
Investigating a Heterogeneous Data

Integration Approach for Data

Warehousing

Hao Fan

November 2005

A Dissertation Submitted to the University of London

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

School of Computer Science & Information Systems

Birkbeck College

To my parents, my wife and my son

Acknowledgments

I am especially grateful to my supervisor, Prof. Alexandra Poulovassilis, for her

continued support and patient guidance.

My thanks are also due to the many colleagues at the School of Computer

Science & Information Systems and London Knowledge Lab, especially Nigel

Martin, Lucas Zamboulis, George Papamarkos, Dean Williams, Rachel Hamill

for their precious friendship and timely help during my years at Birkbeck.

I thank all the AutoMed members at Birkbeck and Imperial College for helping

to build a platform on which my research is based: Alex Poulovassilis, Peter

McBrien, Michael Boyd, Sasivimol Kittivoravitkul, Nikolaos Rizopoulos, Nerissa

Tong, Dean Williams, and Lucas Zamboulis.

Last, but not least, my thanks must go to my parents for their love, support

and guidance; my wife, Fei, for being so supportive and for making my life mean-

ingful; and my nine-month old son, Tianda, for bringing me so much happiness.

3

Abstract

Data warehouses integrate data from remote, heterogeneous, autonomous data

sources into a materialised central database. The heterogeneity of these data

sources has two aspects, data expressed in different data models, called model het-

erogeneity, and data expressed within different schemas of the same data model,

called schema heterogeneity.

AutoMed1 is an approach to heterogeneous data transformation and integra-

tion based on the use of reversible schema transformation sequences, which offers

the capability to handle data integration across heterogenous data sources. So

far, this approach has been used only for virtual data integration. In this thesis,

we investigate the use of this approach for materialised data integration.

We investigate how AutoMed metadata can be used to express the schemas

present in a data warehouse environment and to represent data warehouse processes

such as data transformation, data cleansing, data integration, and data summa-

rization. We discuss how the approach can be used for handling schema evolution

in such a materialised data integration scenario. That is, if a data source or data

warehouse schema evolves how the integrated metadata and data can also to be

evolved so that the previous integration effort can be reused as much as pos-

sible. We then describe in detail how the approach can be used for two key

data warehousing activities, namely data lineage tracing and incremental view

1See http://www.doc.ic.ac.uk/automed/

4

maintenance.

The contribution of this thesis is that we investigate for the first time how Au-

toMed can be used in a materialised data integration scenario. We show how the

evolution of both data source and data warehouse schemas can be handled. We

show how two key data warehousing activities, namely incremental view main-

tenance and data lineage tracing, are performed. This is also the first time that

data lineage tracing and incremental view maintenance have been considered over

sequences of schema transformations.

5

Contents

Acknowledgments 3

Abstract 4

1 Introduction 15

1.1 Data Warehousing . 15

1.2 The BAV Data Integration Approach 17

1.3 Problem Statement . 18

1.4 Dissertation Outline . 19

1.5 Dissertation Contributions . 20

2 Overview of Major Issues in Data Warehousing 21

2.1 What is a Data Warehouse? . 21

2.2 Data Warehouse Architecture . 23

2.3 Data Warehouse Modelling . 27

2.4 Data Warehouse Processes . 30

2.4.1 Data Extraction . 31

2.4.2 Data Transformation . 33

2.4.3 Data Cleansing . 34

2.4.4 Data Summarisation . 37

6

2.4.5 Data Warehouse Maintenance 38

2.4.6 Data Lineage Tracing . 40

2.5 Discussion . 41

3 Using AutoMed Metadata for Data Warehousing 43

3.1 Motivation . 43

3.2 The AutoMed Framework . 46

3.2.1 HDM Data Model . 46

3.2.2 The IQL Query Language 54

3.2.3 Transformation Pathways 56

3.2.4 The AutoMed Metadata Repository 60

3.3 Expressing Data Warehouse Schemas and Transformations 63

3.3.1 An Example of Data Integration and Transformation . . . 66

3.3.2 Expressing Data Cleansing 69

3.3.3 Expressing Data Integration 75

3.3.4 Expressing Data Summarisation 75

3.3.5 Creating Data Marts . 75

3.4 Using the Transformation Pathways 76

3.4.1 Populating the Data Warehouse 76

3.4.2 Incrementally Maintaining the Warehouse Data 77

3.4.3 Tracing the Lineage of the Warehouse Data 77

3.5 Discussion . 78

4 Using AutoMed Transformation Pathways for Handling Schema

Evolution 81

4.1 Motivation . 81

4.2 A Data Integration Scenario and Example 83

4.3 Expressing Schema and Data Model Evolution 88

7

4.4 Handling Schema Evolution . 90

4.4.1 Evolution of the Summarised Data Schema 91

4.4.2 Evolution of a Data Source Schema 92

4.4.3 Evolution of Downstream Data Marts 97

4.5 Discussion . 98

5 Using Materialised AutoMed Transformation Pathways for Data

Lineage Tracing 100

5.1 Related Work . 102

5.2 Simple IQL . 105

5.2.1 The SIQL Syntax . 105

5.2.2 Decomposing IQLc into SIQL Queries 107

5.2.3 An Example of Schema Transformations 111

5.3 Data Lineage Definitions . 114

5.4 Data Lineage Tracing Formulae 116

5.5 Data Lineage Tracing Algorithm 120

5.5.1 Tracing Data Lineage through Transformation Pathways . 121

5.5.2 Algorithms for Tracing Data Lineage 122

5.6 IQLc to SIQL Decomposition Order 129

5.7 Ambiguity of Lineage Data . 132

5.7.1 Derivation for difference and not member Operations 132

5.7.2 Derivation for Aggregate Functions 135

5.7.3 Derivation for Where-Provenance 137

5.7.4 Summary . 140

5.8 Discussion . 141

6 Generalising the Data Lineage Tracing Algorithm 142

6.1 Motivation . 142

8

6.2 Data Structures for Data Lineage Tracing 144

6.3 DLT for a Single Transformation Step 146

6.4 DLT Formulae . 148

6.4.1 Case MtVs . 149

6.4.2 Case VtMs . 152

6.4.3 Case VtVs . 156

6.5 DLT for General Transformation Pathways 158

6.5.1 The DLT Algorithms . 158

6.5.2 Example . 160

6.5.3 Performance of the DLT Algorithms 161

6.6 Extending the DLT Algorithms 163

6.6.1 Using Queries beyond IQLc 163

6.6.2 Using delete Transformations 164

6.6.3 Using extend Transformations 164

6.6.4 Using contract Transformations 166

6.7 Implementation . 166

6.8 Discussion . 168

7 Using AutoMed Transformation Pathways for Incremental View

Maintenance 170

7.1 Related Work . 171

7.2 IVM over AutoMed Schema Transformations 173

7.2.1 IVM Formulae for SIQL Queries 174

7.2.2 IVM over Schema Transformation Pathways 180

7.3 Avoiding Materialisations in IVM 182

7.3.1 Using AutoMed’s Global Query Processor 183

7.3.2 Using View Definitions . 183

9

7.3.3 Using Inverse Queries . 184

7.3.4 IVM Formulae for Virtual Schema Constructs 185

7.3.5 Redefining View Definitions 188

7.4 Extending the IVM Algorithms 190

7.4.1 Using Queries beyond IQLc 190

7.4.2 Using extend transformations 192

7.5 Discussion . 193

8 Conclusions and Future Work 194

Bibliography 201

A Proof of Theorem 1 219

B Justifications of IVM Formulae 231

B.1 Justification of IVM Formulae for D1 ⊲⊳c D2 231

B.2 Justification of IVM Formulae for D1 ∧ D2 232

B.3 Justification of IVM Formulae for D1 ⊼ D2 233

C Implementation of Data Warehousing Packages and API for the

AutoMed Toolkit 235

C.1 Package Structure . 235

C.1.1 Package uk.ac.bbk.automed.dataWarehousing.DWExample . . 236

C.1.2 Package uk.ac.bbk.automed.dataWarehousing.util 239

C.1.3 Package uk.ac.bbk.automed.dataWarehousing.dlt 241

C.2 Data Lineage Tracing GUI . 245

C.2.1 The DLT GUI . 245

C.2.2 DLT in Materialised Data Integration 248

C.2.3 DLT in Virtual Data Integration 249

10

C.2.4 A Tool for Browsing Schemas, Data and Lineage Information251

C.3 Discussion . 251

Glossary 254

11

List of Tables

3.1 Representing Simple Relational Model Constructs 49

3.2 Representing Simple XML Model Constructs 51

3.3 Representing Simple Multidimensional Model Constructs 53

6.1 DLT Formulae for MtMs . 148

6.2 DLT Formulae for MtVs . 150

6.3 DLT Formulae for Tracing the Affect-Pool of VtMs 153

6.4 DLT Formulae for Tracing the Origin-Pool of VtMs (1) 154

6.5 DLT Formulae for Tracing the Origin-Pool of VtMs (2) 155

6.6 DLT Formulae for VtVs . 157

7.1 IVM Formulae for distinct, map, and Aggregate Functions 176

7.2 IVM Formulae for Grouping Functions 177

7.3 IVM Formulae for Bag Union and Monus 178

12

List of Figures

2.1 Basic Components of a Data Warehouse System Using AutoMed . 24

2.2 (Left) Star Schema (Right) Snowflake Schema 30

2.3 Merging Data from Multiple Data Sources 35

3.1 Frameworks of Data Integration 44

3.2 A XML File . 52

3.3 AutoMed Software Architecture 61

3.4 AutoMed Repository Schema . 62

3.5 Data Transformation and Integration at the Schema Level 63

3.6 An Example of Data Integration and Transformation 67

4.1 Data Integration Scenario . 83

4.2 Example of Data Integration . 85

5.1 Procedures affectPoolOfTuple and originPoolOfTuple 124

5.2 Procedure affectPoolOfSet . 125

5.3 Procedure traceAffectPool . 127

5.4 Procedure merge . 128

6.1 The DLT4AStep Algorithm . 147

6.2 DLT Algorithms for a General Transformation Pathway 159

6.3 Running Time vs. Number of Relevant add Transformations . . . 162

13

6.4 Running Time vs. Number of Schema Constructs 162

6.5 The Diagram of the Data Warehousing Toolkit 167

7.1 The IVM4Comp Algorithm . 179

C.1 The Data Lineage Tracing GUI 246

C.2 The Extent of Selected Construct 247

C.3 Tracing Data Lineage of vAll . 248

C.4 Tracing Data Lineage of vPair . 248

C.5 Tracing Data Lineage of vExist . 249

C.6 Tracing Data Lineage with a Virtual Schema 250

C.7 Browsing Schemas and Data Information 252

14

Chapter 1

Introduction

1.1 Data Warehousing

A data warehouse consists of a set of materialised views defined over a number

of data sources. It collects copies of data from remote, distributed, autonomous

and heterogeneous data sources into a central repository to enable analysis and

mining of the integrated information. Data warehousing and on-line analytical

processing (OLAP) are essential elements of decision support, which has increas-

ingly become a focus of the database industry. Many commercial products and

services relating to data warehousing are currently available, and all of the prin-

cipal data management system vendors, such as Oracle, IBM, Informix and MS

SQL Server, have offerings in these areas.

Research problems in data warehousing include data warehouse architecture

design, information quality and data cleansing, maintaining data warehouses, se-

lecting views to materialise, Workflow data management [BCDS01], data lineage

tracing in data warehouses, and so on. Comprehensive overviews of data ware-

housing and OLAP technology are given in [CD97, Wid95]. Currently, increasing

15

numbers of data warehouses need to integrate data from a number of hetero-

geneous and autonomous data sources. Extending existing warehouse activities

into heterogeneous database environments is a new challenge in data warehousing

research.

The heterogeneity of these data sources has two aspects, data expressed in

different data models, called model heterogeneity, and data expressed within dif-

ferent schemas of the same data model, called schema heterogeneity.

Up to now, most data integration approaches have been either global-as-view

(GAV) or local-as-view (LAV) [Len02]. In GAV, the constructs of a global schema

are described as views over local schemas1. In LAV, the constructs of a local

schema are defined as views over a global schema. One disadvantage of GAV and

LAV is that they do not readily support the evolution of both local and global

schemas. In particular, GAV does not readily support the evolution of local

schemas while LAV does not readily support the evolution of global schemas.

Furthermore, both GAV and LAV assume one common data model for the data

transformation and integration process, typically the relational data model.

Other approaches for managing distributed, heterogenous, and autonomous

databases and database applications include federated databases [SL90, BIG94,

SG97] and middleware [BCRP98, CEM01]. In contrast to data warehouses be-

ing materialised data integration scenarios, federated database systems are vir-

tual data integration scenarios which use virtual federated schemas integrating

schema information from distributed and autonomous source databases. They

are an early example of the GAV approach. Global query processors are used

to evaluate queries over federated schemas by accessing the data in the source

1A view in a database system is derived data defined in terms of stored data and/or possibly
other views. View definitions are expressed as queries over their source data. A view can be
materialised by storing the data of the view, and subsequent accesses of the materialised view
can be much faster than recomputing it.

16

databases. The middleware approach presents a unified programming model to

resolve heterogeneity, and facilitates communication and coordination of distrib-

uted components, so as to build systems that are distributed across a network

[Emm00]. For undertaking data transformation or integration, middleware can

adopt GAV, LAV or both approaches.

1.2 The BAV Data Integration Approach

AutoMed2 supports a new data integration approach called both-as-view (BAV)

which is based on the use of reversible sequences of primitive schema transfor-

mations [MP03a]. From these sequences, it is possible to derive a definition of a

global schema as a view over the local schemas, and it is also possible to derive

a definition of a local schema as a view over a global schema. BAV can therefore

capture all the semantic information that is present in LAV and GAV derivation

rules. A key advantage of BAV is that it readily supports the evolution of both

local and global schemas, allowing transformation sequences and schemas to be

incrementally modified as opposed to having to be regenerated.

Another advantage is that BAV can support data transformation and integra-

tion across multiple data models. This is because BAV supports a low-level data

model called the HDM (hypergraph data model) in terms of which higher-level

data models are defined. Primitive schema transformations add, delete or re-

name a single modelling construct with respect to a schema. Thus, intermediate

schemas in a schema transformation/integration network can contain constructs

defined in multiple modelling languages. Previous work has shown how rela-

tional, ER, OO, XML and flat-file data models can be defined in terms of the

HDM [MP99a, MP99b, MP01].

2See http://www.doc.ic.ac.uk/automed/

17

AutoMed is an implementation of the BAV data integration approach. In

previous work within the AutoMed project [PM98, MP99a], a general framework

has been developed to support schema transformation and integration. So far,

the BAV approach and AutoMed have been used only for virtual data integra-

tion. In this thesis, we investigate the use of the BAV approach for materialised

data integration. We first investigate how AutoMed metadata can be used to

express the schemas present in a data warehouse environment and to represent

data warehouse processes such as data transformation, data cleansing, data inte-

gration, and data summarisation. We then discuss how schema evolution can be

handled in such a materialised data integration scenario. That is, if a data source

or data warehouse schema evolves how the existing warehouse metadata and data

can also be evolved so that the previous integration effort can be reused. We then

describe in detail how the approach can be used for two key data warehousing

processes, namely data lineage tracing and incremental view maintenance.

1.3 Problem Statement

In order to use AutoMed for materialised data integration, there are four research

problems considered in this thesis.

1. How AutoMed metadata can be used to express the schemas and processes

such as data cleansing, transformation and integration in heterogeneous

data warehouse environments, supporting both schema heterogeneity and

model heterogeneity.

2. How AutoMed schema transformations can be used to express the evolu-

tion of a data source or data warehouse schema, either within the same

18

data model, or a change in its data model, or both; and how the exist-

ing warehouse metadata and data can also be evolved so that the previous

transformation, integration and data materialisation effort can be reused.

3. How AutoMed metadata can be used for data lineage tracing in heteroge-

neous data warehouses, including what is the definition of data lineage in

the context of AutoMed, and how the individual steps of AutoMed schema

transformations can be used to trace data lineage in a step-wise fashion.

4. How AutoMed metadata can be used for incremental view maintenance in

heterogeneous data warehouses. Here, we discuss how AutoMed can handle

the problem of maintaining materialised data warehouse views if either the

data or the schema of a data source change.

1.4 Dissertation Outline

The outline of this thesis is as follows:

Chapter 2 gives the background of this thesis, including a review of major

issues in data warehousing.

Chapter 3 gives an overview of the AutoMed framework, at the level neces-

sary for the work in this thesis, and discusses how AutoMed metadata can be

used to express the schemas and processes of heterogeneous data warehousing

environments.

Chapter 4 describes how AutoMed schema transformations can be used to

express the evolution of schemas in a data warehouse. It then shows how to

evolve the warehouse metadata and data so that the previous transformation,

integration and data materialisation effort can be reused.

Chapter 5 develops a set of algorithms which use materialised AutoMed

19

schema transformations for tracing data lineage. By materialised, we mean that

all intermediate schema constructs created in the schema transformations are

materialised, i.e. have an extent associated with them.

Chapter 6 generalises these algorithms to use arbitrary AutoMed schema

transformations for tracing data lineage i.e. where intermediate schema constructs

may or may not be materialised.

Chapter 7 discusses how AutoMed transformation pathways can be used for

incrementally maintaining data warehouse views.

Finally, Chapter 8 gives our conclusions and directions of future work.

1.5 Dissertation Contributions

A formal approach has been chosen as the methodology of this research. We first

investigate previous relevant work on data warehousing, schema evolution, data

lineage tracing, and incremental view maintenance. We then investigate how

the AutoMed data integration approach can be used for these activities in the

context of heterogeneous data warehouse environments, develop new theoretical

foundations and algorithms, and implement some of our algorithms.

The contribution of this thesis is that we investigate for the first time how the

AutoMed heterogeneous data integration approach can be used in a materialised

data integration scenario. We show how the evolution of both data source and

data warehouse schemas can be handled. We show how two key data warehousing

activities, namely incremental view maintenance and data lineage tracing, are

performed. This is also the first time that data lineage tracing and incremental

view maintenance have been considered over sequences of schema transformations.

20

Chapter 2

Overview of Major Issues in Data

Warehousing

This chapter gives an overview of major issues in data warehousing. In Section

2.1, we discuss a definition of a data warehouse. Section 2.2 presents the archi-

tecture of a data warehouse system which includes the data sources, the staging

area, the data warehouse itself and end-user applications and interfaces. Section

2.3 discusses a commonly-used data modelling technique in data warehousing,

multidimensional data modelling. Section 2.4 discusses the processes of building,

maintaining and using a data warehouse. Finally, Section 2.5 summarises the

discussions of this chapter.

2.1 What is a Data Warehouse?

A data warehouse is a repository gathering data from a variety of data sources and

providing integrated information for Decision Support Systems of an enterprise.

In contrast to operational database systems which support day-to-day operations

21

of an organisation and deal with real-time updates to the databases, data ware-

houses support queries requiring long-term, summarised information integrated

from the data sources, and generally do not require the most up to date oper-

ational version of the data. Thus, updates to the primary data sources do not

have to be propagated to the data warehouse immediately.

The definition of a data warehouse given in [Inm02] is:

A data warehouse is a subject-oriented, integrated, nonvolatile and

time-variant collection of data in support of management’s decisions.

The first feature, subject-oriented, means that a data warehouse only includes

the data that will be used for the organisation’s Decision Support System (DSS)

processes. In contrast, other database applications contain data for satisfying

immediate functional or processing requirements, which may or may not have

any use for decision support. The subject in the above definition denotes the

aspect of the data used in DSS, such as the customers, products, services, prices

and sales of the enterprise.

The second feature in the above definition is integrated. Data warehouses col-

lect data from multiple data sources, which may be distributed, heterogeneous

and autonomous. However, the warehouse data needs to be stored in a schema

that satisfies the users’ analysis requirements. Normally, source data is trans-

formed and integrated before entering the data warehouse so that the focus of

the warehouse users is on using the integrated data, rather than being concerned

with the correctness or consistency of the source data.

The third feature in the above definition is nonvolatile which means that ware-

house data are normally long-term, not updated in real-time and just refreshed

periodically. In operational database systems, the data is normally the most up

to date, and update operations such as inserting, deleting and changing data are

22

frequently applied. In data warehouses, the data is used for DSS processes. Once

the data is loaded into the data warehouse, the focus is on querying it, rather

than inserting, deleting or changing it. However, a data warehouse also needs to

be periodically refreshed in order to reflect updates in the primary data sources.

Usually, alternate bulk storage is used to store the old data in the data warehouse.

Purges of obsolete data are also carried out from time to time.

The last feature in the above definition is time-variant. Information from

one past time point (the time the data warehouse was deployed) to the present

may be contained in the data warehouse. Using this information, end users can

analyse and forecast the progress and future trends of the enterprise. In contrast,

operational database applications mainly consider only current data.

In summary, a data warehouse is built for DSS analysts or managers in an

enterprise, who may be non-technical users, to easily access in their business con-

text the widespread information across the enterprise. It is a single, complete,

consistent accumulation of data obtained from a variety of sources which may be

remote, distributed, heterogeneous and autonomous. In order to take advantage

of this data, the basic functionalities of a data warehouse are gathering, cleans-

ing, filtering, transforming, integrating and reorganising the source data into a

repository with a single schema which satisfies the users’ analysis requirements.

Thus, data warehousing is not a static solution but an evolving process.

2.2 Data Warehouse Architecture

A data warehouse system consists of several components: the data sources, the

staging area, the data warehouse itself and end-user applications and interfaces,

as illustrated in Figure 2.1. Brief descriptions of each component are given below.

23

Query

Rewrite

System

Remote

Data

Source

WAN

Autonomous

remote data sources
Staging

Area
Data Warehouse Application Tools Visualization

Interface

Query Applications

Data Mining

Analysis Applications

Other Applications

OLAP

Servers

Data Marts

OLAP

Servers

Data

Source

Copies

Data Warehouse

Summarizing

Views

Summarizing

Views

Current

detailed data

Older detailed data

DW

Architecture

(Meta Data)

Extracting, Cleaning

Transforming, Loading

Services

Data Lineage Tracing

AutoMed Repository API

Transformation Pathways

C
h

a
n

g
e

 D
a

ta
 C

a
p

tu
re

(C
D

C
)

S
y
s
te

m

Updating,

Maintaining

Figure 2.1: Basic Components of a Data Warehouse System Using AutoMed

Data Sources The data sources provide the original data of the data ware-

house. A data warehouse may integrate data from multiple autonomous and

heterogeneous data sources, which could be either remote or local, and not un-

der the control of the data warehouse users and administrators. In addition,

the data sources may be structured (e.g., relational databases), semi-structured

(e.g., XML or RDF files) or flat files. Such arbitrary data sources pose several

challenges to warehouse builder: to create a uniform repository integrating these

data; to design easily understandable data warehouse schemas; and to express

the transformations between the data source and data warehouse schemas.

Staging Area The staging area keeps whole copies of the data sources and

brings them under the control of the data warehouse administrator. The data

in the staging area may be heterogeneous and contain “dirty” (e.g. duplicate or

24

inconsistent) data. No end-user query services are available in this area, that is,

the warehouse users cannot access the data in the staging area.

Data Warehouse The data warehouse contains the integrated data used to

support the DSS processes. In contrast to the staging area, data in the data

warehouse itself have a uniform schema and have been cleansed by removing

dirty data. The processes of data cleansing and data transformation happen

before loading data into the data warehouse.

The data warehouse typically consists of following components:

- Detailed Data: The detailed data is the lowest level of source information nec-

essary for supporting the DSS processes. It is normally stored in a single

repository such as a relational or object-oriented database. The detailed

data includes current detailed data and older detailed data. From the stag-

ing area to the detail data, the data needs to be transformed, cleansed,

loaded and integrated. These processes compose a major part of building a

data warehouse.

- Summarised Data: The summarised data is derived from the detailed data, in

order to allow faster processing of specific DSS functionality. For exam-

ple, suppose the detailed data contains a relational table Sales(ProductID,

LocationID,TimeID,SalesAmount). The summarised data may contain tables

ProductSalesByLocation(ProductID,LocationID, SalesAmount) summarising

the total sales for products at locations; ProductSalesByTime(ProductID,

TimeID, SalesAmount) summarising the total sales for products over time pe-

riods; LocationSalesByTime(LocationID, TimeID, SalesAmount) summarising

the total sales for locations over time periods; TotalProductSales(ProductID,

SalesAmount) summarising the total sales for products; TotalLocationSales

25

(LocationID, SalesAmount) summarising the total sales for locations; Total-

TimeSales(ProductID, SalesAmount) summarising the total sales over time

periods.

The summarised data are defined as views over the detailed data or over

other summarising views. Views in the data warehouse can be virtual or

materialised. How to maintain these views, especially materialised ones, has

been one of the key issues of data warehousing research [GM99, Don99].

- Metadata: A data warehouse not only provides integrated data, but also pro-

vides information about the content and context of the data, i.e. metadata.

This metadata provides a directory of the structure of the warehouse con-

tents. It provides information about the warehouse schema, and also about

the mappings between the data in the data warehouse, such as from the

data sources to the detailed data and from the detailed data to the sum-

marised data. In Figure 2.1, we show the metadata being stored in an

AutoMed repository, where it can be accessed by the data warehouse users

and administrators.

End-User Applications and Interfaces The end-user applications and inter-

faces provide a way for warehouse users to access warehouse data. In particular,

data marts can be created over the data warehouse for different categories of DSS

users. Data marts are defined from the warehouse data for specific DSS require-

ments of the enterprise. In contrast to the summarised data, data marts can

have different data models and schemas from the ones of the detailed data of the

warehouse. In practice, the same tools used to load the data warehouse database

can be used to load the data marts, for example Oracle Warehouse Builder1, IBM

1See http://www.oracle.com/technology/documentation/warehouse.html

26

Data Warehouse Manager2, or Microsoft Data Transformation Services3.

The problem of query rewriting, also known as answering queries using views,

has also received much attention in database research [Lev00]. Query rewriting

aims to find efficient methods of answering a query using a set of previously ma-

terialised views over the database tables, rather than accessing the base tables

themselves. In data warehousing, it is relevant to problems such as query opti-

misation, materialised view maintenance and data warehouse design. We do not

address the problem of query rewriting in this thesis, but it may be an important

area of future research in the AutoMed project.

2.3 Data Warehouse Modelling

Data warehouse modelling is the process of designing the schemas of the detailed

and summarised data of the data warehouse. The aim of data warehouse mod-

elling is to design a schema representing the reality, or at least a part of the

reality, which the data warehouse is required to support.

Data warehouse modelling is an important stage of building a data warehouse

for two main reasons. Firstly, through the schema, data warehouse users have

the ability to visualise the relationships among the warehouse data, so as to use

them with greater ease. Secondly, a well-designed schema allows an effective data

warehouse architecture to emerge, to help reduce the cost of implementing the

warehouse and improve the efficiency of using it.

Data modelling in data warehouses is rather different from data modelling in

operational database systems. The main functionality of data warehouses is to

support DSS processes. Thus, the aim of data warehouse modelling is to make

the data warehouse efficiently support complex queries on long-term information.

2See http://www-306.ibm.com/software/data/db2/datawarehouse/
3See http://www.microsoft.com/sql/evaluation/features/datatran.asp

27

In contrast, data modelling in operational database systems focusses on efficiently

supporting simple transactions in the database such as retrieving, inserting, delet-

ing and changing data. Moreover, data warehouses are designed for users with

general information knowledge about the enterprise, whereas operational data-

base systems are more oriented toward use by software specialists for creating

specific applications.

Modelling warehouse data requires information about both the source data

and the target warehouse data. The source data can be treated as inputs which

are transformed into the target warehouse data. How this transformation happens

is required to be reflected in data warehouse modelling.

Multidimensional data modelling is a commonly-used technique to conceptu-

alise and visualise schemas by using the major components of the business, such

as customers, products, services, prices and sales. This data modelling technique

is especially used for summarising and rearranging data and presenting views of

the data to support DSS. Particularly, multidimensional data modelling focuses

on numeric data such as sales, counts, balances and costs.

In multidimensional data modelling, the data warehouse is designed to collect

facts on one or more measures, each measure depending on a set of dimensions.

For example, a sales measure may depend on three dimensions: products, times

and locations.

Facts are collections of related data items, which are stored within fact tables in

the data warehouse. Dimensions are collections of the items of one component of

the business, such as the products dimension, the times dimension and the locations

dimension for sales. The items of a dimension are stored within a dimension table

in the data warehouse.

The primary key of a fact table is a concatenation of the primary keys of one

or more dimension tables. Thus, every row in the fact table is associated with

28

one and only one row from each dimension table.

Measures are the non-key attributes of fact tables, and they represent infor-

mation relating to the dimensions key attributes of the fact table.

The non-key attributes of a dimension table may be organised as a dimension

hierarchy. For example, the times dimension may consist of the dates, months and

weeks attributes; the products dimension may consist of the category, model and

producer attributes; and the locations dimension may consist of the city, region

and country attributes.

There are two kinds of schemas used in multidimensional data modelling: star

schemas and snowflake schemas. A star schema typically has one fact table, and

a set of smaller tables. Figure 2.2 (Left) below gives an example of a star schema.

The links between the primary keys of the fact table and the foreign keys in the

dimension tables can be visualised as a radial pattern with the fact table in the

middle.

The dimension tables may contain data redundancies. For example, in the

dimension table Locations(LocationID,Address,City,Region,Country), the City and

Region information may be repeatedly stored for the locations in the same cities.

This kind of data redundancy incurs storage overheads and may lead to update

anomalies and poor update performance.

If necessary, snowflake schemas can be used to avoid such data redundancies.

A snowflake schema is the result of normalizing the dimensions of a star schema,

in which there are links between primary keys and foreign keys of tables in the

dimension hierarchy. Figure 2.2 (Right) is an example of a snowflake schema.

However, fully normalizing the dimension tables may not be necessary in a

data warehouse environment. Since there are generally no updates occurring to

individual rows in the dimension tables, although new rows may be added when

the data warehouse is refreshed with new data, and existing rows may be deleted

29

Sales
ProductID
LocationID
TimeID
SalesAmount

Times
TimeID
Date
Week
Month
Year

Locations

LocationID
Address
City
Region
Country

Products
ProductID
Name
Category
Model
Producer
Price

Months

Month
Year

Sales
ProdictID
LocationID
TimeID
SalesAmount

Times
TimeID
Date

Locations
LocationID
Address
City

Products
ProductID
ProducerID
Name
ModelID
Price

Cities

City
RegionRegions

Region
Country

Producers

ProducerID
Producer

Catrgories

CategoryID
Producer

Models

ModelID
Model
CategoryID

Dates

Date
Week
Month

Weeks

Week
Year

Figure 2.2: (Left) Star Schema (Right) Snowflake Schema

when the data warehouse is purged of out-of-date data, the issue of update anom-

alies and poor update performance will generally not arise in the data warehouse.

In addition, the storage consumption of the data warehouse is dominated by the

fact tables and the space saved by normalizing the dimension tables would gen-

erally be comparatively small. Moreover, un-normalized dimension tables can

reduce the time required to combine information in the fact table with dimension

information, which is a main performance criterion of a data warehouse.

2.4 Data Warehouse Processes

The objective of supporting DSS queries over a data warehouse requires a set of

data warehouse processes that are far more complex than just collecting data from

the remote data sources and then querying them. In this section, we discuss the

processes of building, maintaining and using the data warehouse. In particular,

building the data warehouse includes extracting, cleansing, transforming, loading,

summarising data and creating data marts; maintaining the data warehouse is the

process of refreshing materialised views in the warehouse and the data marts; and

using the data warehouse includes developing and using the end-user applications,

30

as well as special functionalities of the data warehouse, such as data lineage

tracing.

2.4.1 Data Extraction

Data are extracted from the data sources into the staging area for integration into

the data warehouse. This is the first step of building the data warehouse. Data

extraction does not involve complex algebraic database operations such as join

and aggregate functions. It focuses on determining which remote data is required

to be extracted, and bringing the data into the staging area. The data sources

may be very complex and poorly documented, so that data extraction design and

performance are often the time-consuming tasks in the building process [Lan02].

Data have to be extracted not only once, but several times in a periodic

manner to supply the changes to the data warehouse and keep it up-to-date.

Thus, data extraction is not only used in building the data warehouse, but also

used in maintaining the data warehouse.

There are two kinds of strategies of data extraction: full extraction, where the

entire files or tables of the data sources are extracted to the staging area; and

incremental extraction, only the data that has been changed since a well-defined

event back in history will be extracted at a specific point of time. The event may

be the last time of successful extraction or a more complex business event like

the last sale day of a fiscal period [Lan02].

Full extraction reflects all data currently available in the data sources, and

there is no need to keep track of the changes to a data source since the last suc-

cessful extraction. The source data will be provided as a whole and no additional

information, such as time-stamps, is necessary regarding the source site.

Incremental extraction can make the data extraction process much more ef-

ficient, and is especially useful when incremental view maintenance (see Section

31

2.4.5 below) has been selected as the maintenance strategy. However, for many

data sources, identifying the recently modified data may be difficult or intrusive

to the operations of the data sources, which is beyond the control of the data

warehouse builder.

Normally, the data sources cannot be modified by the data warehouse builder,

nor can their performance or availability be affected by the data extraction

process. Because of the independence of the data sources, data warehouses nor-

mally do not use incremental extraction as the strategy for data extraction and

instead use full extraction. After full extraction, the entire extracted data from

the data sources can be compared with the previous extracted data to identify

the changed data, so that delta changes can be captured for maintaining the

warehouse data (this happens in the staging area). This approach may not have

significant impact on the data sources, but it clearly can place a considerable

burden on the data warehouse processes, particularly if the data volumes are

large.

Data extraction incorporates the processes of data transportation and data

loading, which move data from one data system to another. The most common

requirements of data transportation are moving data from the data sources to

the staging area, from the staging area to the data warehouse, and from the data

warehouse to the data marts. Data loading is data transportation specifically

relating to loading the detailed data into the data warehouse.

In practice, Load is a command in many commercial database systems. For

example, the Oracle SQL*Loader utility is used to move data from flat files into

Oracle tables, which is faster than using a series of SQL INSERT statements

because no locking or logging takes place. Similarly, Transact-SQL and the bcp

utility from Microsoft4 can be used to load data into SQL Server databases. There

4See http://msdn.microsoft.com/library/.

32

are also available many commercial tools for data extraction and loading in data

warehouses, such as Oracle Warehouse Builder5, IBM Data Warehouse Manager6,

and Microsoft Data Transformation Services7.

2.4.2 Data Transformation

The data sources of a data warehouse may conform to multiple schemas, while

the data warehouse has a single schema. Heterogeneous source data have to

be transformed into the data warehouse schema before loading into the data

warehouse.

Two kinds of data transformations are often used in data warehousing: mul-

tistage data transformations and pipelined data transformations [Lan02]. Mul-

tistage transformations implement each different transformation as a separate

operation and create separate, temporary staging tables to store incremental re-

sults of each step. This is a common strategy and makes the transformation

process easily monitored and restarted. However, a disadvantage of multistage

data transformations is high space and time costs.

With pipelined data transformations, there are no temporary staging tables.

Instead data is transformed as it is loaded into the data warehouse. This con-

sequently increases the difficulty of monitoring and may require some similarity

between the source data and the target data, e.g. both of them have schemas

specified within the same data model. For example, the commercial data man-

agement tool PgManager8 can be used to transform data in Excel tables, Access

databases or TXT files and load them into PostgreSQL databases.

5See http://www.oracle.com/technology/documentation/warehouse.html
6See http://www-306.ibm.com/software/data/db2/datawarehouse/
7See http://www.microsoft.com/sql/evaluation/features/datatran.asp
8See http://sqlmanager.net/products/postgresql/manager/

33

2.4.3 Data Cleansing

Extracting data from remote data sources, especially from heterogeneous data

sources, can bring erroneous and inconsistent information into the data ware-

house. Data warehouses usually face this problem, in their role as repositories

for information derived from multiple data sources within and across enterprises.

Thus, before loading data from the staging area to the data warehouse, data

cleansing is normally required [RD00]. Data cleansing is a process which deals

with detecting and removing errors and inconsistencies from the source data in

order to improve the data quality of the data warehouse.

The problems of data cleansing include single-source problems and multi-

source problems [RD00]. Single-source cleansing cleans dirty data from one data

source. This process involves formatting and standardizing the source data, such

as adding a key to every source record and decomposing some dimensions into

sub-dimensions according the requirement of the warehouse, e.g., decomposing an

Address dimension into LocationID, Number, Street, City, Zip and Country dimen-

sions. Multi-source cleansing considers several data sources when undertaking

the cleansing process. Multi-source cleansing may include merging data from

multiple data sources.

Figure 2.3 illustrates an example of merging data from multiple data sources.

The Customer and Client databases are integrated into the Customers database.

Records existing in one data source, Customer or Client, remain in the Customers

database under the transformed schema. As to records existing in both data

sources, information from the more reliable source can be transformed into the

target database.

For each of these two data cleansing problems, there are two possible scenarios:

schema-level and instance-level [RD00]. Schema-level problems can be addressed

by evolving the schema(s) as necessary. Instance-level problems, on the other

34

&XVWRPHU

&,' 1DPH

6WUHHW
��� �

�� �

/1DPH)1DPH

��� � � � 	�

��

�� � � �

&OLHQW

6WUHHW

&QR
� � � � �

�� �� � �� � �

/1DPH)1DPH

��� �

� �

�� � � �

)D[3KRQH

*HQGHU

&XVWRPHUV

6WUHHW

&QR

�� �

/1DPH)1DPH

��� �

��

�� � � �

)D[3KRQH

*HQGHU

Figure 2.3: Merging Data from Multiple Data Sources

hand, refer to errors and inconsistencies in the actual data contents which are

not visible at the schema level. Below, we discuss data cleansing problems for

both single and multiple data sources, and for both schema-level and instance-

level problems:

Single-Source Cleansing Single-source, schema-level problems arise when the

source data model violates the schema used for the data warehouse. For example,

the source data may be XML files while the schema used for the data warehouse

is relational, or relational databases with different schemas are used to represent

the same information in a data source and in the data warehouse.

Single-source, instance-level problems include value, attribute and record

problems. Value problems occur within a single value and include problems such

as a missing value, a mis-spelled value, a mis-fielded value (e.g. putting a city

name in a country attribute), embedded values (putting multiple values into one

attribute value), using an abbreviation or a mis-expressed value (e.g. using the

35

wrong order of first name and family name within a name attribute).

Attribute problems relate to multiple attributes in one record and include

problems such as dependence violation (e.g. between city and zip, or between

birth-date and age).

Record problems relate to multiple records in the data source, and include

problems such as duplicate records or contradictory records.

Multi-Source Cleansing Multi-source, schema-level problems include attrib-

ute and structure conflicts. Attribute conflicts arise when different sources use

the same name for different constructs (homonyms) or different names for the

same construct (synonyms). Structure conflicts arise when the same information

is modeled in different ways in different schemas. For example, information about

customers may be stored in relational databases and XML documents, or in rela-

tional databases with different schemas (e.g. regionCustomer(name,location,service)

storing customer information according to their location and services they use;

and wholeSaleCustomer(name,address) and retailCustomer(name,address) storing

customer information in different tables according to their service type.).

Multi-source, instance-level problems include attribute, record, reference and

data source problems. Attribute problems include different representations of the

same attribute in different schemas (e.g. Yes/No vs True/Fasle in a maritalStatus

attribute) or a different interpretations of the values of an attribute in different

schemas (e.g. US Dollar vs Euro in a currency attribute).

Record problems include duplicate records or contradictory records among

different data sources.

Reference problems occur when a referenced value does not exist in the target

schema construct and can be resolved by replacing the dangling references by

Null values.

36

Data source problems relate to whole data sources, for example, aggregation

at different levels of detail in different data sources (e.g. sales may be recorded

per product in one data source and per product category in another data source).

In Chapter 3 below, we will discuss how AutoMed schema transformations can

be used to express the process of data cleansing, both single- and multi-source. A

large number of commercial tools of varying functionalities are available to sup-

port data cleansing9. These normally focus on specific data cleansing problems,

such as address correction (e.g. QuickAddress Batch10 and AddressAbilityTM11) and

removal of duplicates (e.g. DoubleTake12). In the research arena, examples in-

clude the Arktos tool for data cleansing and transformation by Vassiliadis et al.

[VVSK00], the IntelliClean tool for knowledge-based intelligent data cleansing by

Lee and Low et al. [LLL00, LLL01], the interactive data cleansing system Potter’s

Wheel by Raman et al. [RH01], and the extensible data cleansing tool AJAX by

Galhardas et al. [GFSS00, GFS+01a]. All of these research tools consider the

problem of data cleansing more generally than the commercial tools.

2.4.4 Data Summarisation

Data summarisation is the process of creating the summarising data in the data

warehouse. As discussed before, the summarising data are views over the detailed

data and possibly other views, and they may or may not be materialised. The

main usage of materialised views is to increase the speed of queries over the

warehouse data and also to allow query rewriting.

However, a problem relating to materialised views is view maintenance. If the

9See http://web.tagus.ist.utl.pt/ helena.galhardas/cleaning.html for a list of
commercial data cleansing tools.

10See http://www.qas.com/address-correction-software.asp
11See http://www.inforouteinc.com/prodA-1.html
12See http://www.tech4t.co.uk/doubletake/

37

detailed data in the data warehouse is updated, the materialised views have to

be refreshed also so as to keep them up-to-date [GM99, Don99].

2.4.5 Data Warehouse Maintenance

The issue of view maintenance in data warehouses has been widely discussed

in the literature [GM99, Don99, CW91, GMS93, CGL+96, Qua96, PSCP02,

ZGMHW95, ZGMW98, AASY97], and many view maintenance policies and al-

gorithms have been developed. Logically, there are two kinds of view main-

tenance approaches, fully recomputing and incrementally refreshing; while tem-

porally, three kinds of view maintenance approaches may be adopted, periodic

maintenance, on-commit maintenance and on-demand maintenance [GM99].

Fully recomputing means that if a data source is updated, the view will be

refreshed by recomputing it from scratch. On the other hand, incrementally

refreshing computes the changes to the view rather than recomputing all the

view data. Incrementally refreshing a view can be significantly cheaper than

fully recomputing the view, especially if the size of the materialised view is large

compared to the size of the change.

A periodically maintained view is called a snapshot, and is generally used

for integrating data from remote data sources, such as from the Internet. A

snapshot has a lower consistency level between the view and the data sources

than on-commit maintenance, but is easy to implement.

On-commit view maintenance is also referred to as immediate view main-

tenance [GM99], which means that views are refreshed every time an update

transaction commits. Using an immediate view maintenance strategy, we can

ensure that the materialised views will always contain the latest committed data.

However, it increases the time overhead of committing update transactions.

38

The on-demand view maintenance policy can control the time that view main-

tenance occurs — materialised views are refreshed when a refresh command is

explicitly issued. One kind of on-demand view maintenance is on-queried view

maintenance, which means the maintenance procedure is performed only when

the view is used or queried. This may reduce the overhead of the view mainte-

nance process in a data warehouse if some views are seldom used [Eng02].

Both the periodical and on-demand view maintenance policies are a kind

of deferred view maintenance strategy [GM99, CGL+96]. Both policies use the

post-update data sources and their changes to maintain the views. In contrast,

the on-commit (immediate) view maintenance policy uses the pre-update data

sources and the changes to them to maintain the views. One disadvantage of

immediate view maintenance is that each update transaction incurs the overhead

of refreshing the views, and this overhead increases with the number of views and

their complexity.

In data warehousing environments, immediate view maintenance is generally

not possible, since administrators of data sources may not know what views exist

in the data warehouse, and data warehouse administrators may not be able to

access the changes to the data sources directly. Deferred view maintenance can

be performed periodically, or on-demand when certain conditions arise, and is

generally used as the view refreshment policy in data warehousing environments.

Combining the maintenance logic and maintenance time, there are therefore

six possible view maintenance strategies: immediate incremental, immediate re-

compute, periodic incremental, periodic recompute, deferred incremental and de-

ferred recompute maintenance [Eng02, ECL03].

The view maintenance approach discussed by Gupta and Quass et al. in

[GJM96, QGMW96] is to make views self-maintainable, which means that ma-

terialised views can be refreshed by only using the content of the views and

39

the updates to the data sources, and not requiring to access the data in any data

source. References [Huy97], [VM97] and [LLWO99] also discuss view maintenance

problems pertaining to self-maintenance for views in data warehousing environ-

ments, focusing on select-projection-join (SPJ) views. Such a view maintenance

approach usually needs auxiliary materialised views to store additional informa-

tion. Whether these auxiliary materialised views are also self-maintainable, with

the original views acting as the auxiliary data, is important to this research issue.

We are not considering self-maintainability of views in this thesis.

Materialised warehouse views need to be maintained either when the data of

a data source changes, or if there is an evolution of a data source schema. In

Chapter 4 of this thesis we discuss how AutoMed transformation pathways can

be used to express schema evolutions in a data warehouse. In Chapter 7 of this

thesis we discuss incrementally refreshing materialised warehouse views when the

data of a data source changes.

2.4.6 Data Lineage Tracing

Sometimes what is needed is not only to analyse the data in a data warehouse,

but also to investigate how certain warehouse information was derived from the

data sources. Given a data item t in the data warehouse, finding the set of source

data items from which t was derived is termed the data lineage tracing problem

[CWW00]. Supporting data lineage tracing in data warehousing environments

has a number of applications: in-depth data analysis, on-line analytical mining

(OLAM), scientific databases, authorization management, and schema evolution

of materialised views [BB99, WS97, CWW00, GFS+01b, FJS97].

In Chapter 3 of this thesis we discuss how AutoMed schema transforma-

tion pathways can be used to express the main processes of heterogeneous data

warehousing environments, including data transformation, cleansing, integration,

40

summarisation and creating data marts. In Chapters 5 and 6 we then address

the issues of data lineage tracing over AutoMed schema transformation pathways,

including: the definitions of data lineage in the context of AutoMed; the problem

of derivation ambiguity in data lineage tracing; formulae for data lineage tracing

based on a single transformation step; algorithms for data lineage tracing along a

sequence of transformation steps; and handling virtual transformation steps, i.e.

steps whose results are not materialised.

