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Abstract

The subject of imputation of missing data entries has attracted considerable efforts

in such areas as editing of survey data, maintenance of medical documentation and

modeling of DNA microarray data.

There are several popular approaches to this of which we concentrate on the least

squares approach extending the singular value decomposition (SVD) of matrices. We

consider two generic least squares imputation algorithms: (a) ILS, which interpolates

missing values by using only the non-missing entries for an SVD-type approximation

and (b) IMLS, which recursively applies SVD to the data completed initially with

ad-hoc values (zero, in our case).

We propose nearest neighbour versions of these algorithms, N-ILS and N-IMLS,

as well as a combined algorithm INI that applies the nearest neighbour approach

to the data initially completed with IMLS. Altogether, a set of ten least squares

imputation algorithms including the method of imputing mean values as the bottom-

line are considered.

An experimental study of these algorithms has been performed on artificial data

generated according to Gaussian mixture data models. The data have been com-

bined with four different mechanisms for generating missing entries: (1) Complete

random pattern; (2) Inherited random pattern; (3) Sensitive issue pattern and (4)

Merged databases pattern. The mechanisms (2), (3) and (4) have been introduced

in this study.

Since data and missings are generated independently, the performance of an

algorithm is evaluated based on the difference of the imputed values and those

vii



originally generated.

The major result of these experiments is that the nearest neighbour versions of

the least squares algorithms almost always surpass the global least squares algo-

rithms; both the mean and nearest neighbour mean imputation are always worse.

In the case of the most popular Complete random missing pattern, our global-

local algorithm INI appears to outperform the other algorithms.

We also considered two different data models: (1) Rank one and (2) Sampling

from a real-world data base. At the latter, INI results are comparable to and, at

greater proportions of missings, surpass results of EM (expectation-maximization)

and MI (multiple imputation) algorithms based on another popular approach, the

maximum likelihood.
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Chapter 1

Introduction

1.1 Problem Statement

Any real-world data set is prone to have a number of missing entries. There are two

major approaches to dealing with missing data: (1) impute missing entries before

processing and analysing the data; (2) develop such modifications of statistical/data

mining techniques that can be applied to data with missing entries (handling miss-

ings within a method).

The latter approach has attracted considerable efforts in such areas of data

analysis as multivariate regression, classification and pattern recognition [Dybowski,

1998, Little, 1992, Morris et al., 1998]. However, the former approach cannot be

ignored at all because there are considerable applications in which missings are to

be imputed before (or without) any follow-up processing.

In particular, the problem of imputation of missing data emerges in many ar-

eas such as editing of survey data [Tirri and Silander, 1998, Tjostheim et al., 1999,

Laaksonen, 2001, Little and Smith, 1987, Tsai, 2000], maintenance of medical doc-

umentation [Gryzbowski, 2000, Kenney and Macfarlane, 1999], modelling of DNA

microarray data [Alizadeh et al., 2000, Troyanskaya et al., 2001] and morphometric

1
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studies [Strauss et al., 2002].

In the last few decades a number of approaches have been proposed and utilised

for filling in missing values. The most straightforward idea of using average values for

imputation into missing entries, known as the Mean substitution [Little and Rubin,

1987], is probably the most popular approach. It has been supplemented recently

with more refined versions such as hot/cold deck imputation and multidimensional

techniques such as regression [Laaksonen, 2000], decision trees [Kamakashi et al.,

1996, Quinlan, 1989], etc. Two other approaches, the maximum likelihood and least

squares approximation, take into account all available data to fill in all missings in

parallel.

In the traditional statistics framework, any data set is considered as generated

from a probability distribution, which immediately leads to applying the maximum

likelihood approach for modelling and imputation of incomplete data. This approach

has led to the introduction of the so called expectation-maximization (EM) method

for handling incomplete data [Dempster et al., 1977, Little and Schluchter, 1985,

Schafer, 1997a]. The EM algorithm provides a good framework both in theory and

in practice. Another method within this approach, multiple imputation (MI), has

also proven to be a powerful tool [Rubin, 1987, 1996, Schafer, 1997a]. However, the

methods within this approach have two features that may become of issue in some

situations. First, they may involve unsubstantiated hypotheses of the underlying

distribution. Second, sometimes the rate of convergence of EM can be very slow.

Furthermore, the computational cost of the method heavily depends on the absolute

number of missing entries, and this can prevent its scalability to large databases.

Another multidimensional approach to imputation of missing data, the so-called
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least squares approximation, extends the well-known matrix singular value decom-

position (SVD) and, therefore, relies on the geometric structure of the data rather

than on probabilistic properties. This approach is computationally effective and

has attracted the attention of a considerable number of researchers [Gabriel and

Zamir, 1979, Kiers, 1997, Mirkin, 1996]. However, this approach is not sensitive to

the shape of the underlying distribution, which can become an issue in imputing

missing data from a complex distribution.

A computationally viable approach to overcome this drawback of the least squares

imputation is to combine it with the nearest neighbours methodology which is widely

used in the machine learning research. A combined method would treat the problem

of imputation as a machine learning problem: for each of the missing entries only the

entity’s neighbours are utilised to predict and impute it. Such an NN based upgrade

of the algorithm Mean has been suggested recently and showed good performances

in imputing gene expression data [Hastie et al., 1999, Troyanskaya et al., 2001].

However, developing NN based versions for the least squares imputation methods

is only a part of the problem. Another problem immediately emerges: how to

prove that modified methods outperform the original ones? There is no generally

recognised technology for experimental comparisons: existing literature is scarce

and confined with very limited experiments involving mainly just a few real data

sets [Hastie et al., 1999, Myrtveit et al., 2001, Troyanskaya et al., 2001]. Thus one

needs to develop a strategy for computationally testing different data imputation

methods. Such a strategy should involve independent generation of data sets and

patterns of missing entries so that the quality of imputation can be evaluated by

comparing imputed values with those generated originally.
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Now one encounters further problems: what mechanisms of data generation

should be utilised? What data models of missings should be considered? These

questions have never been answered in computational data imputation. There is a

generally accepted view in the machine learning community with regard to data gen-

eration: the data should be generated from a mixture of Gaussian data structures.

Still, it is not clear how much this type of distribution covers the set of potential

distributions and, moreover, what is its relevance to the real data. As for the lat-

ter item, models of missings have been treated in by far too general terms, and

moreover in a somewhat biased way, by referring to survey practices only, with no

references to other experimental settings or databases [Hastie et al., 1999, Myrtveit

et al., 2001, Troyanskaya et al., 2001].

The goal of this project thesis is to advance in addressing the issues listed and

those related, though unlisted.

1.2 Objectives

1.2.1 Least Squares Data Imputation Combined with the
Nearest Neighbour Framework

This work experimentally explores the computational properties of the least squares

approach and combines it with a machine learning approach, the so-called nearest

neighbour (NN) method, which should balance the insensitivity of the least squares

to the data structure as mentioned above. Indeed, the NN approach suggests that,

to impute a missing entry, only information of the nearest neighbours should be

utilised, leaving other observations aside. This approach was recently successfully

applied in the context of bioinformatics to the Mean substitution method at various
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level of missing [Hastie et al., 1999, Troyanskaya et al., 2001]. We would to extend

this to the core least squares methods.

However, the value of the NN based approach, has so far only been demonstrated

on specific real data sets, namely DNA microarray data, which have completely

random missing pattern. Thus, more comprehensive frameworks of the experimental

investigation of the missing data problem need to be developed which will be the

objective of this work.

1.2.2 The Development of Experimental Setting

The technology of data generation is quite well developed (see for instance [Everrit

and Hand, 1981, Roweis, 1998, Tipping and Bishop, 1999a, Nabney, 1999, 2002]).

This is not so for the generation of missing patterns. The only concept considered so

far is that of randomly distributed missing entries. All of the causes of missing data

considered in the literature fit into three classes, which are based on the relationship

between the missing data mechanism and the missing and observed values [Little

and Rubin, 1987]:

1. Missing Completely at Random (MCAR).

MCAR means that the missing data mechanism is unrelated to the values of

any variables, whether missing or observed. Unfortunately, most missing data

are not always MCAR.

2. Missing at Random (MAR).

This class requires that the cause of the missing data be unrelated to the miss-

ing values, but may be related to the observed values of other variables. Thus,
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MAR means that the missing values are related to either observed covariates

or response variables.

3. Non-Ignorable (NI).

NI means that the missing data mechanism is related to the missing values.

It commonly occurs when people do not want to reveal something very per-

sonal or unpopular about themselves. For example, if individuals with higher

incomes are less likely to reveal their income in a survey than are individuals

with lower incomes, the missing data mechanism for income is non-ignorable.

If proportionally more low and moderate income individuals are left in the

sample because high income people are missing, an estimate of the mean in-

come will be lower than the actual population mean.

However, in a real world problem, the unobservable entry could occur under

specific circumstances which cannot be explained according to above mechanisms.

Here follows some examples.

1. In situation of experiment where the process of data collection is organized

within time series process, for instance some of the missing entries can be

further investigated or measured to be collected and imputed as part of raw

data.

2. There is a set of questions related to an issue which is sensitive for a random

group of respondents. These respondents tend to leave the sensitive questions

with no answer, this way generating incomplete data in a survey.

3. The data set under consideration may have been obtained by merging two

or more databases of the same type of records. This is frequent in medical



7

informatics. It may happen that records in either of the original databases

lack some features that have been recorded for the other data base. This way,

any part of the data may miss a submatrix of entries corresponding to the

records of a corresponding database and the features that have been missed

in it.

In our simulation study, the above scenarios of missing entries will be taken into

account. However, the non-ignorable errors remain beyond the scope of this research

project.

1.2.3 The Experimental Comparison of Various Least Squares
Data Imputation Algorithms

In order to examine whether the NN versions of least squares data imputation

methods always surpass the global least squares approaches for imputing missing

entries, a simulation study based on processing generated data within the developed

frameworks need to be performed.

To do this, a complete data set and a set of related missing patterns are generated

separately. Then, for every data set and missing pattern, the imputed values can be

compared with those originally generated; the smaller the difference, the better the

method. The well-known average scoring method Mean and its NN version, N-Mean

[Hastie et al., 1999, Myrtveit et al., 2001, Troyanskaya et al., 2001], will be used as

the bottom-line.

Main attention will be given to the commonly used Gaussian mixture data gen-

eration mechanism. However, some other data structures should be utilised as well,

to see how much the experimental results depend on the data structure.
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1.3 The Structure of the Thesis

This thesis will be organized as follows. Chapter 2 provides a review of existing

techniques for handling missing data by categorizing them in three groups: (a)

prediction rule based, (b) the maximum likelihood based and (c) the least squares

approximation based ones. Chapter 3 gives a brief description of two global least

squares imputation methods that can be considered as standing behind various

algorithms published method. The nearest neighbour versions of least squares im-

putation methods including combined global-local framework will be proposed in

Chapter 4. The setting and results of the experimental study of least squares and

their nearest neighbour versions will be described in Chapter 5. The experiments

with different data generation mechanism are considered in Chapter 6. Chapter 7

concludes the thesis and describes directions for future research.



Chapter 2

A Review of Imputation
Techniques

This chapter overviews the techniques of imputation of incomplete data which could

be categorized in the following three approaches:

1. Prediction rules [Buck, 1960, Laaksonen, 2000, Little and Rubin, 1987, Mesa

et al., 2000, Quinlan, 1989, Tsai, 2000];

2. Maximum likelihood [Dempster et al., 1977, Liu and Rubin, 1994, Little and

Rubin, 1987, Rubin, 1996, Schafer, 1997a];

3. Least squares approximation [Gabriel and Zamir, 1979, Grung and Manne,

1998, Kiers, 1997, Mirkin, 1996, Shum et al., 1995, Wold, 1966].

Here follows a review of the techniques for each category.

2.1 Prediction Rules

The common feature of the prediction rule based approaches is that they rely on a

limited number of variables. The other two approaches take advantage of using the

entire available data entries to handle missings. Depending on the characteristic of

9
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rule to be utilized, imputation techniques in this category could be differentiated

into two classes:

1. Simple rule prediction.

This approach uses a relationship rule to fill in the missing value for each entity

within one variable. The most popular approaches are Mean and Hot/Cold

deck imputation. The imputation methods within this class are characterized

by the conceptual simplicity, easy to implement and computationally simple.

2. Multivariate rule prediction.

Basically, this is an extension of the simple rule prediction which utilizes more

than one variable to impute the missing entries. The regression, tree-based

and neural network are examples of imputation techniques using multivariate

rule prediction.

Brief description of each imputation techniques can be summarized as follows.

2.1.1 Mean Imputation

The most popular method of imputation is substitution of a missing entry by the

corresponding variable’s mean, which will be referred to as the Mean algorithm. The

popularity of Mean imputation is probably caused by its simplicity. However, an

important drawback of the mean imputation is that the variance of the imputed data

systematically underestimates the real variance which can be described as follows

[Little and Rubin, 1987]. Suppose the missing values xik are substituted by their

mean of the observed values, x̄k. The variance of the “completed data” is:

σ̂2 =
(nk − 1)Sk

(n− 1)
(2.1.1)
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where nk, n and Sk denote number of observed entities, number of overall entities and

the estimated variance from the observed values, respectively. Thus, the variance of

“completed data” underestimates the ’true’ variance by a factor of (nk− 1)/(n− 1).

As a result, the ordinary statistical analysis will give biased results on the “completed

data”.

Recently, a nearest-neighbour based modification of Mean imputation techniques

has been proposed (see [Hastie et al., 1999, Myrtveit et al., 2001, Troyanskaya et al.,

2001]).

2.1.2 Hot/Cold Deck Imputation

The Mean algorithm has been recently extended with other prediction models such

as hot deck imputation in which the nearest neighbour’s value is imputed [Laakso-

nen, 2000, Little and Rubin, 1987]. This approach has the following advantages in:

(1) Conceptual and technical simplicity; (2) Sustenance of the proper measurement

level of variables such that categorical variables remain categorical and continuous

variables remain continuous; (3) The result of imputed data that can be analyzed

like any complete data matrix. However, this approach might heavily depends on

the criterion to select the neighbour. If the missing value is substituted by the modal

value rather than by that from its most similar entity, it is referred to as cold deck

imputation.

2.1.3 Regression Imputation

The improvement of Mean algorithm was realized in regression imputation, also

well-known as conditional Mean imputation, introduced by Buck [Buck, 1960]. The
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method proceeds as follows. First, compute the estimates of mean vector and co-

variance matrix of data, µ and Σ, based on sub-matrix which consists of entities

with no missing variables. If x̄ and S denote the estimates of mean vector and

covariance matrix, respectively then calculate the linear regression of the missing

variables on the observed variables, entity by entity, using those x̄ and S. Finally,

fill in the missing values by the predicted-values, i.e, those found in linear regres-

sion computation. This approach still underestimates the variance and covariance,

although the factor of underestimation is less than when the Mean imputation is

used [Laaksonen, 2000, Little and Rubin, 1987].

More recently, the combination of the multivariate regression model and a near-

est neighbour hot decking method, which is referred to as regression-based nearest

neighbour hot decking (RBNNHT) algorithm, was introduced in [Laaksonen, 2000].

This approach consists of the following steps:

1. Input the data set, X.

2. Form a multivariate regression model so that Y is the dependent variable

which is to be imputed, and the variables without missing entries are chosen

as the independent variables.

3. Compute the predicted values Ŷ of Y.

4. Order the data set by the predicted values Ŷ.

5. For each of the missing entries of Y input that observed value of Y which is

the closest to it in the order.

As described in [Laaksonen, 2000], unlike the pure regression imputation method,

RBNNHT method does not cause to underestimate the variance. However, this
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approach may have a problem due to the poor balance of the proportion between

missing and observed entries within specified range values in a data set.

2.1.4 Tree Based Imputation

Basically, there are two types of tree-based models which could be characterized in

terms of the scale of measurement of the response variable [Breiman et al., 1984,

Mesa et al., 2000, Kamakashi et al., 1996, Quinlan, 1989]:

1. Classification Tree Model

In this tree model, the response variable is assumed to be categorical. The

measures of homogeneity to determsine the splits of the tree can be accom-

plished according to: (a) F-test; (b) Chi-squared test; (c) Likelihood ratio test;

(d) Gini index; (e) Twoing rule.

2. Regression Tree Model

The type of response variable under this tree model is numerical. Two splitting

rules are frequently used: (a) Least squares and (b) Least absolute deviations.

There are two well-known methods to construct the tree: (1) CHAID (Chi-

squared Automatic Interaction Detector) which builds non-binary trees and (2)

CART (Classification and Regression Trees) which constructs binary trees only

[Tsai, 2000, Steinberg and Colla, 1995].

Handling missing values using tree-based methods is very straightforward. First,

take a response variable and the independent variables without missing entries.

Then build a classification/regression tree which represents the distribution of the

response variable in terms of the values of independent variables. Fill in the missing
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values in the response variable using an appropriate approach, for instance Mean

imputation, based on the “complete data” entities in the same node [Mesa et al.,

2000].

2.1.5 Neural Network Imputation

Recently, more sophisticated version of the regression based imputation techniques

using neural network based approaches were implemented in [Nordbotten, 1996].

This method uses the feed-forward neural network with a single layer of hidden

units. The generic imputation model can be formulated as follows:

yi = f(bi +

Nh∑
j=1

dij ∗ f(ak +
Nx∑

k=1

cjk ∗ xk)) i = 1, . . . , Ny (2.1.2)

where xk, yi, Nx, Ny and Nh denote the independent variables, dependent vari-

ables, number of independent variables, number of dependent variables, and number

of units in the hidden layer, respectively. The parameters a, b, c and d are estimated

using the following sigmoid function f :

f(t) = 1/(1 + e−t) (2.1.3)

In order to train the above model, the back-propagation (BP) approach is utilized

on the variables without missings. The training is evaluated according to the mean

square error (MSE) of the differences between the predicted-values of y and observed

values. Then, the optimal weights of BP can be determined at which the MSE

converges within a pre-specified threshold value. This method has been successfully

applied in the data editing application (see for instance in [Nordbotten, 1995, 1996]).

In another development, the imputation method using recurrent neural network
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Figure 2.1: The architecture of recurrent networks with 90-3-4 architecture data with
missing values [Bengio and Gingras, 1996]

is proposed in [Bengio and Gingras, 1996]. Under this approach, the missing values

in the input variables are initialized to their unconditional means, then their values

are updated within the architectures of the recurrent networks as shown in figure

2.1.5.

The advantage of the use of neural network imputation is that the generic im-

putation model can be regarded as a set of non-parametric, non-linear multivariate

regression. However, this approach is computational expensive. Furthermore, it is

not always easy to determine the goodness of the training model.

2.2 Maximum Likelihood

The maximum likelihood approach is very popular since it is based on a precise sta-

tistical model. This approach relies on a parametric model of data generation, typ-

ically, multivariate Gaussian mixture model. Then a maximum likelihood method

is applied for both fitting the model and imputation of the missing data. How-

ever, methods within this approach may involve insubstantiated hypotheses and
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have a slow rate of convergence. Either of these may prevent their scalability to

large databases. According to the number of imputations needed to fill in missing

entries, there are two broad categories of approaches which are referred to as single

imputation and multiple imputation. In the former category, to fill in missings, the

imputation is accomplished once only, for instance in the EM algorithm [Dempster

et al., 1977, Little and Rubin, 1987, Liu and Rubin, 1994, Schafer, 1997a]. On the

other hand, in the multiple imputation (MI), the missing entries are imputed more

than once, usually 3-10 times, see for instance Multiple Imputation (MI) algorithm

[Rubin, 1987, 1996, Schafer, 1997a, Schafer and Olsen, 1998]. Further details of each

approach will be described in the following subsections.

2.2.1 EM Algorithm

Maximum-likelihood estimates can often be calculated directly from the incomplete

data by specialized numerical methods such as the expectation-maximization (EM)

algorithm which was introduced in [Dempster et al., 1977]. Further development

of the implementation of EM algorithm for handling missing data was explored in

[Little and Rubin, 1987, Schafer, 1997a]. Indeed, the EM algorithm is derived from

the old-fashioned idea of handling missing values through iterative steps:

1. Impute the missings values using ad-hoc values.

2. Estimate the parameters of distribution.

3. Re-impute the missing values using the parameters from step 2.

4. Repeat steps 2 and 3 until the iteration converges for pre-specified threshold

values.
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Formally, the EM algorithm can be illustrated mathematically as follows: sup-

pose the variables and the current estimate of parameter denoted by X and θ(t)

respectively, then the completed-data likelihood, which is composed from missing

and observed values, is written as `(θ|X). The E-step of t-th iteration of EM al-

gorithm can be computed as: Q(θ|θt) =
∫

`(θ|X)f(Xmis|Xobs, θ = θt)dXmis where

Xmis, Xobs and f denote the missing values, observed values and probability density

function respectively. The f(..) usually represents multivariate normal distribution.

Then θt+1 is chosen as the value of θ which maximize Q. A brief description of EM

algorithm for multivariate incomplete data will be given further. This algorithm has

been implemented in [Schafer, 1997a, Strauss et al., 2002].

2.2.1.1 EM Method for Imputation of Incomplete Multivariate Normal
Data

To find maximum likelihood estimates in close form when portions of the data

matrix X are missing, the EM algorithm for a multivariate normal data matrices

with an arbitrary pattern of missing is carried out in two steps: E-step and M-step

[Schafer, 1997a]. Further details of E and M computation will be given in next

section. However, firstly, some useful computation detail for EM approach will be

introduced.

Sweep Operator

The importance of the sweep operator in the maximum likelihood computation for

incomplete multivariate normal data with general pattern of missingness is demon-

strated in [Little and Rubin, 1987, Schafer, 1997a]. In literature, this procedure

is used for linear model approximation, stepwise regression and orthogonalization

procedure [Schafer, 1997a].
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Suppose that G is a n × n symmetric matrix with elements gik. Then sweep

operator, SWP [k], operates on G by replacing it with n× n symmetric matrix H,

this operation formally can be formulated as:

H = SWP [k]G (2.2.1)

with the elements defined as follows:

hkk = −1/gkk

hjk = hkj = gjk/gkk; for j 6= k

hjl = hlj = gjl − gjkgkl/gkk; for j 6= k, l 6= k

Practically, the “sweeping” operation is accomplished in the following steps:

1. Replacing gkk by hkk = −1/gkk.

2. Replacing the remaining elements gjk and gkj in row and column k by hjk =

hkj = −gjkhkk.

3. Replacing elements gjl that beyond row k or column k by hjl = gjl − hjkgkl.

If we define SWP [k1, k2, . . . , kt] = SWP [k1]SWP [k2] . . . SWP [kt], it is not dif-

ficult to show that SWP [j, k] = SWP [k, j] and the reverse-sweep operator (RSW),

denoted by H = RSW [k]G, returns a swept matrix to its original matrix, for in-

stance RSW [k]SWP [k]G = G.

Patterns of Missing

Before performing E-step and M-step computation, first, a procedure to predict

missing entries in each column Xk will be introduced. Suppose the are patterns of

missing in X and let M be N × n matrix of binary indicators whose elements are

defined as:
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Patterns Variables
X1 X2 . . . Xn

1 1 1 . . . 1
2 1 1 . . . 0
. 1 0 . . . 1
. 1 0 . . . 0
. 0 1 . . . 1
. 0 1 . . . 0
. 0 0 . . . 1
N 0 0 . . . 0

Table 2.1: An example of a patterns of matrix M

mik =

{
1 if Xk is observed in row i.

0 if Xk is missing in pattern in row i.
(2.2.2)

Table 2.1 shows that for each missingness pattern, the variables {X1,X2, . . . Xn}
consist of subsets which point to observed and missing values, denoted as Obs(i)

and Mis(i) respectively, which are defined as follows:

Obs(i) = {k : mik = 1}
Mis(i) = {k : mik = 0}

For i = 1, 2, . . . , N .

E-step

There are well-known results of the maximum likelihood estimates for parameters

of multivariate normal distribution θ = {µ,Σ} which consist of the sample mean

vector:

x̄ = (1/N)
N∑

i=1

xi, (2.2.3)

and the sample covariance matrix:
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S = (1/N)
N∑

i=1

(xi − x̄)(xi − x̄)′ (2.2.4)

respectively. Both values also well known as sufficient statistics of µ and Σ which

are derived from data sample.

Unfortunately, when there are missing entries in data matrix, the traditional

statistical approaches to compute maximum likelihood estimates can not be utilized.

Based on this rationale, the Expectation step as part of EM algorithm, referred to

as E-step, will be applied. This step is accomplished as follows [Little and Rubin,

1987, Schafer, 1997a].

Suppose Xmis and Xobs are the missing and observed entries of the matrix, re-

spectively. Thus, the E-step is implemented as calculates the expectation of the

complete-data sufficient statistics, in terms of
∑

i xik and
∑

i xikxij, j 6= k, over

P (Xmis|Xobs, θ) for assumed value of θ. By assuming the rows x1,x2, . . . ,xN of

X independent given θ, their probability can be formulated as:

P (Xmis|Xobs, θ) = Πn
i=1P (xi(mis)|xi(obs), θ) (2.2.5)

where xi(obs) and xi(mis) denote the observed and missing subvectors of xi, respec-

tively [Schafer, 1997a].

Furthermore, xi(mis) can be computed from a multivariate normal linear regres-

sion altogether with their parameters by sweeping the matrix θ on the positions

corresponding to the observed variables in xi(obs). As a result, the location of pa-

rameters of P (xi(mis)|xi(obs), θ) is in the rows and columns labeled Mis(i) of the

matrix Z which is defined as:

Z = SWP [Obs(i)]θ (2.2.6)
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This swept parameter matrix is operated on the row i which is in the missingness

pattern s from Table 2.1. Suppose that the (k, l)-th element of Z is denoted as zkl,

(k, l = 0, 1, . . . n), then having made simple manipulation, E-step gives [Schafer,

1997a]:

E(xik|XObs, θ) =

{
xik for k ∈ Obs(i)

x∗ik for k ∈ Mis(i)
(2.2.7)

(E(xikxil|XObs, θ)) =





xikxil for k, l ∈ Obs(i)

x∗ikxil for k ∈ Mis(i), l ∈ Obs(i)

zkl + x∗ikx
∗
il for k, l ∈ Mis(i)

(2.2.8)

where

x∗ik = z0k +
∑

l∈Obs(i)

zlkxik (2.2.9)

In another formulation, the E-step can be written as E(U|Xobs, θ), where U is

the matrix of the second-order moments, a complete-data sufficient statistics:

U =
N∑

i=1




N xi1 xi2 . . . xin

x2
i1 xi1xi2 . . . xi1xin

x2
i2 . . . xi2xin

. . .
...

x2
in




(2.2.10)

M-step

Given a complete-data log likelihood from E-step, M-step finds the parameter esti-

mates to maximize the complete-data log likelihood as:

θ̂ = SWP [0]N−1E(U|Xobs, θ) (2.2.11)
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The formal approach of EM algorithm can be summarized as follows.

