.

Once again, the above query can demonstrate the expressive power of the

proposed nested model and the facility in stating complex queries. This query,

as the previous one, cannot be expressed in any other nested relational model

presented in chapter 2 apart from [DL91], yet with the problem discussed

above.

160

6.3 Management of Temporal Nested Data

Temporal data in TNM are represented as temporal elements. As defined in

section 3.2.2 a temporal element is a finite set of disjoint and non-adjacent

time intervals (see Definition 3.7). Consequently, the management of temporal

data consists of handling time intervals.

The behaviour of time intervals has been investigated by a number of

researchers, as mentioned in section 3.3.4. To the best of the knowledge of the

author of this thesis the most extended, analytical and complete approach to

intervals has been given by Lorentzos in [Lor88]. He described the

representation of generic intervals in a database model and defined an algebra

to manipulate them. Consequently, the management of temporal data in the

TNM adopts the approach of [Lor88] in general. The operators that are used to

compare the relative positions of two temporal elements are based on the set

of operators for intervals defined in [Lor88]. Although these set operators cover

all possible relative positions of two intervals, they are multitudinous and

difficult to memorise. For this reason, only a limited number of them are used

in TNM, the most important, useful and basic and all the rest can be derived

from them. Therefore, the following set of operators for time intervals are

considered to be known and can be used in the TNM (Fig. 6.9). Their

definitions can be found in [DDL03.

Fig. 6.9: Operators for two time intervals

In the TNM, as described in chapters 3 and 5, in the general case, temporal

elements can be found in temporal attributes which form part of temporal

nested attributes. So, a temporal nested attribute consists of a number of

atomic and/or non-temporal nested attributes and one or more temporal

attributes which contain the time periods over which the corresponding data

BEFORE

AFTER

=

MEETS

OVERLAPS

COVERS

161

instances of the atomic and/or non-temporal nested attributes are valid. In

this respect and at that level, a temporal nested attribute can be considered as

a subrelation that represents a tuple timestamping relation. Consequently,

when the different nesting levels of a temporal nested relation are traversed

from top to bottom and the temporal nested attributes are reached, the

operations are performed as if the temporal nested attributes were tuple

timestamping relations, despite the fact that the original relations are attribute

timestamping temporal nested relations. This is one of the most significant

benefits the TNM model offers, since it combines the benefits of tuple and

attribute timestamping database models presented in section 3.3.2.

The management of temporal nested data is one of the most complicated

issues in temporal databases. Combining temporal data with nested data,

gives a result that is even more complex. Therefore, an algebra which can

provide a simple method for the manipulation of temporal nested data is an

important advance.

In what follows, queries managing temporal nested data are presented. In

this section some queries are also expressed in Tansel’s model ([Tan97]).

Tansel’s model, as has been discussed in chapter 2, is the only temporal

model which provides full support of nested relations and in addition, as it will

be shown in chapter 8, Tansel’s model and TNM are the only models that

satisfy all criteria concerning the representation features. For this reason, a

comparison is made only between TNM and Tansel’s model for some queries in

this section, when it is considered worthwhile.

The following examples illustrate the expressive power of the proposed TNM

model and show that it is both easy to use and effective in formulating

queries.

Query 9: Find the names and course histories of staff members who were

working in the Research Department at 1/1/1998 (ref. to Fig. 3.14).

πt
π((σt

σ(T_DEPT) (DN=“Research” AND STAFF_PER t OVERLAPS [1/1/1998, 2/1/1998))) SNAME,

COURSE)

162

SNAME COURSE

 CN CN_PERt

 Peter 3.5 [1/1/1998, 28/10/1998)

 Anna 3.1 [1/7/1995, 1/8/1995)

 3.3 [29/9/1997, 10/2/1998)

 Mary 3.3 [17/1/1997, 28/4/1997)

 Fig. 6.10: The resulting relation of Query 9

This query is a classical temporal query. It involves a selection of historical

tuples from T_DEPT relation together with a temporal projection. The

structure of the nested data is preserved while accessing them as well as while

performing the operations on them. In this example, the temporal elements of

attribute STAFF_PERt are compared with a time point. Time points can be

considered as elementary time intervals ([Lor88]). Therefore, set operators

between time intervals can be extended to include operators between time

intervals and time points as well.

In Tansel’s model the T_DEPT relation is represented in the following way:

 STAFF

D DN UN UD COURSE_DETAILS

 SNAME COURSE

 CN

 <{[13/5/1994, 5/9/1996)}, Paul> <{[1/2/1995, 24/6/1995)}, 5.2>

1 Research 511 Software <{[27/8/1995, 30/1/1996)}, 5.0>

 Engineering <{[26/2/1996, 1/1/2010)}, Peter> <{[1/1/1998, 28/10/1998)}, 3.5>

.

Fig. 6.11: T_DEPT relation in Tansel’s model

The Temporal Relational Algebra (TRA) expression for the above query in

Tansel’s model is shown below:

πSNAME, COURSE (TSNAME (σDN= “Research” ∧ 1/1/1998 ∈ SNAME.T (µCOURSE_DETAILS (µSTAFF(T_DEPT)))))

As can be seen, this query requires additional operations in Tansel’s model.

In particular, two extra unnest operations and one drop-time operation are

needed to express this query, due to the non-recursive nature of the algebra

and the temporal atoms’ representation of time-varying attributes in Tansel’s

model.

163

Query 10: During which time periods did staff members follow courses (ref.

to Fig. 3.14)?

πt
π((T_DEPT) SNAME, CN_PERt)

SNAME (CN_PERt)

 CN_PERt

Paul [1/2/1995, 24/6/1995) ∪ [27/8/1995, 30/1/1996)

Peter [1/1/1998, 28/10/1998)

Anna [1/7/1995, 1/8/1995) ∪ [29/9/1997, 10/2/1998)

Mary [17/1/1997, 28/4/1997)

Katy [13/2/1994, 4/3/1995) ∪ [22/4/1995, 15/5/1995)

Steve [18/3/1996, 1/7/1996)

Helen [17/8/1997, 1/1/2010)

Pat [18/9/1995, 10/10/1995)

Fig. 6.12: The resulting relation of Query 10

The time periods during which staff members have followed courses are

summarised. The temporal data, which pertains to different course numbers,

is merged into one temporal element. This is achieved by the facility of the

TNM projection operation to coalesce tuples having the same values for all the

atomic attributes, by taking the unions of the temporal elements of their

corresponding temporal attributes (see section 5.3.4).

In Tansel’s model, since the projection operation is defined in exactly the

same way as in the relational algebra, unnest operations need to take place

initially to unnest the STAFF, COURSE_DETAILS and COURSE attributes

before the projection operation is performed. A temporal atom decomposition

operation needs also to be performed to split the CN attribute of T_DEPT

relation into its temporal sets and value parts and place them as the last two

columns of the result. Their names will be CN.T and CN.v respectively (see Fig.

6.11).

The query is expressed in Tansel’s algebra as follows:

πSNAME, CN.T (∂CN (µCOURSE (µCOURSE_ DETAILS (µSTAFF(T_DEPT)))))

164

Therefore, in Tansel’s model, the result relation contains two attributes, one

of them consisting of temporal sets (CN.T).

This query shows once more the greater simplicity of the TNM algebra

compared to Tansel’s one.

Query 11: List the starting time point of every course that each trainer has

given (ref. to Fig. 3.13).

πt
π((T_TRAINING) TRN, START(CN_PERt)←BEGIN)

TRN (BEGIN)

 BEGIN

 Jack 2/11/1994

 Mark 2/1/1992

 30/4/1995

 Tim 19/3/1997

 17/12/1995

 Karen 25/6/1996

 Fig. 6.13: The resulting relation of Query 11

The above query is a pure temporal query. The temporal operator that is

used is the START operator, which extracts the start point of a temporal

element (see Definition 3.8). Note that, for simplicity reasons, a new name is

given by the user to the new attribute computed from the START operator,

without the need of using the rename operation.

Once again, the structure of the nested data is preserved in the resulting

relation. Although the query is dealing with attributes belonging to nested

attributes, TRN and CN_PERt, it is expressed in the same way as if the input

T_TRAINING relation, was a flat relation.

Query 12: How many courses took place in 1998 (ref. to Fig. 3.13)?

COUNT(πt
π((σt

σ(T_TRAINING(CN_PER t OVERLAPS [1/1/1998, 1/1/1999))))CN))←TOTAL_CN

TOTAL_CN

4

Fig. 6.14: The resulting relation of Query 12

165

The aggregate function COUNT is used to count the number of courses that

took place during a specific time period. The aggregate function can be applied

in the normal way to attribute CN, despite being an atomic attribute belonging

to a nested attribute, since it is the only one projected in the resulting relation.

In addition, the temporal operator OVERLAPS is used in order to compute

whether a temporal element has common points with a given time interval.

In Tansel’s model two unnest operations are also needed before the

selection operation to unnest completely the T_TRAINING relation, since the

selection operation can be performed only for attributes at the top nesting level

of the relation.

Query 13: Find the name of the bank that had a branch at the same

address for the longest period of time (ref. to Fig. 3.16).

πt
π((σt

σ(T_CASH-POINT (MAX(DURATION(ADDRESS_PERt)))))BANK)

BANK

Lloyd’s

Fig. 6.15: The resulting relation of Query 13

DURATION is a scalar function that returns the duration of a temporal

element.

This query uses a projection of an atomic attribute of a selected tuple. The

tuple which is selected must satisfy a given condition. The condition tests

every tuple of the relation and extracts the valid tuple. The above query is

expressed in the same way as if the relation was a flat relation in the CRM.

However, there are cases where a given aggregate function must be applied

to each nested set of tuples of a given nested attribute separately. This case is

examined below, in queries 20 and 21.

Query 14: Find the titles of the courses that each trainer has given (ref. to

Fig. 3.13 and 3.17).

πt
π ((T_TRAINING ><t

>< T_COURSE) TRN, TITLE)

166

TRN TITLE

 Jack Programming

Mark Computer Skills

Tim Presentation Skills

Karen Multimedia

Fig. 6.16: The resulting relation of Query 14

The natural join in the above query is performed according to Case 5 (see

subsection 5.3.11). A projection operation is then performed to extract two

attributes of the resulting relation.

In Tansel’s model additional unnest operations are needed before the

natural join operation.

COURSE COURSE_DURATION TITLE SUBJECT TRAINER

CN TOPICS TRN COURSE

. . . .

COMPANY

 CN

.
 . . .

T_COURSE T_TRAINING

Fig. 6.17: T_COURSE and T_TRAINING relations in Tansel’s model

The query is expressed in Tansel’s algebra as follows:

πTRN, TITLE((µCOURSE(µTRAINER(T_TRAINING))) >< (µCOURSE(T_COURSE)))

Query 15: What was Karen’s company when she gave a course to Mary,

which course was it and when was it (ref. to Fig. 3.13 and 3.14)?

πt
π((σt

σ(T_DEPT ><t
>< T_TRAINING)(TRN=“Karen” AND SNAME=“Mary”))COMPANY, COURSE)

Note: The resulting relation of the natural join operation of T_DEPT and

T_TRAINING relations can be seen in Fig. 5.11.

 (COURSE)

COMPANY COURSE

 CN CN_PERt

Microsoft 3.3 [17/1/1997, 28/4/1997)

Fig. 6.18: The resulting relation of Query 15

167

The above query is a temporal query since it involves “when” expressions,

although there is no need to include any external temporal comparisons. This

is one of the advantages the natural join operation of the TNM offers. The

temporal comparison is contained internally in the natural join operation

when the two relations to be joined have common temporal nested attributes,

as in this case (COURSE attribute). The temporal comparison corresponds to

the computation of the overlapping periods of the common temporal attributes

for equal values of the common atomic attributes.

Therefore, the query remains compact and simple.

Query 16: Find the courses that have been given by trainers who work for

the IBM company and had completed before IBM moved from Maple House

(ref. to Fig. 3.13 and 3.15). Display also the trainers’ names.

πt
π((σt

σ(T_TRAINING ><t
>< T_LOCATION)

(COMPANY=“IBM” AND CN_PER t BEFORE STOP(ADDRESS_PERt) AND BUILDING=“Maple House”))TRN, CN)

TRN (CN)

 CN

 Tim 5.2

Fig. 6.19: The resulting relation of Query 16

Both BEFORE and STOP temporal operators are used in this query. The

natural join operation is performed between the relations T_TRAINING and

T_LOCATION, which share the COMPANY atomic attribute at the top level. The

natural join is performed according to Case 1 (see subsection 5.3.11). The two

temporal attributes, CN_PER t and ADDRESS_PERt, belonging to T_TRAINING

and T_LOCATION relations respectively, do not contribute to the natural join

since they represent different information. A number of selection operations

take place afterwards and then a projection to produce the final result.

T_LOCATION relation in Tansel’s model is represented as shown in Fig.

6.20.

168

COMPANY ANNEX

 BUILDING ADDRESS

Toshiba <{[3/8/1995, 1/1/2010)}, North Building> <{[3/8/1995, 1/1/2010)}, Porchester Rd.>

IBM <{[17/1/1996, 22/5/1998)}, Maple House> <{[17/1/1996, 22/5/1998)}, Kendal Av.>

 <{[10/6/1998, 1/1/2010)}, Main Building> <{[10/6/1998, 1/1/2010)}, Danebury Rd.>

Microsoft <{[29/10/1994, 4/4/1997)}, Pegasus House> <{[29/10/1994, 4/4/1997)}, Ashford St.>

 <{[18/3/1995, 1/1/2010)}, Queen’s Building> <{[18/3/1995, 1/1/2010)}, Park Rd.>

Fig. 6.20: T_LOCATION relation in Tansel’s model

In Tansel’s model the above query is expressed as follows:

πTRN, CN.v (σCOMPANY=“IBM” ∧ STOP(ADDRESS.T)>STOP(CN.T) ∧ BUILDING.v=“Maple House” (µCOURSE(µANNEX, TRAINER

(T_TRAINING >< T_LOCATION))))

The result is shown in the following table (Fig. 6.21):

TRN CN

Tim 5.2

Fig. 6.21: The resulting relation of Query 16 in Tansel’s model

Two comments must be made when the TNM query is compared with the

equivalent one in Tansel’s model. Firstly, more operations are needed in

Tansel’s model, in particular three unnest operations and secondly, in Tansel’s

model the result is represented in fully unnested format and thus, the

structures of the input relations are not maintained in the result.

Query 17: Find the course number of the course that lasted the shortest

period of time and the names of the staff members that followed it (ref. to Fig.

3.13 and 3.14).

vv((µµ((πt
π((σt

σ(T_TRAINING(MIN(DURATION(CN_PER t)))))CN)) ><t
><

(πt
π(T_DEPT(SNAME,CN))))(CN))SNAME→(SNAME))

CN (SNAME)

 SNAME

5.2 Paul

Fig. 6.22: The resulting relation of Query 17

169

The aggregate function MIN, in conjunction with the scalar function

DURATION, is used in this query to compute the shortest temporal element of

the CN_PERt attribute of the T_TRAINING relation. In addition, the query

makes use of the nest and unnest operations in order to restructure the result

relation. These two restructuring operations cannot be avoided with this

query, since otherwise, the result relation would have a different, undesirable

structure. However, additional nest and unnest operations are not needed for

the selection, projection and natural join operations, although the data are

nested.

In contrast, in Tansel’s model additional unnest operations are needed

before the initial projection operations, since the projection operation cannot

be performed on attributes at lower nesting levels. In Tansel’s model the

projection operation is defined in exactly the same way as in the conventional

relational algebra.

Query 18: Find the numbers of courses that Paul has followed after he

finished course number 5.2 and also the start time points of these courses

(ref. to Fig. 3.14).

πt
π((σt

σ(T_DEPT1 ×t T_DEPT2)(SNAME1=“Paul” AND SNAME2=“Paul” AND CN2=5.2 AND

 ((CN_PER t1 AFTER CN_PERt2) OR (CN_PER t2 MEETS CN_PERt1)))) CN1, START(CN_PERt1)←BEGIN)

CN1 BEGIN

5.0 27/8/1995

Fig. 6.23: The resulting relation of Query 18

This query requires the cartesian product operation of relation T_DEPT

with itself, in order to compare tuples of this relation. To be precise, initially,

rename operations for all the attributes of the T_DEPT relation are needed in

order to perform the cartesian product operation between two relations with

no common attributes. However, the rename operations are not included in

the above query for simplicity reasons. The selection operation consists of five

select conditions. The temporal set operators, AFTER and MEETS, are used to

denote two selection conditions that can both happen. In the final projection

operation, the START operator is used to extract the start time points of the

selected temporal elements. Note that, for simplicity reasons, a new name is

170

given by the user to the new attribute computed from the START operator,

without the need of using the rename operation.Even though the query is

complicated, the algebraic representation is simpler than the non-recursive

equivalent one, where more operators are required. In Tansel’s model for

example, unnest operations are required before the final projection operations.

Query 19: Who are the current trainers of all courses that Paul has ever

followed (ref. to Fig. 3.13, 3.14)? Display also the course numbers.

If TODAY() is a function that returns the current date, the query can be

formulated as:

πt
π((σt

σ(T_TRAINING ><t
>< (πt

π(σt
σ(T_DEPT(SNAME=“Paul”)))CN))

STOP(CN_PER t)=TODAY() OR STOP(CN_PER t) AFTER TODAY()) TRN, CN)

TRN (CN)

 CN

 Jack 5.2

 Tim 5.0

 Fig. 6.24: The resulting relation of Query 19

To answer the above query a natural join operation needs to be performed

between two relations. However, the natural join is performed between a

relation and a projection of a selection of another relation. This is due to the

fact that otherwise, the natural join operation between the two original

relations would be executed between the common temporal nested attribute

COURSE, which would cause a wrong result in terms of this specific query.

Therefore, the natural join operation that takes place here is a natural join

operation between the temporal nested relation T_TRAINING and another flat

relation with only one attribute, CN and consequently, sharing a common

atomic attribute, CN.

In the result relation, the structures of the two original relations are

preserved. Additionally, the STOP function is used in order to select the stop

time point of the CN_PER t temporal attribute if it is equal to or after the

current date, since the current trainers are being retrieved. It is noticeable

that the query remains simple and easy to perform despite the complicated

wording of its specification.

171

Query 20: For each trainer, find the longest period of time for which they

have given a course (ref. to Fig. 3.13).

πt
π((νν(µµ(πt

π(T_TRAINING(TRN, COURSE))COURSE)(CN, CN_PERt)→COURSE))

(TRN, N-MAX[DURATION(CN_PERt)/TRN]←K))

TRN K

Jack 5067

Mark 5362

Tim 5125

Karen 4935

Fig. 6.25: The resulting relation of Query 20

Initially, an unnest operation is needed to a projected part of T_TRAINING

relation and then, a nest operation, so that TRN attribute to be completely

nested. Moreover, another projection is required to project attributes TRN and

K (a new attribute computed by an aggregate function that calculates the

longest period of time each trainer has given a course).

It is important to note here that aggregate functions have not been

discussed in Tansel’s model.

Query 21: For each trainer, find the title of the course he/she has given

and which has lasted the longest period of time (ref. to Fig. 3.13, 3.17).

πt
π(

(((πt
π((νν(µµ(πt

π(T_TRAINING(TRN, COURSE))COURSE)(CN, CN_PERt)→COURSE))

(TRN, N-MAX[DURATION(CN_PERt)/TRN]←K))) ><t
><

(πt
π((νν(µµ(πt

π(T_TRAINING(TRN, COURSE))COURSE)(CN, CN_PERt)→COURSE))

(TRN, CN, DURATION(CN_PERt)←K)))) ><t
><

 πt
π(T_COURSE(CN, TITLE))) TRN, TITLE)

TRN TITLE

Jack Programming

Mark Computer Skills

Tim Presentation Skills

Karen Multimedia

Fig. 6.26: The resulting relation of Query 21

172

This query includes two natural join operations. The first join is performed

between the result of query 20 and a projected part of a subquery of query 20,

which consists of three attributes, TRN, CN and K (a new attribute computed

by the scalar function DURATION that calculates the duration of each course

for each trainer).

Since, one of the projected attributes, TITLE, is derived from the T_COURSE

relation, a natural join operation needs to be performed additionally, to join

the previous result to a projected part of the T_COURSE relation.The above

query is quite long and complicated, since an extra join operation is needed,

for the computation of the N-MAX aggregate function and the projection of the

CN attribute. However, this join operation cannot be avoided even in Codd’s

relational flat model.

Query 22: Which courses did Helen and Peter both follow simultaneously

and when (ref. to Fig. 3.14)?

1st version:

πt
π((σt

σ((πt
π(ρρ[SNAME←SNAME1,CN←CN1,CN_PERt←CN_PERt1](T_DEPT))

(SNAME1,CN1,CN_PERt1)) ×t

(πt
π(ρρ[SNAME←SNAME2,CN←CN2,CN_PERt←CN_PERt2](T_DEPT))

(SNAME2,CN2,CN_PERt2)))

(SNAME1=“Peter” AND SNAME2=“Helen” AND CN1=CN2 AND CN_PER t1 OVERLAPS CN_PER t2))

CN1, (CN_PERt1 ∩TE CN_PERt2)←CPERIOD)

CN1 CPERIOD

3.5 [1/1/1998, 28/10/1998)

Fig. 6.27: The resulting relation of the 1st version of Query 22

The above query requires a comparison between tuples of the same

relation. This can be carried out by computing the cartesian product of a

projected number of attributes of a temporal nested relation with itself.