2.5 Discussion

This chapter has given an overview of the major issues in data warehousing. We

first introduced the definition of a data warehouse, and indicated that data ware-

houses integrate data from distributed, autonomous, heterogeneous data sources

in order to support the DSS processes of an enterprise. The basic components

of a data warehouse system include the data sources, the staging area, the data

warehouse itself and the end-user applications and interfaces. We discussed mul-

tidimensional data modelling. The data warehouse processes described in this

chapter were: building a data warehouse, including data extraction, data trans-

formation, data cleansing, data loading and data summarisation; maintaining a

data warehouse; and data lineage tracing.

In the rest of this thesis, we will discuss how AutoMed metadata can be used

to represent the data models and schemas of a data warehouse and the semantic

relationships between them. We will also develop a set of algorithms which use

AutoMed transformation pathways for incremental view maintenance and data

lineage tracing in the data warehouse. Our algorithms consider in turn each

transformation step in a transformation pathway in order to apply incremental

41

view maintenance and data lineage tracing in a stepwise fashion. Thus, our al-

gorithms are useful not only in data warehousing environments, but also in any

data transformation and integration framework based on sequences of schema

transformations, such as peer-to-peer and semi-structured data integration envi-

ronments.

42

Chapter 3

Using AutoMed Metadata for

Data Warehousing

3.1 Motivation

In data warehouse environments, metadata is essential since it enables activities

such as data transformation, data integration, view maintenance, OLAP and

data mining. Due to the increasing complexity of data warehouses, metadata

management has received increasing research focus recently [MSR99, HMT00,

BTM01, CB02].

Typically, the metadata in a data warehouse includes information about both

the data and the data processing. Information about the data includes the

schemas of the data sources, warehouse and data marts, ownership of the data,

and time information such as the time when the data was created or last updated.

Information about the data processing includes rules for data extraction, cleans-

ing and transformation, data refresh and data purging policies, and the lineage

of migrated and transformed data.

Up to now, in order to transform and integrate data from heterogeneous data

43

OODB
XMLRDB

Schema Schema Schema

Wrapper1 Wrapper3Wrapper2

CDMCDMCDM

Integrated
Schema

OODB XMLRDB

AutoMed
Relational
Schema

Integrated
Schema

AutoMed
XML

Schema

AutoMed
OO

Schema

(a) CDM Framework (B) AutoMed Framework

Wrapper3Wrapper2Wrapper1

T
ra

n
s

fo
rm

a
tio

n

p
a

th
w

a
y

2

Tra
ns

fo
rm

at
io

n

p at
hw

a y
1

T ransf orm
a tion

pat hw
ay

3

Figure 3.1: Frameworks of Data Integration

sources, a conceptual data model (CDM) has been used as the common data

model, i.e. as the data model to which the detailed and summarised data of

the data warehouse conform, and into which source data are translated. This

approach assumes a single CDM for the data transformation and integration

process — see Figure 3.1(a). Each data source1 has a wrapper for translating

its schema and data into the CDM of the detailed data. The schema of the

summarised data is then derived from these CDM schemas by means of view

definitions, and is expressed in the same modelling language as them.

For example, [HA01] uses the relational data model as the CDM; [MK00,

CD97, TKS01] use a multidimensional model; [GR98] describes a framework for

data warehouse design based on its Dimensional Fact Model; [CGL+99, Bek99,

TBC99, HLV00] use an ER model or extensions of it; and [VSS02] presents its

own conceptual model and a set of abstract transformations for data extraction-

transformation-loading (ETL).

This traditional CDM framework has a number of drawbacks. Firstly, since

1For the rest of the thesis, by data source we mean the copy of the remote data that has
been brought into the staging area (unless otherwise indicated).

44

they are both high-level conceptual data models, semantic mismatches may exist

between the CDM and a source data model, and there may be a loss of information

between them. Secondly, if a source schema changes, it is not straightforward to

evolve the view definitions of the integrated schema constructs in terms of source

schema constructs. Finally, the data transformation and integration metadata is

tightly coupled with the CDM of the particular data warehouse. If the warehouse

is to be redeployed on a platform with a different CDM, it is not easy to reuse

the previous warehouse implementation.

AutoMed is an implementation of the BAV data integration approach which

adopts a low-level hypergraph-based data model (HDM) as its common data

model for heterogeneous data transformation and integration2. So far, research

has focused on using AutoMed for virtual data integration. This chapter describes

how AutoMed can also be used for materialised data integration, in particular

for expressing the data transformation and integration metadata, and using this

metadata to support warehouse processes such as data cleansing, populating the

warehouse, incrementally maintaining the warehouse data after data source up-

dates, and tracing the lineage of warehouse data.

Using AutoMed for materialised data integration, the data source wrappers

translate the source schemas into their equivalent specification in terms of Au-

toMed’s low-level HDM — see Figure 3.1(b). AutoMed’s schema transformation

facilities can then be used to incrementally transform and integrate the source

schemas into an integrated schema. The integrated schema can be defined in

any modelling language which has been specified in terms of AutoMed’s HDM.

We will examine in this chapter the benefits of this alternative approach to data

transformation/integration in data warehousing environments.

2See http://www.doc.ic.ac.uk/automed for a full list of technical reports and papers re-
lating to AutoMed.

45

In the rest of this chapter, Section 3.2 gives an overview of the AutoMed

framework to the level of detail necessary for this thesis. This includes a dis-

cussion of the HDM data model, the query language supported by AutoMed,

the AutoMed transformation pathways and the AutoMed Repository API. Sec-

tion 3.3 shows how AutoMed metadata has enough expressiveness to describe

the data integration and transformation processes in a data warehouse, including

expressing data transformation, data cleansing, data integration, data summari-

sation and creating data marts. Section 3.4 discusses how the AutoMed metadata

can be used for some key data warehousing processes, including populating the

data warehouse, incrementally maintaining the warehouse data, and tracing the

lineage of the warehouse data. Section 3.5 discusses the benefits of our approach.

An earlier paper [The02] proposed using the HDM as the common data model

for both virtual and materialised integration, and a hypergraph-based query lan-

guage for defining views of derived constructs in terms of source constructs. How-

ever, that paper did not focus on expressing data warehouse metadata, or on

warehouse processes such as data cleansing or populating and maintaining the

warehouse.

3.2 The AutoMed Framework

3.2.1 HDM Data Model

The basis of AutoMed data integration system is the low-level hypergraph data

model (HDM) [PM98, MP99b]. Facilities are provided for defining higher-level

modelling languages in terms of this lower-level HDM. An HDM schema consists

of a set of nodes, edges and constraints, and so each modelling construct of a

higher-level modelling language is specified as some combination of HDM nodes,

46

edges and constraints.

One advantage of using a low-level common data model such as the HDM is

that semantic mismatches between high-level modelling constructs are avoided.

Another advantage is that the HDM provides a unifying semantics for higher-level

modelling constructs and hence a basis for automatically or semi-automatically

generating the semantic links between them — this is ongoing work being under-

taken by other members of the AutoMed project (see for example [ZP04, Riz04]).

A schema in the HDM is a triple 〈Nodes, Edges, Constraints〉. A query over

a schema is an expression whose variables are members of Nodes∪Edges. In this

framework, the query language is not constrained to a particular one. However,

the AutoMed toolkit supports a functional query language as its intermediate

query language (IQL) — see Section 3.2.2 below.

Nodes and Edges define a labeled, directed, nested hypergraph. It is nested in

the sense that edges can link any number of both nodes and other edges. It is a

directed hypergraph because edges link sequences of nodes or edges. Constraints

is a set of boolean-valued queries over the schema which are satisfied by all in-

stances of the schema. In AutoMed, constraints are expressed as IQL queries.

Nodes are uniquely identified by their names. Edges and constraints have an

optional name associated with them.

The constructs of any higher-level modelling language M are classified as

either extensional constructs or constraint constructs, or both. Extensional

constructs represent sets of data values from some domain. Each such construct

in M is represented using a configuration of the extensional constructs of the

HDM i.e. of nodes and edges. There are three kinds of extensional constructs:

• nodal constructs may exist independently of any other constructs in a

model. Such constructs are identified by a scheme consisting of the name

of the HDM node used to represent that construct. For example, in the ER

47

model, entities are nodal constructs since they may exist independently of

each other. An ER entity e is identified by a scheme 〈〈e〉〉.

• link constructs associate other constructs with each other and can only

exist when these other constructs exist. The extent of a link construct is a

subset of the cartesian product of the extents of the constructs it depends

on. A link construct is represented by an HDM edge. It is identified by a

scheme that includes the name (and/or other identifying information) of

constructs it depends on. For example, in the ER model, relationships are

link constructs since they associate other entities. An ER relationship r

between two entities e1 and e2 is identified by a scheme 〈〈r, e1, e2〉〉.

• link-nodal constructs are nodal constructs that can only exist when certain

other constructs exist, and that are linked to these constructs. A link-nodal

construct has associated values, but may only exist when associated with

other constructs. It is represented by a combination of an HDM node and

an HDM edge and is identified by a scheme including the name (and/or

other identifying information) of this node and edge. For example, in the

ER model, attributes are link-nodal constructs since they have an extent

and must always be linked to an entity. An ER attribute a of an entity e

is identified by a scheme 〈〈e, a〉〉.

Finally, a constraint construct has no associated extent but represents re-

strictions on the extents of the other kinds of constructs. It limits the extent of

the constructs it relates to. For example, in the ER model, generalisation hier-

archies are constraints since they have no extent but restrict the extent of each

subclass entity to be a subset of the extent of the superclass entity; similarly, ER

relationships and attributes have cardinality constraints.

48

Previous work has shown how relational, ER, OO [MP99b], XML [MP01,

Zam04] and flat-file [BKL+04] modelling languages can be defined in terms of the

HDM. After a modelling language has been defined in terms of the HDM (via

the API of AutoMed’s Model Definition Repository — see Section 3.2.4 below), a

set of primitive transformations is automatically available for the transformation

of schemas defined in the language. Section 3.2.3 below will discuss AutoMed

transformations.

In this section, we next illustrate how a simple relational model, simple XML

data model and simple multidimensional data model can be represented in the

HDM.

Representing a Simple Relational Model

Relational Construct HDM Representation
construct: Rel

class: nodal node: 〈〈R〉〉
scheme: 〈〈R〉〉
construct: Att node: 〈〈R : a〉〉
class: link-nodal, constraint edge: 〈〈 , R, R : a〉〉
scheme: 〈〈R, a, n〉〉 if n = null

then constraint: 〈〈〈 ,R,R : a〉〉, {0, 1}, {1..N}〉

else constraint: 〈〈〈 ,R,R : a〉〉, {1}, {1..N}〉

Table 3.1: Representing Simple Relational Model Constructs

We show in Table 3.1 how a simple relational data model can be represented in

the HDM. In our simple relational model, there are two kinds of schema construct:

Rel and Att. A Rel construct is identified by a scheme 〈〈R〉〉 where R is the

relation name, and a Att construct is identified by a scheme 〈〈R, a, n〉〉 where a is

an attribute (key or non-key) which may be null or notnull (denoted by n). In

Table 3.1, we use some shorthand notation for expressing cardinality constraints

on HDM edges, 〈〈〈name, c1, ..., cm〉〉, s1, ..., sm〉, where name is the edge name which

49

can be anonymous (denoted by “ ”), each ci is a participating construct in the

edge, and each si is a set of integers representing the possible values for the

cardinality of each ci in the edge. Note that N denotes infinity in the table. The

extent of a Rel construct 〈〈R〉〉 in an AutoMed relational schema is the projection of

the relation R(k1, ..., kn, a1, ..., am) onto its primary key attributes k1, ..., kn. The

extent of each Att construct 〈〈R, a, n〉〉 of R is the projection of R onto k1, ..., kn, a,

where a ∈ k1, ..., kn, a1, ..., am.

For example, a relation student(id, sex, dname) would be modeled by a Rel con-

struct 〈〈student〉〉 and three Att constructs 〈〈student, id, notnull〉〉, 〈〈student, sex, null〉〉

and 〈〈student, dname, notnull〉〉. Note that, for ease of exposition, in this thesis

we may omit the n notation in Att constructs and we do not consider the null

feature of attributes, so that the above three Att constructs are simplified into

〈〈student, id〉〉, 〈〈student, sex〉〉 and 〈〈student, dname〉〉. We also ignore primary keys

and foreign keys and refer the reader to [MP99b] for an encoding of a richer

relational data model, including the modelling of constraints.

Representing a Simple XML Model

Table 3.2 shows the representation of a simple XML model in terms of the HDM.

In this model, there are three kinds of schema construct: Element, Attribute and

NestSet. The extent of an Element construct 〈〈e〉〉 consists of all the elements

with tag e in the XML document; the extent of each Attribute construct 〈〈e, a〉〉

consists of all pairs of elements and attributes x, y such that element x has tag

e and has an attribute a with value y; and the extent of each NestSet construct

〈〈ep, ec〉〉 consists of all pairs of elements x, y such that element x has tag p and

has a child element y with tag c. We refer the reader to [Zam04] for an encod-

ing of a richer model for XML data sources, called XML DataSource Schemas

50

(XMLDSS), which also captures the ordering of children elements under par-

ent elements. That paper gives an algorithm for generating the XMLDSS of an

XML document. That paper also discusses a unique naming scheme for Element

constructs and their instances. In particular, 〈elementName〉$〈count〉 is used

for Element constructs, where 〈count〉 is a counter incremented every time the

same 〈elementName〉 is encountered in a depth-first traversal of the schema;

and 〈elementName〉$〈count〉 〈instance〉 is used for instances of an Element con-

struct where 〈instance〉 is a counter incremented every time a new instance of the

corresponding schema element is encountered in the document. If the $〈count〉

is omitted from an element name, then $1 is assumed.

XML Construct Equivalent HDM Representation
Construct: Element
Class nodal node: 〈〈xml : e〉〉
Scheme 〈〈e〉〉
Construct: Attribute node: 〈〈xml : e : a〉〉
Class: link-nodal, edge: 〈〈 , xml : e, xml : e : a〉〉
and constraint links: 〈〈xml : e〉〉
Scheme: 〈〈e, a〉〉 constraint: 〈〈〈 , xml : e, xml : e : a〉〉, {0, 1}, {1..N}〉
Construct NestSet edge: 〈〈 , xml : ep, xml : ec〉〉
Class link, constraint links: 〈〈xml : ep〉〉, 〈〈xml : ec〉〉
Scheme 〈〈ep, ec〉〉 constraint: 〈〈〈 , xml : ep, xml : ec〉〉, {0..N}, {1}〉

Table 3.2: Representing Simple XML Model Constructs

To illustrate, Figure 3.2 shows a XML file which is modeled by three Element

constructs, four Attribute constructs, and two NestSet constructs.

The Element constructs and their extents are as follows, where [. . .] denotes

a list in IQL, { . . . } denotes a tuple (in this case one-tuples), and ′ . . .′ denotes a

string in IQL:

〈〈root〉〉 = [′root 1′]

〈〈course〉〉 = [′course 1′, ′course 2′]

〈〈student〉〉 = [′student 1′, ′student 2′, ′student 3′, ′student 4′]

51

<?XML version=’1.0’? >
<root>

<course CID =“ISC01” cname =“Math”>
<student SID =“ISS01” mark =“76”/ >
<student SID =“ISS02” mark =“78”/ >

< /course>
<course CID =“ISC02” cname =“Programming”>

<student SID =“ISS01” mark =“86”/ >
<student SID =“ISS02” mark =“85”/ >

< /course>
< /root>

Figure 3.2: A XML File

The Attribute constructs and their extents are as follows:

〈〈course,CID〉〉 = [{′course 1′, ′ISC01′}, {′course 2′, ′ISC02′}]

〈〈course, cname〉〉 = [{′course 1′, ′Math′}, {′course 2′, ′Programming′}]

〈〈student,SID〉〉 = [{′student 1′, ′ISS01′}, {′student 2′, ′ISS02′},

{′student 3′, ′ISS01′}, {′student 4′, ′ISS02′}]

〈〈student,mark〉〉 = [{′student 1′, 76}, {′student 2′, 78},

{′student 3′, 86}, {′student 4′, 85}]

The two NestSet constructs and their extent are:

〈〈course, student〉〉 = [{′course 1′, ′student 1′}, {′course 1′, ′student 2′},

{′course 2′, ′student 3′}, {′course 2′, ′student 4′}]

〈〈root, student〉〉 = [{′root 1′, ′course 1′}, {′root 1′, ′course 2′}]

Representing a Simple Multidimensional Model

Our simple multidimensional data model has four kinds of schema construct: Fact,

Dim (dimension), Att (non-key attribute) and Hierarchy. For simplicity, we model

a measure as any other non-key attribute. Fact and Dim are nodal constructs,

Att is a link-nodal construct and Hierarchy is a constraint. This specification is

illustrated in Table 3.3.

A fact or dimension table R with primary attributes k1, . . . , kn (n ≥ 1) is

52

uniquely identified by the scheme 〈〈R, k1, . . . , kn〉〉. This translates in the HDM

into a nodal construct 〈〈R〉〉 the extent of which is the projection of the table R

onto its primary key attributes k1, . . . , kn. Each non-key attribute a of a fact or

dimension table R is uniquely identified by the scheme 〈〈R, a〉〉. This translates in

the HDM into a link-nodal construct comprising a new node 〈〈R : a〉〉 and an edge

〈〈 , R, R : a〉〉. The extent of the edge is the projection of table R onto k1, . . . , kn, a.

Hierarchy constructs reflect the relationship between a primary key attribute

ki in a fact table R and its referenced foreign key attribute k′j in a dimension table

R′, or between a primary key attribute in a dimension table R and its referenced

foreign key attribute in a sub-dimension table R′. A hierarchy construct maps

to a constraint in the corresponding HDM schema, which asserts that the set of

values of ki in R are always contained in the set of values for k′j in R′.

Dimensional Construct HDM Representation
construct: Fact

class: nodal node: 〈〈R〉〉
scheme: 〈〈R, k1, . . . , kn〉〉
construct: Dim

class: nodal node: 〈〈R〉〉
scheme: 〈〈R, k1, . . . , kn〉〉
construct: Att

class: link-nodal node: 〈〈R : a〉〉
scheme: 〈〈R, a〉〉 edge: 〈〈 , R, R : a〉〉
construct: Hierarchy constraint:
class: constraint [xi|{x1, . . . , xn} ← 〈〈R〉〉] ⊆
scheme: 〈〈R, R′, ki, k

′
j〉〉 [yj|{y1, . . . , ym} ← 〈〈R

′〉〉]

Table 3.3: Representing Simple Multidimensional Model Constructs

53

3.2.2 The IQL Query Language

AutoMed supports a functional query language as its intermediate query lan-

guage (IQL)3. IQL is a comprehensions-based functional query language. Such

languages subsume query languages such as SQL and OQL in expressiveness

[Bun94]. References [JPZ03, Pou04] give the details of IQL and references to

other work on comprehension-based functional query languages. Here, we give

an overview of IQL to the level of detail necessary for this thesis.

IQL supports several primitive operators for manipulating lists. The list ap-

pend operator, ++, concatenates two lists together. The distinct operator re-

moves duplicates from a list and the sort operator sorts a list. The monus

operator [Alb91], −−, takes two lists and subtracts each member of the second

list from the first e.g. [1,2,3,2,4]--[4,4,2,1] = [3,2]. The fold operator applies

a given function f to each element of a list and then ‘folds’ a binary operator

op into the resulting values. It is defined recursively as follows, where (x:xs)

denotes a list with head x and tail xs:

fold f op e [] = e

fold f op e (x:xs) = (f x) op (fold f op e xs)

Other IQL list manipulation operators can be specified using fold together

with IQL’s support of lambda abstractions and set of built-in arithmetic and

boolean operators (such as +,−, ∗, /, >, <, =, ! =, >=, <=, and, or, not, member)4.

For example, the IQL functions sum and count are equivalent to SQL’s SUM and

COUNT aggregation functions and can be specified as

3IQL is an “intermediate” language because, in a virtual integration scenario, queries using
the high-level query language supported by a global schema are translated into IQL queries
over the schema constructs defined in AutoMed, and these IQL queries are then translated into
the queries using the high-level query languages supported by the data sources so that they can
be evaluated in the data sources.

4Although they can be specified in this way, for efficiency purposes, they are actually built-
into the IQL Query Evaluator.

54

sum xs = fold (id) (+) 0 xs

count xs = fold (lambda x.1) (+) 0 xs

We also have

min xs = fold (id) lesser maxNum xs

max xs = fold (id) greater minNum xs

avg xs = let {s,c} = fold (lambda x.{x,1}) combine {0,0} xs

in (s/c)

assuming constants maxNum and minNum and the following functions lesser,

greater and combine:

greater = lambda x.lambda y.if (x > y) then x else y

lesser = lambda x.lambda y.if (x < y) then x else y

combine = lambda {s1,c1}.lambda {s2,c2}.{s1+s2,c1+c2}

The function flatmap applies a list-valued function f to each member of a

list xs and is defined in terms of fold:

flatmap f xs = fold f (++) [] xs

flatmap can in turn be used to specify selection, projection and join operators.

For example, the map function is a generalised projection operator and is defined

as

map f xs = flatmap (lambda x.[f x]) xs

flatmap can also be used to define comprehensions [Bun94]. For example,

the following comprehension iterates through a list of students and returns those

students who are not members of staff:

[x | x <- <<student>>; not (member <<staff>> x)]

and it translates into:

flatmap (lambda x.if (not (member <<staff>> x))

then [x] else []) <<student>>

55

[e|Q1; . . . ; Qn] is the general syntax of a comprehension, in which e is any well-

typed IQL expression, and Q1 to Qn are qualifiers, each qualifier being either a

filter or a generator. A generator has syntax p ← E, where p is a pattern and

E is a collection-valued expression. A pattern is an expression involving tuples,

variables and constants only. A filter is a boolean-valued expression.

Grouping operators are also definable in terms of fold (see [PS97]). In par-

ticular, the operator group takes as an argument a list of pairs xs and groups

them on their first component, while gc aggFun xs groups a list of pairs xs on

their first component and then applies the aggregation function aggFun to the

second component.

Although IQL is list-based, if the ordering of elements within lists is ignored

then its operators are faithful to the expected bag semantics, and in this thesis

henceforth we do assume bag semantics. Use of the distinct operator can be used

to obtain set semantics if needed.

3.2.3 Transformation Pathways

As described in Section 3.2.1, each modelling construct of a higher-level mod-

elling language can be specified as some combination of HDM nodes, edges and

constraints. For any modelling languageM specified in this way, AutoMed auto-

matically provides a set of primitive schema transformations that can be applied

to schema constructs expressed in M. In particular, for every extensional con-

struct ofM there is an add and a delete primitive transformation which add and

delete the construct into and from a schema. Such a transformation is accom-

panied by an IQL query specifying the extent of the added or deleted construct

in terms of the rest of the constructs in the schema. For those constructs of

M which have textual names, there is also a rename primitive transformation.

Also available are contract and extend transformations which behave in the same

56

way as add and delete except that they indicate that their accompanying query

may only partially construct the extent of the new/removed schema construct.

The contract and extend transformations can also take a pair of queries (lq, uq)

specifying a lower and upper bound on the extent of the new/removed construct,

instead of just one lower-bound query as described above. However, for the pur-

pose of data integration in a warehousing environment, we typically require just

the single-query versions of these transformations.

In more detail, the full set of primitive transformations for an extensional

construct T of a modelling languageM is as follows5:

• addT(c, q) applied to a schema S produces a new schema S ′ that differs

from S in having a new T construct identified by the scheme c. The extent

of c is given by query q on schema S.

• extendT(c, ql, qu) applied to a schema S produces a new schema S ′ that

differs from S in having a new T construct identified scheme c. The mini-

mum extent of c is given by query ql, which may take the constant value

Void if no lower bound for this extent may be derived from S. The maxi-

mum extent of c is given by query qu, which may take the constant value

Any if no upper bound for this extent may be derived from S.

• delT(c, q) applied to a schema S produces a new schema S ′ that differs

from S in not having a T construct identified by c. The extent of c may be

recovered by evaluating query q on schema S ′.

Note that delT(c, q) applied to a schema S producing schema S ′ is equiv-

alent to addT(c, q) applied to S ′ producing S.

5For non-extensional constructs (i.e. constructs that map into HDM constraints) there are
add, delete and rename transformations if the construct is named. In this thesis we do not con-
sider constraint constructs because our major issues addressed, incremental view maintenance
and data lineage tracing, only relate to extensional constructs. We assume that any constraints
between the source data and the global data are satisfied.

57

• contractT(c, ql, qu) applied to a schema S produces a new schema S ′ that

differs from S in not having a T construct identified by c. The minimum

extent of c is given by query ql, which may take the constant value Void

if no lower bound for this extent may be derived from S ′. The maximum

extent of c is given by query qu, which may take the constant value Any if

no upper bound for this extent may be derived from S ′.

Note that contractT(c, ql, qu) applied to a schema S producing schema S ′

is equivalent to extendT(c, ql, qu) applied to S ′ producing S.

• renameT(c, c’) applied to a schema S produces a new schema S ′ that differs

from S in not having a T construct identified by scheme c and instead a T

construct identified by scheme c’ differing from c only in its name.

Note that renameT(c, c’) applied to a schema S producing schema S ′ is

equivalent to renameT(c’, c) applied to S ′ producing S.

For example, the set of primitive transformations for schemas expressed in the

simple relational data model we defined in Section 3.2.1 is addRel, extendRel,

delRel, contractRel, renameRel, addAtt, extendAtt, delAtt, contractAtt

and renameAtt; and for schemas expressed in the simple XML model is add-

Element, extendElement, delElement, contractElement, renameElement, add-

Attribute, extendAttribute, delAttribute, contractAttribute, renameAtt-

ribute, addNestSet, extendNestset, delNestset and contractNestset.

The queries present within transformations mean that each primitive trans-

formation t has an automatically derivable reverse transformation, t−1. In par-

ticular, each add/extend transformation is reversed by a delete/contract transfor-

mation with the same arguments, while each rename transformation is reversed

by swapping its two arguments. Thus, AutoMed is a both-as-view (BAV) data

integration system. As discussed in [MP03a], BAV subsumes the global-as-view

58

(GAV) and local-as-view (LAV) approaches [Len02], since it is possible to extract

a definition of each global schema construct as a view over source schema con-

structs, and it is also possible to extract definitions of source schema constructs

as views over the global schema. We refer the reader to [JTMP04] for details of

AutoMed’s GAV and LAV view generation algorithms.

In AutoMed, schemas are incrementally transformed by applying to them a

sequence of primitive transformations t1, . . . , tr. Each primitive transformation

adds, deletes or renames just one schema construct. Thus, intermediate schemas

may contain constructs of more than one modelling language.

We term a sequence of primitive transformations from one schema S1 to an-

other schema S2 a transformation pathway from S1 to S2, denoted S1 → S2. All

source, intermediate and integrated schemas and the pathways between them are

stored in AutoMed’s Schemas & Transformations Repository (see Section 3.2.4

below).

The queries within transformations are used by AutoMed’s Global Query

Processor (GQP) [JPZ03] to evaluate an IQL query over a global schema in

the case of a virtual data integration scenario. The GAV view definition for

each global schema construct (i.e. the view definition over the source schema

constructs) is derivable from the transformation pathways by using the view gen-

eration algorithm described in [JTMP04]. This algorithm traverses the trans-

formation pathways from the source schemas to the global schema backwards,

and unfolds any virtual schema construct using the query in the transformation

step which created the construct, until all constructs in the unfolded query are

materialised.

The process of evaluating a query over a virtual global schema includes: Query

Reformulation, replacing the virtual global schema constructs in the query by

59

their GAV view definitions; Query Optimisation, optimising the query by elim-

inating redundant parts of the query, and reorganising the query by gathering

together the query parts which can be translated by the same data source so that

bigger sub-queries can be sent to each data source wrapper to evaluate; Query

Annotation, annotating the query by indicating which sub-queries have to be sent

to which data sources; and Query Evaluation, communicating with data source

wrappers by sending them sub-queries to evaluate, receiving the results, and un-

dertaking any further necessary evaluation to obtain the final query result6.

In the case that the global schema is materialised, the Query Evaluator can

be used directly on the materialised data.

3.2.4 The AutoMed Metadata Repository

The AutoMed Metadata Repository forms a platform for other components of

the AutoMed Software Architecture (illustrated in Figure 3.3) to be implemented

upon. When a data source is wrapped, a definition of the schema for that data

source is added to the repository. AutoMed’s wrappers are implemented at two

levels. A high level wrapper converts between AutoMed queries and data and the

standard representation for a class of data sources e.g. the SQL92Wrapper converts

between IQL and SQL92. A low level wrapper deals with differences between the

class standard and a particular data source e.g. the PostgresSQLWrapper converts

between SQL92 and Postgres databases.

The schema matching tool may be used to identify related objects in various

data sources (accessing the query processor to retrieve data from schema objects)

[Riz04]. After a schema matching phase, the schema restructuring tool can be

applied to generate a transformation pathway from a source schema to the global

6As well as working on the data warehousing aspects of AutoMed, I have also contributed
to the design and development of the query optimiser.

60

schema [ZP04]. The global query processor undertakes the processing described

in the previous section, and includes the query reformulation, optimisation, an-

notation and evaluation processes. A GUI is supplied with AutoMed for these

components, and it is possible for a user application to be configured to run from

this GUI, and use the APIs of the various components. We focus here on using

the AutoMed Metadata Repository in a data warehousing environment.

repository

MDR

STR
persistent

store
-¾

SQL
wrapper

?

. . .
wrapper

¾ 6?

SQL

data
source

6
?text file

data
source

processor
schema

matching

-

6
?

6 6
?

6
?

?

6
? ?

GUI
- user

application

XML

XML

schema
restructuring

global query

Figure 3.3: AutoMed Software Architecture

The repository has two logical components. The Model Definitions Repository

(MDR) defines how each construct of a data modelling language is represented as

a combination of nodes, edges and constraints in the HDM. The MDR is used to

configure AutoMed so that it can handle a particular data modelling language.

The Schemas and Transformations Repository (STR) defines schemas in terms of

the data modelling constructs in the MDR, and transformations to be specified

between such schemas. The MDR and STR may be held in the same or separate

persistent storage. If the MDR and STR are stored in separate storage, many

61

AutoMed users can share a single MDR repository, which once configured, need

not be updated when integrating data sources that conform to a known set of

data modelling languages.

The API to these repositories uses JDBC to access an underlying relational

database. Thus, these repositories can be implemented using any DBMS sup-

porting JDBC. If the DBMS of the data warehouse supports JDBC, then the

AutoMed repositories can be part of the data warehouse itself.

MDR

STR

Model
0:N

1:1
Construct

1:1

1:N
Scheme

0:N

1:1

Schema
Object 0:N

1:2

2:2

Transforma
tion

0:N

1:1

0:NObject

Scheme

1:N

1:N

Schema
1:1

0:NAccess
Method

Figure 3.4: AutoMed Repository Schema

Figure 3.4 (taken from [BMT02]) gives an overview of the key objects in the

repository. The STR contains a set of descriptions of Schemas, each of which con-

tains a set of SchemaObject instances, each of which must be based on a Construct

instance that exists in the MDR. This Construct describes how the SchemaObject

can be constructed in terms of strings and references to other schema objects,

and the relationship of the construct to the HDM. Schemas may be related to

each other using instances of Transformation.

The AutoMed repository API provides methods to create, query, alter and

62

remove models, constructs, schemas, schema objects and transformations. The

repository API comprises of Java classes representing each of these entities and

the methods for manipulating them7.

3.3 Expressing Data Warehouse Schemas and

Transformations

':6
� � ��

� � ��

� � ��

� � ��

� ��

� ��

� ��

� ��

� ��

� ��

� ��

� ��

� ��

� ��

� �

�� �

�� �

	
 �

	
 �

	
 �

� � ��

7UDQVIRUPLQJ 6LQJOH�6RXUFH
&OHDQsLQJ

0XOWL�6RXUFH
&OHDQsLQJ ,QWHJUDWLQJ 6XPPDUL]LQJ

� � ��

� � ��

&UHDWLQJ�'DWD
0DUWV

':6� 'DWD�:DUHKRXVH�6FKHPD
'6� 'HWDLOHG�6FKHPD
69� 6XPPDU\�9LHZ
'06� 'DWD�0DUW�6FKHPD

'66� 'DWD�6RXUFH�6FKHPD
76� 7UDQVIRUPHG�6FKHPD
66� 6LQJOH�&OHDQHG�6FKHPD
06� 0XOWL�&OHDQHG�6FKHPD

Figure 3.5: Data Transformation and Integration at the Schema Level

Figure 3.5 illustrates at the schema level the data transformation and integra-

tion processes in a typical data warehouse. Generally, the extract-transform-load

(ETL) process of a data warehouse includes extracting data from the remote data

sources into the staging area, cleansing and transforming data in the staging area

and loading them into the data warehouse. In this section we assume that data

extraction has already happened i.e. all the data sources are in the staging area.

The data source schemas (DSSi in Figure 3.5) may be expressed in any modelling

language that has been specified in AutoMed. The transforming process trans-

lates each DSSi into a transformed schema TSi which is ready for single-source

7For details, see http://www.doc.ic.ac.uk/automed/resources/apidocs/index.html

63

data cleansing. Each TSi may be defined in the same, or a different, modelling

language as DSSi and other TSs. The translation from a DSSi to a TSi is expressed

as an AutoMed transformation pathway DSSi → TSi. Such translation may not

be necessary if the data cleansing tools to be employed can be applied directly to

DSSi, in which case TSi and DSSi are identical.

The single-source data cleansing process transforms each TSi into a single-

source-cleansed schema SSi, which is defined in the same modelling language as

TSi but may be a different from it. The single-source cleansing process is expressed

as an AutoMed transformation pathway TSi → SSi. Multi-source data cleansing

removes conflicts between sets of single-source-cleansed schemas and creates a

multi-source-cleansed schema MSi from them. Between the single-source-cleansed

schemas and the detailed schema (DS) of the data warehouse there may be several

stages of MSs, possibly represented in different modelling languages.

In general, if during multi-source data cleansing n schemas S1, . . . , Sn need

to be transformed and integrated into one schema S, we can first automatically

create a ‘union’ schema S1∪ . . .∪Sn (after first undertaking any renaming of con-

structs necessary to avoid any naming ambiguities between constructs from dif-

ferent schemas). We can then express the transformation and integration process

as a pathway S1 ∪ . . . ∪ Sn → S8. (There are also other schema integration ap-

proaches possible with AutoMed. With this approach, and in a data warehousing

context, there is no need for extend transformation steps).

After multi-source data cleansing, the resulting MSs are then transformed and

integrated into a single detailed schema, DS, expressed in the data model of the

data warehouse. First, a union schema MS1 ∪ . . .∪ MSn is automatically generated.

8Reference [AMGF05] is concerned with correlating data from different databases and pro-
vides semantically rich materialisation rules handling schema heterogeneity among the data-
bases. The integrated schema can use one of the integration rules, such as union, merge and
intersection, to integrate the source databases. This functionality can also be obtained using
AutoMed, within the pathway S1 ∪ . . . ∪ Sn → S.

64

The transformation and integration process is then expressed as a pathway MS1

∪ . . .∪ MSn → DS. The DS can then be enriched with summary views by means

of a transformation pathway from DS to the final data warehouse schema DWS.

Data mart schemas (DMS) can subsequently be derived from the DWS and these

may be expressed in the same, or a different, modelling language as the DWS.

Again, the derivation is expressed as a transformation pathway DWS → DMS.

Using AutoMed, four steps are needed in order to create the metadata ex-

pressing the above schemas and transformation pathways:

1. Create AutoMed repositories: AutoMed metadata is stored in the

MDR and the STR. So we first need to create these repositories includ-

ing empty relations defined by the MDR and STR schemas illustrated in

Figure 3.4.

2. Specify data models: All the data models that will be required for ex-

pressing the various schemas of Figure 3.5 need to be specified in terms of

AutoMed’s HDM, via the API of the MDR (standard definitions of rela-

tional, ER and XML data models are available).

3. Extract data source schemas: Each data source schema is automatically

extracted and translated into its equivalent AutoMed representation using

the appropriate wrapper for that data source.

4. Define transformation pathways: The remaining schemas of Figure 3.5

and the pathways between them can now be defined, via the API of the

STR.

After any primitive transformation is applied to a schema, a new schema

results. By default, this will be an intentional schema within the STR i.e.

it is not stored but its definition can be derived by traversing the pathway

65

from its nearest ancestor extensional schema. The data source schemas are,

by definition, extensional schemas i.e. their full definition is stored within

the STR. It is also possible to request that any other schema becomes an

extensional one, for example the successive stages of schemas identified in

Figure 3.5.

After any addT(c,q) transformation step, it is possible to materialise the new

construct c by creating, externally to AutoMed, a new data source whose

schema includes c and populating this data source by the result of evaluating

the query q (we discuss this process in more detail in Section 3.4.1 below).

In general, a schema may be a materialised schema (all of its constructs are

materialised) or a virtual schema (none of its constructs are materialised)

or partially materialised (some of its constructs are materialised, some not).

In the following sections, we discuss in more detail how AutoMed transforma-

tion pathways can be used for describing the six stages of the data transformation

and integration process illustrated in Figure 3.5. We first give a simple example

illustrating data transformation and integration, assuming that no data cleansing

is necessary.

3.3.1 An Example of Data Integration and Transforma-

tion

Figure 3.6 shows a multidimensional schema consisting of a fact table Salary

and two dimension tables Person and Job, which is represented by AutoMed

schema constructs 〈〈Salary, id, job id〉〉, 〈〈Salary, salary〉〉, 〈〈Salary, dept id〉〉, 〈〈Per-

son, id〉〉, 〈〈Person, name〉〉, 〈〈Job, job id〉〉, 〈〈Job, job descr〉〉, 〈〈Salary, Person, id, id〉〉

and 〈〈Salary, Job, job id, job id〉〉; a XML schema consisting of elements root and

dept and two attributes id and name, which is represented by AutoMed schema

66

Transformation
Pathway

Salary

id
job_id
salary
dept_id Dept

id
dept_name

total_salary

Job

job_id
job_descr

Person

id
name

root

dept id
name

Figure 3.6: An Example of Data Integration and Transformation

constructs 〈〈root〉〉, 〈〈dept〉〉, 〈〈dept, id〉〉, 〈〈dept, name〉〉 and 〈〈root, dept〉〉; and a rela-

tional schema consisting of a single table Dept into which the other two schemas

need to be transformed and integrated, which is represented by AutoMed schema

constructs 〈〈Dept〉〉, 〈〈Dept, id〉〉, 〈〈Dept, dept name〉〉 and 〈〈Dept, total salary〉〉.

In order to integrate the two source schemas into the target schema we first

form their union schema. The following four primitive transformations are then

applied to this union schema in order to add the Dept relation to it, defining the

extent of its id key attribute to be obtained by the XML id attribute, the extent

of its dept name attribute to be obtained by the XML name attribute, and the

extent of its total salary attribute to be obtained by summing the salaries for each

department in the Salary table:

addRel (〈〈Dept〉〉, map (lambda {k,i}.i) 〈〈dept, id〉〉);

addAtt (〈〈Dept, id〉〉, map (lambda {k,i}.{i,i}) 〈〈dept, id〉〉);

addAtt (〈〈Dept, dept name〉〉, [{i,n}|{k,i}← 〈〈dept, id〉〉; {k’,n}← 〈〈dept, name〉〉;

k=k’]);

addAtt (〈〈Dept, total salary〉〉, gc sum [{d,s}|{i,j,s}← 〈〈Salary, salary〉〉;

{i’,j’,d}← 〈〈Salary, dept id〉〉;

i=i’; j=j’]);

The following five transformations can then be applied to the resulting schema

to remove the XML constructs from it — note how the queries show how the

67

extents of these constructs could be reconstructed from the remaining schema

constructs. In particular, IQL functions generateUID s xs and generateAtt

s xs are used to generate instances of XML elements and attributes, where the

input s is a string and xs is a list of n-tuples. The function generateUID gener-

ates a list of values of the form s_count in which count is a counter incremented

every time a new value is generated. The number of values generated is equal to

the number of items in the list xs. The function generateAtt generates a list of

tuples of the form {s_count,c1,...,cn} in which s and count are as above and

{c0,c1,...,cn} is a tuple in the list xs. For example, suppose s is ’dept’ and xs

is [{’D01’,’Sales’}, {’D02’,’Accounts’}, {’D03’,’Personnel’}], the result

of generateUID s xs is the list [’dept_1’, ’dept_2’, ’dept_3’], and the result

of generateAtt s xs is the list [{’dept_1’,’Sales’}, {’dept_2’,’Accounts’},

{’dept_3’,’personnel’}].

delNestSet (〈〈root, dept〉〉, [{’root_1’,c}|c← generateUID ’dept’ 〈〈Dept〉〉]);

delAttribute (〈〈dept, name〉〉, generateAtt ’dept’ 〈〈Dept, dept name〉〉);

delAttribute (〈〈dept, id〉〉, generateAtt ’dept’ 〈〈Dept, dept id〉〉);

delElement (〈〈dept〉〉, generateUID ’dept’ 〈〈Dept〉〉);

delElement (〈〈root〉〉, [’root_1’]);

Finally, the following sequence of transformations remove the multidimen-

sional schema constructs — note that contract rather than delete transformations

are used since their extents cannot be reconstructed from the remaining schema

constructs:

contractHierarchy (〈〈Salary,Person, id, id〉〉);

contractHierarchy (〈〈Salary, Job, job id, job id〉〉);

contractAtt (〈〈Salary, salary〉〉);

contractAtt (〈〈Salary, dept id〉〉);

contractFact (〈〈Salary, id, job id〉〉);

68

contractAtt (〈〈Job, job descr〉〉);

contractDim (〈〈Job, job id〉〉);

contractAtt (〈〈Person, name〉〉);

contractDim (〈〈Person, id〉〉);

The final schema consists of the Dept relation and its attributes, as required.

This example illustrates how schemas expressed in one data model can be

transformed into a schema expressed in another. The general approach is to first

add the new schema constructs of the target data model (relational in the above

example) and then to delete or contract the schema constructs of the original

data model(s) (multidimensional and XML in the above example).

3.3.2 Expressing Data Cleansing

We recall from Chapter 2 that the problem of data cleansing includes single-source

problems and multi-source problems, and that both of them have two levels,

schema-level and instance-level. In this section, we investigate how AutoMed

metadata can be used for expressing data cleansing processes, for both single and

multiple data sources, and for both schema-level and instance-level problems.

Single-Source Cleansing

Schema-level single-source problems may arise within a transformed schema TSi

in Figure 3.5 and they can be resolved by means of an AutoMed transformation

pathway that evolves TSi as necessary.

Single-source instance-level problems include value, attribute and record prob-

lems. Value problems occur within a single value and include problems such

as missing values, misspelled values, mis-fielded values, embedded values, mis-

expressed values, or values using abbreviations. Attribute problems relate to

69

multiple attributes in one record and include problems such as dependence viola-

tion. Record problems relate to multiple records in the data sources and include

problems such as duplicate records or contradictory records.

Handling some instance-level problems does not require the schemas to be

evolved, only the extent of one or more schema constructs to be corrected. In

general, suppose that the extent of a schema construct c needs to be replaced by

a new, cleansed, extent. We can do this using an AutoMed pathway as follows:

1. Add a new temporary construct temp to the schema, whose extent consists

of the ‘clean’ data that is needed to generate the new extent of c. This clean

data is derived from the extents of the existing schema constructs. This

derivation may be expressed as an IQL query, or as a call to an ‘external’

function or, more generally, as an IQL query with embedded calls to external

functions.

(The IQL interpreter is easily extensible with new built-in functions, im-

plemented in Java, and these may themselves call out to other external

functions. If the extent of a new schema construct depends on calls to one

or more external functions, then the new construct must be materialised.

Otherwise, if the extent of a new construct is defined purely in terms of

IQL and its own built-in functions then the new construct need not be

materialised.)

2. Contract the construct c from the schema.

3. Add a new construct c whose extent is derived from temp.

4. Delete or contract the temp construct.

To illustrate, suppose we have available a built-in function toolCall which al-

lows a specified external data cleansing tool to be invoked with specified input

70

data. Then, we can invoke a data cleansing tool, for example “QuickAddress

Batch”9 to correct the zip and address attributes of a table Person(id, name, ad-

dress, zip, city, country, phoneAndFax, maritalStatus) by regenerating these at-

tributes given the combination of address, zip and city information:

addRel (〈〈Temp, id, address, zip〉〉,

toolCall ’QuickAddress Batch’ ’〈〈Person, address〉〉’

’〈〈Person, zip〉〉 ’ ’〈〈Person, city〉〉’);

contractAtt (〈〈Person, zip〉〉);

contractAtt (〈〈Person, address〉〉);

addAtt (〈〈Person, zip〉〉, [{i,z}|{i,a,z}← 〈〈Temp, id, address, zip〉〉]);

addAtt (〈〈Person, address〉〉, [{i,a}|{i,a,z}← 〈〈Temp, id, address, zip〉〉]);

delRel (〈〈Temp, id, address, zip〉〉, [{i,a,z}|{i,a}← 〈〈Person, address〉〉;

{i’,z}← 〈〈Person, zip〉〉; i = i’]);

Handling some instance-level problems may require the schemas to be evolved.

For example, if we have available a built-in function split phone fax which slits a

string comprising a phone number followed by one or more spaces followed by a

fax number into a pair of numbers, then the following AutoMed pathway converts

the attribute phoneAndFax of the Person table above into two new attributes phone

and fax:

addRel (〈〈Temp, id, phone, fax〉〉, [{i,p,f}|{i,pf}← 〈〈Person, phoneAndFax〉〉;

{p,f} ← split_phone_fax pf]);

addAtt (〈〈Person, phone〉〉, [{i,p}|{i,p,f}← 〈〈Temp, id, phone, fax〉〉]);

addAtt (〈〈Person, fax〉〉, [{i,f}|{i,p,f}← 〈〈Temp, id, phone, fax〉〉]);

contractAtt (〈〈Person, phoneAndFax〉〉);

delRel (〈〈Temp, id, phone, fax〉〉, [{i,p,f}|{i,p}← 〈〈Person, phone〉〉;

{i’,f}← 〈〈Person, fax〉〉; i = i’]);

9http://www.qas.com/address-correction-software.asp

71

Multi-Source Cleansing

After single-source data cleansing, there may still exist conflicts between different

single-source cleansed schemas in Figure 3.5, leading to the process of multi-source

cleansing.