EM Imputation Algorithm

1. Impute the missings values using ad-hoc values.

2. E-Step: Compute the conditional expectation of complete-data log likelihood, U ,
which is operated as E(U|Xobs, θ).

3. M-Step: Given complete-data log likelihood from step 2, calculate the parameter
estimates θ̂ from (2.2.11).

4. Set θ = θ̂, then repeat steps 2 and 3 until the iteration converges for
pre-specified threshold value.

5. Impute missing values using an appropriate approach based on the
found parameters from step 4.

EM with Different Mechanisms

There are two popular approaches to fill in missing values as shown in step 5 of EM

imputation algorithm. In the first approach, the missings are imputed with random

values generated from parameters those to be found in the EM computation. This

approach is implemented in “Norm” software developed by Schafer which is freely

available in [Schafer, 1997b]. Indeed, this approach mainly to be implemented within

multiple imputation method. In this framework, the missings are imputed more than

once using specific simulation. Then, several imputed data sets are analyzed using

ordinary statistical techniques (see for instance [Rubin, 1987, 1996, Schafer, 1997a]).

In either approach, the imputation of missing entries are accomplished under

multiple regression scheme using parameters those to be found in the EM compu-

tation. This technique demonstrated by Strauss in [Strauss et al., 2002].
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2.2.2 Multiple Imputation with Markov Chain Monte-Carlo

Multiple imputation method was first implemented in an editing of data survey

to create widely public-use data sets to be shared by many end-users. Under this

framework, the imputation of missing values is carried out more than once, typically

3-10 times, in order to provide valid inferences from imputed values. Thus, MI

method is designed mainly for statistical analysis purposes and much attention has

been paid to it in the statistical literature. As described in [Rubin, 1996, Horton

and Lipsitz, 2001], MI method consists of the following three-step process:

1. Imputation: Generate m sets of reasonable values for missing entries. Each

of these sets of values can be used to impute the unobserved values. Thus,

there are m “completed” data sets. This is the most critical step since it

is designed to account for the relationships between unobserved and observed

variables. Thus the MAR (Missing at Random) assumption is the central issue

to the validity of the of multiple imputation approach. There are a number of

imputation models that can be applied. Probably the imputation model via

the Markov Chain Monte-Carlo (MCMC) is the most popular approach. This

simulation approach is demonstrated within the following IP (Imputation-

Parameter steps) algorithm [Schafer, 1997a]:

I-step: Generate Xmis,t+1 from f(X|Xobs, θt).

P-step: Generate θt+1 from f(θ|Xobs,Xmis,t+1).

The above steps produce Markov chain ({X1, θ1}, {X2, θ2}, . . . , {Xt+1, θt+1}, . . .)
which converge to the posterior distribution.

2. Analysis: Apply the ordinary statistical method to analyze each “completed”
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data sets. From each analysis, one must first calculate and save the estimates

and standard errors. Suppose that θ̂j is an estimate of a scalar quantity of

interest (e.g. a regression coefficient) obtained from data set j (j = 1, 2, . . . , m)

and σθ̂,j
2 is the variance associated with θ̂j.

3. Combine the results of analysis.

In this step, the results are combined to compute the estimates of the within

imputation and between imputation variability [Rubin, 1987]. The overall

estimate is the average of the individual estimates:

θ̄ = 1/m
m∑

j=1

θj (2.2.12)

For the overall variance, one must first calculate the within-imputation vari-

ance:

σ̄θ
2 = 1/m

m∑
j=1

σ2
θ̂,j

(2.2.13)

and the between-imputation variance:

B = 1/(m− 1)
m∑

j=1

(θ̂j − θ̄)2 (2.2.14)

then the total variance is:

σ2
pool = σ̄θ

2 + (1 + 1/m)B (2.2.15)
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Thus, the overall standard error is the square root of σ2
pool. Confidence intervals

are found as: θ̄ ± σpool with degrees of freedom:

df = (m− 1)(1 +
mθ̄

(m + 1)B
) (2.2.16)

This method is powerful since the uncertainty of the imputation is taken into

account [Rubin, 1987, 1996, Schafer, 1997a, Schafer and Olsen, 1998]. However, as

a computational tool MCMC based approach has drawbacks: (1) Complicated and

computationally expensive; (2) Unclear convergence of computation; (3) Multivari-

ate normal distribution assumption requirement.

Obviously, if the predictive accuracy of imputed values is the only main criterion

for choosing existing imputation technique, then MI seems to be an inefficient tech-

nique compared to EM algorithm. MI has been implemented in a program called as

NORM written by Schafer which is freely available on his website [Schafer, 1997b].

In the context of data imputation, in our view, MI can be applied to estime missing

data as average, estimates of the multiple imputations.

2.2.3 Full Information Maximum Likelihood

The full information maximum likelihood (FIML) is a model-based imputation algo-

rithm which is implemented as part of a fitted statistical model. This method utilize

the observed values in data to construct mean vector and covariance matrix. In-

deed, FIML method is implemented based on assumption that the data come from

multivariate normal distribution. The FIML method can be presented as follows

[Little and Rubin, 1987, Myrtveit et al., 2001]:

1. Suppose Xik, i = 1, . . . , N , k = 1, . . . , n is a data matrix which has a multi-

variate normal distribution with mean vector, µ, and covariance matrix, Σ.
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2. For each entity i, remove parts of the mean vector and covariance matrix of

variables corresponding to missing values. Set the corresponding mean and

covariance matrix as µi and Σi.

3. Define the log likelihood of entity i as:

log li = Ci− 1/2 ∗ log|Σi|− 1/2 ∗ (xi.−µi)
′Σ−1

i (xi.−µi) where Ci is a contant.

4. The overall log-likelihood of data matrix can be calculated as: log L =
∑N

i=1 log li.

5. Given that log L is a function of parameters θ = (µ,Σ), then maximum likeli-

hood estimates θ are computed through the first-order optimality conditions:

grad(log L(θ)) = 0.

As described in the above procedure, the FIML method produces a mean vector

and covariance matrix which can be utilized for further analysis.

FIML has advantage of easy of use and well-defined statistical properties. On

the other hand, a disadvantage of this approach is that it requires large data set.

2.3 Least Squares Approximation

This is a nonparametric approach based on approximation of the available data with

a low-rank bilinear model akin to the singular value decomposition (SVD) of a data

matrix.

Methods within this approach, typically, work sequentially by producing one

factor at a time to minimize the sum of squared differences between the available

data entries and those reconstructed via bilinear modelling. The rate of convergence

of the least squares approximation is very fast and it might suggest scalability to
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large databases. There are two ways to implement this approach which are described

as follows.

2.3.1 Non-missing Data Model Approximation

Under this approach, an approximate data model is found using nonmissing data

only and then missing values are interpolated using values found with the model.

Formerly, this approach was developed for the purpose of handling the principal

component analysis (PCA) with missings introduced in [Wold, 1966]. In [Wold,

1966] the unidimensional subspace was utilized to find an approximate data model

with a rather complex procedure of two-way regression analysis, the so-called criss-

cross regression. However, in many cases, this approach incurs a significant error

of approximation. Independently, [Gabriel and Zamir, 1979] and [Mirkin, 1996]

described a similar approaches in which the data is approximated by a bilinear model

that assumes a subspace of higher than one dimensionality. Similar developments

within chemometrics and object modelling applications were explored in [Grung and

Manne, 1998] and [Shum et al., 1995], respectively.

2.3.2 Completed Data Model Approximation

Unlike the previous approach, the methods within this framework are initialized by

filling in all the missing values using ad-hoc values, then iteratively approximating

the completed data and updating the imputed values with those implied by the

approximation. Basically, this technique has been described differently in [Grung

and Manne, 1998] and [Kiers, 1997]. The former built on the criss-cross regression by

Wold [Wold, 1966] while the latter on the so-called majorization method by Heiser

[Heiser, 1995]. The rate of convergence of the methods within this approach is slower
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than those of the non-missing data model approximation. However, it converges in

many situations in which the non-missing approximation fails (see further page 34).



Chapter 3

Two Global Least Squares
Imputation Techniques

This chapter describes generic methods within each of the two least squares ap-

proximation approaches referred to in the previous chapter: (1) The iterative least

squares algorithm [Gabriel and Zamir, 1979, Grung and Manne, 1998, Mirkin, 1996,

Shum et al., 1995], (2) The iterative majorization least squares algorithm [Grung

and Manne, 1998, Kiers, 1997].

3.1 Notation

The data is considered in the format of a matrix X with N rows and n columns. The

rows are assumed to correspond to entities (observations) and columns to variables

(features). The elements of a matrix X are denoted by xik (i = 1, ..., N , k = 1, ..., n).

The situation in which some entries (i, k) in X may be missed is modeled with an

additional matrix M = (mik) where mik = 0 if the entry is missed and mik = 1,

otherwise.

The matrices and vectors are denoted with boldface letters. A vector is always

considered as a column; thus, the row vectors are denoted as transposes of the

29
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column vectors. Sometimes we show the operation of matrix multiplication with

symbol ∗.

3.2 Least-Squares Approximation with Iterative

SVD

This section describes the concept of singular value decomposition of a matrix (SVD)

as a bilinear model for factor analysis of data. This model assumes the existence of

a number p ≥ 1 of hidden factors that underlie the observed data as follows:

xik =

p∑
t=1

ctkzit + eik, i = 1, . . . N, k = 1, . . . , n. (3.2.1)

The vectors zt = (zit) and ct = (ctk) are referred to as factor scores for entities

i = 1, . . . , N and factor loadings for variables k = 1, . . . , n, respectively [Jollife,

1986, Mirkin, 1996]. Values eik are residuals that are not explained by the model

and should be made as small as possible.

To find approximating vectors ct = (ctk) and zt = (zit), we minimize the least

squares criterion:

L2 =
N∑

i=1

n∑

k=1

(xik −
p∑

t=1

ctkzit)
2 (3.2.2)

It is proven that minimizing criterion (3.2.2) can be done with the following

one-by-one strategy, which is, basically, the contents of the method of principal

component analysis, one of the major data mining techniques [Jollife, 1986, Mirkin,

1996] as well as the so-called power method for SVD [Golub and Loan, 1986].

According to this strategy, computations are carried out iteratively. At each

iteration t, t = 1, ..., p, only one factor is sought for. The criterion to be minimized
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at iteration t is:

l2(c, z) =
N∑

i=1

n∑

k=1

(xik − ckzi)
2 (3.2.3)

with respect to condition
∑n

k=1 c2
k = 1. It is well-known that the solution to this

problem is the singular triple (µ, z, c) such that Xc = z and XTz = µc with µ =√∑N
i=1 z2

i , the maximum singular value of X. The found vectors c and z are stored

as ct and zt and the next iteration t+1 is performed. The matrix X = (xik) changes

from iteration t to iteration t + 1 by subtracting the found solution according to

formula xik ← xik − ctkzti.

To minimize (3.2.3), the method of alternating minimization can be utilized.

This method also works iteratively. Each iteration proceeds in two steps: (1) given

(ck), find optimal (zi); (2) given (zi), find optimal (ck). Finding the optimal score

and loading vectors can be done according to equations:

zi =

∑n
k=1 xikck∑n

k=1 c2
k

(3.2.4)

and

ck =

∑N
i=1 xikzi∑N

i=1 z2
i

(3.2.5)

that follow from the first-order optimality conditions.

This can be wrapped up as the following algorithm for finding a pre-specified

number p of singular values and vectors.
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Iterative SVD Algorithm

0. Set number of factors p and specify ε > 0, a precision threshold.

1. Set iteration number t=1.

2. Initialize c∗ arbitrarily and normalize it. (Typically, we take c∗′ = (1 . . . , 1).)

3. Given c∗, calculate z according to (3.2.4).

4. Given z from step 3, calculate c according to (3.2.5) and normalize it.

5. If ||c− c∗|| < ε, go to 6; otherwise put c∗ = c and go to 3.

6. Set µ = ||z||, zt = z, and ct = c.

7. If t == p, end; otherwise, update xik = xik − ctkztk, set t = t + 1 and go to
step 2.

Note that z is not normalised in the version of the algorithm described, which

implies that its norm converges to the singular value µ. This method always con-

verges if the initial c does not belong to the subspace already taken into account in

the previous singular vectors.

3.2.1 Iterative Least-Squares (ILS) Algorithm

The ILS algorithm is based on the SVD method described above. However, this

time equation (3.2.1) applies only to those entries that are not missed.

The idea of the method is to find the score and loading vectors in decomposi-

tion (3.2.1) by using only those entries that are available and then use (3.2.1) for

imputation of missing entries (with the residuals ignored).

To find approximating vectors ct = (ctk) and zt = (zit), we minimize the least
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squares criterion on the available entries. The criterion can be written in the fol-

lowing form:

l2 =
N∑

i=1

n∑

k=1

e2
ikmik =

N∑
i=1

n∑

k=1

(xik −
p∑

t=1

ctkzit)
2mik (3.2.6)

where mik = 0 at missings and mik = 1, otherwise.

To minimize criterion (3.2.6), the one-by-one strategy of the principal compo-

nent analysis is utilized. According to this strategy, computations are carried out

iteratively. At each iteration t, t = 1, ..., p, only one factor is sought for to minimize

criterion:

l2 =
N∑

i=1

n∑

k=1

(xik − ckzi)
2mik (3.2.7)

with respect to condition
∑N

i=1 c2
k = 1. The found vectors c and z are stored as ct

and zt, non-missing data entries xik are substituted by xik− ckzi, and next iteration

t + 1 is performed.

To minimize (3.2.7), the same method of alternating minimization is utilized.

Each iteration proceeds in two steps: (1) given a vector (ck), find optimal (zi); (2)

given (zi), find optimal (ck). Finding optimal score and loading vectors can be done

according to equations extending (3.2.4) and (3.2.5) to:

zi =

∑n
k=1 xikmikck∑n

k=1 c2
kmik

(3.2.8)

and

ck =

∑N
i=1 xikmikzi∑N

i=1 z2
i mik

(3.2.9)

Basically, it is this procedure that was variously described in Gabriel and Zamir

[1979], Grung and Manne [1998], Mirkin [1996]. The following is a more formal

presentation of the algorithm.
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ILS Algorithm

0. Set number of factors p and ε > 0, a pre-specified precision threshold.

1. Set iteration number t=1.

2. Initialize n-dimensional c∗′ = (1, . . . , 1) and normalize it.

3. Given c∗, calculate z according to (3.2.8).

4. Given z from step 3, calculate c according to (3.2.9) and normalize it
afterwards.

5. If ||c− c∗|| > ε, put c∗ = c and go to 3.

6. If t < p set ct = c, zt = z, then update xik = xik − ctkztk for (i, k) such that
mik = 1 and t = t + 1 and go to 2, otherwise end.

7. Impute the missing values xik at mik = 0 according to (3.2.1) with eik = 0.

There are two issues which should be taken into account when implementing

ILS:

1. Convergence.

The method may fail to converge depending on configuration of missings and

starting point. Some other causes of non-convergence such as those described

in [Grung and Manne, 1998] have been taken care of in the formulation of

the algorithm. In the present approach, somewhat simplistically, the normed

vector of ones was used as the starting point (step 2 in the algorithm above).

However, sometimes a more sophisticated choice is required as the iterations

may come to a “wrong convergence” or no converge at all. To this end, Gabriel

and Zamir [Gabriel and Zamir, 1979] developed a method to use a row of X

to build an initial c∗, as follows:
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1. Find (i, k) with the maximum

ωik =
∑

b

mbkx
2
bk +

∑

d

midx
2
id (3.2.10)

over those (i, k) for which mik = 0.

2. With these i and k, compute

β =

∑
b6=i

∑
d 6=k mbdx

2
bkx

2
id∑

b6=i

∑
d6=k mbdxbkxidxbd

(3.2.11)

3. Set the following vector as initial at the ILS step 2:

c∗′ = (xi1 . . . xik−1, β, xik+1 . . . , xin) (3.2.12)

The method is rather computationally intensive and may cause to slow down

the speed of computation (up to 60 times in our experiments). However, it

can be very useful indeed when the size of the data is small.

2. Number of factors.

When the number of factors is equal to one, p = 1, ILS is equivalent to

the method introduced by Wold [Wold, 1966] and his student Christoffersson

under the name of “nonlinear iterative partial least squares” (NIPALS). In

most cases the one-factor technique leads to significant errors, which implies

the need for more factors. Selection of p may be driven by the same scoring

function as selection of the number of principal components: the proportion of

the data variance taken into account by the factors. This logic is well justified

in the case of the principal component analysis in which model (3.2.1) fits the

data exactly when p is equal to the rank of X. When missings are present
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in the data, the number of factors sequentially found by ILS may be infinite.

However, the logic is still justified since we can prove that the residual data

matrix converges to the zero matrix as follows (See also Statement 2.2 in

[Mirkin, 1996]).

Define Γ = {(i, k)|xik is not missed} and X∗ = {xik|(i, k) ∈ Γ}. For simplicity

purpose, for any sets A = (Aik|(i, k) ∈ Γ) and B = (Bik|(i, k) ∈ Γ) the

following notation to be used:

(A,B) =
∑

(i,k)∈Γ

Aik ∗Bik (3.2.13)

The bilinear model described in (3.2.1), can be represented in the following

way:

xik =

p∑
t=1

ctkzit + Eik, (i, k) ∈ Γ (3.2.14)

where zit and ctk are N -dimensional and n-dimensional vectors and the resid-

ual E is least squares minimized. By denoting the residual EObs by Xt+1, ILS

method can be presented as:

Xt = ztc
T
t + Xt+1 (3.2.15)

with equations (3.2.1) holding at (i, k) ∈ Γ. By mutliplying (3.2.15) by itself

we obtain:

(Xt,Xt) = (ztc
T
t , ztc

T
t ) + (Xt+1,Xt+1) (3.2.16)
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According to equation (3.2.16) the value gt = (ztc
T
t , ztc

T
t ) is contribution of t-

th factor to the squared norm of the residual data observed (Xt,Xt). To derive

a lower boundary to gt, let us consider an admissible solution to minimization

of least squares (Xt+1,Xt+1) according to (3.2.15). This admissible solution is

defined by vector z = v(i∗) all components of which are zero except for i∗-th

component equal to 1. Then according to (3.2.9) the optimal ck which is at k∗

such that (i∗, k∗) ∈ Γ, will be equal to xti∗k∗ , the (i∗, k∗)-th element of matrix

Xt. Then obviously the combination of (zcT ) to (Xt,Xt) according to (3.2.15)

will be (zcT , zcT ) =
∑

k∗∈Γ x2
ti∗k∗ . Thus the optimal contribution gt must be

not less than x2
ti∗k for arbitrary (i∗, k) ∈ Γ.

Let |xtik| = maxi′=1,...,N ;k′=1,...,n|xti′k′ | then obviously (Xt,Xt)/Nn ≤ x2
tik.

Thus gt ≥ x2
tik ≥ (Xt,Xt)/Nn. From this the following inequality can be

easily derived by induction over t:

(Xt+1,Xt+1) = (Xt,Xt)− gt ≤ (X,X)(1− 1

Nn
)t t = 1, 2, . . . (3.2.17)

However, (1− 1
Nn

)t converges to 0 as t increases, therefore, (Xt,Xt) → 0 2.

3.2.2 Iterative Majorization Least-Squares (IMLS)
Algorithm

This method is an example of an application of the general idea that the weighted

least squares minimimization problem can be addressed as a series of non-weighted

least squares minimization problems with iteratively adjusting found solutions ac-

cording to a so-called majorization function [Heiser, 1995]. In this framework, Kiers
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[Kiers, 1997] developed the following algorithm, that in its final form can be formu-

lated without any concept beyond those previously specified. The algorithm starts

with a complete data matrix and updates it by relying on both non-missing entries

and estimates of missing entries.

The algorithm is similar to ILS except for the fact that it employs a different

iterative procedure for finding a factor, that is, pair z and c, which will be referred

to as Kiers algorithm and described first. The Kiers algorithm operates with a com-

pleted version of matrix X denoted by Xs where s = 0, 1, .. is the iteration’s number.

At each iteration s, the algorithm finds one best factor of the SVD decomposition

of Xs and imputs the results into the missing entries, after which the next iteration

starts.

Kiers Algorithm

1. Set c′ = (1, ..., 1) and normalize it.

2. Set s = 0 and define matrix Xs by putting zeros into missing entries of X.
Set a measure of quality hs =

∑N
i=1

∑n
k=1 xs

ik
2.

3. Find the first singular triple z1, c1, µ for matrix Xs by applying
the iterative SVD algorithm with p = 1 and denote the resulting
value of criterion (3.2.6) by hs+1. (Vectors z1, c1 are assumed normalised
here.)

4. If |hs − hs+1| > ε ∗ hs for a small ε > 0, set s = s + 1, put µzi1c1k

for any missing entry (i, k) in X and go back to
step 3.

5. Set µz1 and c1 as the output.

Now the IMLS algorithm [Kiers, 1997] can be formulated with its properties yet

to be explored.
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IMLS Algorithm

0. Set the number of factors p.

1. Set iteration number t=1.

2. Apply Kiers algorithm to matrix X with the missing structure M.
Denote results by zt and ct.

3. If t = p, go to step 5.

4. For (i, k) such that mik = 1, update xik = xik − ctkztk, put t=t+1 and go
to step 2.

5. Impute the missing values xik at mik = 0 according to (3.2.1) with eik = 0.



Chapter 4

Combining Nearest Neighbour
Approach with the Least Squares
Imputation

4.1 A Review of Lazy Learning

The term “lazy learning”, also known as instance-based learning, applies to a class

of local learning algorithms which could be characterized by the following three key

properties [Aha et al., 1991, Aha, 1997, Mitchel, 1997]:

1. The computations are postponed until they receive a request for prediction.

2. Then, a request for prediction is responded by combining information from

training samples.

3. Finally, the constructed answer and intermediate results are discarded.

These properties would distinguish the term lazy learning from the other type

learning which is referred to as “eager learning”. In the latter type, the learning

is accomplished before a request for prediction is received. The advantages of lazy

learning approach are summarized as follows:

40
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1. During the training session, the lazy algorithms have fewer computations than

the eager algorithms. Thus, lazy learning is very suitable for incremental

learning tasks, i.e. if the data stream is continually updated [Aha, 1998].

2. The lazy algorithms provide highly adaptive behaviour under local approaches

which are implemented in subsequent problems [Bottou and Vapnik, 1992].

3. Lazy algorithms can inspire abstractions of complex tasks, for instance in

developing the lazy version of backpropagation that learns a different neural

network for each new query [Bottou and Vapnik, 1992, Mitchel, 1997].

4. Lazy learning proposes conceptually straightforward approaches to approxi-

mating real-valued or discrete-valued target functions [Atkeson et al., 1997].

There are three well-known broad approaches within this framework to which

the machine learning community has paid much attention:

1. k-Nearest Neighbour (k-NN).

This is the most basic lazy learning technique which involves three main char-

acteristics as explored in [Aha et al., 1991, Mitchel, 1997, Wettschereck and

Dietterich, 1994]:

• The implementation of the nearest neighbour algorithm is based on the

assumption that all points in the n-dimensional space represent all enti-

ties.

• The decision of how to generalize beyond the training data is postponed

until a request for prediction is received.
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• The prediction is accomplished based on “similar entities” only. Thus,

according to this criterion, the k-nearest neighbours of a target entity Xi

and its neighbour entity Xj are defined in terms of the standard Euclidean

distance which can be computed as follows:

D2(Xi,Xj) =
n∑

k=1

[xik − xjk]
2; i, j = 1, 2, . . . N (4.1.1)

2. Locally weighted regression.

In locally weighted regression, values are weighted by proximity to the current

query using a kernel function which is defined as a function of distance that is

used to determine the weight of each training data value. A regression is then

computed using the weighted values [Aha, 1997, Atkeson et al., 1997, Bottou

and Vapnik, 1992].

3. Case-based reasoning.

In this approach, case-based reasoning expertise is expressed by a collection

of past instances (cases) which consist of enrichment of symbolic descriptions.

Each entity typically contains a description of the problem including a solu-

tion. The knowledge and reasoning process used by an expert to the solve the

problem is implicit in the solution [Aha, 1991, Kolodner, 1993, Mitchel, 1997].

For simplicity purpose, this work implements the k-NN algorithm approach for

constructing local versions of the least squares imputation. To do this, some aspects

of the traditional k-NN discussed widely in the literature can be extended in the

following ways:

1. The distance measurement for incomplete data.
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Since the traditional k-NN algorithm can only possible be applied to the com-

plete data case, it is necessary to extend the conventional distance measure-

ment (see for instance in [Hastie et al., 1999, Troyanskaya et al., 2001]).

2. Selection of neighbours criterion.

As some attributes contain missing entries for some entities, there are two

possibilities to select the neighbours: (1) select the neighbour as is; (2) select

the neighbours which contain no missing entries in corresponding attributes

to the target entity.

The details of the extension of the k-NN algorithm for incomplete data imputa-

tion will be explored in the following section.

4.2 Nearest Neighbour Imputation Algorithms for

Incomplete Data

As explained in the previous section, in order to determine and select the neighbour

in case of some entities containing missing entries, the adaptation of nearest neigh-

bour algorithm for incomplete data need to be developed. The ultimate objective

is to extend the two global least squares imputations as described in Section 3.2.1

and 3.2.2 into their local versions by using techniques from the nearest neighbour

framework.

