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ABSTRACT     

In this thesis we consider the use of Genetic Algorithms (GAs) to predict the outcome of 

arms races between nations.  Clearly a means of predicting if, and more importantly, when 

an arms race is likely to escalate into open conflict would be of enormous social, political 

and economic benefit.  It could even lead to some wars being averted altogether.   

Richardson developed a theory of arms races in the late 1940s but his methods needed a 

prohibitively large search space and hence no implementation of his theory was feasible 

until the advent of GAs.  Richardson’s arms races model is known to be an accurate 

predictor of escalating conflict but unfortunately does not make it at all obvious when 

unstable conditions will arise.  To be of any practical use, therefore, we need a means of 

predicting the timing of instabilities.   In 1991 Peng, Gáspár and Showalter developed a 

model of canard explosions which successfully predicts the timing of instabilities in certain 

industrial chemical processes.  We demonstrate that ideas borrowed from the Peng, Gáspár 

and Showalter  model can be applied equally successfully to Richardson’s model.   

In the tradition of the proof of concept paradigm, we look in detail at a snapshot (1993 to 

1999) of the India versus Pakistan arms race, a volatile situation where minute differences in 

the average levels of percentage defence expenditure can make all the difference between 

stability and instability. We then validate our model by applying it to three recent long-

running conflicts:  the Middle East 1955 to 2000, India versus Pakistan 1955 to 2000, and 

Greece versus Turkey 1955 to 2000.  We show that almost every real and potential 

instability in these three conflicts could have been predicted using our techniques.      

We then apply the same techniques to a  model of the stability of nuclear deterrence embod-

ied in the Strategic Arms Limitation Talks (SALT) of 1972 between the United States and 

the then Soviet Union.  It is shown that, once subjected to a Pareto sort, results obtained 

from our model agree with the figures calculated so laboriously by the Americans at that 

time.  Additionally, our deterrence model can evaluate  ‘what if ...’ scenarios  previously 

regarded as infeasible.    

We also consider the beneficial effects of introducing redundant genes into the 

chromosomes of the GAs and discretising their evaluation equations.   Experimental 

evidence suggests that these two techniques lead to more robust GAs. 

The thesis concludes by commenting on the viability and credibility of our results, and by 

making a number of general observations on the application of GAs to political subjects. 
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ABBREVIATIONS 

The following abbreviations are used in the body of the thesis.    

col  column 

dom  dominant or dominated 

EA  evolutionary algorithm 

Eq(.), Eqs(.) equation(.), equations(.) 

ES  evolution strategy 

ffn  a fitness function, i.e.  an expression which calculates  fitness 

fit  fitness 

GA  genetic algorithm 

gen  generation, or generations run 

normfit  normalised fitness, see ‘Linear Norm’ in the Glossary 

ODE(s)  ordinary differential equation(s) 

RNG  random number generator, normally the one embedded in a PC 

random  random number(s) 

running  running total of all the fitnesses or normfits 

srl  serial number (normally of an individual chromosome) 
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A GA-BASED APPROACH TO ARMS RACES 

Style 
The nine chapters are numbered consecutively.   Sections (sub-headings), figures, tables, 

equations and inequalities all bear the chapter number;  for example, Section 5.2, Section 
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Appendices are numbered correspondingly with the chapter number first, such as Appendix 

6A, Appendix 6A.1, Figure 4A.3 and Eq(7B.3). 

Texts in double quotation marks are actual quotations.  Single quotation marks are used for 

emphasis and for indicating unconventional use, e.g. “A badly-handled crossover can result 

in an effective ‘mutation’ of the chromosome”.  Italics are used for emphasis;  many of the 
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Catalogue of Symbols.     The Courier font is used for source code. 
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Preface 

In 1972  I was posted as a post-graduate student to the National Defence College, Latimer.  

It was the time of the Strategic Arms Limitation Talks (SALT) between the United States 

and the Soviet Union.  Because of my background (I had previously worked in the Design 

Mathematics Section of the Atomic Weapons Research Establishment at Aldermaston) I 

was tasked with verifying the figures which the Americans had calculated to meet the SALT 

criteria.  What holding of nuclear weapons would publicly assure deterrence (while quietly 

ensuring that the Americans would always hold the upper hand)?  The Americans were 

known to have based their SALT calculations on the 1947 zero-sum game theory of von 

Neumann and Morgenstern, and I was encouraged to use some other method.   I decided on 

the arms race theories of LF Richardson and, after some considerable difficulty, did agree 

the American figures, but there was little latitude or flexibility in the results.  The 

calculations were so tedious and the computing facilities so primitive that I remember 

thinking that there must be a better way.   From then on, my career went in a different 

direction, and Richardson’s theories were put on the back burner.  Interest revived in 1981 

when I was appointed Defence Attaché at the British Embassy in Amman.   Here, one lived 

among Jordanians (both Bedou1 and Palestinians) who felt themselves surrounded by 

predators, and whose principal, everyday concern was survival.   To them, the subject of this 

thesis is very real. 

I have spent much of my life as an engineer.  Many of my technical postings in the Army 

had involved the more mathematical aspects of computing, so when I left the Army in 1988 

I was glad to join the paid staff of the British Computer Society (BCS) as its Technical 

Director.   After retiring from full-time employment in 1992 I had time, inclination and the 

means to do many of the things I had always wanted to do.  Among them was to revisit 

Richardson’s theories, which have always intrigued me. By the mid-1990s, however, the 

situation was very different. The combination of ‘number-crunching’ PCs and workable 

Evolutionary Algorithms made it possible  to handle problems requiring huge search spaces.  

The effect of applying this combination to Richardson’s theories was dramatic, and answers 

to a wide range of nuclear scenarios became feasible.  Furthermore, it became evident that 

the arms race theories were applicable to a whole raft of current situations and, once 

coupled with the canard explosion theory of  Peng, Gáspár and Showalter, can even predict 

when instabilities are likely to occur.  The ability to predict the timing of an outbreak of war 

                                                 
1 The plural of “Bedouin”, the nomadic desert tribesmen, is “Bedou” 
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is invaluable;  not all arms races end in war, so efforts at mediation can  be directed where 

they are most likely to be effective. 

Despite remaining technical mentor for BCS mature candidates and an assessor and 

Representative for the Engineering Council, and a Liveryman of the Worshipful Company 

of Information Technologists, retirement found me living in an intellectual vacuum. It 

seemed natural, therefore, to attempt the discipline of a doctoral degree to re-dress the 

balance, partly for my own satisfaction (“Engineers have an obdurate tenacity of vision” 2)  

and partly because I really do hope that some good will come from the results of my efforts.  

This is the motivation for my research. 

I admit to sharing the outlook and philosophy of George Berkeley (1685-1753)  [Berman, 

2000;  Luce, 1967].   Berkeley, an Irish mathematical philosopher and cleric, was described 

by Locke as a master of conceptual analysis and argument.   Berkeley believed that 

experience forms the basis of all human knowledge and is the only thing that can be trusted.   

He regarded mathematics as a science of empty abstractions (despite being rather good at 

it), and he thought that language was so flawed that it could never be trusted, even when it 

appeared to be revealing a contradiction (thereby pre-empting Wittgenstein by some two 

hundred years).  Berkeley’s scientific experimental method  −  subjective empiricism  − 

says, in effect, that when we set about solving a problem we should go for what we perceive 

in our imagination and experience, and look for a theoretical justification afterwards.   

Whoever said “do not attempt to create and analyse at the same time, for they are totally 

separate activities” was echoing Berkeley. 

My sincere thanks go to my supervisors, Dr Xiaohui Liu (now a professor at Brunel) and, 

latterly (over the past 3½ years), to Professor George Loizou, Head of the School of 

Computer Science and Information Systems at Birkbeck and holder of the University Chair 

of the Mathematics of Computation, for their help and encouragement, for their painstaking 

attention to detail, for their constructive and (in the main) good-humoured criticism, and 

often for pointing me in the right direction. 

In particular it was Professor Loizou who noticed the mathematical similarity between Peng 

et al.’s canard explosion model and Richardson’s equations and suggested that the one 

might be applied to the other. 

                                                 
2 David Jordan, Managing Director of Philips (UK) plc,  Annual Mountbatten Lecture, IEE London, 27 November 2001 
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I would also like to thank a number of anonymous referees of various learned journals for 

their lengthy and perceptive comments and (in the main) for being tolerant of my sometimes 

iconoclastic views.  My thanks are also due to Stan Kay, Nigel Morgan, Andy Smith, Ian 

Williams and Meirion Thomas of the British Computer Society for their unfailing patience 

whenever I had serious PC problems, to my fellow Engineering Council assessor Sid Dunn 

(who actually knew and had worked with LF Richardson at the Meteorological Office in 

Bracknell just after World War II), to my fellow Birkbeck students  Stephen Swift and Allan 

Tucker, firstly for helping me out so readily when I was poorly in 1999 and, secondly, for 

making a number of practical suggestions about presenting my case to best effect.   I must 

also thank Jason Crampton for taking such a rationalist approach (contrasting markedly with 

my empiricism), and Ito Wasito for showing me how to use MATLAB so painlessly.  

Lastly, I must again mention Dr Stephen Swift, now a Research Fellow at Brunel, to whom I 

am particularly grateful for reading through the complete draft, and Dr Steve Counsell, 

Lecturer at Birkbeck,  for his unfailing help and encouragement during some dark days.    

My interest in the mathematical treatment of topics such as arms races dates back to the 

mid-1950s when Professor Cyril Lambe3 of the Royal Military College of Science, 

Shrivenham, inspired in me an enthusiasm for applied mathematics, one which, sadly, I did 

not have the mind-set to exploit.   Since then, many people have influenced my approach 

and encouraged my efforts, including Dr Guy Scorgie of AWRE Aldermaston in the 1970s 

and, more recently, the Reverend Canon Dr  Barry  Thompson,  now a Canon Emeritus of 

Windsor,  the late Peter Begent  the war  historian and philosopher,  Dr Roger Johnson, 

Reader in Computer Science at Birkbeck, and Dr James Levenick of the Computer Science 

Department at Williamette University, Salem, Oregon. 

Finally I am enormously grateful to my long-suffering wife Jan who, despite seeing very 

little of me for the past six years, has quietly provided the permanence, the infrastructure, 

and the facility for concentration without which this thesis could never have been attempted.    

 

 

 

 

TWH 
 

                                                 
3 CG Lambe, author of a number of mathematical texts for engineers 
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CHAPTER  1 

Introduction 
 
1.1   An Overview 

The thesis is primarily concerned with the application of Genetic Algorithms (GAs) to arms 

races between nations.  In particular, we want to know whether there exists some means of 

using GAs to predict when (or under what conditions) conflicts between nations are likely to 

erupt into open war.  Until a solution to this problem can be determined, there is no 

possibility of averting wars.  The arguments are based on Richardson’s Theory of Arms 

Races  [Richardson, 1960b], originally developed in the late 1940s, but needing such a large 

search space that it was virtually unusable4 until the advent of heuristic search which, in 

turn, allowed the development of  Evolutionary  Algorithms (EAs).  

Richardson’s equations bear a marked similarity to those developed by Bo Peng, Vilmar 

Gáspár and Kenneth Showalter [Peng et al., 1991] to predict canard explosions in the 

manufacture of plastics, and some ideas about impending instability have been borrowed 

from their chaos-based analysis of limit cycles. 

Throughout the thesis it is assumed that evolutionary algorithms have advantages over all 

other methods when large, ‘hilly’ search spaces have to be handled, and it is assumed that 

their subset, GAs, are best suited to handle Richardson’s equations. Nowadays, there are 

certainly other methods of solving Richardson’s equations, and some of them (e.g. non-

evolutionary population-based hill-climbing methods) could well be more effective in some 

circumstances; however, our subject matter is how easily GAs adapt to handling arms races. 

Very early in our studies it became evident that application non-specific GAs are neither 

efficient nor particularly useful for any practical purpose.    We therefore built on existing 

ideas and developed ab initio our problem-specific GAs, ones which took into consideration 

the arms races domain, yet were sufficiently conventional  to be properly described as 

canonical.  The resulting GAs  do not marry up precisely with any of the nineteen variants5 

of Holland-type GAs mentioned in Section 2.5.    

                                                 
4 In 1983 Kirkpatrick et al. developed a simulated annealing method which we now use in Section 5.8.2 to solve a Richardson 
arms race problem.   As far as is known, simulated annealing has never been used in this role before 
5 We use ‘variant’ rather than ‘type’.   We identify four generic types of GA ;   Holland (canonical),  Falkenaeur (grouping), 
Whitley (steady-state) and Nishio et al. (interactive). (See Section 2.5.)  Within each of these types there are many variants 
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Rather than compare the performance of GAs in the arms race role with other (non-

evolutionary)  methods,  comparisons will − with two exceptions − be made between: 

• The effects of changing various parameters in our GAs, including the fitness function 

• The type of representation used (i.e. how the genotype encodes the phenotype) 

• How the evaluation equations  [Davis, 1991]  are presented mathematically 

• Redundant and non-redundant chromosomes 

The two exceptions lie in Chapters 7 and 5, where we briefly invoke the Gauss-Seidel and 

Jacobi numerical methods [Buckingham, 1962], Monte Carlo techniques [Kalos and 

Whitlock, 1986] and simulated annealing techniques [Pham and Karaboga, 2001]  to see 

how their results compare with those of our GAs. 

GAs are now used to solve engineering problems and even economic ones.  Biethahn and 

Volker-Nissen [1995] were among the first researchers to apply GAs  to commercial man-

agement.   Not so common, however, is their use for political or social problems. In this 

context we mention Ackley [1987], who developed a GA where the voters (population) 

express their satisfaction or dissatisfaction toward a ϑϑϑϑ–member government  (ϑϑϑϑ is the length 

of the chromosome), summing positive and negative feedback from individual voters,  

Nishio et al. [1997] , who designed an interactive GA for the Tokyo Police aimed at helping 

witnesses identify the faces of suspect criminals, and Deboeck [1994]  who employed a GA 

to forecast fluctuations in share prices on the financial markets.  

More recently Bhattacharyya et al. [2002] have been using EAs to develop trading models 

for foreign exchange markets, while Aldawoodi and Perez [2003]  have developed a GA-

based technique to generate equations to monitor the migration of both people and seabirds.  

Our searches of EA literature for papers in similar fields to ours have revealed compara-

tively few, the most significant being Forrest and Mayer-Kress [1991] who used GAs to 

create early models of international security, Andreou and Zombanakis [2001] who used 

neural networks to calculate relative security coefficients to measure the impact of arms 

races between Greece and Turkey, Axelrod [1997] who studied the complexities of co-

operation as part of the whole subject of conflict resolution, and Moore [2002] who 

considers the optimisation of missile counter-measures. 

1.2   Arms Races:  a Brief History 

The ability to analyse  stability and equilibrium is vital to all models of the real world and  is 

based on principles established in the nineteenth century by Le Chatelier and Gibbs [Porter, 
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1994].   More recently, however, the credit for pioneering the application of mathematics to 

international  politics belongs to the meteorologist Lewis Fry Richardson DSc FRS (1881 - 

1953).    His principal works are The Statistics of Deadly Quarrels [Richardson, 1960a] and 

Arms and Insecurity [Richardson, 1960b] both of which were published posthumously.  The 

latter contains his Theory of Arms Races  which underpins the thesis.  

Richardson analysed every armed conflict from the Napoleonic Wars of the early 1800s to 

the First World War and concluded that all of them had resulted from an out-of-control arms 

race.   Such arms races do not necessarily result in wars but, in his own words  “...war is 

more likely than not”. 

Richardson’s aim was to understand the long-term implications of national political and 

economic policies on global stability, for he was convinced that the understanding which 

grew from the systematic analysis of the events which were known to lead to war would 

contribute more to advancing the cause of peace than the intuitive and emotive reasoning of 

statesmen, politicians, soldiers and diplomats.    His model shows how expenditure on arms 

changes over time in response to previous expenditures, perceived external threats, and 

certain economic factors.  The model can be used as a tool to study how policies evolve, 

making it possible in theory to investigate the ramifications of various strategic policy 

decisions.   

Richardson’s  model is essentially a non-linear dynamic system, the behaviour of which can 

be difficult to predict (as we show in Chapter 3) because of non-linear couplings between 

dependent variables.  Additionally, in any realistic model, the number and range of possible 

parameter settings can be vast:  the three-nation equations alone have fifteen real-valued 

parameters, giving rise to an unworkably large search space.   In consequence, researchers 

have until recently avoided  Richardson’s  model  and looked for other methods.   

It is not clear who originally coined the phrase ‘arms race’ but it is not a good analogy with, 

say, a running event on an athletics track.   Is an arms race a sprint or an endurance race?   

Most running races tend to be (more or less) steady speed events, while arms races appear to 

accelerate without limit.  There must, of course, be a limit in the real world;  perhaps it is 

bankruptcy but, historically, no nation is known to have bankrupted itself in this way 

although it could be argued that Pakistan has recently come close to doing so.  Additionally, 

as Dawkins [1983] has said, there is an essential asymmetry to evaluating arms races:  a  

prey is running for its life, while a predator is running for its lunch! 
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1.3   Limitations of the Richardson Approach 

The Richardson approach will only work where the chance of conflict is high and between 

known protagonists.  Wars of independence, civil wars, guerrilla wars, local terrorist 

activity6  and  insurrections do not come into this category.  Moreover, it is only worth 

trying the Richardson  approach where there are reasons for suspecting major antagonisms.  

Chapter 5 considers India versus Pakistan;   we could equally have tried India versus Goa,   

India versus China,  or even India versus Bhutan, but it did not seem worth it because part 

of the skill in applying mathematics to any ‘political’ subject is to recognise where and 

when such effort will be cost-effective. 

1.4     New Contributions and Benefits 

The major contribution of this thesis has been the ability to forecast when wars are likely to 

break out.   Based on statistical information (and the more up-to-date, the better),  the ability 

of changes in the direction of curvature of the limit cycle to predict impending instabilities 

in the Richardson equations (Chapter 3), and the implicit parallelism inherent in GAs 

(Chapter 2), we use our model to forecast future conflicts and demonstrate the proof of this 

concept historically in Chapters 5 and 6. We believe that this is a major achievement 

inasmuch that knowing the date of an impending conflict (to within, say, a month) will make 

it easier for other nations to defuse the situation by diplomatic action (i.e. by threatening or 

cajoling the potential antagonists).  Other features are also innovative, in particular: 

• Merging the Richardson and Peng models (which were created at different times, for 

different purposes, and under different circumstances) into one coherent whole. 

• The use of  integer-coded GAs where the genotype uses, literally, the same numbers as 

the phenotype.  Such direct mapping is comparatively unusual. 

• GAs are mostly used for optimisation.  Our use is unconventional in the sense that a GA 

is used as a modelling vehicle for Richardson’s equations and almost the same GA is 

then employed as a predictor of impending instabilities. Creating a credible model and 

transferring rate-factors from the modelling GA to the prediction GA poses a problem  

because the transferred rate-factors must be, and be seen to be, appropriate. 

• Making use of the contention of Vose [1999] that the mathematics of GAs are not 

invalidated by the representation used.  This is contrary to the views of Holland [1975]  

 and Goldberg [1989] who, even  today, stick to their schema theorems. 

                                                 
6   International  terrorist activity, in contrast, can sometimes be considered in that it is often sponsored and financed by some 
third-party government 
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• The use of real-world data to seed some of the genes. 

• Deliberately introducing totally useless redundant genes into a chromosome. At first 

sight this does nothing but, judiciously placed, one redundant gene can significantly 

reduce the disruption to the building-blocks caused by crossover.   This makes the GA 

under consideration more robust (Chapter 8). 

1.5    Structure of the Thesis  

The thesis is set out as follows:  

• Chapter 2 presents background material on GAs  which is either referenced in the thesis 

or is necessary for an understanding of the results.    

• Chapter 3 starts by presenting background material on Richardson’s arms race model 

and its use.  It then briefly discusses Peng et al.’s [1991] model of canard explosion 

theory and the techniques for predicting instability which they developed.  It concludes 

by putting the two together and arguing the mathematical case for so doing.    

• Chapter 4 discusses the GAs and the model used in the thesis.  It also gives some 

experimental justification for the assumptions made.   An Appendix to Chapter 4 shows 

a typical set of GA diagnostic tables, and some selected computer outputs. 

• Chapter 5 looks at a snapshot of the India versus Pakistan situation (1993 to 1999) in 

some detail and shows how minute changes in average defexp% (see Glossary) can 

make all the difference between stability and instability.  It also uses the 1993 to 1999 

data  as a training-set to predict an event in 2000.   The chapter also looks at two 

alternative ‘non-GA’ methods (Monte Carlo and simulated annealing) and seeks to 

establish why GAs are so effective as predictors.   

• Chapter 6 validates the model by showing that it works over long periods of time (1955 

to 2000) in three dissimilar historical instances, Greece and Turkey, India and Pakistan, 

and the Middle East.  It then considers the effects of noise on the predictions.  The 

chapter concludes by attempting tentatively to predict some conflicts in the future.  

• Chapter 7 applies Richardson’s theory to nuclear deterrence, verifies the SALT 

calculations of 1972, and demonstrates how the flexibility of GAs allows situations of 

the ‘what if ...’ variety to be resolved.  GAs pertaining to nuclear deterrence are not  

robust, but it is shown that this can be ameliorated in two different ways: 
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o    by subjecting the results to a Pareto-sort 

o by discretising the evaluation equations.   

• Chapter 8 explains the effects of redundancy in a GA’s chromosomes and considers how 

it can be beneficial in the case of our GAs. 

• In Chapter 9 we present our overall conclusions and suggest ideas for further research. 
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CHAPTER 2  

Background 1:  Genetic Algorithms  

2.1  Introduction:   Soft Computing 

Zadeh [2002] defines soft computing as follows:  “Soft computing differs from conventional 

(hard) computing in that, unlike hard computing, it is tolerant of imprecision, uncertainty, 

partial truth, and approximation. Soft computing techniques can solve optimisation prob-

lems”.  Alternatively, to quote Sanchez et al. [1997], “Soft computing encompasses all those 

modes of computing in which imprecision is traded for tractability, robustness, ease of 

implementation and lower solution cost.  Soft computing, therefore, is primarily concerned 

with optimisation.   Its components include all types of evolutionary algorithms, fuzzy logic, 

neural networks, probabilistic reasoning, chaos theory, and even machine learning”.  

This chapter presents background material on evolutionary algorithms which is either refer-

enced in the thesis or is necessary for an understanding of the techniques used and of the 

results obtained.  It summarises  the traditional Holland/Goldberg approach to the mathe-

matics of GAs, but does not attempt to present a full theoretical background  of either GA 

structure or GA operation.    

2.2   Evolutionary Algorithms  

Evolution is about search, a search for something better, an optimum.  A search space is one 

filled with all possible solutions, and a point in that space defines a solution.  EAs evolve 

solutions to problems, not just with one but with a whole population of candidate solutions 

at once.  Bentley [1999] states that “evolution is not specified in an EA but it is an emergent 

property of the algorithm”.   

For small spaces, classical search methods suffice, but for large spaces such methods, while 

still valid, are generally not easy − and sometimes impossible − to implement.  Furthermore, 

classical computer systems may well excel at dealing with complicated data, but they are not 

designed for processing inaccurate, noisy or complex data [Yao, 1999]. EAs are stochastic 

processes whose search methods are based on a natural phenomenon;  genetic inheritance, 

and the quest for survival as expounded by Darwin.   The metaphor underpinning GAs 

[Davis and Steenstrup, 1987] is that of natural evolution, where each species faces a search 

for beneficial adaptations to a complex and changing environment.  The ‘knowledge’ that 

each species gains is embodied in the construction of the chromosomes of its members. 
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The four principal classes of EAs are generally taken to be Genetic Algorithms (GAs), 

Evolution Strategies (ES), Evolutionary Programming (EP) and Genetic Programming. 

(GP)1.  

EAs manipulate populations (ranging from hundreds to thousands) of chromosomes which 

represent individuals, or ‘candidate solutions’.   Some individuals are better (‘fitter’) than 

others and these are the ones which must be allowed, even encouraged, to reproduce.  EAs 

are sometimes classified by data structure and by the number and nature of their genetic 

operators which ‘do’ things to those chromosomes.  All EAs have one thing in common;  

the physical representation of the coding (the genotype) must in some way mirror or 

otherwise map onto the characteristics of the problem to be solved (the phenotype).  More is 

said later about this mapping, which is known by its biological name embryogeny.  

Evolutionary activity is the “spontaneous generation of innovative functional structures” 

[Zadeh, 2002].  As Baldwin said [see Cohen and Stewart, 1994], if learning helps survival 

then the organisms best able to learn will have the most surviving offspring.  Some 

observers [Bedau and Packard, 1992], echoing Holland [1992],  were more philosophical:  

“Adaptation is a tension between exploration (the search for new, useful adaptations) and 

exploitation (the use and propagation of the adaptations)”. 

2.3   GAs:  The Traditional View    

John Holland invented and developed GAs at the University of Michigan in the 1960s and 

1970s. GAs work by combining selection, recombination and mutation operators [Haataja, 

1999].  The selection pressure drives the population towards fitter solutions. Individuals are 

selected for ‘parenthood’ − or, with elitism, for survival into the next generation  − on the 

basis of their fitness. 

All GAs, however, need to escape from local optima, and this is where mutation is  

effective, because it widens the search space and strays  into new territory [Haupt and 

Haupt, 1999]. 

Coded solutions (genotypes) must be mapped onto actual solutions (phenotypes) before 

fitness can be determined.  Phenotypes are collections of live parameters of real-world prob-

lems expressed in whatever manner is conventional and appropriate. A coded parameter is 

called a gene [Davis, 1991;  Bentley, 1999]. There is a random element to the exploration of 

the search space but GAs are not parallel random search algorithms because a GA’s search 

                         
1 Over the past few  years these distinctions have become blurred 
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is unquestionably directed by selection towards areas which contain better solutions. Since 

there are many solutions in parallel (see implicit parallelism in Section 2.4), GAs are rarely 

misled by local optima [Bentley,1999].2 

2.4   Schemas  (The Holland Approach)    

It is a central tenet of GAs that they work by discovering, emphasising, and recombining − 

via selection, mutation and crossover collectively − good ‘schemas’ or building blocks of 

solutions in a highly parallel fashion [Mitchell, 1996].  Schemas3 do not actually exist, but 

they are a useful notional tool. In essence, good building blocks are combinations of bit 

values which confer higher fitness on the strings in which they are present, and hence lead in 

turn to better solutions.  

A traditional schema is a fixed template describing a subset of strings with similarities at 

certain defined positions [Coley, 1999].  Strings which contain the same schemas contain (to 

some degree) similar information. �Using a ternary alphabet (0, 1, and the metasymbol #), 

101001 and 111001 are both instances of the schema 1##001.�  For any string of length L 

over {0, 1} there are 2L  possible schemas.  In general, for an alphabet of cardinality (distinct 

characters) k, there are kL possible schemas.  For a population of N strings (N > 1) there are 

potentially NkL possible schemas, but the actual number is likely to be much less than this, 

for there may be duplicates.   In either case, the number of schemas will always be less than 

or equal to NkL. 

Fatal accidents can happen to strings of a GA.  They can be broken up by crossover, attacked 

by mutation, or wilfully discarded by selection.  Despite this, it is relatively easy to estimate 

how the number of instances of a particular schema might change during a GA run.  This 

estimation throws light on why GAs can be so successful as optimisation vehicles.   

If  ξ (S, g) is the number of strings matched by schema S within the population at generation 

g such that ξ (S, g) > 0, then, in general, it would seem reasonable to assume that if we 

consider strings of above average fitness, then ξ (S, g+1) > ξ (S, g).  If selection  is founded 

on a fitness-proportional basis (e.g. by roulette wheel selection as in our GAs), the 

probability pi (g) of any individual, say i , at generation g  being selected is 

                         
2   Deceptive trap functions, which are specifically designed to mislead GAs, are outside the scope of the thesis 
3 Pedants talk about ‘schemata’;  we prefer ‘schemas’ 
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where ( )gf i  stands for the fitness of the individual i at generation g. 

If eval (S, g) is the average fitness of all strings in the population matched by schema S, then 

( ) ( )
( ) ( )gS
gF

gSeval
gS ,

,
1, ξξ ≈+  ,                                      (2.1) 

where F(g) is the average fitness of the entire population at generation g.   Eq(2.1) means 

that the number of strings in the population that match schema S grows as the ratio of the 

average fitness of every string in the population matched by schema S  to the average fitness 

of the entire population.   Hence an ‘above average’ schema receives an increasing number 

of strings in the next generation, and vice versa. 

Eq(2.1) is the schema growth equation (ignoring mutation and crossover) and shows that the 

number of instances of any schema S in the next generation, g + 1, depends on eval(S, g) in 

the current generation.   

Assuming that a particular schema remains constantly above average fitness by βF(g), then 

Eq(2.1) becomes 

      ( ) ( ) ( )gSgS , 11, ξβξ +≈+    or   ( ) ( ) ( )0,1, SgS g ξβξ +≈     [Coley, 1999] .            .     

This binomial progression suggests that better performing schemas will receive 

exponentially increasing numbers of trials in the next generation.  Barring elitism, there are 

only N acts of selection per generation (i.e. one per individual member of the population), 

but the GA manages simultaneously to allocate exponentially increasing number of trials to 

a vast number (>> N) of schemas effortlessly.  This is called implicit parallelism, and the 

reason for it is that any population of N binary strings contains instances of between 2k and 

N2k different schemas.  This means that, at any given generation, while the GA  explicitly 

evaluates the fitness of the N strings of the population,  it is in fact estimating the average 

fitness of a much larger number of schemas − Bertoni and Dorigo [1993] have estimated 

that  at least  N3 schemas will be processed usefully.   The GA behaves as if the increase and 

decrease in the numbers of given schemas in any population was actually reflected in the 

results − indeed, just as if it were calculating and storing these averages.  We make 

extensive use of implicit parallelism later in the thesis;  indeed, this is the principal reason 

why GAs outperform most other methods in our arms race application. 
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The disruption caused to schemas by crossover will depend on the schemas involved.   

Empiricism urges that at least half the schemas will remain intact.  Rationalism insists that 

the probability of a schema S being destroyed by crossover is less than  

( )
1−L

Sd
 ,                                                                    .                                                                      

where d(S) specifies the defining length, the distance between the first and last  non-meta-

symbol  within the string, e.g. if S = #1#0#  then d(S) is 2 while if S = 11001 then d(S) = 5.      

Given a crossover probability pc , the chance of the survival of a bit into the next generation 

is bounded below by  
( )

1
1

−
−

L
Sd

pc . 

Given a mutation probability pm , the probability of a single bit  surviving a single mutation 

is 1 − pm .   The probability of the whole schema surviving intact is ( ) ( )So
mp−1 ,  where o(S) 

denotes the number of (non-metasymbol) bits in schema S. 

Holland [1975] showed that, by expanding  but ignoring lesser terms, the combined effect of 

selection, crossover and mutation can be expressed in the single growth equation 
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1  .                           (2.2)           

The point to note is that above-average, short-length,  low-order schemas (called building 

blocks) will be sampled at an exponentially increasing rate [Davidor and Schwefel, 1992].  

The building block hypothesis [Goldberg, 1989] contends that GAs evolve good solutions 

by combining these fit, low-order schemas to form better schemas.  It is for this reason that 

recombination (crossover) is generally taken to be the GAs’ strength; namely, the ability to 

recombine good schemas to form instances of equally-good or even better schemas.                    

One important aspect of the building block hypothesis is that these short, high-average 

fitness schemas tend to be combined to best effect by single-point crossover.  Multiple 

crossovers, however, have their uses;  the Breeder Algorithm [Mühlenbein, 1994] emulates 

the activities of farmers and stock breeders and allows only a small number of (the fittest) 

animals to breed.   In an effort to get the best of both worlds, another form of crossover, 

uniform cross-over [Syswerda, 1989], was developed, engineering the recombination of 

genes with the aim of making the best arrangement of schemas. Holland suggested that 

alternative repres-entations in a GA could be compared by calculating the number of 

schemas processed by the algorithm [Holland, 1975].  It has now become apparent [Fogel, 

1999] that in order to max- 



 

 30 



 

 31 

imise intrinsic parallelism Holland wanted representations chosen with the fewest “detectors 

with a range of many attributes”.   In other words, alphabets of low cardinality were to be 

favoured because they generated more schemas which Holland thought, in turn, would give 

a “larger information flow” to a GA’s reproductive plans.  It was for this reason that he 

chose to use a binary representation in his algorithms. This decision has dogged GAs ever 

since, for it became a sort of gospel which still has its devotees today despite its many 

shortcomings.   

The reason for focusing here on schemas and on binary coding is partly that it is traditional, 

and partly that, until comparatively recently, the  theoretical background of GAs was argued 

in these terms.  For some years, however, practical GAs have made increasing use of real 

number4 coding in that they are more compact, and thus the resulting GAs are easier to 

handle.  Moreover, Fogel and Ghozeil [1997] have shown that there can be no intrinsic 

advantage to any choice of cardinality nor, indeed, to any particular choice of representation.   

More recently, taking a quite different viewpoint, Vose [1999] has shown that the funda-

mental mathematical arguments behind (and the validity of) GAs are not upset no matter 

what coding is used. Vose focuses on the Simple GA (SGA) as an evolutionary system rather 

than as a search or optimisation technique.  He starts by defining a broad class of Random 

Heuristic Search (RHS) algorithms and  demonstrates that a GA is a special case of an RHS, 

one in which all the transition rules are first-order Markov chains.   

In the meantime Cantú-Paz [2000] has pointed out  that GAs do not actually manipulate 

schemas or building blocks explicitly or, indeed, at all.  Schemas are abstract devices, 

artifices which are used to construct models which attempt to explain how GAs work. They 

can do this (up to a point) by assuming a binary representation, but tend to come unstuck 

when alphabets of higher cardinality are used.   In short, schemas have their uses but do not 

give a complete picture of how a GA works. 

2.5   Types, Variants  and Other Arrangements of GAs 

There is no generally-accepted taxonomy, but we would make a distinction between four 

quite different types of GA;  the conventional (Holland-type) GA − generally styled the 

canonical or simple GA −  Whitley’s steady-state GA [Whitley, 1988],  Nishio’s interactive 

GA [Nishio et al., 1997], and  Faulkenaeur’s grouping GA [Faulkenauer, 1997]. Within 

these four types there are many variants, of which we studied nineteen in detail and allowed  

                         
4 Real numbers in the sense of decimal or integer;  anything other than binary or hexadecimal 
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them to influence the development of our arms race GAs. Nevertheless, our prime concern 

here is with the canonical GA.  A canonical GA is a standard one and is generally accepted 

as being of the Holland-type, i.e. operating on a population of chromosomes with mutation 

and crossover operators, and  subjecting the population to selection processes whereby the 

fitter chromosomes reproduce at the expense of the others.  ‘Canonical’ does not imply any 

particular representation;  in particular, in the context of the thesis, the word should not be 

exclusively associated with binary representation. 

2.6    GAs  −−−−  A  More Detailed Treatment 

A GA is an adaptive algorithm for solving problems using computational models of natural 

evolutionary systems.  A GA imbues a computer with a life-like adaptive capability to learn 

and to control the GA’s environment.  It can handle very large search spaces (of many 

parameters, some of which can be interacting);   it can deal with discontinuous search 

spaces, and it can keep parameters correlated [Sanchez  et al., 1997].    

Each chromosome can be thought of as a  point in the search space of candidate solutions.  

A GA tries efficiently to find a solution to a problem in a large space of such solutions.  

First, it evaluates the worth of each chromosome being produced, and then it uses this 

knowledge to bias the selection process towards reproducing the better chromosomes (i.e. 

those with good fitnesses) at the expense of the poorer ones [Davis, 1991].  The fitness of a 

chromosome depends on how well that chromosome solves the problem at hand. A GA 

knows nothing about the problem being solved, but is a general method of solving ‘search 

for solutions’ problems. Put formally, a GA is an emergent computation − one in which the 

actions of simple components with limited information and communication give rise to 

global information processing. Evolution operates on chromosomes rather than on the 

systems  which the chromosomes encode.  

Note.   In the development of the thesis we have used years (time) and generations (GA-

parlance) interchangeably. 

2.7  Selection: Pairing   

There are several ways [Haupt and Haupt, 1998] of pairing a matrix of chromosomes: 

•  Pairing from top to bottom of the chromosome list, e.g. Chromosome 1 with Chromo-

some 2, Chromosome 3 with Chromosome 4, etc. 
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•  Random Pairing. Chromosomes are selected at random from the chromosomes in pairs, 

e.g. Chromosome 13 with Chromosome 57, Chromosome 26 with Chromosome 83, etc. 

•  Weighted Random Pairing.  Probabilities are assigned to chromosomes according to 

their fitness,  the fittest being the one of least cost.  The better chromosomes have therefore 

a much better chance of  pairing than the weak ones, although none are entirely excluded.  

An RNG decides which chromosome is selected. This is generally known as roulette wheel  

weighting [Baker, 1985].    There are two types of this weighting: 

o Rank weighting.   As evaluation proceeds, a running total is kept of all the fitnesses so 

far computed.  Its accumulated total at the end of the chromosome list is called 

total_fitness. A number, <random(total_fitness)>, is then randomly gene-

rated for each chromosome. Starting at the top of the list, the first chromosome whose 

total_fitness is greater than the corresponding random number is selected for pairing.  

The selection process continues in pairs.  If a chromosome is paired with itself,  

another one is chosen. 

o Cost Weighting.   As for rank  weighting, except that fitnesses are linearly normalised 

first. In the thesis, the best fitness is assigned a new value, normfit, of 500, the second 

best 495, the third best 490, and so forth, and total fitness is the sum of the normfits.  

This  has advantages if there are large numerical disparities in the fitnesses; otherwise 

superfit chromosomes get too big a reproductive advantage.   This method is used in 

all the GAs in the thesis.  ‘Bigness’ is a matter of choice;  we originally introduced a 

linear norm when we discovered that in one GA an over-dominant individual 

chromosome was being selected 42 times for parenthood in a population of 100. 

• Tournament Selection.   Only an elite subset comprising the fittest chromosomes are 

allowed to pair, and the others get no chance (and hence die out, being replaced by the 

offspring of the elite subset).  This is what happens in horse-breeding and cattle farming. 

The Breeder Algorithm [Mülhlenbein, 1994] is based on this.  Care has to be taken that 

the elite subset is not too small or the chromosomes will rapidly degenerate (in a GA this 

means that individual genes will tend to zero)5.   Tournament selection is in widespread 

use in theoretical work on GAs [e.g. Cantú-Paz, 2000], but is far less common 

elsewhere. 

                         
5  A very recognisable condition, known as ‘degenerative convergence’, see Section 2.13 
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2.8   Mutation and Crossover  

Mitchell [1996] summarises the concepts of selection, mutation and crossover thus: 

“Selection increasingly focuses the search on subsets of the search space which feature 

schemas with observed above-average fitness,  whereas crossover puts high-fitness ‘building 

blocks’ together on the same string in order to create strings of increasingly higher fitness.   

Mutation plays the role of an insurance policy, making sure that genetic diversity is never 

irrevocably lost at any locus”. 

2.8.1.  Mutation    

Schrödinger [1954] defines mutation as an isomeric change6 in some part of the gene’s 

mole-cule. Once two of our electronic chromosomes have been selected  for reproduction 

they are laid side by side, element by element, in the algorithm. A random number then 

decides whether or not each element is to be mutated;  if so, then the element is changed in 

some way.  The mutation rate (more pedantically the mutation probability per locus) is 

usually very small, typically 0.8%, but in terms of the mechanics of the GA it is significant  

in that: 

• By widening the search space, it expands the chromosome in ways not hitherto feasible. 

• It helps prevent premature convergence. 

Table 2.1   Mutating a chromosome.  Mutation rate 20% 
             Original chromosome             8  4  6  2  3  8  1  6  5  7                                           . 

   Mutate by adding 5 where shown         5                          5        ‘carry’ if necessary.         .   
            Mutated chromosome              8  9  6  2  3  8  1  7  0  7                                           .    

One can start with one mutation rate and progressively reduce it at runtime, since too much 

mutation is undesirable once convergence approaches;  moreover, we have known excessive 

mutation to make a GA unstable. 

2.8.2   Crossover 

Mating is the creation of one or more offspring from the selected parents.  In a sense, the 

GA is exploring the cost surface, making use of the schemas present in the chromosomes.  A 

‘crossover point’ is selected;  in many applications this point would have been chosen 

randomly between elements 2 and L – 1, but for our purposes we chose typically 55% to 

65% of L,  figures originally recommended by Davis [1991] which we found satisfactory for 

our application.  Parent 1 passes all the elements beyond that point to Parent 2, but keeps the 

                         
6  In chemistry, a molecule is changed isomerically if the product consists of the same atoms in a different arrangement.  In 
biology it means a different element in the same locus (see Glossary).  Either way, a mutation is a quantum jump, in the 
sense understood by quantum physicists  
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remainder.  Parent 2 does the same to Parent 1.  The two resulting chromosomes (the 

‘offspring’) now contain a sizeable number of  elements of both parents but nevertheless, 

like human children, both are now individuals in their own right. This is called ‘single-

point’ crossover. 

Table 2.2        Single-point crossover at 60%, counting from the right 7 
 Chromosome 1    4  7  5  6  |2  3  6  0  1  8                                                . 
 Chromosome 2         3  5  8  9  |2  9  5  1  5  4                                                . 

become 
 Chromosome 1A        4  7  5  6  |2  9  5  1  5  4                                               . 
 Chromosome 2A        3  5  8  9  |2  3  6  0  1  8                                               . 

 Table 2.3         Two-point crossover at  30% and at 80% 
 Chromosome 1         4  7  |5  9  2  3  6  |0  1  8                                               . 
 Chromosome 2         3  5  |8  6  2  9  5  |1  5  4                                               . 

become  
           Chromosome 1A       4  7  |8  6  2  9  5  |0  1  8                                             
           Chromosome 2A       3  5  |5  9  2  3  6  |1  5  4                                              . 

Both one-point and two-point crossover occur in nature.  Schemas which occur at either end 

of a chromosome will, in single-point crossover, never be re-combined;  no matter where 

crossover occurs, the schema will be broken up.  Two-point crossover is arguably one 

answer, but it will not solve every problem, even though Dumitresceau et al. [2000] claim 

that two-point crossover is the best for minimising disruptive effects. 

2.8.3   The Practicalities of Handling Mutation and Crossover    

• Our chromosomes are a series of concatenated genes each one of which consists of a 

number of elements. Setting an arbitrary crossover of 60%, say, may well result in a 

chromosome being split mid-gene.  Similarly, carrying the ‘1’ of the ‘10’ into the next 

column (see the example in Table 2.1 above) may well result in the mutation of  a 

neighbouring gene.  Our computations show that, numerically, neither splitting a gene 

nor mutating a neighbour seem to matter very much, although in (6) of Section 8.9 we 

point out that a crossover inside a gene can cause additional (and unintended) 

‘mutations’.    

• Mutation and crossover actually support one another, for at any point there is a subset of 

operator fitnesses which will lead to best results.  After initialisation, the population is 

hugely diverse, but scattered within it are pieces of good solutions.  Crossover is 

arguably the best way to put these good pieces together, but once this has been done the 

                         
7  It does not actually matter from which side counting is done, as long as it is consistent 
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chromosomes start to converge, and from then on it has been our experience that 

mutation leads the search for better solutions.  If the runs are for a large number (> 50) 

of generations, however,  mutation can become excessive. 

• It is possible to be too clever. In an article of the same name, Rudolph [2001] showed 

that  “Self-adaptive mutations may lead to premature convergence”. 

2.9  Fitness and Fitness Functions  

The Glossary defines fitness and gives four alternative definitions of fitness function (ffn), 

the first three of which agree that an ffn provides a measure of how individuals 

(chromosomes) have behaved in the problem domain. Fitnesses based on the direct output of 

evaluation equations (‘evaluation-is-fitness’) will favour the superfit individual, so it is 

better to introduce a linear norm which will retain an individual’s performance relative to its 

peers.   In general terms, 
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where the individual fitness, F(xi) is computed as the individual’s raw performance, f(xi), 

relative to the whole population, and xi is the phenotypic value of individual i;  ffns can be 

non-linear and even discontinuous [Sanchez  et al., 1997]. 

 “Parent selection dynamics are based on an application-dependent metric known as fitness.  

A fitness is a figure of merit computed by an ffn using any domain knowledge which 

applies, and imposes constraints on what is required, or what is acceptable behaviour.  The 

greater a chromosome’s fitness, the higher chance it has of being selected for reproduction” 

[Buckles and Petry, 1992].  An ffn (sometimes called an objective function) is generally 

chosen for reasons other than mathematics; in our case, it was chosen for political reasons.  

“Anyone who has spent time applying GAs knows how good they are at debugging ffn’s.  

Any flaw in an ffn that can be exploited by the GA will be” [Drechsler, 2003].  In Section 

5.2  (indeed, throughout the thesis) we say that we wish to minimise the risk of war, so that 

is what our fitness functions must do.  Moreover, they must be expressed in terms of either 

sides’ defence expenditures − the only information we have.  At first sight the risk of war 

might appear least if both sides minimised their defence expenditures, but this is not true. 

One of the most noticeable characteristics of the charts of percentage defence expenditure  

drawn from the IMF data for all three conflicts (Greece/Turkey − India/Pakistan − Middle 
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East, see Figures 6.5, 6.10 and 6.15, respectively) is that when percentage defence 

expenditure curves intersect, touch or even get close to one another, a conflict often results. 

(Conflicts occur at other times as well, or there would be no need for this present study). In 

other words, the further apart the defexp% curves are, the less is the likelihood of war.   

Taking our usual x and y to represent defence expenditures, then it is argued that the risk of 

war is least when | x − y | is maximised.  Looked at this way, we  bestow a higher fitness or 

‘worth’ on those chromosomes  where the differences between x and y are larger, and by 

doing this we ensure that such chromosomes have a greater chance of reproduction in the 

GA.  As the GA progresses, therefore, the risk of conflict is systematically reduced.   

A totally different approach is taken in Chapters 5, 6 and 7, where we seek to minimise the 

value of the ffn.   In particular, we use the inverse Pythagorean  expressions 

 fitness =
221

10000

yx ++
(Chapters 5/6)   or  

221

10000000

QP
fitness

++
=  (Chapter 7) ,    (2.3)   

which minimise x and  y, or P and Q , simultaneously. (P and Q stand for the American and 

Soviet counter-values, respectively).  The numerators are scaling factors. Note (5) to Section 

5.4.2 covers the subject in more detail.    

In Section 4.6 we point out that although it is normally convenient to use an RNG for gene 

initialisation, nevertheless our GAs make use where possible of real-world data.  The intro-

duction of Cao et al.’s norm is one such example, as is Section 6.3.2, where it will be 

suggested that since we know all the real (i.e. IMF) values of xt , yt , xm , and ym (collectively 

called xreal and yreal)  we can use the prediction GA’s evaluation equations, i.e. Eqs(6.4), to 

obtain xt+1 and yt+1, etc (collectively called xcalc and ycalc) as a straightforward  arithmetical 

exercise not involving GAs at all;   xreal and yreal can then be compared with xcalc and ycalc .   

We later took these ideas one stage further by using the ffn  

                             fitness = 22
realcalcrealcalc yyxx −+−   ,                               (2.4) 

thereby taking all the available IMF data into account.  We will show in Chapter 6 that, 

although curves computed by the GA using Eq(2.4) mimic the IMF data much more closely 

than those computed using Eq(2.3), nevertheless there is little difference between the rate-

factors used for either. In the context of arms race prediction, it is important that appropriate 

rate-factors are transferred from the modelling GA to the prediction GA.   
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2.10    Binary or Real-valued Encoding?   

As in any search-and-learning method,  the way in which candidate solutions are encoded is 

the central factor in the success or otherwise of a GA.  As has already been explained, GAs 

have traditionally employed chromosomes consisting of fixed-length, fixed-order bit strings, 

but this is principally for historical reasons.  GA theory can apply to non-binary codings, 

such as integer or decimal (variously called real-valued, floating-point or continuous 

parameter coding).  Real-valued or integer strings have three very real practical advantages 

over binary ones [Wright, 1991;  Michalewicz, 1992] :  

• The efficiency of the GA is increased since there is no need to convert chromosomes to 

phenotypes before each function evaluation. 

• If the parameters are continuous (i.e. not easily quantised), then the use of real, floating-

point numbers allows representation to machine precision without discretisation loss.  

• Less memory is required as floating point (or integer) internal computer representations 

can be used directly 

Holland himself later [1992] compared two encodings with roughly the same information-

carrying capacity, one with a small number of elements and long strings (bit strings of length 

100), and the other with a large number of elements and short strings (decimal strings of 

length 30).   He argued that the former allows for a higher degree of implicit parallelism 

than the latter (i.e. 2100 versus 1030),  since an instance of the former contains more schemas 

than an instance of the latter.    Such  schema-counting analyses have subsequently been 

ques-tioned.  Indeed, Vose and Liepens [1990] believe them to be wrong.   

Aizawa and Wah [1993] claim that the presence of noise alleviates tendencies towards 

premature (and degraded) convergence.  Convergence is covered in Section 2.13. 

Many GA practitioners [Eshelman and Shaffer, 1993; Montana and Davis, 1989;  Adewuya, 

1996; and Michalewicz, 1992] have  used real-valued  encodings and  to date there are no 

hard and fast rules as to which, binary or real-valued, is the better.  For many years it has 

seemed highly probable that fundamental GA theory and processes were not upset by the use 

of real-valued strings, but until Vose [1999] there was no formal proof of that. 
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Michalewicz [1992] has said  “All experiments indicate that floating-point representation is 

faster, more consistent from run to run, and provides higher precision, especially with large 

domains where binary coding would require prohibitively long representations”.  

2.11   The Representation Used for the GAs Designed for this Application 

Only two general points about representation will be made here.  More details about the 

GAs we employ are given in Chapter 4. 