Rename operations must take place initially to change the names of the

projected attributes so that the cartesian product operation can be performed

afterwards between two relations with no common attributes. The temporal

selection operation includes the set operator OVERLAPS between two temporal

173

elements. Finally, two attributes need to be projected. One of them has to be

computed by taking the intersection of two temporal elements. Note that, for

simplicity reasons, a new name (CPERIOD) is given by the user to that new

attribute, without the need of using the rename operation.

The same query can be answered also in a better way, avoiding a number

of rename operations and using a natural join operation instead of the

cartesian product operation used in version 1. The natural join is performed

between two relations that have the common subrelation COURSE at the top

level in common (see Case 4 in subsection 5.3.11).

2nd version:

πt
π(((σt

σ(πt
π(ρρ[SNAME←SNAME1](T_DEPT))(SNAME1,COURSE))SNAME1=“Peter”) ><t

><

(σt
σ(πt

π(ρρ[SNAME←SNAME2](T_DEPT))(SNAME2,COURSE))SNAME2=“Helen”))CN,CN_PERt)

CN CN_PERt

3.5 [1/1/1998, 28/10/1998)

Fig. 6.28: The resulting relation of the 2nd version of Query 22

In Tansel’s model ([Tan97]) this question can be answered by the following

query:

πCN1(§∩,CN1,CN2((πSNAME1,CN1(σSNAME1.v=“Peter”(µCOURSE1 (µCOURSE_DETAILS1(µSTAFF1(T_DEPT1))))))

>< (πSNAME2,CN2(σSNAME2.v=”Helen”(µCOURSE2 (µCOURSE_DETAILS2(µSTAFF2(T_DEPT2))))))))
CN1.V=CN2.V

Rename operations are omitted from the above query for simplicity reasons.

CN1

<{[1/1/1998, 28/10/1998)}, 3.5>

Fig. 6.29: The resulting relation of Query 22 in Tansel’s model

It is clear that extra operations cannot be avoided in Tansel’s model. In

particular, six unnest operations and a slice operation are needed to answer

the above query.

174

6.4 Summary

A variety of different kinds of queries has been presented in the algebraic

format of the NRM and TNM. The examples illustrate a wide variety of

applications of the management of nested and temporal data. For each

example, the result table is given as well as a brief explanation to justify why

this particular query has been chosen.

A number of these queries has also been expressed in other models. The

superiority of the NRM and TNM algebras compared to them is thus shown

and discussed. In particular, TNM has been compared with Tansel’s model.

Tansel’s model has been chosen among all other temporal models since it is

the only one that provides full nested support as TNM does.

All examples have explicitly shown that queries in the NRM and TNM are

simple but at the same time powerful, short but at the same time complete,

naturally presented but at the same time effective. Therefore, the full

expressive power of both models presented in this thesis, NRM and TNM, has

been demonstrated.

175

CHAPTER 7

7. MAPPING THE CONVENTIONAL

RELATIONAL MODEL (CRM) TO THE TNM

7.1 Introduction

Although the majority of the new models that have been defined until now

are claimed to be supersets of the Conventional Relational Model, or in other

words, consistent extensions of the CRM, a formal proof is rarely provided

([Lor88]).

In this chapter, a complete and formal proof is provided, in order to show

that the model proposed in this thesis, the TNM, is a consistent extension of

the CRM. For this purpose, the properties of the NRM, also introduced in this

thesis, are used.

Firstly, a brief introduction to comparisons of different database models is

presented and the method that is going to be adopted in the following sections

in order to do the mapping of the two models is discussed. Next, all the

properties of the CRM are reviewed. Following that, the properties of the NRM,

defined in chapter 4 of this thesis, are presented. Then, the NRM is proved to

be a superset of the CRM. Subsequently, all the properties of the TNM are

given comprehensively after which, the TNM is proved to be a superset of the

NRM. Finally, it is proved that the TNM is a superset of the CRM.

7.2 Comparisons of Database Models

In the literature, a number of different approaches for comparing two

database models have been presented. Most frequently, a newly defined model

is compared to the Conventional Relational Model (namely, the snapshot

176

model ([MS91]), in order to prove that the new model is an extension of the

CRM. However, in reality, very few proposed models have provided a formal

proof of this proposition. All the others are simply limited to claiming the

above proposition without any verification.

One method of comparing two database models is to determine mappings

between these data models ([TL82]). There are four basic features of the

database models, which have to be compared as part of the overall mapping of

the two models and they are the following:

§ the structures,

§ the constraints,

§ the operations and

§ the databases of the model.

In [TL82], eight different types of mappings are presented depending on

whether the mapping is constructive – i.e. a database (instance) according to

one schema is mapped to another database (instance) according to another

schema – or not, if the two schemas use two different data models or the same

data model and finally if the operations are included or not in the mapping.

The type of mapping between the CRM and the TNM that has to be proved,

belongs to the category of database cooperation mapping, since it is

constructive, the two schemas use two different data models and the

operations are included in the mapping.

In what follows, the mapping between the CRM and the TNM consists in

comparing the basic characteristics of the two models, which are:

§ the data types (the underlying domains of attributes),

§ the databases,

§ the structures,

§ the operators,

§ the operations and

§ the functions of each model.

This list is partially modified from the list proposed in [TL82]. In particular,

the constraints that have been mentioned in [TL82] are omitted since all the

possible constraints which are applied to the CRM can also be applied to the

TNM. Three other properties of a data model have been added in this list, the

data types, the operators and the functions. They are included here since they

have also been considered in XRM (the Interval-Extended Relational Model,

177

[Lor88]) which is a subset of TNM. For this reason, data types, operators and

functions must be considered for the mapping between the TNM and the CRM,

in addition to the other three basic characteristics of database models.

More specifically, regarding the operations, for temporal data models a

specific approach has been used to prove that a newly proposed algebra is a

consistent extension of the snapshot algebra, when two different database

models are compared. The approach which has been mentioned in [MS91],

uses the snapshot reducibility property with the assistance of the function

Transforms which converts a snapshot relation instance to its temporal

equivalent. The snapshot reducibility property says that the same relation is

obtained either by applying a snapshot operator to a snapshot relation and

then applying the function Transforms to the result or by applying firstly the

function Transforms to the snapshot relation and then applying the temporal

operator to the result ([Lle94]). A number of researchers have used this

approach to show that the algebras they have defined are supersets of the

snapshot algebra ([Deb94], [Lle94]).

In the following sections, the data types, databases, structures, operators,

operations and functions of each model are presented and then, these

properties are compared between themselves respectively in order to prove

that the newly defined model, the TNM, is a superset of the CRM.

7.3 The Conventional Relational Model (CRM)

The components of the CRM are described below.

7.3.1 Data types-Domains

In the relational model, data types and domains are two similar concepts. A

domain is a user or system-defined data type. In fact, in order to define a

domain, the data type from which the data values forming the domain are

drawn, must be specified ([EN00]).

Formally, a domain is a set of values.

Definition 7.1 (Atomic attribute domain) The domain of an atomic

attribute Ra, DOM(Ra), is DOM(Ra) ⊆ D, where D is the underlying database

domain.

178

Consequently, D = DOM(Ra1) × DOM(Ra2) × … × DOM(Rak) where Ra1, Ra2, …,

Rak are the atomic attributes of all relations in the CRM and k ≥ 1.

7.3.2 Databases

Data, in the databases of the CRM, are perceived as relations, in at least

1NF format. An example relation in the CRM is shown in Fig. 7.1.

COMPANY TRN CN Y

Apple Jack 1 75

Apple Mark 3 82

IBM Tim 3 82

IBM Tim 5 79

Microsoft Karen 2 77

Fig. 7.1: A relation in the CRM

7.3.3 Structures

According to the CRM, the scheme of a conventional relation R is R(Ra1,

Ra2, ..., Rak) where Ra1, Ra2, ..., Rak are the (atomic) attributes of R and k ≥ 1.

7.3.4 Relational Operators

All the well-known comparison operators, {=, ?, <, =, >, =}, are supported

in the CRM. New operators can also be defined with the aid of these standard

operators.

7.3.5 Operations

The relational operations are the well-known and well-defined union,

difference, intersection, projection, selection, rename, cartesian product, and

natural join operations of the CRM. The division operation can be omitted

since it is not a primitive operation and so it can be expressed in terms of

other primitive operations (difference, cartesian product and projection). The

definitions of all the others above -mentioned operations are not included in

this section since they are standard definitions.

179

7.3.6 Functions

All the well-known functions, i.e. {+, -, *}, are supported in the CRM. New

functions can also be defined with the aid of these standard functions.

7.4 The Nested Relational Model (NRM)

The components of the NRM are described below.

7.4.1 Data types-Domains

Domains are data types of arbitrary internal complexity ([Dat00]). Therefore,

such domains can consist of relation-type values. Attributes defined on that

domains are relation-valued attributes, that is, they contain values that are

relations.

The domain of a nested attribute is defined recursively below.

Assume that Rn1, Rn2, …, Rnk are, in general, all the atomic and nested

attributes that belong to nested attribute Rn and P is the powerset of a set S.

Definition 7.2 (Nested attribute domain) The domain of a nested

attribute Rn, DOM(Rn), is defined recursively as

i) DOM(Rn) ⊆ D, where D is the underlying database domain, for the special

case where Rn is an atomic attribute. .

ii) DOM(Rn1) × DOM(Rn2) × … × DOM(Rnk), for k ≥ 1, where Rn1, Rn2, …, Rnk

are atomic attributes of Rn.

iii) P(DOM(Rn1)) × P(DOM(Rn2)) × … × P(DOM(Rnk)), for k ≥ 1, where Rn1, Rn2,

…, Rnk are nested attributes of Rn, in general.

Note: An atomic attribute can be considered as a special case of a nested

attribute case (i).

7.4.2 Databases

In the NRM, databases are sets of nested relations. Nested relations do not

satisfy the 1NF assumption. A relation in the NRM is shown in Fig. 7.2. This

relation is the equivalent relation in the NRM of the example relation in the

CRM of Fig. 7.1.

180

 TRAINER

COMPANY TRN C

 CN Y

 Apple Jack 1 75

 Mark 3 82

 IBM Tim 3 82

 5 79

 Microsoft Karen 2 77

Fig. 7.2: A relation in the NRM (TRAINING_5)

7.4.3 Structures

Definition 7.3 (Nested Relation Scheme) The scheme of a relation R in

the NRM is defined recursively as

RS = R(R1S1, R2S2, ..., RnSn), where n ≥ 1, R1, R2, ..., Rn are the attribute

names of R, either atomic or relation-valued and

∅ (empty set) if Ri is an atomic attribute

Si =

(Ri1S i1, Ri2S i2, ..., RikSik) if Ri is a nested attribute and k ≥ 1

where 1 ≤ i ≤ n.

Example 7.1: The scheme of relation TRAINING_5 (Fig. 7.2) is

TRAINING_5(COMPANY TRAINER(TRN C(CN Y))).

7.4.4 Relational Operators

The set of conventional relational comparison operators of the CRM, {=, ?,

<, =, >, =}, is also supported in the NRM.

7.4.5 Operations

The union, difference, intersection, projection, selection, rename,

cartesian product, natural join and Θ-join recursive operations of the NRM

have been defined formally in chapter 4. Two additional operations, nest and

unnest, have also been defined in the NRM.

181

7.4.6 Functions

The set of functions in the CRM is also supported in the NRM.

7.5 Mapping the CRM to the NRM

The components of the CRM and the NRM, that have been described in

sections 7.3 and 7.4 respectively, are going to be mapped in this section, in

order to prove that the NRM is a proper superset of the CRM.

7.5.1 Data types - Domains

Proposition 7.1 The set of domains in the CRM is a proper subset of the

set of domains in the NRM.

Proof: The nested attribute domain is defined recursively (Definition 7.2).

Therefore, from that definition, for the special cases i) where k=0, i.e. the

attribute is atomic or ii) where k ≥ 1, i.e. the attribute is nested consisting of

atomic attributes only (which can be considered as a flat relation), the nested

attribute domain definition of the NRM is reduced to the atomic attribute

domain definition of the CRM (Definition 7.1).

Consequently, since the set of domains in the NRM can be reduced, for

specific special cases, to the set of domains in the CRM, the former is a proper

superset of the set of domains in the CRM.

7.5.2 Databases

Proposition 7.2: The set of databases in the CRM is a proper subset of the

set of databases in the NRM.

Proof: Databases in the NRM have been introduced in order to relax the

1NF assumption that is satisfied in the CRM. Thus, the 1NF assumption of flat

relations is a special case of the general N1NF assumption which characterises

relations in the NRM. By definition, a flat relation is also a relation of the

nested model. Therefore, the set of databases in the NRM is a proper superset

of the set of databases in the CRM.

182

7.5.3 Structures

Proposition 7.3: The set of structures in the CRM is a proper subset of the

set of structures in the NRM.

Proof: The definition of the scheme in the NRM is given recursively

(Definition 7.3). For the special case, where S i, for all i, is equal to the empty

set, the definition is reduced to that of the CRM, since all attributes of the

relation are atomic.

7.5.4 Relational Operators

Proposition 7.4: The set of relational comparison operators in the CRM is

isomorphic to the set of relational operators in the NRM.

Proof: The proof is omitted for obvious reasons.

7.5.5 Operations

In the following, it is shown by a number of propositions that each

operation in the NRM is an extended operation of the relevant operation in the

CRM. Before this is done, some preliminary discussion is necessary, regarding

the effect of relational operations to the key of relations.

Let Unary be a unary operation and let R1 = Unary(R0). Then, the first

obvious remark is that this operation does not have any effect on the key of

R0, i.e. the key of R0 remains the same. The second one is that the key of R0

is not inherited to R1. These observations apply to any data model, and to the

CRM as well. As an example of the second remark, consider a flat relation R0

and assume that K is its primary key. Then the CRM select operation

R1=sF(R0), also yields a flat relation, R1. Since R1 is a subset of R0, it follows

that it does not contain two distinct tuples with identical values for K.

However, it is not implied by this fact that K is also the key of R1, it is only the

user who may specify what the key of R1 is.

As another example, let the scheme of R0 be R0(K, A, B), where K is its key.

If R1=pA,B(R0), it is known that R1 does not contain duplicate tuples and,

definitely, it is again the user who may specify its key.

Hence, the conclusion is that a unary CRM operation does not affect

the key (if defined) of the input relation and it does not propagate it to the

183

result relation. This same conclusion can also be drawn for binary operations

of the CRM. Subsequently, the same conclusion can be drawn for any

operation in any data model, therefore for all the operations of either the NRM

or the TNM.

Proposition 7.5: The union operation in the NRM is an extended version of

the union operation in the CRM.

Proof: The union operation in the NRM is defined recursively (Definition

4.9). From the recursive definition, it is deduced that for the special case

where the relations are in 1NF format, the definition is reduced to the non-

recursive union definition for flat relations (case i), since the relations do not

contain any nested attributes. This definition then, is the definition of the

union operation in the CRM.

Proposition 7.6: The difference operation in the NRM is an extended

version of the difference operation in the CRM.

Proof: The proof is similar to that of Proposition 7.5.

Proposition 7.7: The intersection operation in the NRM is an extended

version of the intersection operation in the CRM.

Proof: The proof is similar to that of Proposition 7.5.

Proposition 7.8: The projection operation in the NRM is an extended

version of the projection operation in the CRM.

Proof: From Definition 4.13 (case ii):

ππ(r(Ra1, …, Rak, Rn1Ln1, …, RnmLnm)) = { t| (∃ tr ∈ r)

((t[Ra1] = tr[Ra1]) ∧ … ∧ (t[Rak] = tr[Rak])

 ∧ (t[Rn1] = ππ(tr[Rn1]Ln1)) ∧ … ∧ (t[Rnm] = ππ(tr[Rnm]Lnm)))}.

For the special case where relation r is flat, since all attributes of relation r

are atomic, RniLni = ∅, for all i (1 ≤ i ≤ m), and the definition of the projection

operation is reduced to:

ππ(r(Ra1, …, Rak, Rn1Ln1, …, RnmLnm)) = ππ(r(Ra1, …, Rak)) =

 { t| (∃ tr ∈ r) ((t[Ra1] = tr[Ra1]) ∧ … ∧ (t[Rak] = tr[Rak]))},

184

which is the definition of the projection operation in the CRM. So, the

projection operation in the NRM is an extended version of the projection

operation in the CRM.

Proposition 7.9: The selection operation in the NRM is an extended

version of the selection operation in the CRM.

Proof: The proof is similar to that of Proposition 7.8. For the special case

where relation r is flat, since all attributes of relation r are atomic, L is empty

and Definition 4.15 is reduced to:

iii) σσ(rcLσ) = σ(rc) = σ(rca1, …, cak) = { t| (∃ tr ∈ r)

((t[Attr(R) - {Ra1, …, Rak}] = tr[Attr(R) - {Ra1, …, Rak}])

∧ ((t[Ra1] = tr[Ra1]) ∧ ca1 = true)

∧ … ∧ ((t[Rak] = tr[Rak]) ∧ cak = true))},

which is the traditional selection operation for flat relations in the CRM.

Proposition 7.10: The rename operation in the NRM is an extended

version of the rename operation in the CRM.

Proof: From Definition 4.20case (ii), the rename of a nested attribute at the

top level of a relation is:

ρ[A ← A′](R) = {R1, R2, …, Ri, …, Rn, U
m

k 0=

LA′→Ak, B, …, Z}.

This definition is reduced to:

 ρ[A ← A′](R) = {R1, R2, …, R i, …, Rn, A′, B, …, Z}, for the special case where

the attribute to be renamed, A, is an atomic attribute at the top level of

relation R, since U
m

k 0=

LA′→Ak = A′ (m=0, i.e. there are not any descendants of A).

This is equivalent to the rename operation in the CRM.

Proposition 7.11: The cartesian product operation in the NRM is an

extended version of the cartesian product operation in the CRM.

Proof: Case (i) (or case (ii), for L=Ø) of Definition 4.22 is the traditional

cartesian product operation for flat relations in the CRM.

Proposition 7.12: The natural join operation in the NRM is an extended

version of the natural join operation in the CRM.

185

Proof: The natural join (Definition 4.27) which operates for cases where the

common atomic or nested attributes belong to different subrelations and at

different nesting levels in the two relations), ><>< (rL, qM), is defined as follows:

><>< (rL, qM) = { t| (∃ tr ∈ r) (∃ tq ∈ q)

 ((t[Attr(Qi′(...(Qi+1)))] = tq[Attr(Qi′(...(Qi+1)))])

 ∧ (t[Attr(Ri)] = tr[Attr(Ri)])

 ∧ (t[Attr(Qi)] = tq[Attr(Qi)])

 ∧ (t[Ri1Qi1] = ><>< (tr[Ri1]Li1, tq[Qi1]Mi1)))}

This natural join can be reduced to the conventional natural join for flat

relations if the special case is assumed, where the common attributes R i1 and

Qi1 are atomic attributes at the top level of the two relations and thus,

tq[Attr(Qi′(...(Qi+1)))] is empty and t[Ri1Qi1] = ><>< (tr[Ri1]Li1, tq[Qi1]Mi1) = >< (tr[Ri1],

tq[Qi1]), since Li1 and Mi1 are empty.

Formally, the above definition, for L and M empty, is reduced to:

><>< (rL, qM) = >< (r, q) = { t| (∃ tr ∈ r) (∃ tq ∈ q)

 ((t[Attr(Ri)] = tr[Attr(Ri)])

 ∧ (t[Attr(Qi)] = tq[Attr(Qi)])

 ∧ (t[Ri1] = tr[Ri1] = tq[Qi1]))}

which is the traditional definition of the natural join operation in the CRM.

7.5.6 Functions

Proposition 7.13: The set of functions in the CRM is isomorphic to the set

of functions in the NRM.

Proof: The proof is omitted for obvious reasons.

Proposition 7.14: The NRM is a superset of the CRM.

Proof: This is a result of Propositions 7.1-7.13 since, as it has been

explained in section 7.2, in order to prove that a database model is a superset

of another database model, it is necessary and sufficient to prove that every

property of the latter (data types, databases, structures, operators, operations

and functions) is also a property of the former.

186

7.6 The Temporal Nested Model (TNM)

The components of the TNM are described below.

7.6.1 Data types-Domains

The set of underlying domains in the TNM is similar to the set of underlying

domains in the NRM (see section 7.4.1), augmented with the set of domains of

temporal elements.

The domain of a temporal nested attribute is defined recursively below.

Let Rtn be a temporal nested attribute of R and {Rtn1, Rtn2, …, Rtnk} all the

attributes of Rtn, in general (k ≥ 0). Let also, P(TE) be the powerset of TE, the

temporal elements. Then,

Definition 7.4 (Temporal nested attribute domain) If Rtn is a temporal

nested attribute and i is its nesting level, then DOM(Rtn), the domain of Rtn, is:

(i) for i = 0, DOM(Rtn) ⊆ D, where D is the underlying domain (k=0)

(ii) for i = 1, DOM(Rtn1) × DOM(Rtn2) × … × DOM(Rtn(k-1)) × DOM(Rtnk) =

DOM(Rtn1) × DOM(Rtn2) × … × DOM(Rtn(k-1)) × P(TE) since it is assumed

that Rtn1, Rtn2, …, Rtn(k-1) are atomic attributes of Rtn and Rtnk is the

temporal attribute of Rtn (k ≥ 1).

(iii) for i > 1, P(DOM(Rtn1)) × P(DOM(Rtn2)) × … × P(DOM(Rtnk)), where k ≥ 1.

7.6.2 Databases

In the TNM, databases are sets of temporal nested relations. A relation in

the TNM is shown in Fig. 7.3. This relation is the temporal analogue relation of

the example relation in the NRM of Fig. 7.2.