Schema-level problems in multi-source cleansing include attribute and struc-

ture conflicts. Attribute conflicts arise when different sources use the same name

for different constructs (homonyms) or different names for the same construct

(synonyms), and they can be resolved by applying appropriate rename transfor-

mations to one of the schemas. Structure conflicts arise when the same informa-

tion is modeled in different ways in different schemas, and they can be resolved by

evolving one or more of the schemas using appropriate AutoMed pathways. For

example, the transformation pathway in Section 3.3.1 shows how the department

information modeled in an XML schema can be transformed into the equivalent

information modeled in a simple relational schema.

Instance-level problems in multi-source cleansing include attribute, record,

reference and data source problems. Attribute problems include different repre-

sentations of the same attribute in different schemas or different interpretations

of the values of an attribute in different schemas. Such problems can be resolved

by generating a new extent for the attribute in one of the schemas by applying an

appropriate conversion function to each of its values. In general, suppose we wish

to convert each of the values within the extent of a construct c in a schema S by

applying a function f to it. First a new construct c_new is added to S, whose

extent is populated by iterating over the extent of c and applying f to each of

its values. Then, the old construct c is deleted or contracted from the schema,

and finally c_new is renamed to c. For example, the following pathway converts

a ’M’/’S’ representation for the maritalStatus attribute in the above Person ta-

ble into a ’Y’/’N’ representation, assuming the availability of a built-in function

72

convertMS which maps ’M’ to ’Y’ and ’S’ to ’N’:

addAtt (〈〈Person,maritalStatus new〉〉,

[{i,convertMS s}|{i,s} ← 〈〈Person,maritalStatus〉〉]);

contractAtt (〈〈Person,maritalStatus〉〉);

renameAtt (〈〈Person,maritalStatus new〉〉, 〈〈Person,maritalStatus〉〉);

Note that if there is also available an inverse function convertMSinv which

maps ’Y’ to ’M’ and ’N’ to ’S’, then a delete transformation could have been used

in the second step above instead of a contract:

delAtt (〈〈Person,maritalStatus〉〉,

[{i,convertMSinv s}| {i,s}← 〈〈Person,maritalStatus new〉〉]);

Record problems in multi-source cleansing include duplicate records or con-

tradictory records among different data sources. For duplicate records, suppose

that constructs c and c’ from different schemas are to be integrated into a single

construct within some multi-source cleansed schema. Then, prior to the integra-

tion, we can create a new extent for c comprising only those values not present

in the extent of c’:

add (c_new, [v | v ← c; not (member c’ v)];

contract (c);

rename (c_new, c);

For contradictory records, we can similarly create a new extent for c com-

prising only those values which do not contradict values in the extent of c’. For

example, suppose we have tables Person and Employee in different schemas, both

with key id, and the attributes 〈〈Person, maritalStatus〉〉 and 〈〈Emp, maritalStatus〉〉

are going to be integrated into a single attribute of a single table within some

multi-source cleansed schema. Then the following transformation removes val-

ues from 〈〈Person, maritalStatus〉〉 which contradict values in 〈〈Emp, maritalStatus〉〉

(assuming that the latter is the more reliable source — the opposite choice would

73

also of course be possible10);

addAtt (〈〈Person,maritalStatus new〉〉,

〈〈Person,maritalStatus〉〉−−[{i,s}|{i,s}← 〈〈Person,maritalStatus〉〉;

{i’,s’}← 〈〈Emp,maritalStatus〉〉;

i = i’; not (s = s’)]);

contractAtt (〈〈Person,maritalStatus〉〉);

renameAtt (〈〈Person,maritalStatus new〉〉, 〈〈Person,maritalStatus〉〉);

Reference problems in multi-source cleansing occur when a referenced value

does not exist in the target schema construct and can be resolved by removing

the dangling references. For example, if an attribute 〈〈Emp, dept id〉〉 references

a table 〈〈Dept〉〉 with key 〈〈dept id〉〉, then the following transformation removes

values from 〈〈Emp, dept id〉〉 for which there is no corresponding 〈〈dept id〉〉 value

in 〈〈Dept〉〉:

addAtt (〈〈Emp, dept id new〉〉, [{i,d}|{i,d}← 〈〈Emp, dept id〉〉; member 〈〈Dept〉〉 d]);

contractAtt (〈〈Emp, dept id〉〉);

renameAtt (〈〈Emp, dept id new〉〉, 〈〈Person, dept id〉〉);

Finally, data source problems relate to whole data sources, for example, ag-

gregation at different levels of detail in different data sources (e.g. sales may be

recorded per product in one data source and per product category in another data

source). Such conflicts can be resolved either by retaining both sets of source data

within the target multi-source schema MSi (with appropriate renaming of schema

constructs as necessary) or by selecting the ‘coarser’ aggregation and creating a

view over the more detailed data which summarises this data at the coarser level,

ready for integration with the more coarsely aggregated data from the other data

source.

10We could also use the taxonomy of quality defined in [BGF02] to decide which is the more
reliable source.

74

3.3.3 Expressing Data Integration

After data cleansing, the resulting multi-source-cleansed schemas MS1, . . . , MSn

are ready to be transformed and integrated into the detailed schema, DS, via

the automatically generated union schema MS1 ∪ . . .∪ MSn. Section 3.3.1 above

illustrated this process.

3.3.4 Expressing Data Summarisation

Data summarisation defines views over the detailed data. These are expressed by

means of a transformation pathway from DS to the final data warehouse schema

DWS, consisting of a series of add steps defining the new summarised constructs as

views over the constructs of DS. The example in Section 3.3.1 illustrates a process

of defining a summarised view over heterogeneous data sources.

3.3.5 Creating Data Marts

Data mart schemas (DMS) can subsequently be derived from the DWS, again by

means of a transformation pathway DWS→ DMS. Unlike the previous, summarising,

step the target schema may be expressed in a different modelling language to the

DWS. In fact, this step can be regarded as a separate instance of Figure 3.5 where

the DWS now plays the role of the (single) data source and the DMS plays the role

of the target warehouse schema. The scenario is a simplification of Figure 3.5

since there is only one data source, and there are no single-source or multi-source

cleansed schemas.

75

3.4 Using the Transformation Pathways

In the previous section we showed how AutoMed metadata can be used for ex-

pressing the processes of data transformation, cleansing, integration, summari-

sation and creating data marts in a data warehouse. In this section, we discuss

how the resulting transformation pathways can be used for some key data ware-

housing processes: populating the data warehouse, incrementally maintaining the

warehouse data after data source updates, and tracing the lineage of warehouse

data.

3.4.1 Populating the Data Warehouse

In order to use the AutoMed transformation pathways for populating the data

warehouse, an AutoMed wrapper is required for each kind of data store from

which data will be extracted or into which data will be stored. In order to popu-

late a construct c of the data warehouse schema DWS, we need to generate a view

definition for each construct of DWS in terms of its nearest ancestor materialised

constructs within the pathways from the data source schemas DSS1, . . . , DSSn to

DWS. This can be done using a modification of the GAV view generation algorithm

described in [JTMP04]. This algorithm traverses the pathway from DWS to each

DSSi backwards, all the way to DSSi. The modified algorithm stops whenever a

materialised construct is encountered in a pathway. The result is a view defin-

ition of the construct c in terms of already materialised constructs. This view

definition is an IQL query which can be evaluated, and the resulting data can be

inserted into the data store linked with c, via a series of update requests to that

data store’s wrapper.

76

3.4.2 Incrementally Maintaining the Warehouse Data

In order to incrementally maintain materialised warehouse data, we need to use

incremental view maintenance techniques. If a materialised construct c in the

data warehouse schema DWS is defined by an IQL query q over other materialised

constructs, we give in Chapter 7 formulae for incrementally maintaining c if

one its ancestor materialised constructs canc has new data inserted into it (an

increment) or data deleted from it (a decrement). We actually do not use the

whole view definition q generated for c, but instead track the changes from canc

through each step of the pathway to DWS. At each add or rename step we use

the set of increments and decrements computed so far to compute the increment

and decrement for the schema constructed being generated by this step of the

pathway. Chapter 7 discusses this in detail.

3.4.3 Tracing the Lineage of the Warehouse Data

The lineage of a data item t in the extent of a materialised construct c of the

warehouse schema DWS is a set of source data items from which t was derived.

In Chapter 5, we develop definitions for data lineage in the context of AutoMed

transformation pathways and give formulae for deriving the lineage of a data

item t in the extent of a materialised construct c created by a transformation

step of the form addT(c,q). We then give an algorithm for tracing the lineage of

t all the way back to the data sources by using the AutoMed pathways from the

data source schemas DSS1, . . . , DSSn to the warehouse schema. This algorithm

traverses a pathway backwards, and incrementally computes new lineage data

whenever an add or rename step is encountered, finally ending with the required

lineage for t from within DSS1, . . . , DSSn.

Chapter 6 generalises these algorithms to use arbitrary AutoMed schema

77

transformations for tracing data lineage i.e. where intermediate schema constructs

may or may not be materialised.

3.5 Discussion

In this chapter we have shown how AutoMed metadata can be used to express

the processes of data transformation, cleansing, integration, summarisation and

creating data marts in a heterogeneous data warehouse. In particular, for all cat-

egories of data cleansing problems, the general approach is to add new constructs

to the current schema and to populate them by ‘clean’ data generated from the

extents of the existing schema constructs by means of IQL queries and/or or calls

to external functions. The old, ‘dirty’, schema constructs are then contracted

from the schema. Compared with the commercial tools and general research

tools for data cleansing discussed in Section 2.4.3 of Chapter 2, we express the

process of data cleansing using a sequence of transformations which readily sup-

ports schema evolution (see points 2 and 3 below). Other data cleansing tools

can be called from our data cleansing process via built-in functions within IQL

queries. Furthermore, we consider data cleansing both at the schema level and at

the instance level, while only one of these aspects is typically considered in other

data cleansing tools.

We have also discussed how the resulting transformation pathways can be used

for populating the data warehouse, incrementally maintaining the data warehouse

data after data source updates, and tracing the lineage of data warehouse data.

More detail about the latter two will be given in Chapters 5− 7 of the thesis. In

this thesis we assume that the data warehouse is not updated directly but only

based on periodic changes to the data sources in the staging area.

There are three main differences between our approach and the traditional

78

data warehousing approach based on a single conceptual data model (CDM):

1. In the CDM approach, each data source wrapper translates the data source

model into the CDM. Since both are likely to be high-level conceptual mod-

els, semantic mismatches may exist between the CDM and the source data

model, and there may be a loss of information between them. In contrast,

with our approach, the data source wrappers translate each data source

schema into its equivalent AutoMed representation. Any necessary inter-

model translation then happens explicitly within the AutoMed transforma-

tion pathways, under the control of the data warehouse designer.

2. In the CDM approach, the data transformation and integration metadata is

tightly coupled with the CDM of the particular data warehouse. If the data

warehouse is to be redeployed on a platform with a different CDM, it is not

easy to reuse the previous data transformation and implementation effort.

In contrast, with our approach it is possible to extend the existing pathways

from the data source schemas DSS1, . . . , DSSn to the current detailed data

warehouse schema, DS, with extra transformation steps that evolve DS into a

new schema DSnew, expressed in the data model of the new data warehouse

implementation. Chapter 4 discusses how in greater detail.

3. In the CDM approach, if a data source schema changes it is not straightfor-

ward to evolve the view definitions of the data warehouse constructs. With

our approach, a change of a data source schema DSSi into a new schema

DSSnew
i can be expressed as a transformation pathway DSSi → DSSnew

i . The

(automatically derivable) reverse pathway DSSnew
i → DSSi can then be pre-

fixed to the original pathway DSSi → TSi to give a pathway DSSnew
i → TSi,

thus extending the transformation network of Figure 3.5 to encompass the

79

new schema. Chapter 4 discusses in greater detail the modifications to the

transformation network and the change propagation process.

80

Chapter 4

Using AutoMed Transformation

Pathways for Handling Schema

Evolution

4.1 Motivation

The heterogeneity of the data sources of data warehouses has two aspects, het-

erogeneous data expressed in different data models, called model heterogeneity

[KR02], and heterogeneous data within different data schemas expressed in the

same data model, called schema heterogeneity [KR02, Mil98].

As we discussed in Chapter 3, the common approach to handling model het-

erogeneity is to use a single conceptual data model (CDM) for the data trans-

formation and integration. Each data source has a wrapper for translating its

schema and data into the CDM. The warehouse schema is derived from these

CDM schemas by means of view definitions, and is expressed in the same mod-

elling language as them. With this approach, since they are both high-level

81

conceptual data models, semantic mismatches may occur between the CDM and

a source data model, and there may be a loss of information between them. More-

over, if a data source schema changes, it is not straightforward to evolve the view

definitions of the warehouse schema.

Lakshmanan et al [LSS93, LSS99, LSS01] argue that a uniform framework for

schema integration and schema evolution is both desirable and possible, and this is

possible with AutoMed also as we discuss in this chapter. They define a higher-

order logic language, SchemaSQL, which handles data integration and schema

evolution in relational multi-database systems. In contrast, our approach uses

a simple set of schema transformation primitives, augmented with a functional

query language, both of which are uniformly applicable to multiple data models.

Other previous work on schema evolution [ALP91, Bel96, Ben99, BSH99] has also

presented approaches in terms of just one data model.

In contrast to the CDM approach, AutoMed’s data source wrappers translate

each data source schema into its equivalent AutoMed representation, without loss

of information. In Chapter 3 we discussed how AutoMed metadata can be used to

express the schemas and the cleansing, transformation and integration processes

in heterogeneous data warehouse environments, supporting both schema hetero-

geneity and model heterogeneity. It is clearly advantageous to be able to reuse

this kind of metadata if a schema evolves. In this chapter we show how this can

be achieved.

Earlier work [MP02] has shown how the AutoMed framework readily supports

schema evolution in virtual data integration scenarios. This chapter addresses the

problem of schema evolution in materialised data integration scenarios, including

both evolution of a source schema and of the warehouse schema, and also the

impact on any data marts derived from the warehouse. This scenario is more

complex than with virtual data integration, since both schemas and materialised

82

data may be affected by an evolution.

4.2 A Data Integration Scenario and Example

Figure 4.1 shows a data integration scenario in AutoMed.

S1

DB1

S2

DB2

Sn

DBn

DS1 DS2 DSn

SS

SD

T1 T2 Tn

Data Source
Schemas and

Databases

Union
Schemas

The Summarised
Data Schema
and Database

Detailed Data
Schemas and

Databases

.....

US1 US2 USi USn

id id id

Si

DBi

DSi

T i

DD1 DD2 DDi DDn

Figure 4.1: Data Integration Scenario

In this data integration scenario, each data source DBi is described by a data

source schema Si. Each Si is first conformed into a detailed data schema DSi

(which may or may not be expressed in the same modelling language as Si) by

means of a transformation pathway Ti. The process of single-source data cleansing

can be encapsulated in this transformation pathway. There may be information

within the summarised data schema which is not semantically derivable from Si,

and this is asserted by the pathway from DSi to the ‘union-schema’ USi which

consists of the necessary extend transformations1.

All the union schemas US1, . . . , USn are syntactically identical and this is as-

serted by creating a sequence of id transformations between each pair USi and

1If there are none, then this pathway is empty and CSi and DSi are the same schema

83

USi+1, of the form id USi :c USi+1 :c for each schema construct c. An id transfor-

mation signifies the semantic equivalence of syntactically identical constructs in

different schemas. The transformation pathways containing these id transforma-

tions can be automatically generated by the AutoMed software. An arbitrary one

of the USi can then be selected for further transformation into the summarised

schema SS. The extent of each construct c in a union schema USi is equal to the

bag-union of the extent of c in all union schemas US1, . . . , USn. That is, id is inter-

preted as bag-union by AutoMed’s view generation functionality. The processes

of multi-source data cleansing, integrating and summarising can be handled over

the pathway from USi to SS.

We assume that all the source, detailed and summarised schemas are materi-

alised in the databases DBi, DDi and SD while all union schemas USi are virtual.

Figure 4.2 gives a concrete example of this data integration scenario.

The transformation pathway T1 below transforms the schema S1 into DS1 by

first creating Rel construct 〈〈MAtab〉〉 and its attributes 〈〈MAtab, Dept〉〉, 〈〈MAtab,

CID〉〉, 〈〈MAtab, SID〉〉 and 〈〈MAtab, Mark〉〉 using add transformations, and then

using delete transformations to delete the schema constructs of S1.

T1 : S1 → DS1

addRel 〈〈MAtab〉〉 [{’MA’,’MAC01’,x}|x←〈〈MAC01〉〉]

++[{’MA’,’MAC02’,x}|x←〈〈MAC02〉〉]

++[{’MA’,’MAC03’,x}|x←〈〈MAC03〉〉];

addAtt 〈〈MAtab,Dept〉〉 [{k1,k2,k3,k1}|{k1,k2,k3}←〈〈MAtab〉〉];

addAtt 〈〈MAtab,CID〉〉 [{k1,k2,k3,k2}|{k1,k2,k3}←〈〈MAtab〉〉];

addAtt 〈〈MAtab,SID〉〉 [{k1,k2,k3,k3}|{k1,k2,k3}←〈〈MAtab〉〉];

addAtt 〈〈MAtab,Mark〉〉 [{’MA’,’MAC01’,k,x}|{k,x}←〈〈MAC01,Mark〉〉]

++[{’MA’,’MAC02’,k,x}|{k,x}←〈〈MAC02,Mark〉〉]

++[{’MA’,’MAC03’,k,x}|{k,x}←〈〈MAC03,Mark〉〉];

84

Dept CID Max Avg

MA MAC01 95 81

MA MAC02 93 85

...

CS CSC03 96 78

SS and SD:
CourseSum

Sid SName CSC01 CSC02 CSC03

CSS01 Jack 95 82 75

CSS02 Tom 88 94 81

...

S2 and DB2 :

CSMarks

S1 and DB1 :

MAC02

SID Mark

MAS01 82

MAS03 88

... ...

SID Mark

MAS01 77

MAS02 85

... ...

MAC01 MAC03

SID Mark

MAS02 76

MAS03 78

... ...

T1
T2

Ts

US: Details(Dept ,CID,SID,SName,Mark)

Tu

Dept CID SID Mark

MA MAC01 MAS01 77

...

DS1 and DD1 :

MAtab

Dept CID SID SName Mark

CS CSC01 CSS01 Jack 95

...

DS2 and DD2 :

CStab

US1: MAtab(Dept ,CID,SID,Mark)

CStab(Dept ,CID,SID,SName,Mark)

US2: MAtab(Dept ,CID,SID,Mark)

CStab(Dept ,CID,SID,SName,Mark)

id

Figure 4.2: Example of Data Integration

delAtt 〈〈MAC01,Mark〉〉 [{k3,x}|{k1,k2,k3,x}←〈〈MAtab,Mark〉〉; k2=’MAC01’];

delAtt 〈〈MAC01,SID〉〉 [{k3,x}|{k1,k2,k3,x}←〈〈MAtab,SID〉〉; k2=’MAC01’];

delRel 〈〈MAC01〉〉 [{k3}|{k1,k2,k3}←〈〈MAtab〉〉; k2=’MAC01’];

delAtt 〈〈MAC02,Mark〉〉 [{k3,x}|{k1,k2,k3,x}←〈〈MAtab,Mark〉〉; k2=’MAC02’];

delAtt 〈〈MAC02,SID〉〉 [{k3,x}|{k1,k2,k3,x}←〈〈MAtab,SID〉〉; k2=’MAC02’];

delRel 〈〈MAC02〉〉 [{k3}|{k1,k2,k3}←〈〈MAtab〉〉; k2=’MAC02’];

delAtt 〈〈MAC03,Mark〉〉 [{k3,x}|{k1,k2,k3,x}←〈〈MAtab,Mark〉〉; k2=’MAC03’];

delAtt 〈〈MAC03,SID〉〉 [{k3,x}|{k1,k2,k3,x}←〈〈MAtab,SID〉〉; k2=’MAC03’];

delRel 〈〈MAC03〉〉 [{k3}|{k1,k2,k3}←〈〈MAtab〉〉; k2=’MAC03’];

The transformation pathway T2 below transforms schema S2 into DS2:

85

T2 : S2 → DS2

addRel 〈〈CStab〉〉 [{’CS’,x,y}|x←[’CSC01’,’CSC02’,’CSC03’];

y←〈〈CSMarks〉〉];

addAtt 〈〈CStab,Dept〉〉 [{k1,k2,k3,k1}|{k1,k2,k3}←〈〈CStab〉〉];

addAtt 〈〈CStab,CID〉〉 [{k1,k2,k3,k2}|{k1,k2,k3}←〈〈CStab〉〉];

addAtt 〈〈CStab,SID〉〉 [{k1,k2,k3,k3}|{k1,k2,k3}←〈〈CStab〉〉];

addAtt 〈〈CStab,SName〉〉 [{’CS’,x,k,s}|x←[’CSC01’,’CSC02’,’CSC03’];

{k,s}←〈〈CSMarks,SName〉〉];

addAtt 〈〈CStab,Mark〉〉 [{’CS’,’CSC01’,k,x}|{k,x}←〈〈CSMarks,CSC01〉〉]

++[{’CS’,’CSC02’,k,x}|{k,x}←〈〈CSMarks,CSC02〉〉]

++[{’CS’,’CSC03’,k,x}|{k,x}←〈〈CSMarks,CSC03〉〉];

delAtt 〈〈CSMarks,CSC03〉〉 [{s,m}|{d,c,s,m}← 〈〈CStab,Mark〉〉; c=’CSC03’];

delAtt 〈〈CSMarks,CSC02〉〉 [{s,m}|{d,c,s,m}← 〈〈CStab,Mark〉〉; c=’CSC02’];

delAtt 〈〈CSMarks,CSC01〉〉 [{s,m}|{d,c,s,m}← 〈〈CStab,Mark〉〉; c=’CSC01’];

delAtt 〈〈CSMarks,SName〉〉 distinct [{s,n}|{d,c,s,n}← 〈〈CStab,SName〉〉];

delAtt 〈〈CSMarks,Sid〉〉 distinct [{s,i}|{d,c,s,i}← 〈〈CStab,SID〉〉];

delRel 〈〈CSMarks〉〉 distinct [s|{d,c,s}← 〈〈CStab〉〉];

Since US1 contains schema constructs of relation CStab which do not appear

in DS1, the transformation pathway DS1 → US1 contains extend transformations

extending these constructs into DS1:

extendAtt 〈〈CStab,Mark〉〉 Void;

extendAtt 〈〈CStab,SName〉〉 Void;

extendAtt 〈〈CStab,SID〉〉 Void;

extendAtt 〈〈CStab,CID〉〉 Void;

extendAtt 〈〈CStab,Dept〉〉 Void;

extendRel 〈〈CStab〉〉 Void;

86

Similarly, the transformation pathway DS2 → US2 contains extend transforma-

tions extending the schema constructs of relation MAtab into DS2.

A sequence of id transformations is created between US1 and US2, and US2

is selected for further transformation. In this example, we transform US2 into

US, which integrates the two relations MAtab and CStab into a relation Details,

using the following transformation pathway Tu (note that US1, US2 and US are all

virtual schemas):

Tu : US2 → US

addRel 〈〈Details〉〉 〈〈MAtab〉〉++ 〈〈CStab〉〉;

addAtt 〈〈Details,Dept〉〉 〈〈MAtab,Dept〉〉++ 〈〈CStab,Dept〉〉;

addAtt 〈〈Details,CID〉〉 〈〈MAtab,CID〉〉++ 〈〈CStab,CID〉〉;

addAtt 〈〈Details,SID〉〉 〈〈MAtab,SID〉〉++ 〈〈CStab,SID〉〉;

addAtt 〈〈Details,SName〉〉 〈〈MAtab,SName〉〉++ 〈〈CStab,SName〉〉;

addAtt 〈〈Details,Mark〉〉 〈〈MAtab,Mark〉〉++ 〈〈CStab,Mark〉〉;

delAtt 〈〈MAtab,Mark〉〉 [{d,c,s,m}|{d,c,s,m}← 〈〈Details,Mark〉〉; d=’MA’];

delAtt 〈〈MAtab,SName〉〉 [{d,c,s,n}|{d,c,s,n}← 〈〈Details,SName〉〉; d=’MA’];

delAtt 〈〈MAtab,SID〉〉 [{d,c,s,i}|{d,c,s,i}← 〈〈Details,SID〉〉; d=’MA’];

delAtt 〈〈MAtab,CID〉〉 [{d,c,s,i}|{d,c,s,i}← 〈〈Details,CID〉〉; d=’MA’];

delAtt 〈〈MAtab,Dept〉〉 [{d,c,s,i}|{d,c,s,i}← 〈〈Details,Dept〉〉; d=’MA’];

delRel 〈〈MAtab〉〉 [{d,c,s}|{d,c,s}← 〈〈Details,Mark〉〉; d=’MA’];

delAtt 〈〈CStab,Mark〉〉 [{d,c,s,m}|{d,c,s,m}← 〈〈Details,Mark〉〉; d=’CS’];

delAtt 〈〈CStab,SName〉〉 [{d,c,s,n}|{d,c,s,n}← 〈〈Details,SName〉〉; d=’CS’];

delAtt 〈〈MAtab,SID〉〉 [{d,c,s,i}|{d,c,s,i}← 〈〈Details,SID〉〉; d=’CS’];

delAtt 〈〈CStab,CID〉〉 [{d,c,s,i}|{d,c,s,i}← 〈〈Details,CID〉〉; d=’CS’];

delAtt 〈〈CStab,Dept〉〉 [{d,c,s,i}|{d,c,s,i}← 〈〈Details,Dept〉〉; d=’CS’];

delRel 〈〈CStab〉〉 [{d,c,s}|{d,c,s}← 〈〈Details,Mark〉〉; d=’CS’];

The transformation pathway Ts finally transforms schema US into SS, where

contract transformations are used to contract the schema constructs in US that

87

cannot be recovered from SS.

Ts : US→ SS

addRel 〈〈CourseSum〉〉 distinct [{k1,k2}|{k1,k2,k3}←〈〈Details〉〉];

addAtt 〈〈CourseSum,Dept〉〉 [{k1,k2,k1}|{k1,k2}←〈〈CourseSum〉〉];

addAtt 〈〈CourseSum,CID〉〉 [{k1,k2,k2}|{k1,k2}←〈〈CourseSum〉〉];

addAtt 〈〈CourseSum,Max〉〉 [{x,y,z}|{{x,y},z}←(gc max [{{k1,k2},x}|

{k1,k2,k3,x}←〈〈Details,Mark〉〉])];

addAtt 〈〈CourseSum,Avg〉〉 [{x,y,z}|{{x,y},z}←(gc avg [{{k1,k2},x}|

{k1,k2,k3,x}←〈〈Details,Mark〉〉])];

contractAtt 〈〈Details,Mark〉〉;

contractAtt 〈〈Details,SName〉〉;

contractAtt 〈〈Details,CName〉〉;

contractAtt 〈〈Details,SID〉〉;

contractAtt 〈〈Details,CID〉〉;

contractAtt 〈〈Details,Dept〉〉;

contractRel 〈〈Details〉〉;

4.3 Expressing Schema and Data Model Evolu-

tion

In a heterogeneous data warehousing environment, it is possible for either a data

source schema or the integrated database schema to evolve. This schema evolution

may be a change in the schema, or a change in the data model in which the

schema is expressed, or both. AutoMed transformations can be used to express

the schema evolution in all three cases:

(a) Consider first a schema S expressed in a modelling language M. We can

express the evolution of S to Snew, also expressed inM, as a series of prim-

itive transformations that rename, add, extend, delete or contract constructs

88

of M. For example, suppose that the relational schema S1 in the above

example evolves so its three tables become a single table with an extra col-

umn for the course ID. This evolution is captured by a pathway which is

identical to the pathway S1 → DS1 given above.

This kind of transformation that captures well-known equivalences between

schemas [LNE89, MP98] can be defined in AutoMed by means of a para-

metrised transformation template which is both schema- and data-independent.

When invoked with specific schema constructs and their extents, a template

generates the appropriate sequence of primitive transformations within the

Schemas & Transformations Repository.

(b) Consider now a schema S expressed in a modelling language M which

evolves into an equivalent schema Snew expressed in a modelling language

Mnew. We can express this translation by a series of add steps that define

the constructs of Snew in Mnew in terms of the constructs of S in M. At

this stage, we have an intermediate schema that contains the constructs

of both S and Snew. We then specify a series of delete steps that remove

the constructs ofM (the queries within these transformations indicate that

these are now redundant constructs since they can be derived from the new

constructs).

The example in Section 3.3.1 shows how evolutions between schemas ex-

pressed in different modelling languages can be captured by transformation

pathways. Again, generic inter-model translations between one data model

and another can be defined in AutoMed by means of transformation tem-

plates.

(c) Considering finally to an evolution which is both a change in the schema

and in the data model, this can be expressed by a combination of (a) and

89

(b) above: either (a) followed by (b), or (b) followed by (a), or indeed by

interleaving the two processes.

4.4 Handling Schema Evolution

We now consider how the integration network illustrated in Figure 4.1 is evolvable

in the face of evolution of a data source schema or the summarised data schema.

We have seen in the previous section how AutoMed transformations can be used

to express the schema evolution if either the schema or the data model changes,

or both. We can therefore treat schema and data model change in a uniform

way for the purposes of handling schema evolution: both are expressed as a

sequence of AutoMed primitive transformations, in the first case staying within

the original data model, and in the second case transforming the original schema

in the original data model into a new schema in a new data model.

In this section we describe the actions that are taken in order to evolve the

integration network of Figure 4.1 if the summarised data schema SS evolves (Sec-

tion 4.4.1) or if a data source schema Si evolves (Section 4.4.2). Given an evolution

pathway from a schema S to a schema Snew, in both cases each successive primi-

tive transformation within the pathway S → Snew is treated one at a time. Thus,

we describe in sections 4.4.1 and 4.4.2 the actions that are taken if S → Snew

consists of just one primitive transformation. If S → Snew is a composite trans-

formation, then it is handled as a sequence of primitive transformations.

Our discussion below assumes that the primitive transformation being handled

is adding, removing or renaming a construct of S that has an underlying data

extent.

90

4.4.1 Evolution of the Summarised Data Schema

Suppose the summarised data schema SS evolves by means of a primitive trans-

formation t into SSnew. This is expressed by the step t being appended to the

pathway Tu of Figure 4.1. The new summarised data schema is SSnew and its

associated extension is SDnew. SS is now an intermediate schema in the extended

pathway Tu; t and it no longer has an extension associated with it. t may be a

rename, add, extend, delete or contract transformation. The following actions are

taken in each case:

1. If t is renameT(c,c’), then there is nothing further to do. SS is semantically

equivalent to SSnew and SDnew is identical to SD except that the extent of c

in SD is now the extent of c’ in SDnew.

2. If t is addT(c,q), then there is nothing further to do at the schema level. SS

is semantically equivalent to SSnew. However, the new construct c in SDnew

must now be populated, and this is achieved by evaluating the query q over

SD.

3. If t is extendT(c)2 then the new construct c in SDnew is populated by an

empty extent. This new construct may subsequently be populated by an

expansion in a data source (see Section 4.4.2).

4. If t is deleteT(c,q) or contractT(c), then the extent of c must be removed

from SD in order to create SDnew (it is assumed that this a legal dele-

tion/contraction, e.g if we wanted to delete/contract a table from a re-

lational schema, then first the constraints and then the columns would be

2For this chapter, we assume that extend and contract transformations have lower-bound
queries Void and upper-bound queries Any, and we denote them as extendT(c) and contractT(c).
We leave as further work handling schema evolution for more general extend and contract
transformations.

91

deleted/contracted and lastly the table itself; such syntactic correctness of

transformation pathways is automatically verified by AutoMed). It may

now be possible to simplify the transformation network, in that if Tu con-

tains a matching transformation addT(c,q) or extendT(c), then both this and

the new transformation t can be removed from the pathway US → SSnew.

This is purely an optimization — it does not change the meaning of a path-

way, nor its effect on view generation and query/data translation. We refer

the reader to [Ton03] for details of the algorithms that simplify AutoMed

transformation pathways.

In cases 2 and 3 above, the new construct c will automatically be propagated

into the schema DMS of any data mart derived from SS. To prevent this, a trans-

formation contractT(c) can be prefixed to the pathway SS→ DMS. Alternatively,

the new construct c can be propagated to DMS if so desired, and materialised

there. In cases 1 and 4 above, the change in SS and SD may impact on the data

marts derived from SS, and we discuss this in Section 4.4.3.

4.4.2 Evolution of a Data Source Schema

Suppose a data source schema Si evolves by means of a primitive transformation

t into Snew
i . As discussed in Chapter 3, there is automatically available a reverse

transformation t−1 from Snew
i to Si and hence a pathway t−1; Ti from Snew

i to DSi.

The new data source schema is Snew
i and its associated extension is DBnew

i . Si is

now just an intermediate schema in the extended pathway t−1; Ti and it no longer

has an associated extension.

t may be a rename, add, delete, extend or contract transformation. In 1–5 below

we see what further actions are taken in each case for evolving the integration

network and the downstream materialised data as necessary.

92

We first introduce some necessary terminology: If p is a pathway S → S ′ and

c is a construct in S, we denote by descendants(c, p) the constructs of S ′ which

are directly or indirectly dependent on c, either because c itself appears in S ′ or

because a construct c’ of S ′ is created by a transformation addT(c′, q) within p

where the query q directly or indirectly references c. The set descendants(c, p)

can be straight-forwardly computed by traversing p and inspecting the query

associated with each add transformation within in.

1. If t is renameT(c,c’), then schema Snew
i is semantically equivalent to Si. The

new transformation pathway T new
i :Snew

i →DSi is t−1; Ti = renameT(c’,c); Ti.

The new source database DBnew
i is identical to DBi except that the extent of

c in DBi is now the extent of c’ in DBnew
i .

2. If t is addT(c,q), then Si has evolved to contain a new construct c whose

extent is equivalent to the expression q over the other constructs of Si. The

new transformation pathway T new
i :Snew

i →DSi is t−1; Ti = deleteT(c,q); Ti.

3. If t is deleteT(c,q), this means that Si has evolved to not include a construct

c whose extent is derivable from the expression q over the other constructs

of Si, and the new source database DBnew
i no longer contains an extent for c.

The new transformation pathway T new
i :Snew

i →DSi is t−1; Ti = addT(c,q); Ti.

In the above three cases, schema Snew
i is semantically equivalent to Si, and

nothing further needs to be done to any of the transformation pathways, schemas

or databases DD1, . . . , DDn and SD. This may not be the case if t is a contract or

extend transformation, which we consider next.

4. If t is extendT(c), then there will be a new construct available from Snew
i

that was not available before. That is, Si has evolved to contain the new

construct c whose extent is not derivable from the other constructs of Si.

93

If we left the transformation pathway Ti as it is, this would result in a

pathway T new
i = contractT(c); Ti from Snew

i to DSi, which would immediately

drop the new construct c from the integration network. That is, T new
i is

consistent but it does not utilize the new data.

However, recall that we said earlier that we assume no contract steps in the

pathways from the data schemas to their union schemas, and that all the data in

Si should be available to the integration network. In order to achieve this, there

are four cases to consider if t is extendT(c):

(4.a) c appears in USi and has the same semantics as the newly added c in Snew
i .

Since c cannot be derived from the original Si, there must be a transforma-

tion extendT(c), in DSi → USi.

We remove from T new
i the new contractT(c) step and this matching extendT(c)

step. This propagates c into DSi, and we populate its extent in the materi-

alised database DDi by replicating its extent from DBnew
i .

(4.b) c does not appear in USi but it can be derived from USi by means of some

transformation T .

In this case, we remove from T new
i the first contractT(c) step, so that c

is now present in DSi and in USi. We populate the extent of c in DDi by

replicating its extent from DBnew
i .

To repair the other pathways Tj : Sj → DSj and schemas USj for j 6= i,

we append T to the end of each Tj . As a result, the new construct c now

appears in all the union schemas. To add the extent of this new construct

to each materialised database DDj for j 6= i, we compute it from the extents

of the other constructs in DSj using the queries within successive add steps

in T .

94

We finally append the necessary new id steps between pairs of union schemas

to assert the semantic equivalence of the construct c within them.

(4.c) c does not appear in USi and cannot be derived from USi.

In this case, we again remove from T new
i the first contractT(c) step so that

c is now present in schema DSi.

To repair the other pathways Tj : Sj → DSj and schemas USj for j 6= i,

we append an extendT(c) step to the end of each Tj . As a result, the new

construct c now appears in all the conformed schemas DS1, . . . , DSn.

The construct c may need further translation into the data model of the

union schemas and this is done by appending the necessary sequence, T , of

add/delete/rename steps to all the pathways S1 → DS1, . . . , Sn → DSn.

We compute the extent of c within the database DDi from its extent within

DBnew
i using the queries within successive add steps in T .

We finally append the necessary new id steps between pairs of union schemas

to assert the semantic equivalence of the new construct(s) within them.

(4.d) c appears in USi but has different semantics to the newly added c in Snew
i .

In this case, we rename c in Snew
i to a new construct c’. The situation

reverts to adding a new construct c’ to Snew
i , and one of (4.a)-(4.c) above

applies.

We note that determining whether c can or cannot be derived from the existing

constructs of the union schemas in (4.a)–(4.d) above requires domain or expert

human knowledge. Thereafter, the remaining actions are fully automatic.

In cases (4.a) and (4.b), there is new data added to one or more of the con-

formed databases which needs to be propagated to SD. This is done by comput-

ing descendants(c, Tu) and using the algebraic equivalences of IQL syntax given

95

in Chapter 3 to propagate changes in the extent of c to each of its descendant

constructs dc in SS. Using these equivalences, we can in most cases incremen-

tally recompute the extent of dc. If at any stage in Tu there is a transformation

addT(c′, q) where no equivalence can be applied, then we have to recompute the

whole extent of c’.

In cases (4.b) and (4.c), there is a new schema construct c appearing in the

USi. This construct will automatically appear in the schema SS. If this is not

desired, a transformation contractT(c) can be prefixed to Tu.

5. If t is contractT(c), then the construct c in Si will no longer be available

from Snew
i . That is, Si has evolved so as to not include a construct c whose

extent is not derivable from the other constructs of Si. The new source

database DBnew
i no longer contains an extent for c.

The new transformation pathway T new
i : Snew

i →DSi is t−1; Ti = extendT(c);

Ti. Since the extent of c is now Void, the materialised data in DDi and SD

must be modified so as to remove any data derived from the old extent of

c.

In order to repair DDi, we compute descendants(c, Si→DSi). For each con-

struct uc in descendants(c, Si→DSi), we compute its new extent and replace

its old extent in DDi by the new extent. Again, the algebraic properties of

IQL queries discussed in Chapter 3 can be used to propagate the new Void

extent of construct c in Snew
i to each of its descendant constructs uc in DSi.

Using these equivalences, we can in most cases incrementally recompute the

extent of uc as we traverse the pathway Ti.

In order to repair SD, we similarly propagate changes in the extent of each

uc along the pathway Tu.

Finally, it may also be necessary to amend the transformation pathways

96

if there are one or more constructs in SD which now will always have an

empty extent as a result of this contraction of Si. For any construct uc in

US whose extent has become empty, we examine all pathways T1, . . . , Tn.

If all these pathways contain an extendT(uc) transformation, or if using the

equivalences of IQL syntax in Chapter 3 we can deduce from them that

the extent of uc will always be empty, then we can suffix a contractT(dc)

step to Tu for every dc in descendants(uc, Tu), and then handle this case as

paragraph 4 in Section 4.4.1.

4.4.3 Evolution of Downstream Data Marts

We have discussed how evolutions to the summarised data schema or to a source

schema are handled. One remaining question is how to handle the impact of a

change to the data warehouse schema, and possibly its data, on any data marts

that have been derived from it.

In Chapter 3 we discuss how it is possible to express the derivation of a data

marts from a data warehouse by means of an AutoMed transformation pathway.

Such a pathway DWS→ DMS expresses the relationship of a data mart schema DMS

to the warehouse schema DWS. As such, this scenario can be regarded as a special

case of the general integration scenario of Figure 4.1, where SS now plays the

role of the single source schema, databases DD1, . . . , DDn and SD collectively play

the role of the data associated with this source schema and DMS plays the role

of the summarised data schema. Therefore, the same techniques as discussed in

sections 4.4.1 and 4.4.2 can be applied.

97

4.5 Discussion

In this chapter we have described how the AutoMed heterogeneous data inte-

gration toolkit can be used to handle the problem of schema evolution in het-

erogeneous data warehousing environments so that the previous transformation,

integration and data materialisation effort can be reused. We have discussed

handling evolution of a source schema or the warehouse schema, and also the

impact on any downstream data marts derived from the data warehouse. Our

techniques are mainly automatic, except for the aspects that require domain or

expert human knowledge regarding the semantics of new schema constructs.

We have shown how AutoMed transformations can be used to express schema

evolution within the same data model, or a change in the data model, or both,

whereas other schema evolution literature has focussed on just one data model.

Schema evolution within the relational data model has been discussed in previous

work such as [LSS93, LSS99, Mil98]. The approach in [Mil98] uses a first-order

schema in which all values in a schema of interest to a user are modelled as data,

and other schemas can be expressed as a query over this first-order schema. The

approach in [LSS99] uses the notation of a flat scheme, and gives four operators

Unite, Fold, Unfold and Split to perform relational schema evolution using

the SchemaSQL language. In contrast, with AutoMed the process of schema

evolution is expressed using a simple set of primitive schema transformations

augmented with a functional query language, both of which are applicable to

multiple data models.

Our approach is complementary to work on mapping composition, e.g. [VMP03,

MH03, FKP04], in that in our case the new mappings are a composition of the

original transformation pathway and the transformation pathway which expresses

the schema evolution. Thus, the new mappings are, by definition, correct. There

98

are two aspects to our approach:

(i) handling the transformation pathways and

(ii) handling the queries within them.

In this chapter we have in particular assumed that the queries are expressed in

IQL. However, the AutoMed toolkit allows any query language syntax to be used

within primitive transformations, and therefore this aspect of our approach could

be extended to other query languages.

Materialised data warehouse views need to be maintained when the data

sources change, and much previous work has addressed this problem at the data

level. However, as we have discussed in this chapter, materialised data ware-

house views may also need to be modified if there is an evolution of a data source

schema. Incremental maintenance of schema-restructuring views within the rela-

tional data model is discussed in [KR02], whereas our approach can handle this

problem in a heterogeneous data warehousing environment with multiple data

models and changes in data models. In chapter 7, we will discuss how AutoMed

transformation pathways can also be used for incrementally maintaining materi-

alised views at the data level.

99

Chapter 5

Using Materialised AutoMed

Transformation Pathways for

Data Lineage Tracing

The data lineage tracing problem is to find the derivation of the given tracing

data in the global database. The derivation, called the lineage data, is a collection

of data items in the data sources which produces the given tracing data. The

tracing data consists of data item(s) in the global database, which may be a single

tuple, called the tracing tuple, or a set of tuples, called the tracing tuples.

In this chapter, we will give the definitions of data lineage in the context

of AutoMed, and develop a set of algorithms which use materialised AutoMed

schema transformation pathways for tracing data lineage. By materialised, we

mean that all intermediate schema constructs created in the schema transforma-

tions are materialised, i.e. have an extent associated with them.

We consider a subset of the full IQL query language which incorporates the

major relational and aggregation operators on collections. We call this subset

IQLc and its syntax is as follows, where E, E1 . . . , En denote collection-valued IQLc

100

queries; e1, ..., en are constants, variables or IQLc queries; f is an aggregation

function (max, min, count, sum, avg); p, p1, p2 denote patterns; and Q1...Qn

are qualifiers which may be generators or filters. Filters in IQLc are limited to

boolean-valued expressions containing only variables, constants and comparison

operators and expressions of the form member E x and not (member E x).

1. [e1, e2, ..., en]

2. group E

3. sort E

4. distinct E

5. f E

6. gc f E

7. E1 ++ E2 ++ . . . ++ En

8. E1 −− E2

9. [p|Q1; . . . ; Qn]

10. map (lambda p1.p2) E

This subset of IQL can express the common algebraic operations on col-

lections. In particular, let us consider select(σ), projection(π), join(⊲⊳) and

aggregation(α) (union and difference are directly supported in IQLc via the ++

and −− operators). The general form of a select-project-join (SPJ) expression

is πA(σC(E1 ⊲⊳ ... ⊲⊳ En)) and this can be expressed in IQLc as a comprehension

of the form [A|x1 ← E1; . . . ; xn ← En; C]. The algebraic operator α applies an

aggregation function to a collection and this functionality is captured in IQLc

by the gc operator. For example, supposing D is a collection of three-tuples and

has scheme D(A1,A2,A3), the expression αA2,f(A3)(D) is expressed in IQLc as

gc f (map (lambda {x1,x2,x3}.{x2,x3}) D)

Section 5.1 below discusses related work on data lineage tracing. Section 5.2

introduces a subset of IQLc, simple IQL (SIQL), for developing our data lineage

101

tracing formulae, and presents the rules of decomposing IQLc queries into SIQL

queries. Any IQLc query can be encoded as a series of transformations with SIQL

queries on intermediate schema constructs. Section 5.3 presents the definitions

of data lineage in the context of AutoMed. Sections 5.4 and 5.5 present our

approach to data lineage tracing using materialised AutoMed schema transfor-

mation pathways, including formulae and algorithms. Section 5.6 discusses how

the order of traversing an IQLc query tree to decompose it into a series of SIQL

queries does not affect the result of our DLT process. Section 5.7 discusses the

problem of derivation ambiguity in data lineage tracing, and how this problem

may happen and may be avoided in our context. Finally, Section 5.8 presents a

summary and discussion of this chapter.