2.11.1  Integer-Coded GAs  

For the work on Richardson’s arms race equations described in this thesis, integer encoding 

was deliberately chosen.  This is not a new idea;  Lucasius and Kateman [1992] have said 

that GA chromosomes for subset selection and combinatorial optimisation problems are best 

suited by integer representation.   

2.11.2    Direct Mapping 

It so happens that most of the figures resulting from the Richardson arms race equations lie  

in the thousands.  It therefore seemed apt to map the phenotype direct onto the genotype (i.e. 

avoiding the need for any embryogeny), and use a genotype consisting of strings of mainly 

four-digit decimal genes, seemingly integers, the only ‘coding’ necessary being occasional 

multiplication or division by factors of ten, in order to compute the evaluation equations.   

Many of these apparent integers will be floating-point numbers and some will be integers, 

but this does not matter provided that no decimal point ever appears in the genotype.  The 

error introduced by ignoring decimal places is minimal.8   This is a long way from John 

Holland’s original idea of using binary encoding, but as Vose [1999] has now shown, the 

theory of a GA is valid no matter what encoding is used.  If a term is needed, it would be fair 

to describe all the GAs used in the thesis as ‘integer-coded’ (to base 10). 

2.12  Epistasis 

In GA literature, the degree of dependent parameter interaction is called epistasis, a 

biological term for gene interaction. Epistasis is about genes acting in combination to 

produce (or inhibit) solutions.  Michalewicz [1992] says “Epistasis measures the extent to 

which the contribution to fitness of one gene depends on the values (alleles) of other genes. 

A high degree of epistasis means that building blocks may not form, and the problem 

becomes deceptive. Bentley [1999] puts it differently:  “Epistasis is defined by the genotype 

(and embryogeny) representation, and not by the ffn.  A genetic representation with high 
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epistasis may have many genes whose phenotypic effect relies to a large extent on the alleles 

of other genes.  The converse is true; a representation with low epistasis has few or no genes 

whose phenotypic effect relies on the alleles of other genes”. Experiments investigating 

whether the level of epistasis should be high or low have so far  been inconclusive 

[Schoenhauer, 1996].  Bentley [1999] considered a fictional representation that used, say, 

ten genes to represent the entire form of designs, and the phenotypic effect of every gene 

was completely dependent on all other genes through some process of embryogeny.   With 

maxi-mum epistasis,  the ten genes were effectively one.   Any attempt to improve one gene 

would have resulted in changes to all the rest of the design (pleiotropy), making evolution 

very difficult, if not impossible [Bentley, 1999].  

Alternatively, consider some representation with no epistasis.   No embryogeny is required, 

since every gene maps directly onto a specified area (and only that area) of the phenotype.   

Hence evolution of large-scale characteristics would be immensely difficult.   Nature uses 

‘middling’ amounts [Bentley, 1999].  In GAs less epistasis is preferable to more, and this is 

one reason for introducing redundancy into chromosomes, see Chapter 8. In particular, we 

found that reducing epistasis makes GAs significantly more robust (i.e. the results are less 

likely to differ with each starting seed). 

An intriguing method of measuring epistasis has been developed by de Jong et al. [1997] 

with a mathematical backing by Naudts et al. [1998]. A GA is run complete (i.e. with both 

mutation and crossover) and a graph of fitness against generations run is plotted.  It is then 

run again keeping crossover but cutting out mutation.  It is then run  for the third time, 

keeping mutation but cutting out  crossover.  All three graphs are now plotted on the same 

axes.   Put crudely, the closer the graphs, the greater the epistasis, and vice versa.   On a 

basis of experience, it is expected that the (standard) GA will dominate on low epistasis 

problems (and it does, as demonstrated in Chapter 8). If epistasis becomes very large, the 

mutation-only version does better. We will use the de Jong/ Naudts technique later. 

2.13  Convergence   

In the GA research community the term convergence is encountered under various guises.  

Listed below, for the sake of clarification,  are six different versions of it  which are used in 

the thesis.   (A discussion about the mathematics of convergence is outside the scope of the 

thesis.)  Except where stated, the taxonomy is our own.  

                                                                            
8 The maximum error will be 0.5 in a thousand or 0.05% 
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(1)  Oscillatory convergence  Successive iterations (generations) oscillate diminishingly 

either side of a limit. 

(2)  Asymptotic convergence  Successive iterations (generations) nudge closer and closer 

  towards a limit. 

(3)  Degenerative convergence   The genes of a chromosome tend to zero.  This is brought 

about by allowing too few chromosomes to reproduce, and it has a biological parallel in 

excessive in-breeding. 

(4)  Premature convergence [Levenick, 1999]  This implies that convergence is desirable 

but should somehow be delayed.  In fact, this phrase is often applied to a GA which has 

converged to something other than the desired value.   

(5)  Homogeneous convergence  This implies homogeneity across the whole population to 

the point where all individuals are identical, i.e. clones.  This induces a loss of genetic 

diversity which is never desirable, for it incapacitates crossover and inhibits exploration 

except by mutation. 

(6)  Diverse convergence [Levenick, 1999].  This implies “ ... the maintenance of a diverse 

population after convergence is reached”  This would be an ideal, for it would combine 

exploration and exploitation, Holland’s [1975] basic dilemma. Alternatively, it could 

just be a result of frequency-dependent selection. 

In Section 7.14 and Table 7.8, we encounter premature convergence in GA-18 (a sequel to 

GA-2); different seeds applied to non-discretised evaluation equations give markedly 

different results (violent oscillations followed by rapid convergence).  However, those solu-

tions which have high fitness converge to very similar values.  We can slow convergence by 

• introducing redundant genes (see Chapter 8), and by 

• including the evaluated results as genes in the chromosome, i.e. by discretising the 

evaluation equations. 

The advantage of slowing down convergence is that robustness is greatly improved, i.e. the 

results depend only marginally on the starting conditions. 
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Background 2:   Richardson’s Theory of Arms Races   

 
3.1     Richardson’s Assumptions   

A very brief history of arms races and of Richardson’s work were given in Section 1.2.   

On the basis that “... where your treasure is, there will your heart be ...”,  Richardson 

believed that a nation’s annual budget gives a very accurate portrayal of its leaders’ 

hopes, aspirations, fears, grievances, prejudices, envy, compassion, humanity, ethics and 

social mores generally.   In his model, a nation’s strength is determined principally by its 

current annual expenditure on arms, although it partly depends also on a term denoting 

“threats minus co-operation”.  

This chapter explores Richardson’s  arms race model for two and three nations. Although 

originally written for x and y (and z) to represent various defence costs, it can equally 

represent the actual number of weapons.   It is shown that discretised arms race equations 

are of much more use than straightforward ordinary differential equations if only because 

real information is catalogued by specific years rather than by rates of change.   

Canard explosions modelled by ordinary differential equations have been considered in 

depth by Peng et al. [1991].  We connect this work to Richardson’s model and this leads 

to an investigation of how to predict instabilities, and therefore anticipate conflicts, 

between nations. 

3.2   The  2-nation  Model 

Richardson stressed that he was searching not only for truth, but truth in easily 

understood form.   It was natural, therefore, that he should turn to Ockham’s razor 

(“Entities are not to be multiplied without necessity”) and start simply.  Let there be two 

nations, X and Y, whose defence expenditure per year is US$ x billion and US$ y billion, 

respectively.  Suppose the Defence Minister of Nation X (or Y) makes the following 

statement:  “The intentions of our country are entirely peaceful.  We have given ample 

evidence of this by the treaties which we have recently concluded with our neighbours.  



Yet, when we consider the state of unrest in the world at large and the menaces by which 

we are surrounded, we should be failing in our duty as a government if we did not take 

adequate steps to increase the defences of our beloved land”. 

This rhetoric reduces to 
,cy

dt
dx =

 where dt
dx

  is the rate of change of the defence 

expenditure of  Nation X, and  y  represents the  defence expenditure of Nation Y;  in a 2-

nation setting, Y is the only ‘menace’ surrounding  X. 

The Defence Minister’s opposite number in Nation Y could make a similar statement, 

result-ing  in  
;ax

dt
dy =

 a and c are called  defence coefficients  and are positive.                   

.   

It has been  fortunate  that the sheer cost of  armaments  exercises some restraint on each 

side.  This diminishes the upward trend of dt
dx

 and dt
dy

  by amounts proportional to the 

nations’ own defence expenditures.  Hence an improved expression would be  

                                      
  fxcy

dt
dx −=

   and      
byax

dt
dy −=

,                                        . 

where f and b are two positive expense and fatigue coefficients;  in use, their sign gives 

them a negative impact. 

Finally, Richardson introduced two ‘constants’. Nation X still feels it needs some military 

strength, even if  Y  has none at all.  This is for two reasons: 

• First, it takes years to build up, equip and train standing navies, armies and air forces.   

Without any of these, a nation really could be vulnerable to predators, especially if it 

possesses attractive natural resources, like oilfields (e.g. Kuwait), a natural harbour 

(Singapore), or rich agricultural land (Poland, which Hitler coveted in 1939). 

• Second, some nations (like India and Pakistan) loathe each other, for religious, racial, 

or historical reasons (such as wanting to avenge previous defeats or perceived 

humiliations). 

Richardson called the ‘constants’, g and h, the grievances. Hence the above equations 

become 



=
dt
dx

 cy − fx  + g      and       
=

dt
dy

 ax−  by  + h  .                       (3.1) 
 

We observe the following: 

1 Every parameter in these equations is time-dependent.  In general, x and y will  change 

faster with time than a, b, c, f, g or h;  the latter vary slowly with time.  Put formally, 

all the parameters in Eqs(3.1) are  functions of time and  a, for instance,  should be 

written  a(t).   To avoid overburdening the text, however, we will just use a. 

• Mutual disarmament without satisfaction is not permanent, for even if cy −  fx is zero, 

the effect of  g  still rankles on X.  (Mutual disarmament with satisfaction can be 

permanent; it has existed, for example, on the frontier between the United States and 

Canada since 1817). 

We next consider what happens if the curves  for dt
dx

 and dt
dy

 are both equal to zero − in 

which case the ‘curves’ become straight lines.    

Let x0,y0  be the point at which the two lines meet.  We call  (x0, y0)  the point of balance.  

After some algebraic manipulation, we obtain 

  acfb
gbch

x
−
+=0

       and       acfb
gafh

y
−
+=0

                                  (3.2) 

provided  that  ac �  fb;   if  ac = fb, then the lines for dt
dx

 and dt
dy

 would  be parallel, and 

no point of balance would exist except at infinity, but this condition is very unlikely.  In 

addition, a, b, c and f  are positive, and g, h are likely to be so.  In our scenarios the 

numerators of Eqs(3.2) are unlikely to be zero, so the indeterminate 0/0 situation does not 

arise. 

Define new co-ordinates X̂ and  Ŷ , such  that  X̂  = x − x0  and  Ŷ  = y − y0 .    Since 

== 00

dt
dx

 cy0 −  fx0 + g      and     
hbyax

dt
dy

+−== 00
0 0

,                        .  

on using Eq(3.1), it follows that                         . 
                            .                                                                                                                               



dt
Xd ˆ

 = − f X̂  + c Ŷ      and      dt
Yd ˆ

 =  – b Ŷ  + a X̂  .                      (3.3) 
                                                                                                                       . 

The substitutions X̂  = Aept and Ŷ  = Bept   form a solution to Eqs(3.3), provided p is one 

of the roots, say  q  or  r, of the quadratic         

                                           p2 + (f + b)p + fb – ac = 0 .                                                 

(3.4) 



On letting      

X̂  = A1 eqt + A2 ert           and        Ŷ  = B1 eqt + B2 ert                                            (3.5) 

and substituting Eqs(3.5) into Eqs(3.3), we obtain                      

                 a
br

fr
c

B
A

a
bq

fq
c

B
A +=

+
=+=

+
=               and              

2

2

1

1

 .                         (3.6) 

This shows that the constants A1 , A2 , B1 and B2 are not independent.   This in turn 

supports the earlier statement (Section 1.2) that Richardson’s model is essentially a non-

linear dynamic system, the behaviour of which can be difficult to predict. 

So far we have considered rates of change against time.  But  how does  y  vary against 

x?  Ignoring the grievances, setting dt
dy

 and dt
dx

 to zero and differentiating with respect to 
x, we obtain      

b
a

dx
dy

    =
        and       c

f
dx
dy

    =
.                                           (3.7) 

Richardson proved via a geometrical analysis using equally-scaled axes [Richardson, 

1960b, pp 24-27]  that dt
dx

 is positive above the curve (see Figure 5.1)   

 ax – by + h =  0                                                       (3.8)                         

and that dt
dy

 is positive to the right of  the curve      

 cy – fx + g  = 0 .                                                     (3.9) 

If the slope dx
dy

 of Eq(3.8) exceeds  that of  Eq(3.9), there will  be a region in which both 

dt
dx

 and  dt
dy

 are positive lying on that side of  the point of  balance  (x0, y0)  in which  x > 

x0 and  y > y0.   The  resulting  situation diverges away from the point of balance, and is 

therefore unstable.  In other words, since dx
dy

  can  also  be  expressed  in terms of  

Eqs(3.7),  instab-ility  occurs when ac > bf .     

A similar argument for the slope of Eq(3.9) being  greater  than  that of  Eq(3.8) shows  

that,  when ac < bf, the situation converges towards the point of balance and is therefore 

stable.  



We note that the same results can be found by standard algebraic means. 

Finally, we note that: 

1 If ac = bf, then the system would seem to be in mechanically neutral equilibrium.  In 

practice, however, the transition from stability to instability can take place 

explosively.  See Figures 5.9 and 5.10, for the difference that a 0.1 % increase in 

average defexp% can make. 

2 If a = c and  b = f,  then Eqs(3.1) reduce to 

hgyxbc
dt

yxd +++−=+
))((

)(

,                                               . 

 namely a system with a  single dependent variable. 

3.3   The 3-nation Model 

Generalising the 2-nation equations, Richardson [1960b, p 146] expressed the n-nation 

situation by 

                            
�

=
+=

n

j
jjii

i xg
dt
dx

1
,    κ

              i, j ∈ { 1, 2, 3, ... n},          (3.10) 

where xi is a measure of ‘threats minus co-operation’ for the ith nation and gi and κi,j are 

time-varying quantities.    

On setting  x1 = x,  x2 = y and x3 = z, the 3-nation version of Eq(3.10) yields 

  
  

dt
dx

= – κ1,1 x +  κ1,2 y +  κ1,3 z  +  g1                                                                 . 

  
dt
dy

=   κ2,1 x  –  κ2,2 y  +  κ2,3 z  +  g2                                                                 . 

  
dt
dz

=   κ3,1 x +   κ3,2 y  –  κ3,3 z  +  g3 ,                                                 (3.11) 
                                                                                                                    . 

where κ1,1, κ2,2 and κ3,3 are rate-factors  representing the  fatigue and expense 

coefficients, and the remaining six κi,j rate-factors represent the defence coefficients, see 

Section 3.2.  

Let X̂ = x – x0 ,  Ŷ = y – y0  and  Ẑ = z – z0.   Then, as before, it follows that 



                                 
  

ˆ

dt
Xd

= – κ1,1 X̂  +  κ1,2 Ŷ  +  κ1,3 Ẑ                                            . 

                      
  

ˆ
dt
Yd

=    κ2,1 X̂   –  κ2,2 Ŷ  +  κ2,3 Ẑ                                            . 

                     
  

ˆ
dt
Zd

=    κ3,1 X̂  +  κ3,2 Ŷ   –  κ3,3 Ẑ .                                 (3.12) 

                                                                                         . 

Eqs(3.11) were further developed and extended by Mayer-Kress [1989], who developed a 

discretised form, namely 

                            xt+1  =  xt   +  �k1,1 (xs – xt) +  k2,3 (yt + zt)�(xm – xt)                                   . 

                               yt+1  =  yt  + ��k2,2(ys – yt)  +  k1,3 (xt – zt)�(ym – yt)                                    

. 

                               zt+1  =    zt  +  �k3,3(zs – zt)  +  k1,2 (xt – yt)�(zm – zt) .                         

(3.13) 

At this juncture, several points are noted. 

1 The discretised Eqs(3.13) are a lot more useful than Eqs(3.11), if only because real-

world data is expressed in figures for individual years.   For example, nation X’s 

defence expenditure for 1987/1988/1989 will have three discrete entries in the various 

statistical yearbooks, corresponding to xt− 2 ,  xt− 1  and xt , and these can be extrapolated 

to predict xt+1, the defence expenditure for 1990.  

2 As written, Eqs(3.13) assume that  nations Y and Z are allied together against nation 

X. 

3 The terms (yt + zt), (xt – zt), and (xt – yt)  denote the external threat from adversaries for 

the nations  X, Y and Z, respectively.   Note the plus and minus signs in the ‘threat’ 

parentheses;  in the second equation (nation Y), for instance, since Y and Z are allies, 

any defence expenditure incurred by Z is to Y’s advantage.   (The subject comes up 

again in Section 4.11 where the rate-factors associated with threat play a leading role 

in assessing the stability of the fractal basins).  

• xt , yt and zt are the actual expenditures of the three nations on arms for the current 



year.      xt+1,  yt+1,  zt+1 are the corresponding defence expenditures for next year. 

4 xs , ys and zs are the intrinsic arms expenditures (how much each country spends on 

defence irrespective of competitive spending by its neighbours). This is difficult to 

estimate, so the British figure of 78% standing costs [UK Defence Estimates, 1998] 

has been substituted;  thus, for instance,  k1,1 (xs - xt) = − 0.22  k1,1  xt .            

• xm , ym, and zm ,  respectively, represent the expenditures authorised on arms in the 

budgets of nations X, Y and Z.   Under arms race conditions xm � xt ,  ym � yt,  and  zm � 

zt . 

Our 2-nation variant of Eqs(3.13) is given by      

xt+1  =   xt +  �k1,1 (xs – xt)  +  k1,2  yt  �( xm –  xt )                                        .                               

yt+1  =   yt + ��k2,2 (ys – yt)  +  k2,1  xt  �( ym  –  yt) .                              (3.14) 

We know from experience amassed over many years that xs is typically 80% of  xt .  

Assuming that the terms  k1,1(xs – xt) and k2,2(ys – yt) are negligible vis-à-vis k1,2 yt (xm – xt) 

and                                          k2,1 xt ( ym – yt), respectively   −  which we  confirm from the 

computed results and verify in Chapter 6  − then 

   
≈

dt
dx

(xt+1 – xt) ≈  k1,2 yt (xm – xt) ≈  (k1,2  xm)  yt  –  (k1,2  yt) xt                               . 

≈
dt
dy

 (yt+1 – yt) ≈  k2,1 xt (ym – yt)  ≈  (k2,1 ym)  xt  –  (k2,1  xt)  yt                    (3.15) 

which are of the general form 

=
dt
dx

 cy – fx    and   
=

dt
dy

 ax – by ,                                      . 

cf. Eqs(3.1). Under the said assumptions, we have obtained a relationship between 

Richardson’s coefficients a  and  c and Mayer-Kress’s  rate-factors.  Hence   

 a ≈ k2,1 ym     and     c ≈ k1,2 xm                                      (3.16) 

which we use extensively in the GAs of Chapter 6 to estimate a – c for the purposes of 

detecting a change in the direction of curvature of the limit cycle.    The results of 



Chapter 6 seem amply to justify these approximations.    

Consider the 3-nation case, i.e. nations X, Y and Z.  In such circumstances, nations 

usually ‘take sides’ so we are likely to have X versus Y and Z together, for example.  In 

Eqs(3.13), k2,3 is associated with the budgeted defence expenditure xm of nation X,  k1,3 

with the ym of nation Y, and k1,2 with the zm of nation Z.   Hence, the 3-nation 

approximation expression for a − c is    

                k1,3 ym  −  ( k2,3 xm −  k1,2 zm) ,                                         (3.17)                                                        

which we use in Chapter 6.                                                      .   

Forrest and Mayer-Kress [1996] originally called the ki,,j rate-constants, controlling the 

defence intensity, i.e. how  quickly a nation responds to changes in external threats.  In 

fact, ‘rate-constant’ is not a good name for they are not constant (indeed, they appear as 

genes in our GAs) and they do vary significantly, if slowly.   In the thesis we will call 

them rate-factors. 



3.4    Using Richardson’s Model. 

Richardson’s equations may be conceptually correct, but they are sometimes difficult to 

apply in practice, in that they often call for parameters which are either not available or 

are meaningless in context; for example, requiring the assignment of a numerical value to 

goodwill or hostility.  The skill in using the said equations lies, therefore, in identifying 

Richardson’s intentions.   Sometimes, this is easy;  for example, if y is the actual number 

of US nuclear missiles − not defence expenditure as hitherto − and x is the number of 

Russian missiles, then Eqs(3.1) apply, and the analysis can proceed from there, plotting 

contours which represent the minimum number of nuclear weapons with which America 

and Russia can inflict unacceptable levels of damage on each other after each one has 

survived a pre-emptive strike by the other. (Nuclear deterrence is the subject of Chapter 

7).  At other times, Richardson can be difficult to gauge, especially when it is necessary 

to put numerical values on terms like threats and co-operation. 

In order to achieve a pragmatic solution in the case of the Middle East conflict, for 

example,  Eqs(3.13) could  be modified to yield 

      xt+1  =  xt +  �−0.22  xt  k1, 1 /1000  +  ( yt+ zt) k2,3 /1000� (GDPX  / 50 )                         .        

yt+1  =  yt  +  �−0.22  yt   k2,2 /1000  +  (xt – zt) k1,3 /1000�� (GDPY / 50)                           

      zt+1  =   zt + ��−0.22 zt  k3,3 /1000  +  (xt – yt) k1, 2 /1000� (GDPZ  / 50)  .              (3.18) 

This is effected by replacing  k1,1(xs – xt)  by −0.22 xt k1,1 ,   k2,2(ys – yt)  by −0.22 yt k2,2 , 

and   k3,3(zs – zt) by� −0.22 zt k3,3.   Additionally, it  might be found empirically, for  

instance,  that  xm − xt could be approximated by taking one-fiftieth of nation X’s GDP, 

and the same obtained for nations Y and Z. The number 1000 is a scaling factor.  

Note. Eqs(3.18) merely demonstrate a technique for reducing the number of variables in 

the evaluation equations of modelling GAs.  This technique is used in all four modelling 

GAs in Chapters 5 and 6 (Eqs(5.4), Eqs(6.2), Eqs(6.6), and Eqs(6.11)). The actual figures 

for Eqs(6.11)  are quite different from those used for demonstration in Eqs(3.18) above. 

In Eqs(3.6) it was shown that the constants of the general solution given in Eqs(3.5), 

namely A1 , A2 , B1 and B2, are not independent.  This lack of independence is particularly 



noticeable in the 3-nation prediction GA, GA-4 (Section 6.5.3).  We tried making a small 

(10%) change to each of the rate-factors in turn and this resulted in quite different outputs 

(not illustrated).  Such changes can lead to 

• a changed order of ‘fitness’, leading for instance to different parents being selected for 

reproduction 

• a change of domination (see Section 4.9), a potentially destabilising situation.  

In this sense Eqs(3.18) are entangled in the sense used by quantum physicists. For this 

reason, we go to a lot of trouble in the modelling GAs of Chapters 5 and 6 to ensure that 

the rate-factors are correct before they are used in a prediction GA. 

3.5    Canard Explosions 

It was suggested by my supervisor that instabilities in the model of a certain chemical 

process −  the Edblom-Orbán-Epstein (‘EOE’) reaction [Peng et al., 1991] − bear a 

striking resem-blance to those modelled by the 2-nation Richardson arms race equations, 

and that ideas could usefully be borrowed from the Peng et al. analysis of canard 

explosions and employed here to predict instabilities in the Richardson arms race 

equations.  The EOE reaction inv-olves very rapid changes from stable to unstable states 

and may result in a canard explosion. 

A canard explosion is the sudden growth in the amplitude and period of a limit cycle of a 

system of non-linear ordinary differential equations, such as 

              
=

dt
dx

 F (x, y, c)      and      
=

dt
dy

 G (x, y, c) ,                                  (3.19) 
                                                                                          . 

in a very narrow range of the parameter c  (c ≥ 0).               

The phrase canard explosion  was first used in connection with a mixture of iodate, 

sulphite and ferrocyanide ions in a stirred tank reactor. This mixture is used industrially 

in the manu-facture of plastics. It appears that the inflow concentration is critical;   a 

minute change in the proportions can cause an otherwise dull-looking sludge to explode 

violently without prior warning.   Such volatile behaviour is clearly unwelcome in an 

industrial plant, so ample res-ources were allocated to ensure its prevention.  The EOE 

reaction  was originally analysed and modelled by Peng et al. [1991] who used the van 



der Pol equation first developed by Benoit et al. [1981] and later investigated by Brøns 

and Bar-Eli [1994]. 

The limit cycle is defined by      
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 .                                                 (3.20)
 

Peng et  al. [1991] found that  

1 In practice, explosions always occurred just after the limit cycle reached a point 

with zero curvature (i.e. it touched the inflection line tangentially) or when the limit 

cycle changed the direction of its curvature, for at that point the steady state 

changed.  This is called the inflection canard point, and the easiest way to calculate 

it is to analyse the curvature of the limit cycle.  Furthermore, if the curvature of the 

limit cycle approached zero (it does not have to get there), an explosion is 

imminent.    This flattening of the limit cycle’s curvature is now used to predict 

(and hence prevent) canard explosions. 

2   If the model is correct, the EOE  reaction consists of two stable steady states lying 

either side of an unstable one. 

In summary, Peng et al. [1991] showed that explosions always occur just after the 

direction of curvature of the limit cycle had changed. Furthermore, such changes were 

easy to forecast.   

To what extent is the above pertinent to the Richardson arms race equations?   At first 

sight there was no obvious connection until it became apparent that the ‘patchiness’ of 

blue in the fractal basin in Figure 5.14  was  not  due  to  noise, as  was first thought, but  

to definite regions of instability, some of which were quite local.   Stable states lying 

either side of an unstable one are exactly what the EOE equations are trying to model. 

3.6    Applying Canard Explosion Theory to Richardson’s Equations 

Consider  the path of the limit cycle, namely Eq(3.20). By using Eq(3.20) and Eqs(3.1), it 



can be shown that if  ac = bf and g = h = 0, then every trajectory is a straight line.  

On adopting  polar co-ordinates (with the origin at the point of balance),  we have                                                                 

X̂    =  x – x0  =  r cosθ     and      Ŷ   =  y – y0  =  r sinθ .                            (3.21) 

On taking partial derivatives, we have 

                
  

dt
dx

= dt
Xd ˆ

= dt
dX

dt
dr

r
X θ

θ∂
∂+

∂
∂ ˆˆ

 = dt
drθcos

 –  r sin� dt
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                            (3.22)  

                  
  

dt
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= dt
Yd ˆ

 = dt
dY
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dr

r
Y θ
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∂
∂ ˆˆ

 = dt
drθsin

 +  r cos� dt
dθ

 .                        

(3.23) 

We next multiply Eq(3.22) by cosθ  and  Eq(3.23) by sinθ , and then add.  On using 

Eqs(3.1) we obtain 

(cos2θ + sin2θ )
   =

dt
dr

cos θ��c (y0 + r sinθ ) – f (x0 + r cos θ) + g� + sinθ �a (x0 + r cosθ )  

– b (y0 + r sinθ) + h������������������������������������������������������������������. 

whence 

=  
dt
dr

 cr sinθ cosθ  – fr cos2θ + ar cosθ sinθ  – br sin2θ                               .   
                              = r �−f cos2θ + (a + c) sinθ cosθ – bsin2θ ���������������������������������������������

���

Hence 

            r
1 =

dt
dr =

dt
rd )(log

 – f cos2θ + (a + c) cosθ sinθ  – b sin2θ .                   (3.24) 
. 

Next we multiply Eq(3.22) by sinθ  and Eq(3.23) by cosθ, and then subtract.  As before, 

it can be shown  that 

                                    
=dt

dθ
 a cos2θ  + (f – b) cosθ sinθ  – c sin2 θ .                           

(3.25) 
                                                                                               . 

From Eq(3.25) we see that  



                               
=dt

d )2( θ
 (a – c) + (a + c) cos2θ + (f – b) sin 2θ .                        

(3.26) 
                                                                                                   . 

Now let a constant angle E be defined by  

                   cos 2E  = Q
ca +

        and         sin 2E  = Q
bf −

 ,                                       .                     

where Q = ( ) ( )22 bfca −++ ,  and let =ϕ  2(θ – E).                                                         

It follows from Eq(3.26), and the definitions of E and �, that 

                                             
   =

dt
dϕ

a − c  + Q cosϕ .                                              (3.27) 
In all our real-life experimental results of Chapter 6, it was found that � � 90°.   

Therefore,      in the light of Eq(3.27), it is safe to say that in this application the direction 

of curvature of the limit cycle has the sign of  a −  c.  Symbolically 

              
 

dt
dϕ

 has the sign of  a – c.                                        (3.28)                                    

If a > c the limit cycle revolves counter-clockwise and if  a < c it revolves clockwise. 

Between the two, obviously, there will be a change in the direction of curvature of the 

limit cycle. 

It is important to appreciate that Richardson’s [1960b] concern with the path of the limit 

cycle arose as part of a systematic and thorough analysis of his arms race equations.  As 

far as is known, he was not specifically looking for sign changes in the direction of 

curvature of the limit cycle, nor identifying means of predicting points of instability in 

the way required in the thesis. Neither should it be assumed that, if  a tends to c (i.e. if 

 
dt
dϕ

� 0), the Richardson equations will become unstable at the very point where the 

direction of curvature of the limit cycle changes sign. Indeed, in the EOE reaction, 

instability occurs at some point after the Hopf  bifurcation which is so critical.  In chaos 

theory [Ott, 1994], similar sign changes occur at a Hopf bifurcation when, at the moment 

of transition from a laminar to a chaotic state, the complex-conjugate eigenvalues of the 

limit cycle change sign from minus to plus, see Section 5.5.1. 



3.7   Predicting Instabilities in Richardson’s Arms Race Model 

Earlier, under certain assumptions, it was shown in Eqs(3.16) that a reasonable 

approximation to Richardson’s coefficients a and c can be obtained (in the 2-nation case), 

viz.  

                                             a ≈  k2,1 ym    and   c ≈   k1,2  xm .                                               .                                                  

We now ask whether changes of sign in the direction of curvature of the limit cycle can 

be used to predict the approach of instability.  In view of Eq(3.28) and the approximate 

values of a and c, the answer is affirmative;  predictions are studied in Section 5.5 and 

throughout Chapter 6. 

In context, the significance of the difference a – c lies not in its value but in the number 

of changes of its sign at each iteration step (see Section 5.5.1).  Figure 5.6 shows the 

results of running the prediction GA, GA-6, by plotting the  number  of negative signs  in 

a – c (maximum 15) at increasing values of average defexp%.  We found ‘sharp drops’ 

(heralding instabilities) occurring at 6.5%,  7.9%  and at 10.1%. 

Each instability is prefaced by a sudden plunge (a ‘sharp drop’) from a high number of 

minus signs  to a small number of minus signs.    Analysing this and other figures,  we 

observed that if  a overtakes c  very rapidly (normally denoted by a change of ten or more 

signs from minus to plus at one iteration step) then instability is imminent.   A lesser 

number of sign changes, say seven, does not have this effect.   

The evidence presented in our application would suggest, therefore, that an unstable point 

in the Richardson equations is always prefaced by a change in the direction of curvature 

of the limit cycle and that this is manifested  by a sudden and marked change in the sign 

of a – c, from minus to plus, across the population.  At this point, the experimental 

evidence for saying this may be slender, but the theoretical argument is quite strong.  See 

Chapter 6 which validates the model.  We conclude that instabilities in the Richardson 

arms race equations can be predicted and, therefore, that the timing of the outbreak of 

open hostilities between  nations indulging in an arms race can be forecast.   All this 

assumes − and it is a big assumption  −−−− that the prediction GA is being fed with timely 

and accurate information from military and economic intelligence sources. 



3.8    Conclusions 

It is not always easy to apply Richardson’s equations to real-world situations.   To be of 

practical use the equations need to be replaced with (or transformed into) something more 

precise and expressed in terms of the information available. It is not sufficient to prove 

theoretically from Eqs(3.1)  that instability  occurs when  ac > bf,  and from Eqs(3.16) 

that  the  sign  of  a - c indicates the direction of curvature of the limit cycle, which is 

crucial in predicting when instability is likely to occur. To justify our approach, we must 

be able to relate the Richardson coefficients a, b, c and f  to the actual discretised 

evaluation equations using, for instance, Eqs(3.15).   In both the 2-nation and 3-nation 

scenarios, we have estab-lished a reasonable approximation for a and c under certain 

assumptions.  

 

 

                                             .                                              
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CHAPTER 4 

 Genetic Algorithms and the Model used in the Thesis 

4.1 Scope 

This chapter covers everything which is common to the canonical GAs used in the thesis, 

and explains the mechanics of their operation in some detail.  Choice of evaluation 

equations and fitness functions is particular to individual applications and will be covered in 

the relevant chapters.   Fractal basins  are explained in Section 4.10. 

4.2 Early Influences 

Over the years we had met a number of problems (particularly in numerical optimisation) 

which defied easy solution, largely because the search space was too big to be manageable.  

Thus GAs came as a breath of fresh air, opening new horizons.  Our early steps in GAs were 

guided by Lawrence Davis’s Handbook of Genetic Algorithms [Davis,1991] which takes its 

readers systematically through GA fundamentals.  As a result, some fifteen trial GAs were 

written, each attempting to progress from its predecessor in difficulty and complexity.  

Nothing depended on  these original ‘learning-curve’ GAs, so experiments could be tried 

and risks could be taken.  Several valuable lessons were first learnt in this way, including 

the following, which are listed in no particular order: 

(1)   Full  audit  trails are essential in GAs.  It must  be possible to follow the progress of 

every chromosome at every stage and sub-stage at every generation.  Even when not 

used to trace anomalies or ‘bugs’, audit trails can be very informative about 

convergence. 

(2)   Too much turbulence in a chromosome (e.g. from multiple crossovers) is never good. 

(3)   Seeding chromosomes with real-world data does not necessarily give good results. 

(4) GAs must never be forced, but they can be coaxed. 

(5)  Canonical GAs do not like having their goalposts moved.  It is unwise, for instance, to 

change fitness functions dynamically without good reason. 

(6) Any GA trying to model a real-world scenario must be based on some live data from 

that scenario. 

(7) Varying  mutation and crossover dynamically may sound attractive in theory, but it 

does not always work.  If sizeable numbers of generations (in our case, say, > 50) are 
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involved, mutation may get unreasonably large and of itself help to promote 

instability.  Better results can often be obtained in this application by using fixed but 

convenient values such as 0.1% for mutation and 60% for crossover. 

(8) The GA’s representation (how the genotype maps onto the phenotype) is crucial.   In 

the representation used here, genes may be real or integer and of varying length.   

Once concatenated, however, a chromosome must look like one big integer. 

(9) GAs are stochastic processes;  meaningful answers cannot be taken from a single run. 

(10) The value of a practical GA is judged by its robustness.   It is generally worth going to 

some trouble (e.g. by discretising the evaluation equations, or by delaying conver-

gence) to ensure that results are not overly influenced by the starting condition.   See 

(7) of Section 9.4.1. 

(11)  “It is always easier to add new stages to an already effective system than it is to 

modify earlier stages in the sequence”   [Simon, 1969]. 

(12) It is unwise to initiate the contents of genes with zeros;  this can cause degenerative 

convergence, i.e. the genes may tend to zero.  See Section 2.13. 

4.3 Mechanics 

Most canonical GAs use only two operators, mutation and one-point crossover.  Both 

operators, however, can be varied at runtime.  Our GAs use two-dimensional matrices 

(typically four of 100×16 and three of 100×3).  In the former, the chromosomes are 

physically embedded between identifying records and results, see Table 4.1.  Since the 

answers (elements of the phenotype) in the case of arms races happen to lie typically in the 

thousands, a decision was made to have the genes of the genotype map directly onto those 

of the phenotype, the only exception being the rate-factor genes which sometimes need to be 

divided (or multiplied) by factors of ten to make them useful in the evaluation equations. 

There is, therefore, little embryogeny (see Glossary).  Parent selection is by the standard 

‘roulette wheel’ method (see Section 2.7) using cost-weighted random pairing. This is 

effected by bubble-sorting Matrix 2 to yield Matrix 1 which shows fitness in a reducing 

sequence.  Once this sequence is established, however, the fitnesses are replaced by a linear 

norm (in fact, starting with 500 for the fittest and decreasing in steps of 5) − see the last 

column at the top of  Figure 4A.1 − and selection is then based on these normalised fitnesses 

(called normfits).  The aim of introducing the linear norm is to prevent superfit 

chromosomes getting too big a reproductive advantage. 
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To determine the size of population to be used in our GAs, we tried experiments with 

populations of  20, 35, 50, 75, 100, 250, 500, 750 and 1000, looking for ‘straight line’ 

convergence such as that typically illustrated in Figure 4.3.  A population of 50 was just 

about acceptable, for anything less would not converge satisfactorily.  In the best engineering 

tradition we, therefore, chose twice the acceptable minimum and thenceforth stayed with a 

population of 100 throughout.  This proved entirely satisfactory for our application. This 

empiricist approach should be contrasted with the rationalist approach [Cantú-Paz, 2000], 

where the determination of an appropriate population size takes several pages of reasoned 

argument about schemas and building blocks. 

The initialising population is chosen by using the inbuilt RNG to generate a likely value for 

each gene.  Here we use domain knowledge to constrain the upper bound of  RNG.   Some 

genes (e.g. certain rate-factors, ki,j , or intrinsic defence expenditures, xs) may use a fixed 

upper bound (e.g. < k1,2 = random(29)>) while others (e.g. budgeted defence expenditure, 

xm) may be variable (e.g.< xm = random(defexp)>).  All the genes are initialised in this 

way, and this is what we mean by a random start.  When it is desired to use real data (e.g. 

IMF values for the rate-factors, or actual defence expenditures) the RNG-derived numbers 

are overwritten. This overwriting is deliberate. For our results to be reproducible (and to be 

comparable using  different input settings)  the genes must be initialised using the same RNG 

sequence throughout.   

The initial population is set in parallel into each of two (100×16) matrices, Matrices 1 and 2, 

and these are used throughout.  See Table 4.1 below which shows a typical occupancy of the 

columns of one of our GAs.  The chromosomes are shaded.  Each chromosome is processed 

using the two evaluation equations (such as Eqs(5.7)) to give columns 12 and 13, and the 

fitness is calculated and put in column 14. The contents of Matrix 2 remain in the sequence 

they were generated, whereas the entire contents of Matrix 1 are bubble-sorted [Kantaris, 

1994] into a decreasing order of fitness.  Although not strictly required, there are two reasons 

for sorting;  firstly, presentation, i.e. printed results are always extracted from Matrix 1, 

giving the best result last;  secondly, to assign the linear norm. 

Cost-weighted roulette wheel selection (see Section 2.7) is applied to Matrix 2;   to apply it to 

Matrix 1 would entail selecting parents from a list which had already been sorted, and this 

makes little sense. 
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Table 4.1     The columns of Matrices M1, M2, and M3.   The evaluation equations have been discr-
etised, so that xt and yt are an integral part of the chromosome (and therefore have to be given 

appropriate starter-values for x0 and y0) 
   Col 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
   M1  gen srl k1,1 k2,2 k1,2 k2,1 xs ys xm ym xt yt xt+1 yt+1  fitness linear 

norm 

    M2  gen srl k1,1 k2,2 k1,2 k2,1 xs ys xm ym xt yt xt+1 yt+1 normfit running 
total 

      M3  gen srl k1,1 k2,2 k1,2 k2,1 xs ys xm ym xt yt xt+1 yt+1 normfit random 
number 

 

Once the fitnesses are calculated and normalised, a running total is kept and stored in 

column 15 in Matrix 2.  Let the final total be called w1. (In the example in Figure 4A.1, 

w1’s value is 4775.)   A uniformly distributed random number w2 (ranging over [0, w1]) is 

then generated in column 15 of Matrix 3 (by calling <random(w1)>).  At this point, apart 

from the list of random numbers in column 15, Matrix 3 is otherwise empty.  The running 

total list in Matrix 2 is then compared in sequence with the random number list in Matrix 3. 

Looking at the last column (15) in each case, the first row where 

Matrix 2’s  running total  ≥  Matrix 3’s  random number w2                              .  

becomes a parent for the next generation and the whole of the row from Matrix 2 is copied 

into Matrix 3.  Hence Matrix 3 becomes the ‘mating pool’.  For instance, in Figure 4A.2, the 

first random number is 4497. The first ‘running’ number to exceed it in Figure 4A.1 is 4775 

at row serial 109, so the whole of row 109 is copied into Matrix 3, to become the first 

parent.   The next random number is 2159, and the first ‘running’ number which exceeds it 

is 2395 in row serial 104;   hence the whole of row 104 is transferred into Matrix 3 as the 

second parent.   The process is then repeated until Matrix 3 is full.  It should be observed, 

however that, firstly, not all the rows of Matrix 2 have been transferred to Matrix 3;  some 

(e.g. 100, 101 and 103) have been discarded.  Secondly, some rows (e.g.104, 105, and 107) 

have been transferred more than once.  This is roulette wheel selection (Section 2.9) and, 

while the fitter chromosomes are being given a greater chance of becoming parents, none 

are entirely excluded.  This arrangement  works well.  To be precise, the expected number 

of offspring is the fitness of the chromosome under consideration divided by the average of  

the fitnesses of the entire Matrix 2 population.   

Pairs of adjacent rows of the chromosomes in Matrix 3 are now ‘unbundled’ and set into 

two columns in (the 100×3) Matrix 4.  In Figure 4A.3 we show some of the results of 

unbundling the ninth and tenth rows of Matrix 3 (Serials 107 and 104). Taking pairs of 

adjacent rows of chromosomes and ‘unbundling’ them into two columns was deliberate, so 

that mutation and crossover could take place uninhibited by gene boundaries.   Every 
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element in the two unbundled chromosomes is scanned by an RNG which decides whether 

or not that particular element is to be mutated. This is mutation probability per locus.  Some 

elements will be mutated, the number depending on the mutation rate. The resulting 

unbundled chromosomes (containing both mutated and unmutated elements) are transferred 

into Matrix 4a, see Figure 4A.4.  Matrix 4a is then transferred to (the 100×3) Matrix 4b 

where a single-point crossover (‘recombination’) takes place. From the crossover point 

downwards, every element will change columns. In Figure 4A.5 the crossover point is level 

19, i.e. 55% of the total chromosome length of 36 elements.  This is what is meant by a 

crossover rate of 0.55.   It makes no difference whether mutation precedes or follows cross-

over [Mitchell, 1996]. 

The two columns of (the 100×3) Matrix 4b are now ‘rebundled’ into rows in (the 100 ×16) 

Matrix 5, see Figure 4A.2. These rows contain chromosomes and identifying data 

(generation and serial numbers for diagnostic purposes) only, and form the embryo of the 

next generation. The generation loop now returns to its start-point, and in Matrices 1 and 2 

new serial numbers are assigned, the chromosomes are transferred over into Matrices 1 and 

2 from Matrix 5, and xt+1 and yt+1 are moved over into Matrices 1 and 2 from Matrix 3 to 

become the new generation’s xt and yt , respectively.  The new chromosomes are then eval-

uated and their fitness is calculated; as before, Matrix 1 is bubble-sorted (see Figure 4A.6), 

and the whole process restarts for as many generations as are required.  Matrix 5  is 

illustrated in Figure 4A.2, as is the next stage, the conversion from Matrix 5 of Generation 0 

to Matrices 1 and 2 of Generation 1, in Figure 4A.6. 

In the early stages of the study we did try other combinations such as tournament selection 

(see Section 2.7) and multiple crossover (see Section 2.8.2), inter alia.   Both of these were 

rejected in the present work because they behaved too randomly. 

There is one other matrix. Part of the best chromosome at each generation (the fitness with 

its corresponding values of xt and  yt) is transferred from Matrix 1  into  Matrix result which 

is subsequently used both for Option 7 (see Section 4.8), and to plot the graphs at Options 8 

and 9.  Matrix result is not a fundamental part of the GA;  it is a ‘collecting ring’ for 

administrative convenience only.   

4.4   Working Practices 

All  GAs were used to generate a variety of graphical and textual data including individual 

chromosomes and summary tables, see Section 4.8.  Matrix 5 of the prediction GAs (see 
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Section 5.5.1) was modified to calculate the direction of  curvature of the limit cycle  which 

is crucial in predicting instabilities (see Section 5.5.1). 

Whenever a GA was modified, it was our practice initially to reduce the population to ten 

and run  Generations 0 and 1 only. The evaluation of every element of every gene could 

then be followed stage by stage.    

Figures 4A.1 to 4A.6 in Appendix 4A show how GA-1 progresses from Generation 0 to 

Generation 1. Solely for illustration, it has a population of only 10, an (excessive) mutation 

rate of 20%, a crossover rate of 55%, and uses rate-factors based on information from IMF 

statistics. The seed is 8, and the average percentage defence expenditure is 6.5%.   

Figures 4B.1 to 4B.3 in Appendix 4B to this chapter show how three algorithms, GA-0 with 

ten genes, GA-1 with fifteen genes, and GA-9 with twenty genes, progress across forty 

generations, from Generation 0 to Generation 39. These GAs have a population of 100 and a 

seed of 9. 

It should be remembered that GAs are stochastic processes and that meaningful results, 

therefore, cannot be taken from a single run but have to be averaged over a series of runs.   

Runs, charts and other illustrations given in this chapter and Chapter 5 are for demon-

stration only 1. 

4.5   Block Structures 

The block structure of the GAs used in the thesis is as follows: 

begin      

  t = 0 

Initialise a population P(t) (typical size 100 chromosomes) in Matrices 1 and 2, and 

assign initial values to xt and yt 

 begin 

 Using a set of evaluation equations (e.g. Eqs(5.7)) compute xt+1 and yt+1 for 

each row of Matrices 1 and 2, and assign a fitness to each one of them 

 Sort Matrix 1 into ascending/descending order of fitness 

   if (termination condition) end 

    Apply a linear norm to the fitness column of Matrix 1 

  

                                                 
1 Having said that, the output of a really robust GA will (by definition) be more or less the same whatever the starting 
conditions   
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Using the roulette wheel method on Matrix 2, select a new population P(t+1) from 

P(t) and put it into Matrix 3 

Unbundle adjacent pairs of the rows (chromosomes) from Matrix 3, and put 

      them into the columns of Matrix 4 

   Mutate the P(t+1) chromosomes of Matrix 4, two at a time, and put them in 

       Matrix 4a 

Crossover  (Recombine) the P(t+1) chromosomes of Matrix 4a and put them in 

    Matrix  4b 

Rebundle the columns of Matrix 4b into the rows of Matrix 5.  Where required, 

   calculate a − c, and count the number of minus signs 

   Transfer the P(t +1) chromosomes from Matrix 5  into Matrices 1 and 2,  resp- 

    ectively 

    Transfer the P(t+1) values of  xt+1 and yt+1 from Matrix 3 into Matrices 1 

     and 2 overwriting xt and yt, respectively 

end 

    t = t + 1 

end 

Two points are now made: 

• The above fits neatly into three modules;  population, evaluation/fitness, and repro-

duction, the latter including mutation and recombination (crossover) sub-modules.  

• The GA makes use of seven two-dimensional matrices, normally four of 100×16 and 

three of 100×3, for the applications used in the thesis  These matrices help to maintain a 

strict audit trail (see (1) of Section 4.2) by  transferring the datasets from one matrix to 

the next as they are selected for parenthood, mutated, and recombined. 

 

4.6     The Influence of  Real-World Data 

Chapters  5, 6 and 7 of the thesis each start with a very small amount of data gleaned from 

either intelligence sources or figures published by the IMF (see Appendices 6B.1, 6B.2 and 

6B.3).  The principal use of this data is to establish a model (in fact, a modelling GA) with 

some basis in fact, so that curves can be computed  which are “ ... a kinetic model faithful to 

the input data and the physical principles involved” [Cao et al., 2000] and so, more or less, 

mimic the behaviour of the data presented in our various data sources. Once this has been 

achieved (and it is no trivial task, since it involves minimising the differences between the 
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GA-calculated values and the real-world values of xt and yt at each generation), it can be 

assumed that: 

• the evaluation equations reflect the problem and exploit the available data; 

• the rate-factors, ki,j , have values which are credible and safe to use in the prediction GA 

(even though they may later be refined quite drastically by the action of that GA). 

To predict instabilities between nations we now transfer the rate-factors from the modelling 

GA into the prediction GA and call Option 0 (see Section 4.8).  This lists the values and 

signs of a – c at a specified average defexp% (see Figure 4A.7).  The data generated by all 

outputs of Option 0 over the required range of average defexp%’s is the basis for the 

prediction plot (see Figure 5.6).  Sharp drops in the prediction plot can now be correlated 

with real-world data about actual conflicts (see Chapter 5). 

4.7   The Design of Individual GAs 

Making every gene an integer looked neat on the monitor screen but rendered the arithmetic 

of the evaluation equations difficult.  Having all genes as real numbers [Michalewicz, 1992] 

seemed attractive but introduced problems once they were concatenated, for decimal points 

and fractional numbers do not concatenate well and gave rise to a series of  domain fault and 

floating-point errors during execution runs. The proposed solution is a compromise;  declare 

the genes as floating-point numbers, but ensure that anything put into a chromosome in any 

matrix is rounded so as at least to look like an integer!  It later became apparent that this was 

no new discovery, for Lucasius and Kateman [1992] had said that GA chromosomes for 

subset selection and combinatorial optimisation problems are best suited by integer 

representation.  The other lesson learnt was that (except under controlled conditions) zeros 

are never acceptable as initialising genes, whether they are deliberate (e.g. setting x0 , y0, or 

z0 to 0.00)  or accidental (e.g. on initialisation, if and when the RNG hits on a zero).  To 

avoid the problem, in the first case, x0,  y0, and z0, etc. are deliberately set to some arbitrary 

figure (� 0) while, in the second case, the RNG was made to take a second bite. 