 TRAINER

COMPANY TRN C

 CN Y CN_PERt

 Apple Jack 1 75 [3/2/1975, 6/5/1975) ∪ [10/9/1975, 20/12/1975)

 Mark 3 82 [23/3/1982, 17/7/1982)

 IBM Tim 3 82 [1/4/1982, 15/10/1982)

 5 79 [1/9/1979, 4/11/1979)

 Microsoft Karen 2 77 [8/6/1977, 27/8/1977)

Fig. 7.3: A relation in the TNM

187

7.6.3 Structures

The scheme of a relation R in the TNM is defined recursively as in the NRM

(Definition 7.3). The definition remains the same, even when the recursive

procedure reaches nesting levels where temporal attributes are. The temporal

attributes are regarded as typical atomic attributes for the definition of the

scheme of a relation in the TNM.

7.6.4 Relational Operators

The set of all the well-known relational operators of the CRM, {=, ?, <, =, >,

=}, is also supported in the TNM. Furthermore, additional operators are also

supported in the TNM, i.e. BEFORE, AFTER, MEETS, OVERLAPS, COVERS,

mentioned in section 6.3. More specifically, the comparison operators that

involve attributes of a domain other than temporal element also remain the

same in the model defined. Besides, for comparisons between temporal

attributes, the operators that are used are: =, ≠, BEFORE, AFTER, MEETS,

COVERS, OVERLAPS.

7.6.5 Operations

The TUnion, TDifference, TIntersection, TProjection, TSelection,

TCartesianProduct and TNaturalJoin recursive operations of the TNM have

been defined formally in chapter 5. Furthermore, a new operation, the

TimeSlice operation, has been also defined in that chapter.

7.6.6 Functions

The set of all the functions in the CRM is also supported in the TNM when

atomic attributes are involved. However, these functions cannot be applied to

temporal elements. TNM has to be extended to include functions between

temporal elements.

188

7.7 Mapping the NRM to the TNM

The components of the NRM and the TNM, that have been described in

sections 7.4 and 7.6 respectively, are going to be mapped in this section, in

order to prove that the TNM is a proper superset of the NRM.

7.7.1 Data types - Domains

Proposition 7.15 The set of domains in the NRM is a proper subset of the

set of domains in the TNM.

Proof: Definition 7.4, for the special case where the temporal nested

attribute, R tn, does not include any temporal attributes is reduced to Definition

7.2. Consequently, from the definition, since the set of domains in the TNM

can be reduced for some certain cases, to the set of domains in the NRM, the

former is a proper superset of the corresponding set of domains in the NRM.

7.7.2 Databases

Proposition 7.16: The set of databases in the NRM is a proper subset of

the set of databases in the TNM.

Proof: Databases in the TNM are sets of temporal nested relations (see

section 7.6.2). For the special cases, where all the data that they contain are

invariable over time, the relations do not include any temporal attributes and

they are converted to relations isomorphic to the nested relations of the NRM.

7.7.3 Structures

Proposition 7.17: For each structure in the NRM there is at least one

structure in the TNM.

Proof: See section 7.6.3.

7.7.4 Relational Operators

Proposition 7.18: The set of relational operators in the TNM is a proper

superset of the set of relational operators in the NRM.

189

7.7.5 Operations

Proposition 7.19: The operations in the TNM are extended versions of the

corresponding operations in the NRM.

Proof: By its definition (chapter 5), the TNM is an extension of the NRM.

Each operation of the TNM can be reduced to the corresponding operation of

the NRM for cases where the relations that participate in the operations do not

contain any temporal attributes (i.e. all data are invariable over time).

7.7.6 Functions

Proposition 7.20: The set of functions in the TNM is a proper superset of

the set of functions in the NRM.

Proof: All the CRM functions are used in the NRM and in the TNM when

atomic attributes are involved. In other words, the functions that involve

attributes of a domain other than temporal element do remain the same in the

models defined.

Proposition 7.21: The TNM is a superset of the NRM.

Proof: This is implied from Propositions 7.14-7.20.

7.8 Mapping the CRM to the TNM

It is now time to prove the following proposition.

Proposition 7.20: The TNM is a superset of the CRM.

Proof: The following proposition is true:

TNM ⊃ NRM (Proposition 7.21) (a)

In addition, the TNM has been defined as an extension of the XRM

([Lor88]), since for all nesting levels in relations in the TNM, where the

temporal attributes occur, the behaviour at these levels is the same as in

relations in the XRM and the operations are defined precisely as those in

[Lor88] for the XRM. Consequently, the following proposition is also valid:

TNM ⊃ XRM (b)

From (a) and (b) is concluded the following:

TNM ⊃ NRM ∪ XRM (c)

Furthermore, it is true that:

190

NRM ⊃ CRM (Proposition 7.14), (d)

XRM ⊃ CRM (from [Lor88]) (e)

From (c), (d) and (e) is deduced that:

TNM ⊃ CRM

7.9 Summary

In this chapter it has been shown that the TRN is a superset of the CRM.

The general method that has been adopted for this proof is the mapping of two

data models presented in [TL82]. The basic features of the two models that

have been compared are the data types, the databases, the structures, the

operators, the operations and the functions of the models. The comparisons

have formally proved that the CRM is a subset of the TNM or using different

words, that the TNM is a consistent extension of the CRM.

191

CHAPTER 8

8. COMPARISON WITH OTHER MODELS

8.1 Introduction

In chapter 2, a number of different database models have been presented

and discussed, nested as well as temporal. In this chapter, these models are

grouped into different categories, according to some of their basic properties.

Thus, four tables are given in section 8.2 where these models are classified

according to their characteristics.

A number of criteria which can be used to evaluate the relative merits of

some of the most important temporal models which have been proposed

throughout the years, are presented in 8.3. These criteria have been derived

from previous research in this field (see [Mck88]). However, in what follows,

some of them have been revised, since approaches to the evaluation of

temporal models have advanced. The criteria have also been restricted to

address valid time algebras only. In addition, they have been grouped into four

general categories according to their semantics.

Finally, the evaluation of valid time algebras against these criteria is given

in section 8.4 where TNM is also included and compared to other previous

proposed algebras. The advantages of TNM against the other algebras can thus

be demonstrated. A discussion follows that explains and comments on the

results.

8.2 Classification of Models

A detailed analysis of different proposed data models has been presented

and discussed in chapter 2 of this thesis. These models are examples of either

nested models or temporal models. These areas form two important research

192

topics in database systems. The present thesis has tried to join these two

different fields by proposing a new temporal and nested data model, the TNM.

In what follows, some of the most interesting proposed models are classified

according to various criteria. These criteria have been discussed in chapter 3

of this thesis where the design decisions were explained and justified.

• The table in Fig. 8.1 groups the models according to two basic

characteristics, the static or temporal features of the models and the normal

or nested form of the models.

 1NF N1NF

Non-Temporal

(Static)

Codd Scheck and Scholl

Özsoyoglu, Özsoyoglu and Matos

Abiteboul and Bidoit

Roth, Korth and Silberschatz

Colby

Deshpande and Larson

Liu, Ramamohanarao and Chirathamjaree

Levene

Garani

Temporal Snodgrass

Lorentzos

Tansel

Gadia

Clifford

McKenzie

Jensen and Snodgrass

TSQL2

Garani

Fig. 8.1: Classification of relational database models

It can be seen that the majority of researchers have chosen the nested form

in preference to the first normal form since, although it is more complicated to

define and use, it provides a more effective way of defining a database model.

• Another table is given in Fig. 8.2 where static nested models are classified

according to whether they support one level or multiple levels of nesting.

193

One level of nesting Many levels of nesting

Scheck and Scholl

Özsoyoglu, Özsoyoglu and Matos

Abiteboul and Bidoit

Roth, Korth and Silberschatz

Colby

Deshpande and Larson

Liu, Ramamohanarao and Chirathamjaree

Levene

Garani

Fig. 8.2: Classification of nested models

• The third table, Fig. 8.3, groups temporal nested models according to

whether they are fully N1NF models (second column) or they are N1NF models

only in the way they incorporate the temporal dimension (first column). They

both correspond to what Clifford calls temporally grouped models (TG) in

[CCT94], namely “models that provide built-in support for the grouping of

related temporal values”.

Partly N1NF

(Temporal dimension)

Fully N1NF

Gadia

Clifford

McKenzie

Jensen and Snodgrass

TSQL2

Tansel

Garani

Fig. 8.3: Classification of temporal nested models

194

• Temporal models are divided into tuple timestamping and attribute

timestamping models in Fig. 8.4.

Tuple timestamping Attribute timestamping

Snodgrass

Jensen and Snodgrass

TSQL2

Tansel

Gadia

Clifford

McKenzie

Lorentzos

Garani

Fig. 8.4: Classification of temporal models

8.3 Evaluation Criteria

Several researchers have introduced criteria which must be satisfied by

each of the new proposed temporal database models ([CT85], [Sno87],

[Mck88]). In this section, these criteria are going to be discussed, analysed and

classified according to their semantics. A number of these criteria will be

shown to be inappropriate for the evaluation of the relative merit of the

temporal algebras. In addition, the criteria are restricted to those that concern

algebras which support valid time and so some of the previously proposed

criteria are not applicable to the present discussion.

The most detailed presentation of the desirable criteria for a temporal model

can be found in [Mck88]. Therefore, these criteria are listed in Fig. 8.5, for a

later discussion.

195

1. All attributes in a tuple are defined for the same interval(s)

2. Consistent extension of the snapshot algebra

3. Data periodicity is supported

4. Each collection of valid attribute values is a valid tuple

5. Each set of valid tuples is a valid relation state

6. Formal semantics is specified

7. Has the expressive power of a temporal calculus

8. Historical data loss is not an operator side-effect

9. Implementation exists

10. Includes aggregates

11. Incremental semantics defined

12. Intersection, Θ-join, natural join and quotient are defined

13. Is, in fact, an algebra

14. Model doesn’t require null attribute values

15. Multi-dimensional timestamps are supported

16. Optimisation strategies are available

17. Reduces to the snapshot algebra

18. Restricts relation states to first-normal form

19. Supports a three-dimensional visualisation of historical states and

operations

20. Supports basic algebraic equivalence

21. Supports relations of all four classes (snapshot, rollback, historical

or temporal relations)

22. Supports scheme evolution (transaction time model)

23. Supports static attributes

24. Supports rollback operations (rollback relations must be able to roll

back to past states for query evaluation)

25. Treats valid time and transaction time orthogonally

26. Tuples, not attributes, are timestamped

27. Unique representation of each historical state

28. Unisorted (not multisorted)

29. Update semantics is specified

Fig. 8.5: Criteria for evaluating temporal algebras in [Mck88]

196

A number of criteria in [Mck88] (Fig. 8.5) are mutually incompatible.

Specifically, the following criteria are mutually incompatible: criterion 19 and

criteria 26, 1 and 20; criteria 5 and 27; criteria 19 with 27 and 18 (an algebra

can be defined that satisfies any two of these criteria but not all three

simultaneously).

Since only valid time algebras are considered in the present thesis some of

the criteria listed in Fig. 8.5 are not applicable and so can be omitted. These

are criteria 21, 22, 24 and 25. Furthermore, criteria 11, 19 and 29 are also

excluded from the present discussion since they are outside the scope of the

present work although they could be the subject of future research.

Additionally, criteria 1, 18, 26 and 27 are considered inappropriate. This

results from the various advantages that heterogeneous N1NF attribute

timestamping temporal models offer, as has been explained in section 3.3 of

this thesis. The fact that the majority of the proposed temporal models are

heterogeneous N1NF attribute timestamping models, in spite of the

complicated definitions of their algebraic operators, makes out a case for the

above decision. Therefore, criterion 27 is not included and criteria 1, 18 and

26 have been reversed. Hence, they are converted to the following criteria:

Criterion 1: Heterogeneous tuples are supported

Criterion 18: Relations are in N1NF

Criterion 26: Attributes are timestamped

The full list of the revised criteria can now be found in Fig. 8.6.

197

1. Heterogeneous tuples are supported

2. Consistent extension of the snapshot algebra

3. Data periodicity is supported

4. Each collection of valid attribute values is a valid tuple

5. Each set of valid tuples is a valid relation state

6. Formal semantics is specified

7. Has the expressive power of a temporal calculus

8. Historical data loss is not an operator side-effect

9. Implementation exists

10. Includes aggregates

11. Intersection, Θ-join and natural join are defined

12. Is, in fact, an algebra

13. Model doesn’t require null attribute values

14. Multi-dimensional timestamps are supported

15. Optimisation strategies are available

16. Reduces to the snapshot algebra

17. Relations are in N1NF

18. Supports basic algebraic equivalence

19. Supports static attributes

20. Attributes are timestamped

21. Unisorted (not multisorted)

22. Recursive definition of operations

Fig. 8.6: Compatible criteria for evaluating valid time algebras

The criteria are now mutually compatible in contrast to the set of criteria in

[Mck88], where certain subsets are incompatible as has been mentioned

above.

Please note that criterion 17 implies fully N1NF relations (see Fig. 8.3) and

also that quotient operation is not included in criterion 11 since it can be

derived from other operations and it has not been defined in any of the

temporal database models proposed to date, as far as the author of this thesis

198

is aware. One additional criterion has been included in the list, concerning the

recursive definition of operations. The advantages of the recursive algebraic

definitions compared to the corresponding non-recursive ones have been

discussed in section 4.3 of this thesis.

The 22 criteria of table in Fig. 8.6 can now be classified into 4 major

categories according to their semantics. These categories concern the

simplicity, the formality and expressiveness of the algebras, the representation

choices and the support of some additional characteristics and are shown in

Fig. 8.7.

Ø Simplicity of the snapshot model

Criteria: 2, 16, 19

Ø Formally defined algebra

Criteria: 6, 8, 10, 11, 12, 18, 22

Ø Representation properties

Criteria: 1, 4, 5, 13, 17, 20, 21

Ø Support of remainder characteristics

 Criteria: 3, 7, 9, 14, 15

Fig. 8.7: Classification of criteria

8.4 Evaluation of Valid Time Algebras

As discussed in chapter 2 of this thesis, various researchers have proposed

temporal models. These models differ from each other in a number of

characteristics concerning the representation as well as the definitions of the

algebra supported and some other additional features for each of these

models.

199

In what follows, a comparison of different temporal database models is

made based on the criteria listed in section 8.3 (Fig. 8.6). Nine temporal

database models are compared and evaluated against these criteria. These

models are the models presented in chapter 2 of this thesis since they are

considered to be the most important ones. Most of the researchers that

proposed these models have produced a number of papers throughout the

years of their research. Consequently, they proposed a temporal model which

they subsequently improved. The most recent versions of these models are

taken into consideration.

In the following table (Fig. 8.8) the references in which a description of each

of these models can be found, together with the model name, are given for

each of the researchers.

Identifier Citation Data Model

Tansel [Tan93], [Tan97] TRA and TRC

Gadia [GN98] Parametric model

Clifford [CCGT95] MTGhi

McKenzie [Mck88] -

Snodgrass [Sno87], [Sno93], [SGM93] TQUEL

Jensen and Snodgrass [Jen00] BCDM

Lorentzos [LM97] IXSQL

Snodgrass et al. [Sno95] TSQL2

Garani present thesis TNM

Fig. 8.8: Temporal data models

200

 1NF Partly N1NF Fully N1NF

 No. Criteria Snodgrass Lorentzos Gadia Clifford McKenzie Jensen
and

Snodgrass

TSQL2 Tansel Garani

1. Consistent
extension of the
snapshot algebra

Y Y Y Y Y Y Y ? Y

2. Reduces to the
snapshot algebra

? P ? Y Y Y Y Y Y

Simplicity of
the snapshot
model 3. Supports static

attributes
N Y

N Y Y N Y Y Y

4. Formal
semantics is
specified

N Y P P Y Y P P Y

5. Includes
aggregates

Y Y N N Y N P N Y

6. Historical data
loss is not an
operator side-
effect

? Y ? P Y N N ? Y

7. Intersection and
join are defined

N N P N Y Y Y N Y

8. Is, in fact, an
algebra

N Y N N Y Y Y Y Y

Formally
defined algebra

9. Supports basic
algebraic
equivalences

N Y P P P P P P Y

 10. Recursive
definition of
operations

N/A N/A N/A N/A N/A N/A N/A N Y

11. Heterogeneous
tuples are
supported

N Y N N Y N N Y Y

12. Each collection
of valid attribute
values is a valid
tuple

N Y N N N N N Y Y

13. Each set of valid
tuples is a valid
relation state

Y Y N N N N N Y Y

14. Model doesn’t
require null
attribute values

Y Y N N Y Y Y Y Y

15. Relations are in
fully N1NF

N N N N N N N Y Y

16. Attributes are
timestamped

N Y Y Y Y N N Y Y

Representation
properties

17. Unisorted Y Y N N N N Y Y Y
18. Data periodicity

is supported
N Y N N N N N N N

19. Implementation
exists

Y P N N P N P N P

20. There is an
equivalent
temporal
calculus

Y N N Y Y N Y Y N

Support of
remainder
characteristics

21. Algebraic
transformation
optimisation
strategies are
available

P Y Y N P P N N P

 22. Multi-
dimensional
timestamps are
supported

N Y N N N N N N Y

Y: Yes

N: No

P: Partially satisfied

?: Not specified

N/A: Not applicable

Fig. 8.9: Evaluation of valid time algebras against specific criteria

201

In Fig. 8.9 the valid time algebras proposed by Tansel, Gadia, Clifford,

McKenzie, Snodgrass, Jensen and Snodgrass, Lorentzos, Snodgrass et al.

(TSQL2) and Garani have been evaluated against the 22 criteria presented in

section 8.3. The following results can be derived:

Snodgrass’s model is a tuple calculus and query language rather than an

algebra. Consequently, formal semantics are not defined for the algebra and so

it is not clear if it can reduce to the snapshot algebra. Static attributes are not

supported since the model uses tuple timestamping. Also, it is not clear

whether or not historical data loss is an operator side effect and whether it

supports basic algebraic equivalence. The model is homogeneous since it uses

tuple timestamping and relations are in 1NF. Any collection of valid attribute

values is not a valid tuple since the implicit attributes that specify the end

points of a tuple’s timestamp must be time ordered. Data periodicity and

multi-dimensional tuples are not supported. Optimisation techniques are

investigated in the context of TQUEL in [AS86].

Lorentzos’s model partially satisfies criterion 2 that TRA reduces to the

snapshot algebra given that the reduction to the snapshot algebra could be

achieved by the insertion of null values since attribute timestamps are

heterogeneous. In Lorentzos’ model time-varying and time-invariant attributes

are allowed. Also, no temporal calculus is proposed. Historical versions of

intersection and join are not defined but they can be deduced. Relations in

Lorentzos’s model must be in 1NF. Multi-dimensional timestamps seem to be

supported in his algebra, although he does not discuss this particular effect in

[LM97]. Finally, optimisation strategies are available.

Gadia’s parametric model is a homogeneous model where all attributes are

timestamped. As such, all attribute values are defined over a specific time

period and so they cannot behave as static attributes but as time-varying

ones. Another consequence of homogeneity is that, in general, each set of valid

attribute values is not a valid tuple, because the valid time components of the

attributes do not, in general, fulfil the homogeneity property. Any set of tuples

does not form a valid relation since relations in the parametric model are

202

required to have keys which play a vital role in the model. It is not clear from

the definition of the model in [GN98] if the model can be reduced to the

snapshot algebra nor if it has the expressive power of a temporal calculus.

Formal semantics is only partially specified for the algebra. The majority of the

algebraic operations have been defined informally. Intersection and T-join are

not defined and natural join is only informally defined. Basic algebraic

tautologies are partially supported as shown in [GN98].

It is not clear if historical data loss is an operator side effect. The

homogeneity assumption imposes the requirement for null attribute values.

Aggregates are not included in the model.

Gadia’s model is multisorted since it includes three types of expressions,

relational expressions, domain expressions and Boolean expressions.

No implementation has been reported.

Optimisation issues are taken into account in his algebra and an algorithm

is defined which transforms a query to an equivalent more efficient one. Data

periodicity is not considered and the same is also true for multi-dimensional

timestamps.

In Clifford’s model formal semantics is specified for some of the operators

although some operators are not defined at all, as for example the intersection

and join operations. Consequently, it is unclear if historical data loss is an

operator side effect or not for these operations. For all the other operations

defined in [CCGT95] this criterion is satisfied.

Basic algebraic equivalences seem to hold in his model since the basic

temporal operators defined in [CCGT95] correspond to the standard relational

operators of the snapshot relational algebra. However, it is not fully clear.

Each collection of valid attribute values is not a valid tuple since the

homogeneity property needs to be satisfied; moreover, each set of valid tuples

is not a valid relation state because key attributes cannot have the same time

components for two equal key values.

The algebra is multisorted since some operations return relations but one

operation, lifespan, returns a scalar value, i.e. not a relation. Data periodicity,

multi-dimensional timestamps and aggregates are not supported. The same

stands also for an implementation and an optimisation scheme.

203

Overall, Clifford’s model ([CCGT95]) is clearly superior to the one he

previously proposed in [CC87] and which was evaluated in [Mck88] and

[Lor88].

McKenzie includes an evaluation of his model ([Mck88]) against the specific

criteria in [Mck88]. A brief description is also included here for completeness

reasons and since the list with the criteria has been slightly modified.