In this approach, the imputations are carried out sequentially, by analyzing

entities with missing entries one-by-one. An entity containing one or more missing

entries which are to be imputed is referred to as a target entity. The imputation

model such as (3.2.1), for the target entity, is found by using a shortened version of

X to contain only K+1 elements: the target and K selected neighbours.
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Briefly, the k-NN based techniques can be formulated as follows: take the first

row that contains a missing entry as the target entity Xi, find its K nearest neigh-

bours, and form a matrix X consisting of the target entity and the neighbours.

Then apply an imputation algorithm to the matrix X, imputing missing entries at

the target entity only. Repeat this until all missing entries are filled in. Then output

the completed data matrix.

To apply the k-NN approach to incomplete data, the following two issues should

be addressed.

4.2.1 Measuring Distance.

There can be a multitude of distance measures considered. Euclidean distance

squared was chosen as this measure is compatible with the least squares framework.

Thus, the equation (4.1.1) is extended in the following form:

D2(Xi,Xj,M) =
n∑

k=1

[xik − xjk]
2mikmjk; i, j = 1, 2, . . . N (4.2.1)

where mik and mjk are missingness values for xik and xjk, respectively. This distance

was also used in [Hastie et al., 1999, Myrtveit et al., 2001, Troyanskaya et al., 2001].

4.2.2 Selection of the Neighbourhood.

The principle of selecting the closest entities can be realized, first, as is, on the set of

all entities, and, second, by considering only entities with non-missing entries in the

attribute corresponding to that of the target’s missing entry. The second approach

was applied in [Hastie et al., 1999, Myrtveit et al., 2001, Troyanskaya et al., 2001]

for data imputation with the Mean method. The proposed methods apply the same

approach when using this method. However, for ILS and IMLS, the presence of
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missing entries in the neighbouring entities creates no problems, therefore, for these

methods, all entities were selected.

4.3 Least Squares Imputation with Nearest Neigh-

bour

Basically, this method involves three main procedures which can be accomplished in

the following steps: first, search the entity that contains missing entries, referred to

as the target entity; then find its neighbours based on the distance measure in 4.2.1

regardless of the missingness in the corresponding attributes of the target entity;

finally impute the missings in the target entity on the subset of the data matrix which

consists of the target entity and its closest entities using ILS and IMLS algorithms.

Repeat the procedures until all entities contain no missing entries. More formally,

the algorithms can be described as follows:

NN Version of Imputation Algorithm A(X,M)

0. Observe the data. If there are no missing entries, end.

1. Take the first row that contains a missing entry as the target entity Xi.

2. Find K neighbours of Xi.

3. Create a data matrix X consisting of Xi and K selected neighbours.

4. Apply imputation algorithm A(X,M), and impute missing values in Xi and
go to 0.

To make the NN-based imputation algorithms work fast, let K be of the order of

5 to 10 entities to be chosen. Then, to apply the least squares imputation techniques,

the number of factors is restricted to guarantee that the subspace approximation

processes converge. Thus, p = 1 taken alongside the Gabriel-Zamir’s initialization
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in ILS was implemented. The ILS algorithm may still lead to nonconvergent results

because of the small NN data sizes.

4.4 Global-Local Least Squares Imputation Algo-

rithm

One more NN based approach can be suggested to combine nearest neighbour ap-

proach with the global imputation algorithms described in Section 3. In this ap-

proach, a global imputation technique was used to fill in all the missings in matrix

X. Suppose the resulting matrix is denoted as X∗. Then nearest neighbour tech-

nique is applied to fill in the missings in X again, but, this time, based on distances

computed with the completed data X∗.

The same distance formula (4.2.1) can be utilized in this case as well, by assuming

that all values mik are unities, which is the case when matrix X∗ is utilised. This

distance will be referred to as the prime distance.

This proposed technique is an application of this global-local approach involving

IMLS at both stages. This technique, referred to as INI from this point on, will

include four main steps. Firstly, impute missing values in the data matrix X by

using IMLS with p factors. Then compute the prime distance metric with the found

X∗. Take a target entity according to X and apply the NN algorithm to find its

neighbours according to X∗. Finally, impute all the missing values in the target

entity with NN-based IMLS technique (this time, with p = 1).
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INI Algorithm

1. Apply IMLS algorithm to X with p > 1 to impute all missing entries in matrix
X; denote resulting matrix by X∗.

2. Take the first row in X that contains a missing entry as the target entity Xi.

3. Find K neighbours of Xi on matrix X∗.

4. Create a data matrix Xc consisting of Xi and rows of X corresponding to
the selected K neighbours.

5. Apply IMLS algorithm with p = 1 to Xc and impute missing values in Xi of X.

6. If no missing entries remain, stop; otherwise go back to step 2.

4.5 Related Work

4.5.1 Nearest Neighbour Mean Imputation (N-Mean)

The Mean imputation within nearest neighbour framework has been successfully

proposed in the context of Bioinformatics problem (see for instance in [Hastie et al.,

1999, Troyanskaya et al., 2001]). As described in previous section, in the N-Mean,

the neighbours are selected by considering only entities with non-missing entries in

the attribute corresponding to that of the target’s missing entry. Then, the missing

values are imputed with weighted average of the neighbours .

The results show that this approach provide very fast, robust and accurate ways

of imputing missing values for microarray data and far surpasses the currently ac-

cepted solutions such as: filling missing values by zeros or Mean imputation. How-

ever, the performance of the N-Mean imputation deteriorates as the proportion of

missings grows.
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4.5.2 Similar Response Pattern Imputation (SRPI)

The similar response pattern method for handling missing data had been paid at-

tention to in the Software Engineering community as described in [Myrtveit et al.,

2001, SSI, 1995]. Basically, the SRPI method is a general form of the N-Mean im-

putation. This approach utilizes a mechanism which is similar to with N-Mean in

terms of selecting the neighbours such that the entities should have no missing at

the column values corresponding to that of the target’s missing entry. Then the

entities are selected according to the Euclidean distance squared:

Q =
n∑

k=1

[x`k − xk]
2 (4.5.1)

where index ` and  = 1, 2, . . . , N ,  6= `, denote the target entity and the

neighbours candidate to be selected, respectively.

The distance (4.5.1) is minimized over j 6= l such that two possibilities to impute

the missing values in x`. may occur:

1. There is only one x. found. In this case, the missing value in x`. is imputed

with x..

2. More than one x are found by minimizing (4.5.1). In this case, use the average

of them to fill in missing value in x`..

The use of the squared Euclidean distance (4.5.1) suggests that the SRPI method

does not involve the outlier values to impute the missing values. However, this ap-

proach requires a through knowledge of data with regard to selection of the neigh-

bours of the target entity.
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This approach provides promising performance according to the results in [Myrtveit

et al., 2001]. In a commercial application, the SRPI method has been implemented

in the software package PRELIS 2.3 [SSI, 1995].



Chapter 5

Experimental Study of Least
Squares Imputation

The experimental study of the least squares imputation and their extensions to be

carried out through several massive experiments within simulation framework. The

main goal of the experimental study is twofold:

1. To compare the performance of various least squares data imputation on Gaus-

sian mixture data models with Complete Random missing pattern.

2. To study the performance of least squares data imputation with different miss-

ing patterns.

5.1 Selection of Algorithms

The goals specification above lead us to consider the following eight least squares

data imputation algorithms as a representative selection:

1. ILS-NIPALS or NIPALS: ILS with p = 1.

2. ILS: ILS with p = 4.

50
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3. ILS-GZ or GZ: ILS with the Gabriel-Zamir procedure for initial settings.

4. IMLS-1: IMLS with p = 1.

5. IMLS-4: IMLS with p = 4.

6. N-ILS: NN based ILS with p = 1.

7. N-IMLS: NN based IMLS-1.

8. INI: NN based IMLS-1 imputation based on distances from an IMLS-4 impu-

tation.

Of these, the first five are versions of the global ILS and IMLS methods, the next two

are nearest neighbour versions of the same approaches, and the last algorithm INI

combines local and global versions of IMLS. Similar combined algorithms involving

ILS have been omitted here since they do not always converge. For the purposes of

comparison, two mean scoring algorithms have been added:

(9) Mean: Imputing the average column value.

(10) N-Mean: NN based Mean.

In the follow-up experiments, the NN based techniques will operate with K=10.

5.2 Gaussian Mixture Data Models

This experimental study applies two types of data model generation. The mechanism

to generate each data model will be described in turn.
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5.2.1 NetLab Gaussian Mixture Data Model

Gaussian mixture data model is described in many monographs (see, for instance,

[Everrit and Hand, 1981]). In this model, a data matrix DN×n is generated randomly

from the Gaussian mixture distribution with a probabilistic principal component

analysis (PCA) covariance matrix [Roweis, 1998, Tipping and Bishop, 1999a]. For

now on the term Gaussian p-mixture is referred to a mixture of p Gaussian distri-

butions (classes). The following three-step procedure, Neural Network NETLAB, is

applied as implemented in a MATLAB Toolbox freely available on the web [Nabney,

1999]:

1. Architecture: set the dimension of data equal to n, number of classes (Gaussian

distributions) to p and the type of covariance matrix based on the probabilistic

PCA in a q dimension subspace. In our experiments, p is 5, n between 15 and

25, and q typically is n− 3.

2. Data Structure: create a Gaussian mixture model with the mixing coefficient

equal to 1/p for each class. A Gaussian distribution for each i-th class (i =

1, ..., p) is defined as follows: a random n-dimensional vector avgi is generated

based on Gaussian distribution N(0,1). The n× q matrix of the first q loading

n-dimensional vectors is defined:

Wq =

(
Iq×q

1(n−q)×q

)
(5.2.1)

where Iq×q and 1(n−q)×q are the identity matrix and matrix of ones, respec-

tively.

In the experiments, the general variance σ2 is set to be equal to 0.1. The

probabilistic PCA (PPCA) covariance matrix is computed as follows:
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Cov = Wq ∗W′
q + σ2In×n (5.2.2)

3. Data: generate randomly data matrix DN×n from the Gaussian mixture dis-

tribution as follows:

Compute eigenvectors and corresponding eigenvalues of Cov and denote
the matrix of eigenvectors by evec and vector of the square roots of
eigenvalues by

√
eigen.

For i = 1, . . . , p:
Set Ni = N/p, the number of rows in i-th class.
Generate randomly R(Ni×n) based on Gaussian distribution N(0,1).
Compute Di = 1Ni×1 ∗ avg′i + R ∗ diag(

√
eigen) ∗ evec′.

end
Define D as N × n matrix combining all generated matrices Di, i = 1, ..., p.

5.2.2 Exploration of NetLab Gaussian Mixture Data Model

The structure of (5.2.1) is rather simple and produces a simple structure of covari-

ance (5.2.2) as well. Indeed, it is not difficult to show that

Cov(0) =

(
Iq×q 1q×(n−q)

1(n−q)×q q1(n−q)×(n−q)

)
(5.2.3)

Let us consider an n-dimensional vector x in the format x = (xq,xn−q) where

xq and xn−q denote subvectors with q and n − q components, respectively. Let us

denote the sum of xq by a and the sum of xn−q by b. Obviously, to be an eigenvector

of Cov(0) corresponding to its eigenvalue λ, x must satisfy the following equations:

xq + b1q = λxq and (a + qb)1n−q = λxn−q.

With little arithmetics, these imply that Cov(0) has only two nonzero eigenvalues,

the maximum λ = 1 + (n − q)q and second-best λ = 1. In the eigenvector corre-

sponding to the maximum eigenvalue, part xq consists of the same components and,
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similarly, elements of xn−q are the same. Part xn−q of the eigenvector corresponding

to λ = 1 is zero. Also, part xq of eigenvectors corresponding to λ = 0 consists of

the same values.

Obviously, having n and q of the order of 20 and 3, respectively, makes the max-

imum λ = 1 + (n− q)q equal to 52, which leads to an overwhelming presence of the

maximum eigenvalue and corresponding eigenvector in the data generated according

to the model above. That is, the data formally generated from a mixture of Gaus-

sian distributions, still will tend to be approximately unidimensionally distributed

along the first eigenvector.

Changing σ in Cov(σ) to an arbitrary value does not change eigenvectors but

adds σ2 to the eigenvalues. Even with σ approaching unity, the contribution of the

first factor remains very high. Thus the model as is would yield very small deviations

of generated data sets from the unidimensional case.

5.2.3 Scaled NetLab Gaussian Mixture Data Model

To better control the complexity of generated data sets, then the modification of

the Gaussian mixture data model above is called for. The improvement is carried

out by differently scaling the covariance matrix Cov(σ) and the mean vector avg

for each class. To do this, for each Gaussian class i = 1, ..., p, the random scaling

factor, bi, to be utilized in order to move avgi away from the origin. Also scaling

the covariance matrix by factor ai to be taken as proportional to i. The dimension

of the PPCA model is taken as q = [n/2]. In brief, by using the architecture and

data structure described above, the data generator can be summarized as follows:
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For i = 1, . . . , p, given avgi and Covi(σ) from NetLab:
Randomly generate the scaling factor bi in the range range between 5 and 15.
Compute scaled Covi as Covi = 0.8 ∗ i ∗ bi ∗Cov(σ).
Compute eigenvalues and corresponding eigenvectors of Covi and denote
the matrix of eigenvectors by eveci and vector of the square roots of
eigenvalues by

√
eigeni .

Set Ni = N/p, the number of rows in i-th class.
Generate randomly R(Ni∗n) according to Gaussian distribution N(0,1).
Compute Di = bi ∗ 1Ni×1 ∗ avg′i + R ∗ diag(

√
eigeni) ∗ evec′i.

end
Define D as N × n matrix combining all generated matrices Di, i = 1, ..., p.

5.3 Mechanisms for Missing Data

5.3.1 Complete Random Pattern

Given a data table generated, a pattern of missing entries is produced randomly on

a matrix of the size of the data table with a pre-specified proportion of the missings.

The proportion of missing entries may vary. The random uniform distribution is

used for generating missing positions and the proportion’s range at 1%, 5%, 10%,

15%, 20% and 25% of the total number of entries.

5.3.2 Inherited Pattern

In this scheme, the same range of proportions of missing entries as above is specified.

Then, given the size N × n of data matrix, a 25% set P of missing entries (i, j),

i = 1, ..., N ; j = 1, ..., n, is generated from the uniform distribution. The next 20%

set of missing entries is created to be part of this P by randomly selecting 80% of

the entries in P . These 80% form a 20% missing set to be taken as P for the next

step. The next inherited sets of missing entries are created similarly, by randomly

selecting 75%, 66.7%, 50%, 20% of elements in the previous set P , respectively. This

way, a nested set of six sets of missing entries is created, representing an Inherited



56

pattern.

5.3.3 Sensitive Issue Pattern

According to the model accepted, missings may occur only at a subset of entities

with regard to a subset of issues. In the experiments, additional constraints on

selection of the “sensitive” rows and columns to be maintained, to avoid trivial

patterns. The missings under this scenario are carried out as follows:

Sensitive Issue Pattern Generation

Given proportion p of missings entries, randomly select proportions c
of sensitive issues (columns) and r of sensitive respondents (rows) such that
p < cr.
Then, in the data submatrix formed by the selected columns and rows
randomly generate proportion of p/cr missings.
Accept the following additional constraints on the values generated:
1. 10% < c < 50% and 25% < r < 50% for p = 1%.
2. 20% < c < 50% and 25% < r < 50% for p = 5%.
3. 25% < c < 50% and 40% < r < 80% for p = 10%.

5.3.4 Merged Database Pattern

In this pattern, two scenarios for merging two databases to be implemented which

can be categorized as:

1. Missings come from only one database.

2. Missings come from both of the databases.

5.3.4.1 Missings from One Database

Under this scenario, the missings are generated as follows. First, specify the propor-

tion p% of missing entries on the merged database. Then generate q% of columns

consist of missings entries in the merged database. These are assumed to come from
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X1 X2 . . . Xn−1 Xn

1 O O . . . U U
2 O O . . . U U
3 O O . . . U U

. . . . . . . . . . . . . . . . . .
N1 O O . . . U U

N1 + 1 O O . . . O O
N1 + 2 O O . . . O O
N1 + 3 O O . . . O O

. . . . . . . . . . . . . . . . . .
N O O . . . O O

Table 5.1: A pattern of data at which missings come from one database, where U and O
denote missing and not-missing entries, respectively.

database at which the corresponding variables are missed. Finally, the proportion

of respondents (rows) is computed as t = p/q. (see Table 5.1).

In the experiments, q = 20%, 30% are selected for generating 1% and 5% miss-

ings.

5.3.4.2 Missings from Two Databases

Suppose each of the two databases to be merged such that each contain variables

that are absent in the other variables. The merged database will have a pattern

presented in Table 5.2 at which the variables which are present only in the first

database are placed on the left while variables that are present only in the second

database are placed on the right. A procedure to generate the missings of this type

will be introduced as follows.

Obviously, if N1 and N2 are the members of rows in the databases and k1 and

k2 are the members of missing columns in the databases then the total proportion

of missings can be calculated as:
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X1 X2 . . . Xn−1 Xn

1 O O . . . U U
2 O O . . . U U
3 O O . . . U U

. . . . . . . . . . . . . . . . . .
N1 O O . . . U U

N1 + 1 U U . . . O O
N1 + 2 U U . . . O O
N1 + 3 U U . . . O O

. . . . . . . . . . . . . . . . . .
N U U . . . O O

Table 5.2: A pattern of data at which missings come from two databases, where U and O
denote missing and not-missing entries, respectively.

p =
k1N1 + k2N2

nN
(5.3.1)

where N = N1 + N2. This implies that, given p and k1, k2 can be determined from

equation

k2 =
pnN − k1N1

N2

(5.3.2)

where N = N1 + N2. A procedure to generate missings of this type will be

introduced as follows:

Generation of Missings from Two Databases

1. Specify the proportion p of missings entries.
2. Specify the number of rows N and columns n in the merged database.

Then randomly generate the number of rows of first database, N1,
subject to constraint 0.6 < N1/N < 0.8 and define the number of entities
in the second database, N2 = N −N1.

3. Randomly generate integer k1 satisfying the constraint k1 < npN−N2

N1
.

4. Compute k2 according to equation (5.3.2).
5. Finally, put mik = 0 for all i = 1, . . . , N1, k = 1, . . . , k1 and for all

i = N1 + 1, . . . , N , k = n, n− 1, . . . , n− k2 + 1.
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5.4 Evaluation of Results

Since the data and missings are generated separately, the quality of imputation is

evaluated by comparing the imputed values with those generated at the stage of data

generating. The following measurements are frequently used for assessing the quality

of imputation in many literature (see for instance [Chambers, 2000, Hoogland and

Pannekoek, 2000, Strauss et al., 2002]):

1. Mean absolute deviation (MAD) of imputed value is defined as:

1

d

N∑
i=1

n∑

k=1

(1−mik)|x∗ik − xik| (5.4.1)

where d, mik and x∗ik denote number of missing values, the missingness matrix

entry and x∗ik the data matrix X∗ with imputed values, respectively.

2. Mean absolute relative deviation (MARD) of x∗ik is defined as

1

d

N∑
i=1

n∑

k=1

(1−mik)|(x∗ik − xik)/xik| (5.4.2)

3. Distribution of imputed values.

In this criterion, the empirical distribution of x∗ik is compared to that of xik

correspondingly. This is carried out by computing their mean and standard

deviation or higher order statistics such as skewness and kurtosis.

However, the above measurements mainly determine the variation of the imputed

values or parameters of data distribution which could be incompatible to the least

squares framework of the algorithms considered in this project. Thus, rather using

the above criteria, this experiment utilizes the squared imputation error, IE, to

measure the performance of an algorithm. The measure is defined as follows:
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IE =

∑N
i=1

∑n
k=1(1−mik)(xik − x∗ik)

2

∑N
i=1

∑n
k=1(1−mik)x2

ik

(5.4.3)

5.5 Results of the Experimental Study of Impu-

tations with the Complete Random Missing

Pattern

5.5.1 Experiments with NetLab Gaussian Mixture
Data Model

The experiments are carried out with data generated as Gaussian 5-mixture with

the dimension of the PPCA subspace equal to n-3. Ten data sets of random sizes

(200 - 250 rows and 15-25 columns) were generated for each of this data type. Also

ten sets of missings patterns were generated for each of the following levels of data

missing: 1%, 5%, 10%, 15%, 20% and 25%. Altogether, there are 60 various patterns

of missings for each of the data sets. The results of running of all the ten imputation

methods over each of the 10 data sets with the 60 missing patterns will be presented.

The results of the experiments are presented in Table 5.3. The performance of

N-ILS reflect somewhat poor convergence of the method at the levels of missing

greater than 1% which is labeled as “N/A”. As expected, for each of the algorithms,

except the Mean, the error increases as the number of missings grows. At the Mean

method, the error is constant, of the order of 95%.

The obvious winner, at each level of missings, is INI, the global-local version of

least squares imputation. In a close range, it is followed by IMLS-4 and GZ.

N-IMLS method is the second best when missings are sparse, but it falls out of

the range when the proportion of missings grows to 25 %. These conclusions may
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Methods Proportion of Missings
1% 5% 10% 15% 20% 25%

ILS 41.25 (15.00) 39.66 (7.91) 38.68 (4.64) 40.42 (6.00) 45.33 (7.82) 48.56 (9.58)
GZ 41.26 (15.01) 39.66 (7.91) 38.67 (4.67) 40.43 (6.02) 45.27 (7.83) 48.25 (8.99)

NIPALS 56.49 (20.12) 50.64 (10.27) 49.54 (5.46) 49.75 (6.76) 54.14 (8.88) 55.25 (9.51)
IMLS-1 56.59 (20.19) 50.59 (10.35) 49.38 (5.52) 48.93 (4.82) 51.75 (5.49) 52.35 (5.80)
IMLS-4 41.25 (14.99) 39.66 (8.11) 38.68 (4.56) 40.42 (4.37) 45.33 (4.50) 48.56 (6.41)
Mean 97.13 (8.50) 95.82 (2.94) 96.19 (3.01) 96.11 (1.89) 95.72 (1.90) 95.62 (1.51)
N-ILS 35.14 (14.02) N/A N/A N/A N/A N/A

N-IMLS 35.04 ( 13.96) 34.71 ( 7.83) 36.80 (7.64) 41.82 (8.67) 53.58 (17.38) 66.75 (19.06)
INI 35.29 (13.03) 33.19 (6.81) 33.27 (4.83) 34.89 (4.75) 38.93 (5.47) 43.01 (8.05)

N-Mean 37.66 (13.19) 41.98 (7.32) 50.96 (5.67) 59.32 (5.91) 69.70 (7.80) 80.98 (8.58)

Table 5.3: The average squared error of imputation and its standard deviation (%) at
NetLab Gaussian 5-mixture data model with different levels of missing entries.

be blurred by the overlapping standard deviations of the methods’ average errors.

Therefore, the results of direct pairwise comparisons between the methods should

be shown as well. At this perspective, the results appear to depend on the level of

missings: there are somewhat different situations at 1% missings and at the other,

greater, missing levels, which are similar to each other (see Tables 5.4 and 5.5).

ILS GZ NIPALS IMLS-1 IMLS-4 Mean N-ILS N-IMLS INI N-Mean

ILS - 70 0 0 30 0 60 60 60 60
GZ 30 - 0 0 30 0 60 60 60 60

NIPALS 100 100 - 20 90 10 90 90 100 100
IMLS-1 100 100 80 - 90 10 90 90 100 100
IMLS-4 70 70 10 10 - 0 70 70 80 60
Mean 100 100 90 90 100 - 100 100 100 100
N-ILS 40 40 10 10 30 0 - 100 50 50

N-IMLS 40 40 10 10 30 0 0 - 50 50
INI 40 40 0 0 20 0 50 50 - 30

N-Mean 40 40 0 0 40 0 50 50 70 -

Table 5.4: The pair-wise comparison of methods; an entry (i, j) shows how many times
in % method j outperformed method i on NetLab Gaussian 5-mixture data model with
[n− 3] PPCA factors for 1% random missing data.

The results show that, overall, there are three different patterns in the pairwise

comparison: (1) at 1% missings (Table 5.4), (2) at 5 % missings, 10% and more

missings (Table 5.5).
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At 1% missings, according to Table 5.4, there are four winners, all the nearest

neighbour based methods, N-Mean included. Although N-Mean loses to INI by 30%

to 70%, it outperforms the others in winning over one-dimensional NIPALS and

IMLS-1.

Methods of Imputation 5% 15%
1 2 3 4 1 2 3 4

ILS 80 80 100 10 40 50 100 0
GZ 80 80 100 10 40 60 100 0

NIPALS 100 100 100 90 60 100 100 10
IMLS-1 100 100 100 90 70 100 100 10
IMLS-4 80 90 100 20 40 60 90 0
Mean 100 100 100 100 80 100 100 100
N-ILS - 70 70 20 - 100 100 0

N-IMLS 30 - 70 20 0 - 100 0
INI 30 30 - 0 0 0 - 0

N-Mean 80 80 100 - 80 100 100 -

Table 5.5: The pair-wise comparison of methods; an entry (i, j) shows how many times in
% method j outperformed method i on Gaussian 5-mixture with [n− 3] PPCA factors for
5% and 15% random missing data where 1,2,3 and 4 denote N-ILS, N-IMLS, INI, N-Mean,
respectively (the other methods are not shown because of poor performance).

Unfortunately, when the proportion of missings increases to 5% and more, the

N-Mean method loses to all the least squares imputation methods except for the

unidimensional ones, NIPALS and IMLS-1.

This time, there are only three winners, INI, N-IMLS and N-ILS, that are ordered

in such a way that the previous one wins over the next one(s) in 70% of the cases.

Thus, INI leads the contest and Mean loses it on almost every count, at the 5%

proportion of missings.

When the proportion of missings grows further on, INI becomes the only winner

again, as can be seen from Table 5.5 presenting a typical pattern. Another feature

of the pattern is that ILS, GZ and IMLS-4 perform similarly to the local versions,
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N-ILS and N-IMLS. As expected, the Mean imputation is the worst method.