It was originally thought that using the four or six rate-factors derived from IMF data would 

give better and more stable results than allowing the GA to generate and refine them.   It 

turned out that this was not always the case.  

The source code expression <seed(n)> means that the first n numbers generated by the 

RNG are discarded before it starts to initialise the genes, thereby achieving a different start-

point. For example, <seed(9)> means that the first nine outputs of, say <random(42)>, 
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are discarded and the tenth output (whatever that may be) is the first one used (in fact, to 

initialise k1,1). As already stated, when the start-point makes little or no difference to the 

results − a highly desirable situation − the algorithm is termed robust. 

4.8    Deliverables:  Textual and Graphical Outputs 

Most of our GAs yield at least five ‘deliverable’ outputs.   These are: 

• [Option 0]  (Prediction GAs only).  A textual display of  fifteen rows of Matrix 5, show-

ing the values and signs of a - c for a specified average defexp%.   The output of Option 

0  is the input data for prediction plots. 

• [Option 6]  A textual display of the ten fittest chromosomes (out of the population of 

100) of any two (specified) generations of Matrix 1. These were originally intended  for 

diagnostic purposes but served greatly to enhance confidence in the system.  Once 

stability had been achieved, the values of the genes could be read.  

• [Option 7] A textual display of the fittest values of xt , yt , zt and fitnesses.  One entry 

(out of the population of 100) for each generation.  This data is input for Options 8 / 9. 

• [Option 8]  Using the data from Option 7, a graphical display of the fittest values of xt , 

yt , zt (and, optionally, fitness) over the generations, with the ‘curves’ 2 in different 

colours.  Each Option 8 graph uses only one defexp% value.   This means that Option 8 

gives an instant view of the ‘worth’ of any solution.  It is, however, essentially an 

artifice, cf. the concept of schemas or building blocks that is useful despite the fact that 

GAs do not actually manipulate them at all (see Section 2.4).  Similarly, Option 8 graphs 

are plotted using the same defexp% value over the full range of generations, a situation 

that is most unlikely to happen.  Nevertheless, Option 8 graphs do indicate at the 

specified defexp% whether or not the system is ever likely to become unstable, whether 

the evaluation equations (such as Eqs(5.7)) will converge asymptotically and, if so, to 

what and when.  This is useful information.     

• [Option 9].  A dominance diagram (see Section 4.9 below) coupled with an Option 8  

display graphically portraying the extreme right-hand (i.e. the latest) column of the 

diagram. These are illustrated for a three-nation conflict in Figure 4.1.  In the dominance 

diagram, the values of xt , yt and zt are plotted against successive generations.   (Note how 

early convergence is achieved). 

                                                 
2 ‘Curves’ is a misnomer, for they were drawn as straight lines between points, and no attempt was made to ‘smoothe’ them in 
the curve-fitting sense 
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Parameters alterable at runtime were: 

• <seed>, the ‘start-point’ from which the RNG  initialises the GA (see Section 4.7).                

• <mutation rate>, which could be increased dynamically. It usually starts at 0.1%. 

• (Single-point) <crossover rate> which could be reduced dynamically.  Typically 

60% of the total length (number of elements) of the chromosome (see Section 4.3). 

• <type> The output required (e.g. Option 6) including diagnostic tables. 

 
Figure 4.1  GA-12. Values of the defence expenditures xt , yt , zt  against generations, together with a 

‘dominance diagram’. Convergence indicates the parameters necessary for a stable outcome. (For 
pictorial clarity, this and all other similar figures draw straight lines between the points; in fact, the 

figures should properly be histograms for the parameters do not change within each generation.)   
 

• <dominance>  (Whether Nation X was to remain dominant, or domination was to 

vary dynamically.)  Richardson and Mayer-Kress had both assumed (see, for instance, 

Eqs(3.11) and (3.13))  that Nation X was always dominant.   This is clearly not reflected 

in real life.   All our GAs, therefore, had an option allowing domination to change 

dynamically. In fact, for the three-nation system, after each computation of the 

evaluation equations, the values of xt , yt and zt were examined to see which was the 

largest.   The  evaluation equations were then re-coded to enable one of them to portray 

the dominant nation. Once domination changes, the re-coded evaluation equations stay 

as they are until  that domination changes again;  this could take several generations. 

Other alterable parameters at runtime were: 

•  Size of population (normally set to 100). 

•  Number of generations required (normally set to 20 or 40, sometimes to 100). 

• Whether the rate-factors ki,j were to be pre-set, or to be developed by the GA.   

• The linear norm and the decrement  (usually set to 500 and 5, respectively). 
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Figure 4.2  GA-12. Seed 25, with Nation X dominant throughout.  IMF rate-factors    

 
Figure 4.3  GA-12. Seed 25.  Dom dynamic. The GA sets its own rate-factors. Faster convergence   

 
Figure 4.4   GA-12.  Seed 25.  Dom dynamic.  IMF rate-factors.  Unstable, chaotic   

The way in which some graphs (such as Figure 4.4) had ‘settled’, zigzagging between two 

levels (‘attractors’), led to the suspicion that the system had sometimes become chaotic. 

(Figure 4.4 is in marked contrast to the work on nuclear deterrence (Chapter 7) which had 
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resulted in exceptionally stable systems.)  It would therefore be rewarding to see if there 

were any fractal basin boundaries. 

4.9  Dominance Diagrams   

The idea was to introduce into each GA (typically with a population of 100 for 20 

generations) an option which would plot for every one of the 2000 sets of equations which 

one of Nations X, Y or Z was dominant. It should therefore be easy to see where domination 

changed, for in these changes lie the seeds of chaos and instability. The on-screen repres-

entation consists of a 20×100 matrix of contiguous small squares, drawn in different  

colours.  Typically,  X-dominant is indicated by blue, Y-dominant by yellow and Z-dom-

inant by red. The curves below the coloured matrix of the dominance diagram portray the 

situation at  the matrix’s extreme right-hand column. The matrix is called a ‘dominance 

diagram’ and Figures 4.1 and 4.2 illustrate the concept. 

Running tests using different seeds and different values for defexp%,  Richardson’s original 

equations and a set of IMF rate-factors resulted in a number of curves which converged, 

many which did not converge, and a number of zigzags (e.g.  Figure 4.4).   We found that, 

whenever the value of defexp% was less than 4.9%, all curves converged, meaning that 

below this level the exponential nature of the defence expenditure graphs all but 

disappeared,. and  there is no danger of an arms race.   This is not very useful in practice, as 

we do not choose (or have any say in) arms race statistics. However, Option 8 will indicate 

when and where xt , yt  and zt are almost parallel, and if they are, then a stable situation 

exists. It is then possible to read off (from the tables at Option 6) the values of all the 

parameters (genes).  Assuming that they are not trivial, these indicate one set of conditions 

for stability.   

The dominance diagrams of Figures 4.1 and 4.2 illustrate that there are few smooth 

transitions;  the pictures are diffuse to the point where it seems that the system could be 

noisy rather than chaotic.   Nevertheless, the zigzags are so marked that the possibility of 

chaos must not be discounted. 

Figure 4.2 used GA-12, a seed of 25 with Nation X dominant throughout, and IMF rate-

factors.   Figure 4.3 shows what happens if GA-12 has the same seed, but has dynamic 

domination and is allowed to choose its own rate-factors randomly, subject only to upper 

bounds on the RNG.  Convergence is much quicker.   This reinforces the view (see (4) of 

Section 4.2) that GAs do not like being force-fed [Davis, 1991;  Haataja 1999;  Bentley, 

1999] and behave best when nature is allowed to take its course.  Figure 4.4 again shows 
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GA-12 with seed 25, dynamic domination and IMF rate-factors, but its appearance is very 

different to what has gone before.  

4.10    Fractal Basins 

It is evident from the shape of the curves in Figure 4.4 that in Richardson’s three-nation 

arms race, we may have a potentially chaotic system [Ott, 1994; Cohen and Stewart, 1994].  

We decided, therefore, to take a radically new approach and develop algorithms to generate 

fractal basins with a view to seeing whether they contained any boundaries which might 

indicate the presence of one or more chaotic systems.   We did this by reducing a whole  

dominance diagram (such as the 20×100 matrix in Figure 4.1) to a single small square 

which represented one particular set of circumstances, and then printing hundreds of these 

small squares side by side, each with slightly different circumstances.  The resulting small 

squares were coloured as before (X-dominant is indicated by blue, Y-dominant by yellow, 

and Z-dominant by red).   

The dominance diagram was reduced to a single small square in a 25×25 matrix by using 

the technique of  bottom line consensus (see Glossary). 

One requirement was to see how stability varied with initial conditions (i.e. x0 and y0).  

Another was to maximise the number of parameters which could be played off against one 

another, e.g. each of the rate-factors of Nation X against those of Nation Y,  Nation X’s 

various rate-factors against  Nation Y’s defexp% , or any other pair.  In short, we were 

looking to locate boundaries where dominance changes (i.e. the likely points of instability) 

and, having done so, to identify the parameters (or conditions) which created these 

boundaries.  To this end, a new GA was developed, GA-10, which puts the generation for-

loop of GA-12 inside two other for-loops.  One loop varies x0  from $6.6Bn to $9.0Bn in 25 

steps, and the other varies y0  from $2.6Bn to $5.0Bn.  Hence the fractal basin, or plot, is a 

25 × 25 square (see Figure 4.5).     The third defexp,  z0 , on the other hand,  was kept cons-

tant at $3.9Bn.3     

For each pair of values of  x0 and y0  there corresponds a dominance diagram, so each fractal 

basin contains the makings of 625 dominance diagrams.  An output of GA-10 is shown in 

the fractal basin in Figure 4.5.  This is for a seed of 25 with dynamic dominance and 

indicates from the blocks of colour and the presence of ‘walls’ that there exists a potentially 

chaotic situation [Cohen and Stewart, 1994].    

                                                 
3 These values for x, y and z are approximations derived from the 1993 IMF figures for defexp given in Appendix 6A.3 
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Figure 4.5   GA-10.  Seed 25 (cf. Figure 4.4). IMF rate-factors.  Note the ‘walls’  

GA-10 yields only one deliverable — the fractal basin.  Generating fractal basins is 

laborious as it involves a lot of computation. A fractal basin of  25 × 25, for instance, nec-

essitates a population of 100 being processed (i.e. generated, evaluated, fitness-tested, 

roulette wheel-selected for parenthood, mutated and re-combined) and run for 20 or 40 

generations 625 times! The advantage of the diagrammatic approach was that it became 

possible to pinpoint interesting areas worthy of further study.  There is little point in 

investigating conditions in a ‘sea’ of red or blue or yellow as it is evident that the 

Richardson equations are stable in any such area.  In contrast, any point in the stability 

diagram where the colour changes  indicates a potential instability. 

To facilitate comparison, fractal basins illustrated in this chapter all  have a 4.9% defexp%. 

Figure 4.6 is identical with Figure 4.5, except that the GA  sets its own rate-factors. 

Figure 4.7 is similar to Figure 4.6 except that  k2, 3 is set to a specific value (8).    

 
Figure 4.6  GA-10.  Seed 25.  The GA sets its own rate-factors.  No noise margin   
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Figure 4.7  GA-10.  Seed 25. The GA sets its own rate-factors, except  for k2, 3 = 8    

It could be argued that these fractal basins show evidence of  noise as well as of chaos. 

However, according to Chambers [1995], the introduction of noise widens the catchment 

area of the search space.  Indeed, he claims, a noisy environment usually increases the 

probability of obtaining a better solution, or at least one with higher resolution.  Even  if this 

is not entirely true, the presence of noise in a GA has been found by Aizawa and Wah 

[1993] to alleviate the tendency for premature convergence (see Section 2.13).  Later in the 

thesis, noise is introduced deliberately to see what effect it would have on our prediction 

work (see  Section 6.7).  

4.11   Balance versus Stability 

In an arms race both sides try to maintain a balance of power, so that the ratio between 

their levels of armaments remains more or less a constant, an equilibrium.  However, both 

levels can increase without constraint.   Systems which are stable for one kind of displace-

ment and unstable for another are not unknown in conventional mechanics, e.g. a ball on a 

saddle-shaped surface could  oscillate − but it is more likely to fall off altogether.   Where 

stability and instability co-exist, the unstable state is likely to be dominant.   Hence nations 

are said to be unstable if there is a drift towards war.    Equilibrium  does not necessarily 

lead to long-term stability, for it could exist in an isolated small pocket in one of the fractal 

basins, and be ephemeral.  

GA-10  proved to be very adaptable in that it only took a few moments  to write another 

variant thereof, GA-11, which differs from GA-10 only in that the iterating variables are 

now k1,3 (a representative set of figures from 1 to 25) and y0 (from $2.6Bn to $5.0Bn, as in 

GA-10). The value of rate-factor k1,2 is fixed  (0.14 and 0.16 in Figures 4.8 and 4.9, 
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respectively). The idea of concentrating in these fractal basins on factors which influence 

threat was suggested by Forrest and Mayer-Kress [1991].   One such factor would be the 

various defexp%. Another would be the initial conditions x0 and y0.  Yet another would be 

the rate-factors  k1,2 , k2,3  and  k1,3 .  �k1,2  is associated with (xt − yt),  k2,3  is  associated with  

(yt + zt), and k1,3 is associated with (xt − zt), see the notes to Eqs(3.13).�  We now concentrate 

on these three parameters. 

 
Figure 4.8   GA-11.  Seed 25.  IMF rate-factors with k1,2 = 0.14.    No noise 

Figure 4.9 below gives a totally different picture from that of Figure 4.8, yet the difference 

between the two lies only in the fixed values of k1,2 which is tiny.   This means that the value 

of k1,2 is critical to stability.  This should not surprise us, for it was shown in Eqs(3.16) that 

the product k1,2xm was approximated as c, as in a - c, the predictor of instability. 

 
Figure 4.9   GA-11.  Seed 25.  IMF rate-factors with k1,2 = 0.16.    No noise   

It can be concluded, from the five fractal basins shown above, that walls do exist. These 

walls and the zigzag curves of Figure 4.4 are both classic indicators of chaotic conditions 
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[Ott, 1994] and lead us to believe that there are regions of potential chaos in Richardson’s 

three-nation arms race equations. 

We next look at two fractal basins for the India/Pakistan conflict, both using GA-7, which 

are pictured in Figures 4.10 and 4.11.  In Figure 4.10 the rows, k1,3 , vary from 10 to 22.5 

in 25 steps.  The columns (Pakistan’s defexp%) vary from 3.2% to 12.7%.  The other rate-

factors are generated by <random(.)>.   One might expect a wall since the seed chosen, 

9, is known to give rise to instability at average defexp% of 6.6%, see Figure 5.10. Walls 

never did occur despite running GA-10 many times varying the pair of parameters in its 

two outer loops (including all the rate-factors). 

 
Figure 4.10  GA-7.   k1,3 against Pakistan’s defexp%.  Seed 9 

 
Figure 4.11  GA-7.  India’s defexp%  against Pakistan’s defexp%.  Seed 9 
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In Figure 4.11 we plot India’s defexp% against Pakistan’s defexp%.  Again, there are no 

walls.  The patchiness was first thought to be due to noise, but the reason is more subtle. 

Consider a system of N first-order ODEs (cf. Eqs(3.1)) such as  

                    ( )Ni
i xxxF

dt
dx

 ...  ,, 21= ,   i = 1, 2, ...N  .                                          .   

Ott [1994] has shown that, in such systems, chaos is only possible when N ≥ 3.   Hence it is 

reasonable to expect (and we are visibly getting) chaos in a 3-nation conflict, but it can be 

ruled out in 2-nation conflicts.  Nevertheless, any system of first-order ODEs contains the 

seeds of chaos, so it could be argued that we are justified in using the language of chaos 

(e.g. limit cycles) when operating with Richardson’s arms race theory, even in a two-nation 

case.  What this means is that there are no general regions of stability or instability in the 

India/Pakistan conflict.  This conflict lurches from one instability to another with periods of 

respite in between.  One cannot, therefore, say with any certainty that there are any set-piece 

conditions for averting war, except perhaps by reducing the average defexp% to some very 

low and thus unlikely figure. (The India/Pakistan arms race is covered in Chapter 5.) 

4.12     Conclusions 

After an extended period of trial and error seeking a combination of stability, fast 

convergence and robustness − aims which are not always mutually compatible − we finally 

decided to use a comparatively simple canonical GA with fixed-length integer strings.  The 

application calls for the data to be treated gently, so we chose weighted random pairing by 

cost rather than the more dramatic and rough tournament selection.  Similarly we avoided 

multiple crossovers  which tend to be destructive of building blocks.  Mutation was always 

sufficient to open up the search space while stopping short of creating instability.  Typical 

answers lie in the hundreds and thousands, figures which could be mapped directly from the 

genotype onto the phenotype, so no embryogeny was necessary.   We do not regard gene 

boundaries as sacrosanct, so both mutation and crossover could take place anywhere, 

irrespective of such boundaries.  Where possible (and in the three-nation case it is not 

always possible) we avoided changing fitness functions in mid-stream.   In summary, our 

standard GA does not fit into any of the nineteen categories mentioned in Section 2.7, but 

we strongly believe that it does fit the application.  

Our empirical results suggest that if the GAs are going to converge then they will do so 

quite quickly, typically after twelve generations from a random start. By some GA 

standards, twelve generations is small;  however, the start-point, the seed, is significant.  
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Runs have been carried out for many different seeds, and they all indicate that in areas of 

convergence (in  fractal basin language, in a ‘sea’ of blue, yellow or red)  it does not matter 

very much where the start-point is.  In other words, the parameter space would seem to 

contain  subspaces of near-perfect fitness.  In areas bordering on fractal basin boundaries, 

however, the start-point appears to be critical. 

GAs generating fractal basins (e.g. GA-10 and GA-11) are searching for balance-of-power 

points. All of them seek near-perfect balance (i.e. minimum fitness).  High levels of fitness  

−  a bad thing  −  occur near the fractal basin boundaries.  In these boundary areas the near-

perfect balance of power, even when found, appears to be sensitive to small-scale 

perturbations.  (Fitness is a link between genotype and phenotype, i.e. between a genetic 

representation of the problem and the problem itself  [Michalewicz, 1992]). 

The balance-of-power points referred to above would appear to lie in hyperplanes through 

parameter space.  According to the schema theorem [Goldberg, 1989] GAs search these 

hyperplanes seeking schemas with good fitness.   It looks, therefore, as if the parameter 

space in our case does actually contain regular sub-spaces of near-perfect fitness.     If this is 

true, then  a GA is ideal for solving high-dimensional  non-linear systems such  as  the 2- or 

3-nation Richardson model.  In other words, arms races are not ‘GA-hard’ at all. 

Appendix 4A shows a number of print-outs of diagnostic tables for one particular GA, GA-

1, at Generation 0.   Appendix 4B compares  the behaviour of GAs with 10, 15 and 20 genes 

at Generation 39.   Both appendices illustrate the processes explained earlier in Sections 4.3 

to 4.8. 
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Appendix 4A  

 Complete Set of Diagnostic Tables for GA-1 
(showing how the GA develops from Generation 0 to Generation 1).      

Guidance on Reading the Diagnostics 

The population for this series of illustrations is only ten, so the movement of every element 

of a gene (within a chromosome) can be monitored.   Note that all elements of the genes are 

represented by integers.   The tables should be read in the following sequence: 

• Matrix 1 in Figure 4A.1 (sorted into decreasing order of fitness, and showing the linear 

norm).  Generation 0. 

• Matrix 2 in Figure 4A.1 (unsorted, as generated).  Normalised fitnesses (normfit) have 

replaced the actual fitnesses and a running total is being kept of them.  Generation 0. 

• Matrix 3 in Figure 4A.2 (as selected for parenthood from the unsorted Matrix 2).  Note 

the last column of random numbers.  Rows are transferred from Matrix 2 to Matrix 3 the 

first time that the running total in Matrix 2 exceeds the random number in Matrix 3.  This 

is roulette wheel selection.  Generation 0. 

• Matrix 4 in  Figure 4A.3.   The last two rows of Matrix 3 have been ‘unbundled’ and set 

side by side in columns ready for mutation and crossover. 

• Matrix 4a in Figure 4A.4.   The results of 20% mutation on every element of Matrix 4.   

20% is excessive but this is for demonstration only. 

• Matrix 4b in Figure 4A.5.  The results of crossover at Level 19.   From Level 19, the 

columns are interchanged. 

• Matrix 5 in Figure 4A.2. This shows the ‘rebundled’ chromosomes after the combined 

effects of selection, mutation and crossover. (Matrix 5 is the embryo of the next gene-

ration, Generation 1). 

• Matrices 1 and 2 in Figure 4A.6.   These correspond to the two matrices  in Figure 4A.1 

with respect to Generation 1. 

• Matrix 0 (see Section 4.8) in Figure 4A.7.  The Middle East prediction GA, GA-4 

(population 100) showing a - c.  Average defexp% of  8.6% gives 9 minuses. 

Comment. It will be appreciated that a tiny population combined with an excessive mutation 

rate and a run of only two generations are unlikely to result in proper solutions.   This 

appendix aims only at demonstrating, primarily, the principles on which our GAs operate 

and, secondly, the value in the context of the thesis of having a full audit trail. 



 73 

Figures 4A.1 to 4A.6 show the results of using a population of 10 and a run of 2 

generations, with a mutation rate of 20% and a crossover rate of 55%.    The figures are 

screenprints from a C++ source, so subscripts are not possible.  The parameters xs, ys, xm, 

ym, x, y,  x+ and y+ should be read as xs , ys , xm , ym , xt , yt , xt+ 1 and yt+1, respectively.  G 

means generation  and srl is the serial number.   

 

 
Figure 4A.1  GA-1.    Matrices 1 and 2 at Generation 0.     Seed 8.     defexp% 6.5.    IMF 

 

 
Figure 4A.2   GA-1.   Matrices 3 and 5 at Generation 0.     Seed 8.     defexp%  6.5.    IMF 
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Figure 4A.3   GA-1.   Matrix 4 at Generation 0.   Seed 8.   defexp%  6.5.   IMF. Unbundled 

 
Figure 4A.4   GA-1.  Matrix 4 at Generation 0.  Seed 8.  defexp% 6.5.  IMF.    Unbundled 

                             

 
Figure 4A.5   GA-1. Matrix 4b at Generation 0.   Seed 8.  defexp% 6.5.   IMF.   Unbundled 
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Figure 4A.6   GA-1.   Matrices 1 and 2  at Generation 1.   Seed 8.  defexp% 6.5.  IMF 

 
 
. 
 
 
For Figure 4A.7, the population is 100, the run is 40 generations, the mutation rate is 1% 
and the crossover rate is 65% 

 

 
Figure 4A.7  The prediction GA, GA-4, with a - c.  Average defexp% of 8.6% yields 9  

minuses;  cf. the Middle East prediction plot in Figure 6.14 
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Appendix 4B 
  

 Output of Three GAs with 10 (GA-0), 15 (GA-1) , and 20 (GA-9) Genes  
 

The Three GAs 

Each of these has a population of 100 and runs for 40 generations, with varying mutation 

and crossover rates.   As in Appendix 4A, Figures 4B.1, 4B.2 and 4B.3 are screenprints 

from a C++ source, so subscripts are not possible.  The parameters xs, ys, xm, ym, xt, yt, x+ 

and y+ should be read as xs , ys , xm , ym , xt , yt , xt+ 1 and yt+1, respectively. Dm means 

dominant nation  and Srl is the serial number.  The linear norm is here called Lnorm. 

 

 

 
Figure 4B.1  GA-0.  10 genes. (No redundancy).  Matrix 1.   Initial IMF rate-factors 
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Figure 4B.2  GA-1. 15 genes. (33% redundancy). Matrix 1.   Initial IMF rate-factors 

 
 
 

 
Figure 4B.3   GA-9.   20 genes. (50% redundancy). Matrix 1.   Initial IMF rate-factors 
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CHAPTER  5 

Predicting Instabilities in Arms Races:  a Rationale           

5.1     Introduction 

This chapter sets out to explain the rationale behind our prediction of instabilities between 

two nations.  We will do this in general and, throughout the chapter, whenever an 

illustration is required we will use a snapshot (1993 to 1999) in the continuing arms race 

between India and Pakistan as a running example to demonstrate the general techniques 

involved.   

We make use of two integer-valued GAs which, while related in appearance and operation, 

are dissimilar in function. The first (the modelling GA) generates a model designed to mimic 

the IMF data and to follow the principles of arms races epitomised by the Richardson 

equations. The second GA (the prediction GA) is used to predict instabilities by looking for 

violent changes in the direction of curvature of the limit cycle of the evaluation equations, a 

technique pioneered by Peng et al. [1991] for forecasting canard explosions.   

In explaining the rationale, we illustrate that GAs can find viable solutions to Richardson’s 

arms race equations and, in so doing, predict the timings of instabilities that may lead to 

open warfare.  In the specific case of India and Pakistan, for instance, it was found from our 

running example: first, that very small changes in the average percentage defence 

expenditure (defexp%) of the two nations could make all the difference between stability 

and instability;  second, that although there are dangerous patches of potential instability in 

the developing arms race, nevertheless there are large areas of stability as well;  and third, 

that the model appears to meet Richardson’s theoretical criteria of stability and instability. 

The remainder of this chapter starts by referring back briefly to the Richardson equations 

and stating what any solution is required to do.  It explains the modus operandi, how the 

modell-ing GA is created and how the rate-factors are established and verified.  It then turns 

to the prediction GA and again uses our running example to illustrate how the system works.    

This is followed by a graphical demonstration of sporadic instability, and an explanation of 

dominance diagrams and fractal basins.  The chapter closes by discussing some alternative 

non-GA techniques for the Richardson arms race equations (including Monte Carlo and 

simulated annealing) and by demonstrating the superiority of the GA approach over them in 

terms of speed,  flexibility,  ease-of-use and, above all, the ability to predict instabilities. 
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5.2   Basics                                     

Let us revisit the two-nation equations           

                   hbyax
dt
dy +−=      and     gfxcy

dt
dx +−= ,                                                  (5.1)                

where x and y is the money spent annually on defence by Nations X and Y.  Richardson 

showed (Section 3.2) that stability occurs when ac < bf .  Our concern, however, is primarily 

with instability which occurs when 

                                                         ac > bf .                                                         (5.2)  

Figure 5.1 below is the result of plotting x (India) against y (Pakistan) on equally-scaled 

axes. 

 
Figure 5.1  Likely contours for the arms race between India and Pakistan 

The point of balance is where defence expenditure by the two sides is equal and where the 

threat of war notionally ceases to exist.  

A solution is required: 

• To establish arms race contours for India and Pakistan. 

• To establish specific rates of defence expenditure for both sides over periods of time 

which, first,  mirror real-world data and, second,  are potentially capable of extrapolation. 

• To seek the fittest solution which in our context means minimising the risk of war. 

We next restate Eqs(3.14), namely 

x t+1 = x t + �k1,1(xs − xt) + k1,2 yt� ( xm − xt)                                          . 

y t+1 = y t + (k2,2 (ys − yt) + k2,1 xt) (ym  − yt) ,                                  (5.3)   

where in a 2-nation scenario: 

• xt and yt are the actual defence expenditures of Nations X and Y in the current year;   

xt+1 and yt+1  are those for next year.  (The initial values of xt and yt  are  denoted by x0 

and  y0) .   In the thesis,  xt and yt are also referred to as defexp (see Glossary). 
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• xs and ys are the intrinsic expenditures on arms (how much each nation spends on 

defence irrespective of  competitive spending by its neighbours).  These are essentially 

the standing costs of the Armed Forces and are typically 80% of  defexp. 

• xm and ym are  the expenditures authorised on arms in the budgets of Nations X and Y.  

In an ideal world, xt  would equal xm , and yt would equal ym .   We call xm and ym   

budgetary defence expenditures.  

• ki,j , where i,j ∈{1,2}, are the four rate-factors. These have the dimension of (time)-1, 

and may be negative. They are a measure of how fast a nation can react to changing 

threats. 

Everything is time-dependent in these equations so nothing is constant.   In our empirical 

experience, a, b, c and f, and the rate-factors ki,j  all vary slowly with time, but nothing like 

so fast as x and y.   

5.3   Modus Operandi:   Predicting Instabilities and Conflicts     

First, we plot the published IMF defence expenditure figures against time.  This is the IMF 

plot.  Second, using the evaluation equations and a number of  numerical approximations, 

we employ a modelling GA as a vehicle to generate  curves that mimic those of  the IMF 

plot.  This is the model.    Third, we extract the rate-factors from the evaluation equations 

that generated the model and use them in a prediction GA to predict instabilities which occur 

when there is a significant number of sign changes in a - c.  These yield the prediction plot.  

Fourth, we plot the percentage defence expenditure figures of the two or three nations 

involved against time, and take the average.   These figures are obtained from IMF statistics, 

and yield the defexp% plot.   Fifth, we use the defexp% plot to identify the dates associated 

with the violent sign changes indicated on the prediction plot.  Finally, we verify these dates 

against appropriate historical references. 

Note.   A conflict is taken to mean an instability likely to lead to an outbreak of war;  it does 

not necessarily mean that open warfare actually resulted.  In Richardson’s words, “war is 

more likely than not”. As an example, in 1975 India started to divert the waters of the River 

Jhelem, which, if it were completed, would have made a significant part of Pakistan into a 

desert.  It is not surprising that the Pakistani Government was upset and hurriedly increased 

their preparations for war, and this is reflected in a change in the direction of the curvature 

of the limit cycle.   It is now known (years later) that in the event the United States stepped 
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in and persuaded India to desist, so no war actually took place. See Results (e) of Section 

6.4.2. 

Similarly, in recent years Greece and Turkey have come very close to open warfare over the 

Aegean and Cyprus but again, due to United States intervention, this has been averted.  The 

problem is that such instances (where war is averted through, say, covert and therefore 

unpublished diplomatic action) are likely to lead to false-positives (see Table 5.2). 

For our running example, the IMF plot, the model, the prediction plot and the defexp% plot 

are given in Figures 5.2,  5.5,  5.6 and 5.7, respectively. 
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Figure 5. 2   IMF plot.  Data from Appendix 6A.2 

5.4   The Model      

Curve-fitting, in the classic sense, is very limiting;   it does not reflect the physics of the pro-

cess under consideration, in that no association is required between the equation of the line 

joining the points making up a graph, and the equation of whatever process gave rise to 

those points.  For this reason, it is not advisable to extrapolate fitted curves.   In contrast, we 

need “ … a kinetic model faithful to the input data and the physical principles involved” 

[Cao et al., 2000].  Such a model will inevitably involve domain knowledge.  Our aim is to 

predict outbreaks of war in the future, so our methods must allow forward extrapolation.  To 

this end we next introduce our modelling GA and illustrate its use with our running 

example. 

5.4.1   The Modelling GA 
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We employ GA-13  as a modelling GA whose sole function is to mimic  IMF curves such as 

those of  Figure 5.2.  The GA has a population of 100 and its associated matrices follow the 

pattern given in Table 5.1.  The chromosomes (shaded) contain six 2-element genes 

(columns 2-7) and four 3-element genes (columns 8-11), each element being in the set {0 … 

9}, giving a search space of 1024. 

Table 5.1    GA-13.  Matrices M1,  M2 and M3    
Col 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
M1 gen srl k1,1 k1,2 k2,1 k2,2 xs ys xm ym xt yt xt+1 yt+1 fitness linear 

norm 
M2 gen srl k1,1 k1,2 k2,1 k2,2 xs ys xm ym xt yt xt+1 yt+1 normfit running 

total 
M3 gen srl k1,1 k1,2 k2,1 k2,2 xs ys xm ym xt yt xt+1 yt+1 normfit random 

number 

At Generation 0, Matrices 1 and 2 are input with the starter-values for the rate-factors, actual 

values for x0 and  y0, and input from a constrained RNG for every value of xs , ys , xm and ym.   

The GA then proceeds along the lines described in Chapter 4. At Generation 0 input is fed 

simultaneously into Matrices 1 and 2,  followed by evaluation (using, in this case, Eqs(5.4)), 

and fitness computation. At this stage Matrix 1 is bubble-sorted into a descending order of 

fitness and the best result − the ‘bottom line’ − is recorded  and plotted.  Matrix 2 maintains 

its original row order, and is subject to roulette wheel selection (weighted random pairing by 

cost, see Section 2.7); the selected output is put into Matrix 3.   By this stage we have 

already lost some of the original (albeit less fit) individuals and fitter ones have taken their 

place.  Matrices 4/4a/4b ‘unbundle’, mutate and recombine the pairs of chromosomes, and 

Matrix 5 ‘rebundles’ them.  We are still in Generation 0, but Matrix 5  already looks 

different from Matrix 2  both in the individuals it contains and the contents of its 

chromosomes.   At this stage: 

• Every chromosome in Matrix 5 is transferred back into Matrices 1 and 2, and Generation 

1 begins. 

• All the xt+1 and yt+1 results of Generation 0 are transferred from Matrix 3 back into 

Matrices 1 and 2 to become the  xt and yt  settings of Generation 1. 

• The process is repeated for as many generations as is necessary. 

5.4.2   Establishing the Rate-Factors 

We next develop a technique to estimate the rate-factors for use in the prediction GA.  As 

before, we use our running example to illustrate it. 
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We start with the  approximate formulae 

                  xt+1  =  xt + (-0.22 xt k1,1  /10 +  yt k1,2  / 50) GDPX  /1000                                  . 

                  yt+1  =  yt  + (-0.32 yt k2,2  /10 +  xt k2,1 / 50) GDPY  /1000  .                       (5.4) 

As they stand, Eqs(5.4) are unusable. We have two equations with four unknowns, i.e. the 

rate-factors ki,j.  However, we do know x, y, GDPX and GDPY  at  t0 and t1 from the IMF data 

at Appendix 6A.2.   Furthermore, we know from experience that k1,2 and k2,1 happen norm-

ally to lie between 2 and 7.   

The description that follows is given in algorithmic form.  It should be read in conjunction 

with both the notes shown in parentheses, and with those points that follow the algorithmic 

presentation. 

begin 

  Initiate a modelling GA, with population 100, a fixed number of generations, using 

Eqs(5.4) as evaluation equations, and an inverse Pythagorean ffn, see Eq(5.5). 

begin 

Step 1.     Estimate likely values for k1,2 and k2,1  and, in conjunction with the IMF values 

for x0, y0, x1, y1, GDPX and GDPY, use Eqs(5.4) to determine k1,1 and  k2,2.  (We now 

have starter-values for all four rate-factors. As it happens, if we set k1,2 = 6 and k2,1 = 2,  

then k1,1 = 46 and  k2,2 = 2). 

Step 2.  Using the four rate-factors in GA-13, compute xt+1 and yt+1, see Figure 5.3. 

(Initially, this approach allows a comparison between the calculated values of x1 and y1 

and their IMF values.) 

Step 3.  Run GA-13 over the required period.  

Step 4.   Examine the output graphically.  (At first, the curves will be dysfunctional, 

except for their start-points x0 and y0 which are fixed).  Adjust the four rate-factors so as 

to bring the two model curves closer to those of the IMF plot. (The resulting graph for 

the running example looks like that in Figure 5.3). 

Step 5.    Go to Step 4, adjusting the rate-factors and iterating the model until the output 

(model) curves lie as close as possible to those of the IMF plot. 

end 

(Comment.  We elaborate algorithmically further on Steps 4 and 5.) 
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begin  

Step 6.  Improve the output (model) curves by reducing Cao et al.’s norm, see the 

Glossary and Figure 5.4.  Systematically adjust the rate-factors by trial and error in 

order to effect the reduction. 

Step 7.  Repeat Step 6 until the norm is as low as it can be.  (Figure 5.4 is the result of 

adjusting the rate-factors and attaining the values k1,1 = 17, k2,2 = 5, k1,2 = 7 and k2,1 = 1; 

this reduces the norm from 196 (obtained after the final  invocation of Step 5) to 125.   

This, in turn, places the calculated values well within 5% of their IMF values.    

Step 8. Run GA-13 and compare it with the IMF plot. (An  output for the running exam-

ple is  shown in Figure 5.5, and this should be compared with Figure 5.2).  

end 

if (termination condition) end 

end 

The following points should be made: 

(1) Eqs(5.4) are a simplified version of Eqs(5.3), i.e. they contain less parameters  Addition-

ally, all equations must be scaled so that the curves appear on the screen. 

(2)  Step 4.  In general, altering k1,1 and k2,2 will change the level of xt+1 and yt+1, 

respectively, while adjusting k1,2 and k2,1 will change the shape of the intervening curve, 

i.e. between x0, y0 and the final xt, yt . 

(3)  Step 5.  It is easier to make fine adjustments by tabulating xt and yt  rather than by visual 

inspection.   In practice, it was necessary to iterate GA-13 about twenty times, and the 

whole procedure took around thirty minutes. 

(4)  In Chapter 4 it was stated that IMF rate-factors were introduced at Generation 0 only. 

Whilst true of all prediction GAs, this is not true of the modelling GA where, at every 

generation,  the IMF rate-factors are made to overwrite those carried forward from the 

previous generation.  In effect, therefore, we are using the same rate-factors for every 

generation, giving us very tight control over the shape and positions of the resulting 

curves.  We can do this because we know the answers (given in the IMF plot) in 

advance.  We employ this technique only up to the point where the stage is set to reduce 

Cao et al.’s norm. 

(5)  For most of our work with GA-13 we used the inverse Pythagorean ffn 
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                                  fitness =  
2

1
2

11

10000

++ ++ tt yx
  .                                          (5.5)  

  However, when we reduce the norm we employ the ffn 

                              fitness  = ( ) ( )22
realcalcrealcalc yyxx −+−     ,                              (5.6) 

where xreal , yreal stand collectively for all the IMF values and xcalc , ycalc stand collectively 

for the corresponding computed values, thereby taking all the available IMF data into 

account. Figure 5.4 shows Cao et al.’s norm in action, while Figure 5.5 shows the output 

of the modelling GA, GA-13, after reducing the  norm.  

 
Figure 5.3   Creating the model.    Values of xt  and yt  against years  

 
Figure 5.4   GA-13, Option 7. This shows ( xcalc   , ycalc) alongside the corresponding IMF values  

( xreal  , yreal )  after the reduction of  Cao et al.’s. norm 
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Figure 5. 5  The model.  GA-13, using Eqs(5.4).  The output of the modelling GA mimics Figure 

5.2 

In the case of India/Pakistan (1993 to 1999), the rate-factors k1,1, k2,2, k1,2 and k2,1 finally 

carried forward to the prediction GA were 17, 5, 7 and 1, respectively. 

It is emphasised that getting good approximations to the rate-factors is crucial.  In Chapter 6, 

not only do we employ the Cao et al. norm, but we carry out other tests to validate the rate-

factors which are to be carried forward to the prediction GA (see Section 6.3.2).. 

5.5    Predicting Instabilities in the Arms Race Equations 

The modelling GA, GA-13, uses too few genes and too many set values to call it a proper 

GA, although it establishes workable initial values for the rate-factors ki,j which we can use.    

In contrast, GA-6 was designed for prediction purposes and uses the following modification 

of Eqs(5.3) as evaluation equations: 

         xt+1  =  xt + (xt   k1,1  / 100 xs / 100   +   yt k1,2 / 100) �(xm −- xt) / 85�                     . 

         yt+1  =  yt  + (yt  k2,2 / 100 ys / 100  +  xt  k2,1 / 100) �(ym − yt) / 85���  .               (5.7) 

Eqs(5.7) broadly resemble Eqs(5.3).  However, in the chromosomes of GA-6 all the rate-

factors  ki,j  are defined as integers lying between 0 and 99 so we  have to divide by 100.  (A 

GA treats all its genes equally, no matter what scaling factors are put on them [Mitchell, 

1996].)  Moreover, the term k1,1 (xs − xt)  in Eqs(5.3) is now expressed as  k1,1 (xs /100) xt .   

Thus the intrinsic expenditure (xs) introduces two more genes into the GA,  and so does the  
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budgetary  defence  expenditure (xm)  which appears in Eqs (5.7) as (xm - xt),  in place of the 

earlier GDPX /1000. 

Returning to our running example, at Generation 0 we input rate-factors  k1,1 = 17,   k2,2  = 5,  

k1,2  = 7,  k2,1 = 1, output from the modelling GA.    Forty generations later these had become 

k1,1 = 27, k2,2 = 5,  k1,2 = 1 and  k2,1 = 14 confirming that, like everything in Eqs(5.7), the 

rate-factors are time-dependent.  Eqs(5.7) worked well, and provided convergent solutions; 

see Figures 5.8, 5.9, 5.11, and 5.12 , and contrast them with Figure 5.10, where an extra 

0.1% average defexp% has made the system unstable. 

In order to predict instabilities in the arms race environment, we first need to be satisfied 

that our technique would have predicted the conflicts of the past.   This we will do next. 

5.5.1  The Prediction GA 

 The GA used, GA-6, is typical of those described in Chapter 4.  Ten genes representing  the 

parameters  k1,1 , k2,2 , k1,2 , k2,1 , xs , ys , xm , ym , xt and yt from Eqs(5.7)  were set up to appear 

as one integer (effectively 24 elements long) in a chromosome having a search space of 1024.   

The  population was 100.  Each chromosome is a point in the search space of candidate 

solutions, so the alleles of each of its genes could be used in the evaluation equations  

Eqs(5.7).  The prediction GA was run until the results were stable, and (in our running 

example) this varied from twenty to forty generations. 

In Chapter 3 we drew a parallel between canard explosion theory (where changes in the 

direction of curvature of the limit cycle can be used to predict instabilities) and the 

Richardson arms race equations.  It was shown in Section 3.7  that the direction of curvature 

of the limit cycle is given, under certain assumptions, by the sign of  a – c.  If a > c the limit 

cycle revolves counter-clockwise and, if a < c, clockwise.   

These changes of sign can now be used to predict instabilities.  To this end, it was decided to 

use the approximations for a and c, derived in Eqs(3.16),  and to modify  GA-6  to calculate   

a  ≈   k2,1  ym     and    c  ≈   k1,2  xm                                                . 

and output a - c for the fifteen best chromosomes shown.   The resulting GA is called GA-5. 

The significance of the difference a − c lies in the number of changes of its sign at each 

iteration step of average defexp%, mainly in steps of 0.1%.     In this context, Figure 5.6 

shows the number of minus signs in a − c (maximum 15) at increasing values of average 

defexp% (in steps of 0.1%).  This is a prediction plot (see Section 5.3)   It will be shown 



 

 88 

later by running GA-6 in graphical mode (Option 8) that instabilities occur at 6.5 %  (see 

Figure 5.10) and at  7.9%. 

Figure 5.6 shows that each of these instabilities is prefaced by a sudden plunge from a high 

number of minus signs  to a small number of minus signs.  Analysing this and other charts, 

if  a overtakes c very rapidly  (normally denoted by a change of ten or more signs from 

minus to plus in one iteration) then instability is imminent.    (In chaos theory [Ott, 1994], 

similar sign changes occur at a Hopf bifurcation when, at the moment of transition from a 

laminar to a chaotic state, the complex-conjugate eigenvalues of the limit cycle change sign 

from minus to plus.) It has been observed empirically that a lesser number of sign changes 

than ten, say eight, does not have this effect, and that unless the number of minus signs 

keeps at or above ten there is, therefore, little likelihood of instability. 

In our running example, major sign changes occur (Figure 5.6) at an average defexp% of 

6.5% , 7.9% and 10.1%.   An examination of Figure 5.7 shows that these averages occurred 

in the spring and autumn respectively of 1997, and in the summer of 1998. The Europa  

World Yearbook [2001] mentions (pp 1935 and 3068) that in March 1997 an Indian rocket 

attack on a mosque at Azad in Kashmir killed forty Pakistanis.  In September that same year, 

there were large-scale artillery exchanges in Kashmir and Jammu during which the Indian 

and Pakistani prime ministers personally used a ‘hotline’ in a desperate (but successful) 

attempt to prevent the situation from escalating into a major war.  Both India and Pakistan 

tested nuclear weapons in the summer of 1998 and feelings ran high. 

India v. Pakistan;  signs of the limit cycle
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Figure 5.6    Prediction plot.  Predicting when instabilities might occur.  On this graph  instabilities 
are predicted at an average defexp% of 6.5% (1),  7.9% (2), and 10.1% (3).  The asterisk marks a 

double drop (14�7�1) 

India v. Pakistan;  percentage defence expenditures 1993 to 1999.       IMF figures taken in 
early 1999
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Figure 5.7    defexp% plot.   Note the average defexp% . 

    Plot originally drawn in early 1999.  Note that this is based on data earlier than that of Appendix 
6A.2 and is significantly different from the 1955 to 2000 plot (Figure 6.10) which was drawn in late 

2001.  For an explanation of the difference, see (6) of the Preface to Appendix 6A 

Figure 5.6 demonstrates that a prediction plot can (within reason) be extrapolated.  It is not 

so easy, however, to extrapolate Figure 5.7, i.e. to estimate the future movements of the 

average defexp%;  attempts to do so were abandoned.  Herein lies the problem of prediction. 

Table 5.2  Truth-table:  India/Pakistan instabilities 
  occurred? 

  yes no 
 

yes 
 
3 
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no 

 
0 

 
 

Table 5.2 shows an instability truth table;  three conflicts predicted, three occurred histor-

ically. We have, therefore, shown that in principle it is possible to predict known conflicts 

by this method.  A much stronger validation of this statement is presented in Chapter 6. 

5.6    How Minute Changes in Average Defexp% Alter Stability 

Using GA-6,  we  plotted the output of the evaluation equations (Eqs(5.7)),  xt and yt, against 

generations for set values of defexp%  increasing by only 0.1% at each figure.  Results are 

exhibited in Figures 5.8 to 5.12. (The legend Rate-factors 7, shown on some of the screen-
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prints, means that the rate-factors are sourced from a constrained RNG.   Correspondingly, 

Rate-factors 8 means an IMF source). 

 
Figure  5.8   GA-6.  Average defexp%  6.4 %       

 

 
Figure 5.9    GA-6.   Average defexp%  6.5 %   
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Figure 5.10  GA-6.  Average defexp% 6.6 %       

 
Figure 5.11  GA-6.   Average defexp%  6.7 %   

 
Figure 5.12  GA-6.   Average defexp%  6.8 %     
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Comment.  The average defexp% increases by only 0.1% over each of Figures 5.8 to 5.12.  

Figure 5.8 is stable;  Figure 5.9 is excited;  Figure 5.10 is unstable;  Figure 5.11 is calming 

down, while Figure 5.12 is quiescent again. This shows how sensitive the Richardson equa-

tions can be to minute changes in average defexp%.   It also shows how the prediction plot 

at Figure 5.6 reflects the levels of activity to be expected when unstable points are 

encountered. 

Stability Criteria   We next verify that Richardson’s stability criteria are borne out in 

practice.  Using the a, c, b, f nomenclature of Eqs(5.1), evaluation Eqs(5.4), the RNG-

derived values of  ki,j used in GA-6 to generate Figures 5.9 and 5.10 (k1,1 = 40,  k2,2 =  5,  k1,2 

= 6,  k2,1 =  2), and setting the defexp%, g,  to 6.5 %, we obtain  

                  a =  k2,1 g =  13.0;                     c =  k1,2 g =  39.0;                         so  ac = 507                                        

     b =  1 − (0.22 k2,2 g) =  − 6.5;    f =  1 − (0.32 k1,1 g ) =  − 83.5;    so   bf = 542   

 Thus   ac < bf   and  the situation is stable, see Figure 5.9.   

Correspondingly,  for defexp% set to 6.6 % we obtain  

             a =  k2,1 g =   13.2;                      c =  k1,2 g  =  39.6;                       so   ac  =  523                                                                                                       

       b =  1 −  (0.22 k2,2 g) =  − 6.2;     f  =  1 − (0.32 k1,1 g) =  − 83.4;    so   bf  =  517        

Hence increasing the average defexp% by 0.1% from 6.5% to 6.6% results in ac > bf, and 

the situation becomes unstable as Figure 5.10 demonstrates.  Hence Richardson’s stability 

criterion does work for the India/Pakistan arms race in this instance. 

5.7    Dominance Diagrams and Fractal Basins 

It is sometimes of interest to know which side, India or Pakistan, is dominant at any one 

time.  A dominance diagram for our running example is shown in Figure 5.13.  For each 

iteration of the population of 100 pairs of evaluation equations run for 20 generations, a 

small square is drawn.  The colour of this square indicates whether India (dark blue) or 

Pakistan (yellow) is dominant (i.e. whether xt > yt  or  yt > xt) at the end of each of the 2000 

iterations.  The two curves, below the coloured matrix, portray the situation at the extreme 

right-hand column of the matrix.  Recall that the dominance diagram is Option 9 of  every 

prediction GA.  
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Figure 5.13  A dominance diagram. GA-6.   Seed 33.  Average defexp%  5.8 

 

In Section 4.9 we explained how we were concerned about domination changes, for in these 

changes lie the seeds of chaos and instability, and there is evidence that chaos is present in 

some of our GAs (viz. GA-4, GA-10 and GA-11, see Section 4.10).  We therefore set out to 

create a series of fractal basins, the behaviour of which under chaotic conditions is well 

catalogued [Ott, 1994].   

GA-7, a new algorithm, puts GA-6 (the prediction GA) inside two additional for-loops, so 

that it is possible to examine the behaviour of the GA as any two of its parameters (such as 

average defexp% and x0, or average defexp% and any of the rate-factors ki,j , or India’s 

defexp% and Pakistan’s defexp%) are varied over the whole of their likely ranges.   The 

output is a 25 ×25 square (effectively an aggregation of 625 separate dominance diagrams); 

see, for example,  Figure 5.14. 

Figure 5.14 should be read as a series of rows rather than as a two-dimensional matrix. The 

rows, representing India’s defexp%, vary from 1.9% to 13.15% in 25 steps.   The columns, 

Pakistan’s defexp%, vary from 6.8% to 11.55%.  The figures are based on Appendix 6A.2.       
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Figure 5.14  A fractal basin.  GA-7.  India’s defexp% against Pakistan’s defexp%.   Seed 9 

 
We had been led [Forrest and Mayer-Kress, 1991] to expect ‘walls’, i.e. there would be large 

well-defined, contiguous and clearly-separated areas of blue and yellow (see Figures 4.5 to 

4.9) especially as the seed chosen, 9, is known to give rise to instability at an average 

defexp% of 6.6%, see Figure 5.10.    Walls never did occur in the case of India/Pakistan, for 

the reason given in Section 4.11, namely that chaos is unlikely in a two-nation system.  