The model allows non-homogeneous attribute timestamps; therefore, it can

reduce to the snapshot algebra only through the introduction of distinguished

nulls when taking snapshots. The distributive property of the cartesian

product operation over difference is not supported in McKenzie’s model. All the

other basic algebraic equivalences are applied. Value-equivalent tuples are not

allowed in a relation; therefore, by reason of this restriction, any arbitrary

collection of valid attribute tuples is not a valid relation state. Any set of valid

attribute values does not form a valid tuple since the algebra does not allow

empty timestamps for all attributes in the same tuple.

The algebra is multisorted since it defines operators on both snapshot

states and historical states.

Data periodicity and multi-dimensional timestamps are not supported. An

implementation (a prototype of the algebra without aggregates) has been

undertaken. Optimisation strategies based on the algebraic equivalences are

available. However, other optimisation techniques have not been investigated

but only briefly discussed.

Jensen and Snodgrass’s BCDM model is defined as a consistent extension

of the snapshot algebra and since it is a tuple timestamping model, it satisfies

the criterion that it reduces to the snapshot algebra. In a tuple timestamping

model such as this one, static attributes cannot be supported since every

attribute value in a tuple has a temporal element associated with it. An

equivalent temporal calculus is not defined in their model. Historical data loss

is an operator side effect of their cartesian product operation since the model

is tuple timestamping and the cartesian product is defined using intersection

semantics. Basic algebraic equivalences are supported only for the operations

that have been defined as extensions of the corresponding snapshot

operations. Each tuple consists of a number of explicit attribute values and an

204

implicit timestamp value; thus, every collection of valid attribute values does

not guarantee that it can create a valid tuple. It is a homogeneous model since

tuples are timestamped. However, it is N1NF since the timestamps associated

with the tuples can be sets of time chronons. Value-equivalent tuples are not

allowed in the model and so any arbitrary set of valid tuples cannot be a valid

relation state.

The model is multisorted with the following object types: valid time relation

states, transaction time relation states and bitemporal relation states. Data

periodicity, aggregates and multi-dimensional timestamps are not supported.

Optimisation strategies can be performed since the model is defined as an

extension of the snapshot model but no more details are given. Finally, an

implementation and an equivalent calculus do not exist.

In TSQL2 formal semantics, aggregates and basic algebraic equivalences are

partially included. Historical data loss is an operator side-effect since the

cartesian product operation is defined using intersection semantics and so the

valid time components of each relation are restricted in the result relation.

Only homogeneous tuples are supported in the model. Each collection of valid

attribute values is not a valid tuple since each tuple consists of a number of

explicit attribute values and an implicit timestamp value. Each set of valid

tuples is not a valid relation state since value-equivalent tuples are not

allowed in the model. Relations are partly in N1NF since only time can be

expressed as a set of time instants. In TSQL2 tuples are timestamped. Data

periodicity and multi-dimensional timestamps are not supported. TSQL2 has

been implemented partly through the development of Tiger, an advanced

temporal database system ([BJ96]). Finally, algebraic transformation

optimisation strategies are not available.

Tansel does not prove that his algebra (TRA) is a consistent extension of the

snapshot algebra. Formal semantics is not specified for some of his algebraic

operations (i.e. union, intersection, difference, projection, cartesian product).

He claims that they are defined in exactly the same way as they are in the

relational algebra. However, temporal atoms need a special treatment when

these operations are performed in his model. The join operation is not formally

defined. Basic algebraic equivalences are not discussed in his model.

205

Nevertheless, since in his definition of the algebra he claims that some

operations are the same as traditional relational operations and the

commutative, associative and distributive equivalences hold, it could be said

that criterion 9 is partially supported. All the operations of his algebra are

defined non-recursively.

There is no support of temporal aggregates and implementation and

optimisation issues are not included. Data periodicity and multi-dimensional

timestamps are not supported.

TNM supports all the evaluation criteria but two. These are data periodicity

and a temporal calculus. A detailed justification follows where the satisfying

criteria are explained by cross-references to earlier sections.

TNM is proved to be a consistent extension of the snapshot algebra in

section 5.3 where all the operations are formally defined as extended versions

of the corresponding operations in the NRM and as a consequence of the

corresponding operations in the CRM (see also Proposition 7.19 in section

7.7.5 and Propositions 7.5-7.12 in section 7.5.5).

The reducibility to the snapshot algebra can also be derived from section

5.3 and chapter 7.

By definition, static attributes are supported in the TNM model. The same is

also true for crtiteria 11, 15 and 16.

Historical data loss is not an operator side-effect in TNM, since all valid time

information input to an operator is preserved in the operator’s output as can

be easily proved by the formal definitions of the operations, unless the

operation being performed dictates removal (e.g. time-slice, intersection). In

addition, the cartesian product operation has not been defined using

intersection semantics (as is the case in other models, e.g. [Gad88]]) and

therefore, historical data is preserved in that operation as well.

Formal semantics is specified in chapter 5. Aggregates are included in

section 4.3.13. Intersection and join operations are defined in sections 5.3.3

and 5.3.11-12 respectively.

It is, in fact, an algebra, since the types of the objects supported, as well as

the allowable operations have been defined. In addition, all operations are

closed, as it is proved in section 5.4.

All the operations of the TNM have been defined recursively in chapter 5.

206

Basic algebraic equivalences are also supported in TNM. For example, the

following algebraic equivalences can easily be proved to hold.

R ∪t
∪ Q ≡ Q ∪t

∪ R

R ×t
× Q ≡ Q ×t

× R

σt
σ((σt

σ(rc1))c2) ≡ σt
σ((σt

σ(rc2))c1)

R ∪t
∪ (Q ∪t

∪ S) ≡ (R ∪t
∪ Q) ∪t

∪ S

σt
σ((R ∪t

∪ Q)c) ≡ σt
σ(Rc) ∪t

∪ σt
σ(Qc)

In the TNM, each collection of valid attribute values is a valid tuple, since

the value of an attribute is independent of the value of other attributes in a

tuple, except for key. This is also possible of the fact that tuples of valid

relations in the model can be heterogeneous. Any other attribute dependence

constraints are not imposed in TNM.

Also, each set of valid tuples is a valid relation state, since there are not any

constraints in the way a TNM relation has been defined, except the fact that

tuples with identical values for all their atomic attributes are coalesced;

therefore, tuples with identical values for their atomic attributes can neither

overlap nor be adjacent in time.

TNM is a heterogeneous model and as such, null attribute values are not

required.

It is unisorted, since it defines only one object type, the temporal nested

relation. All operations take as input and provide as output a single type of

object, the temporal nested relation.

In addition, optimisation strategies are only available when based on the

algebraic equivalences, since basic algebraic equivalences already provides

algebraic transformation optimisations. A detailed study of optimising

algebraic expressions can be found in [Gra84].

Multi-dimensional timestamps are supported. Although there are not such

examples in the thesis, there are not any constraints in the allowed number of

temporal attributes associated with an attribute in relations of the TNM model.

On the contrary, all the operations have been defined in such a way to support

more than one temporal attributes connected to the same attribute (section

5.3).

Overall, the following can be noticed:

207

§ TNM performs better than the majority of other temporal database

models.

§ TNM does not support data periodicity; however, this is outperformed

by the fact that it is a nested model and therefore more powerful.

§ TNM is comparable with Tansel’s model, but one major advantage is

that its operations are recursive and this simplifies the formulation of

queries.

8.5 Summary

The plethora of different models proposed in the area of temporal databases

demands the evaluation of these models and their comparison. Temporal

database models must satisfy a minimum set of properties. These properties

concern the preservation of the simplicity of the snapshot model, the algebra

supported by each model, the representation capabilities of the model and

some additional characteristics referring to the proposed models.

In this chapter nine different temporal database models have been

evaluated against 22 criteria. These criteria are well defined and compatible. It

has been shown that the model proposed in this thesis, TNM, satisfies the

large majority of the criteria and exceeds all the other temporal models.

208

CHAPTER 9

9. CONCLUSION AND FUTURE RESEARCH

9.1 Concluding Remarks

In spite of the considerable activity in the area of temporal databases in the

last two decades and the plethora of new proposed temporal database models,

no temporal database model has achieved the same level of acceptance as

Codd’s relational model in the world of conventional databases.

Different temporal database models have been proposed. They differ

significantly in the proposed structure of their relations relating to

incorporation of the temporal component as well as in the algebras they

define. They utilise either 1NF tuple timestamping, 1NF attribute

timestamping, N1NF tuple timestamping or N1NF attribute timestamping

relations supporting either time points, time intervals or temporal elements.

They all present a number of advantages as well as a number of deficiencies.

However, the majority of N1NF attribute timestamping models do not

include nesting of data other than temporal data. Therefore, their relations can

be nested only in the way they incorporate the temporal dimension. This limits

their expressive power and representational capabilities. Because of the

complexity, little research has been done in the area of “real” N1NF attribute

timestamping temporal database models where all sort of data can be nested

([Tan97]). Therefore, there is still a lot of work to be done in this specific area

of temporal database research concerning the structure of nested relations

and the corresponding algebra.

The research reported in this thesis has attempted to fill this gap by

defining a new temporal nested valid time relational model, the TNM. TNM is

an attribute timestamping heterogeneous model which supports temporal

elements not as part of the temporal atoms as in [Tan97] but as distinct

209

temporal attributes. Additional operations to extract the temporal part of a

temporal atom are thus avoided since the temporal nested version of the

traditional projection operation can be used instead. Moreover, in TNM,

unnest and nest operations do not need to be performed before or after the

execution of any other operation that concerns an attribute that is not at the

top level of the relation, as is the case in [Tan97]. Operations can be performed

at any level of the TNM relations directly.

TNM has been defined as a superset of NRM, a new Nested Relational Model

also been defined in this thesis. NRM, in its turn, is a superset of the

Conventional Relational Model. This is an important property of the two new

models.

The algebras of both NRM and TRM have been defined recursively. The

major contributions relating to the NRM are the formal definitions of the

rename and natural join operations. Particularly for the natural join operation,

a generalised natural join operation has been defined that can join any pair of

joinable nested relations. The generalised natural join operation for nested

relations uses one or more of the six cases of natural join which have also

been defined in the thesis. These cases can be distinguished by the type of the

common attributes, i.e. atomic or nested attributes and their positions

(nesting levels) in the relation scheme.

This generalised natural join operation has been extended to support the

temporal dimension. Consequently, the temporal nested generalised natural

join operation has been defined for the TNM. All the other operations of the

TNM have also been formally defined and proved to be closed, which is an

important property of the proposed model.

The expressive power of TNM has been demonstrated by a number of

examples.

Finally, TNM has been compared with eight other temporal models using a

set of 22 compatible criteria. The advantages of TNM over other models have

been illustrated in chapter 8.

In conclusion, this research proposes a temporal database model that

combines the nested features with the temporal dimension to generalise

temporal relational databases.

210

9.2 Future Research

It is not claimed in the thesis that all the issues related to the problem of

defining a temporal database model have been resolved. Further research is

still needed in several areas.

The areas for future work are briefly discussed below:

§ Support of transaction time

Transaction time concerns the time an event is stored in the database.

Transaction time has not been studied as much as valid time in the literature.

Therefore, an interesting direction for research is the extension of TNM to

support, in addition, transaction time.

§ Definition of a query language

As briefly described in Chapter 1 of the thesis, several attempts have been

made to define a temporal query language, for example TQuel ([Sno93]), SQLT

([Tan93b]) and TSQL2 ([Sno95]). Further research is needed to define a query

language as an extension of SQL to support the temporal nested features of

TNM and to evaluate it in comparison to other existed temporal query

languages.

§ Optimisation strategies

Optimisation techniques for the efficient evaluation of queries in the TNM

can be developed. Particularly for the generalised temporal nested natural join

operation further research is needed so that it can be optimised.

§ Functional dependencies

Temporal functional dependencies have been studied by several researchers

([TG89], [NA89], ([Lor91]). A review of the different types of dependencies

proposed for temporal databases can be found in [JSS94]. An interesting

direction of research is the study of functional dependencies for the TNM.

Since TNM combines temporal and nested features, previous research of both

temporal and nested functional dependencies must be considered for this

study.

211

§ Management of spatial data

Spatial databases (the handling of data related to space in the databases)

have been an active area of research over the last two decades in parallel with

temporal databases. Spatial databases have been studied either independently

or when integrated with temporal databases (spatiotemporal databases). An

interesting topic in this field is the development of a spatiotemporal model and

query language.

Therefore, the incorporation of spatial data to TNM is an additional

challenge. It seems likely that TNM can be extended to provide a

spatiotemporal nested model by including the spatial dimension in an

analogous way to the temporal dimension.

§ Temporal extensions in XML

XML (Extensible Markup Language) is emerging as the new standard for the

exchange of data with structures on the Web. Therefore, its main

characteristic is that it is naturally nested. Structures in XML can be nested to

any finite depth.

Since the contents of XML documents may change with time and past

versions of them may also be of interest, the definition of a data model for

temporal XML documents is important. Therefore, given that TNM supports

nested data, a promising direction of research is to use the results arising

from this research, to extend the XML standard to include temporal

functionalities.

212

REFERENCES

[AB84] Abiteboul S. and Bidoit N. Non First Normal Form Relations to

Represent Hierarchical Organized Data. Proceedings of the 3rd

ACM SIGACT-SIGMOD Symposium on Principles of Database

Systems (PODS), Waterloo, Ontario, Canada, 191-200 (1984).

[AB86] Abiteboul S. and Bidoit N. Non First Normal Form Relations: An

Algebra Allowing Data Restructuring. Journal of Computer and

System Sciences, 33(3), 361-393 (1986).

[Ahn93] Ahn I. SQL+T: A Temporal Query Language. Proceedings of the

Infrastructure for Temporal Databases, Arlington (1993).

[Ari86] Ariav G. A Temporal Oriented Data Model. ACM Transaction on

Database Systems, 11(4), 499-527 (1986).

[AS86] Ahn I. and Snodgrass R. Performance Evaluation of a Temporal

Database Management System. Proceedings of the ACM-SIGMOD

International Conference on Management of Data, Washington,

DC, 96-107 (1986).

[BADW82] Bolour A., Anderson T., Dekeyser L. and Wong H. The Role of

Time in Information Processing: A Survey. ACM SIGMOD Record,

12(3), 27-50 (1982).

[Ben82] Ben-Zvi J. The Time Relational Model. Ph.D. Dissertation,

University of California, Los Angeles (1982).

[BG93] Bhargava G. and Gadia S. Relational Database Systems with

Zero Information Loss. IEEE Transactions on Knowledge and

Data Engineering, 5(1), 76-87 (1993).

[BJ96] Böhlen M. and Jensen C. Seamless Integration of Time into

SQL. Technical Report R-96-2049, Department of Computer

Science, Aalborg University, Denmark (1996).

[BJW00] Bettini C., Jajodia S. and Wang S. Time Granularities in

Databases, Data Mining, and Temporal Reasoning. Berlin:

Springer-Verlag (2000).

[CC87] Clifford J. and Croker A. The Historical Relational Data Model

(HRDM) and Algebra Based on Lifespans. IEEE 3rd International

213

(HRDM) and Algebra Based on Lifespans. IEEE 3rd International

Conference on Data Engineering, Los Angeles, California, 528-

537 (1987).

[CCGT95] Clifford J., Croker A., Grandi F. and Tuzhilin A. On Temporal

Grouping. In [CT95], 194-213 (1995).

[CCT94] Clifford J., Croker A. and Tuzhilin A. On Completeness of

Historical Relational Query Languages. ACM Transactions on

Database Systems, 19(1), 64-116 (1994).

[CCT96] Clifford J., Croker A. and Tuzhilin A. On Data Representation

and Use in a Temporal Relational DBMS. Information Systems

Report, 7(3), 308-327 (1996).

[Cli82]

[CMP95]

Clifford J. A Model for Historical Databases. Proceedings of

Logical Bases for Data Bases, Toulouse, France (1982).

Clack C., Myers C. and Poon E. Programming with Miranda.

Prentice Hall (1995).

[Col90] Colby L.S. A Recursive Algebra for Nested Relations. Information

Systems, 15(5), 567-582 (1990).

[CT85] Clifford J. and Tansel A.U. On an Algebra For Historical

Relational Databases: Two Views. Proceedings of the 3rd

International Workshop on Statistical and Scientific Databases,

Austin, Texas, 247-265 (1985).

[CT95] Clifford J. and Tuzhilin A. (Eds.) Recent Advances in Temporal

Databases. Proceedings of the International Workshop on

Temporal Databases. Zürich, Switzerland: Springer-Verlag,

(1995).

[CW83] Clifford J. and Warren D.S. Formal Semantics for Time in

Databases. ACM Transactions on Database Systems, 8(2), 214-

254 (1983).

[Dat00] Date C.J. An Introduction to Database Systems (7th edition),

Addison-Wesley Publishing Company (2000).

[DDL03] Date C.J., Darwen H. and Lorentzos N.A. Temporal Data and the

Relational Model. Morgan Kaufmann Publishers, 2003.

[Deb94] Debabrata D. A Design Methodology for Temporal Databases.

Ph.D. Dissertation, University of Rochester (1994).

214

[DL87] Deshpande V. and Larson P.A. An Algebra for Nested Relations.

Technical Report CS-87-65, Department of Computer Science,

University of Waterloo, Waterloo, Ontario, Canada (1987).

[DL91] Deshpande V. and Larson P.A. An Algebra for Nested Relations

with Support for Nulls and Aggregates. Technical Report CS-91-

16, Department of Computer Science, University of Waterloo,

Waterloo, Ontario, Canada (1991).

[DS85] Dayal U. and Smith J.M. PROBE: A Knowledge-Oriented

Database Management System. On Knowledge Base

Management Systems: Integrating Artificial Intelligence and

Database Technologies, Islamorada, 227-257 (1985).

[EJS98] Etzion O., Jajodia S. and Sripada S.M. (Eds.) Temporal

Databases: Research and Practice. (the book grows out of a

Dagstuhl Seminar, June 23-27, 1997). Lecture Notes in

Computer Science 1399, Berlin: Springer-Verlag (1998).

[EN00] Elmasri R. and Navathe S.B. Fundamentals of Database

Systems (3rd edition). Addison-Wesley (2000).

[FT83] Fisher P.C. and Thomas S.J. Operators for Non-First-Normal

Form Relations. Proceedings of the IEEE Computer Society’s 7th

International Conference on Computer Software and Applications

(COMPSAC), Chicago, Illinois, 464-475 (1983).

[Gad86a] Gadia S.K. Toward a Multihomogeneous Model for a Temporal

Database. Proceedings of the International Conference on Data

Engineering, Los Angeles, California, 390-397 (1986).

[Gad86b] Gadia S.K. Weak Temporal Relations. Proceedings of the 5th ACM

SIGACT-SIGMOD Symposium on Principles of Database Systems,

Cambridge, Massachusetts, 70-77 (1986).

[Gad88] Gadia S.K. A Homogeneous Relational Model and Query

Languages for Temporal Databases. ACM Transactions on

Database Systems, 13(4), 418-448 (1988).

[Gad92] Gadia S.K. A Seamless Generic Extension of SQL for Querying

Temporal Data. Technical Report TR-92-02, Computer Science

Department, Iowa State University (1992).

[Gar00a] Garani G. The Temporal Nested Model (TNM) and its Algebra.

University of London Publications, ISBN: 0718716388 (2000).

215

University of London Publications, ISBN: 0718716388 (2000).

[Gar00b] Garani G. Evaluation of Non-First Normal Form Database

Models. University of London Publications, ISBN: 071871640X

(2000).

[Gar00c] Garani G. Temporal Database Models: A Critical Approach.

University of London Publications, ISBN: 0718716396 (2000).

[GJ00a] Garani G. and Johnson R. Nest and Unnest in Nested Relations

Revisited. University of London Publications, ISBN: 071871637X

(2000).

[GJ00b] Garani G. and Johnson R. Joining Nested Relations and

Subrelations. Information Systems, 25(4), 287-307 (2000).

[GN98] Gadia S.K. and Nair S.S. Algebraic Identities and Query

Optimisation in a Parametric Model for Relational Temporal

Databases. IEEE Transactions on Knowledge and Data

Engineering, 10(5), 793-807 (1998).

[GNP92] Gadia S.K., Nair S.S. and Poon Y.C. Incomplete Information in

Relational Temporal Databases. Proceedings of the 18th

International Conference on Very Large Data Bases, Vancouver,

Canada, 395-406 (1992).

[Gra84] Gray P. Logic, Algebra and Databases. Ellis Horwood Limited,

1984.

[GV85] Gadia S.K. and Vaishnav J.H. A Query Language for a

Homogeneous Temporal Database. Proceedings of the 4th ACM

SIGACT-SIGMOD Symposium on Principles of Database Systems,

Portland, Oregon, 51-56 (1985).

[GY88] Gadia S.K. and Yeung C.S. A Generalised Model for a Relational

Temporal Database. Proceedings of the ACM SIGMOD

International Conference on Management of Data, Chicago,

Illinois, 251-259 (1988).

[GY91] Gadia S.K. and Yeung C.S. Inadequacy of Interval Timestamps

in Temporal Databases. Information Sciences, 54, 1-22 (1991).

[JCG+92] Jensen C.S., Clifford J., Gadia S.K., Segev A. and Snodgrass

R.T. A Glossary of Temporal Database Concepts. SIGMOD

Record, 21(3), 35-43 (1992).

216

[JDB+98] Jensen C.S., Dyreson C.E., Böhlen M, Clifford J., Elmasri R.,

Gadia S.K., Grandi F., Hayes P., Jajodia S., Käfer W., Kline N.,

Lorentzos N.A., Mitsopoulos Y., Montanari A., Nonen D., Peressi

E., Pernici B., Roddick J.F., Sarda N.L., Scalas M.R., Segev A.,

Snodgrass R.T., Soo M.D., Tansel A., Tiberio P. and Wiederhold

G. The Consensus Glossary of Temporal Database Concepts-

February 1998 Version. In [EJS98], 367-405 (1998).