5.1 Related Work

The problem of data lineage tracing (DLT) in data warehousing environments

has been studied by Cui et al. in [CWW00, CW00a, CW00b, CW01, Cui01].

In particular, the fundamental definitions regarding data lineage, including tu-

ple derivation for an operator and tuple derivation for a view, were developed in

[CWW00], as were methods for derivation tracing with both set and bag seman-

tics. Their work has addressed the derivation tracing problem and has provided

the concept of derivation set and derivation pool for DLT with duplicate elements.

The derivation set is the set of the tuples in the tracing data’s derivation exclud-

ing any duplicate elements. The derivation pool contains all tuples in the tracing

data’s derivation. References [CW00a, CW00b] also introduce a way to perform

data lineage tracing for data warehouse views. Several DLT algorithms are pro-

vided by selecting a set of auxiliary views to materialise in the data warehouse.

However, the approach is limited to the relational data model only.

102

Another fundamental concept of data lineage is discussed by Buneman et al.,

in [BKT00, BKT01], namely the difference between “why” provenance and “where”

provenance. Why-provenance refers to the source data that had some influence

on the existence of the integrated data. Where-provenance refers to the actual

data in the sources from which the integrated data was extracted.

In our approach, both why- and where-provenance are considered, using bag

semantics. We use Cui’s notion of derivation-pool to define the affect-pool and the

origin-pool for data lineage tracing in AutoMed — the former derives all of the

source data that had some influence on the tracing data, while the latter derives

the specific data in the sources from which the tracing data was extracted. In

contrast, Cui’s definitions and methods are limited to why-provenance.

We develop formulae for deriving the affect-pool and origin-pool of a data

item in the extent of a materialised schema construct created by a single schema

transformation step. Our DLT approach is to apply these formulae on each

transformation step in a transformation pathway in turn, so as to obtain the

lineage data in stepwise fashion. The queries within transformation steps are

assumed to be IQLc queries.

Reference [KLM+97] also introduces a notion of derivation sets for a tuple in

a materialised view defined by a single-block SQL query. This represents the set

of all tuples whose insertion, deletion or modification could potentially affect the

tuple in the view. But this work does not focus on how to trace the derivation

sets.

Cui and Widom in [CW01] discuss the problem of tracing data lineage for

general data warehousing transformations, that is, the considered operators and

algebraic properties are no longer limited to relational views. However, without

a framework for expressing general transformations in heterogeneous database

environments, most of the algorithms in [CW01] are recalling the view definition

103

and examining each item in the data source to decide if the item is in the data

lineage of the data being traced. This can be expensive if the view definition is a

complex one and enumerating all items in the data source is impractical for large

data sets.

Reference [WS97] proposes a general framework for computing fine-grained

data lineage, i.e. a specific derivation in the data sources, using a limited amount

of information, weak and verified inversion, about the processing steps. Based

on weak and verified inversion functions, which must be specified by the transfor-

mation definer, the paper defines and traces data lineage for each transformation

step. However, the system cannot obtain the exact lineage data, only a num-

ber of guarantees about the lineage is provided. Further, specifying weak and

verified inversion functions for each transformation step is onerous work for the

data warehouse definer. Moreover, the DLT process cannot straightforwardly be

reused when the data warehouse evolves. Our approach considers the problem

of data lineage tracing at the tuple level and computes the exact lineage data.

Moreover, AutoMed’s ready support for schema evolution means that our DLT

algorithms can be reapplied if schema transformation pathways evolve.

There are also other previous works relating to data lineage tracing, such

as [BB99, HQGW93, FJS97], which consider coarse-grained lineage based on

annotations on each data transformation step, and provide estimated lineage

information rather than the exact data items in the data sources. Reference

[BB99] presents a schema whereby each data warehouse row generated by the data

warehousing transformations is tagged by an identifier for the transformation, so

that the user can trace which transformation generated each data warehouse row.

Reference [HQGW93] uses Petri Nets to model and capture data derivations in

scientific databases, which record the derivation relationships among classes of

data. Reference [FJS97] discusses an approach to reconstruct base data from

104

summary data and certain constraints, and does not consider the problem of

data lineage at the tuple level.

Cui and Buneman in [Cui01], [BKT01] discuss the problem of ambiguity of

lineage data. This problem is known as derivation inequivalence and arises when

equivalent queries have different data lineages for identical tracing data. Cui and

Buneman discuss this problem in two scenarios: (a) when aggregation functions

are used and (b) when where-provenance is traced. In Section 5.7 of this chapter,

we investigate when ambiguity of lineage data may happen in our context and we

describe how our DLT approach for tracing why-provenance can also be used for

tracing where-provenance, so as to reduce the chance of derivation inequivalence

occurring.

5.2 Simple IQL

Our data lineage tracing algorithms assume a subset of IQLc, simple IQL (SIQL),

as the query language in transformation pathways. More complex IQLc queries

can be encoded as a series of transformations with SIQL queries on intermedi-

ate schema constructs. Although illustrated within this particular query language

syntax, our DLT algorithms could also be applied to schema transformation path-

ways involving queries expressed in other query languages supporting operations

on set and bag collections.

5.2.1 The SIQL Syntax

SIQL queries have the following syntax where each collection-valued expression,

D, D1 . . . , Dn below must be a base collection or a variable defined by another

SIQL query, and each cv1, ..., cvn is either a constant (i.e. string or number) or a

variable defined by another SIQL query:

105

1. [cv1, cv2, ..., cvn]

2. group D

3. sort D

4. distinct D

5. f D

6. gc f D

7. D1 ++ D2 ++ . . . ++ Dn

8. D1 −− D2

9. [x|x1 ← D1; . . . ; xn ← Dn; C1; ...; Ck]

10. [x|x← D1; member D2 y]

11. [x|x← D1; not (member D2 y)]

12. map (lambda p1.p2) D

SIQL comprehensions are of three forms: [x|x1 ← D1; . . . ; xn ← Dn; C1; ...; Ck],

[x|x ← D1; member D2 y], and [x|x ← D1; not (member D2 y)]. Here, each x1, ...,

xn is either a single variable or a pattern consisting only of variables. x is either

a single variable or value, or a pattern of variables or values, and must include all

the variables appearing in x1, ..., xn. Each C1, ..., Ck is a condition not referring to

any base collection. Each variable appearing in x and C1, ..., Ck must also appear

in some xi, and the variables in y must appear in x.

For example, we can use following transformation steps to express a general

SPJ operation, πA(σC(D1 ⊲⊳ ... ⊲⊳ Dn)), in SIQL, where x contains all variables

appearing in x1 . . . xn:

v1 = [x|x1 ← D1; . . . ; xn ← Dn; C]

v = map (lambda x.A) v1

Similarly, an aggregate expression αA2,f(A3)(D) over a collection D(A1,A2,A3) is

expressed in SIQL as:

v1 = map (lambda {x1,x2,x3}.{x2,x3}) D

v = gc f v1

106

5.2.2 Decomposing IQLc into SIQL Queries

The syntax of IQLc and SIQL queries are similar except that the collection-

valued expressions in IQLc queries may be sub-IQLc queries, while the collection-

valued expressions in SIQL queries must be a base collection or a variable defined

by another SIQL query. In order to trace data lineage along transformation

pathways including general IQLc queries, we decompose each IQLc query into a

sequence of SIQL queries by means of a depth-first traversal of the IQLc query

tree. This section presents the rules of decomposing IQLc queries. The algorithms

implementing these rules will be discussed in Appendix C. Here, we firstly give

an example to show how a general IQLc query can be decomposed.

Suppose that a view v is defined by an IQLc query D1 ++ [{x,z}|{x,y} ←

(D2−−D3); z← [p|p← D4, member D5 p]; z < y]. After decomposing the query,

the view definition is expressed by a sequence of SIQL queries as follows:

v1 = D2−− D3

v2 = [p|p← D4, member D5 p]

v3 = [{x,y,z}|{x,y}← v1;z← v2; z < y]

v4 = map (lambda {x,y,z}.{x,z}) v3

v = D1++ v4

For decomposing IQLc queries into SIQL queries, we classify IQLc queries

into following four types: 1-argument queries, 2-argument queries, n-argument

queries, and list queries. The decomposition rules for each type of IQLc query

are as follows:

Decomposition rules for 1-argument queries If an IQLc query is a 1-

argument query, i.e., group E, sort E, distinct E, aggFun E, gc aggFun E

and map (lambda p1.p2) E, we decompose the query using following steps:

(1) If E is a base collection or a variable, then the query is already a SIQL query

107

and not required to be decomposed;

(2) If E is a sub-query1, then a new variable is created to replace E, and a new

transformation step is created to express that the new variable is defined by

the replaced sub-query. For example, if E is a sub-query, view v = group E

is decomposed as:

v1 = E

v = group v1

Decomposition rules for 2-argument queries If an IQLc query is a 2-

argument query, i.e. E1 −− E2, similar decomposition steps as above are used

to decompose the query. However, in this case, we need consider separately the

two collection-valued expressions, E1 and E2. For example, if E1 and E2 are

sub-queries, query v = E1−− E2 is decomposed as:

v1 = E1

v2 = E2

v = v1−− v2

Decomposition rules for n-argument queries If an IQLc query is a n-

argument query, i.e. an ++ expression or a comprehension, the decomposition

rules are as follows:

(1) If the query is an expression of the form E1 ++ E2 ++ ... ++ En, the de-

composition steps are similar to decomposing 1- and 2-argument queries

above, except that each collection-valued expression Ei(1 ≤ i ≤ n) has to

be considered separately.

(2) If the query is a comprehension of the form [p|Q1; . . . ; Qn], we can refine

1Without loss of generality, we assume that a sub-query of an IQLc query is a SIQL query,
since we can recursively decompose the sub-query if it is a general IQLc query.

108

this syntax as [p|G1; . . . ; Gr; M1; ...; Ms; C1; ...; Ct], in which G1 . . . Gr are gen-

erators, M1 . . . Ms are filters involving the member function (which we term

member filters) and C1 . . . Ct are filters involving variables, constants and

comparison operators (which we term simple filters). We recall that each

generator Gi has syntax xi ← Ei (1 ≤ i ≤ r) where xi is a pattern and Ei is

a collection-valued expression.

We first check if the head expression p is a pattern containing all the vari-

ables appearing in the generator patterns xi (1 ≤ i ≤ r) of the comprehen-

sion (we term such comprehensions select-join comprehensions). If not, the

following intermediate view definitions can be used to transform the com-

prehension into this form, where x is a pattern containing all the variables

appearing in all the generator patterns:

v1 = [x|G1; . . . ; Gr; M1; ...; Ms; C1; ...; Ct]

v = map (lambda x.p) v1

In order to decompose the comprehension defining v1, we consider each

generator and filter.

A generator has the syntax xi ← Ei where Ei is a collection-valued expression

which may be a sub-query. If Ei is a base collection or a variable, the

generator satisfies the SIQL syntax. If Ei is a sub-query, we redefine the

generator in the same way as for decomposing an 1-argument query.

Member filters contain a collection-valued expression E which may be a sub-

query. Such filters can be redefined in the same way as for decomposing an

1-argument query if the collection-valued expression E is a sub-query rather

than a base collection or variable.

Furthermore, in the SIQL syntax, there can only be one generator in a com-

prehension if it contains a member filter, i.e. [x|x ← E1; member E2 y] and

109

[x|x← E1; not (member E2 y)]. If a general comprehension contains multi-

ple generators and member filters, we use following decomposition steps to

decompose a view v defined by a comprehension [x|G1; . . . ; Gr; M1; ...; Ms; C1;

...; Ct] into a sequence of SIQL comprehensions:

v1 = [x|G1; . . . ; Gr; C1; ...; Ct]

v2 = [p|p← v1; M1]

v3 = [p|p← v2; M2]

. . .

v = [p|p← vs; Ms]

To illustrate the whole decomposition process for a comprehension, suppose

that the view v is defined by the comprehension [{x,z}| {x,y} ← D1;z ←

(D2 ++ D3);member (D4 −− D5) z; not (member D6 {y,z}); x>z]. This view

definition is decomposed into following SIQL queries:

v1 = D2++ D3

v2 = [{x,y,z}|{x,y}← D1; z← v1; x>z]

v3 = D4−− D5

v4 = [{x,y,z}|{x,y,z}← v2; member v3 z]

v5 = [{x,y,z}|{x,y,z}← v4; not (member D6 {y,z})]

v = map (lambda {x,y,z}.{x,z}) v5

Decomposition rules for list expressions In IQLc, there may be list ex-

pressions which contain IQLc sub-queries. If the query is a list expression,

[e1, e2, ..., en], this may be a list containing only constants, such as [1,2,3,4], or

a list containing sub-queries as its items, such as [1,2,max [2,3,4], sum [3,4,5]].

In the former case, there is no need to decompose it. In the latter case, without

loss of generality, the general form of such a query is

[c1, ..., cr, e1, ..., es]

110

in which c1, ..., cr are constants and e1, ..., es are sub-queries. Note that, we do

not consider the order of items in a list in IQLc, i.e. lists here have the semantics

of bags. The above query can be expressed by the following ++ expression:

[c1, ..., cr] ++ [e1] ++ . . . ++ [es]

and each ei (1 ≤ i ≤ s) can then be further decomposed. For example, suppose

that the view v is defined by the query [1,2,max [2,3,4],sum [3,4,5]]. Then

v can be expressed by following SIQL queries:

v1 = max [2,3,4]

v2 = sum [3,4,5]

v3 = [1,2]

v4 = [v1]

v5 = [v2]

v = v3++ v4 ++ v5

Suppose a view v is defined by a list expression. If the list expression can be

transformed as above into a ++ expression, the problem of tracing v’s lineage or

of incrementally maintaining v is subsumed by considering the ++ expression. If

the list expression cannot be transformed into a ++ expression, then the list is

a list of constants; the lineage data will be the tracing data itself, and the view

cannot be updated. Thus, in the rest of this thesis, we do not consider the case

of list expressions for data lineage tracing or for incremental view maintenance.

5.2.3 An Example of Schema Transformations

Consider two relational schemas SS and GS. SS is a source schema containing two

relations mathematician(emp id, salary) and compScientist(emp id, salary). GS

is the target schema containing two relations person(emp id, salary, dept) and

111

department(deptName, avgDeptSalary).

By the definition of our simple relational model, SS has a set of Rel constructs

Rel1 and a set of Att constructs Att1, while GS has a set of Rel constructs Rel2

and a set of Att constructs Att2, where:

Rel1 = {〈〈mathematician〉〉, 〈〈compScientist〉〉}

Att1 = {〈〈mathematician, emp id〉〉, 〈〈mathematician, salary〉〉

〈〈compScientist, emp id〉〉, 〈〈compScientist, salary〉〉}

Rel2 = {〈〈person〉〉, 〈〈department〉〉}

Att2 = {〈〈person, emp id〉〉, 〈〈person, salary〉〉, 〈〈person, dept〉〉

〈〈department, deptName〉〉, 〈〈department, avgDeptSalary〉〉}

Schema SS can be transformed to GS by the sequence of primitive schema

transformations given below. The first seven transformation steps create the

constructs of GS which do not exist in SS. The query in each step gives the

extension of the new schema construct in terms of the extents of the existing

schema constructs. The last six steps then delete the redundant constructs of

SS. The query in each of these steps shows how the extension of each deleted

construct can be reconstructed from the remaining schema constructs:

(1) addRel (〈〈person〉〉, 〈〈mathematician〉〉++ 〈〈compScientist〉〉);

(2) addAtt (〈〈person, emp id〉〉, 〈〈mathematician, emp id〉〉++ 〈〈compScientist, emp id〉〉);

(3) addAtt (〈〈person, salary〉〉, 〈〈mathematician, salary〉〉++ 〈〈compScientist, salary〉〉);

(4) addAtt (〈〈person, dept〉〉, [{x, ′Maths′}|x← 〈〈mathematician〉〉]++

[{x, ′CompSci′}|x← 〈〈compScientist〉〉]);

(5) addRel (〈〈department〉〉, [′Maths′,′ CompSci′]);

(6) addAtt (〈〈department, deptName〉〉, [{′Maths′,′ Maths′}, {′CompSci′,′ CompSci′}]);

(7) addAtt (〈〈department, avgDeptSalary〉〉,

gc avg [{′Maths′, s}|{x, s} ← 〈〈mathematician, salary〉〉]++

gc avg [{′Maths′, s}|{x, s} ← 〈〈mathematician, salary〉〉]);

112

(8) delAtt (〈〈mathematician, salary〉〉, [{x, s}|{x, s} ← 〈〈person, salary〉〉;

{x′, d} ← 〈〈person, dept〉〉; d = ′Maths′;x = x′]);

(9) delAtt (〈〈mathematician, emp id〉〉, [{x, id}|{x, id} ← 〈〈person, emp id〉〉;

{x′, d} ← 〈〈person, dept〉〉; d = ′Maths′;x = x′]);

(10) delRel (〈〈mathematician〉〉, [x|{x, d} ← 〈〈person, dept〉〉; d = ′Maths′]);

(11) delAtt (〈〈compScientist, salary〉〉, [{x, s}|{x, s} ← 〈〈person, salary〉〉;

{x′, d} ← 〈〈person, dept〉〉; d = ′CompSci′;x = x′]);

(12) delAtt (〈〈compScientist, emp id〉〉, [{x, id}|{x, id} ← 〈〈person, emp id〉〉;

{x′, d} ← 〈〈person, dept〉〉; d = ′CompSci′;x = x′]);

(13) delRel (〈〈compScientist〉〉, [x|{x, d} ← 〈〈person, dept〉〉; d = ′CompSci′]);

IQLc queries are automatically broken down by our data lineage tracing soft-

ware into a sequence of add or delete transformations with SIQL queries within

them. The decomposition procedure undertakes a depth-first search of the query

tree and generates the sequence of transformations from the bottom up. For

example, the following decompositions would be equivalent to steps (4) and (7)

above, with (4.1) ∼ (4.5) replacing step (4) and (7.1) ∼ (7.9) replacing step2:

(4.1) addAtt ($Query_4_1, [{x, ′Maths′}|x← 〈〈mathematician〉〉]);

(4.2) addAtt ($Query_4_2, [{x, ′CompSci′}|x← 〈〈compScientist〉〉]);

(4.3) addAtt (〈〈person, dept〉〉, $Query_4_1++ $Query_4_2);

(4.4) delAtt ($Query_4_2, [{x, ′CompSci′}|x← 〈〈compScientist〉〉]);

(4.5) delAtt ($Query_4_1, [{x, ′Maths′}|x← 〈〈mathematician〉〉]);

2Note that, the intermediate construct names $Query i j are automatically generated by
our IQLc decomposition algorithms

113

(7.1) addRel ($Query_7_1,

map (lambda {x, s}.{′Maths′, s}) 〈〈mathematician, salary〉〉);

(7.2) addRel ($Query_7_2, gc avg $Query_7_1);

(7.3) addRel ($Query_7_3,

map (lambda {x, s}.{′CompSci′, s}) 〈〈compScientist, salary〉〉);

(7.4) addRel ($Query_7_4, gc avg $Query_7_3);

(7.5) addAtt (〈〈department, avgDeptSalary〉〉, $Query_7_2++ $Query_7_4);

(7.6) delRel ($Query_7_4, gc avg $Query_7_3);

(7.7) delRel ($Query_7_3,

map (lambda {x, s}.{′CompSci′, s}) 〈〈compScientist, salary〉〉);

(7.8) delRel ($Query_7_2, gc avg $Query_7_1);

(7.9) delRel ($Query_7_1,

map (lambda {x, s}.{′Maths′, s}) 〈〈mathematician, salary〉〉);

5.3 Data Lineage Definitions

We consider both affect-provenance and origin-provenance in our treatment of the

data lineage tracing problem. What we regard as affect-provenance includes all of

the source data that had some influence on the tracing data. Origin-provenance

is simpler because here we are only interested in the specific data in the sources

from which the tracing data is extracted. In particular, we use the notions of

maximal witness and minimal witness from [BKT01] to define the notions of

affect-pool and origin-pool , respectively, in Definitions 1 and 2 below, and we use

a condition from [CWW00] to guarantee that there are no redundant elements in

the computed lineage data.

In both these definitions, v = q(D) is a view over a set of bags D defined by

the query q and t ∈ v is a tracing tuple. Condition (a) states that the result of

114

applying query q to the lineage data must be the bag consisting of all copies of t

in the view v. Condition (b) is used to enforce the maximizing and minimizing

properties, respectively. Thus, the affect-pool includes all elements in the data

sources which could generate t by applying q to them; conversely, if any element

and all of its copies in the origin-pool was deleted, then t or all of t’s copies in v

could not be generated by applying the query q to the lineage data. Condition (c)

guarantees that there are no redundant elements in the computed lineage data.

Condition (d) in Definition 2 ensures that if the origin-pool of the tracing tuple t

in the source bag Di is Top
i , then for any tuple in Di, either all of the copies of the

tuple are in T
op
i or none of them are in T

op
i .

Note that, both the definitions apply to tracing data lineage for a single SIQL

query. For a view created by a sequence of SIQL queries, we have additional data

lineage definitions which we give in Section 5.5.1 below.

Definition 1 (Affect-pool for a SIQL query) Let q be any SIQL query over

bags D1, . . . , Dm, and let v = q(D1, . . . , Dm) be the bag that results from applying

q to D1, . . . , Dm. Given a tracing tuple t ∈ v, we define t’s affect-pool in D1, . . . ,

Dm according to q, qAP
〈D1,...,Dm〉

(t), to be the sequence of bags 〈Tap
1 , . . . , Tap

m 〉, where

T
ap
1 , . . . , Tap

m are maximal sub-bags of D1, . . . , Dm such that:

(a) q(Tap
1 , . . . , Tap

m) = [x|x← v; x = t]

(b) ∀T′1 ⊆ D1, ..., T
′
m ⊆ Dm: q(T′1, . . . , T′m) = [x|x← v; x = t]

⇒ T′1 ⊆ T
ap
1 , ..., T′m ⊆ T

ap
m

(c) ∀Tap
i : ∀t∗ ∈ T

ap
i : q(Tap

1 , . . . , [x|x← T
ap
i ; x = t∗], . . . , Tap

m) 6= Ø

We say that qAP

Di

(t) = T
ap
i is t’s affect-pool in Di.

115

Definition 2 (Origin-pool for a SIQL query) Let q, D1, . . . , Dm, t, v and q

be as above. We define t’s origin-pool in D1, . . . , Dm according to q, qOP
〈D1,...,Dm〉

(t),

to be the sequence of bags 〈Top
1 , . . . , Top

m〉, where Top
1 , . . . , Top

m are minimal sub-bags

of D1, . . . , Dm such that:

(a) q(Top
1 , . . . , Top

m) = [x|x← v; x = t]

(b) ∀Top
i : ∀t∗ ∈ T

op
i : q(Top

1 , . . . , [x|x← T
op
i ; x 6= t∗], . . . , Top

m) 6= [x|x← v; x = t]

(c) ∀Top
i : ∀t∗ ∈ T

op
i : q(Top

1 , . . . , [x|x← T
op
i ; x = t∗], . . . , Top

m) 6= Ø

(d) ∀Top
i : ∀t∗ ∈ T

op
i : t∗ /∈ (Di−−T

op
i)

We say that qOP

Di

(t) = T
op
i is t’s origin-pool in Di.

Proposition 1. Suppose that the affect-pool and origin-pool of a tracing tuple

t is the sequence of bags 〈Tap
1 , . . . , Tap

m 〉 and the sequence of bags 〈Top
1 , . . . , Top

m〉,

respectively, then each bag T
op
i is a sub-bag of Tap

i .

The condition (b) in Definition 1 ensures that, for any sequence of bags 〈T′1,

. . . , T′m〉, if q(Top
1 , . . . , Top

m) = [x|x ← v; x = t], then each bag T′i is a sub-bag of

T
ap
i . Thus, from condition (a) in Definition 2, each bag T

op
i is a sub-bag of Tap

i .

5.4 Data Lineage Tracing Formulae

Following on from the above definitions of data lineage and the definition of SIQL

queries in Section 5.2, we now specify the affect-pool and origin-pool for SIQL

queries. As in [CWW00], we use derivation tracing queries to evaluate the lineage

of a tuple t or a set of tuples T with respect to a set of bags D. That is, we apply

a query to D and the result is the derivation of t (or T) in D. We call such a

query the tracing query for t (or T) on D, denoted as TQD(t) (or TQD(T)).

116

Theorem 1 (Affect-pool and Origin-pool for a tuple with SIQL queries).

Let v = q(D) be the bag that results from applying a SIQL query q to a sequence

of bags D. Then, for any tuple t ∈ v, the tracing queries TQAP
D

(t) below give the

affect-pool of t in D, and the tracing queries TQOP
D

(t) give the origin-pool of t in

D:

t1: q = D1 ++ . . . ++ Dn (D = 〈D1, . . . , Dn〉)

TQAP
D

(t) = TQOP
D

(t) = 〈[x|x← D1; x = t], . . . , [x|x← Dn; x = t]〉

t2: q = D1 −− D2 (D = 〈D1, D2〉)

TQAP
D

(t) = 〈[x|x← D1; x = t], D2〉

TQOP
D

(t) = 〈[x|x← D1; x = t], [x|x← D2; x = t]〉

t3: q = group D (D = 〈D〉)

TQAP
D

(t) = TQOP
D

(t) = [x|x← D; (first x) = (first t)]

t4: q = sort D/ distinct D (D = 〈D〉)

TQAP
D

(t) = TQOP
D

(t) = [x|x← D; x = t]

t5: q = max D / min D (D = 〈D〉)

TQAP
D

(t) = D

TQOP
D

(t) = [x|x← D; x = t]

t6: q = sum D (D = 〈D〉)

TQAP
D

(t) = D

TQOP
D

(t) = [x|x← D; x 6= 0]

t7: q = count D / avg D (D = 〈D〉)

TQAP
D

(t) = TQOP
D

(t) = D

t8: q = gc max D / gc min D (D = 〈D〉)

TQAP
D

(t) = [x|x← D; (first x) = (first t)]

TQOP
D

(t) = [x|x← D; x = t]

t9: q = gc sum D (D = 〈D〉)

TQAP
D

(t) = [x|x← D; (first x) = (first t)]

TQOP
D

(t) = [x|x← D; (first x) = (first t); (second x) 6= 0]

117

t10: q = gc count D / gc avg D (D = 〈D〉)

TQAP
D

(t) = TQOP
D

(t) = [x|x← D; (first x) = (first t)]

t11: q = [x|x1 ← D1; . . . ; xn ← Dn; C1; ...; Ck] (D = 〈D1, . . . , Dn〉)

TQAP
D

(t) = TQOP
D

(t) = 〈[x1|x1 ← D1; x1 = ((lambda x.x1) t)], . . . ,

[xn|xn ← Dn; xn = ((lambda x.xn) t)]〉

t12: q = [x|x← D1; member D2 y] (D = 〈D1, D2〉)

TQAP
D

(t) = TQOP
D

(t) = 〈[x|x← D1; x = t], [y|y← D2; y = ((lambda x.y) t)]〉

t13: q = [x|x← D1; not (member D2 y)] (D = 〈D1, D2〉)

TQAP
D

(t) = 〈[x|x← D1; x = t], D2〉

TQOP
D

(t) = 〈[x|x← D1; x = t],Ø〉

t14: q = map (lambda p1.p2) D (D = 〈D〉)

TQAP
D

(t) = TQOP
D

(t) = [p1|p1 ← D; p2 = t]

We note that general IQLc queries are allowed in the tracing queries. Appendix

A gives the proof that the results of queries TQAP
D

(t) and TQOP
D

(t) in Theorem 1

satisfy Definition 1 and 2 respectively.

Theorem 2 (Affect-pool and Origin-pool for a set of tuples with SIQL

queries). Let v = q(D) be the bag that results from applying a SIQL query q

to a sequence of bags D. Then, for a set of tuples T ⊆ v (T 6= Ø), the tracing

queries TQAP
D

(T) below give the affect-pool of T in D, and the tracing queries

TQOP
D

(T) give the origin-pool of T in D:

T1: q = D1 ++ . . . ++ Dn (D = 〈D1, . . . , Dn〉)

TQAP
D

(T) = TQOP
D

(T) = 〈[x|x← D1; member T x], . . . ,

[x|x← Dn; member T x]〉

T2: q = D1 −− D2 (D = 〈D1, D2〉)

TQAP
D

(T) = 〈[x|x← D1; member T x], D2〉

TQOP
D

(T) = 〈[x|x← D1; member T x], [x|x← D2; member T x]〉

118

T3: q = group D (D = 〈D〉)

TQAP
D

(T) = TQOP
D

(T)

= [x|x← D; member [(first y)|y← T] (first x)]

T4: q = sort D/ distinct D (D = 〈D〉)

TQAP
D

(T) = TQOP
D

(T) = [x|x← D; member T x]

T5: q = f D (D = 〈D〉)

N/A /* The tracing data cannot be a set of tuples */

T6: q = gc max D / gc min D (D = 〈D〉)

TQAP
D

(T) = [x|x← D; member [(first y)|y← T] (first x)]

TQOP
D

(T) = [x|x← D; member T x]

T7: q = gc sum D (D = 〈D〉)

TQAP
D

(T) = [x|x← D; member [(first y)|y← T] (first x)]

TQOP
D

(T) = [x|x← D; member [(first y)|y← T] (first x);

(second x) 6= 0]

T8: q = gc count D / gc avg D (D = 〈D〉)

TQAP
D

(T) = TQOP
D

(T)

= [x|x← D; member [(first y)|y← T] (first x)]

T9: q = [x|x1 ← D1; . . . ; xn ← Dn; C1; ...; Ck] (D = 〈D1, . . . , Dn〉)

TQAP
D

(T) = TQOP
D

(T) =

〈[x1|x1 ← D1; member (map (lambda x.x1) T) x1], . . . ,

[xn|xn ← Dn; member (map (lambda x.xn) T) xn]〉

T10: q = [x|x← D1; member D2 y] (D = 〈D1, D2〉)

TQAP
D

(T) = TQOP
D

(T) = 〈[x|x← D1; member T x],

[y|y← D2; member (map (lambda x.y) T) y]〉

T11: q = [x|x← D1; not (member D2 y)] (D = 〈D1, D2〉)

TQAP
D

(T) = 〈[x|x← D1; member T x], D2〉

TQOP
D

(T) = 〈[x|x← D1; member T x],Ø〉

119

T12: q = map (lambda p1.p2) D (D = 〈D〉)

TQAP
D

(T) = TQOP
D

(T) = [p1|p1 ← D; member T p2]

The proof of Theorem 2 is similar to Theorem 1. Note that, if the tracing set

T is empty, we assume that T ’s lineage data is empty as well.

5.5 Data Lineage Tracing Algorithm

Section 5.4 presented formulae for obtaining tracing queries from SIQL queries.

This section gives an algorithm for tracing the lineage data of data in a ma-

terialised view that has been defined by a transformation pathway from a data

source schema. For simplicity of exposition, we assume that all of the data source

schemas have first been integrated into a single schema S consisting of the union

of the constructs of the individual source schemas, with appropriate renaming of

schema constructs to avoid duplicate names.

The DLT algorithm described in this section assumes that all intermediate

transformation steps are materialised, i.e. the constructs created by add transfor-

mation steps are materialised. DLT algorithms for more general transformation

pathways will be discussed in Chapter 6.

In general, intermediate constructs created during the IQLc to SIQL decompo-

sition by an add transformation do not remain in the materialised global schema

as they are removed by a delete transformation in the transformation steps after

the add transformation. In order to materialise these intermediate constructs, we

remove the transformations which delete these intermediate constructs so as to

leave them in the materialised global schema.

120

5.5.1 Tracing Data Lineage through Transformation Path-

ways

Suppose an integrated schema GS has been derived from a source schema S though

a transformation pathway TP = tp1, . . . , tpr. Regarding each transformation step

as a function applied to S, GS can be obtained as GS = tp1 ◦ tp2 ◦ . . . ◦ tpr(S) =

tpr(. . . (tp2(tp1(S))) . . .). Thus, tracing the lineage of data in GS requires tracing

data lineage via a query-sequence, defined as follows:

Definition 3 (Affect-pool for a query-sequence) Let Q = q1, q2, . . . , qr be

a query-sequence over a sequence of bags D, and let v = Q(D) = q1◦q2◦. . .◦qr(D)

be the bag that results from applying Q to D. Given a tracing tuple t ∈ v, we

define t’s affect-pool in D according to Q, QAP
D

(t), to be Dap, where Dap
i = qAP

i (Dap
i+1)

(1 ≤ i ≤ r), Dap
i+1 = {t} and Dap = Dap

1 .

Definition 4 (Origin-pool for query-sequence) Let Q, D, v and t be as

above. We define t’s origin-pool in D according to Q, QOP
D

(t), to be Dop, where

Dop
i = qOP

i (Dop
i+1) (1 ≤ i ≤ r), Dop

i+1 = {t} and Dop = Dop
1 .

Definitions 3 and 4 state that the derivations of data in an integrated schema

GS can be derived by examining the transformation pathways from the source

schema S to GS in reverse, step by step.

An AutoMed transformation pathway consists of a sequence of primitive trans-

formations which generate the integrated schema from the given source schemas.

The schema constructs are generally different for different modelling languages.

When considering data lineage tracing, we are only concerned with structural con-

structs associated with a data extent e.g. Node and Edge constructs in the HDM,

Rel and Att constructs in the simple relational data model, and Element, Attribute

121

and NestSet constructs in the simple XML data model. Thus, for data lineage

tracing, we ignore primitive schema transformation steps which are adding, delet-

ing or renaming only constraints. Moreover, we treat any primitive transforma-

tion which is adding a construct to a schema as a generic addT transformation,

any primitive transformation which is deleting a construct from a schema as a

generic delT transformation, and any primitive transformation which is renaming

a schema construct as a generic renameT transformation. We can summarise the

problem of data lineage for each of these transformations as follows3:

(a) For an addT(c, q) transformation, the lineage of data in the extent of schema

construct c is located in the extents of the schema constructs appearing in

the query q.

(b) For a renameT(c’, c) transformation, the lineage of data in the extent of

schema construct c is located in the extent of schema construct c’.

(c) All delT(c, q) transformations can be ignored since they create no schema

constructs.

5.5.2 Algorithms for Tracing Data Lineage

In our algorithms below, we assume that each schema construct, c, in any schema

along the pathway S→ GS has two attributes: relateTP is the transformation step

that created c, and extent is the current extent of c. If a schema construct remains

in the global schema GS directly from the source schema S, its relateTP value is

empty.

In our algorithms, each transformation step tp has four attributes:

• action, which is “add”, “ren” or “del”;

3The cases of extend and contract transformations will be considered later in Chapter 6.

122

• query, which is the query used in this transformation step (if any);

• source, which for a renameT(c’, c) returns just c’, and for an addT(c, q)

returns a sequence of all the schema constructs appearing in q; and

• result which is c for both renameT(c’, c) and addT(c, q).

In case (b) discussed above, where the construct c was defined by a transfor-

mation step renameT(c’,c), the lineage data in c’ of a bag of tracing tuples T

in the extent of c is just T itself, and we define this to be both the affect-pool

and the origin-pool of T in c’.

In case (a), where the construct c was created by a transformation step

addT(c, q), the key point is how to trace the lineage using the query q. We

can use the formulae of Theorem 1 to obtain the lineage of data created in this

case. The procedures affectPoolOfTuple(t, c) and originPoolOfTuple(t, c) in Figure

5.1 below can be applied to trace the affect pool and origin pool of a tuple t in the

extent of schema construct c. The result of these procedures, DL, is a sequence

of pairs

〈{dl1, c1}, . . . , {dln, cn}〉

in which each dli is a bag which contains t’s derivation within the extent of

schema construct ci. Note that in these procedures, the sequence D∗ returned

by the tracing queries TQAP and TQOP may consist of bags from different schema

constructs. For any such bag, B, B.construct denotes the schema construct from

whose extent B originates.

Similarly, by Theorem 2, two procedures affectPoolOfSet(T, c) and origin-

PoolOfSet(T, c) can then be used to compute the derivations of a set of tracing

tuples T . Since duplicate tuples have an identical derivation, we eliminate any

duplicate items and convert the tracing bag to a tracing set first. The procedure

123

proc affectPoolOfTuple(t, c)

input : a tracing tuple t in the extent of construct c

output : t’s affect-pool, DL

begin

D = [{O.extent, O} | O← c.relateTP.source]

D∗ = TQAP
D (t);

DL = [{B, B.construct} | B← D∗]

return DL;

end

proc originPoolOfTuple(t, c)

input : a tracing tuple t in the extent of construct c

output : t’s origin-pool, DL

begin

D = [{O.extent, O} | O← c.relateTP.source]

D∗ = TQOP
D (t);

DL = [{B, B.construct} | B← D∗]

return DL;

end

Figure 5.1: Procedures affectPoolOfTuple and originPoolOfTuple

124

affectPoolOfSet(T, c) is illustrated in Figure 5.2. The procedure originPoolOf-

Set(T, c) is identical, with TQAP
D (T) replacing TQOP

D (T).

proc affectPoolOfSet(T, c)

input : a tracing tuple set T contained in construct c

output : T ’s affect-pool, DL

begin

D = [{O.extent, O} | O← c.relateTP.source]

D∗ = TQAP
D (T);

DL = [{B, B.construct} | B← D∗]

return DL;

end

Figure 5.2: Procedure affectPoolOfSet

The algorithms affectPoolOfTuple and affectPoolOfSet, as well as originPoolOf-

Tuple and originPoolOfSet, are correct in the sense that the affect-pool and origin-

pool obtained by them conform to the definitions of affect-pool and origin-pool

for a SIQL query in Section 5.3. This is because they use the DLT formulae in

Section 5.4 to compute the lineage data.

Finally, we give below our algorithm traceAffectPool(B, c) in Figure 5.3 for

tracing affect lineage using entire transformation pathways given the integrated

schema GS, the source schema S, and a transformation pathway tp1, . . . , tpr from

S to GS. Here, B is a bag of tuples contained in the extent of a schema construct

c ∈ GS. We recall that each schema construct has attributes relateTP and extent,

and that each transformation step has attributes action, query, source and result.

The algorithm examines each transformation step from tpr down to tp1. If it

is a delete step, we ignore it. Otherwise we determine if the result of this step is

contained in the current DL. If so, we then trace the data lineage of the current

125

data of c in DL, merge the result into DL, and delete c from DL. Because a tuple

t∗ can be the lineage of both ti and tj (i 6= j), if t∗ and all of its copies in a data

source have already been added to DL as the lineage of ti, we do not add them

again into DL as the lineage of tj. This is accomplished by the procedure merge

given in Figure 5.4 below, where the operator ′′−′′ removes an element from a

sequence and the operator ′′+′′ appends an element to a sequence. At the end of

this processing the resulting DL is the lineage of B in the data sources.

The procedure traceAffectPool is correct in the sense that the affect-pool ob-

tained by it conforms to the definitions of affect-pool for a query-sequence in

Section 5.5.1. This is because this procedure calls affectPoolOfSet to compute the

lineage data based on one add transformation step, and obtains the final lineage

data after checking all add transformations along a transformation pathway in

reverse.

The exact complexity of the overall DLT process is O(n×m) where n is the

number of add transformations relevant to the tracing data in the transformation

pathway and m is the number of different schema constructs in the computed

lineage data. By relevant to the tracing data, we mean those transformation

steps from the data sources which directly or indirectly create the global schema

construct containing the tracing data. The complexity is O(n × m) because

for each add transformation step relevant to the tracing data, the DLT process

is performed once for each different schema construct present in the computed

lineage data.

We illustrate the use of the traceAffectPool procedure above by means of a

simple example. Referring back to the example schema transformation in Sec-

tion 5.2.3, suppose we have a tracing tuple t = {′Maths′, 2500} in the extent of

〈〈department, avgDeptSalary〉〉 in GS. The affect-pool, DL, of this tuple is traced as

follows.

126

proc traceAffectPool(B, c)

input : tracing tuple bag B contained in construct c;

transformation pathway tp1, . . . , tpr

output : B’s affect-pool, DL

begin

DL = 〈{B, c}〉;

for j = r downto 1 do {

case (tpj .action = “del”)

continue;

case (tpj .action = “ren”)

if (tpj.result = ci for some ci in DL) then

DL = (DL − {dli, ci}) + {dli, tpj .source};

case (tj .action = “add”)

if (tpj.result = ci for some ci in DL) then {

DL = DL − {dli, ci};

dli = distinct dli;

DL = merge(DL, affectPoolOfSet(dli, ci)); }

}

return DL;

end

Figure 5.3: Procedure traceAffectPool

Initially, DL = 〈{{′Maths′, 2500}, 〈〈department, avgDeptSalary〉〉}〉. traceAffectPool

ignores all the delete steps, and finds the add transformation step whose result is

′′〈〈department, avgDeptSalary〉〉′′. This is step (7.5), tp(7.5), and:

tp(7.5).query = 〈〈avgMathsSalary〉〉++ 〈〈avgCompSciSalary〉〉 and

tp(7.5).source = [〈〈avgMathsSalary〉〉, 〈〈avgCompSciSalary〉〉]

Using algorithm affectPoolOfSet, t’s lineage at tp(7.5) is as follows:

127

proc merge(DL, DLnew)

input : data lineage sequence DL = 〈{dl1, c1}, . . . , {dln, cn}〉;

new data lineage sequenceDLnew

output : merged data lineage sequence DL

begin

for each {dlnew, cnew} ∈ DLnew do {

if (cnew = ci for some ci in DL) then {

oldData = dli;

newData = oldData++

[x | x← dlnew; not (member oldData x)];

DL = (DL − {oldData, ci}) + {newData, ci};

}

else

DL = DL + {dlnew, cnew};

}

return DL;

end

Figure 5.4: Procedure merge

DL(7.5) = 〈{[x|x← 〈〈avgMathsSalary〉〉; x = {′Maths′, 2500}], 〈〈avgMathsSalary〉〉},

{[x|x← 〈〈avgCompSciSalary〉〉; x = {′Maths′, 2500}], 〈〈avgCompSciSalary〉〉}〉

= 〈{{′Maths′, 2500}, 〈〈avgMathsSalary〉〉}, {Ø, 〈〈avgCompSciSalary〉〉}〉

= 〈{{′Maths′, 2500}, 〈〈avgMathsSalary〉〉}〉

After removing {{′Maths′, 2500}, 〈〈department, avgDeptSalary〉〉}, the original tu-

ple, and merging its lineage DL(7.5), we obtain the updated lineage data as 〈{{′Maths′,

2500}, 〈〈avgMathsSalary〉〉}〉. Similarly, we obtain the data lineage relating to this

128

DL. Thus, DL(7.2) is all of the tuples in 〈〈mathsSalary〉〉 and DL(7.1) is all of the tu-

ples in 〈〈mathematician, salary〉〉, where construct 〈〈mathematician, salary〉〉 is a base

collection in SS.

We conclude that the affect-pool of tuple {′Maths′, 2500} in the extent of

〈〈department, avgDeptSalary〉〉 in GS consists of all of the tuples in the extent of

〈〈mathematician, salary〉〉 in SS.

Procedure traceOriginPool(B, c) is similar, obtained by replacing affectPoolOf-

Set by originPoolOfSet.

Note that we have not implemented these DLT algorithms which assume fully

materialised transformation pathways. In Chapter 6, we develop a generalised

DLT algorithm for general transformation pathways where intermediate schema

constructs may or may not be materialised. The implementation of this gener-

alised DLT algorithm is discussed in Appendix C.

5.6 IQLc to SIQL Decomposition Order

With the decomposition rules described in 5.2.2, we decompose a general IQLc

query into a sequence of SIQL queries by means of a depth-first traversal of the

IQLc query tree. However, does the traversal order affect the process of tracing

data lineage, i.e. would we get the same lineage data irrespective of the order

of decomposition? In this section, we investigate the problem of decomposition

order and conclude that the order of traversing an IQLc query tree does not affect

the result of our DLT process.

Firstly, if an IQLc query is a list of constants, i.e. [c1, c2, . . . , cn], there is

no traversal order problem. We next discuss the situation of a query having

arguments.

If a query is an 1-argument IQLc query, just one order of traversing the query

129

is available. If the one sub-query has no traversal order problem, the main query

will not have the traversal order problem.

If a query is a 2-argument IQLc query, i.e. E1 −− E2, there may be two sub-

queries in the main query and two orders of traversing the query, e.g.

v1 = E1

v2 = E2

v = v1−− v2

and

v1 = E2

v2 = E1

v = v2−− v1

However, there is no traversal order problem since the DLT formulae for each

data source in the −− expression are independent of each other.

If a query is a n-argument IQLc query, such as an ++ expression, since the

places of its arguments are exchangeable, there are various orders of traversing the

query. However, again the DLT formulae for each data source in a ++ expression

are independent of each other. Thus, the order of traversal does not affect the

result of tracing lineage data in the data sources.

Otherwise, if the n-argument IQLc query is a comprehension, we consider the

following three cases.

- One, the comprehension is not a select-join comprehension and has to be trans-

formed into a select-join comprehension. There is no traversal order prob-

lem in this transformation since we use a map expression to achieve this

transformation.

- Two, the select-join comprehension does not contain member filters. In this

case, similar to the situation of ++ expressions, the DLT formulae for each

data source in the comprehension are independent of each other and there

is no traversal order problem;

130

- Three, the select-join comprehension contains member filters. On the one hand,

if the select-join comprehension contains just one generator and member

filter, similar to the situation of −− expressions, the DLT formulae for each

data source are independent of each other and there is no traversal problem.