Despite  varying  a large number of parameters (including all the rate-factors ki,j in turn)  the 

India/Pakistan fractal basin was always ‘patchy’, as if there were a lot of  noise. It only then 

became apparent that the ‘patchiness’ was not (or only partly) due to noise, but to definite 

regions of instability some of which were quite local.  We have, therefore, stable states lying 

either side of unstable ones, the phenomenon known to chemists as a precursor of a canard 

explosion. 

According to this analysis, there are no general areas of stability in the India/Pakistan 

conflict;  the system lurches from one instability to another with periods of respite in bet-

ween.   One cannot therefore say with any certainty that war will be averted if, say, India’s 

defexp% drops below some fixed percentage, or if rate-factor k2,1 is more than  some stated 

figure, or if  Pakistan’s defence budget exceeds some declared sum, a situation best 

described as volatile.  

5.8   Alternative Approaches  

So far we have solved Mayer-Kress’s discretised two-nation variant of the Richardson arms 

race equations by using GA-6, a conventional GA.    

Figure 5.15 shows values of xt and yt in Option 8 of GA-6, a normal GA, using a seed of 8.  
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Figure 5.15    GA-6. Values of xt and yt..  Convergence occurs at 849 and 782  

We will now look for alternative solutions to Eqs(5.3) that do not use a GA.   For our first 

attempt we took GA-6, copied it and renamed the copy GA-5, and then systematically and 

progressively removed from GA-5 all traces of GA activity (i.e. selection, mutation and 

crossover).  The revised algorithm was called NM-5.   We then compared the behaviour of 

GA-5 with that of NM-5.  Results of NM-5 were interesting in that there was some 

unexpected convergence, but evaluations of  a – c failed to generate the sign changes essen-

tial for our prediction method.  It was not, therefore, possible to create a prediction plot.  

This was unacceptable in the context of the thesis, so the attempt was abandoned.   

A second non-GA approach, again in effect stripping GA-5 of its GA characteristics and 

then using Eqs(5.3) to compute xt+1  from xt , and  yt+1  from  yt by varying only the four rate-

factors ki,j, encountered the same problems with respect to the sign changes of a - c, and 

suffered a similar fate. (This second approach, however, was the pre-cursor of the validation 

method to be used throughout Chapter 6). 

5.8.1   A Monte Carlo Treatment 

For our third non-GA approach,  we  converted NM-5 into a true Monte Carlo operation, 

calling the resulting algorithm MC-5.  Monte Carlo methods rely on the deliberate use of 

random numbers in calculations that have the structure of a stochastic process [Kalos and 

Whitlock, 1986].  In practice, Monte Carlo methods  involve the evaluation of multiple 

integrals.  The central idea of  Monte Carlo is that an integral may be represented by a sum.  

For example, 

�
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where we draw a series of random variables xi from a distribution with density function f(x), 

and evaluate g(x) for each xi [Kalos and Whitlock, 1986].   The arithmetic mean of all N 

values of g(x) is an approximation for the integral, and the variance of this approximation 

decreases as the number of terms increases.  

Section 4.5  explained how Eqs(5.7) were run 100 times (one for each population member), 

evaluating xt+1 and yt+1  each time, and obtaining slightly different results  each time. In GA-

5, for each generation the 100 results were sorted by order of fitness, and the best results 

were filed in the Matrix result, see Section 4.3.  In our Monte Carlo treatment, however, we 

do not sort the 100 results to find the fittest;  instead, we simply use their average. The 

result matrix, therefore, contains the average  for N = 100 at each generation.  Figure 5.16 

shows the output of MC-5 pictorially.  

 
Figure 5.16   MC-5.  Note how xt  and yt  converge on 833 and 785, respectively 

 
After some teething problems, the results of several Monte Carlo trials were very 

encouraging.   In  every  case, after about Generation 15, the  average xt and yt , taken over N 

= 100, were within 1.8% and 0.4%, respectively, of the corresponding  fittest results at each 

generation of GA-6, as a comparative glance at Figures 5.16 and 5.15 demonstrates.    

Despite the encouraging appearance of Figure 5.16, the use of Monte Carlo methods to 

predict instabilities in arms races is inadvisable.   Evaluations of a – c failed to generate the 

sign changes essential for our prediction method. It was stated earlier that mutation is the 

principal source of these sign changes, without which we cannot use Peng et al.’s technique, 

our vehicle for predicting instabilities.  

5.8.2      A Simulated Annealing Approach 
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Kirkpatrick, Gellat and Vecchi [1983] proposed an algorithm which is based on the analogy 

between the annealing of solids and the task of solving combinatorial optimisation problems 

[Pham and Karaboga, 2001].  The algorithm consists of a sequence of iterations. After 

initiation, each iteration randomly changes the current solution to yield a new solution.  The 

principal mechanism for change (in our case) is mutation.  Once a new solution is created, 

the corresponding change in the cost function (in our case the fitness) is calculated to 

determine whether or not the new solution is fitter than the current one.   If it is, namely 

0) () ( <−=∆ solutioncurrentffnsolutionnewffnE ,                                     . 

then the new solution replaces the current one (which is discarded).  Otherwise, the new 

solution may possibly be acceptable according to Metropolis’s criterion which is based on 

the Boltzmann probability  
kTEeEP /)( −∝                                                                                                 . 

where P(E) is the probability that the system is in a state of energy E,  T is the temperature, 

and k is Boltzmann’s constant.  Metropolis says, in our terms, that if �E � 0, then a random 

number � in [0,1] is generated from a uniform distribution and if    
TEe /∆≤δ                                                                   .  

then the new solution is allowed to replace the current solution. If not, the current solution 

stands.     

It appears to be normal practice to take ten iterations at each temperature (Ti) before 

reducing the temperature in geometrical progression by some expression such as Ti+1 = cTi, 

where c is typically 0.9.   Typical temperatures start at 100° (a purely notional figure, for it 

has no units) and reduce until  a plot of  fitness shows that asymptotic convergence has 

occurred.   

In Section 7.7 we develop an evolution strategy [Schwefel, 1995] (ES) to handle nuclear 

deterrence, and the similarity between an ES and a simulated annealing (SA) algorithm is 

striking.  The only significant difference is that, in an ES,  if �E � 0, then the new solution is 

discarded immediately so there is no probabilistic ‘second chance’.   We actually took our 

existing ES algorithm, ES-1, and modified it to assume an SA role (renaming it SA-5) 

without too much difficulty.  In effect, we initiate a GA with a population of two using  

Eqs(5.3) as the evaluation equations, and then utilise the inverse Pythagorean ffn (i.e. 

Eq(5.5)) to compare the two.  Whereas in the ES the comparison would have been 

straightforward, the SA has the added complexities of the Metropolis criterion and of falling 

temperatures, making the SA approach more complex.  
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Figure 5.17   SA-5.   Simulated Annealing 1.  Fitness against generations. Temperature starts at 

50°, ends at 21°.  Mutation rate 0.9%.  Fitness ranges from 98  to 8 
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Figure 5.18   SA-5.   Simulated Annealing 2.  Fitness against generations. Temperature starts at 
100°, ends at 39°.  Same mutation rate and fitness limits as Figure 5.18, but a different ‘cooling 

profile’1.  Fitness ranges from 98  

on rate of 0.9%, initial temperatures of 50° and 100°, and a defexp% of 6.0% we ran SA-5 
for 100 iterations (generati11ons). Every ten iterations the temperature dropped by a factor 
of 0.9.  The results can be seen in Figures 5.17 and 5.18 which plot fitness (in SA parlance 

cost function) against the number of iteration steps at the two different starting temperatures.   
For the two runs, we kept count of the number of times the three routes were taken, see 

Table 5.3. 

Table 5.3   Simulated Annealing.   The number of times (out of 100) that the three routes were used 
Condition/Initial Temperature T0 T0 = 50° T0 = 100° 

�E < 0                                                            Route 1       49 49 

�E � 0, but Metropolis’s criterion is met         Route 2 37 23 

�E � 0, but Metropolis’s criterion is not met    Route 3 14 28 

Evaluations of a - c can only produce a single sign change since we can only consider one 

chromosome at a time.  Thus SA cannot be used for our prediction method. 

5.9  Comment on the Non-GA Methods 

It is apparent that there are methods of solving Eqs(5.3) without resorting to GAs. The first 

three non-GA approaches, however, failed to produce the sign changes necessary for our 

prediction method.  The same applies to simulated annealing.   �Rudolph [1993] describes a 

method of using SA to emulate an EA, but this involves the use of massively parallel 

processors;  we do not have access to such facilities.�   
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The strength of our approach, namely applying GAs to Richardson’s arms race theory, lies 

in their ability to predict instabilities. (On the empirical evidence available, this is done 

reasonably well).  The approximation for  a – c  (namely k2,1 ym – k1,2 xm) developed in 

Eqs(3.16) is not conditional on our using a GA, but it does help to use a method which, first, 

widens the search space by deliberately introducing a lot of mutation and, second, 

effectively evaluates more than one individual (chromosome) at a time. 

5.10  Conclusions 

In this chapter we set out to explain the rationale underpinning our prediction of instabilities.  

We demonstrated this by developing some general arguments, and then illustrating their 

application in a snapshot (1993 to 1999) taken from the continuing arms race between India 

and Pakistan.  We made use of two integer-valued GAs which, while related in appearance 

and operation, were dissimilar in function. The first (the modelling GA) generated a model 

designed to be faithful to the IMF data and to Richardson’s equations. The modelling GA 

vindicated Richardson’s theoretically-derived criteria for stability.  The second (the 

prediction GA) was used to predict instabilities by looking for violent changes in the signs 

of a - c which in turn  indicate changes in the direction of curvature of the limit cycle of the 

evaluation equations, a technique pioneered by Peng et al. [1991] for forecasting canard 

explosions.   

The prediction GA found that, in the said snapshot between India and Pakistan , there were 

large areas of stability separated by quite local but violent pockets of instability.    It would 

be premature to say at this stage that known and likely instabilities between India and 

Pakistan seem always to be prefaced by a sudden change in the direction of curvature of the 

limit cycle, but this will be demonstrated in Chapter 6.  This change is very simple and (as 

has been said) is expressed by the sign of  a - c.  From an empirical viewpoint, if the sign of  

a - c of two-thirds of the GA’s population on display (15) changes in successive iteration 

steps from minus to plus, then it seems that an instability will occur at the next timeframe.  

Such changes of sign are evident in the prediction plot in Figure 5.6 and relate directly to 

known historical events in the spring and autumn of 1997, and in the summer of 1998. 

We closed the chapter by seeking alternative methods of solutions to the Mayer-Kress 

equations by means other than a GA.  The first and second non-GA methods took the 
                                                                            
1 The rate of cooling is  more marked in Figure 5.18 which starts at 100° than in Figure 5.17  which starts at 50°.  It is 
tempting to draw comparisons with Newton’s law of cooling which says that the rate of cooling by a hot object is proportional 
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modelling GA and removed all trace of GA activity, the third took a Monte Carlo approach, 

and the fourth used simulated annealing.  All four provided solutions of some sort (the 

Monte Carlo solution was particularly accurate in its assessment of xt and yt), but they were 

all  laborious, and none of them could identify a sufficient number of changes  in the 

direction of curvature of the limit cycle. Collectively, therefore, they are of no use for 

prediction.  In marked contrast,  GAs have the advantage over non-GA methods in speed, 

flexibility and ease-of-use but, above all, their implicit parallelism allows them to evaluate a 

whole population’s values of  a – c  simultaneously, and not just one at a time.  Hence the 

GA results can be used for predicting changes in the direction of curvature of the limit cycle 

and hence the likelihood of instability between nations engaged in an arms race. 

 

 

 

 

 

                                                                            
to the difference in temperature between the object and its surroundings 
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CHAPTER 6 
 

Validating the Richardson Model 
 
 
6.1    Introduction  

Chapter 3 established the connection that a combination of Richardson’s arms race equat-

ions and Peng et al.’s canard explosion theory could predict the timing of the outbreak of 

hostilities between nations.  Chapter 5 explained the general principles on which our pred-

iction techniques are based and took a six-year window in the India/Pakistan conflict as a 

running example to illustrate the application of those principles. This chapter validates these 

ideas empirically by taking three recent long-running conflicts and demonstrating over 

significant periods of time that they work.  The three chosen conflicts are:  

• The dispute between Greece and Turkey over Cyprus and the Aegean, from 1955 to 

2000.  This consisted of two invasions, and the threat of a major war which was defused 

at the last moment. 

• The dispute between India and Pakistan over Kashmir, from 1955 to 2000. This 

consisted of  two major wars and the current unrest. 

• The Middle East, from 1955 to 2000.   This included three major wars, three minor wars 

and a number of not-insignificant skirmishes.  

Appendix 6A lists detailed statistical information from IMF and UN handbooks and other 

authoritative sources.  Its preface discusses the particular problems of extracting data for the 

arms race application. 

The rest of this chapter briefly recapitulates the six steps of prediction (from Chapter 5) and 

then deals individually at length with the three conflicts listed above. Truth-tables for each 

conflict reveal that there are a small number of false-positives.  These do not necessarily 

indicate a flaw in the prediction techniques, for it is known that some instabilities are 

defused by covert diplomatic action.  Only one false-negative has been found.  The chapter 

closes with a brief examination of the effects of introducing noise into the system.  

6.2  Modus Operandi  

Herein we recall the six steps leading to prediction.  The first step is to take IMF statistics 

and plot defence expenditure against years.   This is the IMF plot;  see, for example, Figure 

6.1.  The second step is to develop a model designed to mimic the IMF plot while adhering 
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to the principles of arms races embodied in the Richardson equations.   The modelling GA   

generates curves which mimic those of the IMF plot.  We call this the model; see, for 

example, Figure 6.2.  Once the model has been improved by reducing Cao’s norm, we 

transfer the rate-factors across to the prediction GA. 

The third step is to determine changes in the direction of curvature of the limit cycle. This is 

manifested by marked changes in the sign of  a – c, from minus to plus. We run the 

prediction GA and plot the number of minuses (maximum 15 which conveniently fills the 

screen) at each iteration step against increasing values of average defexp%. This is the 

prediction plot;  see, for example, Figure 6.4.  A sudden marked change (normally ten or 

more) from a high number of minuses to a low number of minuses in successive iteration 

steps indicates that the direction of curvature of the limit cycle has changed and that, from 

canard theory, an instability is imminent.   Such changes (known from their appearance as 

sharp drops) not only occur whenever defexp% curves intersect, as might be expected;   

they also occur in other places.       

The fourth step is to plot graphs of defexp% against time, including their average. This is 

the defexp% plot; see, for example, Figure 6.5.  Richardson was always careful to work in 

terms of overall defence expenditures; thus, from our running example, India’s could be 

four times that of Pakistan (reflecting the disparity in both their populations and their 

GDPs).  In contrast, it now seems that conflict is likely when percentage defence 

expenditures touch or intersect.  (Perhaps this is because percentage defence expenditures 

reflect a level of national and individual commitment).   The fifth step is to use the defexp% 

plot to identify dates associated with the sharp drops shown on the prediction plot.  The 

sixth and final step is to verify these dates against appropriate historical references. 

Comments  

We used both dominance diagrams (Section 4.9) and fractal basins (Section 4.10) to identify 

those regions where instability would be likely to occur.  Furthermore we verified, for each 

of the three conflicts  considered,  that Qcosϕ  << a - c (see Eq(3.27)). In  particular, in each 

instance, 88° < ϕ   < 89.3°.  

Throughout the chapter:  

• Modelling GAs (Figures 6.2, 6.7 and 6.12) are run for 45 generations (years) as we have 

data from 1955 to 2000.  Prediction GAs (Figures 6.4, 6.9 and 6.14) are run for 40 

generations, as this was found experimentally to be a workable minimum.   Neither 

modelling GA nor prediction GA curves have been smoothed, but all other curves have. 
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• Everything is plotted at one-year intervals, with the exception of the validation diagrams 

(Figures 6.3, 6.8 and 6.13) which are plotted at five-year intervals.  Data for the validat-

ion diagrams was worked on spreadsheets using Microsoft Excel as a scripting language.   

6.3   Cyprus, Aegean:  Greece versus Turkey, 1955 to 2000    

Herein we examine the very long-running dispute between Greece and Turkey over  Cyprus 

and the Aegean culminating in a serious instability in 1997 when the two nations very 

nearly went to war.  We use the two-nation version of Mayer-Kress’s [1989] discretised 

Richardson equations (Nation X is Greece,  Nation Y is Turkey), namely 

xt+1 =  xt  + �k1,1(xs− xt) +  k1,2 yt�(xm − xt)                                        .                             

yt+1 =  yt  + �k2,2(ys− yt) +  k2,1 xt�(ym −  yt) .                             (6.1)  
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Figure 6.1   IMF plot.   Data from Appendix 6A.1 

 
6.3.1  The Model 

Using a modelling GA, GA-14, initial curves were developed by manipulating the eva-

luation equations derived from Eqs(6.1) (see Section 5.4.2, steps 1-5), namely  

                            x t+1 =  xt  + (-0.14 xt k1,1 /50 +  yt  k1,2 /50) GX / 1740                              . 

y t+1 =  yt +  (-0.5 yt k2,2 /45 + xt k2,1 /100) GY / 1988                        (6.2) 

yielding the starter-values  k1,1 = 51, k2,2 = 12,   k1,2 = 32  and  k2,1 = 6  (hereafter referred to 

simply as  51, 12, 32, 6).  The curves, i.e. Eqs(6.2),  have yet to be refined.   
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6.3.2  Improving and Validating the Model  

We improve the model by, first, employing an appropriate ffn and, second, by reducing Cao 

et al.’s norm.  We then validate our techniques by comparing the values of  xt ,yt obtained 

from the evaluation equations of the prediction GA (Eqs(6.4)) against the corresponding 

IMF values. 

(1) In order to achieve any sort of mimicry vis-à-vis Figure 6.1 we require an ffn which 

incorporates all the IMF data.  To this end we employ the ffn 

fitness��� ( ) ( )22
realcalcrealcalc yyxx −+− ��,                            (6.3) 

where xreal , yreal stand collectively for all the IMF values, and xcalc , ycalc stand collect-

ively for the corresponding computed values. 

(2) Cao et al.’s norm.    GA-15 input xreal and yreal every year from 1955 to 2000 from IMF 

sources, and made use of the x and y already calculated by GA-14, see Section 5.4.3.   

By adjusting the four rate-factors (as explained in Section 5.4.2, steps 6-8) the norm was 

reduced from 243 to 175.  After adjustment, the final values for the rate-factors were  

27, 11, 30, 7. 

Figure 6.2 shows the output of the modelling GA, GA-14, after reducing Cao et al.’s norm. 

 
Figure 6.2  The model. GA-14, using Eqs(6.2).  The curves follow the IMF plot (Figure 6.1) 

 quite tightly 

We now proceed to validate the model.  Since we know all the IMF values of xt , yt , xm  and 

ym (collectively designated xreal and yreal),  we could use the evaluation equations of the 

prediction GA, Eqs(6.4), to obtain xt+1 and yt+1, etc (collectively denoted by xcalc and ycalc) as 
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a straightforward  arithmetical exercise not involving GAs at all;   xreal and yreal  can then be 

compared with xcalc and ycalc . To initiate the calculation  we use only x0(real) and y0(real). 

The calculated and the real curves are plotted alongside each other in Figure 6.3 and show 

quite a good match;  it would seem that  27, 12, 30, 7 are appropriate values for the four 

rate-factors. 
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Figure 6.3  Comparing real with predicted values of xt and yt ;  using the prediction GA to verify that 

the appropriate rate-factors have been carried forward from the modelling GA1    

6.3.3  The Prediction   

Armed with refined starter-values for the rate-factors (27, 12, 30, 7), we developed a 

prediction GA, GA-16, for Greece/Turkey using the evaluation equations 

xt+1 =  xt  +  �(k1,1  / 38) xt  (xs / 100) + (k1,2 /100) yt��(xm−  xt ) / 510�                . 

yt+1 =  yt  +  �( k2,2  / 50) yt (ys / 100) + (k2,1/  55) xt ��(ym  − yt) / 190�.             (6.4) 

Eqs(6.4) are derived from Eqs(6.1), see Section 5.5.  These equations are used to calculate 

the sign changes in the direction of  curvature of the limit cycle, see Figure 6.4.  By Gener-

ation 39 the rate-factors had become 23, 25, 32, 7. 

Results.   We list the average defexp% at which sharp drops occur in Figure 6.4, together 

with  the corresponding dates extracted from the defexp% plot in Figure 6.5.  Alongside are 

the years pertaining to relevant historical events.  Sharp drops in Figure 6.4 occurred for the 

eight index numbers shown  as follows: 

                                                 
1  Since xcalc and ycalc were set to equal xreal and yreal, respectively, there is little point in showing the curves at 
   Generation 0 (1955).   Figures 6.4,  6.9 and 6.14 are all drawn to start at 1960 

;
;

;
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   11→ 0 @ 3.5% which ties with  1997   

   11→ 1 @ 3.9% which ties with  1960 1963 1967 1997    

   11→ 1 @ 4.4%  which ties with  1958  1971 1974 1976 1992 1997  

   14 → 4 @ 4.9% which ties with  1958 1976  1982 1988 1992     

   15→ 2 @ 5.2%  which ties with  1958 1976 1982 1988 1992    

   14→ 1 @ 5.4% which ties with 1958 1976 1982 1988           

   13→ 0 @ 5.7%  which ties with 1958 1976 1982                  

   12→ 0 @ 6.8% which ties with   1956     
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Figure 6.4   Prediction plot. GA-16. The number of minuses of a - c in successive iteration steps. 
The index numbers show where sharp drops occur 
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Figure 6.5   defexp% plot.  The defexp% of the two sides, and their average 
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Corresponding historical events were as follows: 

a. 1956 Start of the Enosis movement for Union with Greece, led by Archbishop 
Makarios and General Grivas. At this stage, Enosis was aimed against the British.  
Makarios was deported in 1957 

b. 1958    Makarios’s proposal (from exile) that Cyprus should become an independent 
state seemed to please no-one, there was much inter-communal fighting, and both 
sides attacked British troops and their families.  Grivas’s deputy, Kyriakos Matsis, 
was killed   

c. 1960    Turkish Government overthrown in May by a military coup led by General 
Gemal G�rsel. Meanwhile Cyprus became independent in August under President 
Makarios.  A general state of unrest existed in the South-Eastern Mediterranean 

d. 1963   Serious inter-communal fighting following withdrawal of all Turkish-Cypriot 
participation in the central Cyprus Government.   UNFICYP formed 

e.  1967    Military coup in Greece.    Colonel Papadopoulos is PM.   Concern in Turkey 

f. 1971    Grivas returns to Cyprus to turn  Enosis against the Makarios Government 

g.  1974   Grivas dies and Makarios purges all Enosis sympathisers.  Greece sends a 
force into Cyprus.  Makarios is deposed by the National Guard.  Turkey also 
invades, and the island is currently divided 

h.  1982  Rioting in Turkey over the powers of  President Evren. Greek proposal that  
Greek and Turkish troops be withdrawn from Cyprus caused inter-communal 
tensions 

i. 1992   Failure of (first round) UN talks to settle the Greek/Turkish differences over 
Cyprus 

j.  1994  Failure of (second round) UN talks advocating a single nationality for all 
Cypriots 

k.  1996  Greece and Turkey on the “verge of battle” with sizeable naval and air forces. 
The dispute was over the ownership of Imia, an uninhabited little island off the coast 
of Turkey, legally owned by Greece, but claimed by both   

l.  1997  Threatened deployment by Greece of a Soviet S300 air defence missile system 
to Cyprus.  Turkey said they would use force to prevent its deployment.   Situation 
saved by diplomacy 

Predictions for 1976 and 1988 are false-positives, i.e. instabilities were predicted but (as far 

as is known) did not materialise. There was no prediction for 1996, so we have one false-

negative. 

Table 6.1  Truth-table:  Greece/Turkey instabilities 
  occurred? 

  yes no 

 
yes 

 
11 

 
2 

pr
ed

ic
te

d?
 

 
no 

 
1 
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6.4     India versus Pakistan, 1955 to 2000  

Here we examine the India/Pakistan conflict and use (as before) the two-nation version of 

Mayer-Kress’s discretised Richardson equations, namely 

                                         xt+1 =   xt + �k1,1(xs − xt) +  k1,2 yt�(xm − xt)                                  . 

                                        yt+1 =   yt + �k2,2(ys − yt) +  k2,1 xt�(ym  −  yt) .                       (6.5)  

Nation X is India, Nation Y is Pakistan. 

There have been several major wars between India and Pakistan since partition in 1947 as 

the two countries squabble over Kashmir.  Appendix 6A.2 gives the data.   
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Figure 6.6  IMF plot.   Data from Appendix 6A.2  

6.4.1  The Model 

Using a modelling GA, GA-15, derived from GA-6, initial curves were obtained by mani-

pulating the evaluation equations Eqs(6.5) (see Section 5.4.2, steps 1-5), namely 

                  xt+1 =   xt + (-0.158 xt  k1,1  /50 +  yt  k1,2 /65 ) GX  / 1710                               .  

                  yt+1 =   yt  + (-0.49 yt  k2,2  /38 +  xt k2,1 /65 ) GY  / 7001                         (6.6) 

yielding the starter-values k1,1 = 59,  k2,2 = 12,  k1,2 = 32,  k2,1 = 9 (to be expressed simply as 

59, 12, 32, 9). 

As in Section 6.3.1, we use the ffn given by Eq(6.3);  Cao et al.’s norm was then reduced 

from 998 to 623, at which point the rate-factors had become 96, 44, 23, 2.   The output of  

the modelling GA, GA-15, after reducing the norm, is shown in Figure 6.7. 

As in the case of Greece/Turkey,  we use the evaluation equations of the prediction GA, 

Eqs(6.7), to obtain xt+1 and yt+1, etc (collectively denoted by xcalc and ycalc) as a straight-

forward  arithmetical exercise;   xreal  and  yreal can  then be compared with  xcalc  and  ycalc . 
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Figure 6.7  The model.  GA-15, using Eqs(6.6).  The curves follow the IMF plot  

(Figure 6.6) reasonably well  

To initiate the calculation  we use only x0(real) and y0(real). The calculated and the real 

curves are plotted alongside each other in Figure 6.8 and show quite a good match.  Bearing 

in mind that the calculated values are cascaded, i.e. the only common points between 

calculated and real values are  x0 and y0, it is remarkable that the values in year 2000 are so 

close together.   This is an indication that 96, 44, 23, 2 are  appropriate values for the four 

rate-factors. 
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Figure 6.8   Comparing real with predicted values of xt and yt ;  using the prediction GA to verify 

that the appropriate rate-factors have been carried forward from the modelling GA    

6.4.2  The Prediction  

Armed with refined starter-values for the rate-factors (96, 44, 23, 2), we developed a 

prediction GA, GA-26, for India/Pakistan using the evaluation equations 

;

;

;

;
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    xt+1  =  xt +  �(k1,1 / 100) xt (xs / 100) +  (k1,2 / 100) yt��(xm−  xt ) /267�              . 

  yt+1 =   yt + �(k2,2  / 100) yt (ys / 100) +  (k2,1 / 100) xt��(ym  −  yt) /267��.        (6.7) 

Eqs(6.7) are derived from Eqs(6.5), see Section 5.5.  They are used to calculate the sign 

changes in the direction of curvature of the limit cycle, see Figure 6.9.     By Generation 39, 

the rate-factors had become 20, 39, 38, 2. 
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Figure 6.9   Prediction plot .  GA-26.  The number of minuses of a - c in successive iteration steps. 

The index numbers show where sharp drops occur 
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Figure 6.10  defexp% plot. The defexp% of the two sides, and their average  

Note from Figure 6.10 that the two defexp% curves intersect in mid-1998, shortly before the 

hostilities erupted into the smouldering warfare that continues to this day. 
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Results.  Below we list the average defexp% at which sharp drops occur in Figure 6.9 

together with the corresponding dates extracted from Figure 6.10.   Alongside are the years 

pertaining to relevant historical events.  Sharp drops occurred for the eleven index numbers 

shown as follows: 

 15→ 1 @ 2.8% which ties with   1960    

 14→ 2 @ 3.6% which ties with 1965   1969  

 15→ 2 @ 4.0%  which ties with 1965 1967 1971 . 

 14→ 4 @ 4.6% which ties with  1965 1967 1971  1975 1983 1992 

 13→ 3 @ 5.5% which ties with  1987 1992 

 15→ 2 @ 6.5% which ties with  1994  

 14→ 3 @ 8.1% which ties with 1995  

15→ 0 @ 9.2% which ties with  1996

13→ 3 @ 10.2% which ties with 1998 

 15→ 2 @ 10.7% which ties with 1999  

14→ 3 @ 11.6% which ties with 2000  

Corresponding historical events were as follows: 

a. 1960 River Indus Treaty 

b. 1965 Full scale war 

c. 1969 Unrest on both sides, martial law declared in Pakistan 

d. 1971 The ‘separation war’  

e. 1975 India diverted the waters of the River Jhelen.  Tension defused by diplomatic 
action 

f. 1983 Calls for the creation of a separate Sikh state. A massacre in Amritsar.  
Numerous deaths in Sindh Province 

g. 1987 The Pathans  riot in Karachi;  India blamed 

h. 1992 An Indian flag hoisted in Srinagar (the Kashmiri capital) caused rioting.  A 
right-wing Hindu party stormed the joint mosque/temple complex at Ayodha, 
destroying the mosque  

i. 1994 Islamic condemnation of India for terrorism 

j. 1995 India foments riots over Shari’a enforcement 

k. 1996 No war 

l. 1997 No war, but a very  critical report from the UN Human Development Centre 

m. 1998 Both India and Pakistan hold nuclear tests 

n. 1999 Open hostilities start  

o. 2000 One inflammatory speech causes widespread unrest and nearly starts a full-
scale war 
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The prediction for 1996 was a false-positive, i.e. an instability was predicted but (as far as is 

known) did not materialise. On the other hand, Gilbert [2000] does not record any military 

activity on the sub-continent in the spring of 1997, but he does say that at the beginning of 

May 1997 the UN Human Development Programme called worldwide attention to a report 

from the UN Human Development Centre at Mahbub-ul-Haq in Pakistan to the effect that 

the per capita income of South Asia had for the first time fallen behind that of sub-Saharan 

Africa, making it “the poorest, most illiterate and malnourished region on earth”.   The 

report firmly put the blame on arms expenditure, first by India, with the world’s highest 

arms import bill and 142nd in terms of per capita income, and second by Pakistan, with the 

tenth largest arms import bill and 119th in the income table.  In the event, there was no 

India/Pakistan war in the summer of 1997.   A sharp drop does not have to result in an 

outbreak of war (see, for instance, 1975 or 1994), but it is more likely than not. 

Table 6.2  Truth-table : India/Pakistan instabilities 
  occurred? 

  yes no 

 
yes 

 
14 
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no 

 
0 

 
 

6.5    The Middle East, 1955 to 2000  

We use Mayer-Kress’s discretised three-nation variant of Richardson’s equations, namely 

xt+1  =   xt  +  �k1,1 (xs − xt) +  k2,3 (yt+ zt)� (xm − xt)                              . 

yt+1   =   yt  +  �k2,2(ys − yt)  +  k1,3 (xt − zt)� (ym – yt)                              . 

zt+1  =   zt   +  �k3,3(zs − zt)  +  k1,2 (xt − yt)� (zm − zt)   ,                   (6.8) 

where 
• xt , yt and zt are the expenditures of Israel (Nation X), Egypt (Nation Y) and Syria 

(Nation Z) on arms for the current year.      

• xs, ys and zs are the intrinsic arms expenditures (how much each country spends on 

defence irrespective of competitive spending by its neighbours).  These figures are not 

published by the IMF;  here we use the UK’s 0.78xt   as an approximation for xs. 

• The terms (yt + zt) , (xt − zt) and (xt − yt) are the model’s method of denoting the external 

threat from adversaries for the nations  X, Y and Z, respectively.    

• xm , ym and zm  represent, respectively, the expenditure authorised by the budgets of 

Nations X, Y and Z to be spent on arms. During an arms race  xm , ym  and zm   are not 

necessarily equal to   xt ,  yt  and zt ,   respectively. 
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6.5.1   Fitness Functions :  Three-nation Scenario 

When ffn’s were discussed in Section 2.9, it was said that different criteria applied to the 

three-nation case. After calculating the three evaluation�equations for xt , yt and zt we need to 

know which one of Nations X, Y or Z is dominant at the time, i.e. which one of xt , yt or zt is 

numerically the biggest.     Let F be the risk of war.   If we drop the suffix t, then 

 F  =��x −  (y + z)      or       F  =� y −  (x – z)     or      F  =  �z −  (x – y) ,              (6.9)                         

depending on whether Nation X, Y or Z is temporarily dominant.  (In absolute terms, all 

three expressions are identical). 

As before, we improve the model by reducing Cao et al.’s norm;  the ffn we use is given by 

fitness  = ( ) ( ) ( )222
realcalcrealcalcrealcalc zzyyxx −+−+−   .                  (6.10)             

The IMF plot.   Appendix 6A.3 presents the data.  As before, all the IMF figures are 

converted into billions of US dollars (using the conversion rate applicable at the time) as a 

precaution against distortion by the effects of inflation [SIPRI, 1982].   The IMF plot is 

given in Figure 6.11. 

(We have not mentioned Lebanon and Jordan.  At one stage we did include their figures, but 

they made little difference to those of the three big players and so were discarded).    
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Figure 6.11  IMF plot.  Data from Appendix  6A.3 

6.5.2   The Model 

Using a modelling GA, GA-17, initial curves were developed by manipulating the evalua-

tion equations Eqs(6.8) (see Section 5.4.2, steps 1-5), namely 
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xt+1  =  xt +  �−0.22 xt  k1,1 /22 +  (yt + zt) k2,3  /11��GX / 3500                            . 

yt+1 =  yt +  �−0.22 yt k2,2 /42 + (xt  –  zt) k1,3  /20��GY / 3800                            . 

zt+1 =  zt +  �−0.22 zt  k3,3 /19 +  (xt –  yt) k1, 2 /19��GZ / 3050                   (6.11) 

yielding the starter-values k1,1 = 720,  k2,2 = 220,  k3,3 = 29,  k2,3 = 50,  k1,3 = 12 and k1,2 = 11  

(expressed simply as 720, 220, 29, 50, 12, 11).   By adjusting  the values of the rate-factors 

to 714, 226, 31, 50, 12, 11  Cao et al.’s norm was reduced from 225 to 138.  The output of 

GA-17 after the reduction of the norm is shown in Figure 6.12.  

 
Figure 6.12 The model. GA-17, using Eqs(6.11). The curves mimic the IMF plot (Figure 6.11) well   
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Figure 6.13   Comparing real with predicted values of xt , yt  and zt;  using the prediction GA to 

verify that the appropriate rate-factors have been carried forward from the modelling GA  

As in the case of Greece/Turkey and India/Pakistan,  we use the evaluation equations of the 

prediction GA, Eqs(6.12), to obtain xt+1,  yt+1 and zt+1, etc (collectively denoted by xcalc , ycalc 

;
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and zcalc) as an arithmetical exercise;   xreal , yreal  and zreal can then be compared with xcalc , 

ycalc and zcalc .  To initiate the calculation  we use only x0(real), y0 (real) and z0(real). The 

calculated and the real curves are plotted alongside each other in Figure 6.13 and show a 

very good match.  This is an indication that 714, 226, 31, 50, 12, 11 are appropriate values 

for the six rate-factors. 

6.5.3  The Prediction  

Armed with refined starter-values for the rate-factors, (714, 226, 31, 50, 12, 11), we 

developed a prediction GA, GA-4, for the Middle East using the evaluation equations 

                     xt+1  =   xt + ��k1,1(xs − xt)/1000 +  k2,3 (yt + zt)/1000�(xm− xt)                           . 

                      yt+1  =   yt  + ��k2,2(ys − yt)/1000  +  k1,3 (xt − zt)/1000�(ym – yt)                          .                         

.                    zt+1  =   zt  +  �k3,3(zs − zt)/1000  +  k1,2 (xt − yt)/1000�(zm − zt) .               (6.12)                        

Eqs(6.12) are derived from Eqs(6.8), see Section 5.5.  These equations will be used to 

calculate the sign changes in the direction of the curvature of the limit cycle for Figure 6.14, 

but before we do so we need to decide how to calculate the equivalent of a - c in the three-

nation case.   It was shown in Section 3.8  that, for  two nations X and Y,  a - c could be 

approximated by   k2,1 ym – k1,2 xm .   For three adversaries (Nations X, Y and Z) engaged in a 

two-sided conflict,  it was shown in Eq(3.17) that we could approximate a - c by 

                                 k1,3 ym − (k2,3 xm  −  k1,2 zm)  .                                        (6.13)   

We thus use Eq(6.13) in  plotting Figure 6.14.   

The Middle East;  signs of the limit cycle
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Figure 6.14  Prediction plot.  GA-4. The number of minuses of a - c in successive iteration steps.  
The index numbers show where sharp drops occur   

;
;



 116

 
The Middle East;  percentage defence expenditures, 1955 to 2000
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Figure 6.15  defexp% plot.   The defexp% curves of the three sides, and their average 

Results.  Below we list the average defexp% at which sharp drops occur in Figure 6.14, 

together with the corresponding dates extracted from Figure 6.15. Alongside are the years 

pertaining to relevant historical events. Sharp drops occurred at an average defexp% for the 

seven index numbers shown as follows: 

 15→ 4 @ 6.7%  which ties with  1956     1991  

 15→ 2 @ 7.6%  which ties with  1967     1965 1967 1991 1999 

 13→ 0 @ 8.8%  which ties with  1962 1968 1971 1973 1987 

 14→ 1 @ 9.4%  which ties with  1962 1967 1973 1987 

 15→ 0 @ 10.0% which ties with 1962 1965 1973 1987 

14→ 2 @ 11.8% which ties with 1973 1987 

15→ 1 @ 13.0% which ties with 1973 1978 1982 1987 

Corresponding historical events were as follows: 

a. 1956    Suez    

b. 1967    The Six-day War    

c. 1968    Start of the year-long War of Attrition  

d. 1971    War on the Golan Heights  

e. 1973    The Yom Kippur war 

f. 1974 Repeated Israeli reprisal attacks on Lebanon   

g. 1978    Another Israeli reprisal attack on Lebanon 

h. 1982    Israel invaded Lebanon;  Sabra and Chatila massacres  
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i. 1987 Heavy fighting in Beirut between Amal and Druze militias.  2500 killed by 
Christian militias during siege of Palestinian refugee camps in Tyre and Sidon 

j. 1991    The Gulf War    

k. 1999 Start of current hostilities                 

Predictions for 1962 and 1965 are false-positives, i.e. instabilities were predicted but did 

not materialise. 

Table 6.3  Truth-table:  Middle East instabilities  
  occurred? 

  yes no 
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Figures 6.14 and 6.15 can be said to vindicate our approach and, by predicting the outset of 

most of the hostilities in the Middle East during the period 1955 to 2000, appear to have 

validated the model.  At least in this case, given statistical data from nations indulging in an 

arms race, it seems that it is possible to predict with reasonable accuracy when smouldering 

hostilities will erupt into open warfare. 

6.6   Predicting the Future 

We did make − but later abandoned − an attempt to predict the future by extending the trial 

range of the prediction plot and looking for more sharp drops.  We then put this information 

together with an extrapolated average defexp% curve in an effort for genuine prediction.  In 

fact, the difficult part of this operation was forecasting future average defexp%’s.   

However, we may reasonably say that there will potentially be conflicts when the following 

conditions are reached: 

Greece/Turkey .   When the average defexp% reaches 10.1%,  10.4%  and 10.6% 

India/Pakistan.     When the average defexp% reaches 12.9%,  13.1%  and 14.0%   

Note.  An extrapolation of Figure 6.10 (see the large-scale version at Appendix R1) shows 

that the average defexp% would appear to have reached 12.9% in late 2001. Open hostilities 

between India and Pakistan did indeed start again in November 2001. 

The Middle East.   When the average defexp% reaches 13.0%,  13.8%,  14.8%  and 15.1%. 
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6.7  The Effects of Noise 

As a further check on the validity of  our model we deliberately added noise to xs , ys and to 

xm , ym ,  xt ,  yt , (IMF figures)  at Generation 0,  in the three prediction GAs.   This was 

achieved by collecting all the Generation 0 data together in Matrices 1 and 2 in the normal 

way (see Chapter 4), scanning the data, and using a separate RNG 2 to select certain genes 

(with a probability pn%) to have noise added.   Genes so selected had their alleles doubled 

(how much they are physically altered, within reason, seems not to be critical).    We kept 

count of how many of the 600 or 900 genes3 were altered on each run. The process just 

described is very similar to that to be used for mutation later in the GAs , except that 

• We are not mutating the elements of a chromosome for GA purposes, but we are merely 

adding noise at a rate of pn% to the initialising genes.  Mutation comes later.    

• We introduce noise to whole genes, cf. Shannon’s ‘pulse trains’ [1949].  In contrast, the 

mutation process examines individual elements and selects them (or not) for mutation. 

Greece v. Turkey;  signs of the limit cycle with added noise
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Figure 6.16  Signs of the (Greece/Turkey) limit cycle with added noise4.  Compare with Figure 6.4 

We ran GA-16 and plotted the progress of the direction of the curvature of the limit cycle, 

previously Figure 6.4, using different rates of pn%.   Edited results are given in Figure 6.16.   

Up to a noise level of 0.3%, there was only one alteration in the alleles of the genes of 

Matrices 1 and 2, which  meant that there was virtually no change to  the original Figure 6.4  

for which  pn% = 0.   At  pn% = 0.4%, however, there was a marked change (three alter-

                                                 
2 The simple RNG used to introduce noise was of the “linear congruential” type, and was a separate user-declared function.  
  This was done to avoid fouling the sequence of the embedded ‘system’ RNG used so extensively in the various GAs 
3  6 genes (2-nation) or 9 genes (3-nation) x 100 population 
4 On the particular printer used, should lines coincide then red dominates black and green dominates both black and red 
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ations), although the overall shape and the sharp drops of Figure 6.4  were clearly recog-

nisable.   There was then no further change until pn% reached 1.0%, when there were five 

alterations,  and another change at pn% = 1.6%, whereupon the original shape was 

effectively lost, although the drops at an average  defexp% of 4.4%,  4.9%,  5.4%  and 5.7% 

(corresponding to indices , , , , respectively, of Figure 6.4) were still  recognisable. 

In the India/Pakistan case, the ‘quiet’ scenario (Figure 6.9) is shown in black in Figure 

6.17.   Here we run GA-26.  Noise up to 0.13% (which involved three alterations to the 

genes of Matrices 1 and 2) made no difference at all to the quiet scenario.  Noise between 

0.14% and 0.32% (four alterations) is shown in red while noise from 0.33%  upwards (five 

alterations) is shown in green. 

India v. Pakistan;  signs of the limit cycle with added noise
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Figure 6.17  Signs of the (India/Pakistan) limit cycle with added noise. Compare with Figure 6.9.  

A similar picture arises in the Middle East.  Here we run GA-4.   By adding 0.4% and 0.8% 

noise to the basic scheme of Figure 6.14 we arrive at Figure 6.18.  Up to 0.3% noise (one 

alteration), there was no change to the ‘quiet’ scenario of Figure 6.14.  Between 0.4% and 

0.7% (two alterations) there was a change portrayed in red in Figure 6.18. Above 0.8% (four 

alterations) there was another jump, which is pictured in green. 

In summary, the effects of increasing noise did not take place gradually but in quantum 

jumps depending on the number of alterations made while the data of Generation 0 in 

Matrices 1 and 2 was being scanned.   The India/Pakistan prediction is much more 

susceptible to noise than the other two, in that the first perceptible change occurred with 

only pn % = 0.14% added noise.   Both Greece/Turkey and the Middle East first changed 

with added noise at pn%  = 0.4%.   
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The Middle East;  signs of the limit cycle with added noise
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Figure 6.18 Signs of the (Middle East) limit cycle with added noise.  Compare with Figure 6.14 

6.8   Conclusions 

The almost continuous conflict in the Middle East from 1955 to 2000, the India/Pakistan 

wars of 1965, 1971 and 1998, and the armed dispute between Greece and Turkey over 

Cyprus and the Aegean in 1974 and 1997, all had very different scenarios.   In all three 

conflicts, however, the use of  Richardson’s equations in modelling and prediction GAs has 

meant that the timing of the various outbreaks of hostilities could have been predicted with 

considerable accuracy. 

In compiling Appendix 6A we made the initial mistake of using Gilbert’s magisterial 

History of the 20th Century 1952 – 2000 as the sole authority.   This left us with some 

unexplained sharp drops, such as the average defexp% of 4.6% in Figure 6.9 

(India/Pakistan), which from Figure 6.10 corresponds to both 1965 (the full scale war) and 

to 1975.  Reference to the Europa World Yearbook, which is more economics-based than 

Gilbert, shows that in 1975 India threatened to divert the waters of the River Jhelen (and, 

indeed, did so for quite a time) effectively making sizeable parts of Pakistan semi-arid.  It is 

not surprising that the Government in Islamabad was alarmed!   (At the risk of gross over-

simplification, it does seem that most wars arise over the ownership and use of land and 

natural resources such as water and oil).   

So much for predicting wars with hindsight, which is what we have largely done. Can we 

use these methods for genuine prediction, e.g. are there going to be wars between Greece 

and Turkey,  India and Pakistan, or the Middle East in, say, 2003/4?   We believe that we 

can,  provided and only provided that accurate, up-to-date data can be obtained so that 
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meaningful extrapolation is possible.  The cover sheet to Appendix 6A lists some of the 

problems of obtaining really up-to-date figures, and Section 6.7  has indicated the penalties 

of using noisy information.  Nevertheless in Section 6.6 we hazarded a guess as to specific 

conditions under which conflicts can be expected. 

In spite of the above, this chapter has shown that statistical figures taken from reference 

works published only annually result in reasonable predictions. Results would be better if 

accurate figures (e.g. from governmental military and economic intelligence sources) could 

be fed in on, say, a weekly basis but this requires resources well beyond the capability of a 

university researcher. 

Section 3.7 states “The evidence presented ... would suggest, therefore, that an unstable 

point in the Richardson equations is always prefaced by a change in the direction of 

curvature of the limit cycle, and that this is manifested  by a sudden and marked change in 

the sign of a – c,  from minus to plus, across the population.  The experimental evidence for 

saying this may be slender, but the theoretical argument is quite strong”.  While far from 

proving anything, this chapter has shown that the experimental evidence is not so slender 

after all. 

In conclusion we can say with confidence that in our context we have developed a GA-

based technique which can be used to anticipate impending conflicts. 

Appendix 6A lists statistical data from IMF, UN and other official sources.   Its preface 

discusses the particular problems of extracting data for the arms race application. 

�
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Appendix 6A 

STATISTICAL  DATA 
Appendix 6A.1:     Greece and Turkey  1955 to 2000 

Appendix 6A.2:   India and Pakistan   1955 to 2000. 

Appendix 6A.3:     The Middle East (Israel, Egypt and Syria) 1955 to 2000.    

Principal Sources   

[IMF Statistics; UN Statistical Yearbooks; The Statesman’s Year Books; Handbooks of the 

Stockholm International Peace Research Institute (SIPRI) 5;   Europa World Yearbooks]. 

Preface 

(1) Many techniques have been devised over the years to prepare a wide variety of datasets 

for use as the foundation of both predictive and inferential models. Collectively these 

techniques are now known as data mining [Pyle, 1999].   A clear statement of the 

problem is half the battle of mining data. It is (and points directly to) the solution 

needed. Defence statistics are not difficult to handle so the problem space does not need 

much exploration.  We do not, for instance, need pairwise ranking or other econometric 

techniques to tell us how to calculate percentage defence expenditures.  Similarly, the 

solution space permits a precise, real-world, implementable solution.   As in all real-

world problems, we expect the target to move  as the study progresses.  We have already 

said (Section 3.2) that nothing in Richardson’s equations is constant, so we should not 

expect the answers to be. 

(2) A clear distinction has to be drawn between the datasets used for training or testing  and  

the execution dataset, even though they are all drawn ultimately from the same ‘pool’ of 

information.  It so happens that Chapter 5, dealing among other things with the 

India/Pakistan ‘snapshot’, was written in 1999. Today, however, we could use that 

information as a training dataset to determine whether by its use our model was able to 

predict the near-war of September 2000, despite the fact that Appendix 6A.2 lists all (or, 

more precisely, a representative sample of) the India/Pakistan data seamlessly from 

1955 to 2001 as a single ‘pool’ of information. 

(3) It is recognised that in publishing defence statistics, governments are often ‘economical 

with the truth’ in the interests of their own security.  Nevertheless, it would not be 

prudent for them to falsify defence costs too much because the international bankers 

who make loans  might consider that a nation was spending too little on defence in the 

                                                 
5 SIPRI figures are quoted but are not actually used in any calculations.  SIPRI defence statistics appear to be generally 
higher than those from other sources, possibly due to their evident political agenda 
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face of an evident threat, and therefore was not a good investment.   In any case, when 

viewed year on year, such tables do indicate trends.   

(4) All the figures in these appendices have been converted to billions of US dollars, using 

the conversion rates from local currency applicable during the month when the figures 

were published.   As the US dollar has held  steady over the past few years, this currency 

conversion is designed to take account of local inflation which has sometimes, as in the 

case of Turkey, been extreme.  However, even if the dollar does gently increase in value, 

it is a firm baseline for other currencies.   Hence like can  be compared with like.   