[Jen00] Jensen C.S. Temporal Database Management. Dr. Techn.

Thesis, Aalborg University, Denmark (2000).

[JG95] Johnson R. and Garani G. A Temporal Database Model Using

Nested Relations. Technical Report No. 9518, Birkbeck College,

University of London (1995).

[JG96] Johnson R. and Garani G. A Temporal Database Model Using

Nested Relations. Revised Edition, Technical Report No. 9608,

Birkbeck College, University of London (1996).

[JG97] Johnson R. and Garani G. Joining Nested Sub-Relations.

Technical Report No. 9701, Birkbeck College, University of

London (1997).

[JJ92] Jang Y.P. and Johnson R. A Heterogeneous Temporal Nested

Relational Data Model. InTeRel Report No. 5, Department of

Computer Science, Birkbeck College, University of London

(1992).

[JL87] Johnson R. and Lorentzos N.A. Temporal Data Management.

Information Update Database Technology, Pergamon Infotech 1,

5-11 (1987).

[JS82] Jaeschke G. and Schek H.J. Remarks on the Algebra of Non

First Normal Form Relations. Proceedings of the ACM

Symposium on Principles of Database Systems, Los Angeles,

California, 124-138 (1982).

[JS92] Jensen C. and Snodgrass R. The TEMPIS Project. Proposal for a

Data Model for the Temporal Structured Query Language.

TEMPIS Technical Report No. 37, Department of Computer

Science, University of Arizona, Tuscon (1992).

[JS94] Jensen C. and Snodgrass R. Temporal Specialization and

Generalization. IEEE Transactions on Knowledge and Data

217

Generalization. IEEE Transactions on Knowledge and Data

Engineering, 6(6), 954-974 (1994).

[JS96a] Jensen C. and Snodgrass R. Semantics of Time-Varying

Information. Information Systems, 21(4), 311-352 (1996).

[JS96b] Jensen C. and Snodgrass R. Semantics of Time-Varying

Attributes and their Use for Temporal Database Design.

Proceedings of the 5th International Conference on EDBT,

Avignion, France, 366-377 (1996).

[JS99] Jensen C. and Snodgrass R. Temporal Data Management. IEEE

Transactions on Knowledge and Data Engineering, 11(1), 36-44

(1999).

[JSS92] Jensen C., Soo M. and Snodgrass R. Unification of Temporal

Data Models. Technical Report TR 92-15, Department of

Computer Science, University of Arizona, Tuscon (1992).

[JSS94] Jensen C., Snodgrass R. and Soo M. Extending Existing

Dependency Theory to Temporal Databases. Technical Report R-

94-2050, Department of Mathematics and Computer Science,

Aalborg University, Denmark (1994).

[JSST01] Jensen C.S., Schneider M., Seeger B. and Tsotras V.J. (Eds.)

Advances in Spatial and Temporal Databases: Proceedings of the

7th International Symposium (SSTD), Redondo Beach, CA, USA.

Lecture Notes in Computer Science 2121, Berlin: Springer-

Verlag (2001).

[Kli93] Kline N. An Update of the Temporal Database Bibliography.

SIGMOD Record, 22(4), 66-80 (1993).

[Klu82] Klug A. Equivalence of Relational Algebra and Relational

Calculus Query Languages having Aggregate Functions. Journal

of the ACM, 29(3), 699-717 (1982).

[LC96] Liu H.-C. and Chirathamjaree C. An Efficient Join for Nested

Relational Databases. Proceedings of the 7th International

Conference on Database and Expert Systems Applications (DEXA

’96), Zurich, Switzerland, 289-301 (1996).

[LD98] Lorentzos N.A. and Dondis A. Query by Example for Nested

Tables. Proceedings of the 9th International Conference on

Database and Expert Systems Applications (DEXA ’98), Vienna,

218

Database and Expert Systems Applications (DEXA ’98), Vienna,

Austria, 716-725 (1998).

[Lev92] Levene M. The Nested Universal Relation Database Model.

Lecture Notes in Computer Science 595, Berlin: Springer-Verlag

(1992).

[LJ87] Lorentzos N.A. and Johnson R. TRA: A Model for a Temporal

Relational Algebra. Proceedings of the Conference on Temporal

Aspects in Information Systems, Sophia-Antipolis, France, 95-

108 (1987).

[LJ88a] Lorentzos N.A. and Johnson R. An Extension of the Relational

Model to Support Generic Intervals. Proceedings of the

International Conference on Extending Database Technology

(EDBT’ 88), Venice, Italy, 528-542 (1988).

[LJ88b] Lorentzos N.A. and Johnson R. Extending Relational Algebra to

Manipulate Temporal Data. Information Systems, 13(3), 289-

296 (1988).

[LK89] Lorentzos N.A. and Kollias V. The Handling of Depth and Time

Intervals in Soil Information Systems. Computers in

Geosciences, 15, 395-401 (1989).

[LL91] Levene M. and Loizou G. Correction to Null Values in Nested

Relational Databases by M.A. Roth, H.F. Korth and A.

Silberschatz. Acta Informatica, 28, 603-605 (1991).

[Lle94] Llewellyn M.J. Temporal Extensions to the Relational Data

Model. Ph.D. Dissertation. University of Central Florida (1994).

[LM94] Lorentzos N.A. and Manolopoulos Y. Efficient Management of 2-

d Interval Relations. Proceedings of the 5th International

Conference on Data and Expert Systems Applications (DEXA ’94),

Athens, Greece, 72-82 (1994).

[LM95] Lorentzos N.A. and Manolopoulos Y. Functional Requirements

for Historical and Interval Extensions to the Relational Model.

Data and Knowledge Engineering, 17(1), 59-86 (1995).

[LM97] Lorentzos N.A. and Mitsopoulos Y. SQL Extension for Interval

Data. IEEE Transactions on Knowledge and Data Engineering,

9(3), 480-499 (1997).

219

[Lor88] Lorentzos N.A. A Formal Extension of the Relational Model for the

Representation and Manipulation of Generic Intervals. Ph.D.

Thesis, Department of Computer Science, Birkbeck College,

University of London, August 1988.

[Lor91] Lorentzos N.A. Management of Intervals and Temporal Data in

the Relational Model. Technical Report No. 49, Informatics

Laboratory, Agricultural University of Athens, Greece (1991).

[LPS94] Lorentzos N.A., Poulovassilis A. and Small C. Implementation of

Update Operations for Interval Relations. The Computer Journal,

37(3), 164-176 (1994).

[LPS95] Lorentzos N.A., Poulovassilis A. and Small C. Manipulation

Operations for an Interval-Extended Relational Model. Data and

Knowledge Engineering, 17(1), 1-29 (1995).

[LR94a] Liu Hong-Cheu and Ramamohanarao K. Multiple Paths Join for

Nested Relational Databases. Proceedings of the 5th Australian

Database Conference, 30-44 (1994).

[LR94b] Liu Hong-Cheu and Ramamohanarao K. Algebraic Equivalences

among Nested Relational Expressions. Proceedings of the 3rd

International Conference on Information and Knowledge

Management (CIKM ’94), Gaithersburg, MD, USA, 234-243

(1994).

[LRT99] Lorentzos N.A., Rios Viqueira J. and Tryfona N. Quantum-

Based Spatial Extension to the Relational Model. Proceedings of

the 7th Panhellenic Conference on the Informatics, Ioannina,

Greece, III 34-44 (1999).

[LSYK99] Lorentzos N.A., Sideridis A., Yialouris C. and Kollias V. An

Integrated Spatiotemporal System. Computers and Electronics in

Agriculture, 22, 233-242 (1999).

[LTR99] Lorentzos N.A., Tryfona N. and Rios Viqueira J. Relational

Algebra for Spatial Data Management. Proceedings of the

International Workshop on Integrated Spatial Databases: Digital

Images and GIS, Portland, Maine, USA, 192-208 (1999).

[Mak77] Makinouchi A. A consideration on Normal Form of Not-

Necessarily-Normalized Relations in the Relational Data Model.

Proceedings of the 3rd International Conference on Very Large

220

Proceedings of the 3rd International Conference on Very Large

Data Bases, Tokyo, Japan, 447-453 (1977).

[Mck86] McKenzie E. Bibliography: Temporal Databases. SIGMOD

Record, 15(4), 40-52 (1986).

[Mck88] McKenzie J.E. An Algebraic Language for Query and Update

Temporal Databases. Ph.D. Thesis, The University of North

Carolina at Chapel Hill, 1988.

[MS91] McKenzie J.E. and Snodgrass R.T.: Evaluation of Relational

Algebras Incorporating the Time Dimension in Databases. ACM

Computing Surveys, 23(4), 501-543 (1991).

[NA89] Navathe S. and Ahmed R. A Temporal Relational Model and a

Query Language. Information Sciences, 49, 147-175 (1989).

[OOM87] Özsoyoglu G., Özsoyoglu Z.M. and Matos V. Extending

Relational Algebra and Relational Calculus with Set-Valued

Attributes and Aggregate Functions. ACM Transactions on

Database Systems, 12(4), 566-592 (1987).

[RKB87] Roth M.A., Korth H.F. and Batory D.S. SQL/NF: A Query

Language for ¬1NF Relational Databases. Information Systems,

12(1), 99-114 (1987).

[RKS88] Roth M.A., Korth H.F. and Silberschatz A. Extended Algebra

and Calculus for Nested Relational Databases. ACM

Transactions on Database Systems, 13(4), 389-417 (1988).

[RKS89] Roth M.A., Korth H.F. and Silberschatz A. Null Values in Nested

Relational Databases. Acta Informatica, 26, 615-642 (1989).

[RL01] Rios Viqueira J. and Lorentzos N.A. Spatio-temporal SQL

Extension. Proceedings of the 8th Panhellenic Conference on

Informatics, Nicosia, Cyprus, Vol. 1, 264-273 (2001).

[RLT01] Rios Viqueira J., Lorentzos N.A. and Tryfona N. Formalism for

Spatio-temporal Data Management. Proceedings of the 5th

Hellenic European Conference on Computer Mathematics and its

Applications (2001).

[SA85] Snodgrass R. and Ahn I. A Taxonomy of Time in Databases.

Proceedings of the ACM SIGMOD International Conference on

Management of Data, New York, 236-246 (1985).

221

[SA86] Snodgrass R. and Ahn I. Temporal Databases. IEEE Computer,

19(9), 35-42 (1986).

[Sar90] Sarda N.L. Algebra and Query Language for a Historical Data

Model. The Computer Journal, 33(1), 11-18 (1990).

[SGM93] Snodgrass R., Gomez S. and McKenzie E. Aggregates in the

Temporary Query Language TQuel. IEEE Transactions on

Knowledge and Data Engineering, 5(5), 826-842 (1993).

[SJS95] Segev A., Jensen C. and Snodgrass R. Report on the 1995

International Workshop on Temporal Databases. SIGMOD

Record, 24(4), 46-52 (1995).

[Sno00] Snodgrass R. Developing Time-Oriented Database Applications in

SQL. Morgan Kaufmann Publishers (2000).

[Sno86] Snodgrass R. Research Concerning Time in Databases. Project

Summaries. SIGMOD Record, 15(4), 19-39 (1986).

[Sno87] Snodgrass R. The Temporal Query Language TQuel. ACM

Transactions on Database Systems, 12(2), 247-298 (1987).

[Sno90] Snodgrass R. Temporal Databases. Status and Research

Directions. SIGMOD Record, 19(4), 83-89 (1990).

[Sno92] Snodgrass R. Temporal Databases. Proceedings of the

International Conference on GIS-From Space to Territory: Theories

and Methods of Spatio-Temporal Reasoning, Pisa, Italy, 22-64

(1992).

[Sno93] Snodgrass R. An Overview of TQuel. In [TCG+93], 141-182

(1993).

[Sno95] Snodgrass R. (ed.) The TSQL2 Temporal Query Language.

Kluwer Academic Publishers (1995).

[Soo91] Soo M.D. Bibliography on Temporal Databases. SIGMOD

Record, 20(1), 14-23 (1991).

[SS86] Schek H.-J. and Scholl M.H. The Relational Model with

Relation-Valued Attributes. Information Systems, 11(2), 137-

147 (1986).

[SS87] Segev A. and Shoshani A. Logical Modelling of Temporal Data.

Proceedings of ACM SIGMOD Conference on Management of

Data, San Francisco, 454-466 (1987).

222

[SS88] Stam R.B. and Snodgrass R. A Bibliography on Temporal

Databases. IEEE Data Engineering Bulletin, 11(4), 53-61 (1988).

[TA86] Tansel A.U. and Arkun M.E. Aggregation Operations in

Historical Relational Databases. Proceedings of the 3rd

International Workshop on Statistical and Scientific Databases,

Luxemburg, 116-121 (1986).

[Tan86] Tansel A.U. Adding Time Dimension to Relational Model and

Extending Relational Algebra. Information Systems, 11(4), 343-

355 (1986).

[Tan87] Tansel A.U. A Statistical Interface for Historical Relational

Databases. Proceedings of the 3rd International Conference on

Data Engineering, Los Angeles, California, 538-546 (1987).

[Tan93a] Tansel A.U. A Generalised Relational Framework for Modelling

Temporal Data. In [TCG+93], 183-201 (1993).

[Tan93b] Tansel A.U. SQLT: A Temporal Extension to SQL. Proceedings of

the International Workshop on an Infrastructure for Temporal

Databases, Arlington, TX (1993).

[Tan97] Tansel A.U. Temporal Relational Data Model. IEEE Transactions

on Knowledge and Data Engineering, 9(3), 464-479 (1997).

[TAO89] Tansel A.U., Arkun M.E. and Özsoyoglu G. Time-by-Example

Query Language for Historical Databases. IEEE Transactions

and Data Engineering, 15(4), 464-478 (1989).

[TC90] Tuzhilin A. and Clifford J. A Temporal Relational Algebra as a

Basis for Temporal Relational Completeness. Proceedings of the

16th International Conference on Very Large Data Bases,

Brisbane, Australia 13-23 (1990).

[TCG+93] Tansel A.U., Clifford J., Gadia S., Jajodia S., Segev A. and

Snodgrass R. Temporal Database. Theory, Design and

Implementation. The Benjamin/Cummings Series on Database

Systems and Applications (1993).

[TF86] Thomas S.J. and Fischer P.C. Nested Relational Structures.

Advances in Computing Research. A Research Annual. The

Theory of Databases, JAI Press Inc., 3, 269-307 (1986).

[TG89] Tansel A.U. and Garnett L. Nested Historical Relations.

Proceedings of the ACM SIGMOD International Conference on

223

Proceedings of the ACM SIGMOD International Conference on

Management of Data, Portland, Oregon, 284-293 (1989).

[TK96] Tsotras V.J. and Kumar A. Temporal Database Bibliography

Update. SIGMOD Record, 25(1), 41-51 (1996).

[TL82] Tsichritzis D.C. and Lochovsky F.H. Data Models. Prentice-Hall

(1982).

[Tom96] Toman D. Point vs. Interval-based Query Languages for

Temporal Databases. Proceedings of the 15th ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems

(PODS), Montreal, Canada, 58-67 (1996).

[TT97] Tansel A.U. and Tin E. The Expressive Power of Temporal

Relational Query Languages. IEEE Transactions on Knowledge

and Data Engineering, 9(1), 120-134 (1997).

[Ull95] Ullman J.D. Principles of Database and Knowledge-Base

Systems. Computer Science Press (1995).

[WJW97] Wu Y., Jajodia S. and Wang X.S. Temporal Database

Bibliography Update. In [EJS98], 338-366 (1997).

[WTWL96] Wegner L., Thelemann S., Wilke S. and Lievaart R. QBE-like

Queries and Multimedia Extensions in a Nested Relational

DBMS. Proceedings of the International Conference on Visual

Information Systems, Melbourne, Australia, 437-446 (1996).

224

APPENDICES

225

APPENDIX A

A. FORMAL SYNTAX OF THE TNM ALGEBRA

expression

:: = one-relation-expression| two-relation-expression

one-relation-expression

:: = temporal-nested-renaming | temporal-nested-selection |

 temporal-nested-projection | time-slice | temporal-unnest | temporal-nest

two-relation-expression

:: = temporal-nested-projection binary-operation expression

temporal-nested-renaming

 :: = ρt
ρ [attribute-commalist1] (term)

attribute-commalist1

 :: = fattribute ← fattribute | fattribute ← fattribute, attribute-commalist1

fattribute

 :: = attribute1 | function4(attribute1)

attribute1

 :: = attribute | nested-aggregate-attribute

attribute

 :: = basic-attribute | nested-attribute

basic-attribute

 :: = atomic-attribute | ta | function1(ta)

226

nested-aggregate-attribute

 :: = function3[attribute/basic-attribute]

function3

 :: = N-MAX | N-MIN | N-SUM | N-COUNT | N-AVG

function4

 :: = MAX | MIN | AVG | COUNT | SUM

term

 :: = relation | (expression)

temporal-nested-projection

 :: = πt
π (term (attribute-commalist2)) | term

attribute-commalist2

:: = fattribute | fattribute, attribute-commalist2

binary-operation

 :: = ∪ t
∪ | ∩t

∩ | −t
− | ×t

× | ><t
>< | ><tT

><

temporal-nested-selection

 :: = σt
σ (term comparison)

comparison

 :: = attribute-term | attribute-term logical-operator comparison

logical-operator

:: = AND | OR | AND NOT | OR NOT

attribute-term

 :: = attribute-term1 | temporal-attribute-term

227

attribute-term1

 :: = FAA θ FAA

FAA

 :: = constant | atomic-attribute | attribute-term1 | nested-aggregate-attribute

θ

 :: = < | > | = | <= | >= | ≠

temporal-attribute-term

 :: = FTA temporal-operator FTA | FTA

FTA

 :: = constant | ta | function1(ta) | temporal-attribute-term

ta

 :: = temporal-attribute1 | function2(temporal-attribute1)

temporal-attribute1

 :: = temporal-attribute | temporal-attribute temporal-operator1 temporal-attribute

temporal-operator1

 : = ∪TE | ∩TE | −TE

function1

 :: = MAX | MIN

function2

 :: = DURATION | START | STOP

228

temporal-operator

 :: = BEFORE | AFTER | MEETS | COVERS | OVERLAPS | =

time-slice

 :: = ssTE (term)

TE

 :: = temporal-element

temporal-unnest

 :: = µt
µ(termnested-attribute)

temporal-nest

:: = νt
ν(termattribute-commalist2→nested-attribute)

229

APPENDIX B

B. PROTOTYPE IMPLEMENTATION

B.1 Introduction

To illustrate the functionality of the models defined in this thesis, a

prototype implementation has been undertaken in Miranda

Miranda is a functional programming language which runs under UNIX. It

is used especially in the areas of proof systems and specification, as a vehicle

for rapid software prototyping, and for teaching functional programming

[CMP95]. It makes use of lazy semantics. This permits the use of potentially

infinite data structures. Miranda also supports an elegant style of problem

decomposition. A program, actually a script, is a collection of equations

defining various functions and data structures.

Issues related to the implementation, the files of Miranda, and the

declaration of tables and functions are briefly discussed in this appendix.

Selected parts of the code are also listed. Finally, examples presented in the

thesis, occasionally with their results, are included.

B.2 Implementation

The most important operations have been implemented. In particular, the

four non-temporal operators, rename, projection, selection and cartesian

product have been fully implemented. The same is also true for their temporal

versions. Limitations on the implementation of join are outlined as follows.

In the non-temporal nested join only one nested column is allowed at each

nesting level. Within the framework of a prototype, this is considered to be a

reasonable assumption, to ease implementation.

230

Another limitation is that all the six cases of the join operator allow joining

on only one pair of columns. This is also considered to be a reasonable

assumption within a prototype implementation. Note in particular that an

attempt, to implement a join on two columns, would require an almost entire

revision of the whole development. This is due to the fact that the join operator

is a top-level function that calls other functions. Hence, changes to the

structures of join would have to be reflected to the functions it calls. Given

also that these functions call others, a cascade of revisions would then have to

follow.

A side effect of joining on only one common column is that the temporal

nested join operator has not been implemented either. The reason is that this

last operator requires joining on relations that have at least two common

attributes, one of which must be temporal. Note however that, if the

hypothetical case of joining on two common attributes had been implemented,

the temporal nested join would have required only a trivially simple additional

piece of code, to compute the intersection of the corresponding temporal

elements in the two temporal columns. Note on the other hand that relevant

implementation, such as the union of temporal elements, has already been

incorporated in the implementation of other operations, such as selection and

projection.

Finally, some functions, START, STOP, COUNT etc, have not been

implemented either. Given however, that these functions do not play a critical

role relevant to the primary objectives of the thesis, it is considered that their

omition can fully be neglected.

Overall, it is considered that, in spite of the above -stated implementation

limitations, the prototype serves satisfactorily as a proof of concept, in that a

fuller implementation would not contribute substantially more with respect to

the objectives of this thesis.