5.5.2 Experiments with Scaled NetLab Gaussian Mixture
Data Model

The 5-mixture data sets, with the dimension of the PPCA subspace equal to [n/2],

were generated ten times with random sizes (from 200-250 rows and 15-25 columns)

altogether with ten missing patterns using similar level of missings as implemented

in previous experiments. Thus, there are 60 missing complete random patterns

participated in the experiments.

Methods Proportion of Missings
1% 5% 10% 15% 20% 25%

ILS 16.75 (7.52) 17.80 (4.86) 17.57 (3.48) 18.92 (4.38) 20.17 (5.03) 21.65 (5.26)
GZ 16.75 (7.52) 17.80 (4.86) 17.57 (3.48) 18.92 (4.37) 20.17 (5.02) 21.67 (5.27)

NIPALS 62.37 (17.41) 63.99 (12.42) 62.52 (10.26) 63.32 (10.64) 63.38 (10.46) 64.19 (11.12)
IMLS-1 62.30 (17.47) 63.95 (12.31) 62.76 (10.72) 63.41 (10.74) 63.43 (10.49) 64.15 (10.97)
IMLS-4 16.79 (7.49) 17.83 (5.00) 17.84 (4.05) 18.94 (4.36) 20.34 (5.25) 21.65 (5.17)
Mean 90.46 (11.36) 91.26 (5.87) 89.77 (6.51) 89.98 (6.22) 89.92 (6.06) 89.61 (6.08)
N-ILS 7.31 (3.39) 7.68 (1.90) 7.49 (1.41) 7.64 (1.36) N/A N/A

N-IMLS 7.30 (3.37) 7.67 (1.89) 7.48 (1.40) 7.63 (1.35) 7.95 (1.39) 8.73 (1.55)
INI 7.47 (3.19) 7.82 (2.08) 7.67 (1.38) 8.05 (1.21) 8.85 (1.80) 9.74 (1.90)

N-Mean 14.50 (6.77) 35.75 (8.71) 63.49 (13.02) 83.67 (18.30) 91.11 (14.17) 97.54 (18.12)

Table 5.6: The average squared error of imputation and its standard deviation (%) at
scaled NetLab Gaussian 5-mixture data model with different levels of random missing
entries.

Rather unexpectedly, the errors of imputation of all methods, except Mean, ap-

pear to be much lower than those found with the original NetLab Gaussian mixture

model as can be seen from Table 5.6 versus Table 5.3. Furthermore, the increase of

the error of imputation along the growth of the proportion of missings here, though

can be observed as a trend, is not that dramatic as in the case of the original Netlab

data model.

The two NN-based local least squares methods, N-ILS and N-IMLS, are the best
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according to Table 5.6 with INI a very close runner up. For N-ILS algorithm, the

label “N/A” is applied to show that it does not always converge. However, N-ILS

outperforms the others when it converges.

Methods of Imputation 1% 5% 10%
1 2 3 4 1 2 3 4 1 2 3 4

ILS 90 90 100 60 100 100 100 0 100 100 100 0
GZ 90 90 100 60 100 100 100 0 100 100 100 0

NIPALS 100 100 100 100 100 100 100 100 100 100 100 50
IMLS-1 100 100 100 100 100 100 100 100 100 100 100 50
IMLS-4 90 90 100 100 100 100 100 0 100 100 100 0
Mean 100 100 100 100 100 100 100 100 100 100 100 90
N-ILS - 60 50 0 - 60 60 0 - 70 80 0

N-IMLS 40 - 50 0 40 - 60 0 30 - 80 0
INI 50 50 - 10 40 40 - 0 20 20 - 0

N-Mean 100 100 90 - 100 100 100 - 100 100 100 -

Table 5.7: The pair-wise comparison of methods; an entry (i, j) shows how many times
in % method j outperformed method i on scaled NetLab Gaussian 5-mixture with [n/2]
PPCA factors for 1%, 5% and 10% random missing data where 1,2,3 and 4 denote N-ILS,
N-IMLS, INI and N-Mean, respectively.

In the perspective of pair-wise comparison, the results can be divided in two

broad categories: (1) at level 1%-10% shown in Table 5.7 and (2) at level 15%-25%

shown in Table 5.8. In the former category INI can be claimed the winner, especially

at higher levels of missings, followed by N-IMLS and N-ILS.

At the level of 15% missings and higher, N-IMLS turns out the only one winner

(see Table 5.8). INI and N-ILS follow it closely. N-Mean loses here; at higher

missings, it loses even to its global version, Mean.
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Methods of Imputation 15% 20% 25%
1 2 3 4 1 2 3 4 1 2 3 4

ILS 100 100 100 0 100 100 100 0 90 100 100 0
GZ 100 100 100 0 100 100 100 0 90 100 100 0

NIPALS 100 100 100 20 100 100 100 0 90 100 100 0
IMLS-1 100 100 100 20 100 100 100 0 90 100 100 0
IMLS-4 100 100 100 0 100 100 100 0 90 100 100 0
Mean 100 100 100 70 100 100 100 40 90 100 100 50
N-ILS - 90 40 0 - 60 20 0 - 100 60 10

N-IMLS 10 - 40 0 40 - 20 0 0 - 50 0
INI 60 60 - 10 80 80 - 0 40 50 - 0

N-Mean 100 100 100 - 100 100 100 - 90 100 100 -

Table 5.8: The pair-wise comparison of methods; an entry (i, j) shows how many times
in % method j outperformed method i on scaled NetLab Gaussian 5-mixture with [n/2]
PPCA factors for 15%, 20% and 25% random missing data where where 1,2,3 and 4 denote
N-ILS, N-IMLS, INI and N-Mean, respectively.

5.5.3 Summary of the Results

According to the results of the experiment on the NetLab Gaussian 5-mixure, INI

is consistently the best method. It is followed by N-IMLS, the nearest-neighbour

version of IMLS, as the second winner. Thus, under this simple Gaussian mixture

structure, the combination of a general form of IMLS, IMLS-4, and its nearest

neighbour version, is the best method.

Finally, for more complex structure of data sets generated with the scaled NetLab

Gaussian 5-mixture, the results are varied according to the level of missings. At

levels 1%-10%, INI surpasses the other methods. In the close range, N-ILS and

N-IMLS, appear as second best methods. As the level of missings increases to 15%-

25%, N-IMLS comes up as the best method. It is followed by INI and N-ILS as the

second winners. Also, at this level of missings, Mean imputation beats its nearest

neighbour versions, N-Mean.

Also, the scaled NetLab Data Model leads to much smaller errors in the least-

squares methods, which probably can be attributed to the fact that the data are
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spread differently at different directions with the scaled model which conforms to

the one-by-one factor extraction procedure underlying the methods.

5.6 Results of the Experimental Study on Differ-

ent Missing Patterns

In this experiment three missing patterns as described in Section 5.3 will be em-

ployed on both NetLab Gaussian mixture and its scaled versions. Both data model

generations use 5-mixture in this experiment. Also, as described in previous exper-

iment (see Section 5.5.2), the statistical values of error of imputation of both data

model generations to be represented in different way.

If some methods occasionally do not converge, they will be labeled as “N/A”.

On occasion one or more methods cannot be proceed they are denoted as “NN”.

5.6.1 Inherited Pattern

The performances of ten algorithms on two types of Gaussian mixture data model

with Inherited missings pattern are studied. The results will be presented according

to the data model generation.

Netlab Gaussian Mixture Data Model

For each of the ten data sets generated according to the 5-mixture original Netlab

Data Model, ten Inherited missing patterns have been generated according to the

algorithm described in section 5.3.2. All Inherited missing patterns were based on

the six levels of missings from 25% to 1%. The average errors of the ten selected

algorithms are shown in Table 5.9 and pair-wise comparison in Tables 5.10 and 5.11.

According to Table 5.9 the errors of all methods, except Mean which is the worst
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Methods Proportion of Missings
1% 5% 10% 15% 20% 25%

ILS 31.38 (11.30) 34.39 (5.91) 36.90 (4.64) 41.14 (7.35) 43.93 (7.98) 48.82 (10.47)
GZ 31.38 (11.30) 34.40 (5.91) 36.90 (4.64) 41.13 (7.35) 43.97 (8.06) 48.80 (10.47)

NIPALS 42.33 (13.77) 44.94 (7.91) 47.06 (6.13) 50.58 (8.01) 52.45 (8.57) 55.91 (10.82)
IMLS-1 42.38 (13.80) 44.84 (7.80) 46.84 (6.05) 49.08 (5.81) 50.60 (5.77) 51.93 (5.47)
IMLS-4 31.36 (11.54) 33.90 (5.83) 36.72 (4.92) 39.05 (4.16) 41.20 (4.19) 43.87 (6.40)
Mean 96.53 (6.38) 96.48 (2.94) 96.27 (2.28) 96.14 (1.93) 96.06 (1.77) 96.04 (1.62)
N-ILS 36.64 (18.62) 150 (1100) N/A N/A N/A N/A

N-IMLS 26.82 ( 9.89) 30.40 ( 8.64) 35.67 (11.12) 42.54 (10.45) 52.93 (13.79) 66.48 (20.35)
INI 25.95 (9.22) 28.68 (5.10) 31.86 (4.72) 35.85 (6.41) 39.01 (7.17) 44.29 (10.55)

N-Mean 29.04 (8.80) 37.38 (5.58) 48.17 (5.88) 59.59 (7.26) 69.39 (7.50) 79.95 (8.52)

Table 5.9: The average squared error of imputation and its standard deviation (%) at
NetLab Gaussian 5-mixture data with different levels of Inherited missing entries.

ILS GZ NIPALS IMLS-1 IMLS-4 Mean N-ILS N-IMLS INI N-Mean

ILS - 40 10 10 40 0 100 100 100 80
GZ 60 - 10 10 40 0 100 100 100 80

NIPALS 90 90 - 30 90 0 90 90 90 90
IMLS-1 90 90 70 - 90 0 90 90 90 90
IMLS-4 60 60 10 10 - 0 100 100 100 80
Mean 100 100 100 100 100 - 100 100 100 100
N-ILS 0 0 10 10 0 0 - 90 70 10

N-IMLS 0 0 10 10 0 0 10 - 70 10
INI 0 0 10 10 0 0 30 30 - 20

N-Mean 20 20 10 10 20 0 90 90 80 -

Table 5.10: The pair-wise comparison of methods; an entry (i, j) shows how many times
in % method j outperformed method i on NetLab Gaussian 5-mixtures with [n−3] PPCA
factors for 1% Inherited missing data.

anyway, grow as the percentage of missings grows. Once again INI wins except at

the level of 25% missings at which the slow increase of errors in IMLS-4 wins over a

faster increase in INI’s errors. Moreover, with the Inherited missing pattern, global

least squares outperform their local versions, N-IMLS and N-ILS.

Looking at the pair-wise comparison results, we see that at 1% missings, INI is

the only winner (see Table 5.10). It is followed by the local least squares methods

N-ILS and N-IMLS. The local version of Mean, N-Mean, is the fourth winner. In

general, at 1% missings, the local versions of imputation techniques surpass their
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Methods of Imputation 5% 15% 25%
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ILS 70 80 80 90 30 70 30 50 100 0 80 0 0 90 0
GZ 70 80 80 90 30 70 30 50 100 0 80 0 0 90 0

NIPALS 90 90 100 100 80 100 50 80 100 10 90 0 50 90 0
IMLS-1 90 80 100 100 80 100 50 80 100 10 90 0 30 90 0
IMLS-4 - 80 80 90 30 - 30 50 100 0 - 0 10 80 100
Mean 100 100 100 100 100 100 60 100 100 100 100 10 100 100 100
N-ILS 20 - 80 90 20 70 - 90 100 40 100 - 100 100 90

N-IMLS 20 20 - 100 20 50 10 - 100 0 90 0 - 90 10
INI 10 10 0 - 0 0 0 0 - 0 20 0 10 - 0

N-Mean 70 80 80 100 - 100 60 100 100 - 100 10 90 100 -

Table 5.11: The pair-wise comparison of methods; an entry (i, j) shows how many times
in % method j outperformed method i on NetLab Gaussian 5-mixtures with [n−3] PPCA
factors for 5%, 15% and 25% Inherited missing data where 1, 2, 3, 4 and 5 denote IMLS-4,
N-ILS, N-IMLS, INI, and N-Mean, respectively.

global versions.

INI remains the only winner at higher levels of missings according to Table 5.11.

However this time N-Mean loses to the least squares global techniques IMLS-4, ILS

and GZ. Moreover, IMLS-4 becomes the second best when the percentage of missings

grows to 15% and higher. N-ILS totally drops off at 25 % of missings because of a

poor convergence rate.

Scaled Netlab Gaussian Mixture Data Model

Table 5.12 shows the average square errors of imputations in the experiments with

the Inherited missings pattern with the data generated according to the scaled Net-

Lab Gaussian 5-mixture data model with the dimension of PPCA space equal to

[n/2].

The average errors of all methods except for the one-dimensional NIPALS, IMLS-

1 and Mean are much smaller than with data generated according to the original

Netlab model. Table 5.12 shows three obvious winners, the NN based least squares



69

Methods Proportion of Missings
1% 5% 10% 15% 20% 25%

ILS 16.74 (6.98) 16.50 (4.25) 17.53 (4.23) 18.70 (4.58) 20.03 (5.06) 21.81 (5.83)
GZ 16.74 (6.98) 16.50 (4.25) 17.53 (4.23) 18.70 (4.58) 20.04 (5.06) 21.78 (5.80)

NIPALS 62.82 (17.61) 61.94 (12.04) 62.52 (11.55) 62.62 (10.96) 62.93 (10.85) 63.78 (11.05)
IMLS-1 62.93 (17.81) 62.07 (12.17) 62.53 (11.53) 62.71 (11.12) 62.93 (10.82) 63.69 (10.81)
IMLS-4 16.79 (7.08) 16.58 (4.33) 17.54 (4.20) 18.70 (4.56) 20.22 (4.99) 21.67 (5.53)
Mean 90.46 (9.94) 89.93 (7.37) 89.95 (6.83) 89.93 (6.44) 89.99 (6.10) 89.94 (6.00)
N-ILS 7.79 (3.05) 7.29 (1.64) 7.39 (1.25) 7.55 (1.23) N/A N/A

N-IMLS 7.78 (3.05) 7.29 (1.64) 7.38 (1.25) 7.54 (1.23) 7.93 (1.31) 8.74 (1.66)
INI 7.84 (3.10) 7.33 (1.58) 7.59 (1.23) 8.01 (1.26) 8.81 (1.49) 9.85 (2.15)

N-Mean 15.33 (6.18) 36.77 (9.96) 62.35 (13.43) 82.26 (16.87) 91.03 (16.47) 97.63 (16.57)

Table 5.12: The average squared error of imputation and its standard deviation (%) at
scaled NetLab Gaussian 5-mixture data with different levels of Inherited missing entries.

methods, with N-IMLS leading and N-ILS and INI following; at higher missing

proportions of 20% and 25%, N-ILS does not always converge, though it performs

quite well when converges.

These conclusions can be detailed with Table 5.13 presenting the results of pair-

wise comparison between the methods. N-ILS is the best at 1% giving way to

N-IMLS at 10% and 20%. INI loses only to these two methods.

Methods of Imputation 1% 10% 20%
1 2 3 4 1 2 3 4 1 2 3 4

ILS 100 100 100 70 100 100 100 0 100 100 100 0
GZ 100 100 100 70 100 100 100 0 100 100 100 0

NIPALS 100 100 100 100 100 100 100 50 100 100 100 0
IMLS-1 100 100 100 100 100 100 100 50 100 100 100 0
IMLS-4 100 100 100 70 100 100 100 0 100 100 100 0
Mean 100 100 100 100 100 100 100 100 100 100 100 30
N-ILS - 40 40 20 - 70 20 0 - 60 30 0

N-IMLS 60 - 40 20 30 - 20 0 40 - 30 0
INI 60 60 - 20 80 80 - 0 70 70 - 0

N-Mean 80 80 80 - 100 100 100 - 100 100 100 -

Table 5.13: The pair-wise comparison of methods; an entry (i, j) shows how many times
in % method j outperformed method i on scaled NetLab Gaussian 5-mixtures with [n/2]
PPCA factors for 1%, 10% and 20% Inherited missing data where 1, 2, 3 and 4 denote
N-ILS, N-IMLS, INI and N-Mean, respectively.
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Overall, at Inherited random missings, the three NN-based least squares tech-

niques remain winners. The global-local INI dominates the imputation contest with

the original Netlab Data Model and it loses to N-IMLS and N-ILS with the scaled

Netlab Data Model. Once again the scaled Netlab Data Model leads to much smaller

errors in the least squares methods, probably because of the same factor that the

data are spread differently at different directions with the scaled model rather than

with the original Netlab model, which conforms to the iterative extracting of factors

underlying the methods.

5.6.2 Sensitive Issue Pattern

The experiments were conducted according to the scenario introduced in Section

5.3.3. As in the previous experiments, the results will be exposed sequentially ac-

cording to the NetLab Gaussian mixture and its scaled versions in turn.

NetLab Gaussian Mixture Data Model

The results of experiments on the original NetLab Gaussian mixture data model

with the Sensitive issue pattern are summarized in Table 5.14. We limited the

span of missings to 10% here because the missing entries are now confined within a

relatively small submatrix of the data matrix.

Amazingly, with this missing pattern the error of imputation does not mono-

tonely follow the growth of the numbers of missing entries. All least squares based

methods perform at 5% missings better than at 1%.

On the level of average errors, NN based least squares methods N-IMLS, N-ILS

and INI surpass the other methods, and no obvious winner can be chosen among

them.
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Methods Proportion of Missings
1% 5% 10%

ILS 44.97 (19.94) 31.55 (3.33) N/A (N/A)
GZ 44.97 (19.94) 31.55 (3.33) 35.59 (6.40)

NIPALS 54.15(20.04) 39.22 (4.57) 42.76 (9.80)
IMLS-1 54.19 (20.11) 39.33 (4.55) 42.86 (9.73)
IMLS-4 44.60 (21.04) 31.79 (3.21) 57.58 (69.91)
Mean 92.78 (7.08) 96.31 (4.14) 96.67 (3.66)
N-ILS 37.57 (19.42) 27.31 (3.44) 38.11 (12.44)

N-IMLS 37.45 (19.31) 27.36 (3.35) 33.17(5.25)
INI 39.27 (20.03) 26.57 (3.63) 37.02(15.18)

N-Mean 42.25 (20.23) 57.34 (12.05) 93.26(27.13)

Table 5.14: The average squared error of imputation and its standard deviation (%) Net-
Lab Gaussian 5-mixture data with different levels of missings from sensitive issue pattern.

Methods of Imputation 1% 5% 10%
1 2 3 4 1 2 3 4 1 2 3 4

ILS 80 80 70 50 100 100 90 0 70 80 90 10
GZ 80 80 70 50 100 100 90 0 70 80 80 0

NIPALS 100 100 100 100 100 100 100 10 80 100 90 0
IMLS-1 100 100 100 100 100 100 100 10 80 100 90 0
IMLS-4 80 80 70 50 100 100 90 10 70 80 80 10
Mean 100 100 100 100 100 100 100 100 100 100 100 90
N-ILS - 80 30 30 - 70 50 0 - 100 80 0

N-IMLS 20 - 30 30 30 - 50 0 0 - 60 0
INI 70 70 - 20 50 50 - 0 20 40 - 0

N-Mean 70 70 80 - 100 100 100 - 100 100 100 -

Table 5.15: The pair-wise comparison of methods; an entry (i, j) shows how many times
in % method j outperformed method i on NetLab Gaussian 5-mixtures with [n-3] PPCA
factors for 1%, 5% and 10% missings from sensitive issue pattern where 1, 2, 3 and 4
denote N-ILS, N-IMLS, INI and N-Mean, respectively.

With the pair-wise comparison presented in Table 5.15, N-IMLS being the winner

at little missings is substituted by INI when the proportion of missings increases to

5% and, especially, 10%.

Scaled Netlab Gaussian Mixture Data Model

The performance of the ten algorithms on the scaled Netlab Gaussian 5-mixture

Data Model with Sensitive issue pattern missings are shown in Table 5.16.

Here the errors grow indeed when the proportion of missing entries increases.
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The errors of all methods are smaller at this data type again, except for those of

Mean and unidimensional NIPALS and IMLS-1.

Methods Proportion of Missings
1% 5% 10%

ILS 15.87 (6.13) 17.47 (5.98) 25.64 (10.87)
GZ 15.86 (6.13) 17.47 (5.98) 25.63 (10.86)

NIPALS 68.47(16.16) 60.26 (14.76) 64.71 (13.41)
IMLS-1 68.70 (16.24) 60.36 (14.54) 64.60 (13.30)
IMLS-4 16.08 (6.36) 17.52 (5.65) 25.65 (10.31)
Mean 95.43 (9.04) 91.77 (7.49) 91.98 (8.25)
N-ILS 7.15 (2.94) 6.71 (1.75) 7.28 (1.87)

N-IMLS 7.15 (2.92) 6.70 (1.75) 7.28(1.85)
INI 6.83 (3.07) 7.59 (2.89) 11.39(7.96)

N-Mean 28.58 (12.99) 100.37 (28.97) 246.13(84.93)

Table 5.16: The average squared error of imputation and its standard deviation (%) scaled
NetLab Gaussian 5-mixture data with different levels of sensitive issue pattern.

The local versions of the least squares imputation always surpass their global

counterparts. Two local least squares techniques, N-ILS and N-IMLS, show quite

low levels of errors, about 7% only, which is surpassed only once by INI’s performance

at 1% missings.

Method Mean outperforms N-Mean here at higher levels of missings, probably

because it relies on more data with no missings at all at the Sensitive issue missing

pattern.

On the level of pair-wise comparison presented in Table 5.17 method INI appears

to be better than the others not only at 1% missings but also at 5%. It only loses

to N-IMLS at 10% missings. Also, Mean beats N-Mean indeed at 5% and 10%

missings.

As was the case with the other missing patterns, the three NN-based least squares

techniques are obvious winners at the Sensitive issue random missings. The global-

local INI dominates the imputation contest at little missing proportions with the
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Methods of Imputation 1% 5% 10%
1 2 3 4 1 2 3 4 1 2 3 4

ILS 100 100 100 20 100 100 100 0 100 100 100 0
GZ 100 100 100 20 100 100 100 0 100 100 100 0

NIPALS 100 100 100 100 100 100 100 10 100 100 100 0
IMLS-1 100 100 100 100 100 100 100 10 100 100 100 0
IMLS-4 100 100 100 20 100 100 100 0 100 100 100 0
Mean 100 100 100 100 100 100 100 30 100 100 100 0
N-ILS - 60 60 0 - 70 60 0 - 80 20 0

N-IMLS 40 - 60 0 30 - 60 0 20 - 20 0
INI 40 40 - 0 40 40 - 0 80 80 - 0

N-Mean 100 100 100 - 100 100 100 - 100 100 100 -

Table 5.17: The pair-wise comparison of methods; an entry (i, j) shows how many times
in % method j outperformed method i on scaled NetLab Gaussian 5-mixtures data with
[n/2] PPCA factors for 1%, 5% and 10% missings from sensitive issue pattern where 1,2,3
and 4 denote N-ILS, N-IMLS, INI and N-Mean, respectively.

original Netlab Data Model and at higher levels of missings with the scaled Netlab

Data Model. We cannot see explanation for such a rather strange behaviour. Once

again the scaled Netlab Data Model leads to much smaller errors in the least squares

methods except for unidimensional ones. Also, Mean outperforms N-Mean here at

higher missing levels with the scaled Netlab Data Model.

5.6.3 Merged Database Pattern

At this section, two types of merged database pattern, missings from one database

and two databases, will be explored. As usual, two types of the NetLab Gaussian

mixture model were applied at each type of missings generation.

5.6.3.1 Missings from One Database

Netlab Gaussian Mixture Data Model

The average error results of experiments on the original NetLab Gaussian 5-mixture

Data Model with the Merged database missing pattern at which missings come from

only one database are presented in Table 5.18.



74

Imputation Methods q = 20% q = 30%
1% 5% 1% 5%

ILS 58.62 (32.56) 94.74 (358.51) 48.82(28.10) 57.19(27.68)
GZ 56.82 (32.56) 94.74 (358.72) 48.82(28.10) 57.36(27.76)

NIPALS 70.55 (32.62) 105.01 (358.17) 61.84(29.51) 67.83(29.05)
IMLS-1 70.55 (32.62) 71.76 (42.06) 62.00(29.43) 67.86(29.05)
IMLS-4 58.00 (33.47) 203.95 (1451.30) 49.03(27.71) 56.77(26.90)
Mean 93.55 (9.74) 95.59 (6.72) 94.38(9.72) 93.53(6.20)
N-ILS 49.84 (29.16) 68.05 (160.54) 43.17(27.57) 94.59(13.12)

N-IMLS 49.69 (29.10) 53.77 (34.10) 42.87(27.23) 49.06(24.27)
INI 48.45 (28.14) 55.39 (41.85) 41.54(25.07) 49.11(23.91)

N-Mean 74.57 (40.00) 75.93 (38.70) 90.66(48.33) 99.88(52.87)

Table 5.18: The average squared error of imputation and its standard deviation (%) Net-
Lab Gaussian 5-mixture data with different levels missings entries from one database
where q denotes the proportion of column number which contains missings.

The denotation q refers to the proportion of columns that are absent from the

‘incomplete’ database as explained in section 5.3.4.1. In general, two winning meth-

ods here are INI and N-IMLS. The errors are somewhat less at q=30%, probably

because there are relatively less rows containing missings entries in this case than

at q=20%.