(5) The ‘ten golden rules’ for exploring data [Pyle, 1999] have been followed as closely as 

possible.   In particular, the problem drives the model, not vice versa.   No formal checks 

were made on data variability, deviation or confidence as we assumed (with some justi-

fication)6  that the IMF and UN Statistics Departments would have done this already. 

(6) Whereas all the authorities are unanimous about defence statistics before about 1998,  

getting more up-to-date information is much more difficult: 

• The IMF updates its latest figures each year (e.g. the 2001 Annual IMF Report, the 

2000 Annual IMF Report, and the 1999 Annual IMF Report can give different figures 

for the same fiscal parameter).  For example, the data used to plot Figure 5.77 was 

taken from the 1999 IMF Report, whereas that for Figure 6.10 came from the 2001  

Report.  Over the period 1993 to 1999, the two sets of figures are materially different.  

• The IMF and the United Nations Reports do not always agree with each other. 

• Some of the more recent figures are not even consistent internally; for example, 

figures given for population and for GDP per head, for defence expenditure, and for 

defexp% do not always tally arithmetically. Where there are gaps or obvious 

inconsistencies, the data probably come from different sources. The only uncert-

ainties in the model lie in the most recent years, e.g. in 1999, 2000, 2001 and 2002.   

Prediction of conflicts for the immediate future (e.g. for 2003 or 2004) based on the 

published information open to us will necessarily have low confidence.   We believe, 

however, that we can justifiably claim  proof of concept.                              

                                                 
6 Footnotes to the IMF statistics make reference to Normalised Root Mean Square Errors, Correlation Coefficients, Mean 
Relative Errors, Mean Absolute Errors and Mean Square Errors, leading us to infer that they had applied a number of 
corrections to their raw data 
71999 IMF data:1993  1994  1995  1996  1997  1998  1999                                1993   1994   1995    1996  1997   1998  1999 
India GDP           219    195    204    213   202     202    190   Pakistan GDP     38.79   35.25  33.69   33.97 31.56  29.37 29.03 
India  defexp       4.2    3.57   3.68   4.41  5.59  13.51 22.61   Pakistan defexp    1.79    2.24     2.32     2.59   3.19    3.37     3.6 
India defexp%     1.9     1.8     1.8      2.1    2.7     6.7    11.9   Pakistan defexp%   4.6      6.3      6.8       7.6    10.1   11.5    12.4 
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GREECE versus TURKEY, 1955 to 2000 
                  Appendix 6A 1 
STATISTICAL INFORMATION GREECE        Sheet 1 
Year GREECE GREECE GREECE GREECE GREECE GREECE GREECE Year 

 GDP conversion GDP Defexp Defexp %defexp %defexp  
 Bn-drach drach = $1 $Bn Bn-drach $Bn  SIPRI  

1955 56.3 30.00 1.88 8.49 0.28 6.19  1955 
56 64 30.00 2.13 9.33 0.31 5.73  56 
57 71 30.00 2.37 8.60 0.29 5.77  57 
58 79 30.00 2.63 8.16 0.27 5.60  58 
59 82 30.00 2.73 6.00 0.20 5.52  59 

1960 88 30.00 2.93 4.86 0.16 4.95  1960 
61 100 30.00 3.33 4.95 0.17 4.97  61 
62 105 30.00 3.50 5.22 0.17 4.78  62 
63 116 30.00 3.87 5.55 0.19 4.20  63 
64 130 30.00 4.33 5.46 0.18 3.59  64 
65 167 30.00 5.57 6.00 0.20 3.69  65 
66 195 30.00 6.50 7.20 0.24 4.30  66 
67 208 30.00 6.93 8.95 0.30 4.59  67 
68 226 30.00 7.53 10.37 0.35 4.83  68 
69 258 30.00 8.60 12.46 0.42 4.75  69 

1970 299 30.00 9.97 14.21 0.47 4.75 4.80 1970 
71 330 30.00 11.00 15.48 0.52 4.69 4.70 71 
72 378 30.00 12.60 17.21 0.57 4.55 4.60 72 
73 484 29.70 16.30 19.87 0.67 4.10 4.10 73 
74 564 30.00 18.80 24.13 0.80 4.28 4.30 74 
75 672 35.60 18.88 43.92 1.23 6.54 6.50 75 
76 825 37.03 22.28 52.67 1.42 6.38 6.40 76 
77 964 35.50 27.15 66.58 1.88 6.91 6.90 77 
78 1161 36.01 32.24 77.60 2.15 6.68 6.70 78 
79 1429 38.28 37.33 82.30 2.15 5.76 5.80 79 

1980 1711 46.54 36.76 90.00 1.93 5.26 5.70 1980 
81 2050 57.53 35.63 142.80 2.48 6.97 7.00 81 
82 2574 70.57 36.47 176.20 2.50 6.85 6.80 82 
83 3079 98.67 31.21 193.34 1.96 6.28 6.30 83 
84 3805 128.48 29.62 271.90 2.12 7.15 7.10 84 
85 4617 147.76 31.25 321.98 2.18 6.97 7.00 85 
86 5515 138.76 39.74 338.00 2.44 6.13 6.20 86 
87 6259 125.93 49.70 393.00 3.12 6.28 6.30 87 
88 7526 148.10 50.82 472.00 3.19 6.27 6.40 88 
89 8777 157.79 55.62 503.00 3.19 5.73 6.80 89 

1990 10455 157.63 66.33 597.00 3.79 5.71  1990 
91 12898 175.28 73.59  3.63 4.93  91 
92 19832 214.58 92.42  3.39 3.67  92 
93 21135 249.22 84.80  3.21 3.79  93 
94 23755 240.10 98.94  3.02 3.05  94 
95 27235 237.04 114.90  2.80 2.44  95 
96 29835 247.02 120.78  3.84 3.18  96 
97 33021 282.61 116.84  5.55 4.75  97 
98 35910 282.57 127.08  5.72 4.50  98 

1999  328.44      1999 
2000  337.90      2000 
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GREECE versus TURKEY, 1955 to 2000 
                 Appendix 6A 1 
STATISTICAL INFORMATION TURKEY       Sheet 2 
Year TURKEY TURKEY TURKEY TURKEY TURKEY TURKEY TURKEY GRE/TUR  

 GDP conversion GDP Defexp Defexp %defexp %defexp average 
 Bn-lira Lira = $1 $Bn Bn-lira $Bn  SIPRI defexp% 

1955 12 2.80 4.29 0.31 0.11 7.58  6.89 
56 15 2.80 5.36 0.33 0.12 6.34  6.04 
57 27 2.80 9.64 0.45 0.16 3.63  4.70 
58 35 4.90 7.14 0.95 0.19 2.74  4.17 
59 42 9.00 4.67 1.12 0.12 2.29  3.91 

1960 49 9.04 5.42 1.25 0.14 2.35  3.65 
61 54 9.04 5.97 1.28 0.14 2.30  3.64 
62 58 9.04 6.42 2.11 0.23 3.64  4.21 
63 62 9.04 6.86 2.80 0.31 4.52  4.36 
64 71 9.08 7.82 2.91 0.32 4.10  3.85 
65 80 9.08 8.81 3.09 0.34 3.86  3.78 
66 93 9.08 10.24 3.48 0.38 3.74  4.02 
67 103 9.08 11.34 3.87 0.43 3.76  4.17 
68 114 9.08 12.56 4.72 0.52 4.14  4.48 
69 125 9.08 13.77 4.27 0.47 3.42  4.08 

1970 145 12.90 12.73 7.69 0.51 4.01 4.30 4.38 
71 187 14.20 13.17 8.65 0.60 4.53 4.70 4.61 
72 232 14.20 16.34 9.96 0.70 4.29 4.40 4.42 
73 295 14.20 20.77 12.19 0.86 4.13 4.30 4.12 
74 410 14.00 29.29 15.83 1.13 3.86 4.10 4.07 
75 519 15.20 34.14 30.20 1.99 5.82 6.00 6.18 
76 664 16.70 39.76 40.69 2.44 6.13 6.40 6.26 
77 863 19.40 44.48 49.79 2.57 5.77 6.00 6.34 
78 1275 25.30 50.40 66.24 2.62 5.20 5.50 5.94 
79 2156 35.40 60.90 94.03 2.66 4.36 4.90 5.06 

1980 4328 90.10 48.04 169.47 1.88 3.92 4.30 4.59 
81 6414 133.60 48.01 313.00 2.34 4.88 4.90 5.92 
82 8620 186.80 46.15 448.00 2.40 5.20 5.20 6.02 
83 11532 282.80 40.78 557.00 1.97 4.83 4.80 5.55 
84 18212 444.70 40.95 803.00 1.81 4.41 4.40 5.78 
85 27552 576.90 47.76 1235.00 2.14 4.48 4.50 5.73 
86 39228 757.80 51.77 1868.00 2.47 4.76 4.80 5.45 
87 58299 1021.00 57.10 2477.00 2.43 4.25 4.20 5.26 
88 100826 1815.00 55.55 3789.00 2.09 3.76 3.80 5.01 
89 167770 2314.00 72.50 6683.00 2.89 3.98 3.90 4.86 

1990 282800 2390.00 118.33 13136.00 5.50 4.64 3.90 5.18 
91   129.73  6.64 5.12  5.03 
92 1129  141.02  6.15 4.36  4.01 
93 2062  152.70  6.52 4.27  4.03 
94 4026  161.95  5.49 3.39  3.22 
95 7891 5965.00 171.30  6.39 3.73  3.08 
96 14772 10777.00 182.70  7.29 3.99  3.58 
97 28836 20560.00 194.50  8.17 4.20  4.48 
98 51625 31446.00 186.10  8.21 4.41  4.46 

1999  54140.00       
2000  55923.00       
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INDIA versus PAKISTAN, 1955 to 2000 
                  Appendix 6A 2 

STATISTICAL INFORMATION   INDIA        Sheet 1 
Year INDIA INDIA INDIA INDIA INDIA INDIA INDIA Year 

 GDP conversion GDP Defexp Defexp %defexp %defexp  
 Bn-rupees  I rup = $1 $Bn Bn-rupees $Bn  SIPRI  

1955        1955 
56 131.00 4.80 27.29 1.92 0.40 1.46  56 
57 133.30 4.77 27.95 2.17 0.46 1.63  57 
58 136.00 4.78 28.45 2.83 0.59 2.08  58 
59 140.00 4.78 29.29 2.79 0.58 1.99  59 

1960 153.00 4.77 32.08 2.67 0.56 1.75  1960 
61 161.00 4.77 33.75 2.81 0.59 1.74  61 
62 168.00 4.77 35.22 3.28 0.69 1.95  62 
63 198.00 4.78 41.42 4.74 0.99 2.39  63 
64 220.90 4.79 46.12 8.16 1.70 3.69  64 
65 261.5 4.77 54.82 8.65 1.81 3.31 3.60 65 
66 295.7 7.58 39.03 8.83 1.17 2.99  66 
67 346.1 7.55 45.86 9.09 1.20 2.63  67 
68 366.7 7.63 48.07 9.68 1.27 2.64  68 
69 403.9 7.56 53.43 10.33 1.37 2.56  69 

1970 431.6 7.58 56.97 11.75 1.55 2.72 3.00 1970 
71 462.6 7.28 63.55 14.40 1.98 3.11 3.40 71 
72 510.1 8.08 63.13 16.20 2.00 3.18 3.50 72 
73 620.1 8.20 75.59 16.74 2.04 2.70 3.00 73 
74 732.4 8.15 89.87 19.04 2.34 2.60 3.00 74 
75 787.6 8.94 88.13 22.82 2.55 2.90 3.30 75 
76 848.9 8.88 95.59 25.40 2.86 2.99 3.40 76 
77 960.7 8.21 117.03 27.04 3.29 2.81 3.20 77 
78 1042.0 8.19 127.26 28.22 3.45 2.71 3.10 78 
79 1144.0 7.91 144.68 29.99 3.79 2.62 3.05 79 

1980 1360.0 7.93 171.50 35.18 4.44 2.59 3.00 1980 
81 1579.0 9.10 173.54 45.37 4.99 2.87 3.00 81 
82 1781.0 9.63 184.87 53.19 5.52 2.99 3.10 82 
83 2075.0 10.49 197.75 61.90 5.90 2.98 3.10 83 
84 2313.0 12.45 185.77 70.80 5.69 3.06 3.20 84 
85 2619.0 12.17 215.27 83.65 6.88 3.19 3.30 85 
86 2920.0 13.12 222.53 105.29 8.02 3.61 3.70 86 
87 3326.0 12.88 258.29 124.90 9.70 3.76 3.90 87 
88 3949.0 14.95 264.16 129.80 8.68 3.29 5.80 88 
89 4506.0 17.04 264.51 142.00 8.34 3.15 7.10 89 

1990 5355.0 18.07 296.30 154.38 8.54 2.88 5.10 1990 
91 6168.0 25.83 238.76 134.34 5.20 2.18  91 
92 5737.0 26.20 218.97 110.04 4.20 3.82  92 
93 8769.0 31.38 279.45 112.03 3.57 4.73  93 
94 10378.0 31.38 330.72 146.86 4.68 6.92  94 
95 12179.0 35.18 346.19 190.32 5.41 8.21  95 
96 14098.0 35.93 392.37 223.48 6.22 9.81  96 
97 15635.0 39.28 398.04 293.42 7.47 11.32  97 
98  42.48   8.69 12.10  98 

1999  43.49   9.80 13.00  1999 
2000  43.64    13.70  2000 
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INDIA versus PAKISTAN, 1955 to 2000 
                 Appendix 6A 2 

STATISTICAL INFORMATION PAKISTAN       Sheet 2 

Year PAKISTAN PAKISTAN PAKISTAN PAKISTAN PAKISTAN PAKISTAN PAKISTAN IND/PAK 

 GDP conversion GDP Defexp Defexp %defexp %defexp average 

 Bn-rupees P rup = $1 $Bn Bn-rupees $Bn  SIPRI defexp% 

1955         
56 26.30 4.80 5.48 0.77 0.16 2.92  2.19 
57 26.90 4.77 5.64 0.78 0.16 2.90  2.27 
58 28.00 4.78 5.86 0.70 0.15 2.49  2.28 
59 29.70 4.79 6.20 0.99 0.21 3.35  2.67 

1960 30.34 4.77 6.36 1.00 0.21 3.29  2.52 
61 31.60 4.77 6.62 1.24 0.26 3.92  2.83 
62 32.40 4.78 6.78 1.47 0.31 4.54  3.24 
63 33.75 4.79 7.05 1.72 0.36 5.10  3.74 
64 34.43 4.80 7.17 1.98 0.41 5.75  4.72 
65 35.25 4.78 7.37 2.37 0.50 6.72  5.02 
66 37.66 4.81 7.83 2.86 0.59 7.58  5.28 
67 40.12 4.77 8.41 2.29 0.48 5.72  4.17 
68 44.16 4.81 9.18 2.19 0.45 4.95  3.80 
69 47.75 4.79 9.97 2.45 0.51 5.13  3.84 

1970 47.75 11.03 4.33 2.98 0.27 6.23 6.10 4.48 
71 50.49 9.90 5.10 3.46 0.35 6.86 6.60 4.99 
72 54.06 9.90 5.46 4.08 0.41 7.55 6.80 5.36 
73 66.87 9.90 6.75 4.70 0.47 7.02 6.10 4.86 
74 86.85 9.90 8.77 5.93 0.60 6.83 6.00 4.72 
75 111.80 9.90 11.29 7.21 0.73 6.45 5.90 4.67 
76 130.36 9.90 13.17 7.75 0.78 5.95 5.50 4.47 
77 149.75 9.90 15.13 8.70 0.88 5.81 5.40 4.31 
78 176.33 9.90 17.81 9.82 0.99 5.57 5.30 4.14 
79 194.92 9.90 19.69 10.89 1.10 5.59 5.10 4.10 

1980 234.18 9.90 23.65 13.79 1.39 5.89 5.70 4.24 
81 278.20 9.90 28.10 17.73 1.79 6.37 5.90 4.62 
82 324.16 12.84 25.25 22.64 1.76 6.98 6.60 4.98 
83 364.39 13.50 26.99 26.92 1.99 7.39 6.90 5.18 
84 419.80 15.36 27.33 30.69 2.00 7.31 6.80 5.19 
85 472.16 15.98 29.55 35.11 2.20 7.44 6.80 5.32 
86 514.53 17.25 29.83 38.86 2.25 7.55 7.10 5.58 
87 572.48 17.45 32.81 44.00 2.52 7.68 7.10 5.72 
88 675.39 18.65 36.21 48.60 2.61 7.20 6.70 5.24 
89 769.75 21.42 35.94 54.48 2.54 7.08 6.70 5.11 

1990 862.45 21.90 39.38 61.46 2.81 7.13 7.10 5.00 
91 1020.00 24.80 41.13 73.90 2.98 7.25  4.71 
92 1190.32 26.32 45.22 76.33 2.90 7.48  5.65 
93 1341.00 30.05 44.63 88.03 2.93 8.31  6.52 
94 1573.00 30.72 51.20 98.62 3.21 9.53  8.22 
95 1882.00 34.17 55.09 112.74 3.30 9.71  8.96 
96 2165.00 40.02 54.10 124.86 3.12 9.89  9.85 
97 2404.00 43.94 54.71 137.53 3.13 10.66  10.99 
98 2759.00 45.89 60.12 160.62 3.50 10.82  11.46 

1999   63.29 222.14 3.50 11.30  12.15 
2000      11.67  12.69 
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THE MIDDLE EAST, 1954 to 1960 
                              Appendix 6A 3 

STATISTICAL INFORMATION MIDDLE EAST          Sheet 1 
         
 Year 1954 1955 1956 1957 1958 1959 1960 

Israel GDP Shekel bn 1.17 1.53 1.76 2.44 2.77 3.10 3.82 
conversion sh to $1 1.80 1.80 1.80 1.80 1.80 1.80 1.80 

GDP $bn 0.65 0.85 0.98 1.36 1.54 1.72 2.12 
Defexp Shekel bn 0.04 0.05 0.09 0.14 0.20 0.22 0.31 
Defexp $bn 0.02 0.03 0.05 0.08 0.11 0.12 0.17 

defexp% % 3.42 3.52 5.12 5.73 7.10 6.99 8.03 
         

Egypt GDP £E million 881 918 985 1018 1092 1262 1394 
conversion £E to $1 0.35 0.35 0.35 0.35 0.35 0.35 0.35 

GDP $bn 2.52 2.63 2.79 2.89 3.10 3.58 3.96 
Defexp £E bn 66 81.5 160.9 140 140 140 140 
Defexp $bn 0.19 0.23 0.46 0.40 0.40 0.40 0.40 

defexp% % 7.50 8.88 16.38 13.76 12.83 11.11 10.04 
         

Syria GDP £S million 1881 2078 2352 2514 2198 2266 2765 
conversion £S to $1 3.50 3.56 3.58 3.58 3.58 3.58 3.58 

GDP $bn 0.54 0.58 0.66 0.70 0.61 0.63 0.77 
Defexp £S bn 51 66 81.5 160.9 140 140 140 
Defexp $bn 0.015 0.019 0.023 0.045 0.039 0.039 0.039 

defexp% % 2.71 3.18 3.47 6.40 6.37 6.18 5.06 
         

AVERAGE defexp% 4.54 5.19 8.32 8.63 8.77 8.09 7.71 
         
         
         
         
  1955 1956 1957 1958 1959 1960 1961 

Is defexp $bn 0.02 0.03 0.05 0.08 0.11 0.12 0.17 
Eg defexp $bn 0.19 0.23 0.46 0.40 0.40 0.40 0.40 
Sy defexp $bn 0.015 0.019 0.023 0.045 0.039 0.039 0.039 

         
         
  1955 1956 1957 1958 1959 1960 1961 

Is defexp% % 3.42 3.52 5.12 5.73 7.10 6.99 8.03 
Eg defexp% % 7.50 8.88 16.38 13.76 12.83 11.11 10.04 
Sy defexp% % 2.71 3.18 3.47 6.40 6.37 6.18 5.06 
Av defexp% % 4.54 5.19 8.32 8.63 8.77 8.09 7.71 

         
         

Signs of a - c       
GA-33app for ME        
av defexp% 65 66 67 68 69 70 71 72 

minuses 15 15 4 11 15 14 14 14 
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THE MIDDLE EAST, 1961 to 1967 

                Appendix 6A 3 
STATISTICAL INFORMATION MIDDLE EAST   Sheet 2 

         
 Year 1961 1962 1963 1964 1965 1966 1967 

Israel GDP Shekel bn 4.40 5.60 6.10 6.30 9.20 10.50 10.20 
conversion sh to $1 2.30 3.00 3.00 3.00 3.00 3.00 3.50 

GDP $bn 1.91 1.87 2.03 2.10 3.07 3.50 2.91 
Defexp Shekel bn 0.32 0.41 0.55 0.75 0.76 1.17 0.96 
Defexp $bn 0.14 0.14 0.18 0.25 0.25 0.39 0.27 

defexp% % 7.16 7.32 8.93 11.90 8.26 11.14 9.43 
         

Egypt GDP £E million 1469 1513 1685 2051 2403 2481 2533 
conversion £E to $1 0.35 0.43 0.43 0.43 0.43 0.43 0.43 

GDP $bn 4.17 3.48 3.88 4.35 4.38 4.70 5.04 
Defexp £E bn 234 239 261 261 233.45 185.1 215.7 
Defexp $bn 0.66 0.55 0.60 0.60 0.47 0.43 0.50 

defexp% % 15.94 15.82 15.50 13.82 10.80 9.07 9.85 
         

Syria GDP £S million 3396 3712 3980 4596 4614 4698 5437 
conversion £S to $1 3.58 3.58 3.58 3.82 3.82 3.82 3.82 

GDP $bn 0.95 1.04 1.11 1.20 0.97 1.09 1.32 
Defexp £S bn 234 239 261 261 310 365 587 
Defexp $bn 0.065 0.067 0.073 0.068 0.077 0.083 0.096 

defexp% % 6.89 6.44 6.56 5.68 7.91 7.64 7.30 
         

AVERAGE defexp% 10.00 9.86 10.33 10.47 8.99 9.28 8.86 
         
         
         
         
  1962 1963 1964 1965 1966 1967 1968 

Is defexp $bn 0.14 0.14 0.18 0.25 0.25 0.39 0.27 
Eg defexp $bn 0.66 0.55 0.60 0.60 0.47 0.43 0.50 
Sy defexp $bn 0.065 0.067 0.073 0.068 0.077 0.083 0.096 

         
         
  1962 1963 1964 1965 1966 1967 1968 

Is defexp% % 7.16 7.32 8.93 11.90 8.26 11.14 9.43 
Eg defexp% % 15.94 15.82 15.50 13.82 10.80 9.07 9.85 
Sy defexp% % 6.89 6.44 6.56 5.68 7.91 7.64 7.30 
Av defexp% % 10.00 9.86 10.33 10.47 8.99 9.28 8.86 

         
         

Signs of a - c       
GA-33app for ME        
av defexp%  73 74 75 76 77 78 79 

minuses  10 11 15 2 1 2 2 
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THE MIDDLE EAST, 1968 to 1974 

      Appendix 6A 3 
STATISTICAL INFORMATION MIDDLE EAST   Sheet 3 

         
 Year 1968 1969 1970 1971 1972 1973 1974 

Israel GDP Shekel bn 1.06 1.61 1.87 2.46 3.20 4.18 5.60 
conversion sh to $1 3.50 3.50 3.50 4.20 4.20 4.20 6.00 

GDP $bn 3.85 4.57 5.37 5.57 7.17 9.25 0.93 
Defexp Shekel bn 0.85 0.98 1.34 1.91 1.94 1.98 1.53 
Defexp $bn 0.28 0.40 0.45 0.66 0.66 1.02 0.26 

defexp% % 7.30 8.64 8.45 11.83 9.19 10.97 27.36 
         

Egypt GDP £E million 2696 2971 3146 3337 3417 3663 4190 
conversion £E to $1 0.43 0.43 0.43 0.43 0.43 0.39 0.39 

GDP $bn 5.69 6.20 6.83 7.37 7.86 8.43 10.72 
Defexp £E bn 220.5 229.7 486.3 772.5 1289 2431 3175 
Defexp $bn 0.51 0.53 0.57 0.69 0.70 0.79 0.81 

defexp% % 8.92 8.52 8.33 9.37 8.96 9.32 7.56 
         

Syria GDP £S million 5514 5947 6433 7562 8891 9404 14870 
conversion £S to $1 3.82 3.82 3.82 3.82 3.82 3.80 3.70 

GDP $bn 1.57 1.75 1.78 2.10 2.43 3.47 4.02 
Defexp £S bn 600 624 676 793 1485 1682 2174 
Defexp $bn 0.154 0.157 0.161 0.164 0.208 0.389 0.588 

defexp% % 9.81 8.98 9.04 7.82 8.57 11.21 14.62 
         

AVERAGE defexp% 8.67 8.71 8.61 9.67 8.91 10.50 16.51 
         
         
         
         
  1969 1970 1971 1972 1973 1974 1975 

Is defexp $bn 0.28 0.40 0.45 0.66 0.66 1.02 0.26 
Eg defexp $bn 0.51 0.53 0.57 0.69 0.70 0.79 0.81 
Sy defexp $bn 0.154 0.157 0.161 0.164 0.208 0.389 0.588 

         
         
  1969 1970 1971 1972 1973 1974 1975 

Is defexp% % 7.30 8.64 8.45 11.83 9.19 10.97 27.36 
Eg defexp% % 8.92 8.52 8.33 9.37 8.96 9.32 7.56 
Sy defexp% % 9.81 8.98 9.04 7.82 8.57 11.21 14.62 
Av defexp% % 8.67 8.71 8.61 9.67 8.91 10.50 16.51 

         
         

Signs of a - c       
GA-33app for ME        
av defexp%  80 81 82 83 84 85 86 

minuses  15 15 10 13 10 15 9 
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THE MIDDLE EAST, 1975 to 1981 

      Appendix 6A 3 
STATISTICAL INFORMATION MIDDLE EAST   Sheet 4 

         
 Year 1975 1976 1977 1978 1979 1980 1981 

Israel GDP Shekel bn 7.19 9.89 14.39 23.75 44.49 111.61 265.15 
conversion sh to $1 7.10 8.70 15.40 19.00 35.30 75.40 156.00 

GDP $bn 1.01 1.14 0.93 1.25 1.26 1.48 1.70 
Defexp Shekel bn 2.07 2.72 3.16 4.14 10.50 23.60 53.20 
Defexp $bn 0.29 0.31 0.21 0.22 0.30 0.31 0.34 

defexp% % 28.83 27.52 21.97 17.41 23.60 21.14 20.06 
         

Egypt GDP £E million 4886 6726 8210 9788 12610 15470 17150 
conversion £E to $1 0.39 0.39 0.39 0.39 0.70 0.70 0.70 

GDP $bn 12.50 17.20 21.00 25.03 18.01 22.1 24.5 
Defexp £E bn 3345 3778 4160 4740 8287 8145 9378 
Defexp $bn 0.86 0.97 1.06 1.21 1.16 1.16 1.34 

defexp% % 6.88 5.64 5.05 4.83 6.44 5.25 5.47 
         

Syria GDP £S million 20597 24725 27013 32389 38974 51270 65777 
conversion £S to $1 3.93 3.93 3.93 3.93 3.93 3.93 3.93 

GDP $bn 5.25 6.30 6.88 8.25 9.93 13.06 16.76 
Defexp £S bn 3345 3778 4160 4740 8287 8145 9378 
Defexp $bn 0.85 0.96 1.06 1.21 2.11 2.08 2.39 

defexp% % 16.24 15.28 15.40 14.63 21.26 15.89 14.26 
         

AVERAGE defexp% 17.32 16.15 14.14 12.29 17.10 14.09 13.26 
         
         
         
         
  1976 1977 1978 1979 1980 1981 1982 

Is defexp $bn 0.29 0.31 0.21 0.22 0.30 0.31 0.34 
Eg defexp $bn 0.86 0.97 1.06 1.21 1.16 1.16 1.34 
Sy defexp $bn 0.85 0.96 1.06 1.21 2.11 2.08 2.39 

         
         
  1976 1977 1978 1979 1980 1981 1982 

Is defexp% % 28.83 27.52 21.97 17.41 23.60 21.14 20.06 
Eg defexp% % 6.88 5.64 5.05 4.83 6.44 5.25 5.47 
Sy defexp% % 16.24 15.28 15.40 14.63 21.26 15.89 14.26 
Av defexp% % 17.32 16.15 14.14 12.29 17.10 14.09 13.26 

         
         

Signs of a - c       
GA-33app for ME        
av defexp%  87 88 89 90 91 92 93 

minuses  13 0 2 15 15 15 14 
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THE MIDDLE EAST, 1982 to 1988 
                  Appendix 6A 3 

STATISTICAL INFORMATION MIDDLE EAST   Sheet 5 
         
 Year 1982 1983 1984 1985 1986 1987 1988 

Israel GDP Shekel bn 596.31 1542 7636 28437 44191 56572 70181 
conversion sh to $1 333.70 1078 638.7 1499 1480 1530 1685 

GDP $bn 1.79 1.43 11.96 18.97 29.86 36.98 41.65 
Defexp Shekel bn 113 309 1626 4055 4396 4720  
Defexp $bn 0.34 0.29 2.55 2.71 2.97 3.08 3.70 

defexp% % 18.95 20.04 21.29 14.26 9.95 8.34 8.88 
         

Egypt GDP £E million 20881 24834 27886 32516 36039 45249 54553 
conversion £E to $1 0.70 0.70 0.70 0.70 0.70 0.70 0.70 

GDP $bn 29.83 35.48 39.84 21.0 25.0 18.0 22.1 
Defexp £E bn 9778 10729 11309 12601 13000 13600 15500 
Defexp $bn 1.40 1.53 1.62 1.80 1.86 1.94 2.21 

defexp% % 4.69 4.31 4.07 8.57 7.43 10.77 10.00 
         

Syria GDP £S million 68788 73291 75342 83225 99933 127712 186047 
conversion £S to $1 3.93 3.93 3.93 3.93 3.93 3.93 11.23 

GDP $bn 17.53 18.67 19.20 21.20 25.46 32.54 16.57 
Defexp £S bn 9778 10729 11309 12601 13000 13600 15500 
Defexp $bn 2.49 2.73 2.88 3.21 3.31 3.46 1.38 

defexp% % 14.21 14.64 15.01 15.14 13.01 10.65 8.33 
         

AVERAGE defexp% 12.62 13.00 13.46 12.66 10.13 9.92 9.07 
         
         
         
         
  1983 1984 1985 1986 1987 1988 1989 

Is defexp $bn 0.34 0.29 2.55 2.71 2.97 3.08 3.70 
Eg defexp $bn 1.40 1.53 1.62 1.80 1.86 1.94 2.21 
Sy defexp $bn 2.49 2.73 2.88 3.21 3.31 3.46 1.38 

         
         
  1983 1984 1985 1986 1987 1988 1989 

Is defexp% % 18.95 20.04 21.29 14.26 9.95 8.34 8.88 
Eg defexp% % 4.69 4.31 4.07 8.57 7.43 10.77 10.00 
Sy defexp% % 14.21 14.64 15.01 15.14 13.01 10.65 8.33 
Av defexp% % 12.62 13.00 13.46 12.66 10.13 9.92 9.07 

         
         

Signs of a - c       
GA-33app for ME        
av defexp%  94 95 96 97 98 99 100 

minuses  1 0 6 3 4 15 0 
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THE MIDDLE EAST, 1989 to 1995 
                  Appendix 6A 3 

STATISTICAL INFORMATION MIDDLE EAST          Sheet 6 
         
 Year 1989 1990 1991 1992 1993 1994 1995 

Israel GDP Shekel bn 85471 105831 134855 161738 186576 224838 261586 
conversion sh to $1 1963 2048 2280 2764 2986 3018 3135 

GDP $bn 43.54 51.68 59.15 58.52 62.48 74.50 83.44 
Defexp Shekel bn        
Defexp $bn 3.90 4.60 5.10 6.20 7.50 8.40 9.78 

defexp% % 8.96 8.90 8.62 10.60 12.00 11.28 11.72 
         

Egypt GDP £E million 65577 96100 105000 139100 157000 175000 205000 
conversion £E to $1 1.10 2.00 3.30 3.38 3.37 3.39 3.39 

GDP $bn 24.5 29.8 35.5 39.8 46.5 51.5 64.6 
Defexp £E bn 18000      5892 
Defexp $bn 1.64 1.67 1.71 1.68 1.70 1.72 1.74 

defexp% % 6.69 5.60 4.82 4.22 3.66 3.34 2.69 
         

Syria GDP £S million 208892 278638 311564 371630 413755 506101 570975 
conversion £S to $1 11.23 11.23 11.23 11.23 11.23 11.23 11.23 

GDP $bn 18.61 24.82 27.76 33.11 36.86 45.09 50.87 
Defexp £S bn 18000       
Defexp $bn 1.60 1.80 1.80 1.90 1.90 2.70 3.98 

defexp% % 8.62 7.25 6.49 5.74 5.15 5.99 7.82 
         

AVERAGE defexp% 8.09 7.25 6.64 6.85 6.94 6.87 7.41 
         
         
         
         
  1990 1991 1992 1993 1994 1995 1996 

Is defexp $bn 3.90 4.60 5.10 6.20 7.50 8.40 9.78 
Eg defexp $bn 1.64 1.67 2.71 1.68 1.70 1.72 1.74 
Sy defexp $bn 1.60 1.80 1.80 1.90 1.90 2.70 3.98 

         
         
  1990 1991 1992 1993 1994 1995 1996 

Is defexp% % 8.96 8.90 8.62 10.60 12.00 11.28 11.72 
Eg defexp% % 6.69 5.60 4.82 4.22 3.66 3.34 2.69 
Sy defexp% % 8.62 7.25 6.49 5.74 5.15 5.99 7.82 
Av defexp% % 8.09 7.25 6.64 6.85 6.94 6.87 7.41 

         
         

Signs of a - c       
GA-33app for ME        
av defexp%  101 102 103 104 105 106 107 

minuses  6 15 13 7 15 6 12 
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THE MIDDLE EAST, 1996 to 2000 
     Appendix 

6A 
3 

STATISTICAL INFORMATION    Sheet 7 
        
 Year 1996 1997 1998 1999 2000  

Israel GDP Shekel bn 304682 339992 382795 417446 463055  
conversion sh to $1 3250 3530 4160 4435 4872  

GDP $bn 93.75 96.32 92.02 94.13 95.04  
Defexp Shekel bn       
Defexp $bn 10.50 10.80 11.35 11.72 11.95  

defexp% % 11.20 11.21 12.33 12.45 12.57  
        

Egypt GDP £E million 228130 256250 280220 305000 322400  
conversion £E to $1 3.39 3.39 3.40 3.40 3.40  

GDP $bn 77.9 59.6 48.1 44.1 41.2  
Defexp £E bn       
Defexp $bn 1.80 1.85 1.98 2.28 2.45  

defexp% % 2.31 3.10 4.12 5.16 5.95  
        

Syria GDP £S million 676441 728294 775786 822790 879376  
conversion £S to $1 11.23 11.23 11.23 11.23 11.23  

GDP $bn 60.26 64.88 69.11 73.30 78.34  
Defexp £S bn       
Defexp $bn 4.09 4.09 5.06 5.51 6.03  

defexp% % 6.79 6.30 7.32 7.52 7.70  
        

AVERAGE defexp% 6.77 6.87 7.93 8.38 8.74  
        
        
        
        
  1997 1998 1999 2000 2001  

Is defexp $bn 10.50 10.80 11.35 11.72 11.95  
Eg defexp $bn 1.80 1.85 1.98 2.28 2.45  
Sy defexp $bn 4.09 4.09 5.06 5.51 5.66  

        
        
  1997 1998 1999 2000 2001  

Is defexp% % 11.20 11.21 12.33 12.45 12.57  
Eg defexp% % 2.31 3.10 4.12 5.16 5.95  
Sy defexp% % 6.79 6.30 7.32 7.52 7.70  
Av defexp% % 6.77 6.87 7.93 8.38 8.74  

        
        

Signs of a - c      
GA-33app for ME       

av defexp%  108 109 110 111 112  
minuses  12 8 15 14 10  
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CHAPTER 7 

The Stability of Nuclear Deterrence 

7.1   Introduction  

This chapter applies the Richardson arms race equations to nuclear deterrence using GAs.   

It sets the scene with the Strategic Arms Limitation Talks of 1972 and the very limited 

means of calculation available then. From there, it applies GAs to the problem. The GAs 

used are quite different from those used in Chapters 5 and 6 to forecast instabilities between 

nations.  Here, given the number of nuclear missiles believed to be held by (what was then) 

the Soviet Union, the GA is required to determine how many missiles the United States has 

to field if nuclear deterrence is to be achieved.   This is not a trivial calculation for the 

effectiveness of nuclear weapons (their destructive capability) depends not only on their size 

and the numbers deployed, but also on the probability of their timely and accurate delivery − 

and there are many types of weapons (some of which, the MIRVs, house more than one 

warhead) and at least three types of delivery platform. Furthermore, the Americans always 

assumed that the Russians would strike first, so the number of missiles available to the 

Americans to ensure deterrence had to be that which survived an initial Soviet attack.  The 

GA’s evaluation equations are based on the physics of aerodynamic shock (nuclear blast), 

and the fitness function aims to minimise the total number of nuclear weapons available to 

both sides.  It is shown that, with their ability to search huge parameter spaces efficiently, 

nuclear deterrence GAs are highly adaptable and permit the investigation of many current 

problems of the ‘what if ... ’ variety, e.g. “What happens if our opponents’ missile delivery 

probabilities have been under-estimated and our own over-estimated?” or  “Would we be 

overwhelmed if our opponents mounted a surprise attack?”  

Our initial GAs were far from robust; a scatter of possible answers was generated, but a 

Pareto-sort reduced their number dramatically.  To enhance performance, redundancy and a 

modest elitism were introduced.  After trial and error, the GAs became much more robust.   

The remainder of this chapter covers SALT and explains in depth how we have approached 

the problem (both by our check on the Saaty/Dalkey model by iterative methods in 1972, 

and by GAs very recently).  The results of a number of trials, by varying the delivery 

probabilities of both sides and by discretising the evaluation equations, are presented.   

 The chapter concludes by comparing the results obtained by some traditional numerical 

methods, such as Gauss-Seidel, Jacobi and Monte Carlo, with those obtained via GAs;  it 
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then explains why GAs are used in preference to these other methods, and discusses the use 

of GAs in this type of application.     

Appendices cover the basics of aerodynamic shock and the derivation of delivery probab-

ilities. 

7.2    The Strategic Arms Limitation Talks 

In May 1972, as a culmination of SALT, President Nixon and Mr Brezhnev signed an 

Agreement aimed at limiting the number of strategic nuclear weapons held by the United 

States and the Soviet Union.  One of a number of calculations done at the time in the UK  to 

verify SALT made use of the Saaty/Dalkey model for strategic nuclear deterrence. (The 

Americans, in contrast, are said to have worked their calculations in terms of the classic 

zero-sum Game Theory of Von Neumann and Morgenstern (1947).) 

 The Saaty/Dalkey model is based on (and is a variant of) the Richardson arms race 

equations.  The model needs a huge search space and so it was not very practical until the 

advent of evolutionary techniques such as GAs. 

As we said in Chapter 3, the problem with the Richardson arms race equations is that they 

are conceptually accurate but difficult to compute in practice. To achieve the latter, they 

have to be transformed.  

Let the annual defence expenditures of Nation X and Nation Y be US$ x billion and US$ y 

billion, respectively.  Then, from Richardson’s theory,  

             hbyax
dt
dy +−=          and          gfxcy

dt
dx +−=   ,                                     (7.1)                  

where a and c are called defence coefficients,  b and f are called fatigue and expense coeffic-

ients, while h and g are called grievances when they are positive, and goodwill when they 

are negative.   It should be recalled that all the coefficients are functions of time. 

Richardson [1960(b)] had made three assumptions: 

• That each country would attempt to increase its armaments over its opponents. 

• That economic factors impose constraints that tend to diminish the rate of increase by an 

amount proportional to the size of the existing friendly forces, and that  

• A nation will build arms motivated by ambition and hostility even if other nations pose 

no threat to it. 
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7.3     The Saaty/Dalkey Model 

Recognising that the x and y in Eqs(7.1) could be used to represent any means of portraying 

an arms race (not only money), Saaty and Dalkey [Saaty and Alexander, 1981] were subse-

quently able to modify Richardson’s theory, so that it could simulate the threatened use of 

missiles between two antagonists, the United States and the Soviet Union, to deter each 

other from initiating war.  They did this by re-defining and limiting the problem, and then 

substituting a transform expressed in terms of the available parameters (see Section 7.5). 

If  y is the number of US missiles and x the number of Soviet missiles, then the rates of 

growth of  y and x are given by 

1̂kbyax
dt
dy +−=     and     2k̂fxcy

dt
dx +−=    ,                                           (7.2) 

where )(ˆˆ  ),(ˆˆ
2211 tkktkk ≡≡  stand for the numbers of missiles which will ensure that even if 

neither side has plans to acquire further missiles, there still exist 1̂k  and 2k̂  missiles, 

respectively, to ensure the destruction of the other side’s cities.  

Saaty and Dalkey, however, made five further assumptions in addition to the three already 

listed by Richardson:   

• Each side will attempt to destroy the missile system of the other side before starting to 

attack the other’s cities. 

• Each ICBM has unlimited range and, similarly, submarines armed with SLBMs will be so 

located that they can attack any target for which they are likely to be tasked. 

• ABMs are limited in range so that ABMs assigned to defend the capital city cannot be 

used to defend an ICBM field and vice versa.  The SALT Agreement stipulates that each 

side may only field 100 ABMs. 

• Both the United States and the Soviet Union believe that the SALT Agreement is to their 

advantage and that therefore a stable situation exists at most times. 

• Initially, each missile has only one warhead . 

The value of each missile, its destructive capability, is assessed by its owner in terms of the 

damage it can inflict on the opponent’s missile sites or cities if war has to be declared. The 

value depends, not only on the weapon’s size, but also on the probability of its delivery. 

Eqs(7.2) can be represented by two curved contours, each plotted against generations. The 

regions outside the contours (i.e. above the red and to the right of the green) give the 
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minimum number of missiles with which the United States and the Soviet Union, 

respectively, can inflict so-called ‘unacceptable damage’ on each other.   If the curves are 

plotted on equally-scaled axes, the region outside both curves is the ‘region of stability’. By 

stockpiling missiles up to the numerical levels indicated by the region of stability, both the 

United States and the Soviet Union have the ability to deter each other from initiating war. 

 
Figure  7.1    Region of Stability;  curved contours against generations on equally-scaled axes. 

The P contour is drawn in red, the Q contour in green 

This is illustrated in Figure 7.1, where the 45° line represents missile parity.   Neither side, 

however, regards parity as an issue.  Instead, each wants to be able to destroy a certain prop-

ortion of the other’s cities, the proportion depending on what each considers the other’s 

criterion of unacceptable damage to be.  The US contour represents the number of missiles 

which will guarantee levels of unacceptable damage on the Soviet Union after they have 

survived an initial Soviet attack.  This is called the ‘counter-value’.   

Let the American counter-value be P and the Soviet counter-value be Q. It should be 

observed that we match destructive capability;  actual numbers of missiles on either side can 

be quite different. 

Given a contour for P, the United States can now estimate the number of missiles which will 

survive a Soviet attack.  Armed with a number of missiles greater than that indicated by the 

contour for P (i.e. above the curve) the United States can ensure the virtual destruction of 

the Soviet Union.   Similarly the latter can do likewise to America, provided her holding of 

missiles is to the right of the Q contour.  

Any solution is, therefore, required:  
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• To establish contours for the counter-values P and Q using some of the physics of nuclear 

explosions (Appendix 7A), a set of delivery probabilities (Appendix 7B), and known and 

estimated facts about the weapons holdings of either side (Table 7.1). 

• Having determined a specific value for P, to establish the corresponding value for Q. 

• To define the number of America’s missiles which survive solely in terms of the Soviet 

Union’s destructive capability and vice versa. 

• To seek the ‘fittest’ solution, which in this context means minimising the total number of 

nuclear missiles available to both sides. 

We next restrict the problem and try to solve it practically. 

7.4   Initialising Real-World Data 

Table 7.1 lists actual holdings of strategic nuclear weapons in the early 1970s for the United 

States and the Soviet Union. (The figures for the Soviet Union were the best that could be 

derived from intelligence sources;  it will be appreciated that at the time all these figures 

would have been accorded very high security classification).  M stands for the number of 

American missiles and W for the number of warheads each missile can carry;  m and w stand 

for those of the Soviet Union.   

Table 7.1    Holdings of nuclear weapons.  The figures date from 1972 
 U N I T E D   S T A T E S S O V I  E T   U N I O N 

Type Missiles or 
aircraft 

Nuclear 
warheads 

Probabilities of 
delivery 

Missiles 
or aircraft 

Nuclear 
warheads 

Probabilities 
of delivery 

SLBM   656  (M1) 1808  (M1W1) 0.72     (� 1) 740 (m1) 740 (m1  w1) 0.76  (v1) 
ICBM 1054  (M2) 1454  (M2W2) 0.60     (� 2) 1618(m2) 1618(m2 w2) 0.75  (v2) 

Aircraft- 
Delivered 

520   (M3) 
Note 4 

3134  (M3W3) 0.33     (� 3) 140 (m3)  
Note 4 

140  (m3 w3) 0.40  (v3) 

  Notes 1 and 2 Note 3  Notes 1 and 2 Note 3 
Totals 2230   (M) 6396   (MW)  2498 (m) 2498   (mw)  

Note 1.  Those working in the nuclear deterrence field conventionally use T or t to denote the 
number of warheads per weapon/aircraft.  In the thesis, we use W or w to avoid confusion with time 

Note 2.  The US had the ability to put several warheads into each missile or aircraft, but this was 
not shared in 1972 by the Soviet Union. (Hence, in 1972,   w1 = w2 = w3 = w = 1, although for later 
years we must give them different values as the Soviets did ultimately achieve a MIRVing 
capability.)  Several types/marks of missile are included in each total, so the overall MW/M ratio is 
not nec-essarily an integer 

Note 3.  These probabilities were not casual ‘guesstimates’.   The Americans had put much 
separate work  into their derivation 

Note 4.  In the context of Richardson’s equations and of this chapter, a manned aircraft carrying  
nuclear warheads counts as a missile.  The only exception to this is in Section 7.16 
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7.5   A General Approach to the Problem  

In essence, nuclear deterrence is represented by a set of equations.  If a small change to these 

equations results in a divergent system then it is argued that the SALT Agreement would 

become unstable. Conversely, if the equations converge (see Section 2.13) it can be conc-

luded that stable deterrence has been achieved. 

We next assume that each of the 100 ABMs  permitted to each side by the SALT Agreement 

can be guaranteed to counter1 a missile. 

The number of Soviet missiles is  m of which the Americans can destroy the first 100 with 

their ABMs. Hence the number of Soviet warheads destroyed will (probably) be (m − 

100)w.  The fraction of  Soviet warheads assigned to destroy each American missile on the 

ground is therefore (m − 100)w/M.  Correspondingly, the fraction of  American warheads 

assigned to destroy each Soviet missile on the ground is  (M − 100)W/m.    

Let � be the probability that a Soviet missile is destroyed on the ground by an American 

warhead, and let v be the corresponding probability for the destruction of an American 

missile.  It is shown in Appendix 7A that the probability of destruction of a Soviet missile 

by an American  warhead is  � / W 1/3 and  the corresponding probability  for  the destruction 

of  an American missile  by a Soviet warhead is  v / w 1/3.   The probability that an American 

missile on the ground survives an attack by a Soviet  warhead is 1− v / w1/3.   (The 

probability that it survives two such attacks is (1 − v / w1/3 )2 .)       It follows, therefore, that 

the probability that one American missile on the ground will survive a series of attacks by         

(m − 100)w / M warheads is    
( )

M
wm

w
v

100

3/11

−

�
�

�
�
�

� −                                                    (7.3)     

and that the expected total number of American missiles which will survive a Soviet 

onslaught, which by definition is the American counter-value P,  is given by   
( )

M
wm

w
v

MP

100

3/11

−

�
�

�
�
�

� −=  .                        (7.4)                                 

Likewise, the Soviet counter-value, Q, is given by 

                                          

( )
m

WM

W
mQ

100

3/11

−

�
�

�
�
�

� −= µ  .                                                (7.5) 

                         
1 ‘Counter’ means destroy the solid-state chips, etc in the missile by very steep gradients of electromagnetic pulse (EMP) 
generated by the ABM.   Blast needs air, so it is not effective at the sort of altitudes that  ABMs intercept incoming missiles 
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Furthermore, account has to be taken in the model of two or more different missile systems 

which may have varying numbers of multiple warheads. 

If v1, v2 and v3 are three different probabilities that American missiles will be destroyed by 

Soviet warheads delivered by three different systems, the American missiles’ chances of 

survival from separate attacks are 1− v1 , 1− v2 and 1− v3 , respectively.  The chances of dest-

ruction by a combined attack consisting of three warheads delivered in turn by each of the 

three delivery systems will be 1 − (1− v1)(1− v2)(1− v3),  and their chance of survival will be 

   (1− v1)(1− v2)(1− v3) .                                                       . 

If, for i = 1, 2, 3,    miwi   and   viwi  correspond to MiWi   and  µiWi,  respectively, then 

  

( ) ( ) Mwmwmwm

w
v

w
v

w
v

MP

1

3/1
3

3

50

3/1
2

2

50

3/1
1

1
332211
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�

�
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            (7.6) 

and 

       

( ) ( ) mWMWMWM

WWW
mQ
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   .       (7.7) 

Eq(7.6) can be written in the form  

MnMnMn jjMjP /
3

/
2

/
1

321=  = βM,                                             (7.8) 

where ji = 1 − vi /wi
1/3,  ni =�mi − 50 (0)�wi,  and β = MnMnMn jjj /

3
/

2
/

1
321  . 

(Note.   In writing β  in this way, we  should  not  forget the literal meaning of β  as  part  of 

P = βM.   If, for instance, β = 0.75, we are saying that a quarter of the American missiles 

will be destroyed by a Soviet first strike.) 