On the other hand, if the select-join comprehension contains multiple gener-

ators and member filters, [p|G1; G2; ...; Gr; M1; ...; Ms; C1; . . . ; Ct], according to

the decomposition rules in Section 5.2.2, this comprehension is decomposed

into following SIQL comprehensions:

v1 = [p|G1; . . . ; Gr; C1; ...; Ct]

v2 = [p|p← v1; M1]

v3 = [p|p← v2; M2]

. . .

vs = [p|p← vs−1; Ms−1]

v = [p|p← vs; Ms]

Although the order of traversing the member filters such as M1, ..., Ms could

be changed, according to the DLT formulae in Section 5.4, the obtained

lineage data in all the intermediate views v1, ..., vs is the tracing tuple t

itself while the obtained lineage data for each member filter Mi is a lambda

expression over the tracing tuple t. Both of these cannot be affected by the

traversal order. Furthermore, each individual view v, v1, ..., vs is a select-join

comprehension either with only one generator and member filter, or without

any member filters, and which therefore has no traversal order problem.

In summary, the order of traversing an IQLc query tree does not affect the

result of our DLT process.

131

5.7 Ambiguity of Lineage Data

The ambiguity of lineage data, also called derivation inequivalence [CWW00],

relates to the fact that for queries which are equivalent but different syntactically

DLT processes may obtain different lineage data for identical tracing data. This

section investigates how this problem may happen in our context. Two queries

are equivalent if they give identical results for all possible values of their base

collections. That is, given two queries q1 and q2 both referring to base collections

b1, ..., bn, q1 and q2 are equivalent if q1[b1/I1, ..., bn/In] = q2[b1/I1, ..., bn/In] is

true for all instances I1, ..., In of b1, ..., bn respectively. We use v1 ≡ v2 to denote

that views v1 and v2 are defined by equivalent queries.

5.7.1 Derivation for difference and not member Operations

Ambiguity of lineage data may happen when difference (i.e. −− in IQLc) and not

member operations are involved in the view definitions.

For example, consider two bags R = [0, 1, 1, 2, 3], S = [−1, 1, 2, 3, 3]. Two pairs

of equivalent views, v1 ≡ v2 and v3 ≡ v4, are defined as follows.

v1 = R−− (R −− S) = [1, 2, 3]

v2 = S−− (S −− R) = [1, 2, 3]

v3 = [x|x← R; member S x] = [1, 1, 2, 3]

v4 = [x|x← R; not (member [y|y← R; not (member S y)] x)] = [1, 1, 2, 3]

The lineage of data in an IQLc view can be traced by decomposing the view

into a sequence of intermediate SIQL views. In order to trace the lineage of data

in the above four views, intermediate views are required as follows:

132

For v1, v1’ = (R−− S) = [0, 1].

For v2, v2’ = (S−− R) = [−1, 3].

For v3, no intermediate view needed.

For v4, v4’ = [y|y← R; not (member S y)] = [0].

With the above intermediate views, we can now trace the lineage of the views’

data. For example, the affect-pool of the data item t = 1 ∈ v1 and t = 1 ∈ v2 are

as follows. Here, we denote by D|dl the lineage data dl in the collection D, i.e. all

instances of the tuple dl in the bag D (the result of the query [x|x← D; x = dl]).

APv1(t)
t2
= 〈R|[x|x← R; x = 1], R −− S〉

= 〈R|[1, 1], v1’〉

T2
= 〈R|[1, 1], R|[x|x← R; member v1’ x], S〉

= 〈R|[1, 1], R|[x|x← R; member [0, 1] x], S〉

= 〈R|[1, 1], R|[0, 1, 1], S|[−1, 1, 2, 3, 3]〉

= 〈R|[0, 1, 1], S|[−1, 1, 2, 3, 3]〉

APv2(t)
t2
= 〈S|[x|x← S; x = 1], S −− R〉

= 〈S|[1], v2’〉

T2
= 〈S|[1], S|[x|x← S; member v2’ x], R〉

= 〈S|[1], S|[x|x← S; member [−1, 3] x], R〉

= 〈S|[1], S|[−1, 3, 3], R|[0, 1, 1, 2, 3]〉

= 〈R|[0, 1, 1, 2, 3], S|[−1, 1, 3, 3]〉

We can see that the affect-pool of identical tracing data in v1 and v2 are inequiv-

alent. The affect-pool of tuple t = 1 ∈ v3 and t = 1 ∈ v4 are:

133

APv3(t)
t12
= 〈R|[x|x← R; x = 1], S|[x|x← S; x = 1]〉

= 〈R|[1, 1], S|[1]〉

APv4(t)
t13
= 〈R|[x|x← R; x = 1], v4’〉

T13
= 〈R|[1, 1], R|[y|y← R; member v4’ y], S〉

= 〈R|[1, 1], R|[y|y← R; member [0] y], S〉

= 〈R|[1, 1], R|[0], S|[−1, 1, 2, 3, 3]〉

= 〈R|[0, 1, 1], S|[−1, 1, 2, 3, 3]〉

We can see that the affect-pool of above identical tracing data in v3 and v4 are

also inequivalent.

The reason for the inequivalent affect-pool of the data in views defined by

equivalent queries involving the −− and not member operators is the definition

of affect-pool. As described in Section 5.4, the affect-pool in a data source D2 in

queries of the form D1−− D2 or [x|x← D1; not (member D2 x)], includes all data

in D2. So the computed affect-pool in D2 may contain some “irrelevant” data

which does not affect the existence of the tracing data in the view.

For example, if the tracing data is t = 1 in the view R −− S, the irrelevant

data in S are [−1, 2, 3, 3], which are also included in t’s affect-pool.

Although origin-pool is defined to contain the minimal essential lineage data

in a data source, ambiguity of lineage data may also occur for tracing origin-pool.

For example, in the case of the above four views, the origin-pool of the tracing

data item t = 1 are also inequivalent (we use D|Ø to denote no lineage data in D):

OPv1(t)
t2
= 〈R|[x|x← R; x = 1], (R −− S)|[x|x← (R −− S); x = 1]〉

= 〈R|[1, 1], v1’|[x|x← [0, 1]; x = 1]〉

= 〈R|[1, 1], v1’|[1]〉

t2
= 〈R|[1, 1], R|[x|x← R; x = 1], S|[x|x← S; x = 1]〉

= 〈R|[1, 1], R|[1, 1], S|[1]〉

= 〈R|[1, 1], S|[1]〉

134

OPv2(t)
t2
= 〈S|[x|x← S; x = 1], (R −− S)|[x|x← (S −− R); x = 1]〉

= 〈S|[1], v2’|[x|x← [−1, 3]; x = 1]〉

= 〈S|[1], v2’|Ø〉

= 〈S|[1]〉

and

OPv3(t)
t12
= 〈R|[x|x← R; x = 1], S|[x|x← S; x = 1]〉

= 〈R|[1, 1], S|[1]〉

OPv4(t)
t13
= 〈R|[x|x← R; x = 1], v4’|Ø〉

= 〈R|[1, 1]〉

5.7.2 Derivation for Aggregate Functions

Ambiguity of lineage data may also happen when queries involve aggregate func-

tions. Suppose that bags R and S are the same as in Section 5.7.1. Consider DLT

processes over the following two pairs of equivalent views, v5 ≡ v6 and v7 ≡ v8:

v5 = sum R = 7

v6 = sum [x|x← R; x 6= 0] = 7

v7 = max S = [3, 3]

v8 = max [x|x← S; x > (min S)] = [3, 3]

The affect-pool of t = 7 ∈ v5 and t = 7 ∈ v6 are:

APv5(t)
t6
= 〈R〉 = 〈R|[0, 1, 1, 2, 3]〉

APv6(t)
t6
= 〈R|[x|x← R; x 6= 0]〉 = 〈R|[1, 1, 2, 3]〉

and the affect-pool of t = 3 ∈ v7 and t = 3 ∈ v8 are:

APv7(t)
t6
= 〈S〉 = 〈S|[−1, 1, 2, 3, 3]〉

APv8(t)
t6
= 〈S|[x|x← S; x > (min S)]〉 = 〈S|[1, 2, 3, 3]〉

We can see that the affect-pool of identical tracing data for these equivalent views

are inequivalent.

135

The reason for this ambiguity of affect-pool is that, according to the DLT

formulae of affect-pool in Section 5.4, the affect-pool of data in an aggregate view

includes all the data in the data source, which can bring irrelevant data into the

derivation. In above example, views v6 and v8 filter off some irrelevant data by

using predicate expressions, so that the computed affect-pool over the two views

does not contain this irrelevant data.

Such problems may be avoided in tracing the origin-pool, since the origin-pool

is defined to contain the minimal essential lineage data in the data sources, and

any data item and its duplicates in the origin-pool are non-redundant.

For example, the origin-pool of t = 7 ∈ v5 and t = 7 ∈ v6 are identical:

OPv5(t)
t6
= 〈R|[x|x← R; x 6= 0]〉 = 〈R|[1, 1, 2, 3]〉

OPv6(t)
t6
= 〈R|[x|x← [y|y← R; y 6= 0]; x 6= 0]〉 = 〈R|[1, 1, 2, 3]〉

and the origin-pool of t = 3 ∈ v7 and t = 3 ∈ v8 are also identical:

OPv7(t)
t5
= 〈S|[x|x← S; x = 3]〉 = 〈S|[3, 3]〉

OPv8(t)
t5
= 〈S|[x|x← [y|y← S; y > (min S)]; x = 3]〉 = 〈S|[3, 3]〉

However, the derivation inequivalence problem cannot always be avoided in

tracing the origin-pool. For example, suppose two equivalent views v9 ≡ v10 are

defined as follows:

v9 = sum S = 8

v10 = sum [x|x← S; not (member [x1|x1← S; x2← S; x1 = (−x2)] x)] = 8

In order to trace the origin-pool of v10’s data, the intermediate views for v10

are defined as follows:

v10’ = [x1|x1← S; x2← S; x1 = (−x2)] = [−1, 1]

v10’’ = [x|x← S; not (member v10’ x)] = [2, 3, 3]

v10 = sum v10’’ = 8

Then, the origin-pool of t = 8 ∈ v9 and t = 8 ∈ v10 are:

136

OPv9(t)
t6
= 〈S|[x|x← S; x 6= 0]〉

= 〈S|[−1, 1, 2, 3, 3]〉

OPv10(t)
t6
= 〈v10’’|[x|x← v10’’; x 6= 0]〉 = 〈v10’’|[2, 3, 3]〉

= 〈[x|x← S; not (member v10’ x)]|[2, 3, 3]〉

T11
= 〈S|[2, 3, 3], v10’|Ø〉

= 〈S|[2, 3, 3]〉

We can see that OPv9(t) 6= OPv10(t). This is because the view v10 is firstly

applying a select operation over the data source S, to eliminate data item d in S

and its inverse d−1, i.e. d + d−1 = 0.

5.7.3 Derivation for Where-Provenance

The problem of where-provenance is introduced in Buneman et al.’s work [BKT01].

In that paper, tracing the where-provenance of a tracing tuple consists of finding

the lineage of one component of the tuple, rather than the whole tuple. Also, the

where-provenance is not exact data, but rather a path for describing where the

lineage is. That paper describes that derivation inequivalence may happen when

tracing where-provenance.

Examples of where-provenance inequivalence 4

Suppose that w1 is a view over a relational table 〈〈Employee〉〉, where the extent

of 〈〈Employee〉〉 table is a list of 3-item tuples containing name, salary and bonus

information of employees. The definition of w1 is as follows:

w1 = [{name,salary}|{name,salary,bonus}← 〈〈Employee〉〉; salary = 1200]

If {′Tom′, 1200} is a tuple in w1 and the data 1200 in the tuple only comes from the

tuple {′Tom′, 1200, 1000} in the extent of 〈〈Employee〉〉, then the where-provenance

of 1200 is the path ′′〈〈Employee〉〉.{name : ′Tom′}.salary′′, which means that 1200

4The examples illustrated in this section are derived from [BKT01].

137

comes from the attribute salary in the relation 〈〈Employee〉〉 where the value of

the attribute name is ′Tom′.

However, if we consider the following view w2 over construct 〈〈Employee〉〉,

which is an equivalent view to w1,

w2 = [{name, 1200}|{name,salary,bonus}← 〈〈Employee〉〉; salary = 1200]

the where-provenance of 1200 in {′Tom′, 1200} is the query (view definition) itself,

since the value is directly appearing in the query expression.

Another example illustrating inequivalent where-provenance is as follows. Sup-

pose that w3 ≡ w4 where

w3 = [{id,ns}|{id,s,b,ns}← 〈〈D〉〉; s = b;s = ns]

w4 = [{id,ns}|{id,s,b,ns}← 〈〈D〉〉;

member [{id1,ns1}|{id1,s1,b1,ns1}← 〈〈D〉〉; s1 = b1] {id,ns};

s = ns]

In the case of w3, the attribute ns in the result view depends on attributes:

s, b and ns, in relational table 〈〈D〉〉. While in the case of w4, the attribute ns in

the result view depends on attributes: id, s, b and ns, in 〈〈D〉〉.

In our DLT approach, we only consider tracing the lineage data of an entire

tuple, which is termed why-provenance in [BKT01]. However, in AutoMed, each

extensional modelling construct of a high-level modelling language is specified as

an HDM node or edge and cannot be broken down further. For example, each

attribute in a relational table is a construct in the AutoMed relational schema.

In other words, in our DLT approach, not only the why-provenance but also

the where-provenance has been considered, when the AutoMed data modelling

technique is used for modelling data, e.g., using the simple relational data model.

In this sense, we deal with the problem of tracing where-provenance and why-

provenance simultaneously, so that the problem of inequivalent where-provenance

138

is avoided.

For example, by using the simple relational data model and SIQL queries, the

above four view definitions can be rewritten (denoted as ;) as follows. In the sim-

ple relational data model, constructs of the relational table 〈〈Employee〉〉 include:

〈〈Employee〉〉, 〈〈Employee, name〉〉, 〈〈Employee, salary〉〉 and 〈〈Employee, bonus〉〉; con-

structs of the table 〈〈D〉〉 include: 〈〈D〉〉, 〈〈D, id〉〉, 〈〈D, s,〉〉, 〈〈D, b〉〉 and 〈〈D, ns〉〉.

w1 ; w1’ = [{name,salary}|{name,salary}← 〈〈Employee, salary〉〉;

salary = 1200]

w2 ; w2’ = [{name,salary}|{name,salary}← 〈〈Employee, salary〉〉;

salary = 1200]

w2’’ = map (lambda {name,salary}.{name, 1200}) w2’

Obviously, w1’ and w2’ are identical, and w2’’ uses a lambda expression

replacing by the constant 1200 the salary values in the result of w2’. Here, we

cannot trace the lineage data of 1200 separately. If it is required to do that,

definitions of w1 and w2 can be rewritten as:

w1 ; w1a’ = [{name,salary}|{name,salary}← 〈〈Employee, salary〉〉;

salary = 1200]

w1a’’ = map (lambda {name,salary}.{salary}) w1a’

w2 ; w2a’ = [{name,salary}|{name,salary}← 〈〈Employee, salary〉〉;

salary = 1200]

w2a’’ = map (lambda {name,salary}.{1200}) w2a’

We can see that, although intermediate views w1a’’ and w2a’’ have the

same result in the current specific situation, they have different definitions. In

this sense, views w1 and w2 can be regarded as inequivalent and the problem of

derivation inequivalence does not arise for these two views. However, even we

admit that these two views are equivalent in the current situation, according to

the DLT formula t15 in Theorem 1, the lineage data of 1200 in w1a’’ and w2a’’

139

are obtained as follows:

w1a’|[{name,salary}|{name,salary}← w1a’; salary = 1200]

w2a’|[{name,salary}|{name,salary}← w2a’; 1200 = 1200]

Since views w1a’ and w2a’ are identical, 1200 over the two views have the same

lineage.

As to views w3 and w4, their definitions can be rewritten as follows:

w3 ; w3’ = [{id,s}|{id,s}← 〈〈D, s〉〉; member 〈〈D, b〉〉 {id,s}]

w3’’ = [{id,ns}|{id,ns}← 〈〈D, ns〉〉; member w3’ {id,ns}]

w4 ; w4’ = [{id,ns}|{id,ns}← 〈〈D, ns〉〉; member 〈〈D, s〉〉 {id,ns}]

w4’’ = [{id,s} |{id,s}← 〈〈D, s〉〉; member 〈〈D, b〉〉 {id,s}]

w4’’’ = [{id,ns}|{id,ns}← w4’; member w4’’ {id,ns}]

We can see that tuple {id,ns} in the two views have the same lineage coming

from 〈〈D, ns〉〉, 〈〈D, s〉〉 and 〈〈D, b〉〉 constructs.

5.7.4 Summary

This section has investigated when ambiguity of lineage data may happen in

our context — the problem may happen when tracing the lineage of the data in

views defined by IQLc queries involving −−, not member filters and aggregation

operations. In Cui et al’s work [CWW00], the definition of data lineage results

in the same problem of derivation inequivalence.

Ambiguity of lineage may also happen when tracing where-provenance. This

section has described how our DLT approach for tracing why-provenance can

also be used for tracing where-provenance, so as to reduce the chance of where-

provenance inequivalence occurring.

140

5.8 Discussion

This chapter has given the definitions of data lineage in the context of AutoMed,

which we have termed affect-pool and origin-pool. The affect-pool includes all of

the source data that had some influence on the tracing data, while the origin-pool

is the specific data in the data sources from which the tracing data is extracted.

We have introduced a subset of the full IQL query language, IQLc, which

incorporates the major relational and aggregation operators on collections; and

have used a subset of IQLc, SIQL, for our data lineage tracing algorithms. Any

IQLc query can be decomposed into a series of transformations with SIQL queries

on intermediate schema constructs. We have also discussed that the order of

traversing and decomposing an IQLc query does not affect the result of our DLT

process.

DLT formulae for SIQL queries and an algorithm for tracing data lineage

over AutoMed transformation pathways have also been presented in this chapter.

A limitation of this algorithm is that transformation pathways need to be fully

materialised, i.e. all the constructs defined by add transformations need to be

materialised. In the next chapter, we will present a method for tracing data lin-

eage over general AutoMed transformation pathways where intermediate schema

constructs may or may not be materialised.

In Section 5.7, we have discussed the ambiguity of lineage data. For identi-

cal tracing data based on equivalent queries, inequivalent lineage data may be

obtained if the queries involve −−, not member or aggregation operations. In-

equivalent lineage data may also be obtained when tracing where-provenance.

We observed that the process of tracing where-provenance can be handled by the

process of tracing why-provenance when AutoMed is used for modelling data, so

that the problem of inequivalent where-provenance can be reduced.

141

Chapter 6

Generalising the Data Lineage

Tracing Algorithm

6.1 Motivation

In Chapter 5 we discussed how to trace the lineage of data in the global database

by applying the DLT formulae for SIQL queries to each transformation step in

the transformation pathway from the data source schemas to the global schema

in reverse, finally ending up with the lineage data in the original data sources.

However, in general transformation pathways not all schema constructs cre-

ated by add transformations will be materialised, and the above simple DLT

approach is no longer applicable. In practice, transformation pathways may be

virtual or partially materialised, in which intermediate schema constructs may or

may not be materialised. Moreover, as described as in Section 4.2.2, a general

IQLc query is decomposed into a sequence of SIQL queries with some new inter-

mediate constructs, and it should not be necessary to materialise these constructs

in order to apply DLT.

142

In this chapter, we assume that a schema transformation pathway may con-

tain virtual intermediate constructs, but that all queries appearing within it are

SIQL queries. The DLT algorithm described in Chapter 5 cannot handle virtual

intermediate views and so cannot be applied in this situation.

One approach to solving the problem of virtual schema constructs would be

to use AutoMed’s Global Query Processor to evaluate the query creating the

virtual construct and compute its extent, so that the DLT approach of Chapter

5 could be applied. However, this approach is impractical due to the space and

time overheads it incurs.

Instead, our approach for handling the problem of virtual schema constructs is

that we use a data structure described in Section 6.2, Lineage, to denote lineage

data in a schema construct. If the construct is materialised, Lineage contains

the actual lineage data. If the construct is virtual, Lineage contains relevant

information for deriving the lineage data from the virtual construct. Rather

than materialising the virtual construct, we use such virtual lineage data as the

tracing data for earlier transformation steps. Repeating this process, finally if

the data sources of a transformation step are all materialised, we can obtain the

materialised lineage data from these data sources.

In the rest of this chapter, Section 6.2 describes the data structures used by

our DLT algorithm. Section 6.3 presents our DLT procedure for a single trans-

formation step. DLT formulae for handling virtual intermediate constructs and

lineage data are developed in Section 6.4. Section 6.5 presents DLT algorithms

for tracing data lineage along a general transformation pathway. Section 6.6

discusses the usage of queries beyond IQLc, and of delete, contract and extend

transformation steps for DLT. Section 6.7 discusses the implementation of our

DLT algorithms described in this chapter. Finally, Section 6.8 summarises and

discusses our DLT approach.

143

6.2 Data Structures for Data Lineage Tracing

In order to handle virtual intermediate lineage data and schema constructs, we

use a data structure, Lineage, to denote lineage data in a schema construct. Each

Lineage object has six attributes:

1. data, which can be a collection storing materialised lineage data, or, if the lineage

data is virtual, it will be the value null denoting virtual data;

2. construct, which is the name of the schema construct containing the lineage data;

3. isVirtualData, stating if the lineage data is virtual or not;

4. isVirtualConstruct, stating if the construct is virtual or not;

5. elemStruct, describing the structure of the data in the extent of the schema con-

struct, e.g., a 2-item tuple {x1,x2}, or a 3-item tuple {x1,x2,x3}; this will be

null if the lineage data is materialised.

6. constraint, expressing a constraint which derives the lineage data from the schema

construct if the construct is virtual; this will be null if the lineage data is mate-

rialised.

For example, supposing lineage data in a schema construct D is derived from

the query [{x,y}|{x,y} ← D; x=5], and lp is a Lineage object which expresses

this lineage data. If D=[{1,2},{5,1},{5,2},{3,1}] is materialised, then lp will

be:

lp.data = [{5,1},{5,2}]

lp.construct = ′′D′′

lp.isVirtualData = false

lp.isVirtualConstruct = false

lp.elemStruct = null

lp.constraint = null

144

On the other hand, If D is a virtual schema construct, then lp will be:

lp.data = null

lp.construct = ′′D′′

lp.isVirtualData = true

lp.isVirtualConstruct = true

lp.elemStruct = ′′{x,y}′′

lp.constraint = ′′x=5′′

For ease of exposition, we denote by O|dl a Lineage object in which O is the

name of the schema construct and dl is the lineage data. If the lineage data is

materialised, dl will be the data itself. Otherwise dl will be the form of (S, C),

where S denotes the elemStruct and C the constraint. For example, the above two

Lineage objects are denoted by D|[{5,1},{5,2}] and D|({x,y},x=5), respectively.

In order to express a transformation step with a virtual result or virtual data

sources, we use a data structure, TransfStep, to express transformation steps.

Each TransfStep object has six attributes:

1. action, which can be ′′add′′, ′′del′′, ′′rename′′, ′′extend′′ and ′′contract′′;

2. query, showing the query used in this transformation step;

3. result, which is the name of the schema construct created by this transformation

step (if the action is ′′add′′, ′′rename′′ or ′′extend′′), or the name of the construct

deleted by this step (if the action is ′′del′′ or ′′contract′′);

4. vResult, stating if the result construct is virtual or not;

5. sources, containing all schema construct schemes appearing in the query;

6. vSources, a Boolean array, showing which source constructs in the sources collec-

tion are virtual.

For example, supposing ts is a TransfStep object, where

145

ts.action = ′′add′′

ts.query = ′′〈〈staff, name〉〉++ 〈〈student, name〉〉++ 〈〈visitor, name〉〉′′

ts.result = ′′〈〈faculty, name〉〉′′

ts.vResult = true

ts.sources = [〈〈staff, name〉〉, 〈〈student, name〉〉, 〈〈visitor, name〉〉]

ts.vSources = [false, true, false]

This means ts is an add transformation creating a new virtual construct 〈〈faculty,

name〉〉 defined by the query “〈〈staff, name〉〉++〈〈student, name〉〉++〈〈visitor, name〉〉”.

The data sources of ts are 〈〈staff, name〉〉, 〈〈student, name〉〉 and 〈〈visitor, name〉〉, in

which 〈〈student, name〉〉 is virtual and the other two are materialised.

6.3 DLT for a Single Transformation Step

We now investigate how to obtain the lineage of the tracing data along a single

transformation step which may involve virtual data sources. We only consider

add transformations here and extend transformations are discussed in Section

6.6.3. We assume all queries appearing in transformation steps are SIQL queries.

Figure 6.1 gives our DLT procedure for a single transformation step, DLT4AStep,

where either the tracing data or the data sources may be virtual. The output

of DLT4AStep(td,ts) is the lineage data of tracing data td in the data sources

of transformation step ts, which is a list of Lineage objects that may contain

materialised or virtual lineage data.

We see from Figure 6.1 that our DLT formulae need to handle four cases:

MtMs — both the tracing data and the source data are materialised; MtVs — the

tracing data is materialised and the source data is virtual; VtMs — the tracing

data is virtual and the source data is materialised; and VtVs — both the tracing

data and the source data are virtual.

146

Proc DLT4AStep(td, ts)
{

lpList = Ø;
case MtMs:

lpList←DTL formulae for MtMs;
case MtVs:

lpList←DTL formulae for MtVs;
case VtMs:

if (ts.result is required)
mv ← evaluate(ts.query); /*recovering ts.result

td.data← mv|td.data; /*recovering td
lpList←DTL formulae for MtMs;

else

lpList←DTL formulae for VtMs;
case VtVs:

if (td must be materialised)
mv ← GQP(ts.result); /*recovering ts.result

td.data← mv|td.data; /*recovering td
lpList←DTL formulae for MtVs;

else

lpList←DTL formulae for VtVs;
return lpList;

}

Figure 6.1: The DLT4AStep Algorithm

In some cases lineage data are untraceable if the tracing data is virtual (see

Section 6.4 below for details). In such cases, expressed as conditions “(ts.result is

required)” and “(td must be materialised)” in Figure 6.1, we have to recover the

tracing data by materialising the result of the transformation step. In the case

of VtMs, we use the procedure evaluate to evaluate the query of the transforma-

tion step since all data sources are available, while in the case of VtVs, we use

AutoMed’s global query processor, GQP, to compute the result from the original

data sources.

147

6.4 DLT Formulae

This section gives our DLT formulae for tracing data lineage for the four cases

discussed above: MtMs, MtVs, VtMs and VtVs. The DLT formulae for the case of

MtMs are given in Table 6.1 which is a summary of the DLT formulae described

in Chapter 5. The DLT formulae in Table 6.1 either provide a derivation tracing

query specifying the lineage data of a tracing tuple t or, in some cases, give the

lineage data itself directly. If the DLT formula returns a derivation tracing query,

we need to evaluate the query to obtain the lineage data. If the formula returns

the lineage data directly, no such evaluation is needed.

Since the results of queries of the form group D and gc f D are a collection

of pairs, in the DLT formulae for these two queries we assume that the tracing

tuple t is of the form {a, b}, where a and b are patterns. In the last but one line,

the notation D2|Ø denotes no lineage in the data source D2.

v DLAP (t) DLOP (t)

group D [{x, y}|{x, y} ← D;x = a]

sort/distinct D D|t

max/min D D D|t

sum D D [x|x← D;x 6= 0]

count/avg D D

gc max/min D [{x, y}|{x, y} ← D;x = a] D|t

gc sum D [{x, y}|{x, y} ← D;x = a] [{x, y}|{x, y} ← D;
x = a; y 6= 0]

gc count/avg D [{x, y}|{x, y} ← D;x = a]

D1 ++ D2 ++ . . . ++ Dn ∀i.Di|t

D1 −− D2 D1|t, D2 D1|t, D2|t

[x|x1 ← D1; . . . ; xn ← Dn; C] ∀i.[xi|xi ← Di;xi = ((lambda x.xi) t)]

[x|x← D1; member D2 y] D1|t, [y|y ← D2; y = ((lambda x.y) t)]

[x|x← D1; not(member D2 y)] D1|t, D2 D1|t, D2|Ø

map (lambda p1.p2) D [p1|p1 ← D, p2 = t]

Table 6.1: DLT Formulae for MtMs

From the formulae for MtMs we have derived the DLT formulae for the other

148

three cases below.

6.4.1 Case MtVs

Recall that there two kinds of DLT formulae in Table 6.1: tracing queries and

real lineage data. With MtVs the source data is virtual, so we cannot evaluate

tracing queries and Lineage objects are required to store the information about

these queries. For example, the tracing query [{x,y}|{x,y}← D;x=a] is expressed

as D|({x,y},x=a), and the corresponding Lineage object, lp, is

lp.data = null

lp.construct = ′′D′′

lp.isVirtualData = true

lp.isVirtualConstruct = true

lp.elemStruct = ′′{x,y}′′

lp.constraint = ′′x=a′′

In the case of real lineage data, the lineage data may be the tracing data, t,

itself or all the items in a source collection D. If the lineage data is t, it is available

no matter whether D is materialised or not. If the lineage data is all items in

a virtual collection D, it is expressed by D|(any,true), and the corresponding

Lineage object, lp, is:

lp.data = null

lp.construct = ′′D′′

lp.isVirtualData = true

lp.isVirtualConstruct = true

lp.elemStruct = null

lp.constraint = null

Table 6.2 gives the DLT formulae for the case of MtVs.

149

v DLAP (t) DLOP (t)

group D D|({x, y}, x = a)

sort/distinct D D|t

max/min D D|(any, true) D|t

sum D D|(any, true) D|(x, x 6= 0)

count/avg D D|(any, true)

gc max/min D D|({x, y}, x = a) D|t

gc sum D D|({x, y}, x = a) D|({x, y}, x = a, y 6= 0)

gc count/avg D D|({x, y}, x = a)

D1 ++ D2 ++ . . . ++ Dn ∀i.Di|t

D1 −− D2 D1|t, D2|(any, true) D1|t, D2|t

[x|x1 ← D1; . . . ; xn ← Dn; C] ∀i.Di|(xi, xi = ((lambda x.xi) t))

[x|x← D1; member D2 y] D1|t, D2|(y, y = ((lambda x.y) t))

[x|x← D1; not(member D2 y)] D1|t, D2|(any, true) D1|t, D2|Ø

map (lambda p1.p2) D D|(p1, p2 = t)

Table 6.2: DLT Formulae for MtVs

We can see that, in Table 6.2, although data sources are virtual, the lin-

eage data is materialised, and so not all computed lineage data is virtual. For

example, the affect-pool for aggregate functions are all the tuples in the source

collection, i.e. D|(any,true) (virtual lineage data); the affect-pool for group and

gc aggFun are all the tuples in the source collection whose first component is a,

i.e. D|({x,y},x=a) (again virtual lineage data); while the affect-pool for sort,

distinct and ++ is the tracing data itself, i.e. D|t (materialised lineage data).

We note that, in the case of D1++D2++. . .++Dn, if a data source Di is virtual,

we need to compute Di to determine if it contains the tracing data t or not. We

may materialise all data sources of ++ queries, so as to change the case into

MtMs and solve the problem. However, in some cases, tracing data lineage of ++

queries is possible with virtual data sources. For example, suppose v = v1++ D1

and v1 = distinct D2, in which v1 is a virtual schema construct and D1 and D2

are materialised. In order to trace the lineage of the data in v, we actually have

no need to materialise v1. In particular, we can obtain v1|t’s lineage in D2 as

150

[x|x← D2; x = t].

In our approach, we retain the data source of ++ as virtual and assume that

the lineage data in the virtual data source is t. Then, we use a DLT check process,

which is described below, to determine whether the virtual data source needs to

be computed1.

Supposing S is a virtual data source of a ++ query, then we firstly find the

transformation step, ts, that creates S. Suppose the query in ts is q.

If q is a ++ query, then the virtual data source S can remain virtual, and we

have to further check if any of the data sources of q are virtual ones.

If q is map, sort or distinct with a materialised data source, then S can

remain virtual. The materialised data source can filter the lineage created in the

virtual construct S and remove extra lineage data, as shown in the above example.

If q is −−, aggFun, group, gc group, comprehension, member or not member,

then S must be computed.

Otherwise, if q is map, sort or distinct with a virtual data source S’, then

we cannot determine the situation of S based on the current step. We have to

find the transformation step ts’ which creates virtual construct S’, and repeat

the above check steps to examine the query in ts’. If S’ is able to be virtual,

then S can also be virtual; if S’ is not, that means we actually have to compute

construct S, rather than S’ itself. Recursively, the final situation of construct S

can be determined.

The same problem as for ++ may occur for −−. In particular, the situation

of tracing the origin-pool in the second argument of the query D1 −− D2, i.e. in

D2, is similar to the above and we use the same DLT check process to determine

whether D2 can be virtual or not.

1The computed data source may or may not be materialised. For the purpose DLT, we
use the computed data source once and have no need to materialise it in persistent storage.
However, for the purpose of future use, we may materialise it to avoid repeated computations.

151

6.4.2 Case VtMs

Virtual tracing data can be created by the DLT formulae if data sources are

virtual. In particular, there are three kinds of virtual lineage data created in

Table 6.2: (any,true), ({x,y},x=a), and (p1, p2=t). Note that, the lineage

data (xi, xi = ((lambda x.xi) t)) and (y, y = ((lambda x.y) t)) in the cases of

a comprehension (11th line) and a comprehension with member filter (12th line)

are not virtual. Since t is materialised data and tuple x contains all variables

appearing in xi, the expression (lambda x.xi) t returns materialised data too.

Tables 6.3, 6.4 and 6.5 illustrate the DLT formulae for VtMs. These can

be derived by applying the above three kinds of virtual tracing data, Vt1 =

(any,true), Vt2 = ({x,y}, x=a) and Vt3 = (p1, p2=t), to the DLT formulae for

MtMs given in Table 6.1. In particular, Table 6.3 gives the DLT formulae for

tracing the affect-pool and Tables 6.4 and 6.5 give the DLT formulae for tracing

the origin-pool. In this case of VtMs, since all source data is materialised, there

is no virtual intermediate lineage data created.

For example, suppose v is defined by the query group D. If the virtual tracing

tuple t is Vt1, the affect-pool of t is all data in D. If t is Vt2, the affect-pool of

t is all tuples in D with first component equal to a. If t is Vt3, the affect-pool

of t is all tuples in D with first component equal to the first component of the

tracing data t. We can see that the virtual view, v, is used in this query. Since

the source data is materialised, we can easily compute v and evaluate the tracing

query. However, once the virtual view is computed, the virtual tracing data t can

also be materialised. In practice, this situation reverts to the case of MtMs which

we discussed earlier.

Although all computed lineage data can be materialised in the case of VtMs,

we may leave it as virtual lineage data. For example, if the obtained lineage data

is all data in a collection D, rather than bring all D’s data items into memory to

152

v t DLAP (t)

Vt1 D

group D Vt2 [{x, y}|{x, y} ← D;x = a]
Vt3 [{x, y}|{x, y} ← D; member [first p1|p1 ← v; p2 = t] x]

Vt1 D

sort/dinstinct D Vt2 [{x, y}|{x, y} ← D;x = a]
Vt3 [p1|p1 ← D; p2 = t]

Vt1 D

aggFun D Vt2 n/a (t cannot be a tuple)
Vt3 D

Vt1 D

gc aggFun D Vt2 [{x, y}|{x, y} ← D;x = a]
Vt3 [{x, y}|{x, y} ← D; member [first p1|p1 ← v; p2 = t] x]

D1 ++ D2 Vt1 ∀i.Di

++ . . . ++ Dn Vt2 ∀i.[{x, y}|{x, y} ← Di;x = a]
Vt3 ∀i.[p1|p1 ← Di; p2 = t]

Vt1 D1|v, D2

D1 −− D2 Vt2 D1|[{x, y}|{x, y} ← v;x = a], D2

Vt3 D1|[p1|p1 ← v; p2 = t], D2

Vt1 ∀i.[xi|xi ← Di; member (map (lambda x.xi) v) xi]
[x|x1 ← D1; Vt2 ∀i.[xi|xi ← Di; member (map (lambda x.xi)

. . . ; xn ← Dn; C] [x|x← v; first x = a]) xi]
(C 6= Ø) Vt3 ∀i.[xi|xi ← Di;

member (map (lambda x.xi) [p1|p1 ← v; p2 = t]) xi]

Vt1 D1|v, [y|y ← D2; member (map (lambda x.y) v) y]
[x|x← D1; Vt2 [x|x← D1; member D2 y; first x = a],[y|y ← D2;

member D2 y] member (map (lambda x.y) [x|x← v; first x = a]) y]
Vt3 [x|x← D1; member D2 y; e = t],[y|y ← D2;

member (map (lambda x.y) [p1|p1 ← v; p2 = t]) y]

Vt1 D1|v, D2

[x|x← D1; Vt2 D1|[{x, y}|{x, y} ← v; x = a], D2

not(member D2 y)] Vt3 D1|[p1|p1 ← v; p2 = t], D2

Vt1 D

map (lambda p′1.p
′
2) D Vt2 [p′1|p

′
1 ← D; (first p′2) = a]

Vt3 [p′1|p
′
1 ← D; p2 = t]

Vt1 = (any, true), Vt2 = ({x, y}, x = a), Vt3 = (p1, p2 = t)

Table 6.3: DLT Formulae for Tracing the Affect-Pool of VtMs

153

v t DLOP (t)

Vt1 D

group D Vt2 [{x, y}|{x, y} ← D;x = a]
Vt3 [{x, y}|{x, y} ← D; member [first p1|p1 ← v; p2 = t] x]

Vt1 D

sort/distinct D Vt2 [{x, y}|{x, y} ← D;x = a]
Vt3 [p1|p1 ← D; p2 = t]

Vt1 D|v
max/min D Vt2 n/a (t cannot be a tuple)

Vt3 D|v

Vt1 [x|x← D;x 6= 0]
sum D Vt2 n/a (t cannot be a tuple)

Vt3 [x|x← D;x 6= 0]

Vt1 D

count/avg D Vt2 n/a (t cannot be a tuple)
Vt3 D

Vt1 D|v
gc max/min D Vt2 D|[{x, y}|{x, y} ← v;x = a]

Vt3 D|[p1|p1 ← v; p2 = t]

Vt1 [{x, y}|{x, y} ← D; y 6= 0]
gc sum D Vt2 [{x, y}|{x, y} ← D;x = a; y 6= 0]

Vt3 [{x, y}|{x, y} ← D;
member [first p1|p1 ← v; p2 = t] x; y 6= 0]

Vt1 D

gc count/avg D Vt2 [{x, y}|{x, y} ← D;x = a]
Vt3 [{x, y}|{x, y} ← D; member [first p1|p1 ← v; p2 = t] x]

Vt1 = (any, true), Vt2 = ({x, y}, x = a), Vt3 = (p1, p2 = t)

Table 6.4: DLT Formulae for Tracing the Origin-Pool of VtMs (1)

154

D1 ++ D2 Vt1 ∀i.Di

++ . . . ++ Dn Vt2 ∀i.[{x, y}|{x, y} ← Di;x = a]
Vt3 ∀i.[p1|p1 ← Di; p2 = t]

Vt1 D1|v, D2|v
D1 −− D2 Vt2 D1|[{x, y}|{x, y} ← v;x = a],

[{x, y}|{x, y} ← D2; member v {x, y};x = a]
Vt3 D1|[p1|p1 ← v; p2 = t],

[p1|p1 ← D2; member v p1; p2 = t]

Vt1 ∀i.[xi|xi ← Di; member (map (lambda x.xi) v) xi]
[x|x1 ← D1; Vt2 ∀i.[xi|xi ← Di; member

. . . ; xn ← Dn; C] (map (lambda x.xi) [x|x← v; first x = a]) xi]
(C 6= Ø) Vt3 ∀i.[xi|xi ← Di;

member (map (lambda x.xi) [p1|p1 ← v; p2 = t]) xi]

Vt1 D1|v, [y|y ← D2; member (map (lambda x.y) v) y]
[x|x← D1; Vt2 [x|x← D1; member D2 y; first x = a], [y|y ← D2;

member D2 y] member (map (lambda x.y) [x|x← v; first x = a]) y]
Vt3 [p1|p1 ← D1; member D2 y; p2 = t],[y|y ← D2;

member (map (lambda x.y) [p1|p1 ← v; p2 = t]) y]

Vt1 D1|v, D2|Ø
[x|x← D1; Vt2 D1|[{x, y}|{x, y} ← v; x = a], D2|Ø

not(member D2 y)] Vt3 D1|[p1|p1 ← v; p2 = t], D2|Ø

Vt1 D

map (lambda p′1.p
′
2) D Vt2 [p′1|p

′
1 ← D; (first p′2) = a)]

Vt3 [p′1|p
′
1 ← D; p2 = t]

Vt1 = (any, true), Vt2 = ({x, y}, x = a), Vt3 = (p1, p2 = t)

Table 6.5: DLT Formulae for Tracing the Origin-Pool of VtMs (2)

155

continue the DLT process, we may use virtual lineage data, D|(any,true), for

the subsequent DLT steps. The materialised lineage data can be extracted from

the data sources at the end of the DLT process. This can save the time and

memory overheads of the DLT process.

Thus, in practice, we use virtual lineage data even if the data source is mate-

rialised and lineage data are materialised only at the end of the DLT process, or,

in the case of lineage data that must be materialised in some untraceable cases

when the tracing data and data sources are all virtual (the case of VtVs discussed

below).

6.4.3 Case VtVs

The DLT formulae for VtVs are similar to the formulae for VtMs but in this case

the source data are unavailable. Thus, we use Lineage objects to store the virtual

intermediate lineage data. However, since data sources are virtual, we cannot

compute the virtual view by evaluating the query. Thus, if the virtual view is

used in a DLT formula, the lineage data is untraceable without computing the

virtual view. Table 6.6 gives the DLT formulae for the case of VtVs.

For example, suppose the query is v = group D where D is a virtual data

source. If the virtual tracing tuple t is (any,true), the virtual affect-pool is

D|(any,true). If t is ({x,y},x=a), the virtual affect-pool is D|({x,y},x=a). If

t is (p1, p2=t), based on the formulae in Table 6.3, the virtual affect-pool in D

can be expressed as D|({x,y}, member [first p1|p1 ← v; p2=t] x). However,

we cannot compute v by just evaluating the query group D defining v since D is

virtual. In this case, AutoMed’s Global Query Processor can be used to compute

v. Once v is computed, the virtual tracing data t can also be computed and this

situation reverts to the case of MtVs which we discussed earlier.

156

v t DLAP (t) DLOP (t)

Vt1 D|(any, true)
group D Vt2 D|({x, y}, x = a)

Vt3 untraceable

Vt1 D|(any, true)
sort/distinct D Vt2 D|({x, y}, x = a)

Vt3 D|(p1, p2 = t)

max/min D Vt1,2,3 D|(any, true) untraceable

sum D Vt1,2,3 D|(any, true) D|(x, x 6= 0)

count/avg D Vt1,2,3 D|(any, true)

Vt1 D|(any, true) untraceable
gc max/min D Vt2 D|({x, y}, x = a) untraceable

Vt3 untraceable

Vt1 D|(any, true) D|({x, y}, y 6= 0)
gc sum D Vt2 D|({x, y}, x = a) D|({x, y}, x = a; y 6= 0)

Vt3 untraceable

Vt1 D|(any, true)
gc count/avg D Vt2 D|({x, y}, x = a)

Vt3 untraceable

Vt1 ∀i.Di|(any, true)
D1 ++ D2 ++ . . . ++ Dn Vt2 ∀i.Di|({x, y}, x = a)

Vt3 ∀i.Di|(p1, p2 = t)

D1 −− D2 Vt1,2,3 untraceable

[x|x1 ← D1; . . . ; xn ← Dn; C] Vt1,2,3 untraceable
(C 6= Ø)

[x|x← D1; member D2 y] Vt1,2,3 untraceable

[x|x← D1; not(member D2 y)] Vt1,2,3 untraceable

Vt1 D|(any, true)
map (lambda p′1.p

′
2) D Vt2 D|(p′1, (first p′2) = a)

Vt3 D|(p′1, p2 = t)
Vt1 = (any, true), Vt2 = ({x, y}, x = a), Vt3 = (p1, p2 = t)

Table 6.6: DLT Formulae for VtVs

157

Alternatively, the view definition of v could be propagated through the remain-

ing DLT steps until the end of the process. So far we have only implemented the

first approach and it remains to implement the second approach and to investigate

their trade-offs.

6.5 DLT for General Transformation Pathways

Having obtained the DLT formulae for the above four cases, lineage data based

on a single transformation step is obtained by procedure DLT4AStep(td, ts) as

described in Section 6.3, and its output is the lineage of td in ts’s data sources

i.e. a list of Lineage objects which may contain either materialised or virtual

lineage data.

In our DLT algorithms for a general transformation pathway, there are two

further procedures: tracing the lineage of a single tuple along a transformation

pathway and tracing the lineage of a set of tuples along a transformation pathway.

This is because the lineage of one Lineage object based on a single transformation

step may be a list of Lineage objects, if the step has multiple data sources.

6.5.1 The DLT Algorithms

Figure 6.2 presents our DLT algorithms for tracing data lineage along a gen-

eral transformation pathway: oneDLT4APath(td, [ts1, ..., tn]) traces the lineage

of a single tracing tuple td along a transformation pathway [ts1, ..., tn], and

listDLT4APath([td1, ..., tdm], [ts1, ..., tsn]) traces the lineage of a list of tracing

tuples along a transformation pathway.

oneDLT4APath firstly finds the transformation step, tsi, which creates the

schema construct containing td and then calls DLT4AStep to obtain the lineage

of td based on this transformation step. DLT4AStep returns a list of Lineage

158

Proc oneDLT4APath(td, [ts1, ..., tsn])
{

lpList = Ø;
for i = n downto 1, do

if (td.construct = tsi.result)
Num = i;
lpList = DLT4AStep(td, tsi);
continue; //* End the for loop

restTP = [ts1, ..., tsNum];
return listDLT4APath(lpList, restTP);

}

Proc listDLT4APath([td1, ..., tdm], [ts1, ..., tsn])
{

lpList = Ø;
for i = 1 to m, do

lpList = merge(lpList, oneDLT4APath(tdi, [ts1, ..., tsn]));
return lpList;

}

Figure 6.2: DLT Algorithms for a General Transformation Pathway

objects. After that, oneDLT4APath calls the procedure listDLT4APath to further

trace the lineage of this list of Lineage objects along the rest of the transformation

pathway (i.e. the steps prior to tsi). oneDLT4APath also returns a list of Lineage

objects. listDLT4APath itself calls oneDLT4APath for each item tdi in the tracing

data list to find the entire lineage of the whole list based on the transformation

pathway.