Methods of Imputation 1% 5%
1 2 3 4 5 1 2 3 4 5

ILS 60 70 70 80 20 40 90 90 90 0
GZ 60 70 70 80 20 40 90 90 90 0

NIPALS 80 80 80 90 30 100 100 100 100 30
IMLS-1 80 80 80 90 30 100 100 100 100 30
IMLS-4 - 70 70 80 20 - 90 90 90 10
Mean 80 70 70 80 40 100 100 100 100 70
N-ILS 30 - 60 70 10 10 - 100 50 0

N-IMLS 30 40 - 70 0 10 0 - 50 0
INI 20 30 30 - 0 10 50 50 - 0

N-Mean 80 90 100 100 - 90 100 100 100 -

Table 5.19: The pair-wise comparison of methods; an entry (i, j) shows how many times
in % method j outperformed method i on NetLab Gaussian 5-mixtures with [n-3] PPCA
factors at 1% and 5% missings and 20% proportion of column number missings where
1,2,3,4 and 5 denote IMLS-4, N-ILS, N-IMLS, INI and N-Mean, respectively.

All methods, N-ILS and ILS included, converge here, probably because of smaller
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proportions of the overall missings. Considering pair-wise comparison of the meth-

ods presented in Tables 5.19 and 5.20 lead us to see that INI is the best. Altogether,

NN based least squares methods beat their global counterparts while N-Mean loses

to Mean at 5% missings.

Methods of Imputation 1% 5%
1 2 3 4 5 1 2 3 4 5

ILS 20 70 70 100 0 20 80 80 90 10
GZ 20 70 70 100 0 20 80 80 90 10

NIPALS 100 100 100 100 10 90 100 100 100 20
IMLS-1 100 100 100 100 10 90 100 100 100 30
IMLS-4 - 80 80 100 10 - 80 80 90 10
Mean 100 100 100 100 60 80 100 100 100 30
N-ILS 20 - 90 60 0 20 - 90 80 0

N-IMLS 20 10 - 50 0 20 10 - 80 0
INI 0 40 50 - 0 10 20 20 - 0

N-Mean 90 100 100 100 - 90 100 100 100 -

Table 5.20: The pair-wise comparison of methods; an entry (i, j) shows how many times
in % method j outperformed method i on NetLab Gaussian 5-mixtures with [n-3] PPCA
factors at 1% and 5% missings and 30% proportion of column number missings where
1,2,3,4 and 5 denote IMLS-4, N-ILS, N-IMLS, INI and N-Mean, respectively.

Scaled Netlab Gaussian Mixture Data Model

The summary of the average error results on the scaled NetLab Gaussian 5-mixture

data model with missings from one of the databases is shown in Table 5.21. Here,

the difference in q values bears no influence on the errors, in contrast to the case of

the original Netlab data model probably because the set of entities is much more

diversified in this case.

This time, the three NN based least squares techniques are the best, with N-

IMLS showing slightly better results and INI trailing behind very closely.

On the level of pair-wise comparison for q=20%, however, the results are more in

favour of INI (see Table 5.22): INI obviously outperforms the others at 1% missings
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Methods q = 20% q = 30%
1% 5% 1% 5%

ILS 19.19 (11.64) 18.74 (10.59) 21.48 (13.41) 20.44 (8.46)
GZ 19.19 (11.65) 18.74 (10.59) 21.48 (13.41) 20.33 (8.09)

NIPALS 64.45 (24.15) 64.20 (19.84) 69.70 (28.11) 63.70 (19.84)
IMLS-1 64.35 (24.38) 64.11 (19.77) 69.64 (27.84) 63.73 (20.02)
IMLS-4 19.01 (11.15) 18.50 (9.95) 21.42 (13.40) 20.56 (8.92)
Mean 89.97 (12.80) 88.88 (11.77) 90.48 (11.35) 90.67 (8.08)
N-ILS 8.33 (6.55) 7.56 (4.13) 8.92 (5.51) 7.75 (3.47)

N-IMLS 8.32 (6.54) 7.54 (4.12) 8.90 (5.50) 7.72 (3.47)
INI 8.95 (6.40) 8.33 (5.67) 10.31 (9.59) 8.75 (3.75)

N-Mean 88.82 (62.93) 88.38 (51.30) 162.37 (94.23) 152.03 (72.96)

Table 5.21: The average squared error of imputation and its standard deviation (%) scaled
NetLab Gaussian 5-mixture data with different levels missings entries from one database
where q denotes the proportion of column number which contains missings.

and ties up with N-IMLS at 5%. Once again, N-Mean is beaten by its global

counterpart, Mean.

Methods of Imputation 1% 5%
1 2 3 4 5 1 2 3 4 5

ILS 50 100 100 100 0 80 90 90 90 0
GZ 50 100 100 100 0 80 90 90 90 0

NIPALS 100 100 100 100 40 100 100 100 100 30
IMLS-1 100 100 100 100 40 100 100 100 100 30
IMLS-4 - 100 100 100 0 - 90 90 90 0
Mean 100 100 100 100 80 100 100 100 100 70
N-ILS 0 - 60 60 0 10 - 80 50 0

N-IMLS 0 40 - 60 0 10 20 - 50 0
INI 0 40 40 - 0 10 50 50 - 0

N-Mean 100 100 100 100 - 100 60 100 100 -

Table 5.22: The pair-wise comparison of methods; an entry (i, j) shows how many times
in % method j outperformed method i on scaled NetLab Gaussian 5-mixtures with [n/2]
PPCA factors at 1% and 5% missings and 20% proportion of column number missings
where 1,2,3,4 and 5 denote IMLS-4, N-ILS, N-IMLS, INI and N-Mean, respectively.

The results quite differ though at q=30% (see Table 5.23). This time, N-ILS

takes the lead at 1% missings giving way to N-IMLS at 5%. Also, N-Mean beats

Mean here. In general, the NN based least squares techniques appear the best at

the Merged database with missings coming from one of the databases. INI performs
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better at 1% missings while N-IMLS is better at 5%.

Methods of Imputation 1% 5%
1 2 3 4 5 1 2 3 4 5

ILS 60 100 100 100 0 30 100 100 100 0
GZ 60 100 100 100 0 30 100 100 100 0

NIPALS 100 100 100 100 10 100 100 100 100 0
IMLS-1 100 100 100 100 10 100 100 100 100 0
IMLS-4 - 100 100 100 0 - 100 100 100 0
Mean 100 100 100 100 20 100 100 100 100 0
N-ILS 0 - 30 30 0 0 - 60 30 0

N-IMLS 0 70 - 30 0 0 40 - 30 0
INI 0 70 70 - 0 0 70 70 - 0

N-Mean 100 80 100 100 - 100 100 100 100 -

Table 5.23: The pair-wise comparison of methods; an entry (i, j) shows how many times
in % method j outperformed method i on scaled NetLab Gaussian 5-mixtures with [n/2]
PPCA factors at 1% and 5% missings and 30% proportion of column number missings
where 1, 2, 3, 4 and 5 denote IMLS-4, N-ILS, N-IMLS, INI and N-Mean, respectively.

5.6.3.2 Missings from Two Databases

Netlab Gaussian Mixture Data Model

The performance of algorithms on the NetLab Gaussian 5-mixture data model with

missings from two databases is shown in Table 5.24 and Table 5.25. Interestingly, the

other NN based methods, N-Mean included, are the best here. At higher missings the

error drastically increases. This conclusion is supported by the pair-wise comparison

presented in Table 5.25.

With this pattern of missings all ILS-like methods may not converge at 5%

missings. Moreover, N-ILS cannot proceed at all because of missing values occurring

in a whole column of the NN matrix, which is denoted by NN in Table 5.25.
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Methods Proportion of Missings
1% 5%

ILS 65.48 (100.00) 55.60 (29.34)(∗)
GZ 65.44 (103.36) 55.53 (29.87)(∗)

NIPALS 78.51(55.67) 94.83 (114.85)(∗)
IMLS-1 77.81 (55.22) 80.20 (61.56)
IMLS-4 68.24 (104.96) 84.00 (64.96)
Mean 143.31 (80.25) 128.36 (37.14)
N-ILS NN NN

N-IMLS 26.00 (28.45) 69.62 (12.85)
INI 32.45 (30.77) 71.10 (11.84)

N-Mean 31.29 (35.50) 70.43 (39.81)

Table 5.24: The average squared error of imputation and its standard deviation (%) Net-
Lab Gaussian 5-mixture data model with different levels of missings from two databases
where (∗) and NN denote taken only of the converged entries and cannot proceed, respec-
tively.

Methods of Imputation 1% 5%
1 2 3 4 5 1 2 3 4 5

ILS 40 30 80 70 70 60 80 70 60 80
GZ 40 30 80 70 70 60 80 60 60 80

NIPALS 60 60 80 80 80 80 40 60 50 50
IMLS-1 - 60 80 80 80 - 40 60 50 50
IMLS-4 40 - 80 70 70 60 - 40 40 80
Mean 60 90 100 100 90 90 90 100 100 90

N-IMLS 20 20 - 20 0 40 60 - 20 60
INI 20 30 80 - 20 50 60 80 - 60

N-Mean 20 30 100 80 - 50 20 40 40 -

Table 5.25: The pair-wise comparison of methods; an entry (i, j) shows how many times
in % method j outperformed method i on NetLab Gaussian 5-mixture with [n-3] PPCA
factors at 1% and 5% missings from two databases where 1, 2, 3, 4 and 5 denote IMLS-1,
IMLS-4, N-IMLS, INI and N-Mean, respectively.

Scaled Netlab Gaussian Mixture Data Model

The results of experiments are shown in Table 5.26. The scaled data model with

the Merged database missings coming from both databases leads to the global least

squares techniques, except for the frequently nonconvergent ILS, to win.
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This probably can be explained by the greater spread of data at this model to

cover the fact that entire subtables are missing in this model. Especially intriguing

is the fact that one-dimesional methods NIPALS and IMLS-1 win at 5% missings

over their four-dimensional analogues. These findings are supported by the results

of pair-wise comparison in Table 5.27.

Methods Proportion of Missings
1% 5%

ILS 12.47 (8.38) N/A
GZ 12.42 (8.33) 18.84 (8.13)

NIPALS 12.96(6.66) 16.07 (9.52)
IMLS-1 12.87 (6.63) 15.67 (9.27)
IMLS-4 12.45 (8.60) 24.83 (21.13)
Mean 100.25 (3.80) 103.88 (3.75)
N-ILS N/A NN (∗)

N-IMLS 20.68 (13.86) 49.45 (11.96)
INI 17.85 (11.18) 45.06 (13.14)

N-Mean 14.58 (8.00) 30.67 (7.93)

Table 5.26: The average squared error of imputation and its standard deviation (%) scaled
NetLab Gaussian 5-mixture data with different levels missings entries from two databases
where ∗ denotes cannot proceed.

The NN imputation techniques, including INI, show rather poor performances

(see Table 5.27).
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Methods of Imputation 1% 5%
1 2 3 4 5 1 2 3 4 5

ILS - 30 50 30 30 - 100 70 0 10
GZ 80 30 50 30 30 60 100 70 0 10

NIPALS 70 60 70 20 60 10 80 30 0 10
IMLS-1 70 - 70 20 60 0 - 30 0 10
IMLS-4 50 30 - 20 40 30 70 - 10 20
Mean 100 100 100 100 100 100 100 100 100 100

N-IMLS 80 60 90 70 70 100 100 90 90 100
INI 70 80 80 - 60 100 100 90 - 100

N-Mean 70 40 60 40 - 90 90 80 0 -

Table 5.27: The pair-wise comparison of methods; an entry (i, j) shows how many times
in % method j outperformed method i on scaled NetLab Gaussian 5-mixtures with [n/2]
PPCA factors for 1% and 5% missings from two databases where 1,2,3,4 and 5 denote
ILS, IMLS-1, IMLS-4, INI and N-Mean.

5.6.4 Summary of the Results

The results of experiments show that the performances of ten algorithms are varied

according to the type of data model and level of missings which can be summarized

as follows.

In Inherited missings, with the NetLab Gaussian mixture data model, at all

levels of missings, INI is consistently the best method. In contrast, at the scaled

NetLab Gaussian mixture data model, N-IMLS surpasses INI and comes up as the

winner.

In the experiments with the sensitive, the results show that Issue pattern mecha-

nism are accomplished. The results show that N-IMLS surpasses the other methods

at the level 1% missings with NetLab Gaussian data model. However, as the level

of missings increases to 5%, N-IMLS and INI provide almost similar performance.

Finally, at the level 10%, INI appears as the only one winner. In contrast, with the

scaled NetLab Gaussian mixture data model, at the level 1% missings, INI surpasses

other methods. However, as the level of missings increases to 5% and 10%, N-IMLS
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consistently to be the best method.

The results of experiments with two types of Merged database pattern are sum-

marized as follows. In the case of missings coming from one data base on the NetLab

Gaussian mixture data model, overall, INI is the best method. In the other case,

with the scaled NetLab Gaussian mixture, the results are varied according to the

proportion of columns which contain missing values. At the proportion 20%, INI

and N-IMLS, provide almost equal performances. As the proportion grows to 30%,

N-IMLS comes up as the only one winner.

With the missings from two databases on NetLab Gaussian mixture, all nearest

neighbour versions of least squares, including N-Mean, surpass the other methods.

In contrast, the results of experiments with the scaled NetLab Gaussian mixture

data model show that the ordinary least squares, ILS and IMLS, come up as the

best methods. In either case, the nearest neighbours of the least squares imputation

show very poor performance, which can be probably be explained by the fact that, at

this missing model, the nearest neighbours that have no missings are rather distant

indeed.



Chapter 6

Other Data Models

According to the experimental study on Gaussian mixture distributions with Com-

plete random missing pattern, the local versions of LS always outperform their global

approaches. However, different results might be produced if the data sets are gen-

erated with different data model that may less conform to the nature of the local

versions of the least squares imputation approaches. The experimental study also

shows that the global-local LS imputation, INI, on the Complete random missing

pattern, almost always outperforms the other methods. This results lead us to con-

sider INI as a good to be tried on real-world missing data problems and compared

with the maximum likelihood based approaches: EM and MI. Based on the this con-

siderations, this chapter explores experimentally performances of the least squares

imputation for handling incomplete entries on different data models: rank one and

a real-world marketing data set. For benchmarking purposes, two versions of EM

imputation and multiple imputation (MI) are participated in the experiments.

The goal of this experimental study is twofold:

1. To see if there is a data model at which the global LS imputation techniques

are better than their nearest neighbour versions.

82
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2. To compare the performance of the global-local LS imputation with available

as machine codes.

6.1 Least Squares Imputation Experiments with

Rank One Data Model

6.1.1 Selection of Algorithms

1. ILS-NIPALS or NIPALS: ILS with p = 1.

2. ILS: ILS with p = 4.

3. ILS-GZ or GZ: ILS with the Gabriel-Zamir procedure for initial settings.

4. IMLS-1: IMLS with p = 1.

5. IMLS-4: IMLS with p = 4.

6. N-ILS: NN based ILS with p = 1.

7. N-IMLS: NN based IMLS-1.

8. INI: NN based IMLS-1 imputation based on distances from an IMLS-4 impu-

tation.

9. Mean imputation.

10. N-Mean: NN based Mean imputation.

In the follow-up experiments, the NN based techniques will operate with K=10.
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6.1.2 Generation of Data

Under this data model generation some vectors, say c(15×1), z(200×1) with their com-

ponents in the range between -1 and 1 to be specified, and generate a uniformly

random matrix E(200×15) within the same range. Then the data model can be for-

mulated as follows:

Xε = z ∗ c′ + εE (6.1.1)

where coefficient ε scales the random noise E added to the onedimensional matrix

z ∗ c′. The coefficient ε will be referred to as the noise level; it has been taken at 6

levels from ε = 0.1 to ε = 0.6 .

Model (6.1.1) can be applied as many times as a data set is needed.

6.1.3 Mechanisms for Missing Data

The complete random missing pattern matrix is generated with the proportion’s

range at 1%, 5%, 10%, 15%, 20% and 25% of the total number of entries.

6.1.4 Evaluation of Results

The results of experiments with regard the error of imputation is computed according

to the (5.4.3).

6.1.5 Results

Table 6.1 shows the average results of 30 experiments (five data sets times six miss-

ings patterns) with the selected algorithms for each noise level. Both ILS and GZ

frequently do not converge, probably because of too many factors, four, required in

them. This is labeled by the symbol ‘N/A’ put in the corresponding cells of the

Table 1. Table 6.1 shows that, in each of the methods, except the Mean, the error
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increases with the noise level growing. At the Mean, the error stands constant on

the level of about 100 %. Two obvious winners, according to the Table, are NIPALS

(that is, ILS-1) and IMLS-1. The other methods’ performances are much worse.

This, probably, can be explained by the very nature of the data generated: uni-

dimensionality. The other methods seem just overspecified and thus wrong in this

situation.

Methods Noise Level
0.1 0.2 0.3 0.4 0.5 0.6

ILS 33.45 (179.42) 110.38 (478.79) 235.06 (928.57) N/A N/A N/A
GZ N/A N/A 282.97 (1042) 359.19 (1416) 303.12 (1413) 260.17 (1180)

NIPALS 3.44 (0.58) 12.67 (2.17) 25.09 (4.44) 38.12 (6.98) 50.12 (9.33) 60.41 (11.14)
IMLS-1 3.44 (0.58) 12.67 (2.17) 25.07 (4.44) 38.09 (6.98) 50.08 (9.32) 60.35 (11.13)
IMLS-4 34.37 (82.54) 17.69 (3.02) 34.92 (6.26) 53.18 (9.76) 69.70 (12.84) 84.10 (15.40)
Mean 100.77 (1.21) 100.73 (1.21) 100.69 (1.23) 100.65 (1.25) 100.61 (1.29) 100.59 (1.32)
N-ILS N/A N/A N/A N/A N/A N/A

N-IMLS 13.38 (23.20) 20.61 (13.21) 43.76 (36.70) 61.29 (31.05) 84.89 (36.84) 103.56 (43.02)
INI 33.84 (83.45) 28.08 (42.19) 42.26 (55.89) 53.55 (34.84) 63.86 (16.39) 78.75 (21.27)

N-Mean 74.30 (45.43) 77.55 (41.32) 82.08 (35.89) 87.53 (30.95) 92.57 (27.36) 97.83 (24.53)

Table 6.1: The average squared errors of imputation (in %) for different methods (in rows)
at different noise levels, columns; the values in parentheses are corresponding standard
deviations, per cent as well.

To remove the effect of failing convergences and, moreover, the effect of overlap-

ping dispersions in performances of the methods, the pairwise comparison is called

for. That is, for each pair of methods, the number of times at which one of them

outperformed the other will be counted. These data are shown in Table 6.2 an

(i, j) entry in which shows how many times, per cent, the method in j-th column

outperformed the method in i-th row.

The data in Table 6.2 confirm the results in Table 6.1. Moreover, the IMLS-1

was the winner more often than NIPALS (76% to 24%). Also, method INI gets

noted as the third ranking winner, which should be attributed to the fact that it

heavily relies on IMLS-1.
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ILS GZ NIPALS IMLS-1 IMLS-4 Mean N-ILS N-IMLS INI N-Mean

ILS - 44.00 100.00 100.00 74.00 1.50 32.00 80.00 98.00 20.00
GZ 56.00 - 100.00 100.00 77.00 1.50 33.00 88.00 98.00 17.00

NIPALS 0.00 0.00 - 76.00 0.00 0.00 0.00 0.00 0.00 0.00
IMLS-1 0.00 0.00 24.00 - 0.00 0.00 0.00 0.00 0.00 0.00
IMLS-4 26.00 23.00 100.00 100.00 - 0.00 21.00 67.00 97.50 0.00
Mean 98.50 98.50 100.00 100.00 100.00 - 52.00 99.50 100.00 77.00
N-ILS 68.00 67.00 100.00 100.00 79.00 48.00 - 94.00 100.00 67.00

N-IMLS 20.00 12.00 100.00 100.00 33.00 0.50 6.00 - 92.00 3.00
INI 2.00 2.00 100.00 100.00 2.50 0.00 0.00 8.00 - 0.00

N-Mean 80.00 83.00 100.00 100.00 100.00 23.00 33.00 97.00 100.00 -

Table 6.2: The pair-wise comparison between 10 methods; an entry (i, j) shows how many
times, per cent, method j outperformed method i with the rank one data model for all
noise level.

6.1.6 Structural Complexity of Data Sets

As seen from the results of the experimental study on the Complete random miss-

ing pattern using Gaussian mixture data models, the performance of NN versions

of the least squares imputation methods always surpasses the global least squares

approaches. In contrast, the ordinary least squares imputation methods perform

better than the local versions when the data is generated from a unidimensional

source.

Thus, a measure of structural complexity of the data should be taken into account

to give the user a guidance in prior selection of appropriate imputation methods.

In this project, two different approaches, one based on the principal component

analysis, a.k.a. SVD, and the other on te single-linkage clustering are implemented.

As is well known, a singular value squared shows the part of the total data

scatter taken into account by the corresponding principal component. The relative

contribution of h-th factor to the data scatter, thus, is equal to

Contributionh =
µ2

h∑N
i=1

∑n
k=1 x2

ik

(6.1.2)
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where µh is h-th singular value of matrix X. This measure can be extended to the

case of missing data, as well.

The proportion of the first greatest component (and, sometimes, the second

greatest component) shows how much the rank of the data matrix is close to 1: the

larger Contribution1 the closer. The data matrix is simplest when it has rank 1,

that is, Contribution1 = 1.

The single-linkage clustering shows how many connected components are formed

by the data entities [Jain and Dubes, 1988, Mirkin, 1996]. When the data consists

of several well separated clusters, the single-linkage components tend to reflect them

so that a partition of the single-linkage clustering hierarchy produces a number of

clusters with many entities in each. In contrast, when the data set has no visible

clustering structure, the single linkage clusters appear much uniform: there is only

one a big cluster and the rest are just singletons. This is why the distribution of

entities in single-linkage clusters can be used as an indicator of visibility of a cluster

structure in data.

The Table 6.3 presents a summary of the two measures described at each of the

ten data sets generated from NetLab Gaussian 5-mixture: the left part of the table

shows contributions of the first and second greatest factors to the data scatter, and

the right part distributions of entities over three or five single linkage clusters.

The data in Table 6.3 show that all the data sets generated under the original

Netlab Data Model are rather tight clouds of points with no visible structure in

them.

Table 6.4 shows the individual and summary contributions of the first two factors

to the data scatter at scaled NetLab Gaussian mixture data generators. In contrast
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Data Sets Contribution (%) Single linkage classes
First Second First Second Third Fourth Fifth

Data-1 57.93 8.26 207 1 1 3 1
Data-2 62.73 8.37 195 1 2 1 1
Data-3 60.91 7.15 228 2 1 1 1
Data-4 58.88 7.81 197 1 4 1 1
Data-5 58.41 10.81 203 2 1 1 1
Data-6 61.50 8.79 221 1 1 1 2
Data-7 59.69 11.27 241 1 1 1 2
Data-8 53.64 9.79 241 1 1 1 1
Data-9 58.33 8.99 225 2 1 1 2
Data-10 58.42 9.60 1 1 224 1 1

Table 6.3: The Contribution of singular values and distribution of single lingkage clusters
in NetLab Gaussian 5-mixture data model.

to the previous tables, data sets generated under the scaled Netlab Data Model have

a visible cluster structure (see Table 6.4).

Data Sets Contribution (%) Single linkage classes
First Second First Second Third Fourth Fifth

Data-1 50.38 26.95 190 2 1 53 2
Data-2 46.83 24.56 164 1 40 1 1
Data-3 37.83 29.62 37 1 5 114 76
Data-4 38.42 22.23 144 1 42 6 47
Data-5 48.08 23.02 43 200 1 1 1
Data-6 49.69 20.51 129 33 1 43 1
Data-7 34.33 31.36 39 44 38 39 47
Data-8 55.77 16.02 122 38 44 1 1
Data-9 47.00 19.38 105 1 44 46 51
Data-10 49.21 19.09 144 3 38 1 45

Table 6.4: The Contribution of singular values and distribution of single linkage clusters
in Scaled NetLab Gaussian 5-mixture data model.

Table 6.5 shows contributions of the first factor to data sets generated according

to the unidimensional model at the noise levels from ε = 0.1 through ε = 0.6. The

contribution falls from 97% to 52%, on average, almost proportionally to the noise

level. Yet the unidimensional global least squares methods NIPALS and IMLS-1
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outperform all the other methods at the latter’s data generation model (as shown

in Table 6.1).

Data Sets Noise Level
0.1 0.2 0.3 0.4 0.5 0.6

Data-1 97.39 90.28 80.54 70.11 60.31 51.78
Data-2 96.95 88.84 78.10 67.03 56.99 48.48
Data-3 96.92 88.89 78.45 67.77 58.10 49.89
Data-4 97.61 91.14 82.18 72.42 63.05 54.69
Data-5 97.15 89.61 79.57 69.09 59.41 51.06

Table 6.5: Contribution of the first factor to the data scatter (%) for rank one data gen-
erator.

6.1.7 Summary of the Results

In the rank one data model experiments, the simple least squares imputation with

one factor approximation, IMLS-1 and NIPALS (ILS-1) algorithms, surpass the

other methods. Indeed, these methods work on unidimensional subspace only. Thus,

more general approaches of least squares imputation, ILS and IMLS-4, have just pro-

duced larger error. In ether case, the global-local version of least squares imputa-

tion, INI, comes up as second best. In order to provide user-guidance the structural

complexity of data sets is introduced. This complexity is measured according to

contribution of singular values or/and the linkage-single cluster of entities.
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6.2 Global-Local Least Squares Imputation Ex-

periments with Real-World Marketing Research

Data

6.2.1 Selection of Algorithms

1. INI: the global-local versions of least squares imputation [Wasito and Mirkin,

2002].

2. EM-Strauss: EM algorithm with multiple regression imputation [Strauss et al.,

2002].

3. EM-Schafer: EM algorithm with random imputation [Schafer, 1997b].

4. MI: Multiple imputation with Markov-Chain Monte Carlo simulation using 10

imputations [Schafer, 1997b].

The details of the maximum likelihood based method can be seen in Section

(2.2).

6.2.2 Description of the Data Set

The data set is produced from a typical database of the large manufacturer and is

devoted to the problem of retention of existing customers. There are many variables

describing customers behavior and service features, and there is a target binary

variable (”refused the service or not”). The problem is to create a satisfactory

recognition rule(-s) to predict those who will cancel the service agreement. The

data set and the problem formulated are quite typical for many applications, and in

that sense the reconstruction of missing values for such a data set is of a practical
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interest. This original data set consists of 5001 entities and 65 attributes which are

mostly numeric (60), categorical (2), and binary attributes (3).