We observe in passing that, since P < M , it must be the case that 0 < β < 1.  It can be 

verified that for all β             

=
dM
dP

 MnMnMn jjj /
3

/
2

/
1

321

�
�
�

�
�
�
�

� ++
+

M

jnjnjn 332211 lnlnln
1  ( )ββ ln 1 +=  < 1  .       (7.9) 

We next consider the first-order iterative method given by Eq(7.12).  For convergence to 

take place (see Theorem 3.6 in [Epperson, 2002]), it is sufficient that the modulus of the 

first derivative of  f in the neighbourhood of the fixed point is less than one.  Since 

,ln k
M
n

dM
df

ii

=                                                         . 

on using Eq(7.8), it follows that convergence takes place if 
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M  > ( ) ( ) ��
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wm .       (7.10) 

In such a case, the  SALT Agreement is stable for the United States (see the introductory 

paragraph for this Section).   Correspondingly, for the Soviet Union we have 

m  > ( ) ( )  1ln1ln501ln50 3/1
3

3
333/1
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2
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The above two inequalities, Eq(7.10) and Eq(7.11), feature prominently in the subsequent 

development of GAs applied to the nuclear deterrence problem. 

7.6   Approaching the Nuclear Deterrence Problem in 1972  

We were tasked in 1972 by the UK Ministry of Defence [Hackworth, 1973] to verify the 

outcome of SALT.  By the early 1970s much had been written about deterrence, not all of it 

consistent or pragmatic.   

RE Jones2  had defined deterrence as a calculated attempt to induce an adversary to do 

something or refrain from doing something by threatening retaliation for non-compliance.  

Let G be the gain desired by the United States and p1 be the probability of its attainment 

without the overt use of force.  Then the expected gain for the US would be p1G.  If war had, 

however, to be declared first, the gain would instead be some lesser value, which we will 

call Gp1 .  Moreover, let D be the American capability for destruction and  p2 be the 

probability of its being used against the Soviet Union to prevent, in turn, gains against 

America.  In the event of war, the USA’s expected level of destruction in the Soviet Union 

would be p2D.    Let p3, g, d, 4p  and gp3  be the corresponding values for the Soviet Union.  

Jones showed that the gain-deterrence ratio for the United States, R , was given by 

R  = 
( )

dp
pGppGp

4

4141  1 +−
                                                 .           

(whence R  � 
dp
Gp

4

1 for sufficiently large d)                 .   

while for the Soviet Union, the deterrence ratio, r, was given by          . 

r =
( )

Dp
pgppgp

2

2323 1 +−
                                                     .   

                         
2   It has not been possible to locate current references for the reports of either Jones or Ellsberg (see over);  both were 
originally classified internal reports for establishments of the US Department of Defense, and both would now be over 30 
years old 
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(whence r �
Dp
gp

2

3  for sufficiently large D).                . 

Although this easily led to some neat qualitative arguments about what happened and who 

deterred whom when R  << 1 and r << 1, for instance, the theory was extraordinarily 

difficult to quantify, largely because certain terms were vague;  for example, what precisely 

counted as a gain, or would a border skirmish count as a war?    

Taking a totally different approach, Daniel Ellsberg 2 treated deterrence as a decision-

making system with matrices of time-dependent utilities;  he argued that it should be 

Washington’s goal to ensure that  at all times Moscow believed that the advantages gained 

by striking, Vstrike , were inferior to those gained by waiting, Vwait.  The worth of the deterrent 

depended on the width of the ‘margin’ 

 Vwait −  Vstrike.                                                              .   

Again, this was not easy to quantify with real-world parameters.   

Compared with these analyses, Richardson’s arms race equations appeared very 

straightforward, although some transformations were needed first.    

Our preferred solution at the time was to adapt Richardson’s equations and to rearrange 

Eq(7.8) into an iterative form, namely 

                                     ( ) PkMfM iM
n

ii

  

1    
−

+ ==   ,                                                        (7.12) 

where ( ) ( ) ( )( )332211 ln  ln  ln jnjnjnn ek ++−− = . 

This converges to a solution provided that the initial approximation is numerically close to a 

fixed point.  This meant that for our initial value, M0, we had to make extensive use of 

domain knowledge because a casual guess would not suffice3.  According to our 1972 

calculations, using Eq(7.12), the total number of American missiles had to be greater (see 

Eq(7.10)) than 2354 if stability  (nuclear deterrence) was to be achieved.  (In fact, they had 

2230 at the time, although it is understood that this figure was later increased to about 3000 

for reasons which are summarised in the Note to Section 7.15). 

                         
3  From notes taken in 1972  we recall that Eq(7.12) will not converge if M0 < 2280.   This is within 3.1% of the answer 
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7.7   Applying an Evolution Strategy 

As a first step in solving Eq(7.6) and Eq(7.7), we applied an ES and developed an algorithm, 

ES-1. Using an RNG, a chromosome was generated and one copy thereof was put into the 

first row of a two-row chromosome array, and another one into the second row.  Both 

chromosomes use Eq(7.10) and Eq(7.11) as evaluation equations,  the probabilities of Table 

7.1, and the fitness function given by Eq(7.13).  The fitness became an integral part of each 

chromosome.  At Generation 0, obviously, the two rows would be identical. The second 

chromosome was then mutated and again compared with the first.  The two chromosomes 

would now have different fitnesses. If the fitness of the second chromosome was not as good 

as that of the first, then the mutation process on the second chromosome would be repeated 

until its fitness was better than that of the first chromosome which it would then replace.  

The overall  process is then repeated until ES-1 converges, see (2) below.   This really is 

‘survival of the fittest’, the advantage being that no time is wasted on unfit or infeasible 

solutions.   

ES-1  had mutation as its only operator, as explained above.  To facilitate comparison with 

the GAs in this chapter, ES-1 was developed so that the probabilities of delivery could be 

altered, and the full range of counter-value equations (Section 7.8.1) could be used.  ES-1 

was run with different start conditions (seeds ranging from 0 to 79).  As a result, several 

lessons were learnt: 

(1) Each run gave only one answer. Applying domain knowledge4 eliminated some 

answers. 

(2) Convergence often took place after a few generations to be followed by increasing 

divergence as mutation took its toll and became untenable.   This was solved by 

setting the ES-1 program code to run for 50 generations but stopping it if a certain 

number of consecutive iterations had converged on the same value.  The program 

typically stopped after 15 generations. 

(3) It was observed that the first mutation generally gave a poorer fitness than the original.   

(4)     In some runs the original was, and remained, the best. 

Eighty runs of ES-1 gave eighty answers but only thirteen of these satisfied the domain 

conditions.  A  Pareto sort reduced these to two, see Table 7.2  below.   

                         
4  In this case, P > Q > 0.65P, and fitness > 2000          
                                                                                                                                                                                                           
. 
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Table 7.2   The  best answers from ES-1 
algorithm seed P Q fitness 

ES-1 11 3307 2024 2579 
ES-1 73 2259 2237 3145 

It is a lot easier to develop an ES than a GA, but the ES suffers from all the disadvantages 

traditionally associated with hill-climbing methods. To overcome these disadvantages, we 

abandoned the ES approach for nuclear deterrence, and turned instead to a GA-based 

approach.   We did, however, return to ES-1 

• to derive comparative figures for the nightmare scenario, see  Section 7.12.2,  and 

• to help develop an algorithm for simulated annealing, see Section 5.8.2. 

7. 8   Applying a GA 

A canonical integer-valued GA, GA-19, was developed to see, initially,  if the figures given 

in Table 7.1  appeared to be realistic from the viewpoint of both sides. The GA uses 

Eq(7.10) and Eq(7.11) as its evaluation equations, and its fitness function is given by 

Eq(7.13).   The general configuration of its chromosomes is presented in Table 7.3.  GA-19 

fits the general description given in Chapter 4;  in particular, several population sizes were 

tried and anything less than 50 gave inappropriate results.  100 was chosen as being safe but 

not excessive or wasteful.   

7.8.1  Equation Sets 

Four alternative pairs of equation sets were used, all giving contours for the counter-values 

P and Q.  The probabilities µ and v are taken from Table 7.1.  

• P1 and Q1. General expressions for P and Q (three delivery systems). The evaluation 

equations were Eq(7.6) and Eq(7.7).  Delivery probabilities were taken from Table 7.1, 

but the numbers of warheads and missiles were generated randomly.              

• P2 and Q2.  As P1 and Q1, with actual numbers of warheads and missiles (Table 7.1). 

• P3 and Q3.  In this case the evaluation equations were Eq(7.10) and Eq(7.11). Delivery 

probabilities were taken from Table 7.1, but numbers of warheads and missiles were 

generated randomly.  

• P4 and Q4.  As P3 and Q3, with actual numbers of warheads and missiles (Table 7.1).      

It should be observed that  
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• all these equations sets are reflexive, i.e. the number of America’s missiles which survive 

a nuclear first strike is defined solely in terms of the destructive capability of the Soviet 

Union and vice versa, and 

• anything derived from Eq(7.10) or Eq(7.11) is in fact M or m rather than P or Q.  In order 

not to cause confusion, we will continue to refer to P (and, correspondingly, to Q) as the 

number of missiles required by either side to achieve deterrence.   

7.8.2   Fitness Function    

It is known that in the early 1970s both Americans and Russians wanted to minimise their 

combined holdings of nuclear weapons.  This was not only due to the sheer cost of building 

and maintaining them but also to the growing realisation, even then, that 

• the environment would suffer should the number of nuclear weapons get out of hand,  

and 

• chaos would result if such weapons were to fall into irresponsible hands. 

Our model must, therefore, follow suit and aim to minimise the overall number of nuclear 

weapons.    To this end, the fitness function is given by 

                                    
221

10000000

QP
fitness

++
=   ,                                         (7.13) 

which we maximise.  (The numerator is just a scaling factor). 

7.8.3   Options 

The evaluation equations can be computed by assigning to the variables M1 , M2 , M3 , m1 , 

m2 and m3  the values shown in Table 7.1.  Alternatively, values assigned to the same vari-

ables can be generated randomly (within reasonable, constrained limits) and evolve during 

the execution of the GA under consideration. 

• The initialisation of the chromosomes by the RNG took cognisance of known figures, i.e. 

the biggest number likely to appear in practice among the M’s and m’s in Table 7.1 is 

1618, so the RNG was set to an upper bound of 1650.    

• Rates of mutation  and crossover could be (and often were) varied dynamically. 

• Every run started with  a seed in the range 0 � seed � 79 which set the point at which the 

RNG started to feed the program emulating the GA.  It was observed that the order of the 

concatenated parameters (in GA language, the loci of the genes in the chromosomes) did 

make a difference to the results obtained.   This will be discussed later.   
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Table 7.3 shows the sequence of the concatenated parameters in GA-19 and GA-2.  (GA-2 

was developed later to overcome the shortcomings of GA-19, see Section 7.9.)  

Table 7.3  Layout of  Matrices 1 and 2 of GA-19 and GA-2 

GA/col  0 
Note 1 

1 
Note 1 

2 3 4 5 6 7 8 9 10 11 
Note 1 

12 

GA-19 gen srl M1 M2 M3 m1 m2 m3 P Q fit-
ness 

norm 
-fit 

running 
total 

GA- 2 gen srl M1 m1 M2 m2 M3 m3 P Q fit-
ness 

norm
-fit 

running 
total 

Note 1.  gen is generation.  srl is serial.   A normfit is a linearly normalised fitness, see Section 4.3 

Note 2.  Columns 2 - 7 inclusive form the 6-gene, 24-element  (6 × 4) chromosomes    

Table 7.4   Progress of the chromosome (shaded) of GA-2.  This is shown in Figure 7.2;  Seed 42 
Generation M1 m1 M2 m2 M3 m3 P Q fitness 

0 (initiation) 0588 1220 1399 1340 1821 2411 4695 3555 1698 

1 2221 0365 2916 0295 0137 1558 6884 2857 1341 

2 0583 1224 1394 1343 0357 0037 5772 3277 1506 

3 0583 1224 1394 1344 0287 3377 2375 5218 1744 

4 0583 1224 1394 1344 0287 3377 3486 2417 2358 

5 0583 1224 1394 1343 0357 0037 3486 2413 2357 

6 (convergence) 0583 1224 1394 1343 0357 0037 3486 2413 2358 

7 (convergence) 0583 1224 1394 1343 0357 0037 3486 2413 2358 

 

7.9   Results from GA-19: Early Trials   

We first used Equation Set P4 and Q4  (Section 7.8.1).   This entails using all the data of 

Table 7.1 (including the numbers of weapons) and Eq(7.10) and Eq(7.11). The figures 

obtained are P = 3229 for  the  United  States  and Q = 2573 for the Soviet Union. This is 

straightforward arithmetic, and no GA action is involved.  

We then compared these values of P and Q with those obtained from GA-19, again using 

Table 7.1, but generating the number of weapons randomly.  Since both crossover and 

mutation changed dynamically, the answers never stabilised, e.g. successive generations 

could go through 3229 and 2573, and then wander off somewhere else.  Fitness was over-

dependent on actual figures, and this distorted the selection process. The choice of seed was 

crucial.  Moreover, varying the location of genes within the chromosome could make a 

difference to the results obtained;   it is considered that this was not so much due to epistasis 

as to the fact that conditions in the left-hand end of the chromosome string were more 

turbulent than in the right-hand end since the crossover took place on the left. 
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GA-19 was trialled in a number of variants, altering many parameter settings.  Some were 

successful, others not, ‘success’ being reckoned by non-degenerative convergence (Section 

2.13), the highest attainable fitness factor (in practice, greater than 2000), and figures 

reasonably close to those desired. Richardson’s equations are bound to yield several 

different but mathematically legitimate answers, not all of which will be of practical use.  In 

the real world, P is likely to lie fairly close to Q under ‘normal’ delivery conditions, so 

solutions where they are wildly apart can safely be ignored on using domain knowledge. 

In order to overcome the shortcomings of GA-19, a new algorithm, GA-2, was developed. 

The direct evaluation of Equation Set P4 and Q4 had yielded P = 3229 and Q = 2573.  It 

was tempting to attempt a hybrid scheme; for example, using actual values of M1 , M2  and 

M3 to initialise the Matrices 1 and 2 of GA-19, and  randomly generated ones to initialise m1 

, m2 and m3.   In practice this did not work at all well.   

It was decided, therefore, to let the random number generator initialise the whole chromo-

some and then let the synergy of parent selection, mutation and crossover take their course.   

The improved results of this latter approach became apparent in the behaviour, outputs and 

robustness of the nuclear deterrence suite of GAs which we are about to introduce. 

7.10   Suite of GAs for Nuclear Deterrence   

A nuclear deterrence suite of GAs, containing the eight algorithms shown in Table 7.5, was 

developed.  GA-2 was straightforward; GA-20 incorporated elitism;  GA-22 added some 

redundant genes;  and GA -24 had both.  The same obtains for GA-18, GA-21, GA-23 and 

GA-25, respectively, all of which incorporated a Pareto-sort. 

Table 7.5   Capabilities of the GA suite for nuclear deterrence 
Name Genes  Vary probabilities of 

delivery  
Redundant 

chromosomes  
Elitist Pareto-sort 

GA-2 6 yes No No No 
GA-18 6 yes No No Yes 
GA-20 6 yes No yes  (1%) No 
GA-21 6 yes No yes  (1%) Yes 
GA-22 9 yes yes  (33%) No No 
GA-23 9 yes yes (33%) No Yes 
GA-24 9 yes yes (33%) yes  (1%) No 
GA-25 9 yes yes (33;%) yes  (1%) Yes 

Note 1.  For the configuration of all six-gene chromosomes, see Table 7.3 (lower row);   for those 
with nine genes, see  Table 7.11 

Note 2.  All GAs of the nuclear deterrence suite used a population of a hundred chromosomes over 
twenty generations.  Mutation and crossover were fixed at 1% and 62%, respectively 
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GA-2 was more robust than its predecessor, GA-19, and yielded P = 3486, Q = 2413 and 

fitness = 2358, as Table 7.4 shows. The values of P (blue) and Q (red) of Table 7.4 are 

shown graphically in Figure 7.2.  GA-2 yielded different values for P and Q, depending on 

the starting conditions.  See, for  example, Figure 7.3, where, for  a  seed  of  13,  P  =  5583, 

Q = 3228 and  fitness = 1593.      

 

 
Figure 7. 2    GA-2  with a seed of 42 

        

 
Figure 7.3     GA-2  with a seed of 13 

So far, the GA-approach has not proved very useful. We next consider varying the delivery 

probabilities, µ and v, in order to cater  for ‘what if ...’ scenarios. 

7.11   Varying the Probabilities of Delivery   

Appendix 7B outlines how the delivery probabilities, µ and v, of Table 7.1 were derived.  

Each µ and v is a product of associated probabilities.   Vary_µ and vary_v are multiplying 



 

 150 

factors applied to µ and v, respectively, in Tables 7.6a - e, using as base GA-2, a common 

seed of 42, a random limit of 6845, and values of P and Q obtained from Figure 7.2.  These 

tables present various scenarios.   

Table 7. 6a   As v is reduced, the Soviet Union can do less damage to America, so P decreases 
 and Q remains unchanged 

Vary_µ Vary_v P Q Fitness 

1 1 3486 2413 2358 
1 0.99 3411 2413 2329 
1 0.9 2822 2413 2305 

Table 7.6b  As µ is reduced,  America can do less damage to the Soviet Union, so Q decreases 
 and P increases 

Vary_µ Vary_v P Q Fitness 

1 1 3486 2413 2358 
0.99 1 4227 2289 2259 
0.9 1 4227 2071 2124 

Table 7.6c  As v is increased, the Soviet Union has a bigger chance of damaging America, so P  has 
to rise sharply, but Q decreases slightly 

Vary_µ Vary_v P Q Fitness 

1 1 3486 2413 2358 
1 1.01 4317 2326 2019 
1 1.1 5238 2276 1732 

Table 7.6d    As µ is increased, America  will cause more destruction in the Soviet Union, so Q 
rises (but nothing like as sharply as P in Table 7.6c) and P increases 

Vary_µ Vary_v P Q Fitness 

1 1 3486 2413 2358 
1.01 1 3498 2647 2284 
1.1 1 4259 2739 1974 

Table 7.6e  Various other likely scenarios 
Vary_µ Vary_v P Q Fitness 

1 1 3486 2413 2358 
1.1 1.1 5274 2739 1682 
0.9 0.9 3720 1996 2368 
1.1 0.9 2822 3033 2413 
0.9 1.1 5238 2071 1775 

 

The bottom line of Table 7.6e would be a nightmare scenario for the Americans.  Their own 

delivery probabilities have been reduced by 10%  while those of their opponents have been 

increased by a similar amount.   For SALT to remain stable, i.e. for nuclear deterrence to be 

maintained, it would seem that America would have to find 5238 missiles (a 50% increase 

over their ‘standard’ 3486) while the Soviet Union is already holding sufficient. (Fortunately 

for the Americans, a Pareto-sort (Table 7.9) later shows that this is not the catastrophe that it 

now seems.)   Figure 7.4 shows a graph of nightmare conditions. 
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It is worth reflecting that the only thing known by each side is the physical holding of its 

own weapons.   Everything else is guesswork.   

 
Figure 7.4   GA-2 with a seed of 42.  Nightmare scenario 

7.12   Validating and Improving the Results  

So far, we have developed two algorithms to model nuclear deterrence, GA-19, and its 

greatly improved successor, GA-2.  Nevertheless, every seed still gives a different result, i.e. 

the system is not at all robust.  This could be due to the possibility that the data is not 

consistent (in which case no search algorithm will perform satisfactorily).   We need, there-

fore, to check for continuity in the data.  Assuming that the data is consistent, one way to get 

over the problem of scattered answers is to apply a Pareto-sort  (see Section 7.12.2). 

7.12.1  Continuity  

It would be nice to be assured that there is some continuity in the figures of Table 7.1, i.e. 

that a small change to M1, M2, M3, m1, m2 and m3  produces approximately the same change 

in the results of the evaluation equations. If this does not happen, then “ … no search 

strategy will do particularly well, and the Richardson approach could well be flawed” 5.   

Accordingly, the above parameters were both reduced and increased by various percentages, 

and applied to Equation Set P4 and Q4 of GA-2, see Section 7.8.1, up to ± 25%.    

The resulting values of P and Q are given in Table 7.7. This indicates that continuity exists 

in the data of Table 7.1. 

 

                         
5  Comment by an anonymous referee for GECCO  2003  
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Table 7.7  Continuity 
% change in 

M1 … m3 
P % change in 

P 
Q % change in 

Q 
-25 2387 -26.1 1909 -25.8 
-15 2724 -15.6 2174 -15.5 
-10 2892 -10.4 2308 -10.3 
-5 3061 -5.2 2441 -5.1 

0(baseline) 3229 none 2573 none 
5 3398 +5.2 2706 +5.2 
10 3566 +10.4 2838 +10.3 
15 3735 +15.6 2969 +15.4 
25 4072 +26.1 3236 +25.8 

7.12.2     A Pareto-Sort 

We next employ a Pareto-sort [Pareto, 1896] in order to obtain the best results from GA-18 

over the seeds under consideration, in addition to varying the probabilities of delivery.  To 

this end, GA-18 invokes GA-2 repeatedly, altering the start-point (‘seed’) at each 

invocation.  Results (a tabulation of seed, P, Q, and fitness) were only recorded if they 

exceeded some pre-set fitness (normally around 2200).  Once completed, the table 

underwent a Pareto-sort over P and Q.   See, for example, Table 7.8, a typical instance. 

Table 7.8    Output of GA-18.  Normal.  Seed 0 through 79.  Fitness > 2222    
seed P Q fitness dominates dominated 

5 3002 2515 2553  54, 59, 60, 66 X 
23 3418 2129 2483 42, 54, 60, 66 X 
29 3077 2310 2599 42, 54, 59, 60 X 
35 2728 2086 2889 5, 23, 29, 42, 54, 59, 60, 66  
42 3486 2413 2358 54, 60, 66 X 
54 3486 2658 2281  X 
59 3077 2683 2449 42 X 
60 3486 2607 2297 54, 66 X 
61 3677 1030 2618   
66 3512 2607 2286  X 
76 2727 2129 2831 23, 29, 59, 60, 66  

Of eighty invocations of GA-2, the above eleven resulted in fitnesses > 2222. Of these, eight 

were dominated and can be discarded — they have been shaded. Of the remaining three,  

seed 35 is clearly the best, since:  

• It has a high fitness, so the total number of nuclear missiles has been minimised. 

• It has a reasonable balance between P and Q.  Using domain knowledge, it is very 

unlikely that Q will be less than 0.6 P. This fact is used hereafter.   

Let us now re-visit Table 7.8, but this time the delivery probabilities are those of the 

American  ‘nightmare scenario’, see Section 7.11 above.  Table 7.9 gives some of the 

results;   of the eighteen invocations of GA-2 whose fitness was > 1774, only three were not 

domin-ated by others.  The inclusion of two additional entries (seeds 23 and 48) is to show 
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how the entry at seed 48 (5238 / 2071, see the last line of Table 7.6e) is dominated by that of 

seed 23 which in turn is dominated by the entry of  seed 41. (The domination of P = 5328  

(see Table 7.6e) by P = 3421 must have been a great relief to the Americans.)   

Table 7.9  Output of GA-18. Nightmare. Seed 0 through 79. Fitness > 1774. Vary_µ  0.9; Vary_v 

1.1   

seed P Q fitness dominates dominated 

19 3038 3001 2341   
23 3421 1823 2579 48 (and others) X 
41 3421 1816 2581 23 (and others)  
48 5238 2071 1775  X 
61 4532 1621 2077   

The result giving  the  highest fitness  is  P = 3421 and Q = 1816.   The Americans, 

therefore, were wise in 1972 to settle for a figure in excess of the 2728 (Table 7.8) missiles 

they thought they needed at the time; at least they had in a sense a contingency to cater for 

worst-case scenarios, see Section 7.15. 

Running ES-1 (Section 7.7) with a seed of 42 under the ‘nightmare’ scenario gave P = 4156, 

Q = 1995, and a fitness of 3145,  figures higher than those of Table 7.9. 

In our context, whoever attacks with surprise can expect a hundred more of their missiles to 

reach their target (instead of being countered by defending ABMs, see Section 7.3). This 

alters the picture materially;  compare Figure 7.2 with Figure 7.4.    

Figure 7.5 was obtained by modifying Equation Set P3 and Q3 in GA-18 (in effect Eq(7.10) 

and Eq(7.11)) to remove the countering effect of the 100 (American) ABMs.  After a Pareto-

sort, the output (on assuming a fitness > 1774) consisted of three lines (Table 7.10).  

Table 7.10    Output of GA-18.   A surprise Soviet attack.  Seed 0 through 79.  Fitness > 1774    
   seed P Q fitness dominates dominated 

47 3124 2129 2645   
56 4251 1834 2159   
65 2866 2180 2777   

Note.   The output of seed 42 (illustrated in Figure 7.5) does not feature in the above table, having 
been dominated somewhere in the Pareto-sort process 

Taking the line of Table 7.10 with the best fitness, the United States needs 2866 weapons to 

withstand a surprise Soviet attack successfully. This is the second reason (the 3421 weapons 

needed by the nightmare scenario (Table 7.9) being the first) for the United States to keep 

their nuclear armoury above the 2728 weapons needed under the ‘normal’ conditions of 

Table 7.8.  
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Successive American Presidents have declared that the US would never initiate a first strike, 

so no attempt has been made in the thesis to examine the opposite situation, i.e. the United 

States mounting a surprise attack on the Soviet Union. 

  
Figure 7.5   GA-2. A surprise attack by the Soviet Union 

It is worth noting that there are a significant number of Pareto dominations in Tables 7.8, 

7.9 and 7.10.  Shaw et al. [1999] say (not in context of any specific application) that, where 

this occurs, it could indicate that the problem is multi-objective.  However, our fitness 

function was chosen to minimise the overall number of nuclear weapons, so our problem 

has a single objective.  Had we set, for example, a fitness function for the United States 

different from that for the Soviet Union, then a multi-objective picture could emerge. 

7.13   How to Improve the Performance of GAs for this Application Domain  

The results obtained in previous sections indicate that GA-2 is not the best algorithm for this 

application.  The fact that nearly every start-point (every seed) gives a different answer 

indicates that the GA is not robust.  In order to improve the situation, three ideas come to 

mind;  to inject a few redundant genes, to introduce a modest elitism, and to discretise the 

evaluation equations. 

7.13.1  Redundancy in  Chromosomes      

Several authors, including ourselves, have found that a modest redundancy in chromosomes 

improves the performance and robustness of GAs.  Why this should be so is the subject of 

Chapter 8, but in broad terms it is a manifestation of the exploration versus exploitation 

dilemma [Holland, 1992].  In order to improve GA-2, another algorithm, GA-22, was 

developed with a 33% redundancy, i.e. there were nine genes instead of six.  The structure 
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of its matrices is shown in Table 7.11;  the heavily shaded cells of the second row are  

introns.  

Table 7. 11       Configuration of the columns of the matrices for GA-22 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

gen srl M1  m1 M2  m2 M3  m3 P Q fit-
ness 

norm 
-fit 

running 
total 

Note.  As before, gen is generation,  srl is serial, and normfit is a linearly normalised fitness 

All the genes were filled from the same (constrained) random number generator. The introns 

at columns 3, 6 and 9 were initially filled with a constant6 and not constrained in any other 

way;  these constants did not participate in any GA operation.   We observe that we are now  

handling 9-gene, 36-element (9 × 4) chromosomes. 

7.13.2   Elitism      

Up to now, every new generation of a nuclear deterrence GA  replaced the old one.  Elitism 

allows the best chromosome(s) of one generation to be carried forward into the next − 

provided, of course, that its/their fitness is better than that of the worst chromosome(s) of the 

new generation (which it replaces).  Thus, one can claim the best of both worlds, i.e. pitting 

experience against youth.  The mechanics of this are simple. A separate record is kept of the 

details of the best chromosome of (the bubble-sorted) Matrix 1.  When Matrix 1 comes 

around again, fitnesses are compared and, if appropriate, the best chromosome of the last 

generation ousts the worst chromosome of the new.  The best chromosome also has to find 

its way into the unsorted list, see the end of Section 4.3.  In conjunction with redundancy, 

elitism appears to speed up convergence rapidly; to see this, compare, for example,  Figure 

7.8 with Figure 7.2. 

7.13.3   Improved Results 

Table 7.12 compares just one result, that at (an arbitrarily chosen) seed  42, with the known 

results  (P = 3229, Q = 2573, see Section 7.9).   Except for the last line, the results are 

reasonably close, and the GA-2 and GA-22 figures are the closest to the known answers.   

Table 7.12  Comparing the different GAs at a seed of 42 
algorithm seed P Q fitness Figures 

‘known’  3229 2573   
GA-2 (straight) 42 3486 2413 2358 7.2 
GA-20 (elitist) 42 4230 2426 2050 7.6 

GA-22 (redundant) 42 3448 2612 2311 7.7 
GA-24 (both) 42 4227 2426 2051 7.8 

                         
6 This was to aid comparison between  GA-2 and GA-22.   Had these introns been filled from the RNG, the sequences of 
random numbers filling the ‘live’ genes would have been upset, and comparisons would not have been possible 
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Figure 7.6  GA-20 with 1% elitism   

 
Figure 7.7    GA-22 with 33% redundancy 

It is stressed that the experimental trials pictured above and below were all conducted with 

one seed (42) so that the various outputs could be visually compared.  To obtain workable 

numerical results,  GA-18 (with Pareto-sort) was appropriately modified to yield GA-21, 

GA-23  and GA-25.  Each of these GAs was run eighty times, with seeds 0, 1...79, under 

normal delivery probabilities, and the following results were obtained:  

GA-18 (straight)               11 had fitness > 2222 of which 3 were undominated  with 2 equal 

GA-21 (elitist)          11 had fitness > 2222 of which 2 were undominated and equal 

GA-23 (redundant)        8 had fitness > 2222 of which 4 were undominated and equal 

GA-25 (elitist, redundant)  12 had fitness > 2222 of which 5 were undominated and 

equal. 
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Figure 7.8   GA-24 with 1% elitism and 33% redundancy    

Each of the above GAs was run eighty times, with seeds 0, 1...79 as before, under nightmare 

conditions (Vary_µ = 0.9,  vary_v = 1.1), and the following results were obtained: 

GA-18 (straight)      6 had fitness > 1774 of which 2 were undominated 

GA-21 (elitist)    7 had fitness > 1774 of which 2 were undominated 

GA-23 (redundant)    7 had fitness > 1774 of which 2 were undominated   

GA-25 (elitist, redundant) 9 had fitness > 1774 of which 1 was undominated. 

The best results of the above, after applying domain knowledge constraints, are summarised 

in Tables 7.13 and 7.14.    

Table 7.13   The best results from four GAs.  Normal delivery probabilities 
Source Type of GA P Q Fitness 

GA-18 straight 2728 2086 2889 
GA-21 elitist 2725 2086 2891 
GA-23 redundant 2725 2090 2891 
GA-25 elitist and redundant  2725 2090 2891 

 

Table 7.14  The best results from four GAs.  Nightmare.  Vary_µ = 0.9, Vary_v  =1.1 

Source Type of GA P Q Fitness 

GA-18 straight 3038 3001 2341 
GA-21 elitist 3420 3371 2082 
GA-23 redundant 3047 2618 2489 
GA-25 elitist and redundant 3038 2614 2495 

To conclude: 

• It is known that in the 1970s the Americans took the nightmare scenario quite seriously, 

which probably accounts for their enthusiasm for the ‘known’ solution of P = 3229  (see 
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Section 7.9).  Missile holdings as low as 2728 (Table 7.8) might not, arguably, have 

made them vulnerable, but it certainly made them uneasy! 

• There is very little difference in the results emanating from Tables 7.13 and 7.14. The 

reason for preferring one GA over another will therefore depend on other factors, such 

as enhanced stability or robustness.   

We will now look at another option. The evaluation equations used in Chapters 5 and 6 were 

already discretised.   So far, those used in this chapter are not.          

7.14   Discretising the Evaluation Equations:  Delaying Convergence  

In order to put P and Q inside the chromosome, it is necessary to discretise the evaluation 

equations, i.e. to obtain           

 Pt+1 = Pt + …  and   Qt+1 = Qt + … .                              (7.14)                                

For discretisation we require to know 

 
dt
dP

  = 
dt

dM
dM
dP

 .                                                          .   

Eq(7.9) yields dP/dM.   Moreover, from our experimental results, P and Q appear to take on 

constant values as they near the Region of Stability.  We assume, therefore, that as the 

Region of Stability is approached then  dM/dt and dm/dt take on constant values, O(1), 

which we denote by γ  and γ̂ , respectively.                                                

In the process of re-calculating  β  for the discretised case we will, in addition to γ  and γ̂ , 

take the opportunity to introduce six rate-factors, ki.  As before, these rate-factors have the 

dimension of (time)-1. Thus, for the United States 
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where   M = M1 + M2 + M3  = 2230 from Table 7.1.      

Similarly, for the Soviet Union 
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where   m = m1 + m2 + m3 = 2498 from Table 7.1.  It should not be assumed that ββ ˆ≡ ,  nor 
that � ≡ .γ̂  
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It is easily seen from the above that   

( )γββ   ln 1 1 ++=+ ii PP                                                       .                                

  ( )γββ ˆ  ˆln 1 ˆ1 ++=+ ii QQ   .                                           (7.17) 

Eqs(7.17) conform to Eqs(7.14) and the configuration of the chromosome used in GA-3 is 

shown in Table 7.15.    P and Q are now part of the chromosome, and must be initialised 

with some starter-values P0 and Q0.       

Table 7.15    GA-3 (15 genes, 48-elements).  The columns of Matrices 1, 2 and 3.   The evaluation 
equations have  been discretised, so that Pi  and Qi (columns 15 and 16) are now an integral part of 

the (shaded) chromosome. The bottom row shows the elements in each gene.  Gene 8 is deliberately 
void 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

gen srl k1 k2 k3 k4 k5 k6  M1 m1 M2 m2 M3 m3 Pt Qt P t+1 Q t+1 

  2 2 2 2 2 2 4 4 4 4 4 4 4 4 4   

 

GA-3 was developed using Eqs(7.17) with empirical values for γ  and γ̂ .  Its output has 

been scaled to produce Figure 7.9 (this time, over 60 generations).  Figure 7.9 shows that the 

discretised process leads to a much smoother output.  Results are very robust (i.e. the seed 

makes little difference to the results).  The numerical results, P = 2832 and Q = 2184, are 

only 4% away from the ‘best’ results given in Table 7.13 (2728 and 2086, respectively). 

 
Figure 7.9   GA-3.  This is for the same seed (42) as Figure 7.2. γ  and γ̂  have empirical values 

0.99984 and 0.99953, respectively, and appear to be both sensitive and heavily coupled 

The significant difference between Eq(7.10) and Eq(7.11) vis-à-vis Eqs(7.17) is that via the 

latter Pi and Qi are included in the genes of the chromosome (and so, in a sense, help to 

operate on themselves). This technique was suggested by Forrest and Mayer-Kress [1991] 
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who indicated that it might be beneficial to include the initial values P0 and Q0 (and their 

successors) as genes in the chromosome, putting them under the control of the GA and 

making them subject to adaptation.  In contrast, when Eq(7.10) and Eq(7.11) are used as 

evaluation equations, P and Q cannot be part of the chromosome and hence successive 

results could only influence each other by the genes they had left behind. It has been 

demonstrated experimentally that this latter approach often led to very rapid (and 

homogeneous) convergence, sometimes to the point of cloning. The problem with rapid 

convergence is that different seeds will give very different results, although it was soon 

appreciated that those with the highest fitness will converge to very similar solutions.  The 

advantage of retarding convergence is that robustness is greatly improved, i.e. the results 

depend only marginally on the starting conditions. 

(Figure 8.19, a sequel to Figure 7.9,  shows what happens when GA-3 is modified so that all 

crossover takes place in one intron, thereby minimising disruption to the building blocks).  

7.15  Summary of Results 

In order to help the reader form a global view from the plethora of techniques employed, we 

present a synopsis of the results: 

• In Table 7.1 we gave actual  holdings as M = 2230 (US) and m = 2498 (Soviet Union).  

• In 1972  we calculated M to be  2354 (Section 7.6). 

• By calculating Equation Set P4 and Q4 directly, we obtained P = 3229 and Q = 2573   

(Section 7.9). 

• With a seed of 42, GA-2 yielded P = 3486 and Q = 2413 (Figure 7.2).  

• The initial nightmare scenario gave P = 5238 and Q = 2071 (Table 7.6e). 

• After a Pareto-sort, the best  GA-18 yielded  P = 2728 and Q = 2086 (Table 7.8). 

• After a Pareto-sort, the nightmare GA-18 gave P = 3421 and Q = 1816 (Table 7.9). 

• Under surprise attack conditions, GA-18 gave P = 2866 and Q = 2180 (Table 7.10). 

• Under normal conditions, the optimised result was P = 2728 and  Q = 2086 (Table 7.13)    

Note.  It is understood that, shortly after 1972, the Americans increased their actual holdings 

(viz. Table 7.1) from 2230 to about 3000 nuclear missiles, presumably to give themselves a 

contingency against abnormal conditions. (It is ironic that as a direct result of SALT, 

effectively the world’s first major non-proliferation treaty, the number of nuclear weapons 

actually  increased!). 
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We next give reasons why we used GAs to determine nuclear deterrence.  

• If we are to pose ‘what if ...’ questions, we need algorithms that are both adaptable and 

flexible. 

• We are looking for fast convergence with some self-correcting facility and reflexive 

action, namely that the number of missiles required by the Americans needs to be 

expressed solely in terms of the Soviet capability to destroy them, and vice versa. 

• It was evident both from the literature of the early 1970s and our own experience that 

there are a lot of ‘hills’ in the nuclear deterrence problem and that therefore it would be 

prudent to avoid hill-climbing methods.   The need for such avoidance is less true today 

with commercial software packages like Mathematica™ or MATLAB™. 

In the next section, we demonstrate that nuclear deterrence is still a non-trivial problem in 

purely numerical terms and that, with one exception, the resulting algorithms are extremely 

inflexible. 

7.16   Six Alternative Numerical Methods for Nuclear Deterrence 

We look again at Section 7.5 but only from the American viewpoint and take a slightly 

different approach, namely destruction rather than survival.  We simplify the ensuing 

calculations by taking the total number of Soviet weapons, m, and a weighted average 

delivery probability v. 

The total number of Soviet missiles is m of which  we have assumed (Section 7.5) that the 

Americans can destroy the first 100 with their ABMs. The fraction of Soviet warheads 

assigned to destroy each American missile on the ground is therefore (m− 100)w /M,   where 

M is the total number of American missiles before any attack.   

Let v be the probability that an American missile is destroyed on the ground by a Soviet 

warhead.  Although it is shown in Appendix 7A that the probability of destruction of an 

American missile by one of  w  Soviet warheads is  v / w 1/3 , we will assume here the actual 

case that in 1972 the Soviets had no multi-warhead capability, so  w = 1.  It follows, there-

fore, that the probability that any one US missile is destroyed on the ground is  v (m - 100) / M .     

Thus the expected number of American missiles destroyed is  M v (m - 100) / M .   

Let P be the number of American missiles expected to survive a Soviet first strike (the 

counter-value).   Using Eq(7.6), we have 
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From Table 7.1, m = m1 + m2 + m3 = 740 + 1618 + 140 = 2498;  also v1 = 0.76, v2 = 0.75, 

and v3 = 0.4, giving a weighted average v = 0.73.  The above equation then simplifies to 

yield 

   P = (1 − v) (m- 100) / M M  = β M,                                                     . 

whence                                                                                                              . 

                          M = (m − 100) ln(1 −  v) / ln β                                             (7.18) 

ln β =  (m – 100) ln(1 −  v) / M  .                                            (7.19) 

We are now faced with one equation in two unknowns (since we can only guess at β ).  Five 

ways of solving this problem are described below. 

7.16.1  The Brute Force Method 

One way of solving one equation with two unknowns (especially with the high-speed facil-

ities of MATLAB) is to try all feasible values of β and discover when M gives a reasonable 

answer, ‘reasonable’ being when Mcalculated  ≈  Mreal,  the latter being about 2358. 

We use MATLAB to compute Eq(7.18), viz  

                                      M = (2498 – 100) ln (1 − 0.73) / ln β .                                        .                                

We took values of β  from 0.76 to 0.72 in steps of 0.0001 and output β , M and P =βM in 

tabular format.   These are separate trials, since the result of one trial is not used as data for 

the next.  Results show that after 337 trials Mcalculated is 2358 when β is 0.726  and this ties 

in with the results from the Gauss-Seidel and the Jacobi methods detailed below 
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Figure 7.10   The Brute Force Method.  Note the entry at serial 337 

The corresponding value for  P is 1712, quite a low figure, see Figure 7.10.  It  became 

evident during this computation that P, the counter-value, is of little real significance − it is 

the number of actual missiles, M, which counts.  However, the figures confirm that the 

Americans could expect to lose just over a quarter of their missiles as casualties of a Soviet 

first strike. 

MATLAB was preferred for this application over Mathematica [Jacob, 2001] because it 

is designed to handle data in matrix form. 

7.16.2   Leap-frogging Iteration 1 (a Jacobi Variant)  

Consider the general equation    

g (x,y)  ≡ y – g1 (x,y)  ≡ x – g2 (x,y) = 0.                                     . 

We next iterate by leap-frogging between x and y, viz. 

yn+1  =  g1 (xn , yn),                                                                            .  

xn+1  =  g2 (xn , yn),                                                                            . 

yn+2  =  g1 (xn+1 , yn+1),                                                                      . 

xn+2  =  g2 (xn+1 , yn+1) , etc.                                                               . 

where n = 0, 1, 2, ... [Buckingham, 1962]. 

Let  f  be (2498 – 100) ln(1 - 0.73).   Then, if we substitute β  for y and M for x in Eq(7.18) 

and Eq(7.19), respectively, we obtain 

β1   = exp(f / M0),   M1 =  f / ln(β0)                                                  .  

β2   = exp (f / M1),  M2 = f / ln(β1)                                                   .   
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β3   = exp (f / M2),  M3 = f / ln (β2) , etc.                                          .   

We initialised M0 with 3229 (the result of ‘knowing’ the results for both sides, see Section 

7.9), and β0 with 0.8.  M dropped successively to 3222, 3215 and 3208 but it was not until 

iterations 299/300 that the curve flattened asymptotically at 2360, with β at 0.735.   

7.16.3  Leap-frogging Iteration 2 (a Gauss-Seidel Variant) 

We now iterate by leap-frogging between x and y in a different fashion, viz. 

yn+1 =   g1 (xn , yn),                                                                           .      

 xn+1 =  g2 (xn , yn+1),                                                                         .       

yn+2 =  g1 (xn+1 , yn+1),.                                                                     .    

                                       xn+2 =  g2 (xn+1 , yn+2),   etc.                                      .                                           

.  

where n = 0, 1, 2, ... [Buckingham, 1962].  Then, having set an initial value M0,  if we 

substitute β  for y and M for x in Eq(7.18) and Eq(7.19), respectively, we obtain 

β1 = exp (f / M0),  M1 = f / ln β1                                                    ,    

 β2 = exp (f / M1),  M2 = f / ln β2                                                    .    

β3 = exp (f / M2),  M3 = f / ln β3 ,  etc.                                           .                                           

In this case, because M0 and M1 are the same, it was necessary to perturb β very slightly in 

order to start convergence.   Starting, as before, with M0 = 3229,  M1 = 3222 , M149 = 2361 

and M150 = 2360. Asymptotic convergence had occurred by the 150th iteration.  At this point 

β is 0.735, meaning that the Americans could expect to lose just over a quarter of their miss-

iles as a result of a Soviet first strike.  The figure obtained in 1972 was 2354, see Section 

7.6. 

7.16.4  Leap-frogging Iteration 3 (a Second Gauss-Seidel Variant)      

We next iterate by leap-frogging between x and y  but in yet another sequence, taking two 

attempts at each x and y, viz. 

yn+1  =  g1 (xn , yn),        yn+2  =  g1 (xn  , yn+1),    xn+1  = g2 (xn , yn+2),     xn+2  = g2 (xn+1 , yn+2), 

yn+3  = g1 (xn+2 ,  yn+2),  yn+4  = g1 (xn+2 ,  yn+3),  xn+3  = g2 (xn+2 , yn+4),  xn+4  = g2 (xn+3 , yn+4), 

etc.  where n = 0, 1, 2 ... [Buckingham, 1962]. 

Then, having set an initial value M0, and using the same machinery as before, we obtain  
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β1 = exp(f / M0) , β2 = exp(f / M0 + �M) ,   M1 = f / ln(β2),   M2 = f / ln(β2 − �β ),         .          

β3 = exp(f / M2),  β4 = exp(f / M2 + �M) ,   M3 = f / ln(β4) ,  M4  = f / ln(β4 − �β) ,         . 

  β5 = exp (f / M4), β6 = exp (f / M4 + �M),   M5 = f / ln(β6) ,  M6 =  f / ln(β6− �β) ,    etc. 

It was necessary to perturb M and β  very slightly (by �M = 3.5,  �β = 0.0015) in order to 

ensure convergence.  (The perturbations �M  and  �β  are of  comparable order.)  Starting, as 

before, with M0 = 3229,  M1 = 3210 while M112 = 2362 and M113 = 2360.  Hence asymptotic 

convergence had occurred;  indeed, at 113 iterations it was significantly quicker than the 

earlier Gauss-Seidel at 150 iterations.   At this point β  was 0.734. 

7.16.5   A Monte Carlo Method 

In Section 5.8.1 we used a Monte Carlo method to see if we could predict instabilities in the 

India/Pakistan situation, and while reasonable numerical results were obtained, the lack of 

sign changes mitigated against it. The idea of the Monte Carlo method is that an integral 

may be represented by a sum , namely 

   �
∞

∞−
dxxfxg )()(  ≈  

N
1

 �
=

N

i 1

( )ixg ,                          (7.20)                                      

so to create a Monte Carlo solution [Kalos and Whitlock, 1986] we draw a series of random 

variables xn from f(x), and evaluate g(x) for each xn.   The arithmetic mean of all N values of 

g is an approximation to the integral, and the variance of this approximation decreases as the 

number of terms increases.    

We next set out to develop a new Monte Carlo algorithm, which we call MC-6. 

In the India/Pakistan case, Eqs(5.3) had been discretised so at each generation xt+1 and yt+1 

became xt and yt, respectively.  Even with no selection, mutation or crossover, this transfer 

was sufficient to ensure that each chromosome was marginally different from its neighbour 

and its predecessor, so that the population had the variation required by Eq(7.20) to make a 

Monte Carlo method viable.   

With nuclear deterrence, however, Eqs(7.10) and (7.11) cannot be discretised, so as one 

generation succeeded another, nothing changed, i.e., the diagnostic tables of genes at 

Generation 39 (cf. Figure 4B.2) looked exactly as they had when they were initiated at 

Generation 0. To break this impasse, we deliberately introduced mutation into MC-6, not so 

much to mutate the genes as to perturb the chromosomes, and thus make each chromosome 

marginally different from its neighbour and predecessor. In fact, the optimal perturbation 
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rate per locus was found to be 4.5% (which would have been high for a GA mutation rate).  

The results can be seen in Figure 7.11 from which the performance of MC-6 can be 

compared  with that of GA-2 in Figure 7.2.  In terms of numerical results, the comparison is 

poor (even allowing for the fact that one is seed 42 and the other is seed 35, and that it took 

forty generations to achieve results from MC-6, as distinct from twenty from GA-2).  

However, a much more interesting aspect arose.  

It will be recalled that results from GA-2 were not at all robust (such that a Pareto-sort 

became necessary, see Section 7.12.2).  In contrast, results from MC-6 were surprisingly 

consistent as Table 7.16 shows. The solution P = 2706 and Q = 2125 from Figure 7.11 can 

be compared  with the ‘best’ result in the top (GA-18) row of Table 7.13, which in turn 

relates to the ‘winning’ seed, 35, of the Pareto-sort in Table 7.8 (P = 2728, Q = 2086).   The 

implication in this application is that Monte Carlo results have little need of a Pareto-sort. 

 

 
Figure 7.11   MC-6.  A Monte Carlo approach.  Seed 35.  Here P is 2706 and Q is 2125, compared 

with Table 7.8 where, for GA-2 (cf. GA-18) at the same seed,  P  was 2728 and Q was 2086 

Table 7.16  A comparison between the outputs of MC-6 and GA-2 at different seeds 
 MC-6 MC-6 GA-2 GA-2 

                     
seed 

40 generations 
P 

40 generations 
Q 

20 generations 
P 

20 generations 
Q 

0 2894 2015 4259 2342 
9 2825 2045 3659 5043 
16 2875 2074 5204 1817 
33 2928 2003 4853 2151 

35 (Tables 7.8 
and 7.13)  

2706 2125 2728 2086 

42 (Figure 7.2) 2891 2091 3486 2413 
54 2794 2035 3486 2658 
76 2824 2132 2670 5954 



 

 167 

% difference  
between biggest 

and smallest 

7.5% 6.5% 82% 227% 

7.16.6  Simulated Annealing 

It will be remembered that in Section 7.7 we developed an evolutionary algorithm, ES-1, for 

the nuclear deterrence problem [Schwefel, 1995].  At first sight this appeared to be an attrac-

tive option, for an ES really is ‘survival of the fittest’, the advantage being that no time is 

wasted on unfit or infeasible solutions. We soon found, however, that  ES-1 suffers from all 

the disadvantages traditionally associated with hill-climbing methods. Furthermore, it could 

only produce one answer at a time; there was none of the implicit parallelism (Section 2.4) 

to be found in GAs.  To overcome these disadvantages, we abandoned the ES approach in 

favour of a GA-based approach.   We did, however, return to ES-1 to help develop a 

simulated annealing algorithm, SA-5, for the India/Pakistan problem, see Section 5.8.2.  