The merge function in the procedure listDLT4APath is used to avoid duplica-

tion of lineage data (as in Chapter 5, Section 4.5.2).

The algorithms in Figure 6.2 are correct in the sense that they give the same

result as the DLT algorithms given in Section 5.5.2 in Chapter 5. This is be-

cause the DLT formulae described in Section 6.4, which are used in the proce-

dure DLT4AStep computing lineage data based on one add transformation, can

be derived from the DLT formulae described in Section 5.4, while procedures

159

oneDLT4APath and listDLT4APath obtain the final lineage data by checking all

transformation steps along a transformation pathway in reverse.

Similarly to the DLT algorithms described in Chapter 5, the exact complexity

of the overall DLT process in this chapter is O(n×m) where n is the number of

add transformations relevant to the tracing data in the transformation pathway

and m is the number of different schema constructs in the computed lineage data.

6.5.2 Example

Suppose that construct 〈〈CourseSum, Avg〉〉 is generated by the following transfor-

mation steps:

〈〈CourseSum,Avg〉〉 = [{x,y,z}|{x,y,z}← gc avg

([{{k1,k2},x}|{k1,k2,k3,x}← 〈〈Details,mark〉〉])]

〈〈Details,Mark〉〉 = [{’IS’,k1,k2,x}|{k1,k2,x}← 〈〈IStab,Mark〉〉]

++ [{’MA’,k1,k2,x}|{k1,k2,x}← 〈〈MAtab,Mark〉〉]

where constructs 〈〈CourseSum, Avg〉〉, 〈〈MAtab, Mark〉〉 and 〈〈IStab, Mark〉〉 are ma-

terialised and construct 〈〈Details, Mark〉〉 is virtual. The transformation pathway

generating 〈〈CourseSum, Avg〉〉 construct consists of the following sequence of view

definitions, where the intermediate constructs v1, . . ., v4 and 〈〈Details, Mark〉〉 are

virtual:

v1 = [{’IS’,k1,k2,x}|{k1,k2,x} ← 〈〈IStab, Mark〉〉]

v2 = [{’MA’,k1,k2,x}|{k1,k2,x} ← 〈〈MAtab, Mark〉〉]

〈〈Details, Mark〉〉 = v1 ++ v2

v3 = map (lambda {k,k1,k2,x}.{{k,k1},x}) 〈〈Details, Mark〉〉

v4 = gc avg v3

〈〈CourseSum, Avg〉〉= map (lambda {{x,y},z}.{x,y,z}) v4

Suppose td = {’MA’,’MAC01’,81} is a tuple in construct 〈〈CourseSum, Avg〉〉.

Traversing the above transformation pathway in reverse, we obtain td’s lineage

160

data, dl, with respect to each view as follows:

td = 〈〈CourseSum,Avg〉〉|{’MA’,’MAC01’,81}

MtVs
=⇒ v4|dl = v4|{{’MA’,’MAC01’},81}

MtVs
=⇒ v3|dl = v3|({x,y},x={’MA’,’MAC01’})

VtVs
=⇒ 〈〈Details,Mark〉〉|dl = 〈〈Details,Mark〉〉|

({k,k1,k2,x},{k=’MA’;k1=’MAC01’})

VtVs
=⇒ v2|dl = v2|({k,k1,k2,x},{k=’MA’;k1=’MAC01’}),

v1|dl = v1|({k,k1,k2,x},{k=’MA’;k1=’MAC01’})

VtMs
=⇒ 〈〈MAtab,Mark〉〉|dl = 〈〈MAtab,Mark〉〉|

({k1,k2,x},{’MA’=’MA’;k1=’MAC01’})

〈〈IStab,Mark〉〉|dl = 〈〈IStab,Mark〉〉|

({k1,k2,x},{’IS’=’MA’;k1=’MAC01’})

In conclusion, we can see that the lineage from 〈〈IStab, Mark〉〉 is empty and

the lineage from 〈〈MAtab, Mark〉〉 is obtained by evaluating the tracing query

[{k1,k2,x}| {k1,k2,x}← 〈〈MAtab, Mark〉〉; ’MA’=’MA’; k1=’MAC01’].

6.5.3 Performance of the DLT Algorithms

In this section, we study the performance of our DLT algorithms by compar-

ing their running times with respect to the number of relevant add steps in the

transformation pathway, and with respect to the number of schema constructs

in the computed lineage data. Experiments were set up based on an exten-

sion of the example given in Section 4.2.3, where the source schema SS contains

several relations of the form deptName(emp id, emp name, salary), and the tar-

get schema GS contains two relations person(emp id, emp name, salary, dept) and

deptSum(deptName,avgSalary).

In Figure 6.3, the tracing data is in the construct 〈〈person, salary〉〉 of the global

schema GS, and only one construct in the source schema SS is computed in the

data lineage. In order to set up transformation pathways containing increasing

161

Number of Relevant add steps In the Transformation Pathway

0

0.2

0.4

0.6

0.8

1

1.2

7 16 25 34 43 52 61 70 79 88 97 106 125

R
u
n
n
in

g
 T

im
e
s
 (

S
e
c
o
n
d
s
)

1 Schema Construct in Lineaeg Data

Figure 6.3: Running Time vs. Num-
ber of Relevant add Transformations

Fixed Relevant add Transformations

0

2

4

6

8

10

12

14

16

1 5 10 15 20 25 30 35 40 45 50 55 60

R
u

n
n

in
g

 T
im

e
 (

S
e

c
o

n
d

s
)

Number of Schema Constructs in Lineage Data

Figure 6.4: Running Time vs. Num-
ber of Schema Constructs

numbers of add transformations, we create transformation pathways transforming

SS and GS to each other repeatedly, i.e. transformation pathways are created in

the form of SS→ GS1 → SS1 → GS2 → . . .→ SSn → GS, in which SSi(i = 1...n) is

identical to SS and GSi(i = 1...n) is identical to GS, but only the schemas SS and

GS are materialised. Figure 6.3 illustrates the running times of our DLT process

based on these transformation pathways2.

In Figure 6.4, the transformation pathway creating the target schema GS is

fixed (and has 16 relevant add transformations). In order to obtain different

numbers of constructs in the computed lineage data, we vary the tracing data

from containing only one tracing tuple in one global schema construct into a set

of tracing tuples from multiple global schema constructs. Figure 6.4 illustrates

the running times of our DLT process in this scenario.

We can see that, as expected the running times of our DLT process increase

linearly according to the number of relevant add transformations and the number

2The implemented algorithm does not include the DLT check process described in Section
6.4.1. We do not expect significant changes of the performance if it is extended to include the
DLT check process, since the DLT check process only examines query types of transformation
steps, which has a much lower consuming time than DLT processes. However, this still remains
to be verified as future work.

162

of schema constructs in the computed lineage data.

6.6 Extending the DLT Algorithms

In the above algorithms, we only consider IQLc queries and add and rename trans-

formations. In practice, queries beyond IQLc and delete, contract and extend

transformations may appear in the transformation pathways integrating ware-

house data. We now consider how these transformations can also be used for

data lineage tracing.

6.6.1 Using Queries beyond IQLc

Our DLT algorithms handle IQLc queries in add transformations. Referring back

to the Figure 3.5 in Section 3.3 which illustrates the data transformation and

integration processes in a typical data warehouse, add transformations for single-

source cleansing may contain built-in functions which cannot be handled by our

DLT formulae given earlier. In order to go back all the steps to the data source

schemas DSS in the staging area, the DLT process may therefore need to handle

queries beyond IQLc.

In particular, suppose the construct c is created by the following transforma-

tion step, in which f is a function defined by means of an arbitrary IQL query

and s1, ..., sn are the schemes appearing in the query:

addT(c, f(s1, ..., sn));

There are three cases for tracing the lineage of a tracing tuple t ∈ c:

1. f is an IQLc query, in which case the DLT formulae described in this chapter

can be used to obtain t’s lineage;

163

2. n = 1 and f is of the form f(s1) = [h x|x← s1; C] for some h and C, in which

case the lineage of t in s1 is given by:

[x|x← s1; C; (h x) = t]

3. For all other cases, we assume that the data lineage of t in the data source

si is all data in si, for all 1 ≤ i ≤ n.

6.6.2 Using delete Transformations

The query in a delete transformation specifies how the extent of the deleted

construct can be computed from the remaining schema constructs.

delete transformations are useful for DLT when the construct is unavailable.

In particular, if a virtual intermediate construct with virtual data sources must be

computed during the DLT process, normally we have to use the AutoMed Global

Query Processor to derive this construct from the original data sources. However,

if the virtual intermediate construct is deleted by a delete transformation and all

constructs appearing in the delete transformation are materialised, then we can

use the query in the delete transformation to compute the virtual construct. Since

we only need to access materialised constructs in the data warehouse, the time

of the evaluation procedure is reduced.

This feature can make a view self-traceable. That is, for the data in an inte-

grated view, we can identify the names of the source constructs containing the

lineage data, and obtain the lineage data from the view itself, rather than access

the source constructs.

6.6.3 Using extend Transformations

An extend transformation is applied if the extent of a new construct cannot be

precisely derived from the source schema. The transformation extendT(c, ql, qu)

164

adds a new construct c to a schema, where query ql determines from the schema

what is the minimum extent of c (and may be Void) and qu determines what is

the maximal extent of c (and may be Any) [MP03b].

If the transformation is extendT(c, Void, Any), this means that the extent of c

is not derived from the source schema. We simply terminate the DLT process for

tracing the lineage of c’s data at that step.

If the transformation is extendT(c, ql, Any), this means the extent of c can be

partially computed by the query ql. Using ql, we can obtain a part of the lineage

of c’s data.

However, we cannot simply treat the DLT process via such an extend trans-

formation as the same as via an add transformation by using the DLT formulae

described in Section 6.4. Since in an add transformation, the whole extent of the

added construct is exactly specified, while in an extend transformation it is not.

The problem that arises is that extra lineage data may be derived because the

tracing data contains more data than the result of the query, ql, in the extend

transformation.

For example, transformation extendT(c, D1 −− D2, Any), where D1 = [1, 2, 3],

D2 = [2, 3, 4]. Although the query result is list [1], the extent of c may be [1, 2],

in which ′′2′′ is derived from other transformation pathways. If we directly use

the DLT algorithm described above, the obtained lineage data of 2 ∈ c are D1|[2]

and D2|[2, 3, 4]. While in fact, the data ′′2′′ has no data lineage along this extend

transformation.

Therefore, in practice, in order to trace data lineage along an extend transfor-

mation with the lower-bound query, ql, the result of the query must be recom-

puted and be used to filter the tracing data during the DLT process.

If the transformation is extendT(c, Void, qu), this means that the extent of

c must be fully computed in the result of the query qu. Although extra data

165

may appear in qu’s result, it cannot appear in the extent of c. We use the same

approach as described for add transformations to trace lineage of c’s data based

on qu. However, we have to indicate that, extra lineage data may be created.

Finally, if the transformation is extendT(c, ql, qu), we firstly obtain the lineage

of c’s data based on these two queries, and then return their intersection as the

final lineage data, which would be much more accurate but still may not be the

exact lineage data.

6.6.4 Using contract Transformations

A contract transformation removes a construct whose extent cannot be pre-

cisely computed by the remaining constructs in the schema. The transformation

contractT(c, ql, qu) removes a construct c from a schema, where ql determines

what is the minimum extent of c, and qu determines what is the maximal extent

of c. As with extend, ql may be Void and qu may be Any.

If the transformation is contractT(c, Void, Any), we simply ignore the contract

transformation in our DLT process.

Otherwise, we use the contract transformation similarly to the way we use

delete transformations described above. However, we also have to indicate that

if using ql, only partial lineage data can be obtained; if using qu, extra lineage

data may be obtained; and if using the intersection of the results of both ql and

qu, we can also only obtain an approximate lineage data.

6.7 Implementation

This section describes a set of data warehousing packages for the AutoMed toolkit,

which implement the generalised DLT algorithm described in this chapter. These

packages use java and the AutoMed Repository API.

166

Clas s D efineRepos itory

Clas s D efineS c hem as

Clas s D efineT rans form ations

dataW arehous ing.D W Exam ple

Clas s Q ueryD ec om pos er

Clas s IQ LEvaluator4D W

Clas s T ools 4D W

..

dataW arehous ing.util

Class Lineage

Clas s T rans fS tep

Clas s D ataLineageT rac ing

Clas s D em oD LT

dataW arehous ing.dlt

Auto M ed To o lkit

Class Lin eage

lin eag eData: A SG

co n s tru ct: Strin g

is Virtu alData: b o o lean

is Virtu alCo n s tru ct: b o o lean

eleStru ct: Strin g

co n s tra in t: Strin g []

g etLin eag eData()

g etCo n s tru ct()

is Virtu alData()

is Virtu alCo n s tru ct()

g etEleStru ct()

g etCo n s tra in t()

Class Tr an sfStep

actio n : Strin g

q u ery : Strin g

res u lt: Strin g

v Res u lt: b o o lean

s o u rces : A rray Lis t

v So u rces : b o o lean []

g etA ctio n ()

g etQu ery ()

g etRes u lt()

is VRes u lt()

g etSo u rces ()

g etVSo u rces ()

g etTran s fStep s (Strin g s 1, Strin g s 2)

g etSimp leTran s fStep s (Strin g s 1, Strin g s 2)

Class DataLin eageTr acin g

tran s fo rmatio n Step s : A rray Lis t

DataLin eag eTracin g (Sch ema s 1, Sch ema s 2)

DLT4A Step (Lin eag e tt , T ran s fStep ts)

o n eDLT4A Path (Lin eag e tt , A rray Lis t tp)

lis tDLT4A Path (A rray Lis t tts , A rray Lis t tp)

g etTran s fo rmatio n Step s ()

g etDataLin eag eOf(Lin eag e LP)

g etDataLin eag eOf(A rray Lis t lp Lis t)

Class Dem oDLT Class DLTGUI

Figure 6.5: The Diagram of the Data Warehousing Toolkit

Currently, there are three packages available in the data warehousing toolkit:

dataWarehousing.dlt, dataWarehousing.util and dataWarehousing.DWExample. All

packages have the prefixed hierarchy “uk.ac.bbk.automed”. The diagram in Fig-

ure 6.5 shows the relationships of the three packages and the rest of the AutoMed

toolkit, as well as the relationships of the classes in the dataWarehousing.dlt pack-

age. Solid arrowed lines indicate the classes contained in the dataWarehousing.dlt

package, and dashed arrowed lines indicate the dependence relationships between

classes or packages. dataWarehousing.DWExample gives an example of creating the

AutoMed metadata for a data warehouse, i.e. creating the schemas of the data

warehouse and AutoMed transformation pathways expressing mappings between

167

the schemas. dataWarehousing.util includes the utilities used in the data ware-

housing toolkit. dataWarehousing.dlt contains the class Lineage, which is the data

structure storing lineage data; the class TransfStep, which is the data structure

storing transformation steps; the class DataLineageTracing, which is the imple-

mentation of the generalised DLT algorithm descried in this chapter; and the

class DemoDLT, giving an example of using the DLT package. Appendix C gives

greater details of this data warehousing toolkit.

6.8 Discussion

AutoMed schema transformation pathways can be used to express data trans-

formation and integration processes in heterogeneous data warehousing environ-

ments. This chapter has discussed techniques for tracing data lineage along such

pathways and thus addresses the general DLT problem for heterogeneous data

warehouses.

We have developed a set of DLT formulae using virtual arguments to handle

virtual intermediate schema constructs and virtual lineage data. Based on these

formulae, our algorithms perform data lineage tracing along a general schema

transformation pathway, in which each add transformation step may create either

a virtual or a materialised schema construct. In practice, we use virtual data for

expressing intermediate lineage data even it is available. This can save the time

and memory costs of the DLT processes.

One of the advantages of AutoMed is that its schema transformation pathways

can be readily evolved as the data warehouse evolves. In this section we have

shown how to perform data lineage tracing along such evolvable pathways.

Furthermore, the Lineage data structure described in Section 6.2 can be used

to express the data in the extent of a virtual global schema construct. This

168

extends our DLT method to a virtual data integration framework, where the

integrated database is virtual.

Although this chapter has used IQLc as the query language in which transfor-

mations are specified, our algorithms are not limited to one specific data model or

query language, and could be applied to other query languages involving common

algebraic operations on collections such as selection, projection, join, aggregation,

union and difference.

Finally, since our algorithms consider in turn each transformation step in a

transformation pathway in order to evaluate lineage data in a stepwise fashion,

they are useful not only in data warehousing environments, but also in any data

transformation and integration framework based on sequences of primitive schema

transformations. For example, [Zam04, ZP04] present an approach for integrating

heterogeneous XML documents using the AutoMed toolkit. A schema is auto-

matically extracted for each XML document and transformation pathways are

applied to these schemas. Reference [MP03b] also discusses how AutoMed can

be applied in peer-to-peer data integration settings. Thus, the DLT approach

we have discussed in this chapter is readily applicable in peer-to-peer and semi-

structured data integration environments.

169

Chapter 7

Using AutoMed Transformation

Pathways for Incremental View

Maintenance

Data warehouses integrate information from distributed, autonomous, and pos-

sibly heterogeneous data sources. When data sources are updated, the data

warehouse, and in particular the materialised views in the data warehouse, must

be updated also. This is the problem of view maintenance in data warehouses.

Materialised warehouse views need to be maintained either when the data of

a data source changes, or if there is an evolution of a data source schema. Chap-

ter 4 discussed how AutoMed schema transformations can be used to express

the evolution of a data source or data warehouse schema, either within the same

data model, or a change in its data model, or both; and how the existing ware-

house metadata and data can be evolved so that the previous transformation,

integration and data materialisation effort can be reused.

In this chapter, we focus on refreshing materialised warehouse views when the

data of a data source changes, and we present an incremental view maintenance

170

(IVM) approach based on AutoMed schema transformation pathways. Section

7.1 discusses related work on view maintenance. Section 7.2 presents our IVM

formulae and algorithms over AutoMed schema transformation pathways. Sec-

tion 7.3 discusses methods for avoiding materialisations in our IVM algorithms.

Section 7.4 discusses how queries beyond IQLc and extend transformations can

be used in our IVM process. Finally, Section 7.5 gives our concluding remarks.

7.1 Related Work

The problem of view maintenance at the data level (i.e. when the database schema

does not change) has been widely discussed in the literature. Comprehensive

surveys of this problem are given in [GM99, Don99], as well as a discussion of

applications, problems and techniques for maintaining materialised views.

The work of Blakeley et al. in [BLT86, BCL89] presents the notion of irrelevant

update denoting updates applied to source relations that have no effect on the

state of the derived relations. They discuss a mechanism of detecting irrelevant

updates. As to relevant updates, i.e. updates over source relations that may

have an effect on the state of the derived relations, an approach for maintaining

select-project-join (SPJ) views is presented.

Reference [QW91] presents a set of propagation rules for deriving incremental

expressions which compute the changes to SPJ views based on algebraic opera-

tions. This work also indicates that these derived incremental expressions are not

always cheaper to evaluate than recomputing the views from scratch.

Ceri and Widom’s work in [CW91] presents an approach for deriving pro-

duction rules for maintaining SQL views, but does not consider duplicate data

items, aggregate functions, and difference operations. This algorithm determines

the key of the source relation that is updated in order to efficiently maintain the

171

views, but cannot be applied if a view does not contain the key attributes from

the source relation.

Gupta et al.’s work [GMS93] presents a deferred view maintenance algorithm,

counting, applying to SQL views which may or may not have duplicate data items

and can be defined by aggregate functions, and UNION and difference operators.

This algorithm works by storing the number of the derivations of each tuple in

the materialised view.

References [GL95, CGL+96, Qua96] present propagation formulae based on

relational algebra operations for incrementally maintaining views with duplicates

and aggregations. In particular, reference [CGL+96] describes propagation for-

mulae based on post-update source tables, that is source tables available in the

state where changes have already been applied.

Reference [PSCP02] discusses the problem of incrementally maintaining views

of non-distributive aggregate functions. An aggregate function is distributive if

the refreshed view can be computed by only using the original view and the

changes to the source tables, such as Sum and Count. In order to maintain

non-distributive aggregate function views, such as Avg, Max and Min views

after a DELETE operation, not only the changes to the source table, but also

the source table itself has to be used in the maintenance process.

The problem of view maintenance in data warehousing environments has been

discussed by Zhuge et al. in [ZGMHW95, ZGMW96, ZGMW98]. In particular,

reference [ZGMHW95] considers the IVM problem for a single-source data ware-

house and references [ZGMW96, ZGMW98] for a multi-source data warehouse.

Four consistency levels of warehouse data are considered in these works: conver-

gence — after the last update and all activity has ceased, the view is consistent

with the source relations; weak consistency — every state of the view corresponds

to some valid state of the source relations, but possibly not in a corresponding

172

order: for example, supposing that the state i and j of the view corresponds

to the state p and q of the source relations, it may be that i < j but p > q;

strong consistency — every state of the view corresponds to a valid state of the

source relations, and in a corresponding order; and completeness — there is a

1-1 order-preserving mapping between the sates of the view and the states of the

data sources.

The problem of IVM for multi-source data warehouses has also been discussed

in other literature. For example, reference [MS01] presents change propagation

rules for IVM of multi-source views which can involve one or more base relations

belonging to one or more data sources. Reference [AASY97] presents two IVM

algorithms, namely the SWEEP and Nested SWEEP algorithms, focusing on

views defined by SPJ expressions. Based on the two SWEEP algorithms, reference

[DZR99] develops the MRE Wrapper for incrementally maintaining warehouse

views.

In addition, reference [QW97] presents a concurrency control algorithm, 2VNL,

for maintaining on-line data warehouses and allowing user queries and warehouse

maintenance transactions to execute concurrently without blocking each other.

References [GGMS97, AFP03] discuss the view maintenance problem in the con-

text of object-oriented database systems, where views can be defined by object

query languages such as OQL. In particular, reference [AFP03] describes an ap-

proach to immediate IVM for OQL views by storing object IDs of source objects.

7.2 IVM over AutoMed Schema Transformations

Our IVM algorithms use the individual steps of a transformation pathway to

compute the changes to each intermediate construct in the pathway, and finally

173

obtain the changes to the view created by the transformation pathway in a step-

wise fashion. Since no construct in a global schema is contributed by delete and

contract transformations, we ignore these transformations in our IVM algorithms.

In addition, computing changes based on a transformation renameT(O, O′) is sim-

ple — the changes to O′ are the same as the changes to O. Thus, we only consider

add transformations here. In Section 7.4.2 we discuss using also extend transfor-

mations.

We develop a set of IVM formulae for each kind of SIQL query that may

appear in an add transformation. These IVM formulae can be applied on each

add transformation step in order to compute the changes to the construct created

by that step. By following all the steps in the transformation pathway, we thus

compute the intermediate changes step by step, finally ending up with the final

changes to the global schema data.

Referring back to Figure 3.5 in Section 3.3 which illustrates the data transfor-

mation and integration processes in a typical data warehouse, in this chapter we

assume that the data source updates input to our IVM process are with respect

to the single-cleansed schemas SSi. Thus, our IVM process can be used to main-

tain those materialised schemas which are downstream from the single-source

data cleansing, including the multi-cleansed schemas, data warehouse schemas

and data mart schemas.

7.2.1 IVM Formulae for SIQL Queries

We use △C/▽C to denote a collection of data items inserted into/deleted from a

collection C1. There may be many possible expressions for △C and ▽C but not all

are equally desirable. For example, we could simply let ▽C = C and △C =△Cnew,

but this is equivalent to recomputing the view from scratch [Qua96]. In order

1For the purposes of this chapter, all collections are assumed to be bags.

174

to guard against such definitions, we use the concept of minimality [GL95] to

ensure that no unnecessary data are produced.

Minimality Conditions Any changes (△C/▽C) to a data collection C, includ-

ing the data source and the view, must satisfy the following minimality conditions:

(i) ▽C ⊆ C: We only delete tuples that are in C;

(ii) △C ∩▽C = Ø: We do not delete a tuple and then reinsert it.

We now give the IVM formulae for each kind of SIQL query, in which v

denotes the view, D denotes the updated data source, △v/▽v and △D/▽D denote

the collections inserted into/deleted from v and D, and Dnew denotes the data

source after the update. We observe that these formulae guarantee that the above

minimality conditions are satisfied by △v and ▽v provided they are satisfied by

△D and ▽D.

IVM formulae for distinct, map, and aggregate functions

Table 7.1 illustrates the IVM formulae for these functions. We can see that the

IVM formulae for distinct/max/min/avg require access to the post-update data

source and using the view data; the formulae for count/sum need to use the view

data; and the formulae for map use only the updates to the data source.

IVM formulae for grouping functions

Grouping functions, such as group D and gc f D, group a bag of pairs D on

their first component, and may apply an aggregate function f to the second

component. In order to incrementally maintain a view defined by a grouping

function, we firstly find the data items in D which are in the same groups as the

updates, i.e. have the same first component as one or more of the updates. Then

175

v IVM Formulae
distinct D △v distinct [x|x←△D; not (member v x)]

▽v distinct [x|x← ▽D; not (member Dnew x)]
map (lambda p1.p2) D △v map (lambda p1.p2) △D

▽v map (lambda p1.p2) ▽D

let r1 = max △D; r2 = max ▽D

max D △v

max △D, if (v < r1);
Ø, if (v ≥ r1)&(v 6= r2);
max Dnew, if (v > r1)&(v = r2).

▽v

v, if (v < r1);
Ø, if (v ≥ r1)&(v 6= r2);
v, if (v > r1)&(v = r2).

let r1 = min △D; r2 = min ▽D

min D △v

min △D, if (v > r1);
Ø, if (v ≤ r1)&(v 6= r2);
min Dnew, if (v < r1)&(v = r2).

▽v

v, if (v > r1);
Ø, if (v ≤ r1)&(v 6= r2);
v, if (v < r1)&(v = r2).

count D △v v + (count △D)− (count ▽D)
▽v v

sum D △v v + (sum △D)− (sum ▽D)
▽v v

avg D △v avg Dnew

▽v v

Table 7.1: IVM Formulae for distinct, map, and Aggregate Functions

176

this smaller data collection can be used to compute the changes to the view, so

as to save time and space. Table 7.2 illustrates the IVM formulae for grouping

functions.

v IVM Formulae
group D △v group [{x, y}|{x, y} ← Dnew;

member [p|{p, q} ← (△D ++ ▽D)] x]
▽v [{x, y}|{x, y} ← v; member [p|{p, q} ← (△D ++ ▽D)] x]

gc f D △v gc f [{x, y}|{x, y} ← Dnew;
member [p|{p, q} ← (△D ++ ▽D)] x]

▽v [{x, y}|{x, y} ← v; member [p|{p, q} ← (△D ++ ▽D)] x]

Table 7.2: IVM Formulae for Grouping Functions

We can see that the IVM formulae for grouping functions require access to

the updated data source and using the view data.

IVM formulae for bag union and monus

Table 7.3 illustrates IVM formulae for bag union and monus (derived from [GL95]),

in which ∩ is an intersection operator with the following semantics: D1 ∩ D2 =

D1 −− (D1 −− D2) = D2 −− (D2 −− D1). The IVM formulae for bag union only

use the changes to the data sources, while the formulae for bag monus have to

use the view data and require an auxiliary view D2 −− D1. This auxiliary view

is similarly incrementally maintained by using the IVM formulae for bag monus

with D1−− D2.

IVM formulae for comprehensions

We first discuss IVM formulae for a comprehension [x|x1 ← D1; . . . ; xn ← Dn; C1;

C2; ...; Ck] without member and not member expressions appearing in the filters.

For ease of discussion, we use the join operator ⊲⊳ to express this com-

prehension. In particular, (D1 ⊲⊳c D2) = [{x, y}|x ← D1; y ← D2; c] where

177

v IVM Formulae
D1 ++ D2 △v (△D1−− ▽D2) ++ (△D2−− ▽D1)

▽v (▽D1−− △D2) ++ (▽D2−− △D1)
D1−− D2 △v ((△D1−− △D2) ++ (▽D2−− ▽D1)) −−(D2−− D1)

▽v ((▽D1−− ▽D2) ++ (△D2−− △D1)) ∩ v

Table 7.3: IVM Formulae for Bag Union and Monus

c = C1; ...; Ck. More generally, (D1 ⊲⊳c1,c2 D2 ⊲⊳c3 . . . ⊲⊳cn
Dn) = [x|x1 ←

D1; . . . ; xn ← Dn; c1; c2; ...; cn] in which ci is the conjunction of those predicates

from C1, ..., Ck which contain variables appearing in xi but without any variable

appearing in xj , j > i.

We firstly give the IVM formulae of a view v = D1 ⊲⊳c D2. The justification of

these formulae is given in Appendix B.

△v = (D1new ⊲⊳c△D2−− △D1 ⊲⊳c△D2) ++ △D1 ⊲⊳c D2
new

▽v = (▽D1 ⊲⊳c D2
new −− ▽D1 ⊲⊳c△D2) ++ (D1new ⊲⊳c ▽D2−− △D1 ⊲⊳c ▽D2)

++▽D1 ⊲⊳c ▽D2

More generally, the IVM algorithm, IVM4Comp, for incrementally maintaining

the view v = (D1 ⊲⊳c1,c2 D2 ⊲⊳c3 . . . ⊲⊳cn
Dn) is given in Figure 7.1. This algorithm

needs to access all the post-update data sources. It firstly computes the changes

to the intermediate view D1 ⊲⊳c1,c2 D2 based on the updates to the data source D1

and D2, and then checks the rest of data sources D3 . . . Dn in turn. If there are

updates to Di, a temporary view tempView = D1 ⊲⊳c1,c2 D2 ⊲⊳ . . . ⊲⊳c(i−1)
D(i−1) is

created in order to compute the changes to the intermediate view D1 ⊲⊳c1,c2 D2 ⊲⊳

. . . ⊲⊳ci
Di. After checking all data sources of the view v, the changes to v have

been computed.

The IVM4Comp algorithm is similar to the IVM algorithms discussed in ref-

erences [ZGMW98] and [AASY97], i.e. the Strobe and SWEEP algorithms, in

the context of maintaining a multi-source data warehouse. Both the Strobe and

the SWEEP algorithm perform an IVM process for each update to a data source

178

Algorithm IVM4Comp()
Begin:

△v = D1new ⊲⊳c1,c2△D2−− △D1 ⊲⊳c1,c2△D2) ++ △D1 ⊲⊳c1,c2 D2
new

▽v = (▽D1 ⊲⊳c1,c2 D2
new −− ▽D1 ⊲⊳c1,c2△D2) ++ ▽D1 ⊲⊳c1,c2 ▽D2

++(D1new ⊲⊳c1,c2 ▽D2−− △D1 ⊲⊳c1,c2 ▽D2)
tempView = D1new;
for i = 3 to n, do

if (△Di or ▽Di is not empty)
tempView = tempView ⊲⊳c(i−1)

Dnew
(i−1);

▽v = (▽v ⊲⊳ci Di
new −−▽v ⊲⊳ci△Di) ++ ▽v ⊲⊳ci ▽Di

++(tempView ⊲⊳ci ▽Di−− △v ⊲⊳ci ▽Di);
△v = (tempView ⊲⊳ci△Di−− △v ⊲⊳ci△Di)++ △v ⊲⊳ci Di

new;
else

△v =△v ⊲⊳ci Di
new;

▽v = ▽v ⊲⊳ci Di
new;

return △v and ▽v;
End

Figure 7.1: The IVM4Comp Algorithm

so as to ensure the data warehouse is consistent with the updated data source.

For both algorithms, the cost of the messaging between the data warehouse and

the data sources for each update is O(n) where n is the number of data sources.

However, in practice, warehouse data are normally long-term and just refreshed

periodically. Our IVM4Comp algorithm is able to handle a batch of updates and

is specifically designed for a periodic view maintenance policy. The message cost

of our algorithm for a batch of updates to any of the data sources is O(n).

IVM formulae for member and not member

For ease of discussion, we use ∧ and ⊼ to denote expressions with member and

not member operators, for example D1 ∧ D2 denotes [x|x ← D1; member D2 x]

and D1 ⊼ D2 denotes [x|x ← D1; not (member D2 x)]. The IVM formulae for

v = [x|x← D1; member D2 x] are given below, in which the function countNum a D

returns the number of occurrences of the data item a in D, i.e. countNum a D =

179

count [x|x ← D;x=a], and the priorities of ∧ and ⊼ operators are higher than

++ and −− operators.

△v = (△D1 ∧ D2new−− △D1 ∧ r1) ++ D1new ∧ r1

▽v = (D1new ∧ r2−− △D1 ∧ r2) ++ (▽D1 ∧ D2new −− ▽D1 ∧ r1) ++ ▽D1 ∧ r2

where

r1 = [x|x←△D2; (countNum x △D2) = (countNum x D2new)]

r2 = ▽D2 ⊼ D2new

The IVM formulae for v = [x|x← D1; not(member D2 x)] are as follows:

△v = (△D1 ⊼ D2new−− △D1 ∧ r2) ++ D1new ∧ r2

▽v = (D1new ∧ r1−− △D1 ∧ r1) ++ (▽D1 ⊼ D2new −− ▽D1 ∧ r2) ++ ▽D1 ∧ r1

where

r1 = [x|x←△D2; (countNum x △D2) = (countNum x D2new)]

r2 = ▽D2 ⊼ D2new

We can see that all post-update data sources are required in the IVM formulae.

The justification of these formulae is given in Appendix B.

7.2.2 IVM over Schema Transformation Pathways

Having defined the IVM formulae for each kind of SIQL query, the update to a

construct created by a single add transformation step is obtained by applying the

appropriate formula to that step’s query. Our IVM process for a single transfor-

mation step is IVM4AStep(cd, ts) and its output is the change to the construct

created by transformation step ts based on the changes, cd, to ts’s data sources.

As discussed above, the post-update data sources and the view itself are re-

quired by some IVM formulae. In a general transformation pathway, some inter-

mediate constructs may be virtual. If a required data collection is unavailable,

i.e. not materialised, the IVM4AStep procedure cannot be applied. Thus, we have

to precheck each add transformation in the pathway. If a virtual data collection is

180

required by the IVM formula for a transforation step, we must firstly materialise

this data collection and store it in the data warehouse. This precheck only needs

to be performed once for each transformation pathway, unless the transformation

pathway evolves due to the evolution of a data source schema. This materialisa-

tion increases the storage overhead of the data warehouse, but does not increase

the message cost of the IVM process since these materialised constructs are also

maintainable by using the same IVM process along the transformation pathway.

Alternatively, we could use AutoMed’s Global Query Processor (GQP) to

evaluate the extent of a virtual construct during the IVM process so as to avoid

increasing persistent storage overheads. However, since it uses post-update data

sources, the GQP can only recover a post-update view. If a view itself is used in

an IVM formula, i.e. the view before the update, this cannot be recovered by the

GQP.

We now give an example of prechecking a transformation pathway. The trans-

formation pathway generating 〈〈CourseSum, Avg〉〉 in the global schema in Section

5.5.2 can be expressed as the following sequence of view definitions, where the

intermediate constructs v1, . . ., v4 and 〈〈Details, Mark〉〉 are virtual:

v1 = [{’IS’,k1,k2,x}|{k1,k2,x}← 〈〈IStab,Mark〉〉]

v2 = [{’MA’,k1,k2,x}|{k1,k2,x}← 〈〈MAtab,Mark〉〉]

〈〈Details,Mark〉〉 = v1++ v2

v3 = map (lambda {k,k1,k2,x}.{{k,k1},x}) 〈〈Details,Mark〉〉

v4 = gc avg v3

〈〈CourseSum,Avg〉〉 = map (lambda {{x,y},z}.{x,y,z}) v4

In order to incrementally maintain 〈〈CourseSum, Avg〉〉, the intermediate views

v3 and v4 must be materialised (based on the IVM formulae for grouping func-

tions). For example, suppose that an update to the data sources is a tuple in-

serted into 〈〈IStab, Mark〉〉, △〈〈IStab, Mark〉〉 = {’ISC01’,’ISS05’,80}. Following

181

the transformation pathway, we obtain the changes to the intermediate views as

follows:

△v1 = {’IS’,’ISC01’,’ISS05’,80}

△〈〈Details,Mark〉〉 = {’IS’,’ISC01’,’ISS05’,80}

△v3 = {{’IS’,’ISC01’},80}

Since the extents of v3 and v4 are materialised, changes to v4 can be obtained

by using the IVM formulae for grouping functions, and then be used to compute

changes to 〈〈CourseSum, Avg〉〉 by using the IVM formula for map expressions.

However, the post-update extent of v3 can be recovered by AutoMed’s GQP,

and using the inverse query of map (lambda {{x,y},z}.{x,y,z}) v4, the pre-

update extent of v4 can also be recovered as v4 = map (lambda {x,y,z}.{{x,y},

z}) 〈〈CourseSum, Avg〉〉. Thus, in practice, no intermediate view needs to be ma-

terialised for incrementally maintaining 〈〈CourseSum, Avg〉〉 along the pathway.

7.3 Avoiding Materialisations in IVM

The above example shows that some materialisations in the IVM process are

avoidable so reducing the storage overhead of a data warehouse. In this section,

we will investigate these avoidable materialisations more generally, so as to apply

them in our IVM process.

We consider five methods to avoid materialisations in our IVM process: using

AutoMed’s GQP; using view definitions; using inverse queries; IVM formulae for

virtual schema constructs; and redefining view definitions. We now discuss these

in turn in Section 7.3.1 – 7.3.5 below.

182

7.3.1 Using AutoMed’s Global Query Processor

As described above, AutoMed’s Global Query Processor (GQP) can be used to

evaluate the extent of a virtual construct during the IVM process so as to avoid

increasing persistent storage overheads. However, using the GQP will have higher

time overheads than other methods discussed below since the GQP uses data

source wrappers to access data sources for evaluating queries. Also it will require

more memory than the other methods to store the result of the GQP evaluation.

Furthermore, the GQP cannot be used to recover a view before the update since

it uses post-update data sources.

7.3.2 Using View Definitions

Instead of using the GQP for recovering a virtual construct, we can use the view

definition to replace the construct in our IVM formulae so that the query can be

pushed to data sources to be evaluated rather than being evaluated by the GQP.

For example, the view definition of the virtual construct v3 in Section 7.2.2

is as follows:

v3 = map (lambda {k,k1,k2,x}.{{k,k1},x}) 〈〈Details,Mark〉〉

= map (lambda {k,k1,k2,x}.{{k,k1},x})

([{’IS’,k1,k2,x}|{k1,k2,x}← 〈〈IStab,Mark〉〉]++

[{’MA’,k1,k2,x}|{k1,k2,x}← 〈〈MAtab,Mark〉〉])

= ([{{’IS’,k1},x}|{k1,k2,x}← 〈〈IStab,Mark〉〉]++

[{{’MA’,k1},x}|{k1,k2,x}← 〈〈MAtab,Mark〉〉])

Then the IVM formula for computing △v4 can be transformed into:

183

△v4 = gc avg [{x, y}|{x, y} ← v3new;

member [p|{p, q} ← (△v3++ ▽v3)] x]

= gc avg [{x, y}|{x, y} ←

([{{’IS’,k1},x}|{k1,k2,x}← 〈〈IStab,Mark〉〉]

++[{{’MA’,k1},x}|{k1,k2,x}← 〈〈MAtab,Mark〉〉]);

member [p|{p, q} ← (△v3++ ▽v3)] x]

= gc avg

([{{’IS’,k1},x}|{k1,k2,x}← 〈〈IStab,Mark〉〉;

member [p|{p, q} ← (△v3++ ▽v3)] {’IS’,k1}]

++[{{’MA’,k1},x}|{k1,k2,x}← 〈〈MAtab,Mark〉〉;

member [p|{p, q} ← (△v3++ ▽v3)] {’MA’,k1}])

Thus, the two sub queries, [{{’IS’,k1},x}|{k1,k2,x} ← 〈〈IStab,Mark〉〉; member

[p|{p, q} ← (△v3 ++ ▽v3)] {’IS’,k1}] and [{{’MA’,k1},x}|{k1,k2,x}← 〈〈MAtab,

Mark〉〉; member [p|{p, q} ← (△v3++▽v3)] {’MA’,k1}], can be pushed into the materi-

alised data sources 〈〈IStab, Mark〉〉 and 〈〈MAtab, Mark〉〉 respectively to be evaluated

locally.

7.3.3 Using Inverse Queries

Some virtual intermediate schema constructs can be recovered from the constructs

in the global schema using the inverse query, such as virtual construct v4 in the

example in Section 7.2.2. Suppose that q is an IQLc query, and v = q(D). If

there is a query q−1 such that D = q−1(v), we term q−1 the inverse query of q.

The recovered constructs are pre-update ones since the inverse queries are

based on the view constructs before the update. Thus, the approach of using

inverse queries complements the approach of using AutoMed’s GQP and view

definitions which are based on post-update data sources.

However, not all queries have inverse queries. In SIQL, only v = group D

184

always has an inverse query, D = map (lambda {x,xl}.[{x,y}|{y} ← xl]) v.

The query v = map (lambda p1.p2) D also has an inverse query if and only if all

variables appearing in p1 are contained in p2: the corresponding inverse query is

D = map (lambda p2.p1) v. Otherwise, D cannot be recovered from v.

7.3.4 IVM Formulae for Virtual Schema Constructs

We can develop IVM formulae for virtual schema constructs so as to avoid ma-

terialisations in our IVM process along AutoMed transformation pathways.

Considering a view v defined by a SIQL query q over data source S, v = q(S),

it is necessary that our IVM formulae can handle the following four cases: MvMs

— both the view and the source data are materialised; MvVs — the view is

materialised and the source data is virtual; VvMs — the view is virtual and the

source data is materialised; and VvVs — both the view and the source data are

virtual.

The IVM formulae for the case of MvMs were given in Section 7.2.1, and we

now present the IVM formulae for the other three cases. Note that, we assume

that updates to data sources and the update to the view are materialised.

Case MvVs

The IVM formulae for the case of MvMs given in Section 7.2.1 show that IVM

formulae for distinct, max, min, avg, grouping functions and comprehensions

are using the data sources. We now consider each of these kinds of SIQL queries.

The IVM formulae for the other kinds of SIQL queries do not use the data sources

as arguments, and thus do not need to be considered.

1. v = distinct D

If D is virtual, ▽v is not obtainable if there are deletions, ▽D, from the data

185

source.

2. v = max/min D

If D is virtual, v is not maintainable if there are deletions, ▽D, from the data

source.

3. v = avg D

If auxiliary views v_s = sum D and v_c = count D are available, v is main-

tained by following IVM formulae.

△v = (v_s + (sum △D)− (sum ▽D))/(v_c + (count △D)− (count ▽D))

▽v = v

4. v = group D

let r1 = group △D

r2 = group ▽D

▽v = [{x,y}|{x,y}← v;

member (map (lambda {p,q}.p) (r1 ++ r2)) x]

let r3 = [{x,y−− q}|{x,y}← ▽v; {p,q}← r2; x=p]

r4 = [{x,y ++ q}|{x,y}← r3; {p,q}← r1; x=p]

△v = r4 ++ [{x,y}|{x,y}← r1;

not (member (map (lambda {p,q}.p) r4) x)]

5. v = gc max/min/avg D

v is not maintainable if D is virtual.

6. v = gc sum/count D

let r1 = gc sum/count △D

r2 = gc sum/count ▽D

▽v = [{x,y}|{x,y}← v;

member (map (lambda {p,q}.p) (r1 ++ r2)) x]

186

let r3 = [{x,(y - q)}|{x,y}← ▽v; {p,q}← r2; x=p]

r4 = [{x,(y + q)}|{x,y}← r3; {p,q}← r1; x=p]

△v = r4 ++ [{x,y}|{x,y}← r1;

not (member (map (lambda {p,q}.p) r4) x)]

7. v is defined by comprehensions, including member and not member func-

tions. If the data source is virtual, v is not maintainable.

Case VvMs

The IVM formulae for the case of MvMs, show that IVM formulae for distinct,

aggregate functions, grouping functions and bag monus are using pre-update

views. Here, we are not concerned with the situation of aggregate functions if

the views are virtual, since the view of an aggregate function is a number which

does not incur significant cost overheads. If such a materialised view is required

for our IVM algorithms, we can store it in the data warehouse.

We now consider the IVM formulae for the SIQL queries listed above, except

for aggregate functions, if the view is virtual but the source data is materialised:

1. v = distinct D

△v = distinct [x|x←△D; (countNum x Dnew) = (countNum x △D)]

▽v= distinct [x|x← ▽D; not (member Dnew x)]

2. v = group D

let r1 = [{x,y}|{x,y}← Dnew; member (map (lambda {p,q}.p) (△D ++ ▽D)) x]

△v = group r1

▽v= group (r1 ++ ▽D−− △D)

3. v = gc f D

187

let r1 = [{x,y}|{x,y}← Dnew; member (map (lambda {p,q}.p) (△D ++ ▽D)) x]

r2 = group r1

r3 = group (r1 ++ ▽D−− △D)

r4 = r2 ∩ r3

△v = r2−− r4

▽v= r3−− r4

4. v = D1−− D2

Suppose that v and the auxiliary view D2−− D1 are all unavailable.

let r1 = △D1++ ▽D1++ △D2++ ▽D2

r2 = [x|x← D1new; member r1 x]

r3 = [x|x← D2new; member r1 x]

r4 = r2++ ▽D1−− △D1

r5 = r3++ ▽D2−− △D2

r6 = r2−− r3

r7 = r4−− r5

△v = r6−− r7

▽v= r7−− r6

Case VvVs

In the case of VvVs, only views defined by map functions or ++ expressions

are incrementally maintainable. The changes to the view are obtained from the

updates to the data sources (see Section 7.2.1).