6.2.3 Sampling

This experiment utilizes 50 samples (size: 250× 20) which are generated randomly

from the original database at each level of missings. Thus, there are 150 samples

which were generated for the experiments.

6.2.4 Generation of Missings

The procedure for creating missings similar to the previous experiment. However,

the missings are generated randomly on the original real data set (size 5001 × 65)

at the level of missings 1%, 5% and 10%.

6.2.5 Data Pre-processing

Within the imputation techniques while the experiment running, the data pre-

processing, especially for real data sets, is calculated in following procedures:

xik =
(xik − µk)

rangek

(6.2.1)

where µk and rangek defined as mean and range of attribute respectively those

calculated as:

µk =

∑N
i=1 xik ∗mik

N
(6.2.2)

rangek = maxi(xk)−mini(xk) (6.2.3)
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6.2.6 Evaluation of Results

The evaluation of results concerning the exactness of imputation quality is measured

according to (5.4.3). To evaluate the performance of the imputation methods, the

elapsed CPU-time for running the program at Pentium III 733 MHz are recorded.

6.2.7 Results

The experiments are carried out in the two settings: (1) The experiments involving

INI and two EM imputation versions: EM-Strauss and EM-Schafer. In this experi-

ments, 50 samples are used for each level of missings. Thus there are 150 samples in

the experiments; (2) The experiments involving INI, EM-Strauss, EM-Schafer and

multiple imputation with 10 times imputation for each data sample. In this exper-

iments, 20 samples are used for two level of missings: 5% and 10%. The results of

each experiment will be shown in turn.

6.2.7.1 The Experiments with INI and Two EM Imputation Versions

The experiments are carried out using 50 samples from three “population” with

level of missings: 1%, 5% and 10% of all data entry. The result of experiment is

summarized according to the pair-wise comparison of performance of imputation

techniques: INI, EM-Strauss and EM-Schafer.

In our experiments, all imputation techniques, on some occasions, cannot be

proceed. The failing of computation is caused by the nature of algorithm. It is can

be described as follows. INI cannot be implemented in case the subset of data matrix

those to be found by k-NN algorithm contains all zeros elements in one column or

more. Thus, the Equation (3.2.8) and (3.2.9) cannot be computed. Finally, the

imputed values cannot be found. At other hand, for both versions of EM algorithm,
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the full covariance matrix that to be found from EM computation should be positive

definite, otherwise, imputed values cannot be calculated.

The Comparison of Error of Imputation

Table 6.6 shows that, overall, except at level 5% missings, the INI to be the best

method followed by EM algorithm with multiple regression (EM-Strauss) and the

EM algorithm with random imputation (EM-Schafer) to be the worst.

Methods of Imputation 1% 5% 10%
1 2 3 1 2 3 1 2 3

INI - 36 14 - 50 16 - 36 18
EM-Strauss 64 - 22 50 - 14 64 - 20
EM-Schafer 86 78 - 84 86 - 82 80 -

Table 6.6: The pair-wise comparison of methods; an entry (i, j) shows how many times in
% method j outperformed method i on 50 samples generated from database with 1%, 5%
and 10% random missing data where 1,2 and 3 denote INI, EM-Strauss and EM-Schafer,
respectively.

The Performance

With regarding CPU time performance, EM-Schafer algorithm provides the most

fastest of rate of convergence and INI to be the second fastest. On average, EM-

Schafer, is 1-10 times faster than INI and 10-1000 times faster then EM-Strauss.

6.2.7.2 The Experiments with INI, Two EM Imputation Versions and
MI

This time, the experiments are carried out using 20 samples out 50 samples which

are used in the previous experiments. The samples are chosen from “population”

with level of missings: 5% and 10%. The error of imputation for each method is

presented in Table 6.7.
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Samples Methods
INI EM-Strauss EM-Schafer MI

1 73.78 91.35 NN 28.32
2 95.98 835.21 575.87 24.45
3 57.78 53.89 58.21 545.72
4 43.68 45.10 73.88 129.34
5 NN NN NN 40.99
6 48.35 59.94 58.20 144.32
7 61.28 51.40 89.86 99.91
8 142.80 307.59 1048.37 95.52
9 97.29 86.93 128.11 126.62
10 53.79 56.70 109.95 50.52
11 73.56 92.00 235.75 NN
12 75.86 293.90 184.65 389.28
13 134.05 840.37 5429.77 57.07
14 62.17 41.53 136.28 49.51
15 78.97 360.20 NN NN
16 67.80 113.21 723.93 57.63
17 44.93 63.34 62.96 50.76
18 74.37 71.53 NN 333.34
19 72.44 78.21 150.24 87.83
20 78.68 115.89 542.38 51.86

Table 6.7: The squared error of imputation (in %) of INI, EM-Strauss, EM-Schafer and
MI on 20 samples at 10% missings entry where NN denotes the methods fail to proceed.

Once again, the result of experiment is summarized according to the pair-wise

comparison of imputation methods: INI, EM-Strauss, EM-Schafer and MI with 10

times imputation for each sample. The comparison is shown in Table 6.8.

Table 6.8 shows that at level 5%, three methods, INI, EM-Strauss and MI,

provide almost the similar results. However, in the close range, EM-Strauss appears

as the best method. Then MI appears as the second best. However, as the level of

missings increase to 10%. INI surpasses the other methods. Then it is followed by

EM-Strauss. As shown in the previous experiments, the EM-Schafer consistently to

be the worst method.
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Methods of Imputation 5% 10%
1 2 3 4 1 2 3 4

INI - 50 30 55 - 26 0 47
EM-Strauss 50 - 25 45 74 - 25 47
EM-Schafer 70 75 - 80 100 75 - 67

MI 45 55 20 - 53 53 33 -

Table 6.8: The pair-wise comparison of methods; an entry (i, j) shows how many times in
% method j outperformed method i on 20 samples generated from database with 5% and
10% random missing data where 1,2,3 and 4 denote INI, EM-Strauss, EM-Schafer and MI,
respectively.

6.2.8 Summary of the Results

With regard the error of imputation, overall, INI surpasses EM-Strauss and EM-

Schafer. Also, INI surpasses MI at level of missings 10%.

In either case, in terms of the rate of convergence, EM-Schafer which calculates

the complete-data sufficient statistics matrix on its upper-triangular portions only,

consistently to be the fastest method.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

7.1.1 Global and Local Least Squares Imputation

This work experimentally explores a number of least squares data imputation tech-

niques that extend the singular value decomposition of complete data matrices to

the case of incomplete data. There appears to be two principal approaches to this:

(1) by iteratively fitting the available data only, as in ILS, and (2) by iteratively

updating a completed data matrix, as in IMLS.

Then local versions of the ILS and IMLS methods based on utilising the nearest

neighbour (NN) approach were proposed. Also, a combined method INI has been

developed by using the NN approach on a globally imputed matrix.

7.1.2 The Development of Experimental Setting

A scheme for experiments has been adopted based on independently generating data

(with all entries present) and missing entries so that the imputation results could

be tested against those entries originally generated.
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7.1.2.1 Generation of Missing Patterns

Three different patterns of missings have been proposed to supplement the conven-

tional Complete Random pattern:

a. Inherited Random pattern reflecting step-by-step measurements in experimen-

tal data.

b. Sensitive Issue pattern modelling a concentration of missings within some is-

sues that are sensitive to some respondents.

c. Merged Database to model the situation where features that are present in

one database can be absent in the other.

7.1.2.2 Data Sets

The main type of data generation, Mixture of Gaussian distribution, is considered.

Other data types of interest include: (1) Noised rank one data and (2) Samples from

real-world marketing research database.

7.1.3 The Experimental Comparison of Various Least Squares
Imputation

A set of eight least squares based methods have been tested on simulated data to

compare their performances. The well-known average scoring method Mean and

its NN version, N-Mean, recently described in the literature, have been used as the

bottom-line. The results show that the relative performances of the methods depend

on the characteristics of the data, missing patterns and the proportion of missings.
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7.1.3.1 The Performance of Least Squares Imputation on Complete Ran-
dom Pattern

NetLab Gaussian Mixture Data Model

Based on this data model, overall, the local versions perform better than their global

versions. Even N-Mean may do relatively well when missings are rare. However,

the only method to consistently outperform the others, especially when proportion

of missings is in the range of 5 to 25 per cent, is the combined method INI.

Scaled NetLab Gaussian Mixture Data Model

Overall, local versions of least squares imputation perform well. Furthermore, the

performance of the methods vary according to level of missings. At level 1% to 10%,

the global-local least squares, INI, is the best. However, at level 15% or more, the

local version of IMLS, N-IMLS, surpasses the other methods.

7.1.3.2 The Performance of Least Squares Imputation on Different Miss-
ing Patterns

Some of the findings resulting from the experiments with two Gaussian data models

and five missing patterns (Complete random, Inherited random, Sensitive issue,

Merged database with missings from one database, Merged database with missings

from two databases):

1. The three NN-based least squares techniques provide the best results for the

first four missing patterns under either of the two Netlab Data Models. Global

least squares methods win only with the Merged database with missings from

two databases under the scaled Netlab Data Model. N-Mean joins in the win-

ning methods when there are few Complete random missings when the missings

patterns is caused by Merged database with missings from two databases.
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2. The global-local method, INI, outperforms the others under the original Netlab

Data Model, and N-IMLS frequently wins under the scaled Netlab Data Model.

3. The ILS approach frequently does not converge, which makes the IMLS tech-

nique and its NN version more preferable.

4. The scaled Netlab Gaussian Data Model leads to smaller errors of least squares

imputation techniques for all five missing patterns considered. For some miss-

ing patterns, the scaled model leads to different results.

7.1.4 Other Data Models

7.1.4.1 Rank One Data Model

Under this data model, simple global least squares imputation methods with one

factor approximation, IMLS-1 and NIPALS (that is, ILS-1), are best. This probably

can be explained by the very nature of the data generated: unidimensionality. The

combined method, INI, could be considered as second best. Indeed, INI heavily

relies on IMLS-1.

7.1.4.2 Experiments on a Marketing Research Database

The combined global-local least squares imputation, INI, in terms of the error of im-

putation, on average, outperformed two versions of the EM algorithm: EM-Strauss

and EM-Schafer and multiple imputation approach. The only exception to this is in

the case when the samples came from the database with 5% missing entries. How-

ever, the version EM-Schafer performs rather fast, typically faster than INI, which

probably explains the huge error of the working of this program.
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7.2 Future Work

With regard to the issues raised, directions for future work should include the fol-

lowing:

1. It should be a theoretical investigation carried out on the properties of conver-

gence for both major iterative techniques, ILS and IMLS. In our computations,

ILS does not always converge, even when the Gabriel-Zamir setting is applied

to initialise the process.

2. The performances of the least squares based techniques should more compre-

hensively compared with those of another set of popular imputation techniques

based on a maximum likelihood principle such as the multiple imputation (MI).

This requires some additional work since the latter methods can be compu-

tationally expensive, and also inapplicable when the proportion of missings is

comparatively large (10% or more). Also, the evaluation criteria for a method’s

performance should be extended to ordinary statistical analysis such as distri-

bution and estimation of parameter accuracy.

3. Modelling of missing pattern should be extended to the most challenging miss-

ing pattern, the non-ignorable (NI).



Appendix A

A Set of MATLAB Tools

A.1 Methods
A.1.1 Iterative Least Squares (ILS)

function [xout,exils]=ils(x,mt,p,maxstep)

% This program implements ILS algorithm on MatLab Version 6.

% Input:

% x=data set with r rows and n columns.

% mt=arrays of missingness matrix at level t% with p various patterns

% p=number of missings patterns.

% maxstep=number of factors to be approximated.

% Output:

% xout= data reconstruction including the imputed missing values.

% exils= the error of imputation.

% Copy right 2001 I.Wasito

% School of Computer Science and Information Systems, Birkbeck,

% University of London.

tol=1e-4; % tolerance convergence.

ns=0; % counting number for nonconvergences.

ItMax=800; % maximimum iterations.

[r,n]=size(x);

Z=x;

co=ones(r,1);

for sm=1:p

mis=mt{sm}; % Use the p-th missing pattern at level t% missings.

X=x;

Xm=X.*mis; % Construct the missing values in data set.

cr=ones(1,n);

czt=zeros(r,n);

rec=0;

for t=1:maxstep

ci(t,:)=cr; % Initial value for vector c. For ILS-GZ, utilize

cn=1/sqrt(r)*ci(t,:); % the Gabriel-Zamir initial computation as shown in

Y=X.*mis; % init program.
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delta=1;

cycle=0;

so=0;

% Execute ILS algorithm.

while (delta>tol)

ss=so;

c=cn;

cc=c.*c;

cycle=cycle+1;

num1=Y*c’;

den1=mis*(cc)’;

zn=num1./den1;

znsq=zn.*zn;

num2=zn’*Y;

den2=znsq’*mis;

cn=num2./den2;

cnm=norm(cn); % Normalize the c values

cn=cn/cnm;

delta=norm(cn-c);

rec=zn*cn;

if cycle > ItMax

disp(’ILS Algorithm is not converged’); % record the nonconvergences.

disp(’in th-component’);

t

ns=ns+1;

break,end

end;

cp(t,:)=cn; % store the found c-value on the t-th factor.

zp(:,t)=zn; % store the found z-value on the t-th factor.

X=X-rec; % Approximate the next subspace.

czt=czt+rec; % data reconstruction.

end;

% Evaluate the imputed data values according to Equation 5.4.3.

exact(sm)=ie(Z,czt,mis);

end

xout=czt;

exils=exact;

return

A.1.2 Iterative Majorization Least Squares (IMLS)
function [xout,exmls]=imls(x,mt,p,maxstep)

% This program implements IMLS algorithm on MatLab Version 6.

% Input:

% x=data set with r rows and n columns.

% mt=arrays of missingness matrix at level t% with p various patterns

% p=number of missings patterns.

% maxstep=number of factors to be approximated.

% Output:

% xout= data reconstruction including the imputed missing values.

% exmls= the error of imputation.

%Copy right 2001 I. Wasito

% School of Computer Science, Birkbeck College, University of London
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tol=1e-4; % tolerance convergence.

ns=0; % counting values for nonconvergences.

ItMax=800; % maximum iteration

[r,n]=size(x);

Z=x;

co=ones(r,1);

for sm=1:p

mis=mt{sm};

X=x;

Xm=X.*mis; % Construct missing values

xsum=sum(sum(Xm.*Xm)); % Convergence criteria alongside tol value.

m=1-mis;

cp=ones(maxstep,n);

zp=ones(r,maxstep);

ic=ones(r,n);

czt=zeros(r,n);

rec=zeros(r,n); % initialize the missing values to zero

% Execute the IMLS algorithm

for t=1:maxstep

delta=xsum;

counter=0;

ci(t,:)=ones(1,n);

cn=1/sqrt(r)*ci(t,:);

so=xsum;

% Execute the Kiers algorithm

while (delta>tol*so)

reco=rec;

Y=X.*mis+reco.*m;

ss=so;

c=cn;

cc=c.*c;

counter=counter+1;

num1=Y*c’;

den1=ic*(cc)’;

zn=num1./den1;

mzn=norm(zn);

znsq=zn.*zn;

num2=zn’*Y;

den2=znsq’*ic;

cn=num2./den2;

cnm=norm(cn);

cn=cn/cnm; % normalize c values

rec=zn*cn; % data reconstruction

dif=Xm-rec;

difmis=dif.*mis;

so=sum(sum(difmis.*difmis));

delta=abs(so-ss);

if counter > ItMax

disp(’G-WLS Algorithm is not converged’); % record the nonconvergence

disp(’in th-component’);

t

ns=ns+1;
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break,end

end

cp(t,:)=cn; % store the found c-value on the t-th factor.

zp(:,t)=zn; % store the found z-value on the t-th factor.

X=X-rec; % approximate the next subspace.

czt=czt+rec; % data reconstruction.

end

% Evaluate the imputed data values according to Equation 5.4.3.

exact(sm)=ie(Z,czt,mis);

end

xout=czt;

exmls=exact;

return

A.1.3 Nearest Neighbour Least Squares Imputation
function [xout,exnils]=nnils(x,mt,p,k,meth)

% This program implements Least Squares algorithm with Nearest Neighbour

% on MatLab Version 6.

% Input:

% x=data set with r rows and n columns.

% mt=arrays of missingness matrix at level t% with p various patterns

% p=number of missings patterns.

% k=number of neighbours.

% meth=1 for ILS and meth=2 for IMLS, otherwise compute mean imputation.

% Output:

% xout= data reconstruction including the imputed missing values.

% exnils= the error of imputation.

%Copy right 2001-2002 I. Wasito

%School of Computer Science, Birkbeck College, University of London

Z=x;

xp=x;

[r,n]=size(x);

for sm=1:p

m=mt{sm};

distm=eucmiss(xp,m); % Calculate the Euclidean distance

[sdm,idxm]=sort(distm); % Sort the distance.

for kn=1:r

xaug=(xp(idxm(1:r,kn),:)); % Set the ordered entity.

maug=(m(idxm(1:r,kn),:)); % Set the corresponding ordered missing matrix.

dist=sdm(1:r,kn);

v=find(maug(1,:)==0); % Find the target entity.

if length(v)~=0

[xk,mk]=negils(xaug,maug,k); % Select the neighbours of target entity.

switch meth % select one of the least squares imputation technique.

case 1

xl=ils(xk,mk,1); % N-ILS algorithm.

case 2

xl=imls(xk,mk,1); % N-IMLS algorithm.

otherwise

xl=mean(xk,mk); % % N-Mean algorithm.

end

y(kn,:)=xl(1,:);
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else

y(kn,:)=xaug(1,:);

end

end

% Evaluate the imputed data values according to Equation 5.4.3.

exact(sm)=ie(Z,y,m);

end

xout=y;

exnils=exact;

return

A.1.4 IMLS N-IMLS (INI)

function exiki=nnikip(x,mt,p,k)

% This program implements combination of ordinary IMLS algorithm

% and its Nearest Neighbour version on MatLab Version 6.

% Input:

% x=data set with r rows and n columns.

% mt=arrays of missingness matrix at level t% with p various patterns

% p=number of missings patterns.

% k=number of neighbours.

% Output:

% xout= data reconstruction including the imputed missing values.

% exnils= the error of imputation.

%Copy right 2001-2002 I. Wasito

%School of Computer Science, Birkbeck College, University of London

Z=x;

[r,n]=size(x);

for s=1:p

mis=mt{s};

xt=imls(x,mis,4); % Compute the IMLS with 4 factors.

xp=xp.*mis+xt.*(1-mis); % Fill in the missing value.

%Compute the distance with ‘‘completed’’ data

x2=sum(xp.^2,2);

distance=repmat(x2,1,r)+repmat(x2’,r,1)-2*xp*xp’;

[sd,idx]=sort(distance);

for kn=1:r

xaug=(xp(idx(1:r,kn),:)); % Set the ordered entity

maug=(mis(idx(1:r,kn),:)); % Set the corresponding ordered missing matrix.

v=find(maug(1,:)==0);

if length(v)~=0

[xk,mk]=negils(xaug,maug,k); % Select the neighbours.

xl=ngwls(xk,mk,1); % Compute IMLS with 1 factor only.

y(kn,:)=xl(1,:); % store the data reconstruction.

else

y(kn,:)=xaug(1,:);

%end

end

end
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% Evaluate the imputed values using Equation 4.5.3.

exact(s)=ie(Z,y,m);

end

exiki=exact;

xout=y;

return

A.1.5 Evaluation of the Quality of Imputation

function ex=ie(xt,xm,m);

% This program implements evaluation of quality of imputation

% according to Equation 5.4.3 on MatLab Version 6.

% Input:

% xt= data set without missings;

% xm= data set with missings;

% m= matrix of missingness.

% Output:

% ex= the error of imputation (in %).

%Copy right 2001-2002 I. Wasito

%School of Computer Science, Birkbeck College, University of London

dif=xt-xm;

difmis=dif.*(1-m);

dd=sum(sum(difmis.*difmis));

xtmis=xt.*(1-mis);

bb=sum(sum(xtmis.*xtmis));

ex=dd/bb*100;

return

A.1.6 Euclidean Distance with Incomplete Data

function d=eucmiss(x,m);

% This program compute the distance of entities with some missing values.

% Input:

% x=data set with r rows and n columns;

% m=matrix of missingness;

% Output:

% d= Euclidean distance;

% Copy right 2001-2002 I.Wasito

% School of Computer Science and Information Systems, Birkbeck,

% University of London.

[r,n]=size(x);

for i=1:r

for ii=i:r

dx=0;

md=ones(r,n); % matrix of binary which have value 1 if the pair of attributes
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for k=1:n % are non-missing.

if (m(i,k)==0) | (m(ii,k)==0)

md(i,k)=0; % if at least one of pair of attributes are missing

end % then set the matrix of binary to zero.

dx=dx+((x(i,k)-x(ii,k))^2)*md(i,k); % Calculate the Euclidean distance.

end

d(i,ii)=dx; % The distance of entity i and entity ii.

d(ii,i)=d(i,ii); % symmetric properties of distance metric.

end

end

d=sqrt(d); % square-root of the distance metric.

return

A.1.7 Selection of Neighbours

function [xout,mout]=negils(x,m,k);

% This program determines the neighbours

% Input:

% x=data set with r rows and n columns;

% m=matrix of missingness;

% k=number of neighbours;

% Output:

% xout= data reconstruction including imputed values;

% mout= corresponding missingness matrix;

% Copy right 2001-2002 I.Wasito

% School of Computer Science and Information Systems, Birkbeck,

% University of London.

[r,n]=size(x);

xout=x(1:k,:);

mout=m(1:k,:);

return

A.1.8 Gabriel-Zamir Initialization

function c=init(x,m);

% This program calculate the Gabriel-Zamir initialization for c value.

% Input:

% x=data set;

% m=matrix of missingness;

% Output:

% c= the initiall value of c;

% Copy right 2001-2002 I.Wasito

% School of Computer Science and Information Systems, Birkbeck,

% University of London.

[r,n]=size(x); y=x; cq=0; mxp=0;

[v,w]=find(m==0); % find the rows and columns which contain missing values.

% Proceed the Gabriel-Zamir initialization
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for vt=1:length(v)

for wt=1:length(w)

qq=sum(m(v(vt),:).*(x(v(vt),:).^2));

pq=sum(m(:,w(wt)).*(x(:,w(wt)).^2));

cq=pq+qq;

if cq>=mxp

mxp=cq;

it=v(vt);

pk=w(wt);

end

end

end

wyyy=0; wyy=0;

for yk=1:r

for xk=1:n

if (yk~=it) | (xk~=pk)

wyyy=wyyy+(mt(yk,xk)*x(yk,pk).^2*(x(it,xk).^2));

wyy=wyy+mt(yk,xk)*x(yk,pk)*x(it,xk)*x(yk,xk);

end

end

end

be=(wyy/wyyy);

[tf,tg]=find(m(it,:)==0);

x(it,tg)=be;

[rt,nt]=size(it);

if rt>1

it(2:rt,:)=[];

end

c=x(it,:);

c=c/norm(c); % normalize the c value.

return

A.1.9 Data-Preprocessing

function xt=prep(x,mis);

% This program implements data pre-processing.

% Input:

% x=data set with r rows and n columns;

% mis=matrix of missingness;

% Output:

% xt= standardized data;

% Copy right 2001-2002 I.Wasito

% School of Computer Science and Information Systems, Birkbeck,

% University of London.

[r,n]=size(x); co=ones(r,1);

for km=1:n

v=find(mis(:,km)==1);

mx(km)=mean(x(v,km)); % Compute mean of observed values in the variables.

jkx(km)=max(x(v,km))-min(x(v,km)); % Compute range of variables.

end

xt=(x-co*mx)./(co*jkx);

return
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A.2 Generation of Missing Patterns

A.2.1 Inherited Pattern

function mp=mrandsys(r,n);

% This program generates inherited missing pattern.

% Input:

% r= number of rows;

% n= number of columns;

% Output:

% mp= matrix of missingness;

% Copy right 2001-2002 I.Wasito

% School of Computer Science and Information Systems, Birkbeck,

% University of London.

% The proportion of missing to be implemented

p(1)=0.25;

p(2)=0.20;

p(3)=0.15;

p(4)=0.10;

p(5)=0.05;

p(6)=0.01;

% Generate the matrix of missingness for p=0.25.

numsim=100;

m=ones(r,n);

q=p(1);

nl=round(q*r*n);

t=0;

while t<nl

for i=1:numsim

u=round(rand*(r-1)+1);

w=round(rand*(n-1)+1);

nmr=length(find(m(u,:)>0));

nmc=length(find(m(:,w)>0));

if (m(u,w) ~= 0),break,end

end

if (nmr-1)>0

m(u,w)=0;

t=t+1;

end

end

mp{6}=m;

m2=m; % store the found matrix of missingness for next simulation.

nl0=nl;

% Generate the inherited missings starting from the previous matrix.

for ss=2:6

q=p(ss);

nl=round(q*r*n);

t=nl0;

while t>nl

for i=1:numsim

u=round(rand*(r-1)+1);

w=round(rand*(n-1)+1);
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nmr=length(find(m2(u,:)>0));

nmc=length(find(m2(:,w)>0));

if (m2(u,w) ~= 1),break,end

end

if (nmr-1)>0

m2(u,w)=1;

t=t-1;

end

end

mp{7-ss}=m2;

nl0=nl;

end

return

A.2.2 Sensitive Issue Pattern

function mcom=comsen(mm,n);

% This program generates sensitive issue pattern.

% Input:

% mm= number of rows;

% n= number of columns;

% Output:

% mcom= matrix of missingness;

% Copy right 2001-2002 I.Wasito

% School of Computer Science and Information Systems, Birkbeck,

% University of London.