While successful in some ways, SA-5 failed to produce the sign changes necessary for our 

prediction technique, and so was abandoned, see Section 5.9.  Simulated annealing is, in 

essence, an ES with one refinement;  Metropolis’s criterion, based on Boltzmann probab-

ilities, which gives rejected chromosomes a probabilistic ‘second chance’ as Route 2 in 

Table 5.3 shows. This still does not alter the fact that simulated annealing  only gives one 

answer per generation, and there is none of the implicit parallelism to be found in GAs or, in 

a sense, in Monte Carlo, for both these techniques implicitly process far more information 

than is apparent in their answers. For this reason, we have not considered it worth applying 

simulated annealing to the nuclear deterrence problem. 

7.17  Comments on the Non-GA Methods 

The figures calculated today confirm those obtained with much difficulty in 1972, namely 

that M is about 2360 and that β is about 0.735.  However, even with all of today’s facilities 

for handling numerical methods, including MATHEMATICA and MATLAB, finding a 

solution by numerical means for the American counter-value, P, is still a non-trivial 

problem.   

We consider the results in a reverse order of effectiveness. The ‘Brute Force’ method took 

337 separate trials to achieve acceptable convergence, despite the fact that the initial values 

were very near the fixed point;  where this is not the case, the number of trials could rise to a 

thousand or more. The Jacobi leap-frogging method  took some 300 iterations to achieve 

convergence. Likewise, the first Gauss-Seidel method took 150 iterations, while the second 
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Gauss-Seidel method took only 113 iterations to converge.  The Monte Carlo method 

produced answers which were both accurate and  robust, but it took 40 generations to work.  

All these methods are computation-intensive. In contrast, the canonical GAs we have been 

using in this chapter converge typically after only twelve generations.  Additionally,  GAs 

are  flexible, enabling us to change parameters and work out a host of ‘what if’ problem 

instances.  All in all, only Monte Carlo proved  as successful as the various GAs.   

7.18   Applying GAs  to Nuclear Deterrence 

In general terms, it seems that a  GA can efficiently find an acceptable  solution to the 

nuclear deterrence problem in the context of the following observations:  

• The data has continuity, see Section 7.12.1 

• The evaluation equations are reflexive, so that a better chromosome improves both sides 

rather than being partisan.  The number of nuclear weapons needed by the United States 

depends on the Soviet Union’s capability to destroy a sizeable proportion of them, and 

vice versa − and the means of doing both appears in the same chromosome 

simultaneously. 

• The fitness function minimises the fitness of both sides simultaneously. 

• A GA must never be forced, but it can be coaxed.   A good way to coax a GA is to 

constrain the RNG to a likely limit for each parameter7.  On the other hand, increasing the 

search space from 1024 to 1036 by adding three introns made the GA more robust.  The 

increased search space, however, also means that many more of the answers will be 

duplicated, and that a Pareto-sort will result in more dominations than previously.  It thus 

seems that there may be ‘useful’ and ‘not-so-useful’ search spaces. Perhaps at this 

juncture it may be appropriate to invoke a ‘terrain-based GA’ [Scott-Gordon et al., 1999] 

capable of pinpointing with fair accuracy those areas of any search space where solutions 

are most likely to be found.    

• The GA is designed in such a way that an audit trail is possible.  Even with the most 

complex of outputs it has always been possible, for instance, to see what was happening 

to each individual chromosome.  A standard test with any new development has been to 

reduce the population of chromosomes to ten, and the generations to two. Hence the 

behaviour of two generations of individual chromosomes could be examined in detail on 

                         
7 For example, if a particular gene is most unlikely to exceed,  say, 72, then the call to the RNG can be set to <random 
(72)>   
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the screen.  A useful side-effect of this was that genuine convergence could be 

distinguished from degeneration. 

• The probabilities of delivery must come from a realistic scenario. 

• Initially, both mutation and crossover were varied dynamically, but this did not always 

work well.  Stable results were often obtained by using fixed values such as 0.1% and 

60%, respectively. 

• Several types of crossover were tried, including uniform crossover [Syswerda, 1989].  On 

balance, single-point crossover was found to be the most effective. 

• The GA approach affords us the ease of examining the effects of varying the delivery 

probabilities, of being subjected to a surprise attack, of including (or ignoring) warheads 

delivered by piloted aircraft, of investigating various ‘worst-case’ scenarios, and of other 

such scenarios. 

• When dealing with varying initialising seeds, on using domain knowledge, namely 

 P > Q > 0.65P    and     fitness > 2000                                     .            

combined with a Pareto-sort, we were able to identify the undominated answers. 

7.19   Conclusions 

In this chapter we set out to find out if a GA-based approach could be applied to the 

problems of nuclear deterrence.  In 1972 it was thought that  America could have withstood 

an onslaught of 2354 Soviet missiles. Using Richardson’s equations and all the data about 

numbers of weapons and delivery probabilities available to us in Table 7.1, the counter-

values for America and the Soviet Union can be calculated directly by using Equation Set P4 

and Q4 (see Section 7.8.1) as P = 3229 and Q = 2573.  Neither side needs so many missiles 

under normal conditions but, under abnormal conditions, they may need a lot more. 

An evolutionary algorithm, ES-1, was developed, but this suffered from all the problems 

associated with hill-climbing methods.  As a result, a suite of inter-related GAs was then 

developed in succession. These GAs made no assumptions about missile numbers but we 

allowed them to evolve.  The first, GA-19, did not give good results but demonstrated that, 

depending on the starting seeds, many answers were possible but those with the highest 

fitness always came up with approximately the same answers.  The second, GA-2, 

incorporated a number of refinements and yielded P = 3486 and  Q = 2413. The third, GA-

20, injected a 1% elitism. The fourth, GA-22, deliberately introduced 33% redundancy into 

its chromosomes.   The fifth (GA-24) combined elitism and redundancy.  The next four GAs, 
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GA-18, GA-21, GA-23 and GA-25, invoked GA-2, GA-20, GA-22 and GA-24 over a range 

of starting conditions and then applied a Pareto-sort so that dominated results could be 

eliminated. The results are given in Table 7.13.   Finally, another GA, GA-3, used the 

discretised evaluation equations, i.e. Eqs(7.17), and  put the results of those equations into 

the genes of  subsequent generations. 

The reason for all these variants was that we were trying to improve, not so much the 

accuracy of the numerical solutions, but the robustness of our GAs, see (7) of Section 9.3.1. 

The number of missiles needed to ensure deterrence (P = 2728, Q = 2086, see Table 7.13)  

has been determined by developing a GA and subjecting its results to a Pareto-sort. It is 

much easier to use this GA than a conventional numerical method (as we had to in 1972 

when our result for P was 2354), as the GA has greater functionality. It makes little 

difference whether the GA is ‘straight’, elitist, redundant or both elitist and redundant, but 

these variations do impact the GA’s stability and robustness, as do the discretised evaluation 

equations, namely Eqs(7.17).  

Appendix 7A 
 

Nuclear Weapons Effects 

Blast     

The effects of nuclear weapons depend on the heights at which they explode.  Strategic 

nuclear weapons would normally be detonated at heights guaranteed to maximise aero-

dynamic shock or ‘blast’8.  The mathematics of blast are complex, and there is no simple 

relationship connecting pressure with the size of the weapon (the ‘yield’, normally expressed 

in kilotons (KT) of conventional explosive) and distance from the target.   

It is possible to scale blast effects for different yields.  For a given static overpressure for 

two different weapons, 1 and 2,  
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 .                                                    (7A.1) 

There is an established chart of pressure effects at a yield of 1KT, thus allowing Eq(7A.1) to 

be applied to any other yield, Y, viz. 

                         
8 Detonating these big weapons at heights designed to maximise heat would cause widespread destruction to natural 
resources such as forests and arable farmland (which it turns into volcanic-type rock), while using heights known to maximise 
nuclear radiation could cause the target to be a ‘no-go’ area to humans for about a decade.  As a weapon of war, it would be 
normal to maximise blast, in that this does least long-term damage 



 

 171 

                   DistanceY = Distance1KT  × Y 1/3 .                                              (7A.2) 

The damage done by multiple warheads can also be scaled.  If a single warhead of yield Y is 

replaced on the same missile by w equal-yield MIRV warheads, then on using Eq(7A.1) we 

obtain  

  Distancew = DistanceY × 
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If the probability of destruction of a Soviet missile is �, then the probability of its 

destruction by one of W  MIRV American warheads is µ / W 1/3 .   Similarly, the probability 

of dest-ruction of an American missile by one of  w  MIRV Soviet warheads is  v / w 1/3. 
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 Appendix 7B  

The Probabilities of Delivery 

Principles 

Suppose one side were to decide that it was vital to their defence that a particular target in 

their opponent’s territory be destroyed.   Intelligence reports would give the location and 

size of the target and to what extent it was ‘hardened’ to withstand a nuclear hit.   From this 

information it would be easy to calculate the size of weapon to be used and the Height-of-

Burst and ground zero to optimise damage and minimise fallout.   Assume for the present 

that one missile is capable of doing the job, and that it carries a warhead of suitable yield.  

What can go wrong? 

• The missile may not be serviceable at the precise moment it is required, either because of 

a mechanical or electrical fault. 

• It may already been destroyed by the opponent’s first strike. 

• The launching may be aborted. 

• The missile may be intercepted or ‘countered’ while in flight. 

• There may be serious guidance or navigational errors. 

• Nuclear fission or fusion may not take place on target, i.e. the missile may land at the 

right place, but ‘blind’. 

• Even if everything functions correctly the accuracy of the delivery system may be 

incompatible with the warhead’s ‘radius of damage’, i.e. the warhead explodes but not in 

the right place to damage the target to the extent required. 

A table of probabilities is given below.   This  gives the chances of things not going wrong. 

Table 7B.1  The component probabilities  of delivery 
Type ICBM  SLBM  Aircraft delivered 

Mechanical fault 0.9 0.9 0.8 
Victim of first strike 0.8 0.95 0.8 
Abortive launch 0.95 0.95 0.95 
Intercepted or ‘countered’ 0.9 (Note 1) 0.9 (Note 1) 0.6 
Guidance error 0.99 0.99 0.9 
Blind 0.99 0.99 0.95 
Combined probability 0.6 (0.75, Note 2) 0.72 (0.76, Note 2) 0.33 (0.41, Note 2) 

Note 1. Destruction by an ABM is not included in these figures.   It is assumed that each ABM is 
given a 100% chance of destroying its target missile 

Note 2. It is unlikely that the United States would be allowed to strike first.   Figures in 
parentheses give typical probabilities thought to have been open to the Soviet Union 
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It should now be apparent why an ‘overkill’ is always needed.  Each side needs an assurance 

(say, 95%) that a target will be destroyed.   Even if an ICBM and an SLBM were tasked to 

destroy the same target, the probability of destruction would still only be 

                    ( ) ( )72.01 6.011 −−−  = 0.888  or  89%                                      . 

which is still not a sufficient guarantee that the target will be destroyed.  It follows that 

triple- and sometimes even quadruple-tasking is the norm. 
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7.16.4  Leap-frogging Iteration 3 (a Second Gauss-Seidel Variant) 

We next iterate by leap-frogging between x and y  but in yet another sequence, taking two 

attempts at each x and y, viz. 

yn+1  =  g1 (xn , yn),        yn+2  =  g1 (xn  , yn+1),    xn+1  = g2 (xn , yn+2),     xn+2  = g2 (xn+1 , yn+2), 

yn+3  = g1 (xn+2 ,  yn+2),  yn+4  = g1 (xn+2 ,  yn+3),  xn+3  = g2 (xn+2 , yn+4),  xn+4  = g2 (xn+3 , yn+4), 

etc.  where n = 0, 1, 2 ... [Buckingham, 1962]. 

Then, having set an initial value M0, and using the same machinery as before, we obtain  

β1 = exp (f / M0) ,  β2 = exp (f / M1) , M1 = f / ln (β0 − � ),    M2 = f / ln (β1 − � ) ,         . 

β3 = exp (f / M2),   β4 = exp (f / M3) , M3 = f / ln (β2 − � ) ,   M4 = f / ln (β3 − � ) ,         . 

        β5= exp (f / M4) , β6 = exp (f / M5),   M5 = f / ln (β4 − �,) ,  M6 = f / ln (β5 − � ) ,    etc. 

It was again necessary to perturb β  very slightly (by � = 0.0002) in order to start converg-

ence.  This was a pity, for the desire to avoid perturbation had spawned this trial.  Starting, 

as before, with M0 = 3229,  M1 = 3214 while M65 = 2368 and M66 = 2365.  Hence asymptotic 

convergence had occurred;  indeed, at 66 iterations it was significantly quicker than the 

earlier Gauss-Seidel at 150 iterations.   At this point β  was 0.738. 
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where n = 0, 1, 2, ... [Buckingham, 1962].  Then, having set an initial value M0,  if we 

substitute β  for y and M for x in Eq(7.18) and Eq(7.19), respectively, we obtain 

β1 = exp (f / M0),  M1 = f / ln β1                                                    ,    

 β2 = exp (f / M1),  M2 = f / ln β2                                                    .    

β3 = exp (f / M2),  M3 = f / ln β3 ,  etc.                                          .                                           

In this case, because M0 and M1 are the same, it was necessary to perturb β very slightly in 

order to start convergence.   Starting, as before, with M0 = 3229,  M1 = 3222 , M149 = 2361 

and M150 = 2360. Asymptotic convergence had occurred by the 150th iteration.  At this point 

β is 0.735, meaning that the Americans could expect to lose just over a quarter of their miss-

iles as a result of a Soviet first strike.  The figure obtained in 1972 was 2354, see Section 

7.6. 

7.16.4  Leap-frogging Iteration 3 (a Second Gauss-Seidel Variant)      

We next iterate by leap-frogging between x and y  but in yet another sequence, taking two 

attempts at each x and y, viz. 

yn+1  =  g1 (xn , yn),        yn+2  =  g1 (xn  , yn+1),    xn+1  = g2 (xn , yn+2),     xn+2  = g2 (xn+1 , yn+2), 

yn+3  = g1 (xn+2 ,  yn+2),  yn+4  = g1 (xn+2 ,  yn+3),  xn+3  = g2 (xn+2 , yn+4),  xn+4  = g2 (xn+3 , yn+4), 

etc.  where n = 0, 1, 2 ... [Buckingham, 1962]. 

Then, having set an initial value M0, and using the same machinery as before, we obtain  

β1 = exp(f / M0) , β2 = exp(f / M0 + �M) ,   M1 = f / ln(β2 ),   M2 = f / ln(β2 − �β ),         .          

β3 = exp(f / M2),  β4 = exp(f / M2 + �M) ,    M3 = f / ln(β4 ) ,  M4  = f / ln(β4 − �β) ,         . 

  β5 = exp (f / M4), β6 = exp (f / M4 + �M),   M5 = f / ln (β6) ,  M6 =  f / ln(β6− �β) ,    etc. 

It was necessary to perturb M and β  very slightly (by �M = 3,  �β = 0.0025) in order to ensure 

convergence.  This was a pity, for the desire to avoid perturbation had spawned this trial.  

Starting, as before, with M0 = 3229,  M1 = 3210 while M52 = 2367 and M53 = 2353.  Hence 

asymptotic convergence had occurred;  indeed, at 53 iterations it was significantly quicker 

than the earlier Gauss-Seidel at 150 iterations.   At this point β  was 0.734. 

7.16.5   A Monte Carlo Method 

In Section 5.8.1 we used a Monte Carlo method to see if we could predict instabilities in the 

India/Pakistan situation, and while reasonable numerical results were obtained, the lack of 
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sign changes mitigated against it. The idea of the Monte Carlo method is that an integral 

may be represented by a sum , namely 

where n = 0, 1, 2, ... [Buckingham, 1962].  Then, having set an initial value M0,  if we 

substitute β  for y and M for x in Eq(7.18) and Eq(7.19), respectively, we obtain 

β1 = exp (f / M0),  M1 = f / ln β1                                                    ,    

 β2 = exp (f / M1),  M2 = f / ln β2                                                    .    

β3 = exp (f / M2),  M3 = f / ln β3 ,  etc.                                          .                                      

In this case, because M0 and M1 are the same, it was necessary to perturb β very slightly in 

order to start convergence.   Starting, as before, with M0 = 3229,  M1 = 3222 , M149 = 2361 

and M150 = 2360. Asymptotic convergence had occurred by the 150th iteration.  At this point 

β is 0.735, meaning that the Americans could expect to lose just over a quarter of their miss-

iles as a result of a Soviet first strike.  The figure obtained in 1972 was 2354, see Section 

7.6. 

7.16.4  Leap-frogging Iteration 3 (a Second Gauss-Seidel Variant)  ORIGINAL 

We next iterate by leap-frogging between x and y  but in yet another sequence, taking two 

attempts at each x and y, viz. 

yn+1  =  g1 (xn , yn),        yn+2  =  g1 (xn  , yn+1),    xn+1  = g2 (xn , yn+2),     xn+2  = g2 (xn+1 , yn+2), 

yn+3  = g1 (xn+2 ,  yn+2),  yn+4  = g1 (xn+2 ,  yn+3),  xn+3  = g2 (xn+2 , yn+4),  xn+4  = g2 (xn+3 , yn+4), 

etc.  where n = 0, 1, 2 ... [Buckingham, 1962]. 

Then, having set an initial value M0, and using the same machinery as before, we obtain  

β1 = exp (f / M0) , M1 = f / ln (β0 − � ) , β2 = exp (f / M1) ,   M2 = f / ln (β1 − � ) ,         . 

β3 = exp (f / M2) ,  M3 = f / ln (β2 − � ) , β4 = exp (f / M3) ,    M4 = f / ln (β3 − � ) ,         . 

        β 5= exp (f / M4) , M5 = f / ln (β4 − �,) , β6 = exp (f / M5) ,   M6 = f / ln (β5 − � ) ,    etc. 

It was again necessary to perturb β  very slightly (by � = 0.0008) in order to start converg-

ence.  This was a pity, for the desire to avoid perturbation had spawned this trial.  Starting, 

as before, with M0 = 3229,  M1 = 3214 while M65 = 2368 and M66 = 2365.  Hence asymptotic 

convergence had occurred;  indeed, at 66 iterations it was significantly quicker than the 

earlier Gauss-Seidel at 150 iterations.   At this point β  was 0.738. 

7.16.5   A Monte Carlo Method 
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In Section 5.8.1 we used a Monte Carlo method to see if we could predict instabilities in the 

India/Pakistan situation, and while reasonable numerical results were obtained, the lack of 

sign changes mitigated against it. The idea of the Monte Carlo method is that an integral 

may be represented by a sum , namely 

where n = 0, 1, 2, ... [Buckingham, 1962].  Then, having set an initial value M0,  if we 

substitute β  for y and M for x in Eq(7.18) and Eq(7.19), respectively, we obtain 

β1 = exp (f / M0),  M1 = f / ln β1                                                    ,    

 β2 = exp (f / M1),  M2 = f / ln β2                                                    .    

β3 = exp (f / M2),  M3 = f / ln β3 ,  etc.                                          .                                           

In this case, because M0 and M1 are the same, it was necessary to perturb β very slightly in 

order to start convergence.   Starting, as before, with M0 = 3229,  M1 = 3222 , M149 = 2361 

and M150 = 2360. Asymptotic convergence had occurred by the 150th iteration.  At this point 

β is 0.735, meaning that the Americans could expect to lose just over a quarter of their miss-

iles as a result of a Soviet first strike.  The figure obtained in 1972 was 2354, see Section 

7.6. 

7.16.4  Leap-frogging Iteration 3 (a Second Gauss-Seidel Variant) 

We next iterate by leap-frogging between x and y  but in yet another sequence, taking two 

attempts at each x and y, viz. 

yn+1  =  g1 (xn , yn),        yn+2  =  g1 (xn  , yn+1),    xn+1  = g2 (xn , yn+2),     xn+2  = g2 (xn+1 , yn+2), 

yn+3  = g1 (xn+2 ,  yn+2),  yn+4  = g1 (xn+2 ,  yn+3),  xn+3  = g2 (xn+2 , yn+4),  xn+4  = g2 (xn+3 , yn+4), 

etc.  where n = 0, 1, 2 ... [Buckingham, 1962]. 

Then, having set an initial value M0, and using the same machinery as before, we obtain  

β1 = exp (f / M0) , β2 = exp (f / M1) , M1 = f / ln (β0 − � ),    M2 = f / ln (β1 − � ) ,         . 

β3 = exp (f / M2),   β4 = exp (f / M3) , M3 = f / ln (β2 − � ) ,   M4 = f / ln (β3 − � ) ,         . 

        β5= exp (f / M4) , β6 = exp (f / M5),   M5 = f / ln (β4 − �,) ,  M6 = f / ln (β5 − � ) ,    etc. 

It was again necessary to perturb β  very slightly (by � = 0.0002) in order to start converg-

ence.  This was a pity, for the desire to avoid perturbation had spawned this trial.  Starting, 

as before, with M0 = 3229,  M1 = 3214 while M65 = 2368 and M66 = 2365.  Hence asymptotic 

convergence had occurred;  indeed, at 66 iterations it was significantly quicker than the 

earlier Gauss-Seidel at 150 iterations.   At this point β  was 0.738. 
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7.16.5   A Monte Carlo Method 

In Section 5.8.1 we used a Monte Carlo method to see if we could predict instabilities in the 

India/Pakistan situation, and while reasonable numerical results were obtained, the lack of 

sign changes mitigated against it. The idea of the Monte Carlo method is that an integral 

may be represented by a sum , namely 
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CHAPTER 8 
 

The Effects of Redundancy in the Chromosomes of an Arms Race GA 

8.1 Introduction 

Several authors, including the present one, have found that a modest redundancy in 

chromosomes improves the performance and robustness of GAs. At the Genetic and 

Evolutionary Computation Conference in Orlando, Florida, July 1999, four papers involving 

redundancy [Levenick, 1999; Julstrom, 1999; Raich, 1999; Hackworth, 1999] were pres-

ented.   All four authors had  found the same thing in different fields, and although each of 

them had put forward different reasons as to why this should be so, all agreed that it was a 

manifestation of the exploration/exploitation dilemma  [Holland, 1992].   

A sizeable literature on redundancy in the chromosomes of a GA is now readily available1.  

Our interest only goes as far as determining whether or not  redundancy will enhance the 

performance of our arms race model and, if so, how to exploit its beneficial effects. 

Much has been written [Cohen and Stewart, 1994] that the biological chromosome is hugely 

redundant. Apes and humans have, it seems, millions of genes which have no apparent role.  

These genes (called introns)2 are widely regarded by geneticists as ‘junk’, although they are 

freely interspersed with other genes (exons) which are vital to our everyday existence and 

continued well-being.  Nevertheless, all our genes are mutated, selected for reproduction (or 

not) and crossed-over, no matter whether they have a function or not. It was decided to 

apply this principle to our GAs, and to test whether or not redundancy in an electronic 

chromosome resulted in changed behaviour or a different output.   

A particular real-valued GA involving an arms race between two nations, India and Pakistan 

(see Chapter 5), needs ten genes (five per nation).  It so happened chronologically that we 

had previously been working on the 3-nation (Israel/Egypt/Syria) problem and so had the 

source code for an integer-coded GA using 15-gene chromosomes  (called GA-4) readily 

available.  In the interests of speed, the 15-gene chromosome was used for the 10-gene 

India/Pakistan problem (under the name GA-26) effectively making the chromosome 33% 

redundant.  The redundant genes, the introns, were not left empty, but were filled randomly 
                                                 
1  See, inter alia, the bibliographies maintained at the University of Sussex ( http://www.cogs.susx.ac.uk/lab/adapt/nnbib.html) 
and at the Santa Fé Institute (http://www.santafe.edu/sfi/publications/95wplist.html) 
2 Introns are defined biologically as segments of transcribed (functional) genes which are removed during RNA maturation.  
Technically, there is much more redundant DNA other than introns. For simplicity, however, the word intron is used in the 
thesis (as in most EA literature) to refer generically to all  redundant DNA   
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with integers (1 to 999), selected (or not) for reproduction, crossed-over and mutated in the 

normal way.       

The results from GA-26 were robust, but it did seem appropriate to develop a new GA with 

no redundancy in the chromosome, and this was called GA-0. It was later found (by 

interchanging genes in two more GAs, GA-27 and GA-28, see Section 8.6) that GA-0 was 

epistatic.  Finally, another GA was developed with twenty-gene chromosomes of which (as 

before) only ten genes were used, so there was 50% redundancy.  It was called GA-9.       

In essence, this chapter compares the behaviour and performance of three GAs, all created 

as identical as possible, and all looking at the same problem from different chromosomal 

viewpoints.  The first GA, GA-0, uses ten-gene chromosomes, thus having no redundancy; 

the second, now called GA-1, has fifteen gene chromosomes and hence 33% redundancy, 

and the third, GA-9,  has twenty gene chromosomes and consequently 50% redundancy. 

In summary, the search space of GA-0 is  1024, that of GA-1 is 1036, and that of GA-9 is 

1048.   

8.2     The Canonical GA 

The ten/fifteen/twenty genes of the three GAs are set up as genotypes, i.e. populations of 

encoded chromosomes, and initially filled from a constrained RNG. Genes from each string 

are then used appropriately in the two evaluation equations taken  from the Mayer-Kress 

[1989] discretisation of the Richardson arms race Eqs(5.3), namely 

                                     xt+1 =   xt + �k1,1 (xs - xt) +  k1,2 yt�(xm - xt)                                        . 

                                     yt+1 =   yt  + �k2,2 (ys - yt) +  k2,1 xt�(ym - yt) .                              ( 8.1) 

All three algorithms used Eqs(5.7) as evaluation equations, namely 

xt+1 =   xt + �(k1,1  / 100) (xs / 100) xt  + ( k1,2 / 100) yt�( xm -  xt ) / 85                   . 

yt+1 =   yt + �(k2,2  / 100) (ys / 100) yt   + ( k2,1 / 100) xt�( ym  -  yt) / 85.          (8.2) 

The best solution in each generation is chosen in accordance with the fitness function given 

by Eq(5.5), whose role is to highlight those chromosomes which best fit the requirements of 

the situation under consideration.   Roulette wheel selection (see Section 4.3) is then used to 

choose individuals on the basis of their fitness, giving the ‘better’ individuals (i.e. those 

with greater fitness) a chance to reproduce more frequently than the poorer ones. The 

selected chromosomes are then mutated, crossed-over, and reassembled, and then taken into 
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use as the new generation replacing the old.  If the figures converge at all, they do so quite 

quickly, typically in twenty generations in this type of application. 

8.2.1   Fundamental Issues 

Before proceeding any further, three fundamental points must be made:  

• The genotype is filled directly with integers, which are the contents of the phenotype on 

a one-to-one mapping basis, the only embryogeny being the occasional requirement to 

divide certain genes by factors of ten in order to compute the evaluation equations.  

Actual arms race phenotype figures typically lie in the hundreds or thousands and so 

lend themselves naturally to direct mapping.  Direct mapping may be unusual but, as 

Bentley [1999] argues, phenotype representation does not have to be different from 

genotype encoding.   Nevertheless, finding a good coding may be the single most 

important factor in the success or failure of a GA.   If we use a bad coding the GA may 

perform worse than other probabilistic search methods [Miettinen et al., 1999]. 

• During mutation, every element (locus) of every gene is sampled individually to see if it 

should be mutated or not, so mutation is quoted in terms of a mutation probability per 

locus. 

• The meaning of the word redundancy.  An intron can mean two things: 

o  An inactive gene which is lying around waiting to be expressed or activated, the 

principle being to introduce additional genetic material when needed in order to 

adapt to environmental changes. One classic study of non-stationary optimisation 

[Goldberg and Smith, 1987] created and stored two representations of each gene, 

but only one was expressed at any one time.  The structured GA (sGA) [Dasgupta, 

1995] has as its central feature several levels of genes in a hierarchical ‘pecking 

order’ together with a gene activation mechanism.  The Implicit Redundant Rep-

resentation GA (IRR GA) [Raich and Ghaboussi, 1999] uses redundancy to rep-

resent a variable number of location-independent design parameters.  Put in more 

general terms, several distinct chromosomes represent each candidate solution to 

the target problem  [Julstrom, 1999]. 



 

 176 

o A gene which is an integral part of its chromosome but is not used in any 

evaluation equation or in any other calculation.  It is just there.  It is not left empty, 

but is initially filled randomly with reasonable integers (e.g. 1 to 99 or 1 to 999, 

see (12) of Section 4.2), selected (or not) for reproduction, crossed over and 

mutated in the normal way.     It may have to be constrained, for ‘wild’ genes can 

grow excessively large and may disrupt their neighbours for reasons which are 

discussed in Section 8.3. 

In this chapter we employ the second type of intron. At first sight, the inclusion of red-

undant genes (or any other superfluous material) might seem to hinder genetic search.  We 

will demonstrate experimentally that in fact the insertion of ‘useless’ introns brings a 

number of advantages (see Section 8.9).   

8.2.2    The Three GAs 

The GAs under experimental investigation, GA-0, GA-1 and GA-9, were made as identical 

as possible and then compared. (They had individually been prepared at separate times for 

disparate purposes, so initially they were different in many ways).  They were not the only 

GAs which could have been chosen for the experimentation;  this is one case among many 

others.  The three GAs ultimately had a population of 100, and  were run for 40 generations.  

For the ensuing presentation, the GAs employed a seed of 7,3 and an average defexp% of 

6.5%.  Except where otherwise stated, mutation  increased 4 by 0.0005 at each iteration 

(generation).   The single-point crossover started at 0.65 and decreased by 0.002.  The 

evaluation equations were Eqs(8.2), with scaling factors chosen so that the shape of the 

graphical output of the GA bore a fair resemblance to the IMF plot, see Chapter 5. 

The configuration of the genes in the three GAs is as shown in Tables 8.1,  8.2 and 8.3 

below.  The introns are shaded.  The parameters are those found in Eqs(8.2), all of which 

were represented as 2- or 3-digit integers.  The reason for choosing this particular configur-

ation for GA-1 (Table 8.2) is that the shaded introns were originally genes associated with  

the third nation which were, literally, made redundant in the case of the 2-nation scenario.  

There was no special reason for choosing the ‘alternates’ configuration of GA-9 (Table 8.3).  

In neither GA-1 nor GA-9 did the actual point (locus) of crossover play any part in the 

placing of the introns;  this will be considered later (Section 8.9).  
                                                 
3 Many other seeds were of course used, and they achieved substantially the same results.   For demonstration purposes it 
was thought better to concentrate on just one seed so that everything was consistent 
4   Received wisdom would reduce the mutation rate and increase the crossover rate at each iteration (generation).  It was 
found that doing the reverse made the GA  more robust 
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Table 8.1  Configuration of genes in the chromosome of GA-0.   No redundancy 5   

Column 2 3 4 5 6 7 8 9 10 11 
GA-0 k 1,1 k2,2 k1,2 k2,1 xs ys xm ym xt yt 

Table 8.2  Configuration of the 15 genes in the chromosome of  GA-4 (designed for a 3-nation 
problem) and GA-1.   The redundancy here is 33%  (10 genes used out of a possible 15)   

Column 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

GA-4 k1,1 k2,2 k3,3 k2,3 k1,2 k1,3 xs ys zs xm ym zm xt yt zt 

  GA-1 k1,1 k2,2
  

k1,2 k2,1 xs ys  
xm ym 

 
xt yt      

               
Table 8.3  Configuration of  genes in the chromosome of GA-9. 
The redundancy here is 50% (10 genes used out of a possible 20)   

Column 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

GA-9 k1,1  k2,2  k1,2  k2,1  xs  ys  xm  ym  xt  yt  

8.2.3  Ensuring Similarity 

By making all the settings identical where possible, the three GAs were made as similar as 

they could be.   This posed certain problems: 

(1) Random Numbers.   GAs make extensive use of RNG. The output of these RNG is 

designed, despite their randomness, always to be in the same sequence (so that, in 

general, results are reproducible). A program implementing a GA with bigger size 

chromosomes (i.e. ones with more genes or more elements, or both) calls for random 

numbers a  lot more often than one with  small size chromosomes, and not only during 

the GA’s initialisation; during mutation every element of every gene is sampled 

individually to see whether it should be mutated or not. Hence there can be no precise 

mapping  between GAs with chromosomes of different sizes. 

(2) Scaling.   The three GAs, GA-0, GA-1 and GA-9, had originally used different scaling 

factors, so a mean had to be found if comparisons were to be made. Additionally, the x, 

y inputs to the fitness function, given by Eq(5.5),  must be scaled so that they lie 

between  ± 100, otherwise the results are not valid [Schaffer et al., 1993].   At best one 

can compromise and hope that juggling the figures to match these two requirements 

does not distort the performance of (and hence invalidate the comparison between) these 

GAs.    

                                                 
5 Each population member in a GA consists of a chromosome embedded in a lot of other administrative and numerical 
information, making up quite a long string.  For a typical example see Table 4.1.  In our GAs, columns 0 and 1 are always 
used for generation and serial number,  respectively  (for identification purposes).  Hence the first column of the chromosome 
is always 2, and the last one is 11 (10-gene), 16 (15-gene) or 21 (20-gene) 
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(3) Mutation.   Every element (in every gene) in the chromosomes of GA-0, GA-1 and GA-

9 is sampled individually to see if it should be mutated or not.  Although it is customary 

to refer to a mutation rate, it would be more correct to refer to a mutation probability 

per element (or locus).  When we started, a count was put on the RNG of the three GAs, 

and it was noted that GA-9 with twenty genes called for an RNG upwards of 120,000 

times per run, while GA-0 with ten genes required less than half that number.  In the 

context of mutation, therefore, the effect of introducing introns was merely to scale the 

mutation probability up or down, and this is neither productive nor illuminating.  This 

was overcome by altering the mutation rate appropriately.  For GA-0 (ten genes) it was 

set to 1.4%,  for GA-1 (fifteen genes) it was set to 1.05%,  and  for GA-9 (twenty genes) 

it was set to 0.7%.  Hence the same overall mutation is applied to each chromosome 

irrespective of its length, and this ensures a more equitable comparison. 

(4) Crossover.   Crossover, although essential, is fundamentally disruptive.  In Section 4.3 it 

was explained that our GAs are designed so that mutation and crossover can take place 

uninhibited by cell boundaries.  This means, for example, that crossover can occur in the 

middle of a gene. Far from being undesirable, this should (and is intended to) reduce the 

disruptive effect of crossover (at the risk of introducing  a small level of ‘quantum’ noise 

from the ‘bin-ends’). Levenick [1991] showed that introns reduce schema loss due to 

crossover.   Indeed, he demonstrated that crossover provides a mechanism for evolution 

in general as intron regions are not (directly) subject to selection pressure and thus may 

vary widely and so more of the parameter space is searched.  It also reduces the effects 

of epistasis, and so makes the algorithms more robust.  We shall see if this is borne out 

in our experiments. 

8.2.4   Outputs 

Graphical outputs from the three GAs, plotting defence expenditures xt (blue) and yt (red) 

against forty generations are shown at Figures 8.1,  8.2 and 8.3.  From these graphs it would 

appear that increasing redundancy makes convergence take place later;  is this good?  To 

answer this, we need to consider two types of convergence: 

(1)    Homogeneous convergence, see (5) of Section 2.13.  A little of this is desirable, but 

too much induces a loss of genetic diversity which incapacitates crossover and inhibits 

exploration. 
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(2)   Diverse convergence; see (6) of Section 2.13.   “ … the maintenance of a diverse 

population after convergence is reached” [Levenick, 1991].   This would be an ideal, 

for it would combine exploration and exploitation,  Holland’s basic dilemma  [1992]. 

We believe that the chromosomes of GA-0, GA-1 and GA-9 are maintaining some level of 

genetic diversity − albeit not as much as we would have liked − and that this is not only 

demonstrated by a comparison between Figures 8.1, 8.2 and 8.3, respectively,  but also by 

the fact that GA-1 and GA-9, when run,  are noticeably more robust than GA-0.   

(Note. Figures 8.1, 8.2 and 8.3 are all Option 8 graphs using a defexp% of 6.8% throughout 

(see Section 4.8).  Population  is 100, the seed is 34, and the rate-factors are the same for the 

three GAs.  The final values of xt , yt and fitness at genmax (Generation 39) are shown in 

grey print.  The reason for the different mutation rates is explained in (3) of Section 8.2.3).   

 
Figure 8.1   The performance of GA-0 (xt and yt   against generations). 

No redundancy.  Mutation rate 1.4%   Convergence starts at Generation 10 
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Figure 8.2   The performance of GA-1 (xt and yt against generations). 

33% redundancy.   Mutation rate 1.05%.   Convergence starts at Generation 32 

        
Figure 8.3   The performance of GA-9 (xt and yt against generations). 

50% redundancy.   Mutation rate 0.7%.   Convergence is uncertain until Generation 36 

8.3   An Architectural Difficulty 

Great care was taken over the architecture of the original GAs. Section 4.3 explained that 

one of their features was that they took pairs of rows of genes and ‘unbundled’ them into 

two columns so that mutation and crossover could take place uninhibited by cell boundaries. 

This was a deliberate ploy which worked well until it proved necessary to write a new GA, 

GA-9, to cater for 50% redundancy.   It was suddenly found that many runs did not reach 

completion, being interrupted by floating-point errors.   Examination of the stage-by-stage 

diagnostic tables revealed that whereas the ‘active’ genes  − the exons − were behaving 

impeccably (they are, after all, constrained for each generation by the evaluation equations), 

some of the redundant genes had grown uncontrollably (by the thirtieth generation the 
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values of two of them had exceeded 105).  Furthermore, these ‘rogue’ cells appeared to be 

infecting their neighbours.   The reason  was  that some of the redundant genes had grown 

under mutation to the point where they occupied more than their allotted number of 

elements in the gene and so ‘overflowed’ into the  space belonging to the two neighbouring 

genes.  In the ‘unbundled’ state (where mutation takes place) there was nothing to stop an 

overflow happening.  When it did happen, the ‘rebundled’ genes were corrupted.  The 

answer to this problem was to limit all the redundant genes at every generation to the 

number of elements catered for in the unbundling and rebundling processes.  This situation 

had considerable nuisance value at the time, and was a classic instance of a deliberate and 

desired design feature turning into a near-disaster.  

8.4    What the Introns do 

Our introns are not used for any purpose, unlike those referred to in Section 8.8,  where 

there are mechanisms for translating introns into exons and vice versa dynamically.   Since 

the introns are not used, they are not directly subject to selection pressure, neither can they 

help to find new solutions, nor enhance the useful search space.  However, they are not 

totally useless;  they do affect the mutation probability, and they also affect how the cross-

over operator tears up good building blocks. 

8.5   Predicting Instability 

Figures 8.4,  8.5 and 8.6  plot the sign of  a – c which is an approximate measure of the 

direction of curvature of the limit cycle.  (As in Chapters 5 and 6,  ten or more sign changes 

indicate an impending instability).  

In particular, the three figures predict instabilities in GA-0, GA-1 and GA-9, respectively. 

As explained in Section 3.8, instabilities between warring parties are always prefaced by a 

sharp drop in the number of minus signs.  Sharp drops can clearly be seen in all three figures 

at  average defexp% of about 6.6% and 8%. 

From this we conclude that the changes in the direction of curvature of the limit cycle, so 

vital in predicting instability, have not been altered by redundancy (in that sharp drops still 

occur in the same places).   It is difficult to quantify the generality of the conclusion, i.e. that 

changes in the direction of curvature of the limit cycle are unaffected by redundancy in the 

chromosomes, but it seems valid in the context of our application.  
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       Figure 8.4    Prediction plot for GA-0  (no redundancy) 
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Figure 8.5    Prediction plot for GA-1 (33% redundancy) 
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Figure 8.6  Prediction plot for GA-9 (50% redundancy) 
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8.6  Epistasis 

In Section 2.12, we said that the degree of dependent parameter interaction is called 

epistasis.  Epistasis is about genes acting in combination to produce (or inhibit) solutions. In 

GAs, less epistasis is preferable to more, and this is one reason for introducing redundancy 

into chromosomes, for redundancy, within reason, is known to reduce epistasis. To see the 

effects of epistasis, we interchanged the positions of several genes in GA-0, resulting in two 

other GAs, GA-27 and GA-28, as shown in Table 8.4.  In GA-27 all the x terms were moved 

to the left of two rate-factors, while the y terms were contiguously placed to the right.  This 

representation leaves each evaluation equation essentially intact, even after crossover.   

Hence  its output (Figure 8.7) is not dissimilar from that of Figure 8.1.   In contrast, in GA-

28 like stays with like even after a crossover, so xt and yt are likely to end up in the same 

individual.    Hence the output is likely to be very different from the other two GAs and so it 

is, as can be seen in Figure 8.8.    

  Table 8.4  Configuration of genes in the chromosomes of the non-redundant  GA-0, GA-27 and 
GA-28 which test for epistasis.  Note the interchange of genes between the three    

genes 2 3 4 5 6 7 8 9 10 11 
GA-0 k1,1 k2,2 k1,2 k2,1 

xs ys xm ym xt yt 

GA-27 xt xs xm k1,1 k1,2 yt ys ym k2,1 k2,2 

GA-28 xt yt xs ys xm ym k1,1 k2,1 k1,2 k2,2 

 

 
Figure 8.7   The performance of GA-27 (xt and yt   against generations). 
No redundancy.  Mutation rate 1.4%   Convergence starts at Generation 6 
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Figure 8.8  The performance of GA-28 (xt and yt   against generations). 

No redundancy.  Mutation rate 1.4%   No convergence 

8.7   Testing for Epistasis  

Naudts et al. [1998], taking a slightly different viewpoint, state that epistasis  is the lack of 

independence amongst genes with respect to the fitness function.  In other words, it is a 

measure of how important two loci are in determining a chromosome’s fitness.  In our 

experiments with GA-0, differing arrangements of genes within the same (non-redundant) 

chromosome gave different answers and this indicates the influence of epistasis.   According 

to de Jong et al. [1997], the conventional wisdom is that recombination (crossover) should 

have a relative advantage over mutation when epistasis is small, while mutation should have 

the edge when epistasis is high.   It was decided to test the level of epistasis by developing 

three new GAs based on the architecture of a problem generator [Kauffman, 1989].   These 

GAs were designated GA-29, GA-30 and GA-31 and correspond to GA-0, GA-1 and GA-9.  

The genes are as before, but the ffn used is the inverted ‘Fitness Function F6’ designed by 

Schaffer et al. [1993]  for the abstract examination of GAs.   

F6 decodes the chromosome (or pertinent parts thereof) and generates two numbers lying 

between  ±100 which it plugs into the  ffn 
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whose output lies between  0.0 and  1.0. 
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Following the examples from de Jong et al.’s [1997] problem generators, curves for fitness 

were drawn for all three GAs against  the number of  generations;  one using only crossover, 

GA-c (green), one using only mutation, GA-m (red), and one using both, GA-b (blue).   The 

degree of epistasis can then be assessed by pictorial comparison with  de Jong et al.’s [1997] 

curves.   Put crudely, the wider apart the three curves are, the lower the epistasis  is. 

The population for all three GAs was 100 chromosomes, the crossover rate a typical 0.6, 

and the initial mutation rates were 1.4%, 1.05% and 0.07%, respectively, to ensure an 

equitable comparison, see (3) of Section 8.2.3.  Each run covered 100 generations. 

GA-38ab (no redundancy)

700

750

800

850

900

950

1000

1050

0 10 20 30 40 50 60 70 80 90 100

generations

fit
ne

ss GA-b
GA-m
GA-c

 
Figure 8.9    GA-29 (no redundancy). Seed 7. Comparative fitnesses for GA-b, GA-m and GA-c.  
defexp% 3.3,  initial mutation rate 1.4% minus 0.0001% per generation for 100 generations, initial 
crossover rate 0.6 % plus 0.0006% per generation.  Note the offset zero;  this is for pictorial clarity 
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Figure 8.10  GA-30 (33% redundancy). Comparative fitnesses for GA-b, GA-m and GA-c 
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GA-38axx (50% redundancy)
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Figure 8.11  GA-31 (50% redundancy). Comparative fitnesses for GA-b, GA-m and GA-c 

de Jong et al. [1997] lead us to believe that (the standard) GA will dominate on low epistasis 

problems, and it does.  As epistasis increases GA-m  does better.  As de Jong et al. [1997] 

say, crossover and mutation do not operate in a vacuum. They are components which 

interact in complex ways with all the other components of an evolutionary system, and the 

effects of their synergy can be seen in the charts above. The performance of GAs depends 

on a proper balance in the next generation between exploration, via genetically different 

offspring, and exploitation via genetically identical offspring. Too high a default  mutation 

rate will result in little or no cloning and this could be catastrophic for these simple, non-

elitist GAs. 

Figures 8.9,  8.10 and 8.11 show clearly that imposing redundancy separates the GA-b, GA-

m and GA-c curves. By de Jong et al.’s [1997] criteria, therefore, the two redundant GAs are 

less epistatic than the non-redundant one.  Additional experiments were run to test the 

sensitivity of these results to various GA parameter settings such as the rate-factors, 

mutation, and crossover.  In most cases, mutation had the bigger influence. As de Jong et al. 

[1997] also say, “ … having problem generators allows us to report such results over a 

randomly generated set of problems rather than a few hand-chosen examples.  By increasing 

the number of problems we increase the predictive power of the results for the problem class 

as a whole”. 

“Three swallows do not make a summer”, neither do a few hundred experiments by one 

individual prove anything.  There is little doubt, however, that there are grounds for 

believing that redundancy leads to a  reduction in the levels of epistasis.  This of itself 

brings attendant benefits to our GAs. 
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8.8  Related Work to Redundancy 

There have been several studies on GAs where the fitness (‘objective’) function changes 

over time [Cobb, 1990; Grefenstette, 1992], the principle being to introduce additional 

genetic material in the population as and when needed to adapt to environmental changes.  

In particular, Goldberg and Smith [1987] introduced redundancy by creating and storing two 

representations of each gene, but only one was expressed at any one time, according to some 

dominance mechanism  which also changed the fitness function dynamically.  Changing the 

fitness function in this way, however, is difficult to engineer and the technique has never 

found general application. 

8.8.1  Structured GAs 

Dasgupta and McGregor [1994] created a structured Genetic Algorithm (sGA)  aimed at 

tracking an optimum in time-varying environments.  The model incorporated redundancy 

and used a gene activation mechanism allowing multiple changes to occur simultaneously.   

Such changes could be both frequent and irregular.  In a standard GA, phenotypic 

convergence normally leads to genotypic homogeneity and the GA loses its ability to search 

for a new optimum.  Hence standard GAs are not suitable for non-stationary function 

optimisation.  In other words, standard GAs do not like having their goal-posts moved!   

The reason for this is that the simple chromosome  does not have sufficient genetic diversity 

to allow the search to continue as the environment changes. Dasgupta and McGregor [1994] 

make a point of saying that to correct this would necessitate multiple correlated mutations 

but this would introduce its own problems, and is likely to lead to degenerate solutions.   

In contrast, an sGA changes genes dynamically by playing on several levels of genes in a 

hierarchical ‘pecking’ order. Apart from this an sGA is entirely conventional. 

Redundant  or unexpressed genes  serve a dual purpose in sGAs:     

• They provide non-destructive diversity during the search process.  Since only the 

expressed genes undergo selection pressure, Dasgupta [1997] believes that “....the 

unexpressed genes are neutral although they experience silent genetic changes”. 

• They  work as a distributed memory of variation within the population, allowing the 

model to be efficient in non-stationary and rapidly–changing  environments. 
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In other words, an sGA may introduce extra genes into its chromosomes, but the 

unexpressed genes have to be controlled just as carefully as the expressed ones. The lesson 

for us is, first, not to move the goalposts and, second, to keep control of the search space. 

8.8.2  Swappers 

Levenick [1999] modelled the performance of  E.coli bacteria fed variously on glucose, 

lactose and fructose.  It seems that E.coli, while primitive, is able to adapt from living on 

one to either of the other two rather fast.  Seemingly, it does this by changing its genes.  

Once it begins to starve,  it activates certain introns (making them into exons).  Levenick 

called these dual-role genes swappers.   

Levenick [1999] argues that introns offer solutions to the plasticity/stability and explo-

ration/exploitation dilemmas.  The first of these is the ability to adapt to new situations 

without losing the capability of handling previously mastered ones. The second is the 

dichotomy between using knowledge (i.e. information already acquired) to exploit the 

current situation, and exploring the environment in order to discover better strategies for 

future use.   If a system spends too much energy profiting in the short term it may fail to 

discover some superior strategy and so fail in the long term.  Conversely, if it uses too much 

energy exploring, it may not survive to use the knowledge that it gains.  The lesson for us is 

to keep a balance between the two. 

8.8.3    Implicit Redundant Representation GAs  (IRR GAs) 

Raich and Ghaboussi [1999] were looking for an evolutionary method for synthesising  

alternatives for the design of roof trusses and other structural frames.  They wanted to 

encode a variable number of design parameters, making them both independent of their 

location within the chromosome and allowing self-organisation of their linkage. The IRR 

GA provides a mechanism which allows essential and redundant sections of a string to 

interact dynamically, and it does this by using a [chromosome] string length longer than that 

required to encode only the parameter values. The specific location of each parameter (a 

gene instance) is not designated explicitly.  Instead, each instance is allowed to drift along 

the length of the string, a record being kept of its whereabouts by a pre-selected gene 

locator which also specifies the number of ‘useful’ bits which encode the parameter values. 

When decoded, anything that is not part of an instance (such as bits separating the instances) 

is redundant.   New instances can be created dynamically by mutation or crossover, for  they 

do not need to be specified by the designer.  It is of particular interest to us that at no time 



 

 189 

did Raich and Ghaboussi [1999] record that their undefined, unconstrained and redundant 

strings had caused them any problems.6 

8.8.4     Similarities and Differences 

Similarities with the present work are that sGAs, Swappers and IRR GAs do contain a 

number of redundant (unexpressed) genes, mainly defined but sometimes undefined, which 

are processed in the same way as every other gene.  In fact, the unexpressed genes of  sGAs 

and Swappers are viable alternatives to the expressed genes, and their behaviour is 

controlled just as carefully. In marked contrast, the redundant genes of the GAs discussed in 

the thesis were originally intended to encourage robustness and diversity;  they were not 

intended to be controlled or restrained at all.  That they had sometimes to be restrained  

indicates that they can be a mixed blessing.   