7.3.5 Redefining View Definitions

In our IVM process, materialisations may be avoided if we redefine the view

definition. For example, suppose that v = [x|x ← (D1 ++ D2); member D3 x],

in which data sources D1, D2 and D3 are materialised. In order to incrementally

188

maintain the view v, we decompose the view definition into the following SIQL

queries, by using the rules for decomposing IQLc queries given in Chapter 5:

v1 = D1++ D2

v = [x|x← v1; member D3 x]

Then, the intermediate view v1 must be materialised since it is a data source of

a comprehension.

However, consider the view definition v’ = [x|x ← D1; member D3 x] ++

[x|x← D2; member D3 x]. Obviously, views v and v’ are equivalent. The defini-

tion of v′ can be expressed as follows:

v’ = v1’ ++ v2’

v1’ = [x|x← D1; member D3 x]

v2’ = [x|x← D2; member D3 x]

We can see that no intermediate view is required to be materialised for computing

the updates to the view v’.

The above example illustrates that if a comprehension contains ++ expres-

sions as sub-queries, we can redefine the comprehension by pulling the ++ oper-

ators outside the comprehension, using the general equivalence [h|Q1; . . . ; xi ←

(Di1++Di2); . . . ; Qn] = [h|Q1; . . . ; xi ← Di1; . . . ; Qn] ++ [h|Q1; . . . ; xi ← Di2; . . . ;

Qn], so as to avoid materialising the intermediate results of these ++ expressions.

In practice, there two limitations of applying this kind of redefinition. One, if

the source data of a ++ expression are virtual, for example Di1 and Di2 are virtual,

applying the rule cannot save the storage overhead of materialisation. Since we

have to either materialise the intermediate view Di1 ++ Di2, or materialise Di1

and Di2 individually.

Two, applying the rule will increase the number of comprehensions in a trans-

formation pathway hence decreasing the efficiency of the IVM process. If the

189

number of ++ expressions in a comprehension is n and the number of the data

sources in each ++ expression is ai(1 ≤ i ≤ n), then the number of compre-

hensions created after applying the rule is a1 × a2 × . . . × an. From the IVM

formulae for comprehensions given in Section 7.2.1, we can see that the time and

temporary storage overheads of maintaining comprehensions are normally expen-

sive, since we have to access each post-update source data and create temporary

intermediate views if the number of generators in a comprehension is greater than

2. Thus, if the number of generators in a comprehension is greater than 2, we do

not apply the redefinition rule.

7.4 Extending the IVM Algorithms

7.4.1 Using Queries beyond IQLc

Our IVM algorithms above handle IQLc queries in add transformations. However,

add transformations for single-source cleansing may contain built-in functions

which cannot be handled by our IVM formulae above. In order to maintain

materialised single-cleansed schemas, the IVM process may therefore need to

handle queries beyond IQLc.

In particular, suppose the construct c is created by the following transforma-

tion step, in which f is a function defined by means of an arbitrary IQL query

and s1, ..., sn are the schemes appearing in the query:

addT(c, f(s1, ..., sn));

We consider the IVM process propagating the changes to c, △c/▽c, according

to the data source updates △s1/▽s1, ..., △sn/▽sn in the following three cases:

1. f is an IQLc query, in which case the DLT formulae described in this chapter

can be used to compute △c/▽c;

190

2. n = 1 and f is of the form f(s1) = [h x|x← s1; C] for some h and C, in which

case the changes to c are computed by the following formulae:

△c = [h x|x←△s1; C]

▽c = [h x|x← ▽s1; C]

More generally, if the following hold for f

f(S ++ T) = op f(s) f(T)

f(S−− T) = op′ f(s) f(T)

for some pair of operators op and op’ such that (a op b) op’ b = a for

all a,b (e.g. if op = + and op’ = -, or op = ++ and op’ = --), then, we

can incrementally compute c if s1 changes.

In particular, if the operator op is ++ and op’ is −−, the changes to c are

given by:

△c = f(△s1)

▽c = f(▽s1)

Otherwise, the new extent of c, cnew, is incrementally computed by the

following formula:

cnew = op′ (op c f(△s1)) f(▽s1)

and the changes to c are given by:

△c = cnew −− c

▽c = c−− cnew

3. For all other cases, the new extent of c, cnew, is fully recomputed from

scratch and the changes to c are given by:

△c = cnew −− c

▽c = c−− cnew

191

7.4.2 Using extend transformations

So far, we have considered only add and rename transformations. In this section,

we discuss how to utilise extend transformations in our IVM process.

We recall from Chapter 3 that an extend transformation is applied if the

extent of a new construct cannot be precisely derived from the source schema.

The transformation extendT(c, ql, qu) adds a new construct c to a schema, where

the query ql determines from the schema what is the minimum extent of c (and

may be Void) and the query qu determines what is the maximal extent of c (and

may be Any).

If the transformation is extendT(c, Void, Any), this means that no information

about the extent of c can be derived from the source schema. We terminate the

IVM process for computing changes to construct c at that step.

If the transformation is extendT(c, ql, Any), this means the extent of c can

be partially recovered by the query ql. Using ql, we can compute the changes,

△c/▽c, to construct c. Since ql is a lower bound on the extent of c, we can

insert △c into c safely. However, we cannot simply delete ▽c from c, because

c may contain more data than the result of ql. Similarly, if the transformation

is extendT(c, Void, qu), the result of the query qu may contain more data than

construct c. ▽c computed based on qu can be simply deleted from c, but △c

cannot be inserted into c safely.

Finally, if the transformation is extendT(c, ql, qu), we firstly compute the

changes to c based on these two queries, and select △ c based on ql and ▽c

based on qu to update c. However, we have to indicate to the data warehouse

users that such updates may not be the exact changes to the view construct c.

192

7.5 Discussion

AutoMed schema transformation pathways can be used to express data trans-

formation and integration processes in heterogeneous data warehousing environ-

ments. This chapter has discussed techniques for incremental view maintenance

along such pathways. We have developed a set of IVM formulae. Based on these

formulae, our algorithms perform an IVM process along a schema transformation

pathway. We also have discussed approaches for avoiding materialisations in our

IVM algorithms so as to save storage overheads.

One of the advantages of AutoMed is that its schema transformation pathways

can be readily evolved as the data warehouse evolves. In this chapter we have

shown how to perform IVM along such evolvable pathways.

Although this chapter has used IQLc as the query language in which transfor-

mations are specified, our algorithms are not limited to one specific data model or

query language, and could be applied to other query languages involving common

algebraic operations on collections such as selection, projection, join, aggregation,

union and difference.

Finally, since our algorithms consider in turn each transformation step in a

transformation pathway in order to compute data changes in a stepwise fash-

ion, they are useful not only in data warehousing environments, but also in any

data transformation and integration framework based on sequences of primitive

schema transformations, such as peer-to-peer and semi-structured data integra-

tion environments.

193

Chapter 8

Conclusions and Future Work

This thesis has discussed the use of the both-as-view (BAV) data integration

approach and the AutoMed toolkit for data warehousing. There are three main

advantages in using BAV and AutoMed for data warehousing: (i) the data source

wrappers translate each data source schema into its equivalent AutoMed repre-

sentation; any necessary inter-model translation then happens explicitly within

the AutoMed transformation pathways, under the control of the data warehouse

designer; (ii) if the data warehouse is to be redeployed on a platform with a

different data model, it is easy to reuse the previous data transformation and

implementation effort; (iii) evolutions of the data source schemas and the data

warehouse schema are readily supported. Point (i) was discussed in Chapter 3 of

this thesis, and points (ii) and (iii) were discussed in Chapter 4.

In order to use AutoMed for heterogenous data warehousing, we considered

the following four research problems in this thesis: how AutoMed metadata can

be used to express the schemas of a data warehouse and processes such as data

cleansing, transformation and integration; how schema evolution can be handled;

how AutoMed metadata can be used for data lineage tracing; and how AutoMed

metadata can be used for incremental view maintenance.

194

Our solutions to these problems are in the context of a heterogeneous data

warehouse environment where evolutions of the data source schemas and the data

warehouse schema may occur, including changes in the data models in which these

schemas have been represented.

In Chapter 2, we have given an overview of the major issues in data ware-

housing, which include the definition of a data warehouse, data warehouse archi-

tecture, data warehouse modelling, and data warehouse processes.

In Chapter 3, we have discussed how AutoMed metadata can be used in a

data warehousing environment. We have shown how AutoMed metadata can be

used to express the schemas of the data sources and of the data warehouse, and

to represent data warehouse processes such as data cleansing, transformation,

integration, summarisation and creating data marts.

In Chapter 4, we have described how AutoMed schema transformations can be

used to express the evolution of schemas in a data warehouse. We have shown how

the existing warehouse metadata and data can be evolved so that the previous

transformation, integration and data materialisation effort can be reused.

In Chapters 5 and 6, we have addressed the problem of data lineage tracing

(DLT), i.e. finding the derivation in the data sources of the tracing data in the

global database. In particular, Chapter 5 has given the definitions of data lineage

in the context of AutoMed, presented a method for tracing data lineage along

a materialised AutoMed transformation pathway and discussed the problem of

derivation ambiguity in data lineage tracing. Chapter 6 has then generalised the

DLT algorithms to handle virtual intermediate transformation steps, so that our

DLT process can be applied along a general transformation pathway. The main

contributions of our DLT approach are as follows:

Firstly, we have considered both why- and where-provenance using bag seman-

tics and have given the definition of affect-pool and origin-pool for data lineage

195

in the context of AutoMed. In contrast, the previous work of Cui et al only

considered why-provenance.

Secondly, we have developed a set of DLT formulae using virtual arguments to

handle virtual intermediate schema constructs and virtual lineage data. Based on

these formulae, we have presented algorithms which perform data lineage tracing

along a general schema transformation pathway.

In practice, we use virtual lineage data to express the intermediate lineage

data even if it is available. This can save in time and memory usage of the DLT

process, and makes our DLT process applicable in both materialised and virtual

data integration scenarios.

Although we have used IQLc as the query language in which transformations

are specified, our algorithms are not limited to one specific data model or query

language, and could be applied to other query languages involving common al-

gebraic operations on collections such as selection, projection, join, aggregation,

union and difference.

Thirdly, since our algorithms consider in turn each transformation step in a

transformation pathway in order to evaluate lineage data in a stepwise fashion,

they are useful not only in data warehousing environments, but also in any data

transformation and integration framework based on sequences of primitive schema

transformations.

In Chapter 7, we have developed a set of incremental view maintenance (IVM)

formulae. Based on these formulae, we have presented algorithms which perform

an IVM process along a schema transformation pathway. We have also discussed

approaches for avoiding materialisations in our IVM algorithms so as to reduce

storage overheads.

The major results of Chapter 3 have been published in [FP03b] and those of

Chapter 4 in [FP04]. The DLT algorithm of Chapter 5 has been published in

196

[FP02, FP03a] and that of Chapter 6 in [FP05]. The major results of Chapter 7

have been published in [Fan05].

Although developed in the context of AutoMed and a data warehousing envi-

ronment, the techniques described in this thesis can be applied in any materialised

data integration environment in which the data transformation and integration

logic is expressed by sequences of schema transformations. This approach is

likely to be beneficial in situations involving data transformation and integra-

tion across multiple data models and where both source and integrated schemas

may frequently evolve. Grid, peer-to-peer and semi-structured data integration

environments are likely to have these characteristics because they involve hetero-

geneous, distributed, autonomous data sources which are accessed and integrated

across a network. Both the metadata and the data of these data sources may au-

tonomously evolve. Also, different integrated schemas will be needed to meet the

needs of different end-users and applications, and these integrated schemas may

be dynamic and evolving e.g. new schemas created for new user requirements

and existing schemas changed for updated user requirements.

In more static and homogeneous data integration environments, traditional

approaches using one common data model with GAV or LAV views are likely to

be more appropriate because they have simpler metadata to manage — just one

common data model, and a set of view definitions rather than a set of schema

transformation pathways. Also, if there is not a requirement to support frequent

schema evolutions, processes such as global query evaluation, populating inte-

grated schemas and maintaining materialised views may be more efficient using

a set of view definitions directly compared with using a set of schema transfor-

mation pathways.

We are currently pursuing several directions of research building on the results

of this thesis:

197

1. Implementation of data warehouse maintenance

Materialised data warehouse views need to be maintained when the data

sources change, and much previous work has addressed this problem at the

data level, as did this thesis in Chapter 7. However, as discussed in Chapter

4, materialised views may also need to be modified if there is an evolution of

a data source schema. We have discussed methods for handling such schema

evolutions in that chapter. We now need to develop detailed algorithms.

We will then combine our view maintenance approaches at the data level

(from Chapter 7) and at the schema level (from Chapter 4), in order to

develop a toolkit to handle the general view maintenance problem of a data

warehouse.

2. Extension of our DLT & IVM approaches

The DLT and IVM approaches described in this thesis assume IQLc as the

query language. However, our approaches can be easily modified to handle

other query languages involving common algebraic operations on collec-

tions such as selection, projection, join, aggregation, union and difference.

Furthermore, our DLT and IVM approaches are both performed in a step-

wise fashion, and so any data transformation and integration framework

based on sequences of schema transformations can use these approaches,

e.g. [SKR01, YLT03]. In particular, we wish to extend our approaches to

handle multiple query languages and to apply to web-based data integration

environments.

3. Extension to peer-to-peer environments

So far, we have assumed a single global schema for the DLT and IVM

approaches described in this thesis. However, AutoMed can also be used

198

in peer-to-peer data integration settings [MP03b]. We plan to extend our

DLT and IVM algorithms to be applicable in peer-to-peer environments.

4. Application in biological data integration

It is planned to apply the results of this thesis in the ongoing projects

BioMap1 and ISPIDER2. BioMap is developing a warehouse integrating

protein family, structure, function and pathway/process data with gene ex-

pression and other experimental data, which aims to provide an integrated

sequence/structure/function resource that supports analysis, mining and

visualisation of functional genomics data. ISPIDER aims to provide an

integrated platform of proteomic data resources enabled as Grid and Web

services for the storage, dissemination and management of proteomic data,

and to produce appropriate middleware technologies for distributed query-

ing, workflows and other integrated data analysis tasks across this range of

proteome databases.

Reference [MZR+05] gives an initial discussion of how the AutoMed toolkit

can be used for integrating heterogeneous biological data sources, both for

materialised integration as in BioMap and for virtual integration as in ISPI-

DER. Biological data sources typically have a very high degree of hetero-

geneity in terms of the type of data model used, the schema design within

a given data model, as well as incompatible formats and naming of val-

ues. Reference [MZR+05] identifies that the particular strengths of using

AutoMed for biological data integration are that it supports reversible, ex-

tensible transformations from data source schemas to an integrated schema,

and enables both virtual and materialised integration.

1See http://www.biochem.ucl.ac.uk/bsm/biomap/index.html
2See http://www.ispider.man.ac.uk/

199

It is expected that the results of this thesis, and also extensions 1-3 above,

will benefit the above two projects by enabling incremental view mainte-

nance for the BioMap warehouse and by enabling data lineage tracing for

both BioMap and ISPIDER. Moreover, this will be in a context where evo-

lutions of the data source schemas and the integrated schemas are readily

supported, thus accommodating future changes of the BioMap and ISPI-

DER data sources and of their integrated schemas.

200

Bibliography

[AASY97] Divyakant Agrawal, Amr El Abbadi, Ambuj K. Singh, and Tolga

Yurek. Efficient view maintenance at data warehouses. In Proc. of

ACM SIGMOD’97, pages 417–427. ACM Press, 1997.

[AFP03] M. Akhtar Ali, Alvaro A. A. Fernandes, and Norman W. Paton.

MOVIE: An incremental maintenance system for materialized ob-

ject views. Data & Knowledge Engineering, 47(2):131–166, 2003.

[Alb91] J. Albert. Algebraic properties of bag data types. In Proc. of

International Conference on Very Large Data Bases (VLDB’91),

pages 211–219. Morgan Kaufmann, 1991.

[ALP91] J. Andany, M. Léonard, and C. Palisser. Management of schema

evolution in databases. In Proc. of International Conference on

Very Large Data Bases (VLDB’91), pages 161–170. Morgan Kauf-

mann, 1991.

[AMGF05] M. B. Al-Mourad, W. Alex Gray, and N. Fiddian. Semantically rich

materialisation rules for integrating heterogeneous databases. In

Proc. of British National Conference on Databases (BNCOD’05),

LNCS 3567, pages 60–69, 2005.

201

[BB99] P. A. Bernstein and T. Bergstraesser. Meta-data support for data

transformations using microsoft repository. IEEE Data Engineering

Bulletin, 22(1):9–14, 1999.

[BCDS01] Angela Bonifati, Fabio Casati, Umeshwar Dayal, and Ming-Chien

Shan. Warehousing workflow data: Challenges and opportunities.

In Proc. of International Conference on Very Large Data Bases

(VLDB’01), pages 649–652, 2001.

[BCL89] José A. Blakeley, Neil Coburn, and Per-Åke Larson. Updating

derived relations: Detecting irrelevant and autonomously com-

putable updates. ACM Transactions on Database Systems (TODS),

14(3):369–400, 1989.

[BCRP98] G.S. Blair, G. Coulson, P. Robin, and M. Papathomas. An archi-

tecture for next generation middleware. In Proc. of the IFIP Inter-

national Conference on Distributed Systems Platforms and Open

Distributed Processing, London, 1998. Springer-Verlag.

[Bek99] Lars Bekgaard. Event-Entity-Relationship modeling in data ware-

house environments. In Proc. of International Workshop on Data

Warehousing and OLAP (DOLAP’99), pages 9–14. ACM, 1999.

[Bel96] Z. Bellahsene. View mechanism for schema evolution in object-

oriented DBMS. In Proc. of British National Conference on Data-

bases (BNCOD’96), LNCS 1094, pages 18–35, Springer, 1996.

[Ben99] B. Benatallah. A unified framework for supporting dynamic schema

evolution in object databases. In Proc. of ER’99, LNCS 1728, pages

16–30, Springer, 1999.

202

[BGF02] M. Burgess, W. Alex Gray, and N. Fiddian. Establishing a tax-

onomy of quality for use in information filtering. In Proc. of

British National Conference on Databases (BNCOD’02), LNCS

2405, pages 103–113, 2002.

[BIG94] J. M. Blanco, A. Illarramendi, and A. Goñi. Building a federated

database system: An approach using a knowledge base system.

International Journal of Intelligent and Cooperative Information

Systems, 3(4):415–455, 1994.

[BKL+04] M. Boyd, S. Kittivoravitkul, C. Lazanitis, P.J. McBrien, and N. Ri-

zopoulos. AutoMed: A BAV data integration system for heteroge-

neous data sources. In Proc. of International Conference on Ad-

vanced Information Systems Engineering (CAiSE’04), LNCS 3084,

pages 82–97, Springer-Verlag, 2004.

[BKT00] P. Buneman, S. Khanna, and W.C. Tan. Data provenance: some

basic issues. In Proc. of 20th Conference in Foundations of Software

Technology and Theoretical Computer Science, (FST TCS) New

Delhi, India, LNCS 1974, pages 87–93. Springer, 2000.

[BKT01] P. Buneman, S. Khanna, and W.C. Tan. Why and Where: A

characterization of data provenance. In Proc. of 8th International

Conference in Database Theory - ICDT’01, London, UK, LNCS

1973, pages 316–330. Springer, 2001.

[BLT86] José A. Blakeley, Per-Åke Larson, and Frank Wm. Tompa. Effi-

ciently updating materialized views. In Carlo Zaniolo, editor, Proc.

of ACM SIGMOD’86, pages 61–71. ACM Press, 1986.

203

[BMT02] M. Boyd, P. McBrien, and N. Tong. The AutoMed schema in-

tegration repository. In Proc. of British National Conference on

Databases (BNCOD’02), LNCS 2405, pages 42–45. Springer, 2002.

[BSH99] M. Blaschka, C. Sapia, and G. Höfling. On schema evolution in

multidimensional databases. In Proc. of Data Warehousing and

Knowledge Discovery (DaWaK’99), LNCS 1767, pages 153–164,

Springer, 1999.

[BTM01] Nguyen Thanh Binh, A. Min Tjoa, and Oscar Mangisengi. Meta

Cube-X: An XML metadata foundation for interoperability search

among web data warehouses. In Proc. of Design and Management

of Data Warehouses (DMDW’01), page 8, 2001.

[Bun94] P. Buneman et al. Comprehension syntax. SIGMOD Record,

23(1):87–96, 1994.

[CB02] Liane Carneiro and Angelo Brayner. X-META: A methodology for

data warehouse design with metadata management. In Proc. of

Design and Management of Data Warehouses (DMDW’02), pages

13–22, 2002.

[CD97] S. Chaudhuri and U. Dayal. An overview of data warehousing and

OLAP technology. SIGMOD Record, 26(1):65–74, 1997.

[CEM01] L. Capra, W. Emmerich, and C. Mascolo. Reflective middleware

solutions for context-aware applications. In Proc. of Metalevel Ar-

chitectures and Separation of Crosscutting Concerns, Third Inter-

national Conference, REFLECTION 2001, LNCS 2192, pages 126–

133. Springer, 2001.

204

[CGL+96] L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and H. Trickey.

Algorithms for deferred view maintenance. In Proc. of ACM SIG-

MOD’96, pages 469–480, 1996.

[CGL+99] D. Calvanese, G. D. Giacomo, M. Lenzerini, D. Nardi, and

R. Rosati. A principled approach to data integration and reconcili-

ation in data warehousing. In Proc. of Design and Management of

Data Warehouses (DMDW’99), page 16, 1999.

[Cui01] Y. Cui. Lineage tracing in data warehouses. PhD thesis, Computer

Science Department, Stanford University, 2001.

[CW91] S. Ceri and J. Widom. Deriving production rules for incremental

view maintenance. In Proc. of International Conference on Very

Large Data Bases (VLDB’91), pages 577–589. Morgan Kaufmann,

1991.

[CW00a] Y. Cui and J. Widom. Practical lineage tracing in data ware-

houses. In Proc. of International Conference on Data Engineering

(ICDE’00), pages 367–378. IEEE Computer Society, 2000.

[CW00b] Y. Cui and J. Widom. Storing auxiliary data for efficient mainte-

nance and lineage tracing of complex views. In Proc. of Design and

Management of Data Warehouses (DMDW’00), page 11, 2000.

[CW01] Y. Cui and J. Widom. Lineage tracing for general data ware-

house transformations. In Proc. of International Conference on

Very Large Data Bases (VLDB’01), pages 471–480. Morgan Kauf-

mann, 2001.

205

[CWW00] Y. Cui, J. Widom, and J.L. Wiener. Tracing the lineage of view

data in a warehousing environment. ACM Transactions on Data-

base Systems (TODS), 25(2):179–227, 2000.

[Don99] Guozhu Dong. Incremental maintenance of recursive views: A sur-

vey. In A Gupta and I. S. Mumick, editors, Materialized Views:

Techniques, Implementations, and Applications, pages 159–162.

The MIT Press, London, 1999.

[DZR99] Lingli Ding, Xin Zhang, and Elke A. Rundensteiner. The mre

wrapper approach: Enabling incremental view maintenance of

data warehouses defined on multi-relation information sources. In

Proc. of International Workshop on Data Warehousing and OLAP

(DOLAP’99), pages 30–35. ACM, 1999.

[ECL03] H. Engstrom, S. Chakravarthy, and B. Lings. Maintenance pol-

icy selection in heterogeneous data warehouse environments: a

heuristics-based approach. In Proc. of International Workshop on

Data Warehousing and OLAP (DOLAP’03), pages 71–78. ACM

Press, 2003.

[Emm00] W. Emmerich. Software engineering and middleware: A roadmap.

In Proc. of 22th International Conference on Software Engineering

(ICSE2000), pages 117–129. ACM Press, 2000.

[Eng02] Henrik Engstrom. Selection of Maintenance Policies for a Data

Warehousing Environment. PhD thesis, University of Exeter, 2002.

[Fan05] H. Fan. Using schema transformation pathways for incremental

view maintenance. In Proc. of Data Warehousing and Knowledge

Discovery (DaWaK’05), LNCS 3589, pages 126–135, 2005.

206

[FJS97] C. Faloutsos, H.V. Jagadish, and N.D. Sidiropoulos. Recovering

information from summary data. In Proc. of International Confer-

ence on Very Large Data Bases (VLDB’97), pages 36–45. Morgan

Kaufmann, 1997.

[FKP04] R. Fagin, P.G. Kolaitis, L. Popa, and W.C. Tan. Composing

Schema Mappings: Second-Order Dependencies to the Rescue.

In Proc. of ACM Symposium on Principles of Database Systems

(PODS’04), pages 83–94, ACM, 2004.

[FP02] H. Fan and A. Poulovassilis. Tracing data lineage using schema

transformation pathways. In Proc. of Workshop on Knowledge

Transformation for the Semantic Web (with ECAI’02), Lyon, 2002.

[FP03a] H. Fan and A. Poulovassilis. Tracing data lineage using schema

transformation pathways. In B.Omelayenko and M.Klein, editors,

Knowledge Transformation for the Semantic Web, volume 95 of

Frontiers in Artificial Intelligence and Applications, pages 64–79.

IOS Press, 2003.

[FP03b] H. Fan and A. Poulovassilis. Using AutoMed metadata in data

warehousing environments. In Proc. of International Workshop on

Data Warehousing and OLAP (DOLAP’03), pages 86–93. ACM

Press, 2003.

[FP04] H. Fan and A. Poulovassilis. Schema evolution in data warehousing

environments — a schema transformation-based approach. In Proc.

of International Conference on Conceptual Modeling (ER’04), vol-

ume 3288 of LNCS, pages 639–653, Springer, 2004.

207

[FP05] H. Fan and A. Poulovassilis. Using schema transformation path-

ways for data lineage tracing. In Proc. of British National Con-

ference on Databases (BNCOD’05), LNCS 3567, pages 133–144,

2005.

[GFS+01a] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.A. Saita.

Declarative data cleaning: Language, model, and algorithms.

In Proc. of International Conference on Very Large Data Bases

(VLDB’01), pages 371–380. Morgan Kaufmann, 2001.

[GFS+01b] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.A.

Saita. Improving data cleaning quality using a data lineage fa-

cility. In Proc. of Design and Management of Data Warehouses

(DMDW’01), page 3, 2001.

[GFSS00] Helena Galhardas, Daniela Florescu, Dennis Shasha, and Eric Si-

mon. AJAX: An extensible data cleaning tool. In Proc. of ACM

SIGMOD’00, volume 29, page 590. ACM, 2000.

[GGMS97] D Gluche, T. Grust, C. Mainberger, and M. H. Scholl. Incremental

updates for materialized oql views. In Proc. of International Con-

ference on Deductive and Object-Oriented Databases (DOOD’97),

pages 52–66. Springer, 1997.

[GJM96] Ashish Gupta, H. V. Jagadish, and Inderpal Singh Mumick. Data

integration using self-maintainable views. In Extending Database

Technology, pages 140–144, 1996.

[GL95] T. Griffin and L. Libkin. Incremental maintenance of views with

duplicates. In Proc. of ACM SIGMOD’95, pages 328–339. ACM

Press, 1995.

208

[GM99] Ashish Gupta and Inderpal Singh Mumick. Maintenance polices.

In A Gupta and I. S. Mumick, editors, Materialized Views: Tech-

niques, Implementations, and Applications, pages 9–11. The MIT

Press, London, 1999.

[GMS93] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian.

Maintaining views incrementally. In Proc. of ACM SIGMOD’93,

pages 157–166. ACM Press, 1993.

[GR98] M. Golfarelli and S. Rizzi. A methodological framework for data

warehouse design. In Proc. of International Workshop on Data

Warehousing and OLAP (DOLAP’98), pages 3–9. ACM, 1998.

[HA01] H. Hinrichs and T. Aden. An ISO 9001: 2000 compliant quality

management system for data integration in data warehouse sys-

tems. In Proc. of Design and Management of Data Warehouses

(DMDW’01), page 1, 2001.

[HLV00] Bodo Hüsemann, Jens Lechtenbörger, and Gottfried Vossen. Con-

ceptual data warehouse modeling. In Proc. of Design and Manage-

ment of Data Warehouses (DMDW’00), page 6, 2000.

[HMT00] Thanh N. Huynh, Oscar Mangisengi, and A. Min Tjoa. Metadata

for object-relational data warehouse. In Proc. of Design and Man-

agement of Data Warehouses (DMDW’00), page 3, 2000.

[HQGW93] N. I. Hachem, K. Qiu, M. A. Gennert, and M. O. Ward. Managing

derived data in the Gaeas scientific DBMS. In Proc. of Interna-

tional Conference on Very Large Data Bases (VLDB’93), pages

1–12. Morgan Kaufmann, 1993.

209

[Huy97] Nam Huyn. Multiple-view self-maintenance in data warehousing

environments. In Proc. of International Conference on Very Large

Data Bases (VLDB’97), pages 26–35. Morgan Kaufmann, 1997.

[Inm02] W. H. Inmon. Building The Data Warehouse. John Wiley & Sons,

third edition, March 2002.

[JPZ03] E. Jasper, A. Poulovassilis, and L. Zamboulis. Processing IQL

queries and migrating data in the AutoMed toolkit. Technical Re-

port 20, Automed Project, 2003.

[JTMP04] E. Jasper, N. Tong, P. McBrien, and A. Poulovassilis. View genera-

tion and optimisation in the AutoMed data integration framework.

In Proc. of 6th Baltic Conference on Databases and Information

Systems, 2004.

[KLM+97] Akira Kawaguchi, Daniel F. Lieuwen, Inderpal Singh Mumick, Dal-

lan Quass, and Kenneth A. Ross. Concurrency control theory

for deferred materialized views. In Proc. of International Confer-

ence on Database Theory - ICDT ’97, LNCS 1186, pages 306–320.

Springer, 1997.

[KR02] A. Koeller and E. A. Rundensteiner. Incremental maintenance of

schema-restructuring views. In Proc. of EDBT’02, LNCS 2287,

pages 354–371, Springer, 2002.

[Lan02] Paul Lane. Oracle9i Data Warehousing Guide, Release 2(9.2). Or-

acle Corporation, March 2002.

210

[Len02] M. Lenzerini. Data integration: A theoretical perspective. In Proc.

of ACM Symposium on Principles of Database Systems (PODS’02),

pages 233–246, ACM, 2002.

[Lev00] A. Levy. Answering queries using views: A survey. In The VLDB

Journal, 10(4), pages 270–294, 2001.

[LLL00] Mong-Li Lee, Tok Wang Ling, and Wai Lup Low. Intelliclean: a

knowledge-based intelligent data cleaner. In Knowledge Discovery

and Data Mining, pages 290–294, 2000.

[LLL01] Wai Lup Low, Mong Li Lee, and Tok Wang Ling. A knowledge-

based framework for duplicates elimination. Information Systems:

Special Issue on Data Extraction, Cleaning and Reconciliation,

28(8), December 2001. Elsevier Science.

[LLWO99] W. Liang, H. Li, H. Wang, and M. E. Orlowska. Making multiple

views self-maintainable in a data warehouse. Data & Knowledge

Engineering, 30(2):121–134, 1999.

[LNE89] J.A. Larson, S.B. Navathe, and R. Elmasri. A theory of at-

tribute equivalence in databases with application to schema inte-

gration. IEEE Transcations on Softerware Engineering, 15(4):449–

463, 1989.

[LSS93] L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian. On the

logical foundations of schema integration and evolution in heteroge-

neous database systems. In Proc. of the Third International Con-

ference in Deductive and Object-Oriented Databases (DOOD’93),

LNCS 760, pages 81–100, Springer-Verlag, 1993.

211

[LSS99] L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. On ef-

ficiently implementing SchemaSQL on an SQL database system.

In Proc. of International Conference on Very Large Data Bases

(VLDB’99), pages 471–482. Morgan Kaufmann, 1999.

[LSS01] L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. Schemasql:

An extension to sql for multidatabase interoperability. In ACM

Transactions on Database Systems (TODS),Volume 26 , Issue 4,

pages 476 – 519. ACM Press, 2001.

[MH03] J. Madhavan and A.Y. Halevy. Composing mappings among data

sources. In Proc. of International Conference on Very Large Data

Bases (VLDB’03), pages 572–583, Morgan Kaufmann, 2003.

[Mil98] Renée J. Miller. Using schematically heterogeneous structures. In

Proc. of ACM SIGMOD’98, pages 189–200. ACM Press, 1998.

[MK00] D. L. Moody and M. A. R. Kortink. From enterprise models to

dimensional models: a methodology for data warehouse and data

mart design. In Proc. of Design and Management of Data Ware-

houses (DMDW’00), page 5, 2000.

[MP98] P. McBrien and A. Poulovassilis. A formalisation of semantic

schema integration. Information Systems, 23(5):304–334, 1998.

[MP99a] P. McBrien and A. Poulovassilis. Automatic migration and wrap-

ping of database applications - a schema transformation approach.

In Proc. of International Conference on Conceptual Modeling

(ER’99), LNCS 1728, pages 96–113. Springer, 1999.

212

[MP99b] P. McBrien and A. Poulovassilis. A uniform approach to inter-

model transformations. In Proc. of International Conference on Ad-

vanced Information Systems Engineering (CAiSE’99), LNCS 1626,

pages 333–348. Springer, 1999.

[MP01] P. McBrien and A. Poulovassilis. A semantic approach to inte-

grating XML and structured data sources. In Proc. of Interna-

tional Conference on Advanced Information Systems Engineering

(CAiSE’01), volume 2068 of LNCS, pages 330–345. Springer, 2001.

[MP02] P. McBrien and A. Poulovassilis. Schema evolution in heteroge-

neous database architectures, a schema transformation approach.

In Proc. of International Conference on Advanced Information

Systems Engineering (CAiSE’02), LNCS 2348, pages 484–499.

Springer, 2002.

[MP03a] P. McBrien and A. Poulovassilis. Data integration by bi-directional

schema transformation rules. In Proc. of International Conference

on Data Engineering (ICDE’03), pages 227–238, IEEE Computer

Society, 2003.

[MP03b] P. McBrien and A. Poulovassilis. Defining peer-to-peer data inte-

gration using both as view rules. In Proc. of Databases, Informa-

tion Systems, and Peer-to-Peer Computing International Workshop

(DBISP2P), LNCS 2944, pages 91–107, Springer, 2003.

[MS01] G. Moro and C. Sartori. Incremental maintenance of multi-source

views. In Proc. of Australasian Database Conference (ADC’01),

pages 13–20, 2001.

213

[MSR99] Robert Müller, Thomas Stöhr, and Erhard Rahm. An integrative

and uniform model for metadata management in data warehous-

ing environments. In Proc. of Design and Management of Data

Warehouses (DMDW’99), page 12, 1999.

[MZR+05] M. Maibaum, L. Zamboulis, G. Rimon, C. Orengo, N. Martin,

and A. Poulovassilis. Cluster based integration of heterogeneous

biological databases using the AutoMed toolkit. In Proc. of Data

Integration in the Life Sciences (DILS’05), LNCS 3615, pages 191–

207, 2005.

[PM98] A. Poulovassilis and P. McBrien. A general formal framework

for schema transformation. Data and Knowledge Engineering,

28(1):47–71, 1998.

[Pou04] A. Poulovassilis. A Tutorial on the IQL Query Language. Technical

Report 28, Automed Project, 2004.

[PS97] A. Poulovassilis and C. Small. Formal foundations for optimis-

ing aggregation functions in database programming languages. In

Proc. of Database Programming Languages, International Work-

shop (DBPL’97), Springer-Verlag LNCS 1369, pages 299–318,

1997.

[PSCP02] T. Palpanas, R. Sidle, R. Cochrane, and H. Pirahesh. Incremental

maintenance for non-distributive aggregate functions. In Proc. of

International Conference on Very Large Data Bases (VLDB’02),

LNCS 2590, pages 802-813, 2002.

[QGMW96] D. Quass, A. Gupta, I.S. Mumick, and J. Widom. Making views

self-maintainable for data warehousing. In Proc. of Conference

214

on Parallel and Distributed Information Systems (PDIS’96), pages

158–169, 1996.

[Qua96] D. Quass. Maintenance expressions for views with aggregation. In

Proc of Workshop on Materialized Views: Techniques and Applica-

tions (VIEW’96), pages 110–118, 1996.

[QW91] X. Qian and G. Wiederhold. Incremental recomputation of active

relational expressions. Knowledge and Data Engineering, 3(3):337–

341, 1991.

[QW97] Dallan Quass and Jennifer Widom. On-line warehouse view main-

tenance. In Joan Peckham, editor, Proc ACM SIGMOD’97, pages

393–404. ACM Press, 1997.

[RD00] Erhard Rahm and Hong Hai Do. Data cleaning: Problems and

current approaches. IEEE Data Engineering Bulletin, 23(4):3–13,

2000.

[RH01] Vijayshankar Raman and Joseph M. Hellerstein. Potter’s Wheel:

An interactive data cleaning system. In The VLDB Journal, pages

381–390, 2001.

[Riz04] N. Rizopoulos. Automatic discovery of semantic relationships be-

tween schema elements. In Proc. of International Conference on

Enterprise Information Systems (ICEIS’04), pages 3–8, 2004.

[SG97] L. Serafini and C. Ghidini. Context based semantics for informa-

tion integration. In Sasa Buvač and Lucia Iwańska, editors, Work-

ing Papers of the AAAI Fall Symposium on Context in Knowledge

215

Representation and Natural Language, pages 152–160, Menlo Park,

California, 1997. American Association for Artificial Intelligence.

[SKR01] H. Su, H. Kuno, and E. A. Rudensteiner. Automating the transfor-

mation of XML documents. In Proc. of International Workshop on

Web Information and Data Management (WIDM’01), pages 68–75.

ACM, 2001.

[SL90] Amit P. Sheth and James A. Larson. Federated database systems

for managing distributed, heterogeneous, and autonomous data-

bases. ACM Computing Surveys, 22(3):183–236, 1990.

[TBC99] Nectaria Tryfona, Frank Busborg, and Jens G. Borch Chris-

tiansen. starER: A conceptual model for data warehouse design. In

Proc. of International Workshop on Data Warehousing and OLAP

(DOLAP’99), pages 3–8. ACM, 1999.

[The02] D. Theodoratos. Semantic integration and querying of hetero-

geneous data sources using a hypergraph data model. In Proc.

of British National Conference on Databases (BNCOD’02), LNCS

2405, pages 166–182, 2002.

[TKS01] A. Tsois, N. Karayannidis, and T. K. Sellis. MAC: Conceptual data

modeling for OLAP. In Proc. of Design and Management of Data

Warehouses (DMDW’01), page 5, 2001.

[Ton03] N. Tong. Database schema transformation optimisation techniques

for the AutoMed system. In Proc. of British National Conference

on Databases (BNCOD’03), LNCS 2712, pages 157–171, Springer,

2003.

216

[VM97] M. W. Vincent and M. Mohania. A self-maintainable view mainte-

nance technique for data warehouses. In Proc. of International Con-

ference on Management of Data (COMAD’97), pages 7–22, 1997.

[VMP03] Y. Velegrakis, R.J. Miller, and L. Popa. Mapping adaptation under

evolving schemas. In Proc. of International Conference on Very

Large Data Bases (VLDB’03), pages 584-595, Morgan Kaufmann,

2003.

[VSS02] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos. Conceptual model-

ing for ETL processes. In Proc. of International Workshop on Data

Warehousing and OLAP (DOLAP’02), pages 14–21. ACM, 2002.

[VVSK00] Panos Vassiliadis, Zografoula Vagena, Spiros Skiadopoulos, and

Nikos Karayannidis. ARKTOS: A tool for data cleaning and trans-

formation in data warehouse environments. IEEE Data Engineering

Bulletin, 23(4):42–47, 2000.

[Wid95] Jennifer Widom. Research problems in data warehousing. In Proc.

of CIKM ’95, the International Conference on Information and

Knowledge Management, Baltimore, Maryland, USA, pages 25–30.

ACM, 1995.

[WS97] A. Woodruff and M. Stonebraker. Supporting fine-grained data lin-

eage in a database visualization environment. In Proc. of Interna-

tional Conference on Data Engineering (ICDE’97), pages 91–102.

IEEE Computer Society, 1997.

[YLT03] X. Yang, M.L. Lee, and T.W.Ling. Resolving structural conflicts in

the integration of XML schemas: A semantic approach. In Proc. of

217

International Conference on Conceptual Modeling (ER’03), LNCS

2813, pages 520–533, 2003.

[Zam04] L. Zamboulis. XML data integration by graph restructuring. In

Proc. of British National Conference on Databases (BNCOD’04),

LNCS 3112, pages 57–71, Springer, 2004.

[ZGMHW95] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View

maintenance in a warehousing environment. In Proc. of ACM SIG-

MOD’95, pages 316–327, 1995.

[ZGMW96] Yue Zhuge, Hector Garcia-Molina, and Janet L. Wiener. The strobe

algorithms for multi-source warehouse consistency. In Proc. of the

Fourth International Conference on Parallel and Distributed Infor-

mation Systems (PDIS’96), pages 146–157. IEEE Computer Soci-

ety, 1996.

[ZGMW98] Yue Zhuge, Hector Garcia-Molina, and Janet L. Wiener. Con-

sistency algorithms for multi-source warehouse view maintenance.

Distributed and Parallel Databases, 6(1):7–40, 1998.

[ZP04] L. Zamboulis and A. Poulovassilis. Using AutoMed for XML data

transformation and integration. In proc. of International Workshop

on Data Integration over the Web (DIWeb’04), pages 58–69, 2004.

218

Appendix A

Proof of Theorem 1

For a tracing tuple t in the view v = q(D) over a sequence of bags D = 〈D1, ..., Dn〉,

the tracing queries TQAP
D

(t) and TQOP
D

(t) in Theorem 1 satisfy Definition 1 and 2

respectively. That is, letting qAP
D

= 〈Tap
1 , ..., Tap

n 〉 and qOP
D

= 〈Top
1 , ..., Top

n 〉 denote

the results of TQAP
D

(t) and TQOP
D

(t) respectively, then the following hold:

1. T
ap
i ⊆ Di and T

op
i ⊆ Di, for all 1 ≤ i ≤ n.

2. q(qAP
D

) and q(qOP
D

) evaluate to a bag, v|t, consisting of all copies of t in v1

(this corresponds to condition (a) of Definition 1 and 2).

3. ∀t∗ ∈ T
ap
i , q(Tap

1 , ..., Tap
i |t

∗, ..., Tap
n) 6= Ø; and

∀t∗ ∈ T
op
i , q(Top

1 , ..., Top
i |t

∗, ..., Top
n) 6= Ø

(this corresponds to condition (c) of Definition 1 and 2).

4.

(a) ∀〈T′1, ..., T
′
n〉 satisfying 1-3, T′i ⊆ T

ap
i for all 1 ≤ i ≤ n

(corresponding to condition (b) of Definition 1); and

(b) ∀t∗ ∈ T
op
i ,

t∗ /∈ (Di −− T
op
i) and q(Top

1 , ..., [x|x← T
op
i ;x 6= t∗], ..., Top

n) 6= v|t

(corresponding to conditions (b) and (d) of Definition 2).

1We use v|t to denote all copies of t in v.

219

Proof of t1:

If q = D1 ++ . . . ++ Dn,

then TQAP
D

(t) = TQOP
D

(t) = 〈D1|t, . . . , Dn|t〉

Suppose T∗ = 〈T∗1, ..., T
∗
n〉 = 〈D1|t, . . . , Dn|t〉

1. Clearly, T∗i ⊆ Di for all 1 ≤ i ≤ n;

2. q(T∗) = q(T∗1, ..., T
∗
n) = (D1|t) ++ ... ++ (Dn|t) = v|t;

3. ∀t∗ ∈ T∗i , q(T∗1, ..., T
∗
i |t

∗, ..., T∗n) = T∗1 ++ ... ++ T∗i ++ ... ++ T∗n

= (D1|t) ++ ... ++ (Dn|t) 6= Ø, since t ∈ v;

4. (a) ∀T∗′i satisfying 1-3, if T∗′i * T∗i for some i, then:

Either there exists t′ ∈ T∗′i such that t′ 6= t,

⇒ t′ ∈ q(T∗1, ..., T
∗′
i, ..., T

∗
n) ⇒ q(T∗1, ..., T

∗′
i, ..., T

∗
n) 6= v|t, violating 2;

Or (countNum t T∗′i) > (countNum t T∗i)
2, and since

(countNum t T∗i) = (countNum t Di),

⇒ (countNum t T∗′i) > (countNum t Di), violating 1.

Therefore T∗′i ⊆ T∗i for all 1 ≤ i ≤ n.

(b)Di −− T∗i = Di −− Di|t = [x|x← Di;x 6= t]

Therefore, ∀t∗ ∈ T∗i , t∗ /∈ (Di −− T∗i).

Also, [x|x← T∗i ;x 6= t∗] = [x|x← T∗i ;x 6= t] = Ø.

Suppose v’ = q(T∗1, ..., [x|x← T∗i ;x 6= t∗], ..., T∗n) = q(T∗1, ...,Ø, ..., T∗n),

then countNum t v’ = (countNum t v)− (countNum t T∗i)

⇒ (countNum t v’) < (countNum t v), if countNum t T∗i > 0.

Therefore, in general, q(T∗1, ..., [x|x← T∗i ;x 6= t∗], ..., T∗n) 6= v|t

Proof of t2:

If q = D1 −− D2

then TQAP
D

(t) = 〈D1|t, D2〉

and TQOP
D

(t) = 〈D1|t, D2|t〉

2Function countNum a D returns the number of occurrences of the data item a in the bag
D, i.e. countNum a D = count [x|x← D; x = a].