% Proportion of missings

ip(1)=0.01;

ip(2)=0.05;

ip(3)=0.10;

m=ones(mm,n);

r=0;

q=0;

% Generate for each proportion of missings

for ll=1:3

switch ll

case 1

p=round(ip(ll)*mm*n)

while r*q<p

q=round((0.10+0.40*rand)*n);

r=round((0.25+0.25*rand)*mm);

end

for kk=1:q

qc(kk)=round(1+rand*(n-1));

end

for jj=1:r

qr(jj)=round(1+rand*(mm-1));

end

mcom{ll}=msen(m,p,q,r,qc,qr);

rand(’state’,0) case 2
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p=round(ip(ll)*mm*n)

while r*q<p

q=round((0.20+0.30*rand)*n);

r=round((0.25+0.25*rand)*mm);

end

for kk=1:q

qc(kk)=round(1+rand*(n-1));

end

for jj=1:r

qr(jj)=round(1+rand*(mm-1));

end

mcom{ll}=msen(m,p,q,r,qc,qr);

rand(’state’,0)

case 3

p=round(ip(ll)*mm*n)

while r*q<p

q=round((0.25+0.25*rand)*n);

r=round((0.40+0.40*rand)*mm);

end

for kk=1:q

qc(kk)=round(1+rand*(n-1));

end

for jj=1:r

qr(jj)=round(1+rand*(mm-1));

end

m=ones(mm,n);

mcom{ll}=msen(m,p,q,r,qc,qr);

rand(’state’,0)

otherwise

disp(’no missing’);

end

end

return

%The following subprogram determines the missings for each issue pattern

function mc=msen(m,t,nps,nts,qc,qr);

tn=0;

while tn<t

mm=round(1+(nts-1)*rand);

nn=round(1+(nps-1)*rand);

rr=round(rand);

if (m(qr(mm),qc(nn))==1) & (rr==1)

m(qr(mm),qc(nn))=0;

tn=tn+1;

end

rand(’state’);

end

mc=m;

return

A.2.3 Missings from One Database

function mcom=commis(r,n,p);

% This program generates missings from one database.

% Input:
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% r= number of rows;

% n= number of columns;

% p= proportion of column which contains missing values

% Output:

% mcom= matrix of missingness;

% Copy right 2001-2002 I.Wasito

% School of Computer Science and Information Systems, Birkbeck,

% University of London.

% Proportion of missings

ip(1)=1;

ip(2)=5;

m=ones(r,n);

% Generate missings from one database for each level of missings (1% and 5%).

for tt=1:2

q=ip(tt); t=(q/p)*100; % proportion of respondents which would no response

nps=round((p/100)*n); % number of columns which contain missing values

nts=round((t/100)*r); % number of respondents which would no response

% Generate randomly the columns which contain missing values

for i=1:nts

ncs(i)=round(1+rand*(r-1));

end

%Generate randomly the rwos which contain no response respondents

for k=1:nps

nrs(k)=round(1+rand*(n-1));

end

for ii=1:nts

for kk=1:nps

m(ncs(ii),nrs(kk))=0;

end

end

mcom{tt}=m;

end

return

A.2.4 Missings from Two Databases

function mcom=merged(r,n);

% This program generates missings from two databases.

% Input:

% r= number of rows;

% n= number of columns;

% Output:

% mcom= matrix of missingness;

% Copy right 2001-2002 I.Wasito

% School of Computer Science and Information Systems, Birkbeck,

% University of London.
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%Proportion of missings

p(1)=1;

p(2)=5;

%The proportion of number of entities for two databases

m1=0.6+0.2*rand;

m2=1-m1;

%Initialize matrix of missingness

m=ones(r,n);

%Generate missing from two databases for each level of missings.

for ss=1:2

r1=round(r*m1);

r2=round(r-r1);

%Determine the left-most of missings in second database

if p(ss)==1

k2=rand*((p(ss)*n*r/(100*r1)));

else

k2=((rand*((p(ss)*n*r/(100*r1))-r2/r1)));

end

%Determine the right-most of missings in the first database.

k1=((((p(ss)*n*r)-100*r2*k2))/(100*r1));

%Configure the missings pattern for two databases.

f1=fix(k1);

f1r=k1-f1;

f2=fix(k2);

f2r=k2-f2;

if f1==0

rk=round(r1*k1);

else

rk=round(r1*f1r);

end

ck=f1;

for ii=n-ck+1:n

for i=1:r1

m(i,ii)=0;

end

end

kk=n-ck;

for k=1:rk

m(k,kk)=0;

end

if f2==0

rs2=round(r2*k2);

else

rs2=round(r2*f2r);

end
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ck2=f2;

for j=r:r-r2+1

for jj=1:ck2

m(j,jj)=0;

end

end

dd=ck2+1;

for l=r-rs2+1:r

m(l,dd)=0;

end

mcom{ss}=m;

end

return



Appendix B

Data Generators Illustrated

B.1 NetLab Gaussian 5-Mixture Data Model

(a) The first example of NetLab Gaussian 5-mixture
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(b) The second example of NetLab Gaussian 5-mixture

(c) The third example of NetLab Gaussian 5-mixture
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B.2 Scaled NetLab Gaussian 5-Mixture Data Model

(d) The first example of scaled NetLab Gaussian 5-mixture

(e) The second example of scaled NetLab Gaussian 5-mixture
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(f) The third example of scaled NetLab Gaussian 5-mixture

B.3 Rank One Data Model

(g) Rank one data model with noise level=0.1
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(h) Rank one data model with noise level=0.3

(i) Rank one data model with noise level=0.6
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B.4 Standarized Data Samples of Marketing Database

(j) The First Sample



121

(k) The Second Sample

(l) The Third Sample



Appendix C

Exemplary Results

C.1 The Results of Experiments with 10 Scaled

NetLab Data Sets times 10 Complete Ran-

dom Missing Patterns

C.1.1 The Error of Imputation of ILS Method

The Proportion of Missing

---------------------------------------------------------

1% 5% 10% 15% 20% 25%

---------------------------------------------------------

18.33 14.05 17.13 16.97 16.78 17.85

14.83 11.27 12.60 16.18 13.70 17.14

8.90 20.37 15.21 18.28 17.92 17.42

9.76 11.94 16.13 15.16 14.61 19.26

10.43 13.88 13.39 15.85 17.69 18.22

18.86 19.33 15.34 16.16 15.02 20.78

30.26 16.14 15.56 15.24 16.50 16.52

16.07 13.06 15.15 15.32 19.98 16.64

26.62 14.13 16.79 14.62 17.46 18.33

11.40 17.49 15.67 16.67 16.18 16.50

6.69 10.64 12.62 12.51 13.72 15.46

14.83 12.04 16.68 12.38 13.68 18.14

8.42 8.11 11.68 16.17 15.20 15.00

15.95 14.13 12.58 13.72 13.73 15.59

17.76 12.70 13.94 15.00 14.21 17.36

9.55 15.80 13.52 11.99 16.59 15.25

15.77 10.82 12.95 17.03 14.27 16.11

8.83 14.68 14.23 15.82 12.51 16.29

17.74 13.59 12.28 15.09 14.25 14.88

4.92 11.62 13.30 14.40 12.70 16.32

18.16 16.69 19.50 23.19 21.06 23.14

15.65 32.41 17.00 20.18 23.82 24.35

17.51 18.80 17.19 23.01 21.86 23.22

8.34 15.45 16.91 22.14 20.77 25.63

12.47 19.68 21.89 21.48 23.33 30.77

28.85 22.74 18.55 19.32 22.41 25.17

23.34 16.46 21.21 21.57 23.23 25.48

12.87 18.46 18.24 18.60 26.11 32.13
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16.15 15.35 19.80 20.95 24.26 24.34

13.11 24.52 19.98 22.37 27.44 19.69

9.57 15.41 18.59 18.55 21.17 21.87

6.22 17.97 18.73 17.75 23.88 22.95

11.82 18.62 15.78 20.30 21.28 22.88

14.96 13.14 20.87 18.77 18.30 23.10

13.20 24.96 18.30 19.29 20.81 24.08

12.35 17.30 18.95 16.64 21.50 24.48

11.59 19.76 16.91 17.51 22.26 22.11

29.84 17.90 19.69 17.99 20.00 23.52

11.61 15.71 18.83 18.37 23.34 23.98

18.58 19.98 17.31 23.50 24.04 25.01

37.76 17.27 17.65 19.00 21.89 20.19

15.27 18.14 17.35 17.06 18.60 18.78

27.39 19.76 18.52 17.01 21.06 20.93

11.87 25.83 18.83 16.01 18.11 21.74

19.31 14.97 20.20 20.00 18.16 19.23

32.08 16.39 16.45 17.33 18.77 21.89

10.13 18.85 14.12 19.79 20.97 21.08

9.76 13.87 17.58 21.62 20.15 21.32

16.56 18.91 17.71 17.23 19.55 18.71

18.64 16.94 15.24 18.03 20.72 20.13

10.56 18.55 12.76 13.05 14.82 15.36

10.07 15.92 11.48 13.61 15.12 15.93

10.24 16.64 13.84 14.94 13.53 14.99

13.57 9.96 14.13 15.26 14.39 13.84

6.29 15.83 15.19 11.85 12.59 16.01

15.37 10.56 14.34 16.27 14.10 14.38

19.51 15.26 12.94 13.10 16.75 17.14

14.97 13.74 12.21 14.64 12.66 15.70

12.24 13.16 16.59 13.39 12.81 13.25

12.14 13.54 14.08 12.07 14.32 13.64

20.02 24.49 25.01 29.01 30.49 36.36

40.19 26.06 19.42 25.65 28.19 31.91

36.72 23.15 24.74 29.06 30.48 35.77

17.56 18.56 25.34 28.94 37.77 33.59

30.32 27.49 20.60 24.56 29.56 31.70

29.17 34.16 26.05 30.59 32.03 29.33

13.34 19.28 26.89 30.78 27.93 34.88

18.78 22.59 19.99 28.61 32.75 33.72

22.64 23.85 27.72 32.36 27.56 34.93

23.05 24.15 22.13 27.85 30.35 28.55

23.67 18.45 21.29 27.18 21.68 23.47

12.30 17.39 19.14 21.43 26.13 25.18

33.70 19.45 19.14 22.09 25.87 26.83

13.36 22.02 21.54 20.70 23.92 26.74

9.14 18.09 23.06 22.37 24.36 23.94

13.73 22.49 24.62 19.02 21.65 20.17

27.22 16.26 18.09 22.60 23.83 24.70

16.73 15.82 20.74 19.31 20.98 22.87

11.35 37.50 20.51 20.17 23.66 22.33

11.12 21.11 20.67 18.61 23.05 22.81

14.84 14.56 15.79 15.99 20.63 22.15

12.14 15.31 14.67 20.16 17.12 20.52

15.04 22.55 18.78 19.17 19.07 21.44

13.92 15.06 18.59 20.23 18.69 22.11

13.40 14.16 17.14 17.24 18.70 23.03

13.34 17.34 14.70 18.60 17.33 20.74

10.28 21.87 20.79 19.55 22.22 21.75

16.01 21.24 18.29 18.52 20.42 18.88

10.78 21.36 18.18 17.87 17.96 22.61
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19.58 16.19 17.91 19.92 18.69 21.26

11.41 15.10 17.83 17.10 18.93 19.13

9.99 18.87 15.19 17.80 18.97 20.83

28.35 16.81 14.24 18.01 20.04 18.78

18.60 18.13 14.66 19.52 19.12 20.39

28.38 14.95 16.07 15.55 18.71 20.94

16.87 17.80 16.75 17.50 17.35 18.69

23.07 17.45 18.43 17.73 19.03 20.02

13.75 14.32 15.95 18.20 18.61 20.45

31.77 16.12 17.70 17.87 17.75 21.02

13.44 16.77 15.99 16.92 19.14 19.64

C.1.2 The Error of Imputation of GZ Method

The Proportion of Missing

---------------------------------------------------------

1% 5% 10% 15% 20% 25%

---------------------------------------------------------

18.33 14.05 17.13 16.97 16.78 17.85

14.83 11.27 12.60 16.18 13.70 17.14

8.90 20.36 15.21 18.28 17.92 17.41

9.76 11.94 16.13 15.16 14.61 19.26

10.43 13.88 13.39 15.85 17.69 18.22

18.86 19.33 15.33 16.16 15.01 20.79

30.26 16.14 15.56 15.24 16.50 16.52

16.07 13.06 15.15 15.32 19.98 16.64

26.62 14.13 16.79 14.62 17.46 18.33

11.40 17.49 15.67 16.67 16.18 16.50

6.69 10.64 12.62 12.51 13.72 15.46

14.83 12.03 16.68 12.38 13.68 18.14

8.42 8.11 11.68 16.17 15.20 15.00

15.95 14.13 12.58 13.73 13.73 15.59

17.76 12.70 13.94 15.00 14.21 17.36

9.55 15.80 13.52 11.99 16.59 15.24

15.77 10.82 12.95 17.03 14.27 16.11

8.83 14.68 14.23 15.82 12.51 16.29

17.75 13.59 12.28 15.10 14.25 14.88

4.92 11.62 13.29 14.40 12.70 16.32

18.16 16.69 19.51 23.19 20.71 23.14

15.64 32.41 17.00 20.18 24.29 24.35

17.51 18.81 17.20 23.01 21.85 23.22

8.34 15.45 17.49 22.14 20.77 26.06

12.46 19.68 21.89 21.48 23.34 30.76

28.86 22.75 18.56 19.32 22.41 25.82

23.33 16.45 21.21 21.57 24.25 25.48

12.87 18.46 18.24 18.60 26.13 32.13

16.15 15.34 19.80 20.95 24.25 24.34

13.11 24.54 19.98 22.37 27.44 19.69

9.57 15.41 18.59 18.55 21.17 21.87

6.22 17.97 18.73 17.75 23.88 22.95

11.82 18.62 15.78 20.30 21.28 22.88

14.96 13.13 20.87 18.77 18.31 23.10

13.20 24.96 18.30 19.29 20.81 24.08

12.35 17.30 18.95 16.64 21.50 24.47

11.59 19.76 16.91 17.51 22.26 22.11

29.84 17.90 19.69 17.99 20.00 23.52

11.61 15.71 18.83 18.37 23.34 23.98

18.58 19.98 17.31 23.50 24.04 25.01

37.76 17.27 17.65 19.00 21.89 20.19
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15.27 18.14 17.35 17.06 18.60 18.78

27.39 19.76 18.52 17.01 21.06 20.93

11.87 25.83 18.83 16.01 18.11 21.74

19.31 14.97 20.20 20.00 18.16 19.23

32.08 16.39 16.45 17.33 18.77 21.89

10.13 18.85 14.12 19.79 20.97 21.08

9.76 13.87 17.58 21.62 20.14 21.32

16.56 18.91 17.71 17.23 19.55 18.71

18.64 16.94 15.24 18.03 20.72 20.13

10.56 18.55 12.76 13.05 14.82 15.36

10.07 15.92 11.48 13.61 15.12 15.93

10.24 16.64 13.84 14.94 13.53 14.99

13.57 9.96 14.13 15.26 14.39 13.84

6.29 15.83 15.19 11.85 12.59 16.01

15.37 10.56 14.34 16.27 14.10 14.38

19.51 15.26 12.94 13.10 16.75 17.14

14.97 13.74 12.22 14.64 12.66 15.70

12.24 13.16 16.59 13.40 12.81 13.25

12.14 13.54 14.08 12.07 14.32 13.64

20.03 24.49 25.01 29.01 30.50 36.36

40.19 26.06 19.42 25.65 26.97 31.91

36.72 23.15 24.74 29.06 30.48 35.77

17.56 18.56 25.34 28.94 37.77 33.58

30.32 27.49 20.60 24.56 29.56 31.70

29.17 34.16 26.05 30.59 32.03 29.33

13.34 19.28 26.89 30.78 27.93 34.88

18.78 22.59 19.99 28.61 32.75 33.90

22.63 23.85 27.72 32.36 27.56 34.93

23.06 24.15 22.13 27.85 30.34 28.56

23.67 18.45 21.29 27.18 21.68 23.47

12.30 17.39 19.14 21.43 26.13 25.18

33.71 19.45 19.14 22.09 25.86 26.83

13.36 22.02 21.54 20.70 23.92 26.74

9.14 18.09 23.07 22.37 24.36 23.94

13.73 22.49 24.62 19.03 21.65 20.17

27.22 16.26 18.09 22.59 23.83 24.69

16.73 15.82 20.74 19.31 20.98 22.87

11.35 37.51 20.51 20.17 23.66 22.33

11.12 21.11 20.67 18.62 23.05 22.81

14.84 14.56 15.79 15.99 20.63 22.15

12.14 15.31 14.67 20.16 17.12 20.52

15.03 22.55 18.78 19.17 19.07 21.43

13.92 15.06 18.59 20.23 18.68 22.11

13.40 14.16 17.14 17.24 18.70 23.03

13.35 17.34 14.70 18.60 17.33 20.74

10.28 21.87 20.79 19.55 22.22 21.74

16.01 21.24 18.29 18.52 20.42 18.88

10.78 21.37 18.18 17.87 17.96 22.61

19.58 16.19 17.90 19.92 18.69 21.26

11.40 15.10 17.84 17.10 18.93 19.14

9.99 18.88 15.19 17.80 18.97 20.83

28.35 16.81 14.24 18.01 20.05 18.78

18.60 18.13 14.66 19.52 19.12 20.39

28.39 14.95 16.07 15.55 18.71 20.94

16.87 17.80 16.75 17.50 17.35 18.69

23.06 17.45 18.43 17.73 19.03 20.02

13.75 14.33 15.95 18.20 18.61 20.45

31.77 16.11 17.70 17.88 17.75 21.02

13.43 16.77 15.99 16.92 19.14 19.65
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C.1.3 The Error of Imputation of NIPALS Method

The Proportion of Missing

---------------------------------------------------------

1% 5% 10% 15% 20% 25%

---------------------------------------------------------

62.78 58.39 63.42 58.73 62.26 61.73

70.61 49.83 59.30 58.42 54.37 58.39

47.15 75.29 57.86 71.28 56.76 58.55

63.54 47.91 56.85 67.17 56.66 57.32

58.16 57.52 55.28 55.87 62.53 55.27

50.31 55.53 60.00 60.91 55.35 67.11

56.68 57.70 66.71 57.25 59.75 60.31

60.31 55.81 57.54 55.76 57.88 55.27

85.19 63.89 67.50 55.63 56.36 59.66

57.32 62.04 63.43 61.12 57.08 56.36

55.52 51.54 56.62 58.40 58.76 59.99

84.04 59.80 61.34 58.84 61.48 67.44

44.77 45.01 61.38 63.55 63.48 60.06

57.72 64.65 62.00 60.74 54.93 63.22

88.28 60.71 61.63 64.72 61.38 66.01

86.93 67.36 56.70 60.06 68.07 59.58

67.75 50.01 64.55 68.22 61.27 58.69

51.67 64.64 58.50 66.36 57.76 60.62

60.41 70.96 57.38 74.21 62.64 57.01

33.07 66.43 62.89 61.52 54.78 64.80

68.64 87.80 83.77 77.62 71.67 70.78

76.51 97.79 71.71 79.74 80.94 77.41

70.86 74.47 69.21 74.72 78.48 75.21

61.28 61.52 73.21 78.00 73.88 73.32

54.33 70.14 76.21 70.57 73.83 82.71

78.20 81.44 72.87 74.39 78.89 73.47

91.96 60.87 80.39 77.37 81.19 80.12

52.92 79.93 69.19 64.32 76.63 83.84

42.31 78.38 71.38 76.08 74.66 76.15

67.01 78.98 72.94 72.59 79.75 77.45

69.47 67.39 65.21 65.55 65.77 66.77

37.84 65.90 77.34 63.95 73.71 66.80

62.53 75.45 63.15 69.53 69.69 70.57

59.45 64.81 78.85 72.97 65.23 69.16

63.87 78.98 59.83 69.12 68.70 69.61

55.82 66.90 70.37 63.39 69.31 71.93

63.58 75.03 72.36 64.97 67.66 69.24

72.61 70.04 73.50 75.29 62.24 68.78

92.89 74.88 66.67 64.06 66.94 68.56

82.52 68.91 71.96 69.64 73.21 66.42

77.19 55.96 63.01 55.71 59.84 57.42

72.37 57.75 56.78 57.93 55.08 53.79

51.41 62.87 58.27 56.53 65.70 60.40

50.97 69.52 61.34 52.45 58.23 64.94

64.00 48.28 63.63 60.99 57.26 59.06

115.41 49.11 54.00 54.94 55.49 58.67

37.38 55.40 51.26 58.03 63.15 64.58

39.70 54.07 56.47 68.04 63.47 62.75

54.74 62.57 53.85 51.56 63.47 60.09

58.37 51.48 55.61 55.67 61.20 58.06

57.88 66.60 48.15 59.31 55.97 56.05

31.72 65.07 50.86 60.11 56.96 58.69

51.64 55.93 61.47 61.25 54.21 55.39

49.17 42.26 60.23 60.71 59.32 58.22



127

57.87 66.12 54.35 55.01 53.14 59.14

64.09 50.66 61.65 59.47 53.13 53.43

65.25 57.77 52.98 54.24 57.38 60.69

37.95 60.01 58.71 54.48 57.07 53.12

65.88 52.41 58.72 53.99 51.37 52.81

61.36 52.91 62.34 52.64 58.74 54.72

61.60 76.64 74.50 93.56 82.85 90.08

105.29 90.05 75.40 79.83 84.51 88.67

84.95 80.06 86.10 83.89 88.19 96.45

75.09 76.09 84.87 85.29 90.19 92.72

102.98 85.38 79.87 77.55 81.69 86.93

97.60 107.17 87.55 85.06 93.59 88.09

83.30 78.18 86.15 85.62 80.38 92.85

58.55 86.10 72.86 90.92 85.91 90.25

89.37 89.29 82.81 95.44 81.05 85.64

55.48 90.50 87.02 81.07 89.91 79.17

59.48 48.54 56.33 61.93 49.36 54.43

39.88 52.05 50.49 48.35 57.69 51.76

52.17 54.23 51.01 51.09 55.25 51.46

33.45 59.96 49.83 48.67 57.55 54.03

30.04 56.92 49.23 54.28 52.15 49.76

42.63 52.87 52.64 49.47 52.06 43.95

76.75 43.59 47.81 55.50 54.45 52.58

63.60 51.87 49.43 49.73 49.79 49.76

43.50 75.32 43.80 47.47 52.14 50.74

34.39 63.96 48.38 46.89 49.52 49.07

69.40 61.25 58.90 54.59 59.19 61.91

59.87 61.53 53.41 62.60 60.77 57.80

79.48 70.28 54.40 62.34 59.52 59.89

60.95 61.79 61.13 59.05 56.73 60.37

69.38 48.33 60.42 52.48 60.11 60.83

59.68 57.16 53.41 62.61 53.54 60.67

27.50 70.45 67.18 61.89 60.22 61.85

68.37 56.11 59.65 61.15 61.84 58.32

30.26 64.36 62.51 61.56 57.41 64.87

61.45 64.23 65.55 55.15 57.54 59.57

49.45 46.81 59.46 59.53 60.39 57.89

41.24 50.40 50.43 53.85 57.13 58.83

86.83 58.55 46.20 62.79 60.67 56.38

61.52 60.14 51.24 54.43 58.24 59.86

73.18 52.79 58.57 54.92 58.01 60.74

56.68 58.04 62.16 53.44 53.60 56.31

78.84 64.65 55.66 52.97 55.65 58.93

59.35 53.59 48.14 55.03 56.03 58.23

73.16 58.81 55.81 58.73 51.49 60.22

49.34 59.61 57.29 55.57 55.79 58.97

C.1.4 The Error of Imputation of IMLS-1 Method

The Proportion of Missing

---------------------------------------------------------

1% 5% 10% 15% 20% 25%

---------------------------------------------------------

62.45 58.57 63.38 59.04 62.26 61.78

70.55 49.89 59.45 58.38 54.27 58.59

47.06 75.19 57.79 71.42 56.81 58.71

63.62 47.96 57.00 67.19 56.78 57.78

58.15 57.69 55.38 55.96 62.70 55.60

50.34 55.69 60.09 61.10 55.52 67.12

56.45 58.14 66.85 57.43 59.93 60.52
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60.53 55.98 57.41 55.87 57.78 55.16

84.90 63.81 67.71 55.85 56.42 59.93

57.37 62.21 63.41 61.28 56.97 56.58

55.57 51.62 56.69 58.44 58.61 60.12

83.94 59.92 61.26 58.81 61.56 67.38

44.60 44.96 61.47 63.56 63.57 60.10

57.48 64.72 62.06 60.83 54.92 63.18

88.30 60.67 61.62 64.68 61.32 66.04

87.17 67.47 56.82 60.15 68.08 59.63

67.64 50.06 64.59 68.23 61.23 58.72

51.70 64.72 58.52 66.39 57.69 60.68

60.54 70.95 57.44 74.21 62.58 57.03

33.23 66.52 62.89 61.48 54.87 64.90

66.89 87.50 84.64 78.37 72.16 70.54

79.29 97.59 72.06 79.85 80.73 77.68

69.81 73.76 68.86 75.12 78.69 74.27

60.61 61.95 73.18 78.26 74.31 73.73

56.52 69.54 76.46 70.82 74.49 83.94

77.67 82.63 73.25 74.44 79.49 74.74

93.30 60.96 80.19 77.42 81.98 80.74

54.56 79.94 70.60 64.85 75.20 84.24

42.68 79.66 71.90 76.36 75.69 75.89

70.19 79.82 73.20 73.21 81.69 77.67

69.67 67.36 65.22 65.51 65.21 66.59

37.92 65.85 77.33 63.93 73.44 66.82

62.71 75.64 63.24 69.75 69.78 70.11

59.38 64.84 78.89 72.94 65.28 69.44

63.82 79.07 59.89 69.16 68.88 69.75

56.02 67.06 70.52 63.34 69.00 71.89

63.75 75.07 72.47 64.97 67.63 69.54

72.78 70.10 73.58 75.18 62.28 68.56

92.90 75.13 66.79 64.18 67.12 68.56

82.72 69.02 71.98 69.07 73.36 66.29

76.88 55.93 62.99 55.67 59.66 57.32

72.42 57.66 56.78 57.75 54.96 53.75

51.23 62.74 58.26 56.56 65.46 60.32

50.80 69.41 61.33 52.25 58.62 64.77

63.52 48.32 63.53 60.98 57.25 59.16

115.05 49.08 53.90 54.76 55.36 58.77

37.30 55.33 51.22 57.92 63.32 64.45

39.56 54.03 56.54 68.05 63.25 62.66

54.54 62.53 53.84 51.35 63.45 59.95

58.34 51.42 55.55 55.59 61.20 58.01

57.99 66.62 48.04 59.28 55.97 56.05

31.55 65.16 50.77 60.06 57.03 58.66

51.79 55.96 61.48 61.20 54.20 55.36

49.15 42.27 60.19 60.68 59.32 58.18

57.97 66.19 54.42 55.03 53.08 59.11

64.11 50.64 61.68 59.47 53.11 53.37

65.20 57.81 52.92 54.25 57.36 60.59

38.00 59.97 58.71 54.36 57.22 53.06

65.75 52.38 58.75 53.96 51.29 52.84

61.43 52.89 62.40 52.64 58.71 54.70

58.34 73.78 73.09 93.58 80.12 87.34

107.46 91.83 75.08 78.29 84.35 85.36

84.29 80.80 84.77 91.12 87.91 96.24

75.93 74.60 97.05 84.34 89.74 92.34

101.03 82.87 80.23 80.60 82.75 86.15

95.89 106.85 87.18 84.92 93.20 88.24

82.40 78.80 85.33 84.93 81.60 92.61

49.58 82.10 77.85 89.87 84.78 86.07
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91.40 90.47 88.12 94.07 84.19 89.51