The differences are that at some stage the redundant genes in sGAs, Swappers and IRR GAs 

will be activated (or brought into effective play in some other way) and therefore play some 

active part in (or influence) search, or the computation of the evaluation equations.  Our 

redundant genes, in contrast, do no such thing.   

One anonymous referee unkindly coined the epithet totally useless redundancy (TUR).  

Why, therefore, pursue it?    

8.9    Does Totally Useless Redundancy Confer Benefits? 

(1)   On theoretical grounds, it is very unclear how the variation (by mutation) of unused 

genes can be in any way helpful in searching the problem space.  The genetic variation 

which happens in this way plays no part in the computation of the evaluation equations 

at any time, even indirectly, unlike explorations by sGAs, Swappers and IRR GAs 

where genes can be switched on and off during a run. It appears that the only real 

effect of adding redundant genes is fed back via crossover which may be less 

disruptive when chromosomes contain redundancy.  This will be explained in (5). 

(2)  TUR undoubtedly slows convergence (as has been demonstrated experimentally in 

Figures 8.1 to 8.3) but the non-converged portions of the chromosome are likely to be 

the redundant parts which, while not experiencing any direct selection pressure,  are of 

no benefit in finding new solutions.  

                                                 
6 At GECCO in July 2003, Anne Raich confirmed verbally  that there had been no problem with their unconstrained strings 
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(3)  TUR will reduce epistasis when averaged over all the chromosomes (including the 

redundant parts) but the epistasis between functional parts of the genotype will not be 

affected because introns in themselves cannot be epistatic.  Having said that, epistasis 

normally has a negative effect − like friction in mechanical systems − but (also like 

friction) there are methods and techniques for reducing its effects but not eliminating 

them. We have to learn to live with epistasis.  To improve the output of our arms race 

GAs, we have to look somewhere else.   Epistatic interactions are discussed in detail 

by Kauffman [1993], for example. 

(4)   TUR can facilitate genetic diversity, but this diversity is not useful simply because it 

exists in introns.  

The consensus view is that the use of introns, which are never expressed, simply scales 

down the mutation probability which, in turn, prolongs the search.   Our trials, however, had 

already taken account of this. Mutation rates for the three GAs were appropriately scaled to 

give different  chromosome lengths, the same overall mutation, see (3) of Section 8.2.3, and 

still the search by the 15- and 20-gene chromosome GAs was prolonged  (see Figures 8.1, 

8.2, and 8.3).  A possible reason for this is given below, and it has nothing to do with 

mutation. 

 (5) The introns have had a smoothing effect on crossover.  If introns are used, there is less 

likelihood of disrupting good building blocks because the chance of slicing an intron 

(rather than an exon) are higher, and intact values of the exons may be merged together.   

In other words, the chances of slicing an active gene and destroying a good solution will 

be reduced if introns are present.   We know from our diagnostic tables that the majority 

of crossovers occur inside genes, not at their boundaries.   In the absence of introns, a 

crossover inside a gene introduces additional ‘mutations’.  Ordinary mutation is 

carefully controlled, but the ‘mutations’ caused by crossover are essentially random and 

are likely to create two offspring which are significantly worse than their parents.   

In running many of the GAs listed on page 13  hundreds of times, it had long been noted 

that while changing the mutation rate dynamically (given in Section 8.2.2. as a typical 

0.0005 per generation  for the set of trials demonstrated) could have far-reaching effects on 

the output results, doing the same to crossover (0.002 per generation, or any other rate) 

made little difference to the output results.  This confirms the work of Dumitrescu et al. 
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[2000] who had also found that varying the crossover rate was much less critical to the 

output results than varying the mutation rate.    

It was decided, therefore, to develop just one more GA, GA-32, and use a fixed crossover.  

GA-32 was copied from the non-redundant, 10-gene GA, GA-0, with the same basic 24 

elements in its chromosome, occupying the same element slots (5 to 28), and therefore was 

identical with it, except that in GA-32 we added just one 3-element intron, occupying  slots 

(loci) 20-22, see Table 8.5. 

When GA-32 runs with a fixed 63% crossover,  crossover will always occur7 at or near 

element 21, in the middle of the intron.   We  thus avoid splitting an exon at the expense of 

splitting an intron.  

Table 8.5   Configuration of the genes of GA-0, and of GA-32 (including one lone intron) 

genes  2 3 4 5 6 7 8 9 10 11 12 

elements 5-6 7-8 9-10 11-12 13-14 15-16 17-19 20-22 23-25 26-28 29-31 

GA-0 k1,1 k2,2 k1,2 k2,1 
xs ys xm ym xt yt not used 

GA-32 k1,1 k2,2 k1,2 k2,1 
xs ys xm intron ym xt yt 

Figure 8.12 is the output of GA-0 while Figure 8.13 is that of GA-32.  Both GAs used  a 

seed of 34, a defexp% of 6.8% and a mutation rate of 1.4%. For Figures 8.14 and 8.15 we  

used a seed of 34 and a defexp% of 6.8%, but a mutation rate of 4%. For  Figures 8.16 and 

8.17 we also used a mutation rate of 4% but a seed of 41 and a defexp% of 7.6%.    

 
Figure 8.12  Output of GA-0. Seed  34,  mutation rate 1.4%, and a defexp% of 6.8% 

                                                 
7 In terms of element slots (24 + 3) x 0.63 ≈ 17.0.  Add 4 to cater for columns 1 and 2 and, on allowing for rounding, we can 
expect crossover at any point in elements 20,  21 or  22 
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Figure 8.13  Output of GA-32.  Seed 34, mutation rate 1.4%, and a defexp% of 6.8% 

 
Figure 8.14  Output of GA-0.  Seed  34,  mutation rate 4%,  and a defexp% of 6.8% 

 
Figure 8.15  Output of GA-32.  Seed  34,  mutation rate  4%, and a defexp% of 6.8% 
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Figure 8.16   Output of GA-0.  Seed 41, mutation rate 4%,  and a defexp% of 7.6 % 

 
Figure 8.17   Output of GA-32.  Seed 41, mutation rate 4%,  and a defexp% of 7.6 % 

Only three sets of outputs are shown here, although many more with different input 

parameters and seeds were tried with analogous results. 

Even from the small sample shown, it is evident that introns are having a smoothing effect 

on the behaviour of our GAs. Indeed, it looks as if convergence is being ‘encouraged’ by the 

removal of turbulence.   In order to investigate why this should be, we converted GA-32 

into yet another GA, GA-33 (using Schaffer et al.’s ffn) in order to make use of de Jong et 

al.’s [1997] curves to assess the epistasis level of GA-33, as we did in Section 8.7. 

The result is shown in Figure 8.18 which, in order to facilitate comparison, is drawn to the 

same (offset zero) scale as GA-29 in Figure 8.9.  These two figures merit direct comparison.   

The three curves of Figure 8.18  are further apart than those of Figure 8.9 and so, under de 
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Jong et al.’s [1997] criteria, the chromosomes of GA-33 are less epistatic than those of GA-

0.   Similar effects have been found with other seeds, such as  8, 9 and 10.    

GA-38abt (one intron only, at the point of crossover)
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Figure 8.18   GA-33 (one intron only). Seed 7. Comparative fitnesses for GA-b, GA-m and GA-c. 
defexp% 3.3,  initial mutation rate 1.4% minus 0.0001% per generation, fixed crossover rate 60%.  
Apart from the fixed crossover rate, the parameter settings are identical with those of GA-29 in 
Figure 8.9.  Note the offset zero, for pictorial clarity. Figures 8.9 and  8.18 are to the same scale 

Figure 8.19 shows a third example of this technique.  One intron was placed in GA-3 (a  

nuclear deterrence GA) at the fixed point of crossover (elements 14-16). We call the result-

ing GA, GA-34.   Figure 8.19 (P = 2711, Q = 2121) can be compared directly with Figure 

7.9 (P = 2832, Q = 2184), and Q is under 2% away from the best results (P = 2728, Q = 

2086, see Table 7.13).  The smoothing effect is quite marked but, more to the point, when 

compared with  the other GAs employed in Chapter 7, GA-34 is  noticeably more robust. 

 
Figure 8.19   Output of GA-34 (nuclear) corresponding to Figure 7.9.  Seed 42.  60 generations. 
One intron only.  � and γ̂  have empirical values 0.9851 and 0.9952, respectively, see Eqs(7.17), 

and, as before, are heavily coupled 
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We are a long way from actually proving anything but it does seem at first sight that the 

introduction of just one intron, judiciously placed at the point of crossover, has a beneficial  

effect on the GA’s behaviour, reducing its epistasis level, smoothing its output, and making 

it more robust. 

8.10      Does GA-32 Evolve? 

It has been suggested [Ofria et al., 2002] that a GA can only be said to evolve if it is robust 

to the point where we get the same values whatever the number of generations. It would 

seem that GA-32 comes very close to meeting this criterion.  If run with IMF rate-factors 

(38, 48, 3, 2, respectively), a mutation rate of 4% , a defexp% of 6.8%, then for a 

representative selection of seeds, in particular 0, 3, 5, 9, 13, 24, 34, 41, 55 and 76 we get 

identical results for xt (= 614), yt (= 582) and fitness (= 11), respectively, see Figure 8.15 for 

one example.  Furthermore, the results are only marginally different if the mutation rate 

takes on values of anything between 3% and 5%, and the same is true of  defexp% which 

can vary between 6.3% and 7.5%.  Compared with the output results of other GAs in the 

thesis, GA-32 is extraordinarily robust and yet its only significant difference is the 

additional intron.   Again, we are a long way from proving anything, but it does seem as if 

the additional intron helps the GA to evolve.  Ofria et al. [2002] also said that GAs can be 

viewed as a tool to evolve specialised problem-solving code and, furthermore, that isolating 

those aspects of the GA’s design that are directly responsible for evolvability is of 

fundamental importance if dedicated evolvable instruction-sets are to be designed.  To this 

end, Ofria et al. have devised a means of quantifying robustness, namely the fraction  fv of 

single mutations of a chromosome that are neutral or beneficial, i.e. 

( )�1−
=

D
N

f v
v   , 

where Nv is the number of neutral or beneficial mutants, D is the size of the instruction set 

and �  is the chromosome length.  According to Ofria et al.’s  reckoning, GA robustness 

yields a low figure for fv ,  typically lying between 0.02 and 0.14.   They used these figures 

to show that where fitness continues to increase during the evolutionary process (which we 

would regard as normal) the robustness (on average) stays constant, suggesting that the 

“adaptive process has led the population to a comfortable level that avoids evolutionary 

dead-ends”.    This echoes Levenick’s concept of diverse convergence [1999], see Section 

2.13.  Our only argument with Ofria et al.’s approach is that it seems to give too big a 

weight to disruption caused by mutation.  Our empirical experience, in contrast, is that the 
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selection process causes much more disruption than the comparatively smooth mutation pro-

cess which we use. Nevertheless, it does look, on balance, as if GA-32 can be said to evolve.  

8.11  Conclusions 

It has been observed experimentally that a redundant GA  behaves rather better than a non-

redundant one.  Only one class of GA application has been examined, so this was far from 

being an exhaustive study, even though the use of problem generators could possibly have 

improved the generality of the observation.    Nevertheless, we set out to look at redundancy 

in chromosomes, specifically in order to see if the use of introns could enhance the 

performance of our arms race model and, if so, how.     

In one sense, our introns were unique; other researchers used introns which could be 

activated or expressed as and when required (see Section 8.8) and hence were effectively 

alternatives for some of the exons in use.   In contrast, our introns remained dormant 

(unexpressed) throughout the computation of the GA under consideration, and this severely 

limited their usefulness in terms of their effects on the parameter space which they could 

search.  Even so, it was demonstrated that increasing redundancy slowed convergence, and 

it was hoped that as a result the chromosomes of the GA under consideration would remain 

genetically active for longer, perhaps even attaining the long-hoped-for state of diverse 

convergence  (see (2) of Section 8.2.4).    This was not to be. 

It was stated in (4) of Section 8.2.3 that Levenick [1991] had shown that introns reduce 

schema loss due to crossover.  Introns also reduce the effects of epistasis, and so make the 

GAs more robust.  

Herein our solution is to employ a fixed crossover rate, insert just one intron, and ensure 

that  (the single) crossover takes place at the intron’s locus.  An intron in the right place at 

the right time can prevent the destruction of good building blocks by allowing intact active 

genes to merge together after crossover.  In Figures 8.12 to 8.17, and 8.19, we have 

demonstrated experimentally that the insertion of this one intron: 

• smoothes the output results of the evaluation equations, i.e. makes the curves less 

turbulent. This indicates that  the disruptive effects of crossover have been reduced; 

• reduces epistasis, and this in turn makes the GAs more robust.   Increased robustness 

makes any stochastic process more useful and more cost-effective. 

We believe that the above is no mean achievement, and is a major contribution to the 

effectiveness of our arms race model.    
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CHAPTER  9 

Conclusions 
 

9.1   General  

The thesis has entailed the development of sixty-eight algorithms covering different aspects 

of the problem over nearly six years and, since GAs are stochastic processes, probably 

upwards of two hundred thousand runs. Cohesion is therefore a major requirement for these 

conclusions and this made the choice of section headings for this chapter difficult.   We 

settled on: 

• The viability of Richardson’s arms race equations 

• Using GAs;  lessons learnt 

• Redundancy in chromosomes;   not so useless after all 

• Are our results credible? 

• Opportunities for further research 

• The use of GAs in political applications 

• Epilogue 

 

9.2   The Viability of Richardson’s Arms Race Equations 

The value of Richardson’s work lies not so much in the particular formulation of his theory, 

but in that he was the first to show that the causes of war could be subjected to mathematical 

thought and treatment, and he did this despite serious limitations in both his data and the 

computational techniques open to him in the late 1940s.    

It is not always easy to apply Richardson’s arms race equations to real-world situations.   To 

be of practical use the equations need to be replaced with (or transformed into) something 

more precise and expressed in terms of the information available.    It is all very well to be 

able to prove theoretically from Eqs(3.1)  that instability occurs when  ac > bf, and  from 

Eq(3.28)  that the sign of the difference  a - c  indicates the direction of the curvature of the 

limit cycle which is crucial in predicting when instability is likely to occur.   However, to do 

this we must be able to relate the Richardson coefficients a, b, c and  f  to the actual 

discretised evaluation equations  used in the GA, and, in particular, to the rate-factors, ki, j .   

In our case we derive a first-order approximation given by Eqs(3.16).  Nevertheless, finding 

a relationship in general terms is part of the skill of using Richardson’s equations.   To be 

valid the evaluation equations must always reflect the spirit and intent of Richardson’s 
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theory.   This is why initially, in Chapters 5 and 6, we did not use conventional curve-fitting 

techniques on the IMF defence expenditure figures, but instead we used Richardson-like 

equations (cf. Eqs(5.7)) whose output could be adjusted to mimic the IMF patterns.   That 

way, we achieved what has been described [Cao et al., 2000] as a kinetic model faithful to 

the input data and the physical principles involved.  As Cao et al. [2000] argue, such models 

can legitimately be extrapolated.  Much of the thesis is concerned with validating 

Richardson’s model, and this entails ‘predicting’ events which have already happened.    

Our ultimate aim, however, is to use the model to predict conflicts happening in the future, 

so the ability to extrapolate is paramount. 

9.3   Using GAs:  Lessons Learnt 

9.3.1  General 
 
(1) With two major exceptions, the GAs developed for use in the thesis were fairly 

standard.  Both crossover and mutation were varied dynamically.  In our early work, 

received wisdom dictated that crossover started high but reduced, while mutation 

started low but increased (albeit neither by much). Later, however, we sometimes 

found by experiment that increasing both made the GAs more robust.  Nevertheless, it 

remains true generally that crossover is a good way to put the early (diverse) pieces of 

good solutions together, but once convergence starts then the search for better 

solutions is led by mutation. 

(2)     The two exceptions were that: 

o We used a direct mapping between phenotype and genotype, i.e. there was no 

embryogeny at all.  That this could be done was due to the arms race phenotype 

figures lying typically in the hundreds and thousands, numerals that could easily 

be encoded directly. 

o    Some of the genes were integers, some were (rounded) real numbers, and of both 

groups some had two digits and others three (see Table 0.1 in the Glossary).  When 

concatenated in a chromosome, however, it all looked like one big integer!  We 

call this integer-encoding.   The downside of this is that at crossover, some 

chromosomes get split mid-gene.  Information Theory [Shannon, 1948] says that 

loose ‘bin-ends’ introduce noise and, in our experience, to some extent this is true.   

Crossover inside an exon introduces additional random ‘mutations’ and is likely to 

create two offspring significantly different from (and possibly not even 
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resembling) their parents.   To overcome this, we settled on a fixed crossover rate 

and introduced just one intron (Section 8.9) at that fixed point.  The only gene to 

be butchered, therefore, is an intron.  This is far less disruptive on building blocks 

than slicing an exon.   

(3)    GAs must never be forced, but they can be coaxed.  A good way to coax is to constrain 

the initialising random number generator to a likely value for each parameter.  In other 

words, the search space should always be both controlled and feasible. 

(4)  Different populations were tried, ranging from 20 to 1000.  For most of the 

experimental work, we settled on 100 which was sufficient for this application. 

(5)    Different forms of crossover were tried, including uniform crossover [Syswerda, 1989] 

but, on balance, single crossover appeared to be best for the arms race application. 

(6)    It proved very difficult, despite resetting the random number generator at the start of 

each loop, to ensure that our multiple-iteration (looped) GAs (such as GA-18 and 

others used for a Pareto-sort, see Table 7.5) gave results which were identical with 

those of single-iteration GAs.  

(7)     In (10) of Section 4.2 we made an early comment that “The value of a practical GA is 

judged by its robustness.   It is generally worth going to some trouble to ensure that 

results are not overly influenced by the starting conditions”.  This led us in turn to 

consider epistasis and its effects, delaying convergence, introducing redundant genes, 

and introducing elitism.   Furthermore,  in order to enhance robustness, we discretised 

the evaluation equations when (as in Chapter 7) this was not already done, so that the 

computed results for P and Q became an integral part of the chromosome. We did all 

of these, separately and in various combinations, with varying levels of success.  In 

particular, the use of a chromosome with some redundancy not only appeared to make 

the locations of genes in the chromosome much less critical, but it also seemed to have 

a smoothing effect on the results. Even better was a GA using chromosomes with just 

one intron placed judiciously at the (fixed) point of crossover.  This proved to render 

the GA very robust and, indeed, cost-effective inasmuch that it was no longer 

necessary to have quite so many runs to obtain a solution.   With hindsight and in the 

light of our experience we should, in the italicised quotation above, have said “It is 

always worth going to a lot of trouble to ensure that results are not overly influenced 

by the starting conditions”. 
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(8)   We have often been asked “Why use a GA at all?”  In the thesis, specifically in 

Sections 5.10, 6.8 and 7.18, we give some detailed answers.   In more general terms, 

developing a GA from scratch can be tedious, but once a GA has been developed it is 

both adaptable and flexible.   It examines a big search space and so is not misled by 

local maxima or minima or (reasonable levels of) added noise.  It is also self-

correcting.1  The last three sentences, however, make it look as if a GA was merely 

another optimisation technique. In contrast, Vose [1999] focuses on the Simple GA as 

an evolutionary system based on a broad class of Random Heuristic Search (RHS) 

algorithms and  demonstrates that a GA is a special case of an RHS.  There may well 

be better methods of solving specific problems, but on balance we believe that for the 

arms race application  the GA approach is as adaptable, as universal, and as user-

friendly as any other.  Furthermore, GAs introduce mutation, and act implicitly on a 

whole population of individuals at once, an achievement which more conventional 

numerical  methods cannot, in general,  match. 

9.3.2  Specific 

(1)  It is evident from the results that if the GAs embodied in our models of the 

India/Pakistan, Greece/Turkey and Middle East conflicts and of nuclear deterrence are 

going to converge, then they will do so quite quickly, typically after twelve to fifteen 

generations.  By the standards of some GAs, twelve generations is tiny.   Equally, the 

start-point, the seed, is crucial.  Runs have been carried out for many different seeds, 

and they all indicate that in areas of convergence (in  fractal  basin language, in a ‘sea’ 

of blue, yellow or red)  it does not matter very much where the GA started.   In other 

words, the parameter space would seem to contain  sub-spaces of near-perfect fitness.   

In areas bordering on fractal basin boundaries, however, the starting conditions appear 

to be critical. 

(2)    GAs in the ‘fractal basin’ series (e.g. GA-7 and GA-10) are searching for balance-of-

power points.   All of them seek  perfect balance (i.e. zero fitness).   High levels of 

fitness  −  a bad thing  −  occur near the fractal basin boundaries in unstable regions of 

the space.  In these boundary areas the perfect balance of power, even when found, is 

(at least as far as our experiments can reveal) sensitive to small-scale perturbations. 

Fitness is a link between genotype and phenotype, i.e. between a genetic repres-

entation of the problem and the problem itself  [Michalewicz, 1992]. 
                                                 
1  We once mistakenly entered some rate-factors, k1,1 and k2,2 , the wrong way round;  forty-five generations later the mistake 
had corrected itself 
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(3)   The balance-of-power points would appear to lie in hyperplanes through parameter 

space.  According to the schema theorem [Goldberg, 1989] GAs search for hyper-

planes with good fitness.   From our results, it looks as if the parameter space does 

actually contain  sub-spaces of perfect fitness.     If this is true, then a GA is  ideal for 

solving high-dimensional non-linear systems such as the 2- or 3-nation Richardson 

model. 

 

9.4   Are Our Results Credible? 

Chapter 5 set out to investigate a short window (1993 – 1999) in the arms race between 

India and Pakistan by making use of a GA to search the large space needed by Richardson’s 

arms race theory.  It used existing IMF data to generate rate-factors and scaling factors such 

that it became possible to formulate two evaluation equations usable in a conventional GA, 

and to test that the results of the GA did vindicate Richardson’s theoretically-derived criteria 

for stability.  For India/Pakistan it found that, far from the expected  ‘seas’ of stability and 

instability separated by clearly marked ‘walls’ found in other applications (such as the 

Middle East scenario) there were large areas of stability separated by quite local but violent 

pockets of instability.  It would be bold to say at this stage that known and likely 

instabilities between India and Pakistan are always prefaced by a sudden change in the 

direction of curvature of the limit cycle, but this does seem to be happening in this case.  

This change, the result of applying Peng et al.’s theory of  canard explosions  to 

Richardson’s  arms race theory, is expressed by the sign of a −  c.  If the sign of a − c of 

two-thirds of the GA’s population changes from minus to plus in successive iteration steps 

of average defexp%, then it seems that an instability will occur at the next timeframe.  Such 

changes of sign are evident in Figure 5.6 (at average percentage defence expenditures of 

6.5% and 7.9%) which relate directly to known historical events in the spring and autumn of 

1997 (when in March there was a deliberate rocket attack by India on a mosque in Pakistan, 

followed in September by large-scale artillery exchanges between the two countries which 

very nearly led to a full-scale war (see Section 5.5.1)).    

Chapter 5 concluded by using the data assembled for that chapter in 1999  as a “training set” 

to see if anything could be predicted for 2000.   A change in the direction of curvature of the 

limit cycle at an average percentage defence expenditure of 10.1% was forecast for 

September 2000.  (In the event, the situation that September deteriorated to the point where 

a single inflammatory speech by a Kashmiri politician very nearly triggered a war.)     
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The almost continuous conflict in the Middle East from 1955 to 2000, the India/Pakistan 

wars of 1965, 1971 and 1998, and the armed dispute between Greece and Turkey over 

Cyprus in 1974 and over the Aegean in 1997, all have very different scenarios.   In all three 

conflicts, however, Chapter 6 demonstrates that the use of  Richardson’s equations in a GA 

has meant that the timing of the various outbreaks of hostilities could have been predicted 

with some accuracy. 

So much for predicting wars with hindsight, which is what we have largely done. Can we 

use these methods for genuine prediction, e.g. are there going to be wars in the Middle East, 

or India/Pakistan in, say, 2003 or 2004?   We believe that we can,  provided and only 

provided that accurate, up-to-date data can be obtained so that meaningful extrapolation is 

possible.  In the preface to Appendix 6A we present some of the problems encountered in 

obtaining really up-to-date figures, and in Section 6.7 we indicate the penalties of using 

noisy information.   In the meantime, we will content ourselves with going halfway by 

stating with some confidence (Section 6.6) that there will be conflicts when average 

percentage defence expenditures  reach 10.1%, 10.4% and 10.6% between Greece and 

Turkey,  12.9%, 13.1% and 14.0% between India and Pakistan, and 13.0%,  13.8%, 14.8% 

and 15.1% between  Israel, Egypt and Syria.   In making this forecast we are, of course, 

opting out of predicting future long-term movements in average percentage defence 

expenditures.  Nevertheless, an extrapolation of the average defexp% for India and Pakistan 

for late 2001 (for which  IMF and UN figures have only just been published) did suggest 

that the average defexp% might reach 12.9% in very late 2001.  This date tallies with  an 

attack on the Indian Parliament by Kashmiri suicide bombers in December 2001 which, in 

turn, led to sizeable incursions by both sides into the other’s territories. One such incursion, 

by India, was successfully ambushed by the Pakistanis and a pitched battle resulted, with 

much loss of life. 

Chapter 6 demonstrated that statistical figures taken from reference works published only 

once a year result in reasonable predictions. Results might be more spectacular if (as has 

just been said) accurate figures (e.g. from governmental military and economic intelligence 

sources) could be fed in on, say, a weekly basis but this requires resources well beyond our 

capabilities. 

To quote Section 3.7, “The evidence presented ... would suggest, therefore, that an unstable 

point in Richardson’s equations is always prefaced by a change in the direction of 

curvature of the limit cycle,  and that this is manifested  by a sudden and marked change in 
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the sign of  a – c, from minus to plus, across the population.  The experimental evidence for 

saying this may be slender, but the theoretical argument is quite strong”.  While far from 

proving anything, Chapter 6 has shown that the experimental evidence is not so slender after 

all, sufficient in fact for us to be able to claim proof of concept. 

 

Chapter 7 set out to find if an EA could find an acceptable solution to the problem of nuclear 

deterrence and hence increase our chances of survival.  In 1972 it was thought that the 

Americans could have withstood an onslaught of 2354 Soviet nuclear warheads.   We 

derived this figure, with difficulty, using an iterative numerical method (see Eq(7.12)).  In 

contrast, using Richardson’s equations and all the data about numbers of weapons and 

delivery probabilities available to us, the counter-values for the United States and the Soviet 

Union, respectively, can be calculated directly (without using GAs, see Section 7.9) as P = 

3229 and Q = 2573.  

An ES was developed, but this suffered from all the problems associated with hill-climbing 

methods.  A suite of inter-related GAs was then developed in succession.   These made no 

assumptions about weapons numbers but let those numbers evolve.  The first (GA-19) did 

not give good results but demonstrated that, depending on the starting conditions, many 

answers were possible but those of the highest fitness always came up with approximately 

the same values for P and Q.  The second (GA-2) incorporated a number of refinements and 

produced P = 3486, Q = 2413. The third (GA-20) injected a 1% elitism. The fourth (GA-22) 

deliberately introduced 33% redundancy into its chromosomes.  The fifth (GA-24) combined 

elitism and redundancy.  The remainder of the suite (GA-18, GA-21,  GA-23 and GA-25)  

repeated the four original algorithms (GA-2, GA-20, GA-22 and GA-24) over a wide range 

of starting conditions and then applied a Pareto-sort, so that dominated results could be 

eliminated.    The collective results are given in Table 7.13. 

It seems that although the 1972 answer (P = 3254) was of the same order as those given in 

Table 7.12, a better answer (P = 2728, Q = 2086)  has been found  (much more simply)  by 

subjecting the results of  GA-25 to a Pareto-sort. In terms of  ‘best’ numerical results, it 

makes little difference whether the GA is ‘straight’, elitist, redundant or both elitist and 

redundant, but these variations do have some effect on the GA’s stability and robustness.   

Elitism, in turn, does not give dramatic effects but, again, helps to smoothe the output of the 

GA and make changes less turbulent.  Discretising the evaluation equations has a 
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pronounced smoothing effect, and results in a robust and reasonably accurate GA (P = 2732,  

Q = 2189) − see Figure 7.9. 

Finally, in 2002 we re-visited our 1972 solution, first using MATLAB� , and then variants 

of Jacobi and Gauss-Seidel.  The numerical processing was much faster, but the basic 

equation  has not changed.  In effect, there is one equation with two unknowns.  This stymies 

all conventional numerical methods, but it does not feeze a GA at all, largely because the GA 

looks at the whole search space rather than at a particular part of it. 

9.5   Redundancy in Arms Race Chromosomes:   Not so Useless after all 

It has been observed experimentally that (in terms of robustness, stability and reduced 

epistasis) a redundant GA behaves rather better than a non-redundant one, so we set out 

deliberately to look at redundancy in arms race chromosomes.  We tried originally to show 

that, in general: 

(1)  Increasing redundancy slowed convergence, but did so in such a way that the 

chromosomes remained genetically active.   Indeed, introducing introns was one way 

to attain the long-hoped-for state of diverse convergence (see (2) in Section 8.2.4).       

(2) Increasing redundancy reduced epistasis and this of itself made the GA more robust 

and easier to handle.  

(3)    Far from hindering genetic search, introns proved beneficial. 

Experimental results for  (2) and (3)  above show that an intron in the right place at the right 

time can prevent the destruction of good building blocks by allowing intact active genes to 

merge together after crossover.   In effect, we are arguing that the disruptive effect of 

crossover can be significantly reduced by ensuring that the only gene to be butchered is an 

intron.   This last statement is of general application and can, in this instance, be most easily 

achieved by using a fixed crossover rate and one appropriately-located intron.   We 

demonstrated this in GA-32 and GA-34.   The smoothing effect of this combination can be 

seen in Figures 8.12 to 8.15 and in Figure 8.17. 

It was stated in (4) of Section 8.2.3 that introns reduce schema loss due to crossover.   

Introns also reduce the effects of epistasis, see Figure 8.18,  and so render GAs more robust.   

In particular, one judiciously placed intron has a beneficial effect on the GA’s behaviour, 

reducing its epistasis level, smoothing its output, and making it more robust.    
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It seems that redundancy in chromosomes, while not living up to our original expectations, 

makes a significant contribution to our arms race application.  

9.6   Opportunities for Further Research 

We believe that we have shown that outbreaks of hostilities can be predicted by using a 

combination of GAs, Richardson’s arms race theory and Peng et al.’s canard explosion 

theory.  With the resources we can currently muster, however, we have taken this about as 

far as we can go.  Genuine prediction (into the future from now onwards) needs a lot more 

accurate and timely information than is available to us, and this can only come from 

governmental military and economic intelligence services.  Two areas merit further 

investigation: 

• Examining more fully the implications and the effects of introducing just one intron at 

the point of crossover.  From what we have done already, it appears that this has a 

smoothing effect on the output of the GA, that it reduces epistasis, and that it makes the 

algorithm more robust. Any improvement in robustness is of major practical 

significance;  not so many runs have to be made, so the cost-effectiveness of the GA is 

improved. 

• Examining more closely the similarities between GAs and Monte Carlo methods. 

9.7     The Use of GAs in Political Applications 

Some would argue that it is not valid to extrapolate from mechanistic cause and effect (for, 

example, the certainty that certain concentrations of ions will explode) to the vagaries of 

human interaction.  Nations go to war, not because of their percentage defence expenditures 

but because their leaders believe that they should, and that they will be backed in that 

decision by their people.  Equally, those same leaders  like to believe that they have free will 

and are not pre-destined or pre-programmed automata.  The truth may lie somewhere in 

between.  It has been shown in the thesis that the situation between India and Pakistan 

contains large areas of stability and only pockets of instability.  No matter how belligerent 

their leaders, no matter how much sabre-rattling is done, it will not physically be possible to 

start a war when all other parameters are stable.   The same is true of other examples 

presented.  The danger comes when the parameters are unstable, for at that point almost 

anything  −  such as one injudicious speech  − could trigger a conflict.  It follows that it is 

worth predicting the pockets of instability provided it is appreciated (and hoped) that a 
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trigger may never materialise and the potentially unstable situation may quietly revert to 

stability. 

At the risk of gross over-simplification, it does seem that most wars are about the ownership 

and use of land and other natural resources such as water and oil.   We suspect that overt 

militarism generally plays a smaller part in modern warfare than is popularly supposed, and 

that a nation’s desire to go to war is often uncomfortably democratic. 

9.8   Epilogue:  Déja-vu? 

We close with four quotations: 

• “The ultimate goal of mathematics is to eliminate all need for intelligent thought” 

[Graham, Knuth and Patashnik, 1989].   Outputs from the thesis are there to guide the 

world’s policy-makers, not to absolve them of a  need to think! 

• “The quality of a mathematical conclusion is determined by a lot more than just the 

accuracy of the calculations”  [Cohen and Stewart, 1994].   If this is true of the mathe-

matical  niceties  which have been discussed in the thesis, it is even more true of social 

and/or political problems over which even wise men differ. 

•  “The scientist describes what is;  the engineer creates what never was” [Colwell, 

2002, paraphrasing von Karman].  The thesis has been written by a lifelong engineer. 

• We leave the very last word to Richardson himself.   He said:  “ At the time of writing, 

July 1951, India and Pakistan are accusing each other of aggressive intentions, while 

the United States and the Soviet Union have been doing so for years.   Personally, I 

think that much of what is blamed as aggressive intention (g and h) is really only 

defensiveness (a or c)”. 
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Glossary and Abbreviations  
 

It is appreciated that certain words, contractions, phrases and acronyms found in the thesis 

may not be familiar to all its readers.   The explanations which follow are minimalist, and 

apply as used in the thesis;  they are not necessarily exclusive, nor of general application.  

There are, for instance, definitions of  robust which differ from that given below. 

GENERAL 

Defence Expenditures 

• Defence Expenditure  (normally denoted by xt , yt , etc)   

The amount of money actually spent by a nation in a financial year on defence, 

including its armed forces and their pay, pensions, land, accommodation and training  

facilities, ships, aircraft, munitions, tanks, vehicles, weapons, and all military stores.  It 

may be more or less than the budgeted amount. 

• Budgeted Defence Expenditure (normally denoted by xm , ym  , etc)    

The amount of money budgeted by a nation each year for its defence, normally 

expressed in millions or billions of US dollars.  

• Percentage Defence Expenditure (defexp%)  

That fraction of a nation’s GDP budgeted for spending on arms.   It is conventionally 

expressed as a percentage.  

• Intrinsic Defence Expenditure  (normally denoted by xs , ys , etc)

The amount of money each nation spends on defence, irrespective of competitive 

spending by its neighbours.  These are essentially the ‘standing costs’ of a nation’s 

armed forces, and can be as high as 80% of the total Budgeted Defence Expenditure.���

Gross Domestic Product (GDP)  (normally denoted by GX , GY , etc)    

The overall ‘worth’ of a nation expressed in monetary terms. 

International Monetary Fund (IMF)    

The international body, based in New York, whose role is to maintain a fiscal balance 

throughout the world.  Part of their function is to regulate the flow of money between one 

country and another, and to arrange loans usually to third-world nations.   The IMF 

publishes very authoritative  IMF Statistics  annually. 
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EVOLUTIONARY  ALGORITHMS  

In order to demonstrate some fundamental concepts frequently encountered in the GA 

technical literature pertaining to the thesis, we present below a table that shows the 

relationship between (and configuration of) the more commonly-used parameters. 

Table 0.1   Configuration and Nomenclature of Chromosomes − GA-01 

across – column nos 

down – row contents  

2 3 4 5 6 7 8 9 10 11 

gene k1,1 k2,2 k1,2 k2,1 xs ys xm ym xt yt 

number of elements 2 2 2 2 2 2 3 3 3 3 

type of number int int int int int int real real real real 

typical contents 17 09 25 16 36 29 561 703 458 753 

The whole concatenated 10-gene, 24-element chromosome shown above is expressed and 

handled by  the GA seamlessly  as  

170925163629561703458753 

which, despite the inclusion of four real numbers, looks and handles like one big integer. 

Each element has an equal chance of being mutated, and crossover can take place anywhere, 

irrespective of gene boundaries. 

Allele      

The allele of a gene is its actual value [Bentley, 1999], e.g. the allele of gene xm in the table 

above is 561. 

Bottom-line consensus 

In constructing a fractal basin, it is necessary to represent the coloured 20×100 matrix of a 

dominance diagram by one coloured square only. Which colour is it to be?  We count the 

squares on the bottom-line (i.e. the latest generation) and take a ‘majority vote’.  The colour 

of the resulting square is that usually associated with the dominant nation.   

Canonical        

A canonical GA is a standard one and is generally accepted as being of the Holland-type, 

i.e. operating on a population of chromosomes with mutation and crossover operators, and  

subjecting the population to selection processes whereby fitter chromosomes reproduce at 

the expense of the others.  ‘Canonical’ does not imply any particular representation;  in 

particular it should not be exclusively associated with ‘binary’ representation. 
                                                 
1   In order to avoid involving readers in the taxonomy and numbering of our algorithms, all algorithms are numbered consec-
utively.  A cross-referenced catalogue of GAs is shown on page 14.  The example shown here (GA-0) is Algorithm GA-37ab 
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Cao’s Norm 

We define the norm of a rectangular matrix A, where A ∈  mnℜ , as  

��
= =

m

i

n

j1 1

2
ji,a   . 

This is also known as the Schur or Fröbenius norm [Cao et al., 2000].  The norm is used 

extensively in Chapter 6 to improve the output of modelling GAs. 

Cardinality   

The number of elements in a set.  

Chromosome 

An ordered set of genes [Chambers, 1995].  The basic collective building blocks of 

evolution.  In our context, a chromosome is an individual population member of a GA.  The 

size of a chromosome  is the total number of elements in its genes. 

Continuity      

Our data must be consistent, i.e. a small percentage change to the basic data must produce 

approximately the same percentage change in the result of the GA.   If this does not happen, 

then no search strategy will succeed [Bentley, 1999]. 

Convergence 

The gradual realisation of some desired end-point.  See Section 2.16. 

Crossover 

Changing elements of a chromosome for the same elements of its partner chromosome  or 

mate thereby exchanging genetic material between two parents.  Crossover puts high-fit-

ness ‘building blocks’ together on the same string in order to create strings of increasingly 

higher fitness. The ‘crossover point’, typically fixed by the user at 65% of the number of 

elements in a chromosome, can vary dynamically between 50% and 80%.  It does not matter 

statistically if the crossover point is measured from the right or the left of the chromosome, 

provided that it is done consistently  [Davis,1991; Vose,1999]. 

Curvature 

The amount or rate of deviation of a curve from a straight line.   Specifically, the curvature 

� of a phase plane trajectory is defined as the rate of turn of the tangent with respect to the 

arc length s along the trajectory [Peng et al., 1991 p 279].  See Inflection Line. 

                                                                                                                 .                                                                  
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Dominance 

 It is sometimes of interest to know which nation in a dispute is dominant at any one time.  

The ‘dominance diagram’ does this.  For every one of the 2000 sets of equations (100 

population × 20 generations) the colour of a little square indicates which of Nations X or Y  

is dominant, for example.  It is therefore easy to see where domination changes.  See, for 

example, Figure 4.2. 

Element 

A single-digit number contributing towards the representation of a gene. For instance, the 

gene 467 has three elements 4, 6 and 7.   

Elitism  

Elitism allows the best chromosome(s) of one generation to be carried forward into the next  

provided that its/their fitness is better than that of the worst member(s) of the new 

generation. 

Embryogeny  

The process that maps the search space (containing genotypes) onto the solution space 

(containing phenotypes) [Bentley, 1999]. 

Epistasis    

In GA literature, the degree of dependent parameter interaction is called epistasis, a 

biological term for gene interaction. Epistasis is about genes acting in combination to 

produce (or inhibit) solutions.   In other words, epistasis measures the extent to which the 

contribution to fitness of one gene depends on the values (alleles) of the other genes 

[Bentley, 1999].    See Sections 2.12 and 8.6. 

Fitness 

A measure of the worth of an individual chromosome in a particular domain.  In our case, 

fitness is conveniently scaled to be a positive integer. 

Fitness Function (ffn)    Four alternative definitions: 

(1) “An ffn takes a single solution from an evaluation equation as a parameter and returns 

a number, the fitness, indicating how good the solution is, in terms of what is desired.  

By itself, the number returned by the ffn means nothing;  only when we compare the 

values returned by all possible solutions can we select the better solutions”  

[Chambers, 1999]. 
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(2) “An ffn provides a measure of how individuals have behaved in the problem domain.  

In the case of a minimisation problem, the fittest individuals will have the lowest 

numerical value”  [Chipperfield, 1997]. 

(3) “Parent selection dynamics are based on an application-dependent metric known as 

fitness.  A  fitness is a figure of merit computed by an ffn using any domain know-

ledge which applies.  The greater a chromosome’s fitness, the higher chance it has of 

being selected for reproduction” [Buckles and Petry, 1992]. 

(4) “An ffn computes the distance between the real and the simulated curves of the 

phenomenon studied.  An  ffn is normally chosen for domain reasons rather than for 

mathematical reasons, i.e. it is a means of gauging how well the output(s) of the 

evaluation equation(s) of a particular chromosome fulfil(s) the intentions of the 

domain”.  [Sanchez et al., 1997].2     

Gene 

A set of elements; a coded parameter representing some aspect of a solution. 

Genetic Algorithm (GA)   Three alternative definitions: 

(1) “A GA is an adaptive algorithm for solving problems using computational models of 

natural evolutionary systems” [Davis, 1991]. 

(2) “A GA is a problem-solving method which uses genetic rules of reproduction, gene 

crossover and mutation as its model of problem-solving.   Applying these rules to 

pseudo-organisms can pass beneficial and survival-enhancing traits to new 

generations.   As a real organism’s characteristics are stored in its DNA, genetic 

algorithms store the characteristics of artificial organisms in an electronic genotype 

which consists of a string of bits”  [Chambers, 1995]. 

(3) “A GA is an iterative, global search procedure whose goal is the optimisation of the 

fitness function.  The algorithm works in parallel on a population of candidate 

solutions (chromosomes) from the search space”  [Dumitrescu, 2000]. 

Genotype 

The abstract collection of genes possessed by an individual.   The actual structure containing 

the genes is called the chromosome.  Each gene has a value (allele) and a position (locus) in 

                                                 
2 Note that this is the only definition of ffn which assigns a dimension to fitness 
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the genotype [Dasgupta and Michalewicz, 1997].  Genotypes consist of coded versions of 

the parameters which make up a phenotype [Bentley, 1999]. 

Hopf Bifurcation 

An intermittent transition to a chaotic attractor in which a function changes from having a 

‘laminar’ or stable periodic existence into an unstable existence unrelated to its previous 

state.  Shortly after a Hopf  bifurcation, the function’s limit cycle will change the direction 

of its curvature [Ott, 1994] and, in our case, instability will result. 

Inflection and Inflection Line 

An inflection is a change of curvature from convex to concave at a particular point on a 

curve.  Consider the smooth (continuously differentiable) parameterised system: 

                      =
dt
dx

 F(x, y, c)    and      =
dt
dy

 G (x, y, c),     where c ≥ 0 .                           .  

Consider c fixed. At all points (x,y) in the phase plane, the curvature �t(x,y) of the trajectory 

which passes through it can be computed.  The inflection line associated with the above 

equations is the locus of points where �t = 0, and typically consists of one or more smooth 

curves dividing the phase plane into regions.   In regions where �t > 0 we say that the 

trajectories are concave, while in regions where �t < 0 they are convex.                              .                                                                                   

On setting  c = 0  and eliminating time, we obtain the rational function =
dx
dy ( )

( )yxF
yxG

,
,

.                     

For curves in the (x, y)-plane of the form y = y(x), the curvature of arc length s can be comp-

uted as  

� 
ds
dϑ=  

( )( )
( )xy
xy

′′
′+=

2/321
 

using the positive root of the numerator.    

Integer-coded GA 

A GA whose genes are populated with integers from the set {0, 1, ... , 9}. 

Intron 

In biological terms, an intron is a non-functional sequence of DNA.  In GA terms, an intron 

is  an unexpressed genotypic region meaning either  an inactive gene which is lying around 

waiting to be expressed or activated [Levenick, 1991] or  a gene which is an integral part of 

its chromosome but is not used in any evaluation equation. 
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Linear Norm 

Given an increasing (decreasing) sequence of fitness values we assign a stepwise function to 

those values in order to smoothe out large variations between pairs of values.   For example,  

the actual fitness sequence   251 / 325 / 555 / 555 / 555 / 1115 would be mapped in our case 

into  the sequence 475 / 480 / 485 / 490 / 495 / 500.  These are called normalised fitnesses or 

normfits. (Without normalisation 1115, over twice as fit as its nearest rival, would dominate 

selection and be chosen as a parent for nearly all offspring).                

Locus    

The locus of a gene is its juxtaposition to its neighbours in the chromosome. In Table 0.1  

for instance, the locus of xm lies between ys and ym.   If the physical position of a gene 

among its neighbours makes material difference to the solution, then the chromosome is 

said to be epistatic.   Locus is also sometimes used to indicate the precise position of an 

element in a chromosome, e.g. “ … crossover is to take place at locus 21”. 

Mutation  

Mutation is achieved by changing certain elements of the chromosome randomly.  In the 

thesis we use an inbuilt random number generator of  known Gaussian distribution.   During 

mutation, every element (locus) of every gene is sampled individually to see if it should be 

mutated or not, so mutation is termed a mutation probability per locus.  Mutation may be 

fixed, or vary dynamically.  A typical mutation rate is 1%, but it can be set up in any 

number of ways,  e.g. 

genesofnumber
ratemutation

  
1

 =    or    
elementsofnumber

ratemutation
  

1
 =             .                                                                                      

.   
but both of these yield too high a rate for our purposes.        

Parameter Space / Search Space 

 A parameter or search space (in an EA context) is one filled with all possible solutions, and 

a point in that space defines a solution. Each chromosome represents an individual, and is a 

‘candidate solution’.   

Pareto-Sort   

Pareto [1896] devised a means of ordering a scatter of points by arguing that some 

‘dominate’ (and thus effectively duplicate) others. A solution is Pareto-optimal if it is not 

dominated by other solutions.   

A vector x is partially less than y, symbolically x <p y , when 



 

 214 

(x <p y) ⇔ (∀i) (xi � yi) ∧ (∃i) (xi < yi)                                             . 

Any y so dominated can  be discarded. 

Phenotype 

“A phenotype is a collection of live parameters of real-world problems expressed in 

whatever manner is conventional and appropriate” [Bentley, 1999].   

“In GAs the phenotype means the defining characteristics or qualities of the entire 

genotype” [Dasgupta and Michalewicz, 1997]. 

Random Start 

All our GAs are initialised using an RNG.  The RNG is set to generate likely and reasonable 

upper bounds for the genes in terms of the arms race domain.  This is what is meant by a 

random start.  If it is desired to use real-world data, then such data is made to overwrite the 

randomly initiated values. 

Reflexive 

An expression is said to be reflexive if the effects on one party are generated solely by 

causes created by the other party, e.g. the evaluation equation which lists the number of 

American missiles expected to survive a Soviet first strike is defined solely in terms of  

Soviet destructive capability, see Section 7.8.1 and Eq(7.10).   

Region of Stability 

If P and Q plot the American  and Soviet counter-values, respectively, then ‘occupation’ of 

the area outside both contours will discourage either side from making war, see Figure 7.1. 

Robust      

We call a GA robust if the results are not unduly influenced by the starting conditions, i.e. 

in our case by the seed used to initialise the random number generator.  

Schema    

A binary schema is a string comprising zeroes, ones and asterisks;  the last stand for ‘don’t-

cares’.    For example,  schema  1 * * * * 1 is a 6-bit string which begins and ends with a 1.  

Stochastic Process  

A sequence of states whose evolution is determined by random events.  In a computer these  

are generated by random numbers. 
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Trajectory 

The path of any body moving under the action of given forces;  a curve or surface passing 

through a given set of points, or intersecting each of a given set of curves or surfaces 

according to a given law. 

Undominated 

A result of a Pareto-sort is undominated if it has not been dominated by other results.   

MILITARY AND NUCLEAR 

ABM          

Anti-ballistic missile, a defensive weapon that will counter incoming missiles in flight by 

generating a very steep-sided shock wave (an electromagnetic pulse) designed to destroy the 

semiconductor circuits of incoming missiles. 

FGA      Fighter/Ground Attack [aircraft] 

ICBM         Inter-Continental Ballistic Missile 

SLBM        Submarine-Launched Ballistic Missile  

Counter-value 

 The number of nuclear missiles held by Side A which will guarantee levels of unacceptable 

damage to Side B after they have survived an initial attack by Side B. 

Destructive Capability  

The value of a weapon in terms of the damage it can inflict on an enemy.   This depends, not 

only on the weapon’s size, but also on the probability of its accurate and timely delivery. 

MIRV (Multiple Independent Re-entry Vehicle)    See Warhead. 

Warhead (sometimes Nuclear  Warhead)   

A nuclear explosive device.  One or more may be built into a missile or carried by an 

aircraft.  Some missiles are Multiple Independent Re-entry Vehicles (MIRV), meaning that 

one missile may, on launching, house several warheads which, after separating in mid-air, 

are then capable of navigating themselves towards, and attacking, targets which are 

geographically separated. 

Yield 

The size of a nuclear weapon.  It is normally expressed in Kilotons (KT) or Megatons (MT) 

of conventional explosives. 
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Appendix R1  

 
FULL-SIZE CHARTS 

 
 

 Charts for percentage defence expenditures are shown here full size for  

o Greece and Turkey 1955 to 2000,  

o India and Pakistan  1993 to 1999  

o India and Pakistan  1955 to 2000, and   

o The Middle East     1955 to 2000  

 

These previously appeared in the text as Figures 6.5,  5.7,  6.10 and 6.15. 
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