B.2.1 Description of files

The implementation consists of fourteen (14) Miranda files,

relationalFile0.m - relationalFile12.m and main.m. The main.m file includes all

the other files and compiles them automatically. Some more files contain

sample code, in particular all the example relations of the thesis. All the files

231

contain comments that explain the functionality to a reasonable degree. A

brief description of them is given below:

File name Description

main.m It contains all the top level calls.

relationalFile0.m It contains type definitions used throughout this

implementation.

relationalFile1.m It includes general methods, used throughout the

implementation, and time manipulation functions.

relationalFile2.m It contains basic functions for selection, projection and

cartesian product operators.

relationalFile3.m It contains basic functions for the selection operator.

relationalFile4.m It contains basic functions for the join operator.

relationalFile5.m It contains basic functions for the rename operator.

relationalFile6.m It contains case 1 of the join operator.

relationalFile7.m It contains case 2 of the join operator.

relationalFile8.m It contains cases 3a and 3b of the join operator.

relationalFile9.m It contains case 4 of the join operator.

relationalFile10.m It contains case 5 of the join operator.

relationalFile11.m It contains cases 6a and 6b of the join operator.

relationalFile12.m It identifies the most suitable method for operator join.

B.2.2 Declaration of tables

There are several ways to introduce tables in Miranda. The current

implementation has chosen the user-defined type representation because it is

more generic, powerful and extensible, eg. NumberColumn "Id" 1, A

relational table is represented as a list of such entries:

Relation "Emp" [[NumberColumn "Id" 1, StringColumn "Name" "James"],

 [NumberColumn "Id" 2, StringColumn "Name" "Jack"], ...]

Column types may be numerical, char list or Boolean. Since user-defined

types are used to represent columns, the column definition can be extended to

any desired level of complexity, although this can occasionally be

cumbersome.

Time columns are defined as follows:

232

time == (num, num, num)

timeInterval == (time, time)

temporalElement == [timeInterval]

Therefore, the main type definitions of a database table, columnType, are:

columnType ::= NC string num |

 SC string string |

 BC string bool |

 RC relationalTable|

 TC temporalElement

As an example, the nested relation LOCATION (Fig. 3.8) is declared as

follows.

location :: relationalTable

location = Relation "LOCATION"

[[SC "COMPANY" "Toshiba", RC (Relation "ANNEX"

[[SC "BUILDING" "North Building", SC "ADDRESS" "Porchester Rd."]])],

[SC "COMPANY" "IBM", RC (Relation "ANNEX"

[[SC "BUILDING" "Maple House", SC "ADDRESS" "Kendal Av."],

[SC "BUILDING" "Main Building", SC "ADDRESS" "Danebury Rd."]])],

[SC "COMPANY" "Microsoft", RC (Relation "ANNEX"

[[SC "BUILDING" "Pegasus House", SC "ADDRESS" "Ashford St."],

[SC "BUILDING" "Queen's Building", SC "ADDRESS" "Park Rd."]])]]

The temporal version of LOCATION relation, T_LOCATION (ref. Fig. 3.15), is

declared as follows.

tlocation :: relationalTable

tlocation = Relation "T_LOCATION"

[[SC "COMPANY" "Toshiba", RC (Relation "ANNEX"

[[SC "BUILDING" "North Building", SC "ADDRESS" "Porchester Rd.",

TC "ADDRESS_PER" [((3, 8, 1995), (1, 1, 2010))]]])],

[SC "COMPANY" "IBM", RC (Relation "ANNEX"

[[SC "BUILDING" "Maple House", SC "ADDRESS" "Kendal Av.",

TC "ADDRESS_PER" [((17, 1, 1996), (22, 5, 1998))]],

[SC "BUILDING" "Main Building", SC "ADDRESS" "Danebury Rd.",

233

TC "ADDRESS_PER" [((10, 6, 1998), (1, 1, 2010))]]])],

[SC "COMPANY" "Microsoft", RC (Relation "ANNEX"

[[SC "BUILDING" "Pegasus House", SC "ADDRESS" "Ashford St.",

TC "ADDRESS_PER" [((29, 10, 1994), (4, 4, 1997))]],

[SC "BUILDING" "Queen's Building", SC "ADDRESS" "Park Rd.",

TC "ADDRESS_PER" [((18, 3, 1995), (1, 1, 2010))]]])]]

B.2.3 Functions

The main functions that have been developed are summarized below. Note

that many auxiliary functions have also been developed, to support the main

functions.

Function Name Description

TableProjection It selects a given subset of columns in a table.

tableProduct It calculates the cartesian product of two

tables.

rename It renames one or more columns in a table.

selectFrom It selects entries from a table that satisfy a

condition.

selectNotIn It selects entries from a table that do not

satisfy a condition.

joinTables It joins two tables on a pair of columns.

The temporal functions below are used to manipulate time.

Temporal function Description

areDisjoint It tests whether two time intervals are disjoint.

equals It tests whether two time intervals are equal.

before It tests whether a time interval is before another.

after It tests whether a time interval is after another.

meets It tests whether the start (end) point of the first

time interval is the same with the end (first) point of

the second.

inBetween It tests whether a time point is between the start

234

and end point of a time interval.

overlaps It tests whether two time intervals overlap.

covers It tests whether a time interval covers another time.

tUnion It calculates the union of two time intervals.

tIntersect It calculates the intersection of two time intervals.

If the time intervals are disjoint it returns the empty

list.

tDifference It calculates the difference of two time intervals.

tECovers It tests whether the first temporal element, which

consists of one time interval, covers all the time

intervals of the second temporal element.

tEAfter It tests whether the first temporal element, which

consists of one time interval, is after every time

interval of the second temporal element.

tEBefore It tests whether the first temporal element, which

consists of one time interval, is before every time

interval of the second temporal element.

tEMeets It tests whether the first temporal element, which

consists of one time interval, meets at least one

time interval of the second temporal element.

tEOverlaps It tests whether the first temporal element, which

consists of one time interval, overlaps with at least

one time interval of the second temporal element.

Some application examples of the listed functions are the following.

areDisjoint ((21, 3, 2003), (23, 3, 2003)) ((11, 4, 2001), (5, 6, 2002))

inBetween((21,3,2003),(23,3,2003))(5,6,2002)

tDifference((21,3,2003),(23,3,2003))((11,4,2001),(5,6,2002))

tEAfter((1,1,2003),(3,3,2003))[((30,4,1994),(27,8,1995)),((4,6,1997),(19,11,1998))]

tECovers((1,1,2003),(3,3,2003))[((30,4,1994),(27,8,1995)),((4,6,1997),(19,11,1998))]

235

B.3 Miranda Code

Part of the code, that has been developed, is listed in this section. In

particular, the section contains the whole of the code in files relationalFile0.m

and main.m and selected parts of the code in the remainder files.

|| File name: relationalFile0.m

|| This file contains type definitions used throughout this prototype implementation.
|| +++

|| string: Type definition for a list of characters.

string == [char]

|| columnType: Main type definition for a database table.
|| A simp le relational table here includes numerical, string and
|| boolean types. Further types (user defined) may be included.
|| NC stands for Numerical type Column.
|| SC stands for String type Column.
|| BC stands for Boolean type Column.
|| RC stands for Recursive type Column.
|| TC stands for Temporal type Column.

columnType ::= NC string num |

SC string string |
BC string bool |
TC string temporalElement |
RC relationalTable

|| ___
|| tableEntry: In our model, each table entry is a list of column
|| values.

tableEntry == [columnType]

|| ___
|| relationalTable: The main definition of a relational table.
|| A relational table here is created using a constructor (Relation),
|| a string identifier (tag) to hold the name of the table and a list
|| of entries for each row of the table.

relationalTable ::= Relation string [tableEntry]

|| ___
|| boolFunction: Definition of all functions applied to column which
|| return True or False. These functions are used to select column
|| based on function values.

boolFunction ::=NF (num -> bool) |

SF (string -> bool) |
BF (bool -> bool) |

 TF (temporalElement -> bool)

|| ___

236

|| strBoolPair: Pair definition to hold a boolean function and the
|| name tag of the column to which the function must apply.

strBoolPair == (string, boolFunction)

|| ___
|| columnEntryTuple: Auxiliary tuple type of a table column
|| and a table entry.
|| Used to join two tables.

columnEntryTuple == (columnType, tableEntry)

|| ___
|| doubleEntryTuple: Auxiliary tuple type of two table entries.
|| Used to join two tables.

doubleEntryTuple == (tableEntry, tableEntry)

|| ___
|| stringEntryListTuple: Auxiliary tuple type of a string and a list
|| of table entries.
|| Used to join two tables.

stringEntryListTuple == (string, [tableEntry])

|| ___
|| strEntryEntryTuple: Auxiliary tuple type of a string and two
|| table entries.
|| Used to join two tables.

strEntryEntryTuple == (string, tableEntry, tableEntry)

|| ___
|| stringEntryTuple: Auxiliary tuple type of a string and a table Entry.
|| Used to join two tables.

stringEntryTuple == (string, tableEntry)

|| ___
|| doubleEntryListTuple: Auxiliary tuple type of two lists of table
|| entries.
|| Used to join two tables.

doubleEntryListTuple == ([tableEntry], [tableEntry])

|| ___
|| stringTableTuple: Auxiliary tuple of a string and a relational
|| table.
|| Used to join two tables.

stringTableTuple == (string, relationalTable)

|| ___
|| joinTriple: Auxiliary tuple of a num, a bool and a string.
|| Used to join two tables.

joinTriple == (num, bool, string)

237

|| ___
|| strStrTuple: Pair definition to hold two strings.

strStrTuple == (string, string)

|| ___
|| Time-related definitions:

|| time: Defines a time point consisting of day, month and year.

time == (num, num, num)

|| ___
|| timeInterval: Defines a time interval consisting of a start point
|| (included) and a stop point (excluded).

timeInterval == (time, time)

|| ___
|| temporalElement: Defines a list of time intervals.

temporalElement == [timeInterval]

|| ___
|| tETuple: a 2-tuple of temporal elements.

tETuple == (temporalElement, temporalElement)

|| ___
|| Helper types for time manipulations:

|| timeList: Defines a list of time points.

timeList == [time]

|| ___
|| doubleNum: Defines a tuple of 2 numerical values.

doubleNum == (num, num)

|| File name: relationalFile1.m

|| Includes general methods used throughout this prototype implementation.

%include "relationalFile0.m"

|| +++

|| addEntry: Dynamically adds a new entry to a table.

addEntry :: tableEntry -> relationalTable -> relationalTable

|| ___
|| deleteEntry: Dynamiccally removes an existing entry from a table.

deleteEntry :: tableEntry -> relationalTable -> relationalTable

238

|| ___
|| remove: Multi-type function to remove an element from a list.

remove :: * -> [*] -> [*]

|| ___
|| colName: gives the column name of a column type.

colName :: columnType -> string

|| ___
|| isRecColumn: Tests a column to see whether it is a nested table.

isRecColumn:: columnType -> bool

|| ___
|| isTempColumn: Tests a column to see whether it is a temporal column.

isTempColumn :: columnType -> bool

|| ___
|| count: Couns the number of elements in a list.

count :: [*] -> num

|| ___
|| areEqual: Checks two lists for equality.
|| Two lists are equal if they have the same members
|| regardless of their orders.

areEqual :: [*] -> [*] -> bool

|| ___
|| memberOfEntryList: Checks whether an entry is a member of an entry list.

memberOfEntryList :: tableEntry -> [tableEntry] -> bool

|| ___
|| areEqualEntries: Cheks whether two entries are equals.

areEqualEntries :: tableEntry -> tableEntry -> bool

|| ___
|| isSubsetOf: Checks whether an entry is the subset of another entry.

isSubs etOf :: tableEntry -> tableEntry -> bool

|| ___
|| getColName: Top level call to remove parenthesis from column names.

getColName :: string -> string

|| ___
|| getColName2: Removes ')' from a column name.

getColName2 :: string -> string

|| ___

239

|| getColName3: Removes all '(' from a column name.

getColName3 :: string -> string -> string

|| ___
|| retainColNames: Removes all parenthesis and extra tags from column names
|| in a table.

retainColNames :: relationalTable -> relationalTable

|| ___
|| retainColNames2: Removes all parenthesis and extra tags from column names
|| in a table entry list.

retainColNames2 :: [tableEntry] -> [tableEntry]

|| ___
|| retainColNames3: Removes all parenthesis and extra tags from column names
|| in a table entry.

retainColNames3 :: tableEntry -> tableEntry

|| ___
|| retainColNames4: Removes all parenthesis and extra tags from a column name.

retainColNames4 :: columnType -> columnType

|| ___
|| Time manipulation functions:

|| ___
|| day: Gives the day part of a time point.

day :: time -> num

|| ___
|| month: Gives the month part of a time point.

month :: time -> num

|| ___
|| year: Gives the year part of a time point.

year :: time -> num

|| ___
|| start: Gives the start point of a time interval.

start :: timeInterval -> time

|| ___
|| stop: Gives the end point of a time interval.

stop :: timeInterval -> time

|| ___
|| tEStarts: Gives a list of start points of a given list
|| of time intervals.

240

tEStarts :: temporalElement -> timeList

|| ___
|| tEStops: Gives a list of end points of a given list
|| of time intervals.

tEStops :: temporalElement -> timeList

|| ___
|| compareTime: Compares 2 time points for a boolean comparison.

compareTime :: (num -> num -> bool) -> time -> time -> bool

|| ___
|| compareTime2: Compares 2 num tuples for a boolean comparison.

compareTime2 :: (num -> num -> bool) -> doubleNum -> doubleNum -> bool

|| ___
|| lessOf:: Given two time points chooses the earlier one.

lessOf :: time -> time -> time

|| ___
|| moreOf:: Given two time points chooses the later one.

moreOf :: time -> time -> time

|| ___
|| tEStartPoint: Gives the minimum start point of a list of start
|| points.

tEStartPoint :: timeList -> time

|| ___
|| tEStopPoint: Gives the maximum end point of a list of end
|| points.

tEStopPoint :: timeList -> time

|| ___
|| tEStart: Gives start point of a temporal element.

tEStart :: temporalElement -> time

|| ___
|| tEStop: Gives stop point of a temporal element.

tEStop :: temporalElement -> time

|| ___
|| areDisjoint: Checks 2 time intervals to see whether they are disjoint.

areDisjoint :: timeInterval -> timeInterval -> bool

|| ___
|| equals: Checks 2 time intervals t1 and t2 to see whether they are equal.

241

equals :: timeInterval -> timeInterval -> bool

|| ___
|| before: Checks 2 time intervals t1 and t2 to see whether t1 is before t2.

before :: timeInterval -> timeInterval -> bool

|| ___
|| after: Checks 2 time intervals t1 and t2 to see whether t1 is after t2.

after :: timeInterval -> timeInterval -> bool

|| ___
|| meets: Checks 2 time intervals t1 and t2 to see whether t1's start point
|| (end point) is the same as t2's end point (start point).

meets :: timeInterval -> timeInterval -> bool

|| ___
|| Maybe needed: \/ (compareTime (=) d a)

|| ___
|| inBetween: Checks a time interval ti and a timepoint t to see whether t lies
|| between start point and end point of ti.

inBetween :: timeInterval -> time -> bool

|| ___
|| overlaps: Checks 2 time intervals t1 and t2 to see whether t1 and t2 overlap.

overlaps :: timeInterval -> timeInterval -> bool

|| ___
|| covers: Checks 2 time intervals t1 and t2 to see whether t1 covers t2.

covers :: timeInterval -> timeInterval -> bool

|| ___
|| tUnion: Calculates the union of two time intervals.

tUnion :: timeInterval -> timeInterval -> temporalElement

|| ___
|| union: Calculates the union of two temporal elements.

union :: temporalElement -> temporalElement -> temporalElement

|| ___
|| union2: Checks a time interval against a list of time intervals to find
|| all possible unions.

union2 :: timeInterval -> temporalElement -> temporalElement -> tETuple

|| ___
|| tIntersect: Calculates the intersection of two time intervals.
|| It will return an empty list if time intervals are disjoint.

242

tIntersect :: timeInterval -> timeInterval -> temporalElement

|| ___
|| intersect: Calculates the intersection of two temporal elements.

intersect :: temporalElement -> temporalElement -> temporalElement

|| ___
|| intersect2: Checks a time interval against a list of time intervals to find
|| all possible intersections.

intersect2 :: timeInterval -> temporalElement -> temporalElement

|| ___
|| tDifference: Calculates the difference of two time intervals.

tDifference :: timeInterval -> timeInterval -> temporalElement

|| ___
|| tDifference2: Calculates the difference of two overlapping time intervals.

tDifference2 :: timeInterval -> timeInterval -> temporalElement

|| ___
|| difference: Calculates the difference of two temporal elements.

difference :: temporalElement -> temporalElement -> temporalElement

|| ___
|| difference2: Checks a time interval against a list of time intervals to find
|| all possible differences.

difference2 :: timeInterval -> temporalElement -> temporalElement

|| ___
|| Union functions based on temporal elements:

|| ___
|| getUnion: Gets the union of two table entries based on their
|| temporal elements.
|| Calls getUnion2 function to do the actual work.

getUnion :: tableEntry -> tableEntry -> [tableEntry]

|| ___
|| extractTemp: Separates temporal and non-temporal columns of a table entry.

extractTemp :: tableEntry -> tableEntry -> tableEntry -> doubleEntryTuple

|| ___
|| getUnion2: Gets the union of two table entries by getting the union
|| of their temporal elements.

getUnion2 :: doubleEntryTuple -> doubleEntryTuple -> [tableEntry]
|| ___
|| getTempUnion: Gets the union of two lists of temporal elements.
|| Calls getTempUnion2 function to do the actual work.

243

getTempUnion :: tableEntry -> tableEntry -> tableEntry

|| ___
|| getTempUnion2: Given a columnType x, finds an element in a list
|| of temporal elements to get their union. If nothing is found, an
|| error is printed.

getTempUnion2 :: columnType -> tableEntry -> tableEntry

|| ___
|| getAllUnion: Gets the union of table entries at the top level.
|| Calls getAllUnion2 function.

getAllUnion :: relationalTable -> relationalTable

|| ___
||getAllUnion2: Gets the union of lists of table entries.

getAllUnion2 :: [tableEntry] -> [tableEntry] -> [tableEntry]

|| ___
|| getAllUnion3: Gets the union of a table entry and a list of table entries.

getAllUnion3 :: tabl eEntry -> [tableEntry] -> [tableEntry]

|| ___
|| merge1: Gets the union of table entries for a relational table.

merge1 :: relationalTable -> relationalTable

|| ___
|| merge2: Gets the union of table entries recursively.

merge2 :: [tableEntry] -> [tableEntry]

|| ___
|| merge3: Gets the union of two table entries.

merge3 :: tableEntry -> tableEntry

|| ___
|| merge4: Gets the union of a recursive column.

merge4 :: columnType -> columnType

|| ___
|| tEBefore: Checks a time interval (ti) and a temporal element (te) to see whether t1 is before te1.

tEBefore :: timeInterval -> temporalElement -> bool

|| ___
|| tEAfter: Checks a time interval (ti) and a temporal element (te) to see whether t1 is after te1.

tEAfter :: timeInterval -> temporalElement -> bool

|| ___
|| tEMeets: Checks a time interval (ti) and a temporal element (te) to see whether ti meets te.

244

tEMeets :: timeInterval -> temporalElement -> bool

|| ___
|| tEOverlaps: Checks a time interval (ti) and a temporal element (te) to see whether ti and te overlap.

tEOverlaps :: timeInterval -> temporalElement -> bool

|| ___
|| tECovers: Checks a time interval (ti) and a temporal element (te) to see whether ti covers te.

tECovers :: timeInterval -> temporalElement -> bool

|| File name: relationalFile2.m

%include "relationalFile0.m"
%include "relationalFile1.m"

|| +++

|| isColumnTag: Simple method to identify a column using its tag.

isColumnTag :: string -> columnType -> bool

|| ___
|| resolvePath: Creates full path name for columns in a table.

resolvePath:: relationalTable -> relationalTable

|| ___
|| resolvePath2: Creates full path names for a list of entries
|| given a string and a depth.

resolvePath2 :: string -> num -> [tableEntry] -> [tableEntry]

|| ___
|| resolvePath3: Creates full path names for a list of columns given
|| a string and a depth.

resolvePath3 :: string -> num -> tableEntry -> tableEntry

|| ___
|| resolvePath4: Creates full path names for a column given
|| a string and a depth.

resolvePath4 :: string -> num -> columnType -> columnType

|| ___
|| rpar: Generates a given number of closing parenthesis.

rpar :: num -> string

|| ___
|| selectCol: Used to select a column recursively based on its tag.

selectCol :: string -> columnType -> tableEntry

245

|| ___
|| selectEntryByStr: Selects all columns from a list of columns using
|| the given column tag.

selectEntryByStr :: string -> tableEntry -> tableEntry

|| ___
|| selectEntryByStrLst: Selects a list of columns whose names are
|| provided by a list of string tags.

selectEntryByStrLst :: [string] -> tableEntry -> tableEntry

|| ___
|| selectEntryLstByStrLst: Selects entries from a given entry list
|| whose names are provided by a list of tags.

selectEntryLstByStrLst :: [string] -> [tableEntry] -> [tableEntry]

|| ___
|| tableProjection2: Selects a subset of table entries based on given
|| column names after all recursive column names have been resolved.

tableProjection2 :: [string] -> relationalTable -> relationalTable

|| ___
|| flattenRelTable: Flattens a relational table by calling helper
|| function flattenEntryList.

flattenRelTable :: relationalTable -> relationalTable

|| ___
|| flattenEntryList: Flattens a list of table entries by calling helper
|| function flattenColumnList.

flattenEntryList :: [tableEntry] -> [tableEntry]

|| ___
|| flattenColumnLis t: Flattens a list of columns by calling helper
|| function flattenColumn.

flattenColumnList :: [columnType] -> [columnType]

|| ___
|| flattenColumn: Flattens recursive columns.

flattenColumn :: columnType -> [columnType]

|| ___
|| tableProduct2: Product of two relational tables at the top level.
|| All possible combinations of table entries are included.
|| No recursive application involved.

tableProduct2 :: relationalTable -> relationalTable -> relationalTable

|| ___
|| tableProduct3: Product of a table with an inner table of another table.
|| All possible combinations of table entries are included.