220

Let qAP
D

= 〈Tap
1 , Tap

2 〉 = 〈D1|t, D2〉

and qOP
D

= 〈Top
1 , Top

2 〉 = 〈D1|t, D2|t〉

1. Clearly, Tap
i ⊆ Di and T

op
i ⊆ Di for all 1 ≤ i ≤ n;

2. q(qAP
D

) = D1|t−− D2 = (D1 −− D2)|t = v|t

q(qOP
D

) = D1|t−− D2|t = (D1 −− D2)|t = v|t;

3. ∀t∗ ∈ T
ap
1 , it must be the case that t∗ = t,

⇒ T
ap
1 |t

∗ = T
ap
1 |t = D1|t

Therefore q(Tap
1 |t

∗, Tap
2) = D1|t−− D2 = (D1 −− D2)|t = v|t 6= Ø

Similarly, ∀t′ ∈ T
ap
2 , we have q(Tap

1 , Tap
2 |t

′) = D1|t−− D2|t
′ 6= Ø

For qOP
D

, the proof is similar.

4. (a) For any 〈Tap′

1 , Tap′

2 〉 satisfying 1-3,

because T
ap
1 = D1|t and T

ap′

1 ⊆ D1,

if Tap′

1 * T
ap
1 , then there exists t′ ∈ T

ap′

1 such that t′ 6= t.

Because q(〈Tap′

1 , Tap′

2 〉) = T
ap′

1 −− T
ap′

2 = v|t,

therefore t′ ∈ T
ap′

2 and q(〈[t′], Tap′

2 〉) = [t′]−− T
ap′

2 = Ø, violating 3.

Therefore T
ap′

1 ⊆ T
ap
1 .

Because T
ap
2 = D2 and T

ap′

2 ⊆ D2, we have T
ap′

2 ⊆ T
ap
2 .

(b) ∀t∗ ∈ T
op
i , we have t∗ = t.

Because T
op
i = Di|t,

Di −− T
op
i = Di −− Di|t = [x|x← Di;x 6= t]

Therefore t∗ /∈ (Di −− T
op
i).

Also, because t∗ = t,

[x|x← T
op
i ;x 6= t∗] = [x|x← T

op
i ;x 6= t] = Ø

Therefore q([x|x← T
op
1 ;x 6= t∗], Top

2) = q(Ø, Top
2) = Ø 6= v|t

and q(Top
1 , [x|x← T

op
2 ;x 6= t∗]) = q(Top

1 ,Ø) = T
op
1 = D1|t 6= v|t in general.

221

Proof of t3:

If q = group D

then TQAP
D

(t) = TQOP
D

(t) = [x|x← D; first x = first t]

Let T∗ = qAP
D

= qOP
D

= [x|x← D; first x = first t]

1. Clearly T∗ ⊆ D.

2. q(T∗) = group [x|x← D; first x = first t]

= [x|x← group D;x = t] = v|t

3. ∀t∗ ∈ T∗, q(T∗|t∗) = group (T∗|t∗) 6= Ø

4. (a) Suppose T∗′ satisfies 1-3.

If T∗′ * T∗, then there exists t∗′ ∈ T∗′ such that (first t∗′) 6= (first t)

⇒ there exists t′ ∈ q(T∗′) = group T∗′ such that (first t′) 6= (first t)

⇒ q(T∗′) 6= v|t, violating 2

Therefore T∗′ ⊆ T∗

(b) Because D−− T∗ = [x|x← D; first x 6= first t], then

∀t∗ ∈ T∗, t∗ ∈ [x|x← D; first x = first t] and t∗ /∈ (D−− T∗)

Again, because q([x|x← T∗;x 6= t∗]) = group (T∗ −− T∗|t∗) 6= group T∗

then q([x|x← T∗;x 6= t∗]) 6= v|t

Proof of t4:

If: q = sort D/ distinct D

then TQAP
D

(t) = TQOP
D

(t) = D|t

For q = sort D:

1. T∗ = qAP
D

= qOP
D

= D|t ⊆ D;

2. q(T∗) = sort D|t = v|t;

3. ∀t∗ ∈ T∗, t∗ = t, and therefore

q(T∗|t∗) = sort T∗|t 6= Ø;

222

4. (a) Suppose T∗′ satisfies 1-3.

If T∗′ * T∗, then there exists t′ ∈ T∗′ such that t′ 6= t

⇒ t′ ∈ q(T∗′) = sort T∗′

⇒ q(T∗′) 6= v|t, violating 2

Therefore T∗′ ⊆ T∗

(b) Because D−− T∗ = [x|x← D;x 6= t] and ∀t∗ ∈ T∗, t∗ = t,

therefore t∗ /∈ (D−− T∗).

Also, because

q([x|x← T∗;x 6= t∗]) = q(T∗ −− T∗|t∗) = sort (T∗ −− T∗|t∗) 6= sort T∗

Therefore q([x|x← T∗;x 6= t∗]) 6= v|t

The proof of q = distinct D is similar.

Proof of t5:

If: q = max D / min D

then TQAP
D

(t) = D

and TQOP
D

(t) = D|t

For q = max D:

1. qAP
D

= D ⊆ D and qOP
D

= D|t ⊆ D .

2. q(qAP
D

) = q(D) = t

q(qOP
D

) = q(D|t) = max t = t

3. ∀t∗ ∈ qAP
D

, q(qAP
D
|t∗) = max D|t∗ 6= Ø

∀t∗ ∈ qOP
D

, q(qOP
D
|t∗) = max D|t∗ 6= Ø

4. (a) Clearly, qAP
D

= D is the maximal subset of D.

(b) Because D−− qOP
D

= [x|x← D;x 6= t] and ∀t∗ ∈ qOP
D

, t∗ = t

then t∗ /∈ (D−− qOP
D

) and q([x|x← qOP
D

;x 6= t]) = q(Ø) 6= t

The proof of q = min D is similar.

223

Proof of t6:

If: q = sum D

then TQAP
D

(t) = D

and TQOP
D

(t) = [x|x← D; x 6= 0]

1. qAP
D

= D ⊆ D and qOP
D

= [x|x← D;x 6= 0] ⊆ D .

2. q(qAP
D

) = q(D) = t

q(qOP
D

) = sum [x|x← D;x 6= 0] = sum D = t

3. ∀t∗ ∈ qAP
D

, q(qAP
D
|t∗) = sum D|t∗ 6= Ø

∀t∗ ∈ qOP
D

, q(qOP
D
|t∗) = sum [x|x← [x|x← D;x 6= 0];x = t∗] 6= Ø

4. (a) Clearly, qAP
D

= D is the maximal subset of D.

(b) Because D−− qOP
D

= [x|x← D;x = 0] = D|0 and ∀t∗ ∈ qOP
D

, t∗ 6= 0

then t∗ /∈ (D−− qOP
D

)

Also, because

q([x|x← qOP
D

;x 6= t∗]) = sum [x|x← qOP
D

;x 6= t∗] 6= sum qOP
D

(t∗ 6= 0)

then q([x|x← qOP
D

;x 6= t∗]) 6= v|t

Proof of t7:

If: q = count D / avg D

then TQAP
D

(t) = TQOP
D

(t) = D

Clearly, T∗ = qAP
D

= qOP
D

= D satisfies 1,2,3.

4. (a) T∗ = D is the maximal subset of D

(b) Because D−− T∗ = D−− D = Ø

then ∀t∗ ∈ T∗, t∗ /∈ (D −− T∗).

Also,

count [x|x← T∗;x 6= t∗] = count [x|x← D;x 6= t∗] 6= count D, and

avg [x|x← T∗;x 6= t∗] = avg [x|x← D;x 6= t∗] 6= avg D

Therefore q([x|x← qOP
D

;x 6= t∗] 6= v

224

Proof of t8:

If: q = gc max D / gc min D

then TQAP
D

(t) = [x|x← D; first x = first t]

and TQOP
D

(t) = D|t

For q = gc max D:

1. qAP
D

= [x|x← D; first x = first t] ⊆ D and qOP
D

= D|t ⊆ D

2. q(qAP
D

) = gc max [x|x← D; first x = first t] = [t]

q(qOP
D

) = gc max D|t = [t]

3. ∀t∗ ∈ qAP
D

, q(qAP
D
|t∗) = gc max D|t∗ 6= Ø

∀t∗ ∈ qOP
D

, t∗ = t⇒ q(qOP
D
|t∗) = gc max qOP

D
|t = [t] 6= Ø

4. (a) Suppose T∗′ satisfies 1-3.

If T∗′ * qAP
D

, then there exists t∗′ ∈ T∗′ such that (first t∗′) 6= (first t)

⇒ there exists t′ ∈ q(T∗′) = gc max T∗′ such that (first t′) = (first t∗′)

⇒ (first t′) 6= (first t) ⇒ q(T∗′) 6= v|t, violating 2

Therefore T∗′ ⊆ qAP
D

(b) Because D−− qOP
D

= [x|x← D;x 6= t] and ∀t∗ ∈ qOP
D

, t∗ = t

then t∗ /∈ (D−− qOP
D

)

Also, q([x|x← qOP
D

;x 6= t]) = q(Ø) 6= v|t

The proof of q = gc min D is similar.

225

Proof of t9:

If: q = gc sum D

then TQAP
D

(t) = [x|x← D; first x = first t]

and TQOP
D

(t) = [x|x← D; first x = first t; second x 6= 0]

1. qAP
D

= [x|x← D; first x = first t] ⊆ D;

qOP
D

= [x|x← D; first x = first t; second x 6= 0] ⊆ D.

2. q(qAP
D

) = gc sum [x|x← D; first x = first t] = t

q(qOP
D

) = gc sum [x|x← D; first x = first t; second x 6= 0] = t

3. ∀t∗ ∈ qAP
D

, q(qAP
D
|t∗) = gc sum qAP

D
|t∗ 6= Ø

∀t∗ ∈ qOP
D

, q(qOP
D
|t∗) = gc sum qOP

D
|t∗ 6= Ø

4. (a) Suppose T∗′ satisfies 1-3.

If T∗′ * qAP
D

, then there exists t∗′ ∈ T∗′ such that (first t∗′) 6= (first t)

⇒ there exists t′ ∈ q(T∗′) = gc sum T∗′ such that (first t′) = (first t∗′)

⇒ (first t′) 6= (first t) ⇒ q(T∗′) 6= v|t, violating 2

Therefore T∗′ ⊆ qAP
D

(b) Because D−− qOP
D

= [x|x← D; (first x 6= first t) or (second x = 0)]

then qOP
D

* (D−− qOP
D

) ⇒ ∀t∗ ∈ qOP
D

, t∗ /∈ (D−− qOP
D

)

Also, because (second t∗) 6= 0

then q([x|x← qOP
D

;x 6= t∗]) = gc sum([x|x← qOP
D

;x 6= t∗]) 6= gc sum qOP
D

Therefore q([x|x← qOP
D

;x 6= t∗] 6= v|t

Proof of t10:

If: q = gc count D / gc avg D

then TQAP
D

(t) = TQOP
D

(t) = [x|x← D; first x = first t]

The proof of T∗ = [x|x← D; first x = first t] satisfying 1, 2, 3 and 4 is similar

to above gc f functions.

226

Proof of t11:

If: q(D) = [x|x1 ← D1; . . . ; xn ← Dn; C1; ...; Ck]

then TQAP
D

(t) = TQOP
D

(t) = 〈[x1|x1 ← D1; x1 = (lambda x.x1) t], . . . ,

[xn|xn ← Dn; xn = (lambda x.xn) t]〉

Suppose T∗ = 〈T∗1, ..., T
∗
n〉 = 〈[x1|x1 ← D1; x1 = (lambda x.x1) t], . . . , [xn|xn ←

Dn; xn = (lambda x.xn) t]〉

1. Clearly, T∗i ⊆ Di, for all 1 ≤ i ≤ n;

2. Suppose x = {x1, ..., xn} (without loss of generality), and

t = {t1, ..., tn} where ti = (lambda x.xi t).

q(T∗) = q(T∗1, ..., T
∗
n) = [x|x1 ← T∗1; . . . ;xn ← T∗n;C1; ...;Ck]

= [{x1, . . . , xn}|x1 ← [x|x← D1;x = t1]; . . . ;

xn ← [x|x← Dn;x = tn];C1; ...;Ck]

Because t = {t1, ..., tn} satisfies predicates C1; ...;Ck, then

q(T∗) = [{x1, . . . , xn}|x1 ← D1; . . . ;xn ← Dn; {x1, ..., xn} = {t1, ..., tn}] = v|t

3. Because ∀t∗ ∈ T∗i , t∗ = ti

q(T∗1, ..., T
∗
i |t

∗, ..., T∗n) = [x|x1 ← T∗1; . . . ;xi ← T∗i |t
∗; . . . ;xn ← T∗n;C1; ...;Ck]

Therefore q(T∗1, ..., T
∗
i |t

∗, ..., T∗n) 6= Ø;

4. (a) Suppose T∗′ = 〈T′1, ..., T
′
n〉 satisfies 1-3.

If T∗′i * T∗i for some i, then there exists t∗′i ∈ T∗′i such that t∗′i 6= ti

⇒ q(T∗1; ...; [t
∗′
i]; ...; T

∗
n) 6= v|t

Also, because q(T∗1; ...; [t
∗′
i]; ...; T

∗
n) ⊆ q(T∗), and q(T∗) = v|t

⇒ q(T∗1; ...; [t
∗′
i]; ...; T

∗
n) = Ø, violating 3

Therefore T∗′ ⊆ T∗

(b) Because T∗i = Di|ti , then ∀t∗ ∈ T∗i , t∗ = ti and

Di −− T∗i = Di −− Di|ti = [x|x← Di;x 6= ti]

Therefore t∗ /∈ (Di −− T∗i)

Also, [x|x← T∗i ;x 6= t∗] = [x|x← T∗i ;x 6= ti] = Ø, therefore

227

q(T∗1, ..., [x|x← T∗i ;x 6= t∗], ..., T∗n) = q(T∗1, ...,Ø, ..., T∗n)

= [x|x1 ← T∗1; ...;xi ← Ø; ...;xn ← T∗n;C1; ...;Ck]

= Ø 6= v|t

Proof of t12:

If: q = [x|x← D1; member D2 y]

then TQAP
D

(t) = TQOP
D

(t) = 〈D1|t, [y|y ← D2; y = (lambda x.y) t]〉

Suppose x = y (without loss of generality), and let 〈T∗1, T
∗
2〉 = 〈D1|t, D2|t〉

1. Clearly, T∗1 ⊆ D1 and T∗2 ⊆ D2.

2. q(〈T∗1, T
∗
2〉) = [x|x← D1|t; member D2|t x] = v|t

3. ∀t∗ ∈ T∗i , t
∗ = t ⇒ T∗i |t

∗ = T∗i |t = T∗i

Therefore q(〈T∗1|t
∗, T∗2|t

∗〉) 6= Ø

4. (a) Suppose 〈T′1, T
′
2〉 satisfies 1-3.

If T′i * T∗i , then there exists t′ ∈ T′i such that t′ 6= t.

If t′ ∈ T′1 and t′ ∈ T′2, then t′ ∈ q(〈T′1, T
′
2〉) ⇒ q(〈T′1, T

′
2〉) 6= v|t, violating 2;

else if t′ ∈ T′1 and t′ /∈ T′2, then q([t′], T′2) = Ø, violating 3;

else if t′ /∈ T′1 and t′ ∈ T′2, then q(T′1, [t
′]) = Ø, violating 3.

Therefore T′i ⊆ T∗i

(b)Because ∀t∗ ∈ T∗i , t
∗ = t, then

Di −− T∗i = [x|x← Di;x 6= t] and

t∗ /∈ (Di −− T∗i)

Also, because [x|x← T∗i ;x 6= t∗] = Ø

then q(T∗1, [x|x← T∗2;x 6= t∗]) = q([x|x← T∗1;x 6= t∗], T∗2) = Ø 6= v|t

228

Proof of t13:

If: q = [x|x← D1; not(member D2 y)]

then TQAP
D

(t) = 〈D1|t, D2〉

and TQOP
D

(t) = 〈D1|t, Ø〉

Let qAP
D

= 〈Tap
1 , Tap

2 〉 = 〈D1|t, D2〉

and qOP
D

= 〈Top
1 , Top

2 〉 = 〈D1|t, Ø〉

1. Clearly, Tap
i ⊆ Di and T

op
i ⊆ Di, for i = 1,2;

2. q(qAP
D

) = [x|x← D1|t; not (member D2 x)] = v|t

q(qOP
D

) = [x|x← D1|t; not (member Ø x)] = v|t

3. ∀t∗1 ∈ T
ap
1 , t∗1 = t and T

ap
1 |t

∗
1 = T

ap
1 |t = T

ap
1

Therefore q(Tap
1 |t

∗
1, T

ap
2) = q(Tap

1 , Tap
2) = q(qap

D
) = v|t 6= Ø

Because t /∈ D2 ⇒ ∀t
∗
2 ∈ T

ap
2 , t∗2 6= t

then q(Tap
1 , Tap

2 |t
∗
2) = [x|x← D1|t; not (member D2|t

∗
2 x)] = D1|t 6= Ø

For qOP
D

, the proof is similar.

4. (a) Suppose 〈T′1, T
′
2〉 satisfies 1-3.

If T′1 * TAP
1 , then there exists t′1 ∈ T′1 such that t′1 6= t.

If t′1 /∈ T′2 then t′1 ∈ q(〈T′1, T
′
2〉) ⇒ q(〈T′1, T

′
2〉) 6= v|t, violating 2;

else if t′1 ∈ T′2, then q([t′1], T
′
2) = Ø, violating 3

Therefore T′1 ⊆ T
ap
1

Because T
ap
2 = D2 then T′2 ⊆ T

ap
2 .

(b)∀t∗1 ∈ T
op
1 , t∗1 = t and (D1 −− T

op
1) = [x|x← D1;x 6= t]

Therefore t∗1 /∈ (D1 −− T
op
1)

Also, because [x|x← T
op
1 ;x 6= t∗1] = [x|x← T

op
1 ;x 6= t] = Ø

Therefore q([x|x← T
op
1 ;x 6= t∗], Top

2) = Ø 6= v|t

There is no need to consider TOP
2 since it is Ø by definition.

229

Proof of t14:

If: q = map (lambda p1.p2) D

then TQAP
D

(t) = TQOP
D

(t) = [p1|p1 ← D; p2 = t]

Let T∗ = qAP
D

= qOP
D

= [p1|p1 ← D; p2 = t]

1. Clearly, T∗ ⊆ D.

2. q(T∗) = map (lambda p1.p2) [p1|p1 ← D; p2 = t] = v|t

3. ∀t∗ ∈ T∗, ((lambda p1.p2) t∗) = t

Therefore q(T∗|t∗) = map (lambda p1.p2) [p1|p1 ← T∗|t∗; p2 = t] = t∗ 6= Ø

4. (a) Suppose T′ satisfies 1-3.

If T′ * T∗, then there exists t′ ∈ T′ such that ((lambda p1.p2) t′) 6= t

⇒ q(T′|t′) = map (lambda p1.p2) [p1|p1 ← T′|t′; p2 = t] = Ø, violating 3

Therefore T′ ⊆ T∗

(b) For any t∗ ∈ T∗,

because (D−− T∗) = [p1|p1 ← D; p1 6= t∗] = [p1|p1 ← D; p2 6= t]

then t∗ /∈ (D−− T∗)

Also,

because [p1|p1 ← T∗; p1 6= t∗] = [p1|p1 ← T∗; ((lambda p1.p2) t∗) 6= t] = Ø

Therefore q([x|x← T∗;x 6= t∗]) = Ø 6= v|t

230

Appendix B

Justifications of IVM Formulae

B.1 Justification of IVM Formulae for D1 ⊲⊳c D2

Suppose that v = D1 ⊲⊳c D2. Then

vnew = D1new ⊲⊳c D2
new

= (D1++ △D1−− ▽D1) ⊲⊳c D2
new

= D1 ⊲⊳c D2
new ++ △D1 ⊲⊳c D2

new −−▽D1 ⊲⊳c D2
new

= D1 ⊲⊳c (D2++ △D2−−▽D2) ++ △D1 ⊲⊳c D2
new −− ▽D1 ⊲⊳c D2

new

= (D1 ⊲⊳c D2 ++ D1 ⊲⊳c△D2−− D1 ⊲⊳c ▽D2) ++ △D1 ⊲⊳c D2
new−−▽D1 ⊲⊳c D2

new

= (v ++ D1 ⊲⊳c△D2−− D1 ⊲⊳c ▽D2) ++ △D1 ⊲⊳c D2
new −− ▽D1 ⊲⊳c D2

new

Because (D1 ⊲⊳c ▽D2) ⊆ v,

vnew = (v ++ D1 ⊲⊳c△D2++ △D1 ⊲⊳c D2
new)−− ▽D1 ⊲⊳c D2

new −− D1 ⊲⊳c ▽D2

= (v ++ (D1new ++ ▽D1−− △D1) ⊲⊳c△D2++ △D1 ⊲⊳c D2
new)

−−▽D1 ⊲⊳c D2
new −− (D1new ++ ▽D1−− △D1) ⊲⊳c ▽D2)

= (v ++ (D1new ⊲⊳c△D2−− △D1 ⊲⊳c△D2) ++ ▽D1 ⊲⊳c△D2++ △D1 ⊲⊳c D2
new)

−−(▽D1 ⊲⊳c D2
new ++ (D1new ⊲⊳c ▽D2−− △D1 ⊲⊳c ▽D2) ++ ▽D1 ⊲⊳c ▽D2)

Because (▽D1 ⊲⊳c△D2) ⊆ (▽D1 ⊲⊳c D2
new),

231

vnew = (v ++ (D1new ⊲⊳c△D2−− △D1 ⊲⊳c△D2) ++ △D1 ⊲⊳c D2
new)−−

((▽D1 ⊲⊳c D2
new −−▽D1 ⊲⊳c△D2) ++ (D1new ⊲⊳c ▽D2−− △D1 ⊲⊳c ▽D2)

++▽D1 ⊲⊳c ▽D2)

Therefore,

△v = (D1new ⊲⊳c△D2−− △D1 ⊲⊳c△D2) ++ △D1 ⊲⊳c D2
new

▽v = (▽D1 ⊲⊳c D2
new −− ▽D1 ⊲⊳c△D2) ++ (D1new ⊲⊳c ▽D2−− △D1 ⊲⊳c ▽D2)

++▽D1 ⊲⊳c ▽D2

B.2 Justification of IVM Formulae for D1 ∧ D2

Suppose that v, r1 and r2 are defined as follows:

v = D1 ∧ D2

r1 = [x|x←△D2; (countNum x △D2) = (countNum x D2new)]

r2 = ▽D2 ⊼ D2new

The following equivalences hold for the ∧ operator since the data items of r1 are

from △D2 and do not appear in D2, and the data items of r2 are from ▽D2 and

do not appear in D2 after the deletion:

D1 ∧ (D2 ++ r1−− r2) = D1 ∧ D2 ++ D1 ∧ r1−− D1 ∧ r2

(D1++ △D1−− ▽D1) ∧ D2 = D1 ∧ D2++ △D1 ∧ D2−− ▽D1 ∧ D2

Then,

vnew = D1new ∧ D2new

= D1new ∧ (D2 ++ r1−− r2)

= D1new ∧ D2 ++ D1new ∧ r1−− D1new ∧ r2

= (D1 ∧ D2++ △D1 ∧ D2−−▽D1 ∧ D2) ++ D1new ∧ r1−− D1new ∧ r2

= (v++ △D1 ∧ D2−− ▽D1 ∧ D2) ++ D1new ∧ r1−− D1new ∧ r2

Because (▽D1 ∧ D2) ⊆ v,

232

vnew = (v++ △D1 ∧ D2++ D1new ∧ r1)−− D1new ∧ r2−− ▽D1 ∧ D2

= (v++ △D1 ∧ D2++ D1new ∧ r1)−− (D1new ∧ r2 ++ ▽D1 ∧ D2)

= (v++ △D1 ∧ (D2new −− r1 ++ r2) ++ D1new ∧ r1)

−−(D1new ∧ r2 ++ ▽D1 ∧ (D2new −− r1 ++ r2))

= (v ++ (△D1 ∧ D2new−− △D1 ∧ r1++ △D1 ∧ r2) ++ D1new ∧ r1)

−−(D1new ∧ r2 ++ (▽D1 ∧ D2new −− ▽D1 ∧ r1 ++ ▽D1 ∧ r2))

Because (△D1 ∧ r2) ⊆ (D1new ∧ r2),

vnew = v ++ ((△D1 ∧ D2new−− △D1 ∧ r1) ++ D1new ∧ r1)−−

((D1new ∧ r2−− △D1 ∧ r2) ++ (▽D1 ∧ D2new −− ▽D1 ∧ r1) ++ ▽D1 ∧ r2)

Therefore,

△v = (△D1 ∧ D2new−− △D1 ∧ r1) ++ D1new ∧ r1

▽v = (D1new ∧ r2−− △D1 ∧ r2) ++ (▽D1 ∧ D2new −−▽D1 ∧ r1) ++ ▽D1 ∧ r2

B.3 Justification of IVM Formulae for D1 ⊼ D2

Suppose that v, r1 and r2 are defined as follows:

v = D1 ⊼ D2

r1 = [x|x←△D2; (countNum x △D2) = (countNum x D2new)]

r2 = ▽D2 ⊼ D2new

The following equivalences hold for the ⊼ operator since the data items of r1 are

from △D2 and do not appear in D2, and the data items of r2 are from ▽D2 and

do not appear in D2 after the deletion:

D1 ⊼ (D2 ++ r1−− r2) = D1 ⊼ D2 ++ D1 ∧ r2−− D1 ∧ r1

(D1++ △D1−− ▽D1) ⊼ D2 = D1 ⊼ D2++ △D1 ⊼ D2−− ▽D1 ⊼ D2

Then,

233

vnew = D1new ⊼ D2new

= D1new ⊼ (D2 ++ r1−− r2)

= D1new ⊼ D2 ++ D1new ∧ r2−− D1new ∧ r1

= (D1 ⊼ D2++ △D1 ⊼ D2−−▽D1 ⊼ D2) ++ D1new ∧ r2−− D1new ∧ r1

= (v++ △D1 ⊼ D2−− ▽D1 ⊼ D2) ++ D1new ∧ r2−− D1new ∧ r1

Because (▽D1 ⊼ D2) ⊆ v,

vnew = (v++ △D1 ⊼ D2++ D1new ∧ r2)−− D1new ∧ r1−−▽D1 ⊼ D2

= (v++ △D1 ⊼ D2++ D1new ∧ r2)−− (D1new ∧ r1 ++ ▽D1 ⊼ D2)

= (v++ △D1 ⊼ (D2new −− r1 ++ r2) ++ D1new ∧ r2)

−−(D1new ∧ r1 ++ ▽D1 ∧ (D2new −− r1 ++ r2))

= (v ++ (△D1 ⊼ D2new−− △D1 ∧ r2++ △D1 ∧ r1) ++ D1new ∧ r2)

−−(D1new ∧ r1 ++ (▽D1 ⊼ D2new −−▽D1 ∧ r2 ++ ▽D1 ∧ r1))

Because (△D1 ∧ r1) ⊆ (D1new ∧ r1),

vnew = v ++ ((△D1 ⊼ D2new−− △D1 ∧ r2) ++ D1new ∧ r2)−−

((D1new ∧ r1−− △D1 ∧ r1) ++ (▽D1 ⊼ D2new −− ▽D1 ∧ r2) ++ ▽D1 ∧ r1)

Therefore,

△v = (△D1 ⊼ D2new−− △D1 ∧ r2) ++ D1new ∧ r2

▽v = (D1new ∧ r1−− △D1 ∧ r1) ++ (▽D1 ⊼ D2new −− ▽D1 ∧ r2) ++ ▽D1 ∧ r1

234

Appendix C

Implementation of Data

Warehousing Packages and API

for the AutoMed Toolkit

This appendix describes the data warehousing packages and API for the AutoMed

toolkit. In particular, it is the implementation of the generalised DLT algorithm

described in Chapter 6. The packages and API use java and the AutoMed Repos-

itory API as the basic programming toolkits. Section C.1 discusses the structure

of the data warehousing packages, Section C.2 gives a GUI supporting our DLT

process, and Section C.3 gives a summary of this appendix.

C.1 Package Structure

Currently, there are three packages available in the data warehousing toolkit:

dataWarehousing.dlt, dataWarehousing.util and dataWarehousing.DWExample. All

packages have the prefixed hierarchy “uk.ac.bbk.automed”.

235

C.1.1 Package uk.ac.bbk.automed.dataWarehousing.DWExample

This package gives an example of creating the AutoMed metadata for a data

warehouse, i.e. creating the schemas of the data warehouse and AutoMed trans-

formation pathways expressing mappings between the schemas. As described

in Section 3.3, there are four steps to create the AutoMed metadata: creating

AutoMed repositories, specifying data models, extracting data source schemas,

and defining transformation pathways. The following three classes are used to

perform these steps.

Class DefineRepository

This class is provided by the AutoMed API, which uses JDBC to access an

underlying relational database and defines schemas of the repositories storing

AutoMed metadata. We recall from Chapter 2 that the AutoMed repositories

can be implemented using any DBMS supporting JDBC. If the DBMS of the

data warehouse supports JDBC, then the AutoMed repositories can be part of

the data warehouse itself.

In order to specify the URL of the DBMS and define the schema of the reposi-

tories, there are two associated config files, “data_source_repository.cfg” and

“reps_schema.cfg”, located in an assigned folder.

Class DefineSchemas

The class DefineSchemas has two functionalities, specifying the data models used

for expressing the schemas of the data warehouse, and extracting schemas from

the data sources.

Different wrapper objects are created for different kinds of data sources, for ex-

ample an OracleWrapper is created for Oracle databases and a PostgresWrapper

236

for PostgreSQL databases. The following code shows how a PostgresWrapper

object is created:

PostgresWrapperFactory pwf = new PostgresWrapperFactory();

PostgresWrapper pw = (PostgresWrapper)PostgresWrapper.newAutoMedWrapper

(username,password,"org.postgresql.Driver",

"jdbc:postgresql://dbURL:5432/dbName",

source_schema_name,pwf);

Here, username and password give the username and password for accessing the

PostgreSQL database; "jdbc:postgresql://dbURL:5432/dbName" specifies the

database URL and name, and source_schema_name is the name of the AutoMed

schema extracted from the database, which is nominated by the programmer.

Note that, source_schema_name given above is the name of the source-level

schema of the database. The AutoMed toolkit defines two levels of schemas for

relational databases: source-level schemas and AutoMed-level schemas. Source-

level schemas are derived directly from relational databases and are used by the

DBMS wrappers to query the data source data. AutoMed-level schemas are the

relational schemas as described in Chapter 3. They are automatically derived

from the source-level schemas by the AutoMed wrappers, and can be used by

data warehouse builders as the staring point for transformation pathways. All

algorithms described in this thesis are based on AutoMed-level schemas.

For example, suppose a relational database contains a table csmarks(sid,

sname,mark). The source-level schema of the database contains a construct

〈〈csmarks, 3, sid, sname, mark〉〉, while the AutoMed-level schema includes the con-

structs 〈〈csmarks〉〉, 〈〈csmarks, sid〉〉, 〈〈csmarks, sname〉〉 and 〈〈csmarks, mark〉〉.

The created PostgreSQLWrapper object pw can then be used to extract the

schemas of the PostgreSQL database. In particular, the code

pw.getSchema();

237

is used to obtain the source-level schema, named by source_schema_name, and

the code

pw.newAutoMedSchema(automed_schema_name);

is used to create the AutoMed-level schema, named by automed_schema_name.

Class DefineTransformations

AutoMed transformation pathways are created over the AutoMed-level schemas

of the data sources. The class DefineTransformations is used to define the trans-

formation pathway from the AutoMed-level schemas of the data sources to the

AutoMed-level schema of the global database.

Suppose that Schema object s is the source schema. The code given below is

used to implement the following transformations on s:

addRel (<<dept>>, [’comp’,’math’]);

addAtt (<<dept,d_name>>, [{x,x} | x <- <<dept>>]);

addAtt (<<dept,avgSalary>>,[{’comp’,avg[s|{n,s}<-<<comp,salary>>]},

{’math’,avg[s|{n,s}<-<<math,salary>>]}]);

We firstly create a Model object sql_2 specifying the relational data model sup-

porting the SQL-2 query language, and two Construct objects table and column

specifying the table and column constructs of this data model. Then, the method

applyAddTransformation is used to add instances of table and column to the

schema s:

Model sql_2 = Model.getModel("sql_2");

Construct table = sql_2.getConstruct("table");

Construct column = sql_2.getConstruct("column");

Schema cs = s.applyAddTransformation(table, new Object[] {"dept"},

238

"[’comp’,’math’]");

SchemaObject dept= cs.getSchemaObject("<<dept>>");

Schema ts = cs.applyAddTransformation(column,

new Object[] {dept,"d_name"},

"[{x,x} | x <- <<dept>>]");

cs=ts;

SchemaObject d_name= cs.getSchemaObject("<<dept,d_name>>");

ts = cs.applyAddTransformation(column,

new Object[] {dept,"avgSalary"},

"[{’comp’,avg[s|{n,s}<-<<comp,salary>>]}," +

"{’math’,avg[s|{n,s}<-<<math,salary>>]}]");

C.1.2 Package uk.ac.bbk.automed.dataWarehousing.util

This package includes the utilities used in the data warehousing toolkit. It has

three main classes: QueryDecomposer, IQLEvaluator4DW and Tools4DW.

Class QueryDecomposer

QueryDecomposer class is the implementation of the rules used to decompose a

general IQLc query into a sequence of SIQL queries, as described in Section 5.2.

The public static method queryDecomposer(String IQLquery, int queryNumber)

is used to decompose the string argument IQLquery (an IQLc query represented

as a string) and returns an ArrayList object containing the sequence of resulting

SIQL queries which are also string objects. The argument queryNumber (an in-

teger) is used to generate unique query identifiers when we use this method to

decompose successive IQLc queries. This method creates variables of the form

$Query_queryNumber_i to express the sub-queries of an IQLc query.

For example, the list of IQLc queries:

239

v1 = distinct (D3−− D4)

v2 = (D1−− D2) ++ v1

is decomposed into following SIQL queries:

$Query_1_1 = D3−− D4

v1 = distinct $Query_1_1

$Query_2_1 = D1−− D2

v2 = $Query_2_1 ++ v1

Class IQLEvaluator4DW

As described in Section 2.2.3, AutoMed’s Global Query Processor (GQP) can

be used to evaluate an IQLc query over a global schema in the case of a virtual

data integration scenario. The process of evaluating a query over a virtual global

schema includes: Query Reformulation, Query Optimisation, Query Annotation

and Query Evaluation. There are two limitations of using the AutoMed GQP in

our data lineage tracing algorithms:

Firstly, in a data warehouse environment, the global schema will be materi-

alised. The AutoMed GQP is designed for virtual data integration scenarios and

does not consider materialised data. Whether the global schema is materialised

or not, the AutoMed GQP recomputes the extent of the global schema constructs

from the data sources. Using the Query Evaluator directly on materialised data

is achieved by the IQLEvaluator4DW class.

The second limitation of the AutoMed GQP is that it can evaluate queries over

the constructs of just one schema. For example, the GQP cannot evaluate an IQLc

query 〈〈math, name〉〉++〈〈comp, name〉〉 if the construct 〈〈math, name〉〉 appears in a

source schema and the construct 〈〈comp, name〉〉 in the global schema. However, in

our DLT algorithms, constructs of the source and intermediate schemas frequently

appear in the same tracing query. Evaluating IQLc queries involving constructs

240

from multiple schemas is also achieved by IQLEvaluator4DW class.

The approaches to achieve above two functionalities are as follows:

Firstly, a new Query Reformulation class QueryReformulator4DW inheriting

the QueryReformulator class in the AutoMed API has been created. In QueryRe-

formulator4DW, we gather all materialised schema constructs (in the data sources

and in the intermediate and global schemas) into a list considered by the refor-

mulation procedure so that it does not replace materialised constructs within the

GAV view definitions over the source schema constructs.

Secondly, if there is a virtual construct of an intermediate schema appearing

in an IQLc query, we use the QueryReformulator super class in the AutoMed API

to compute its extent by treating the virtual intermediate schema as the global

schema.

Class Tools4DW

This class consists of several lower-level methods used by the data warehousing

packages. For example, GetIQLSource obtains the names of the schema constructs

appearing in an IQLc query and getQueryType obtains the action type of an IQLc

query.

C.1.3 Package uk.ac.bbk.automed.dataWarehousing.dlt

This package contains the class Lineage, which is the data structure storing lineage

data; the class TransfStep, which is the data structure storing transformation

steps; the class DataLineageTracing, which is the implementation of the generalised

DLT algorithm descried in Chapter 6; and the class DemoDLT, giving an example

of using the DLT package.

241

Class Lineage

The Lineage class has six private attributes which are used to store the information

of the lineage data (note that ASG (Abstract Syntax Graph) is the data structure

used in the AutoMed GQP for representing IQL queries):

• (ASG)lineageData, can be a collection storing materialised lineage data,

or, if the lineage data is virtual, it will be null;

• (String)construct, the name of the schema construct containing the lineage

data;

• (boolean)isVirtualData, stating if the lineage data is virtual or not;

• (boolean)isVirtualConstruct, stating if the construct is virtual or not;

• (String)eleStruct, describing the structure of the data in the extent of the

schema construct; and

• (String[])constraint, expressing the constraints to derive the lineage data

from the schema construct if the construct is virtual.

Public non-static methods in this class such as getLineageData(), getCon-

struct(), isVirtualData(), isVirtualConstruct(), getEleStruct() and getConstraint()

are used to obtain the content of the above private attributes.

Class TransfStep

The TransfStep class contains six private attributes storing the information of the

transformation steps:

• (String)action, which may be ′′add′′, ′′del′′, ′′rename′′, ′′extend′′ and ′′con-

tract′′;

242

• (String)query, the query used in the transformation step;

• (String)result, the name of the schema construct created or deleted by the

transformation step;

• (boolean)vResult, showing if the result construct is virtual or not;

• (ArrayList)sources, containing all schema construct names appearing in the

query; and

• (boolean[])vSources, showing which source constructs in the sources col-

lection are virtual.

Public non-static methods such as getAction(), getQuery(), getResult(), isVRe-

sult(), getSources() and getVSources() are used to obtain the content of the above

private attributes.

In addition, there are two static methods available in this class which can be

used to obtain the transfStep objects between a given source and global schema.

In particular, the method ArrayList getTransfSteps(String sName, String gName)

results in an ArrayList collection containing transfStep objects expressing the gen-

eral transformation pathway (may contain general IQLc queries) between the two

schemas, sName and gName. The method ArrayList getSimpleTransfSteps(String

sName, String gName) results in an ArrayList collection containing transfStep ob-

jects expressing the decomposed transformation pathway (all general IQLc queries

in the general transformation pathway have been decomposed into SIQL queries)

between the schema sName and gName.

243

Class DataLineageTracing

In the DataLineageTracing class, the method DLT4AStep(Lineage tt, TransfStep

ts) is used to obtain the lineage of a single tracing tuple tt along a single trans-

formation step ts, while the methods oneDLT4APath(Lineage tt, ArrayList tp)

and listDLT4APath(ArrayList tts, ArrayList tp) are respectively used to obtain

the lineage of a single tracing tuple tt or a bag of tracing tuples tts along the

transformation pathway tp.

The constructor of this class is DataLineageTracing(Schema sSchema,Schema

tSchema), in which sSchema and tSchema are two Schema objects denoting the

source and target schemas. Once a DataLineageTracing object, dlt, is created, the

simple transformation steps between the source and target schemas are also gen-

erated and stored. The public non-static method dlt.getTransformationSteps() is

then used to obtain the generated simple transformation steps between the given

source and target schemas, and the public non-static methods dlt.getDataLineage-

Of(Lineage lp) and dlt.getDataLineageOf(ArrayList lpList) are used to obtain the

lineage of the tracing data.

Class DemoDLT

The DemoDLT class gives an example of using the DLT toolkit for tracing data

lineage along an AutoMed transformation pathway. In particular, after creating

the AutoMed metadata, the DLT process is accomplished by the following three

steps:

1. Getting the source and global schemas by using the Schema.getSchema(String

schemaName) method provided by the AutoMed API. For example:

Schema s_sou = Schema.getSchema("rel_source");

Schema s_tar = Schema.getSchema("rel_global");

244

2. Creating a DataLineageTracing object, dlt:

DataLineageTracing dlt = new DataLineageTracing(s_sou,s_tar);

3. Giving the tracing tuple and tracing its data lineage. For example, for

tracing tuple {’M01’,1000} in the construct 〈〈person, salary〉〉 of the target

schema "rel_global", the necessary code is :

Lineage tt = new Lineage(

new ASG("{’M01’,1000}"),"<<person,salary>>");

ArrayList lineageData = new ArrayList();

lineageData = dlt.getDataLineageOf(tt);

Lineage.printLineageList(lineageData);

C.2 Data Lineage Tracing GUI

In this section, we describe a GUI supporting our data lineage tracing process,

and show how our DLT process can be applied in both materialised and virtual

data integration scenarios. We also show how the DLT GUI can be used as a tool

for browsing schemas, data and lineage information.

C.2.1 The DLT GUI

Figure C.1 illustrates the DLT GUI. Given the names of the source schemas, e.g.

s1 and s2, and target schema, e.g. ss, the ′′Check Input Schema′′ button is used to

check whether the input schema names are defined in the AutoMed Schemas and

Transformations Repository (STR). Then the ′′DLT Initialization′′ button is used

to initialise the DLT process, which consists of three main steps: obtaining the

source and target schemas from the AutoMed STR and listing their constructs;

obtaining the transformation pathway between the source and target schemas,

245

Figure C.1: The Data Lineage Tracing GUI

246

decomposing it into a simple transformation pathway and listing the pathway

(illustrated in Figure C.1); and initialising a DataLineageTracing object.

Figure C.2: The Extent of Selected Construct

After DLT initialisation, the ′′Show Extent′′ button can be used to extract the

extent of the selected construct in the target schema and show it in the ′′Extent

of Selected Construct′′ field (as in Figure C.2). The displayed data items can then

be selected as the tracing tuples of the DLT process.

More generally, four kinds of tracing tuples that may be input1: RealData,

which is one or more data items selected from the extent of the target schema

construct (as in Figure C.1); vAll, where the tracing data is all data in the selected

target construct (as in Figure C.3); vPair, where the tracing data is a pair such

as {x,y} where the extent of x is indicated (as in Figure C.4); and vExist, where

the tracing data is an arbitrary pattern, such as {{d,c},x}, and constraints over

its variables can also be specified, such as “(>=) x 67” (as in Figure C.5).

Once a tracing tuple is selected, the ′′Check Input Tracing Data′′ button se-

mantically checks the input tracing tuple, and the ′′Data Lineage Tracing′′ button

finally computes the lineage of the tracing tuple.

1These correspond to real lineage data and the three kinds of virtual lineage data,
{any, true}, ({x, y}, x = a) and (p1, p2 = t), described in Chapter 6.

247

Figure C.3: Tracing Data Lineage of vAll

Figure C.4: Tracing Data Lineage of vPair

C.2.2 DLT in Materialised Data Integration

In materialised data integration scenarios, both the source and target schemas are

materialised e.g. in the example of Section 4.2 the data source schemas s1,s2 and

the global schema ss are all materialised. The figures of Section C.2.1 illustrated

248

Figure C.5: Tracing Data Lineage of vExist

how the DLT GUI can be used in a materialised data integration scenario.

C.2.3 DLT in Virtual Data Integration

In virtual data integration scenarios, the target and all intermediate schemas are

virtual. Figure C.6 illustrates how the DLT GUI can be used in a virtual data

integration scenario, in which the input target schema us is a virtual one. We

assume the same framework described as in the example of Section 4.2 and use

the virtual schema US as the target schema. In Figure C.6, the lineage of the

vExist tracing data, 〈〈ustab, mark〉〉|({{d,c,s},m}, (=) m 80), is computed. The

lineage of other kinds of tracing data such as RealData, vAll and vPair are also

traceable in this virtual data integration scenario.

249

Figure C.6: Tracing Data Lineage with a Virtual Schema

250

C.2.4 A Tool for Browsing Schemas, Data and Lineage

Information

The DLT GUI can be used to browse the extent of both materialised and virtual

target schemas, as well as the constructs of these schemas and the lineage of their

data.

If we define the input source and target schemas as being the same schema, the

DLT GUI can be used as a simple query engine over this schema. For example, in

Figure C.7, both the input source and target schemas are ss. If the tracing data is

vExist data, 〈〈gstab, themax〉〉|({{d,c},x},[(=) d ’MA’,(>=) x 80]), the com-

puted lineage data is actually equivalent to applying the IQLc query [{{d,c},x}|

{{d,c},x}← 〈〈gstab, themax〉〉; (=) d ’MA’;(>=) x 80] to the schema ss.

C.3 Discussion

In this appendix, we have discussed a set of data warehousing packages and API

for the AutoMed toolkit, which implement the generalised DLT algorithm de-

scribed in Chapter 6. Currently, the data warehousing toolkit consists of three

packages: dataWarehousing.dlt, dataWarehousing.util and dataWarehousing.DW-

Example.

We have given a data integration scenario and example to illustrate how our

DLT process and GUI can be applied, both in materialised and virtual data

integration settings. We have also discussed how the DLT GUI can be used as a

tool for browsing schemas, data and lineage information.

In Section 6.6.1 of Chapter 6 and Section 7.4.1 of Chapter 7, we discussed

how to extend our DLT and IVM algorithms to handle queries beyond IQLc.

This would allow our DLT process to go back all the way to the data source

251

Figure C.7: Browsing Schemas and Data Information

252

schemas before single-source cleansing, and would similarly allow our IVM process

to maintain materialised warehouse data according to updates to the data source

schemas. The implementation of these extensions is an area of future work.

253

Glossary

BAV Both-as-view data integration approach, 17

CDM Conceptual data model, 44

DLT Data lineage tracing, 100

GAV Global-as-view data integration approach, 16

GQP Global Query Processor, 59

HDM Hypergraph-based data model, 45

IQL Intermediate query language, 54

IQLc A subset of IQL, 100

IVM Incremental view maintenance, 171

LAV Local-as-view data integration approach, 16

MDR The AutoMed Model Definitions Repository, 61

SIQL Simple intermediate query language, 105

STR The AutoMed Schemas and Transformations Repository, 61

254