246

tableProduct3 :: relationalTable -> (string, relationalTable) -> relationalTable

|| ___
|| tableProduct4: Applies the product of a table to a list of table entries
|| for recursive application.

tableProduct4 :: relationalTable -> string -> [tableEntry] -> [tableEntry]

|| ___
|| tableProduct5: Applies the product of a table to a list of table columns
|| for recursive application.

tableProduct5 :: relationalTable -> string -> tableEntry -> tableEntry

|| ___
|| tableProduct6: Applies the product to a recursive column which holds the
|| required inner table.

tableProduct6 :: relationalTable -> columnType -> columnType

|| ___
|| tableProduct7: Applies the product to a recursive column if the inner table is
|| the one required.

tableProduct7 :: relationalTable -> string -> columnType -> columnType

|| ___
|| getRecTableNames: Gets the name of a table and calls getRecTableNames2
|| to get the names of all recursive tables.

getRecTableNames :: relationalTable -> [string]

|| ___
|| getRecTableNames2: Gets table names recursively for a list of table entries.

getRecTableNames2 :: [tableEntry] -> [string]

|| ___
|| getRecTableNames3: Gets table names recursively for a list of columns.

getRecTableNames3 :: tableEntry -> [string]

|| ___
|| getRecTableNames4: Gets the name of a table column if it is an inner table.

getRecTableNames4 :: columnType -> [string]

|| File name: relationalFile3.m

%include "relationalFile0.m"
%include "relationalFile1.m"
%include "relationalFile2.m"

|| +++

|| selectColByPair: Applies a boolean function to a column identified

247

|| by column tag: return True if the application off function on
|| column is true, false otherwise. Also returns false if the function
|| is not of the right type.

selectColByPair :: strBoolPair -> columnType -> (bool, columnType)

|| ___
|| selectEntryByPair: Returns true if the entry list
|| contains a column whose tag is provided and the application
|| of the given function on the column is successful. Returns
|| false otherwise.

selectEntryByPair :: strBoolPair -> tableEntry -> tableEntry -> (bool, tableEntry)

|| ___
|| selectEntryByPairLst: Returns true if the application of all
|| boolean functions prodived on all columns provided are successful.
|| Returns false otherwise.

selectEntryByPairLst :: [strBoolPair] -> tableEntry -> (bool, tableEntry)

|| ___
|| selectEntryByPairLst2: Returns table entry if the application of all
|| boolean functions prodived on all columns provided are successful.
|| Returns an empty list otherwise.

selectEntryByPairLst2 :: [strBoolPair] -> tableEntry -> tableEntry

|| ___
|| selectEntryLstByPairLst: Returns all table entries if the application of all
|| boolean functions prodived on all columns provided are successful.
|| Returns an empty list otherwise.
|| Empty lists within empty lists are flattened.

selectEntryLstByPairLst :: [strBoolPair] -> [tableEntry] -> [tableEntry]

|| ___
|| extractColNames: Extracts column names from a list of string-boolean function pairs.

extractColNames :: [strBoolPair] -> [string]

|| ___
|| getInnerTable: Gets the inner table from a recursive column.

getInnerTable :: columnType -> relationalTable

|| ___
|| getTableColumns: Top level function to get a list of table columns recursively.
|| It calls getAllColumnNames.

getTableColumns :: relationalTable -> [string]

|| ___
|| getAllColumnNames: Collects all column names of all entries in a table.

getAllColumnNames :: [tableEntry] -> [string]

|| ___

248

|| getColumnNames: Collects all non recursive column names of a table entry.

getColumnNames :: tableEntry -> [string]

|| ___
|| addListMembers: Adds contents of a list to another list if not already there.

addListMembers :: [*] -> [*] -> [*]

|| ___
|| isSubSet: Checks whether a list is a subset of another list.

isSubSet :: [*] -> [*] -> bool

|| ___
|| isSelectListValid: Checks whether column names in a select list all
|| refer to valid column names in a table.

isSelectListValid :: [strBoolPair] -> [tableEntry] -> bool

|| ___
|| selectFrom2: Selects all entries in a table which satisfy a given
|| list of conditions after having all recursive column names resolved.

selectFrom2 :: [strBoolPair] -> relationalTable -> relationalTable

|| ___
|| selectNotIn2: Selects all entries in a table which do not satisfy a given
|| list of conditions after having all recursive column names resolved.

selectNotIn2 :: [strBoolPair] -> relationalTable -> relationalTable

|| File name: relationalFile4.m

%include "relationalFile0.m"
%include "relationalFile1.m"
%include "relationalFile2.m"

|| +++

|| replaceColumnTag: Replaces a column tag by a new string identifier for
|| a given column.

replaceColumnTag :: string -> string -> columnType -> columnType

|| ___
|| replaceEntryTag: Replaces a column tag by a new string identifier for
|| a table entry.

replaceEntryTag :: string -> string -> tableEntry -> tableEntry

|| ___
|| replaceEntryListTag: Replaces a column tag by a new string identifier for
|| all table entry list members.

replaceEntryListTag :: string -> string -> [tableEntry] -> [tableEntry]

249

|| ___
|| sepColFromEntries: Given a list of table entries, it breaks each entry
|| into two entries, one containing a given column and the other containing
|| all other columns.

sepColFromEntries :: string -> [tableEntry] -> [strEntryEntryTuple]

|| ___
|| sepColFromEntry: Using a column tag, separates a column from the rest of a
|| table entry and into a new list.

sepColFromEntry :: string -> tableEntry -> tableEntry -> strEntryEntryTuple

|| ___
|| joinColTabLists: Attempts to join two list of table entries recursively.

joinColTabLists :: [strEntryEntryTuple] -> [strEntryEntryTuple] -> [tableEntry]

|| ___
|| joinColTabLists2: Attempts to join a table entry recursively with a list
|| of table entries.

joinColTabLists2 :: strEntryEntryTuple -> [strEntryEntryTuple] -> [tableEntry]

|| ___
|| joinColTabLists3: If the joining columns are of the same type and value, it
|| will join the entries.

joinColTabLists3 :: strEntryEntryTuple -> strEntryEntryTuple -> [tableEntry]

|| ___
|| areColumnsEq: Cheks whether two columns are of equal type and value.

areColumnsEq :: columnType -> columnType -> bool

|| ___
|| separateNonRec: Separates non recursive and recursive columns into
|| two different lists.

separateNonRec :: tableEntry -> tableEntry -> tableEntry -> (tableEntry, tableEntry)

|| ___
|| removeRecTag: removes RC tag from the begining of a recursive column.

removeRecTag :: columnType -> relationalTable

|| ___
|| makeRecTag: Attaches an RC tag to the begining of a recursive column.

makeRecTag :: relationalTable -> columnType

|| ___
|| findLevel1: Finds at what level in a table a given column resides.

findLevel1 :: string -> relationalTable -> num -> joinTriple

|| ___

250

|| findLevel2: Finds at what level in a list of table entries a given column resides.

findLevel2 :: string -> tableEntry -> num -> joinTriple

|| ___
|| findLevel3: Finds at what level in a table entry a given column resides.
|| Used for recursive columns only.

findLevel3 :: string -> tableEntry -> num -> joinTriple

|| ___
|| tableName: Gives name of a table.

tableName :: relationalTable -> string

|| ___
|| recColumnName: Gives name of a recursive column.

recColumnName :: columnType -> string

|| ___
|| getLevel: Gets the level at which a column exists.
|| Used for join operation.

getLevel :: joinTriple -> num

|| ___
|| isAtomic: Indicates whether a column is atomic or not.
|| Used for join operation.

isAtomic :: joinTriple -> bool

|| ___
|| getTabName: Gives column name if column is recursive.
|| returns an empty string for atomic columns.
|| Used for join operation.

getTabName :: joinTriple -> string

|| ___
|| cleanTable: Removes all entries in a table which have empty recursive
|| columns.

cleanTable :: relationalTable -> relationalTable

|| ___
|| cleanEntryList: Removes all entries in a list of table entries which have
|| empty recursive columns.

cleanEntryList :: [tableEntry] -> [tableEntry]

|| ___
|| cleanEntry: Removes an entry if it has an empty recursive column.
|| It first separates recursive and non recursive columns and then calls
|| cleanEntry2().

cleanEntry :: tableEntry -> [tableEntry]

251

|| ___
|| cleanEntry2: Removes an entry if it has an empty recursive column.
|| It calls cleanEntry3() to do the same recursively.

cleanEntry2 :: (tableEntry, tableEntry) -> [tableEntry]

|| ___
|| cleanEntry3: Checks a recursive column to see if it needs cleaning.

cleanEntry3 :: tableEntry -> tableEntry

|| ___
|| isAnEmptyRec: Checks a recursive column for emptiness.

isAnEmptyRec :: columnType -> bool

|| File name: relationalFile5.m
|| This file contains base functions for rename operator

%include "relationalFile0.m"

|| +++

|| renameColumn: Renames a column heading with a new one.

renameColumn :: strStrTuple -> columnType -> columnType

|| ___
|| renameEntry: Renames a column heading for a list of columns.

renameEntry :: strStrTuple -> tableEntry -> tableEntry

|| ___
|| renameEntryList: Renames a column heading for a list of table
|| entries.

renameEntryList :: strStrTuple -> [tableEntry] -> [tableEntry]

|| ___
|| renameTableList: Renames column heading of a list of columns for
|| a list of table entries.

renameTableList :: [strStrTuple] -> [tableEntry] -> [tableEntry]

|| ___
|| rename2: Renames column heading of a list of columns for a
|| relational table.

rename2 :: [strStrTuple] -> relationalTable -> relationalTable

252

|| File name: relationalFile6.m
|| Join case 1.

%include "relationalFile0.m"
%include "relationalFile4.m"

|| +++

|| joinTables1: Main function to join two normal relational tables based on two
|| columns of similar types.

joinTables1 :: stringTableTuple -> stringTableTuple -> relationalTable

|| File name: relationalFile7.m
|| Join case 2.

%include "relationalFile0.m"
%include "relationalFile4.m"
%include "relationalFile6.m"

|| +++

|| joinTables2: Main function to join a top level and a nested relational table
|| based on two columns of similar types.

joinTables2 :: stringTableTuple -> stringTableTuple -> num -> relationalTable

|| ___
|| joinTables20:

joinTables20 :: stringTableTuple -> stringTableTuple -> num -> relationalTable

|| ___
|| joinTables21:

joinTables21 :: stringTableTuple -> stringEntryListTuple -> num -> [tableEntry]

|| ___
|| joinTables22:

joinTables22 :: stringTableTuple -> stringEntryTuple -> num -> [tableEntry]

|| ___
|| joinTables23:

joinTables23 :: stringTableTuple -> string -> (tableEntry, tableEntry) -> num -> [tableEntry]

|| ___
|| joinTables24:

joinTables24 :: stringTableTuple -> string -> tableEntry -> num -> tableEntry

|| ___
|| joinTables25:

joinTables25 :: tableEntry -> tableEntry -> [tableEntry]

253

|| File name: relationalFile8.m
|| Join case 3a and 3b.

%include "relationalFile0.m"
%include "relationalFile4.m"
%include "relationalFile6.m"

|| +++

|| Case 3a:

|| joinTables3a: Top level method to join tables according to case 3a.
|| Joins 2 nested columns at the same level.

joinTables3a :: stringTableTuple -> stringTableTuple -> num -> relationalTable

|| ___
|| joinTables3a2: Joins two tables according to case 3a.
|| It acts on tables directly and carries the nesting level.

joinTables3a2 :: stringTableTuple -> stringTableTuple -> num -> relationalTable

|| ___
|| joinTables3a3: Joins two tables according to case 3a.
|| It acts on entry lists and carries nesting level.

joinTables3a3 :: stringEntryListTuple -> stringEntryListTuple -> num -> [tableEntry]

|| ___
|| joinTables3a4: Joins a table entry with a list of entries recursively.

joinTables3a4 :: stringEntryTuple -> stringEntryListTuple -> num -> [tableEntry]

|| ___
|| joinTables3a5: Separates recursive and non recursive columns in table entries for joining.

joinTables3a5 :: stringEntryTuple -> stringEntryTuple -> num -> [tableEntry]

|| ___
|| joinTables3a6: Joins two recursive columns.

joinTables3a6 :: stringEntryTuple -> stringEntryTuple -> num -> tableEntry

|| ___
|| joinTables3a7: Joins two table entries if the recurive column is not empty.

joinTables3a7 :: tableEntry -> tableEntry -> tableEntry -> [tableEntry]

|| ___
|| Case 3b:

|| joinTables3b: Top level method to join tables according to case 3b.
|| Joins 2 nestted columns at different levels.

joinTables3b :: stringTableTuple -> stringTableTuple -> num -> num -> relationalTable

|| ___

254

|| joinTables3b2: Method to join tables according to case 3b.
|| It acts on tables directly and carries the nesting level.

joinTables3b2 :: stringTableTuple -> stringTableTuple -> num -> num -> relationalTable

|| ___
|| joinTables3b3: Method to join tables according to case 3b.
|| It acts on entry lists and carries nesting level.

joinTables3b3 :: stringEntryListTuple -> stringTableTuple -> num -> num -> [tableEntry]

|| ___
|| joinTables3b4: Joins a table entry with a list of entries recursively.

joinTables3b4 :: stringEntryTuple -> stringTableTuple -> num -> num -> [tableEntry]

|| ___
|| joinTables3b5: Separates recursive and non recursive columns in table entries for joining.

joinTables3b5 :: stringEntryTuple -> stringTableTuple -> num -> num -> tableEntry

|| File name: relationalFile9.m
|| Join case 4.

%include "relationalFile0.m"
%include "relationalFile1.m"
%include "relationalFile4.m"
%include "relationalFile6.m"
%include "relationalFile8.m"

|| +++

|| joinTables4: Top level function to join two tables according
|| to case 4.

joinTables4 :: stringTableTuple -> stringTableTuple -> relationalTable

|| ___
|| joinTables41: Joins two table entry lists based on case 4.
|| It recursively applies each element of the first list to the
|| entire second list.

joinTables41 :: stringEntryListTuple -> stringEntryListTuple -> [tableEntry]

|| ___
|| joinTables42: Joins an entry to an entry list based on case 4.
|| It recursively applied the enttry to each element (entry) of the second list.

joinTables42 :: stringEntryTuple -> stringEntryListTuple -> [tableEntry]

|| ___
|| joinTables43: Joins two entries based on case 4.

joinTables43 :: stringEntryTuple -> stringEntryTuple -> [tableEntry]

|| ___

255

|| joinTables44: Joins two recursive columns.

joinTables44 :: stringEntryTuple -> stringEntryTuple -> tableEntry

|| ___
|| joinTables45: Joins two tables (within recursive columns) based on case 4.

joinTables45 :: stringTableTuple -> stringTableTuple -> relationalTable

|| ___
|| joinTables46: Joins two entry lists (within a recursive column)
|| based on case 4.

joinTables46 :: [tableEntry] -> [tableEntry] -> [tableEntry]

|| ___
|| joinTables47: Auxiliary function to join two entry lists according
|| to case 4.

joinTables47 :: [tableEntry] -> [tableEntry] -> [tableEntry] -> [tableEntry]

|| ___
|| joinTables48: Checks whether an entry belongs to an entry list.
|| If not, it ignores the entry, otherwise, it will record the entry for
|| future use.

joinTables48 :: tableEntry -> [tableEntry] -> [tableEntry] -> [tableEntry]

|| File name: relationalFile10.m
|| Join case 5.

%include "relationalFile0.m"
%include "relationalFile4.m"
%include "relationalFile6.m"
%include "relationalFile9.m"

|| +++

|| joinTables5: Main function to join a top level and a nested relational table
|| based on two columns of similar types.

joinTables5 :: stringTableTuple -> stringTableTuple -> num -> relationalTable

|| ___
|| joinTables50:

joinTables50 :: stringTableTuple -> stringTableTuple -> num -> relationalTable

|| ___
|| joinTables51:

joinTables51 :: stringTableTuple -> stringEntryListTuple -> num -> [tableEntry]

|| ___
|| joinTables52:

256

joinTables52 :: stringTableTuple -> stringEntryTuple -> num -> [tableEntry]

|| ___
|| joinTables53:

joinTables53 :: stringTableTuple -> string -> (tableEntry, tableEntry) -> num -> [tableEntry]

|| ___
|| joinTables54:

joinTables54 :: stringTableTuple -> string -> tableEntry -> num -> tableEntry

|| ___
|| joinTables55:

joinTables55 :: tableEntry -> tableEntry -> [tableEntry]

|| File name: relationalFile11.m
|| Join case 6a and 6b.

%include "relationalFile0.m"
%include "relationalFile4.m"
%include "relationalFile6.m"
%include "relationalFile8.m"
%include "relationalFile9.m"

|| +++

|| Case 6a:

|| joinTables6a: Top level method to join tables according to case 6a.
|| Joins 2 nested columns at the same level.

joinTables6a :: stringTableTuple -> stringTableTuple -> num -> relationalTable

|| ___
|| joinTables6a2: Joins two tables according to case 6a.
|| It acts on tables directly and carries the nesting level.

joinTables6a2 :: stringTableTuple -> stringTableTuple -> num -> relationalTable

|| ___
|| joinTables6a3: Joins two tables according to case 6a.
|| It acts on entry lists and carries nesting level.

joinTables6a3 :: stringEntryListTuple -> stringEntryListTuple -> num -> [tableEntry]

|| ___
|| joinTables6a4: Joins a table entry with a list of entries recursively.

joinTables6a4 :: stringEntryTuple -> stringEntryListTuple -> num -> [tableEntry]

|| joinTables6a5: Separates recursive and non recursive columns in table entries for joining.

joinTables6a5 :: stringEntryTuple -> stringEntryTuple -> num -> [tableEntry]

257

|| ___
|| joinTables6a6: Joins two recursive columns.

joinTables6a6 :: stringEntryTuple -> stringEntryTuple -> num -> tableEntry

|| ___
|| Case 6b:

|| joinTables6b: Top level method to join tables according to case 6b.
|| Joins 2 nested columns at different levels.

joinTables6b :: stringTableTuple -> stringTableTuple -> num -> num -> relationalTable

|| ___
|| joinTables6b2: Method to join tables according to case 6b.
|| It acts on tables directly and carries the nesting level.

joinTables6b2 :: stringTableTuple -> stringTableTuple -> num -> num -> relationalTable

|| ___
|| joinTables6b3: Method to join tables according to case 6b.
|| It acts on entry lists and carries nesting level.

joinTables6b3 :: stringEntryListTuple -> stringTableTuple -> num -> num -> [tableEntry]

|| ___
|| joinTables6b4: Joins a table entry with a list of entries recursively.

joinTables6b4 :: stringEntryTuple -> stringTableTuple -> num -> num -> [tableEntry]

|| ___
|| joinTables6b5: Separates recursive and non recursive columns in table entries for joining.

joinTables6b5 :: stringEntryTuple -> stringTableTuple -> num -> num -> tableEntry

|| File name: relationalFile12.m
|| Responsible for finding the most suitable method for join.

%include "relationalFile0.m"
%include "relationalFile4.m"
%include "relationalFile6.m"
%include "relationalFile7.m"
%include "relationalFile8.m"
%include "relationalFile9.m"
%include "relationalFile10.m"
%include "relationalFile11.m"

|| +++

|| joinTables0:

joinTables0 :: stringTableTuple -> stringTableTuple -> relationalTable

258

|| File name: main.m

|| Contains all top level calls.

%include "relationalFile0.m"
%include "relationalFile1.m"
%include "relationalFile2.m"
%include "relationalFile3.m"
%include "relationalFile4.m"
%include "relationalFile5.m"
%include "relationalFile6.m"
%include "relationalFile7.m"
%include "relationalFile8.m"
%include "relationalFile9.m"
%include "relationalFile10.m"
%include "relationalFile11.m"
%include "relationalFile12.m"
%include "samples1.m"
%include "ttraining.m"
%include "tcourse.m"
%include "tcashpoint.m"
%include "tlocation.m"
%include "tdept.m"

|| +++

|| tableProjection: Selects a subset of table entries based on given
|| column names by first resolving recursive column names and then calling
|| helper functions tableProjection2 and flattenRelTable.

tableProjection :: [string] -> relationalTable -> relationalTable
tableProjection x y = getAllUnion (flattenRelTable (tableProjection2 x (resolvePath y)))

|| ___
|| tableProduct: Product of two relational tables.
|| All possible combinations of table entries are included.
|| Recursive cases included.

tableProduct :: (string, relationalTable) -> (string, relationalTable) -> relationalTable
tableProduct (a, b) (c, d) = getAllUnion (tableProduct2 (resolvePath b) (resolvePath d)), if (u & v)
 = error "Error: Table product on two inner tables", if ((~u) & (~v))

 = getAllUnion (tableProduct3 (resolvePath b) (c, resolvePath d)), if (u & (~v))
 = getAllUnion (tableProduct3 (resolvePath d) (a, resolvePath b)), otherwise

 where u = (a = "")
v = (c = "")

|| ___
|| selectFrom: Selects all entries in a table which satisfy a given
|| list of conditions by:
|| 1) resolving all recursive column names,
|| 2) calling tableProjection2 on the result,
|| 3) calling flattenRelTable on the result.

selectFrom :: [string] -> [strBoolPair] -> relationalTable -> relationalTable
selectFrom x y z = getAllUnion (flattenRelTable (tableProjection2 x (selectFrom2 y (resolvePath
z))))

259

|| ___
|| selectNotIn: Selects all entries in a table which do not satisfy a given
|| list of conditions by:
|| 1) resolving all recursive column names,
|| 2) calling tableProjection2 on the result,
|| 3) calling flattenRelTable on the result.

selectNotIn :: [string] -> [strBoolPair] -> relationalTable -> relationalTable
selectNotIn x y z = getAllUnion (flattenRelTable (tableProjection2 x (selectNotIn2 y (resolvePath
z))))

|| ___
|| joinTables: Main function to join two relational tables of any complexity
|| based on two columns of similar types.

joinTables :: stringTableTuple -> stringTableTuple -> relationalTable
joinTables (x, r1) (y, r2) = getAllUnion (retainColNames (joinTables0 (x, resolvePath r1) (y,
resolvePath r2)))

|| ___
|| rename: Renames column heading of a list of columns for a
|| relational table. It calls rename2 function after resolving
|| all column names.

rename :: [strStrTuple] -> relationalTable -> relationalTable
rename x y = getAllUnion (rename2 x (resolvePath y))

B.4 Illustration Examples

The coding in Miranda, of examples presented in the thesis, is given below.

Occasionally, the result is also given, assuming that it does not occupy much

space.

Example 4.8

tableProjection["COMPANY","TRAINING_2(TRAINER(C(CN)))"]t2

Result:

Relation "TRAINING_2"

[[SC "COMPANY" "Apple", RC (Relation "TRAINER"

[[RC (Relation "C"

[[NC "TRAINING_2(TRAINER(C(CN)))" 1],

[NC "TRAINING_2(TRAINER(C(CN)))" 2]])],

[RC (Relation "C"

[[NC "TRAINING_2(TRAINER(C(CN)))" 1],

[NC "TRAINING_2(TRAINER(C(CN)))" 3],

[NC "TRAINING_2(TRAINER(C(CN)))" 2]])]])],

[SC "COMPANY" "IBM", RC (Relation "TRAINER"

260

[[RC (Relation "C"

[[NC "TRAINING_2(TRAINER(C(CN)))" 3],

[NC "TRAINING_2(TRAINER(C(CN)))" 5],

[NC "TRAINING_2(TRAINER(C(CN)))" 4]])]])],

[SC "COMPANY" "Microsoft", RC (Relation "TRAINER"

[[RC (Relation "C"

[[NC "TRAINING_2(TRAINER(C(CN)))" 2]])]])]]

Example 4.9:

A revised version of the example is given, due to the fact that relevant

implementation is missing (only for ‘Mark’, since OR has not been

implemented).

selectFrom["COMPANY","TRAINING_2(TRAINER(TRN))","TRAINING_2(TRAINER(C(CN)))",

"TRAINING_2(TRAINER(C(Y)))"][("TRAINING_2(TRAINER(TRN))", SF ((=) "Mark")),

("TRAINING_2(TRAINER(C(Y)))", NF ((=) 82))]t2

Result:

Relation "TRAINING_2"

[[SC "COMPANY" "Apple", RC (Relation "TRAINER"

[[SC "TRAINING_2(TRAINER(TRN))" "Mark", RC (Relation "C"

[[NC "TRAINING_2(TRAINER(C(CN)))" 1, NC "TRAINING_2(TRAINER(C(Y)))" 82],

[NC "TRAINING_2(TRAINER(C(CN)))" 3, NC "TRAINING_2(TRAINER(C(Y)))" 82]])]])]]

Example 4.9:
A revised version of the example is given, due to the fact that relevant

implementation is missing (only for ‘Tim’, since OR has not been

implemented).

selectFrom["COMPANY","TRAINING_2(TRAINER(TRN))","TRAINING_2(TRAINER(C(CN)))",

"TRAINING_2(TRAINER(C(Y)))"][("TRAINING_2(TRAINER(TRN))", SF ((=) "Tim")),

("TRAINING_2(TRAINER(C(Y)))", NF ((=) 82))]t2

Result:

Relation "TRAINING_2"

[[SC "COMPANY" "IBM", RC (Relation "TRAINER"

 [[SC "TRAINING_2(TRAINER(TRN))" "Tim", RC (Relation "C"

[[NC "TRAINING_2(TRAINER(C(CN)))" 3, NC"TRAINING_2(TRAINER(C(Y)))" 82],

[NC "TRAINING_2(TRAINER(C(CN)))" 4, NC "TRAINING_2(TRAINER(C(Y)))" 82]])]])]]

261

Example 4.12:

rename[("DEPT(UNIT(UD))", "DEPT(UNIT(UD')"),

("DEPT(UNIT(COURSE_DETAILS(C(CN))))",

"DEPT(UNIT(COURSE_DETAILS(C'(CN))))"),("DEPT(UNIT(COURSE_DETAILS(C(Y))))",

"DEPT(UNIT(COURSE_DETAILS(C'(Y))))")]d

Example 4.14:

tableProduct("COURSE",t)("", cashpoint)

Other Example:

tableProduct(“”,cashpoint)(“”,employment)

Example 4.16:

joinTables("LOCATION(ANNEX(ADDRESS))", location)

 ("CASH-POINT(BRANCH(ADDRESS))", cashpoint)

Result:

Relation "LOCATION/CASH-POINT"

[[SC "COMPANY" "Toshiba ", SC "BANK" "Natwest", RC (Relation "ANNEX/BRANCH"

[[SC "ADDRESS" "Porchester Rd.", SC "BUILDING" "North Building", SC "SORT_CODE"

"560038"]])],

[SC "COMPANY" "Microsoft", SC "BANK" "Barcklays", RC (Relation "ANNEX/BRANCH"

[[SC "ADDRESS" "Ashford St.", SC "BUILDING" "Pegasus House", SC "SORT_CODE"

"386600"]])],

[SC "COMPANY" "Microsoft", SC "BANK" "Natwest", RC (Relation "ANNEX/BRANCH"

[[SC "ADDRESS" "Park Rd.", SC "BUILDING" "Queen's Building", SC "SORT_CODE"

"560045"]])],

[SC "COMPANY" "Microsoft", SC "BANK" "Lloyd's", RC (Relation "ANNEX/BRANCH"

[[SC "ADDRESS" "Ashford St.", SC "BUILDING" "Pegasus House", SC "SORT_CODE"

"478202"],

[SC "ADDRESS" "Park Rd.", SC "BUILDING" "Queen's Building", SC "SORT_CODE"

"478210"]])]]

Example 4.17:

joinTables("TRAINING_1(PROGRAMME(TRN))", t1)("DEPT_1(UNIT(TRAINER(TRN)))",d1)

Example 4.18:

joinTables("JOB", employment)("JOB", payment)

262

Result:

Relation "EMPLOYMENT/PAYMENT"

[[SC "NAME" "Anna", SC "SALARY" "15,500-19,500", RC(Relation "JOB"

[[SC "COMPANY" "Toshiba ", SC "JOB_DESCRIPTION" "Secretary"]])],

[SC "NAME" "Anna", SC "SALARY" "18,000-23,000", RC (Relation "JOB"

[[SC "COMPANY" "Microsoft", SC "JOB_DESCRIPTION" "Secretary"]])],

[SC "NAME" "Paul", SC "SALARY" "18,000-23,000", RC (Relation "JOB"

[[SC "COMPANY" "Microsoft", SC "JOB_DESCRIPTION" "Programmer"]])],

[SC "NAME" "Mark", SC "SALARY" "25,000-30,000", RC (Relation "JOB"

[[SC "COMPANY" "Apple", SC "JOB_DESCRIPTION" "Director"]])]]

Example 4.19:

joinTables("C",d2)("C",t2)

Result:

Relation "DEPT_2/TRAINING_2"

[[SC "DN" "Research", NC "D" 1, SC "COMPANY" "Apple", RC (Relation "UNIT/TRAINER"

[[SC "UD" "Software Engineering", NC "UN" 511, SC "TRN" "Jack", RC (Relation "C"

[[NC "CN" 1, NC "Y" 75], [NC "CN" 2, NC "Y" 76]])],

[SC "UD" "Basic Research", NC "UN" 552, SC "TRN" "Mark", RC (Relation "C"

[[NC "CN" 1, NC "Y" 82], [NC "CN" 2, NC "Y" 79]])],

[SC "UD" "Planning", NC "UN" 678, SC "TRN" "Jack", RC (Relation "C"

[[NC "CN" 2, NC "Y" 76]])]])],

[SC "DN" "Research", NC "D" 1, SC "COMPANY" "IBM", RC (Relation "UNIT/TRAINER"

[[SC "UD" "Software Engineering", NC "UN" 511, SC "TRN" "Tim", RC (Relation "C"

[[NC "CN" 5, NC "Y" 79]])],

[SC "UD" "Planning", NC "UN" 678, SC "TRN" "Tim", RC (Relation "C"

[[NC "CN" 4, NC "Y" 82]])]])],

[SC "DN" "Development", NC "D" 2, SC "COMPANY" "Apple", RC (Relation "UNIT/TRAINER"

[[SC "UD" "Design", NC "UN" 650, SC "TRN" "Jack", RC (Relation "C"

[[NC "CN" 1, NC "Y" 75]])],

[SC "UD" "Maintenance", NC "UN" 780, SC "TRN" "Mark", RC (Relation "C"

[[NC "CN" 3, NC "Y" 82]])],

[SC "UD" "Planning", NC "UN" 981, SC "TRN" "Mark", RC (Relation "C"

[[NC "CN" 3, NC "Y" 82]])]])],

[SC "DN" "Development", NC "D" 2, SC "COMPANY" "IBM", RC (Relation "UNIT/TRAINER"

[[SC "UD" "Maintenance", NC "UN" 780, SC "TRN" "Tim", RC (Relation "C"

[[NC "CN" 3, NC "Y" 82]])],

[SC "UD" "Planning", NC "UN" 981, SC "TRN" "Tim", RC (Relation "C"

263

[[NC "CN" 3, NC "Y" 82]])]])],

[SC "DN" "Development", NC "D" 2, SC "COMPANY" "Microsoft", RC (Relation "UNIT/TRAINER"

[[SC "UD" "Design", NC "UN" 650, SC "TRN" "Karen", RC (Relation "C"

[[NC "CN" 2, NC "Y" 77]])],

[SC "UD" "Planning", NC "UN" 981, SC "TRN" "Karen", RC (Relation "C"

[[NC "CN" 2, NC "Y" 81]])]])]]

Example 4.20:

joinTables("C",d2)("C",t)

Example 5.5:

tableProjection["COMPANY", "T_TRAINING(TRAINER(COURSE(CN)))",

"T_TRAINING(TRAINER(COURSE(CN_PER)))"]tt

Result:

Relation "T_TRAINING"

 [[SC "COMPANY" "Apple", RC (Relation "TRAINER"

[[RC (Relation "COURSE"

[[NC "T_TRAINING(TRAINER(COURSE(CN)))" 5.2,

TC "T_TRAINING(TRAINER(COURSE(CN_PER)))"

[((2,11,1994),(25,4,1995)),((7,8,1996),(1,1,2010))]]])],

[RC (Relation "COURSE"

[[NC "T_TRAINING(TRAINER(COURSE(CN)))" 3.3,

TC "T_TRAINING(TRAINER(COURSE(CN_PER)))"

[((2,1,1992),(8,11,1996))]],

[NC "T_TRAINING(TRAINER(COURSE(CN)))" 3.5,

TC "T_TRAINING(TRAINER(COURSE(CN_PER)))"

[((30,4,1995),(1,1,2010))]]])]])],

[SC "COMPANY" "IBM", RC (Relation "TRAINER"

[[RC (Relation "COURSE"

[[NC "T_TRAINING(TRAINER(COURSE(CN)))" 5.2,

TC "T_TRAINING(TRAINER(COURSE(CN_PER)))"

[((19,3,1997),(21,4,1997))]],

[NC "T_TRAINING(TRAINER(COURSE(CN)))" 5.0,

TC "T_TRAINING(TRAINER(COURSE(CN_PER)))"

[((17,12,1995),(1,1,2010))]]])]])],

[SC "COMPANY" "Microsoft", RC (Relation "TRAINER"

[[RC (Relation "COURSE"

[[NC "T_TRAINING(TRAINER(COURSE(CN)))" 3.3,

264

TC "T_TRAINING(TRAINER(COURSE(CN_PER)))"

[((25,6,1996),(1,1,2010))]]])]])]]

Example 5.7:

A revised version of the example is given, due to the fact that relevant

implementation is missing (only for ‘Tim’, since OR has not been

implemented).

selectFrom["COMPANY","T_TRAINING(TRAINER(TRN))","T_TRAINING(TRAIN

ER(COURSE(CN)))","T_TRAINING(TRAINER(COURSE(CN_PER)))"][("T_TRAINI

NG(TRAINER(TRN))",SF((=)"Tim")),("T_TRAINING(TRAINER(COURSE(CN_PER

)))",TF((tECovers ((1,1,1997),(1,1,1998)))))]tt

Result:

Relation "T_TRAINING"

[[SC "COMPANY" "IBM", RC (Relation "TRAINER"

[[SC "T_TRAINING(TRAINER(TRN))" "Tim", RC (Relation "COURSE"

[[NC "T_TRAINING(TRAINER(COURSE(CN)))" 5.2,

TC "T_TRAINING(TRAINER(COURSE(CN_PER)))" [((19,3,1997),(21,4,1997))]]])]])]]

Other Examples (Temporal Cartesian Product):

tableProduct("COURSE",tt)("", tcashpoint)

tableProduct(“”,tcashpoint)(“”,tcourse)

Query 1:

selectFrom ["D", "DEPT(UNIT(UD))", "DEPT(UNIT(COURSE_DETAILS(TRN)))"][("

D", NF ((=) 1))]d

Result:

Relation "DEPT"

[[NC "D" 1, RC (Relation "UNIT"

[[SC "DEPT(UNIT(UD))" "Software Engineering", RC (Relation

"COURSE_DETAILS"

[[SC "DEPT(UNIT(COURSE_DETAILS(TRN)))" "Mark"]])],

[SC "DEPT(UNIT(UD))" "Basic Research", RC (Relation "COURSE_DETAILS"

[[SC "DEPT(UNIT(COURSE_DETAILS(TRN)))" "Karen"],

[SC "DEPT(UNIT(COURSE_DETAILS(TRN)))" "Tim"]])],

[SC "DEPT(UNIT(UD))" "Planning", RC (Relation "COURSE_DETAILS"

[[SC "DEPT(UNIT(COURSE_DETAILS(TRN)))" "Mark"]])]])]]

265

Query 5:

selectFrom["COURSE/TRAINING(COURSE/TRAINER(TRN))"][("COURSE/TRAINING(CO

URSE/TRAINER(COURSE/COURSE(TITLE)))", SF ((=) "Computer Skills"))]

(joinTables("C", t)("C", course))

Result:

Relation "COURSE/TRAINING"

[[RC (Relation "COURSE/TRAINER"

[[SC "COURSE/TRAINING(COURSE/TRAINER(TRN))" "Jack"]])],

[RC (Relation "COURSE/TRAINER"

[[SC "COURSE/TRAINING(COURSE/TRAINER(TRN))" "Karen"]])]]

Query 6:

A revised version of the query is given, due to the fact that relevant

implementation is missing (only for ‘Karen’, since OR has not been

implemented).

tableProjection["COMPANY","BANK"](joinTables("TRAINING/LOCATION(ANNEX(AD

DRESS))",joinTables("COMPANY",selectFrom["COMPANY"][("TRAINING(TRAINER(TRN))"

,SF((=)"Karen"))]t)("COMPANY",location))("CASH-POINT(BRANCH(ADDRESS))", cashpoint))

Result:

Relation "TRAINING/LOCATION/CASH-POINT"

[[SC "COMPANY" "Microsoft", SC "BANK" "Barcklays"],

[SC "COMPANY" "Microsoft", SC "BANK" "Natwest"],

[SC "COMPANY" "Microsoft", SC "BANK" "Lloyd's"]]

Query 10:

tableProjection["T_DEPT(STAFF(COURSE_DETAILS(SNAME)))”,"T_DEPT(STAFF(COURS

E_DETAILS(COURSE(CN_PER))))"]td

Result:

Relation "T_DEPT"

[[RC (Relation "STAFF"

[[RC (Relation "COURSE_DETAILS"

[[SC "T_DEPT(STAFF(COURSE_DETAILS(SNAME)))" "Paul",

RC (Relation "COURSE"

[[TC "T_DEPT(STAFF(COURSE_DETAILS(COURSE(CN_PER))))"

[((27,8,1995),(30,1,1996)),((1,2,1995),(24,6,1995))]]])],

[SC "T_DEPT(STAFF(COURSE_DETAILS(SNAME)))" "Peter",

RC (Relation"COURSE"

[[TC "T_DEPT(STAFF(COURSE_DETAILS(COURSE(CN_PER))))"

266

[((1,1,1998),(28,10,1998))]]])]])],

[RC (Relation "COURSE_DETAILS"

[[SC "T_DEPT(STAFF(COURSE_DETAILS(SNAME)))" "Anna",

RC (Relation "COURSE"

[[TC"T_DEPT(STAFF(COURSE_DETAILS(COURSE(CN_PER))))"

[((29,9,1997),(10,2,1998)),((1,7,1995),(1,8,1995))]]])],

[SC "T_DEPT(STAFF(COURSE_DETAILS(SNAME)))" "Mary",

RC (Relation "COURSE"

[[TC "T_DEPT(STAFF(COURSE_DETAILS(COURSE(CN_PER))))"

[((17,1,1997),(28,4,1997))]]])]])],

[RC (Relation "COURSE_DETAILS"

[[SC "T_DEPT(STAFF(COURSE_DETAILS(SNAME)))" "Katy",

RC (Relation "COURSE"

[[TC "T_DEPT(STAFF(COURSE_DETAILS(COURSE(CN_PER))))"

[((13,2,1994),(4,3,1995)),((22,4,1995),(15,5,1995))]]])]])]])],

[RC (Relation "STAFF"

[[RC (Relation "COURSE_DETAILS"

[[SC "T_DEPT(STAFF(COURSE_DETAILS(SNAME)))" "Steve",

RC (Relation "COURSE"

[[TC "T_DEPT(STAFF(COURSE_DETAILS(COURSE(CN_PER))))"

[((18,3,1996),(1,7,1996))]]])]])],

[RC (Relation "COURSE_DETAILS"

[[SC "T_DEPT(STAFF(COURSE_DETAILS(SNAME)))" "Helen",

RC (Relation "COURSE"

[[TC"T_DEPT(STAFF(COURSE_DETAILS(COURSE(CN_PER))))"

[((17,8,1997),(1,1,2010))]]])],

[SC "T_DEPT(STAFF(COURSE_DETAILS(SNAME)))" "Pat",

RC (Relation "COURSE"

[[TC "T_DEPT(STAFF(COURSE_DETAILS(COURSE(CN_PER))))"

[((18,9,1995),(10,10,1995))]]])]])]])]]

267

Query 11:

A revised version of the query is given, due to the fact that relevant

implementation is missing (START has not been implemented).

tableProjection["T_TRAINING(TRAINER(TRN))","T_TRAINING(TRAINER(COURSE(CN_PE

R)))"]tt

Result:

Relation "T_TRAINING"

[[RC (Relation "TRAINER"

[[SC "T_TRAINING(TRAINER(TRN))" "Jack", RC (Relation "COURSE"

[[TC "T_TRAINING(TRAINER(COURSE(CN_PER)))"

[((2,11,1994),(25,4,1995)),((7,8,1996),(1,1,2010))]]])],

[SC "T_TRAINING(TRAINER(TRN))" "Mark", RC (Relation "COURSE"

[[TC "T_TRAINING(TRAINER(COURSE(CN_PER)))"

[((2,1,1992),(1,1,2010))]]])]])],

[RC (Relation "TRAINER"

[[SC "T_TRAINING(TRAINER(TRN))" "Tim", RC (Relation "COURSE"

[[TC "T_TRAINING(TRAINER(COURSE(CN_PER)))"

[((19,3,1997),(21,4,1997))]]])]])],

[RC (Relation "TRAINER"

[[SC "T_TRAINING(TRAINER(TRN))" "Karen", RC (Relation "COURSE"

[[TC "T_TRAINING(TRAINER(COURSE(CN_PER)))"

[((25,6,1996),(1,1,2010))]]])]])]]

Query 12:

A revised version of the query is given, since relevant implementation is

missing (COUNT has not been implemented).

selectFrom["T_TRAINING(TRAINER(COURSE(CN)))"]

 [("T_TRAINING(TRAINER(COURSE(CN)))",

TF(tEOverlaps((1,1,1998),(1,1,1999))))]tt

Result:

Relation "T_TRAINING"

[[RC (Relation "TRAINER"

[[RC (Relation "COURSE"

[[NC "T_TRAINING(TRAINER(COURSE(CN)))" 5.2]])],

 [RC (Relation "COURSE"

[[NC "T_TRAINING(TRAINER(COURSE(CN)))" 3.3],

[NC "T_TRAINING(TRAINER(COURSE(CN)))" 3.5]])]])],

[RC (Relation "TRAINER"

268

[[RC (Relation "COURSE"

[[NC "T_TRAINING(TRAINER(COURSE(CN)))" 5.2],

[NC "T_TRAINING(TRAINER(COURSE(CN)))" 5.0]])]])],

[RC (Relation "TRAINER"

[[RC (Relation "COURSE"

[[NC "T_TRAINING(TRAINER(COURSE(CN)))" 3.3]])]])]]