54.63 88.19 86.36 80.67 89.01 78.88

59.39 48.56 56.28 61.92 49.43 54.44

39.87 52.03 50.52 48.36 57.67 51.85

52.17 54.25 51.03 51.24 55.29 51.35

33.48 59.93 49.83 48.65 57.61 53.98

30.04 56.94 49.24 54.31 52.17 49.79

42.61 52.95 52.59 49.55 51.99 43.99

76.95 43.59 47.83 55.41 54.42 52.67

63.70 51.96 49.47 49.72 49.81 49.86

43.53 75.39 43.82 47.52 52.24 50.67

34.55 64.05 48.43 46.97 49.42 49.08

69.54 61.28 58.90 54.71 59.14 61.94

59.81 61.59 54.16 62.59 60.77 57.97

79.49 70.40 54.41 62.54 59.53 60.01

61.00 61.77 61.17 59.09 56.80 60.39

69.41 48.26 60.35 52.54 60.10 60.60

59.72 57.18 53.50 62.68 53.56 60.79

27.55 70.46 67.24 61.98 60.21 61.86

68.31 56.07 59.67 61.24 61.86 58.48

30.23 64.40 62.53 61.71 57.46 64.86

61.43 64.28 65.64 55.24 57.54 59.58

49.37 46.80 59.54 59.56 60.49 57.99

41.26 50.39 50.48 53.83 57.19 58.60

86.63 58.46 46.25 62.93 60.80 56.32

61.51 60.16 51.15 54.57 58.50 60.06

73.00 52.85 58.69 54.98 58.07 60.95

56.53 58.03 62.22 53.59 53.66 56.34

78.95 64.65 55.75 52.99 55.62 58.95

59.32 53.68 48.11 55.07 56.07 58.30

73.12 58.93 55.82 58.83 51.55 60.19

49.47 59.53 57.43 55.66 55.85 58.85

C.1.5 The Error of Imputation of IMLS-4 Method

The Proportion of Missing

---------------------------------------------------------

1% 5% 10% 15% 20% 25%

---------------------------------------------------------

18.29 14.07 17.07 17.01 16.62 17.95

14.74 11.15 12.61 16.34 13.58 17.27

8.88 20.37 15.35 18.56 18.09 17.71

10.19 11.88 16.33 15.20 14.45 19.54

10.51 13.95 13.32 15.88 17.76 18.02

19.11 19.51 15.49 16.23 15.04 20.75

30.24 16.32 15.58 15.43 16.45 16.58

16.05 13.20 15.27 15.39 19.94 16.74

27.05 14.19 16.78 14.63 17.56 19.05

11.51 17.49 15.68 16.74 16.18 16.75

6.67 10.66 12.63 12.54 13.89 15.17

14.77 12.03 16.72 12.40 13.79 18.30

8.51 8.09 11.77 16.05 15.42 15.17

15.99 14.12 12.72 13.69 13.96 15.32

17.64 12.75 13.97 14.86 14.50 17.13

9.51 15.67 13.45 11.98 16.25 15.38

15.73 10.79 12.96 17.10 14.11 15.67

8.81 14.58 14.22 15.71 13.21 16.38

17.71 13.94 12.23 15.09 14.36 14.90

4.96 11.71 13.57 14.63 12.41 15.69

18.13 16.63 18.68 25.24 21.44 22.18
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15.88 32.59 16.88 20.15 23.38 24.39

17.35 18.42 17.04 23.43 21.87 22.85

8.05 15.09 16.91 22.50 21.26 25.55

12.68 19.55 21.67 21.11 23.20 31.30

28.33 21.66 17.27 19.33 21.84 25.56

23.85 16.47 21.03 21.63 23.28 24.78

13.21 18.28 18.85 18.84 24.47 31.43

15.60 15.49 19.87 20.53 24.71 23.63

13.66 23.73 19.84 21.54 28.60 19.74

9.61 15.37 18.05 18.52 20.95 21.48

6.12 17.90 19.06 17.62 23.60 23.11

12.00 18.74 15.62 19.81 20.89 23.18

14.89 13.26 20.76 19.61 17.20 27.55

13.18 24.91 18.42 18.91 21.19 23.70

12.48 17.49 18.84 16.53 21.93 24.13

11.51 20.05 16.70 17.45 22.48 22.25

29.75 17.82 19.54 17.63 19.71 23.93

11.85 15.41 18.91 18.02 23.59 23.45

18.39 19.79 17.13 22.99 23.76 24.29

37.62 17.36 17.77 19.11 21.86 20.29

15.35 18.22 17.41 17.04 18.58 18.86

27.84 19.72 18.56 17.06 21.04 20.86

12.02 25.94 18.61 16.00 18.48 21.84

19.25 14.89 20.27 19.97 18.08 19.37

31.90 16.46 16.37 17.41 18.78 21.88

10.21 18.86 14.05 19.92 21.18 21.04

9.71 13.80 17.63 21.69 20.27 21.34

16.78 18.89 17.81 17.25 19.62 18.74

18.85 16.85 15.29 18.03 20.69 20.17

10.59 18.75 19.97 13.05 14.96 15.46

10.08 16.02 11.43 13.74 15.12 15.88

10.40 16.65 13.80 15.04 13.46 15.09

13.40 9.92 13.98 15.20 14.45 13.71

6.29 15.74 15.22 11.93 12.61 16.26

15.57 10.53 14.45 16.38 14.30 14.48

19.31 15.29 12.93 13.16 16.88 16.98

15.13 13.78 12.21 14.67 13.00 15.73

12.31 13.47 16.56 13.36 12.89 13.34

12.21 13.62 14.23 12.11 14.29 13.78

18.98 24.12 24.43 29.61 26.90 34.55

41.01 26.07 18.80 24.68 27.85 31.23

35.52 23.58 23.65 30.74 30.22 35.84

17.89 17.79 33.30 28.18 37.47 33.48

30.37 33.01 20.58 23.70 29.71 30.95

29.04 34.63 25.97 30.68 32.00 29.27

13.25 18.72 27.21 30.67 27.83 34.56

17.42 22.35 19.06 28.30 32.85 31.99

22.84 24.54 33.14 31.37 38.94 36.80

23.40 24.48 30.92 27.68 29.96 28.45

24.00 18.47 21.87 26.82 21.86 23.40

12.26 17.44 19.70 21.59 26.25 25.12

33.08 19.51 19.38 22.17 26.06 25.28

13.43 22.39 21.52 20.92 23.84 26.11

9.39 18.14 22.97 22.30 24.25 24.01

13.82 22.59 24.88 19.00 21.73 20.26

27.42 16.43 18.59 22.43 23.67 25.08

16.81 15.84 20.25 19.26 21.24 22.80

11.23 37.24 20.42 20.36 23.73 22.27

11.20 21.18 20.57 18.20 23.49 22.61

14.02 15.11 16.13 16.19 20.69 22.25

12.50 15.15 15.26 20.76 17.09 20.97
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17.00 22.46 19.04 20.37 18.88 20.92

13.40 15.25 18.90 20.35 18.77 22.01

12.99 14.06 17.33 17.27 19.07 22.74

12.79 17.61 14.71 18.61 17.37 21.57

10.52 21.85 20.56 19.03 22.13 21.91

16.28 20.99 18.01 19.49 20.57 20.10

10.64 20.80 18.22 18.57 17.43 22.52

19.46 15.45 17.94 19.81 21.06 21.92

11.88 14.99 17.62 17.39 19.13 19.02

9.98 18.72 15.15 17.76 18.98 20.44

29.27 16.88 14.45 18.08 25.73 18.95

18.91 18.10 14.76 19.65 19.53 22.28

27.29 14.79 16.02 15.19 18.93 21.35

16.82 18.00 16.52 17.35 17.27 18.59

24.63 17.52 19.11 17.68 18.83 19.75

14.14 13.78 16.12 18.15 18.69 20.26

31.45 16.57 17.60 17.64 17.49 21.00

14.34 16.60 15.76 16.80 19.13 19.50

C.1.6 The Error of Imputation of Mean Method

The Proportion of Missing

---------------------------------------------------------

1% 5% 10% 15% 20% 25%

---------------------------------------------------------

98.42 94.34 91.59 93.73 92.20 91.54

87.71 94.64 88.36 92.22 91.35 91.13

92.37 85.23 90.84 90.50 88.04 91.30

85.86 90.65 96.85 89.10 95.92 91.99

80.50 92.47 92.28 95.23 92.43 94.16

95.27 85.30 90.52 92.41 94.45 92.08

93.16 98.51 94.14 92.78 92.00 90.87

104.19 92.26 92.07 93.83 94.52 92.16

85.51 93.52 91.45 90.93 90.25 92.07

88.94 89.60 93.44 92.27 92.48 88.46

86.42 96.27 91.22 94.87 90.27 93.16

96.62 83.08 91.16 90.52 90.28 89.14

90.92 94.81 90.42 87.47 89.03 91.52

98.56 90.70 91.18 96.89 90.08 92.78

102.86 91.52 91.51 90.15 91.70 89.61

77.78 92.44 94.82 89.33 89.72 90.79

115.56 95.64 87.07 91.19 90.55 88.98

85.53 91.33 93.70 92.24 90.07 91.02

108.35 88.65 88.77 88.61 91.45 91.63

96.60 92.05 90.89 95.46 94.49 90.51

71.00 79.50 74.85 77.88 74.06 77.02

68.59 95.35 78.22 79.67 80.78 79.51

93.36 87.58 83.73 78.00 78.18 79.24

76.96 80.25 77.44 75.85 77.76 75.61

73.86 87.85 80.06 76.04 77.67 76.72

61.89 83.28 78.79 76.10 76.85 78.71

57.92 85.52 79.96 80.20 78.93 75.97

80.03 77.23 76.51 76.49 78.70 76.31

79.49 80.25 72.11 78.58 77.81 77.02

73.65 78.00 80.58 78.43 80.86 76.71

85.35 90.15 87.76 88.97 88.52 91.38

104.71 91.41 84.83 87.47 84.91 87.07

96.17 85.86 85.64 84.20 85.12 84.29

89.90 87.30 85.22 83.54 83.38 87.16

76.18 90.24 90.05 87.40 84.52 85.47
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79.74 95.59 87.49 91.41 84.94 84.01

74.42 92.28 82.84 88.70 86.47 87.29

82.11 82.44 86.41 87.12 86.30 86.57

68.44 88.27 81.46 88.80 86.24 87.93

82.73 84.07 86.72 85.74 84.83 87.29

89.51 94.52 98.33 98.84 97.15 98.30

97.82 95.47 97.36 97.46 98.80 96.65

110.10 99.20 98.48 98.03 99.44 98.47

95.16 100.64 96.91 98.70 97.49 97.65

88.03 96.77 97.04 96.80 99.54 96.03

94.15 98.86 101.05 95.95 97.40 97.01

96.38 96.94 98.54 96.72 98.82 97.88

94.30 97.42 100.03 96.93 97.45 97.86

105.37 95.26 97.83 96.89 97.19 98.87

107.43 97.41 99.58 99.77 96.29 98.40

82.12 88.86 91.97 90.39 89.62 88.92

106.81 92.15 90.04 88.71 90.14 86.88

79.58 91.36 86.00 87.53 92.12 91.20

99.11 94.39 89.41 87.56 88.77 87.73

73.50 95.73 90.17 91.86 90.00 84.75

82.47 84.36 87.87 89.60 89.31 88.57

90.91 94.38 92.04 90.95 91.56 89.46

96.54 89.94 86.11 89.78 84.84 91.91

99.53 93.30 93.40 89.60 90.74 88.99

83.84 86.47 86.06 86.17 87.64 88.35

95.05 87.33 84.17 84.36 84.62 79.77

79.69 74.81 82.50 80.79 78.31 81.17

83.68 77.74 83.61 78.28 80.31 82.88

73.11 86.94 74.77 80.37 84.10 84.17

94.38 88.86 79.85 77.57 82.00 83.02

82.03 81.09 74.19 81.09 85.56 83.89

88.88 77.26 86.27 84.90 82.20 80.05

99.70 90.04 81.57 85.19 82.84 80.61

79.46 82.37 82.97 86.39 82.71 79.92

104.09 89.96 79.67 78.88 83.67 83.93

100.74 97.56 96.76 96.66 96.19 95.81

106.86 91.77 93.40 93.79 97.32 95.68

119.67 98.56 95.32 93.45 94.03 97.50

99.09 92.36 96.07 97.67 95.19 98.26

104.93 94.39 94.20 95.34 95.52 95.07

98.76 93.88 98.77 95.43 95.11 93.82

93.73 99.86 96.32 96.54 96.49 95.37

105.82 95.94 98.26 93.30 95.01 96.25

89.97 92.92 92.82 96.96 97.17 96.27

93.35 100.57 96.12 98.95 96.52 96.18

83.20 93.33 90.06 92.02 92.42 91.39

97.88 93.44 91.70 95.28 89.90 91.91

87.35 93.76 96.09 89.25 93.87 92.09

86.75 94.85 90.43 94.65 94.97 91.74

95.72 91.75 92.08 92.51 93.38 93.68

91.73 96.17 94.97 94.19 93.01 91.23

87.50 98.89 90.53 94.36 91.76 92.51

86.25 95.86 92.81 93.40 91.91 93.68

94.59 96.09 97.01 92.36 91.27 90.91

101.06 95.15 90.38 92.05 94.54 91.98

86.91 99.89 91.59 94.24 93.68 91.48

92.64 95.77 92.84 93.43 96.31 91.33

99.30 94.86 92.33 93.89 92.35 95.49

92.60 93.36 95.58 93.48 91.53 93.88

102.35 96.42 92.50 95.80 92.40 92.38

92.89 91.37 93.95 90.77 92.87 92.32
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100.51 89.11 93.87 92.27 94.10 92.80

75.66 97.82 95.35 91.65 96.89 92.66

82.43 94.73 93.31 93.13 92.34 93.28

95.11 90.49 90.66 95.26 94.79 94.44

C.1.7 The Error of Imputation of N-ILS Method

The Proportion of Missing

---------------------------------------------------------

1% 5% 10% 15% 20% 25%

---------------------------------------------------------

14.86 8.94 10.13 8.20 9.46 11.21

6.00 6.21 8.81 7.50 7.38 3598.15

8.55 11.80 10.55 10.15 9.35 9.61

7.33 7.04 8.51 10.91 8.77 10.83

7.26 9.15 8.26 9.05 10.39 10.05

17.53 12.28 8.43 9.08 8.57 11.62

12.79 7.45 8.80 9.44 9.52 9.62

7.15 7.53 8.98 8.50 11.01 2037.53

16.19 8.19 9.61 7.85 8.89 63266.52

9.22 10.84 9.21 9.41 8.54 9.41

4.98 6.06 7.56 6.41 7.28 7.27

11.96 5.61 8.86 6.92 6.19 8.02

3.70 5.91 5.59 9.25 7.87 7.19

14.26 7.77 8.46 6.99 6.87 7.64

8.90 6.92 6.34 7.29 7.23 7.69

7.94 8.84 7.07 7.75 7.14 7.42

6.78 4.78 5.83 9.28 7.27 4854.48

8.36 7.10 7.18 8.23 7.11 8.31

8.51 6.35 5.94 6.59 8.93 8.11

6.58 7.62 6.29 9.01 7.25 8.65

7.14 7.19 7.54 7.35 8.57 7390.58

4.95 8.59 7.72 6.96 7.48 8.06

6.92 5.95 5.83 7.72 9.58 9.55

5.18 4.59 6.38 7.88 7.31 21411.86

5.22 8.06 8.46 6.74 7.06 9.21

8.81 8.98 6.59 6.79 6.93 6852.42

10.36 7.58 7.78 7.41 7.94 8.37

4.12 9.63 6.09 5.77 7.94 9.59

2.91 6.42 8.91 6.91 7.29 9.99

3.62 11.34 7.05 8.15 7.62 7.79

10.03 8.04 8.30 9.14 9.42 13.11

6.20 8.63 9.12 9.63 8.37 7306.50

3.93 9.45 7.75 7.39 8.90 672.81

6.34 7.56 9.29 7.89 7.42 17310.95

8.51 10.22 9.94 8.98 9.56 9.84

5.94 10.45 8.30 8.13 8.42 12.73

9.28 11.81 8.53 7.58 9.07 9.00

9.31 9.91 9.53 8.11 9.15 10.36

5.25 9.44 8.57 8.18 9.19 9.14

9.87 11.11 8.00 9.85 9.84 10.07

8.97 8.65 7.91 10.04 8.46 10.04

6.34 8.26 7.14 9.69 8.90 8.89

11.76 7.79 7.07 8.12 9.44 9.89

9.19 10.78 7.43 7.65 10.10 9.72

9.36 7.45 9.96 8.92 8.50 8.74

8.10 7.88 8.20 7.98 9.81 11.30

2.92 8.53 7.76 8.88 8.86 10.20

4.73 5.66 7.77 11.24 9.92 2746.32
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9.62 9.84 9.62 8.14 8.27 1438.52

9.18 7.14 7.26 8.68 7.82 8.53

7.41 10.02 6.66 8.79 6.86 8.46

5.85 9.48 7.33 7.00 7.81 11691.34

4.29 9.02 7.61 9.03 7.16 7.65

5.63 6.12 8.88 8.31 8.27 8.36

6.43 8.63 8.62 7.68 7.47 7.87

6.67 6.11 8.38 8.41 7.93 7.92

3.43 5.41 7.78 7.07 8.09 8.99

8.32 8.10 6.82 7.45 7.36 8.15

4.76 5.94 9.26 7.83 6.96 7.31

7.27 7.83 7.21 7.00 7.29 7.50

6.44 6.17 6.69 6.00 7.50 9.19

10.35 6.35 5.37 6.47 6.42 6.71

7.99 7.45 4.88 6.15 6.17 7.48

5.34 3.79 6.61 5.00 7.14 6.95

11.73 6.17 6.29 4.99 6.36 1309.46

8.17 10.60 6.21 6.09 6.62 7.23

3.99 4.49 8.34 5.45 5.01 7.38

3.00 4.27 5.51 7.61 8.13 6.41

3.50 6.84 7.23 6.64 5.78 7.81

3.29 5.94 6.26 5.20 7.39 2374.65

3.59 7.63 8.65 10.70 8.02 10.41

5.80 9.10 7.35 8.53 13.49 462.32

21.62 9.38 7.53 7.69 9.33 12.43

4.37 9.49 7.54 7.82 9.11 10.71

3.73 8.75 11.42 8.46 9.52 10148.28

4.91 8.93 8.86 9.05 9.79 10.17

12.90 6.54 8.02 8.91 10.21 8.72

6.08 8.03 9.65 7.31 7.92 10.20

5.87 11.54 6.18 7.17 29912.83 10.23

4.12 8.58 9.74 7.91 10.57 23598.24

8.22 6.08 6.81 4.76 6.89 6.74

4.17 6.52 5.57 8.12 6.18 7.01

7.42 8.13 5.85 5.38 7.16 7.39

3.19 5.22 5.53 6.33 5.82 7.17

6.94 6.17 6.23 6.72 5.79 7.05

7.79 7.01 6.26 6.96 6.77 7.35

2.52 7.27 6.48 6.98 6.97 7.88

8.00 5.70 5.12 5.87 5.81 6.79

2.71 10.27 7.40 5.79 10216.99 8.32

4.65 6.50 6.56 6.76 6.26 6.97

5.23 4.71 6.82 6.28 7.14 6.47

3.39 5.24 5.45 6.91 7.77 6.05

12.36 6.89 6.08 6.76 7.27 8.16

7.88 6.51 5.47 7.56 7.36 7.57

11.46 5.26 6.69 6.34 6.20 7.02

6.06 5.80 6.29 5.99 6.52 6.82

6.60 6.19 7.00 6.53 6.60 7.49

4.50 5.95 6.17 5.57 6.99 6.66

8.04 6.91 5.50 6.57 6.45 7.58

9.75 5.48 4.55 6.42 7.43 7.30

C.1.8 The Error of Imputation of N-IMLS Method

The Proportion of Missing

---------------------------------------------------------

1% 5% 10% 15% 20% 25%

---------------------------------------------------------

14.84 8.95 10.13 8.20 9.46 11.04
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5.99 6.21 8.78 7.47 7.39 10.26

8.56 11.79 10.55 10.14 9.35 9.59

7.34 7.02 8.50 10.85 8.77 10.79

7.27 9.14 8.25 9.01 10.37 10.02

17.52 12.27 8.43 9.06 8.54 10.73

12.76 7.45 8.78 9.41 9.46 9.60

7.13 7.52 8.96 8.48 11.00 9.91

16.18 8.19 9.58 7.83 8.90 11.00

9.16 10.83 9.21 9.40 8.52 9.36

4.98 6.03 7.55 6.41 7.27 7.24

11.94 5.59 8.87 6.90 6.18 8.04

3.70 5.91 5.59 9.25 7.84 7.18

14.21 7.76 8.45 7.00 6.86 7.62

8.91 6.93 6.34 7.30 7.25 7.67

7.92 8.84 7.07 7.74 7.14 7.43

6.76 4.78 5.83 9.27 7.28 6.98

8.33 7.12 7.18 8.22 7.14 8.25

8.52 6.39 5.94 6.55 8.92 8.08

6.58 7.61 6.30 9.02 7.27 8.61

7.14 7.21 7.52 7.37 8.55 8.39

4.97 8.60 7.73 6.97 7.44 8.03

6.87 5.93 5.87 7.74 9.57 9.55

5.18 4.59 6.37 7.86 7.29 10.93

5.25 8.06 8.44 6.73 7.04 9.20

8.82 8.98 6.58 6.79 6.91 8.88

10.35 7.55 7.77 7.41 7.92 8.36

4.18 9.62 6.08 5.78 7.93 9.55

2.92 6.42 8.91 6.92 7.29 10.14

3.63 11.32 7.05 8.15 7.76 7.77

9.98 8.04 8.29 9.13 9.42 12.62

6.20 8.62 9.12 9.61 8.40 9.70

3.94 9.43 7.75 7.38 8.87 8.99

6.32 7.57 9.27 7.89 7.41 11.11

8.50 10.20 9.92 8.96 9.64 9.81

5.94 10.43 8.29 8.13 8.40 13.26

9.26 11.80 8.51 7.58 9.07 8.96

9.31 9.90 9.48 8.08 9.16 10.31

5.27 9.43 8.57 8.18 9.18 9.18

9.88 11.11 7.98 9.85 9.72 10.00

8.96 8.64 7.89 10.03 8.45 10.01

6.32 8.25 7.10 9.69 8.89 8.88

11.73 7.81 7.08 8.12 9.36 9.89

9.17 10.78 7.42 7.65 10.08 9.69

9.38 7.43 9.95 8.93 8.47 8.72

8.12 7.88 8.17 7.98 9.83 11.24

2.91 8.50 7.79 8.86 8.86 10.03

4.74 5.65 7.76 11.17 9.92 9.76

9.64 9.85 9.59 8.14 8.27 8.88

9.19 7.14 7.25 8.69 7.79 8.57

7.43 10.03 6.67 8.78 6.85 8.39

5.86 9.48 7.34 6.98 7.79 8.10

4.29 9.00 7.60 9.02 7.17 7.63

5.63 6.11 8.88 8.30 8.26 8.31

6.43 8.61 8.62 7.69 7.47 7.87

6.66 6.10 8.36 8.40 7.94 7.89

3.45 5.42 7.81 7.07 8.07 9.02

8.31 8.11 6.82 7.44 7.33 8.13

4.76 5.95 9.26 7.84 6.95 7.31

7.27 7.84 7.17 6.98 7.27 7.49

6.43 6.17 6.69 5.97 7.51 8.30

10.35 6.35 5.35 6.45 6.41 6.73
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7.99 7.42 4.90 6.17 6.20 7.47

5.32 3.78 6.61 5.00 7.13 6.94

11.72 6.17 6.30 4.97 6.34 7.80

8.15 10.63 6.20 6.10 6.64 7.25

3.98 4.49 8.32 5.45 4.97 7.35

3.00 4.26 5.51 7.58 8.03 6.38

3.50 6.82 7.08 6.62 5.78 7.79

3.29 5.93 6.25 5.20 7.38 11.98

3.58 7.62 8.68 10.67 8.03 10.35

5.78 9.08 7.34 8.50 13.46 11.99

21.68 9.39 7.54 7.65 9.32 12.41

4.40 9.49 7.55 7.79 9.07 10.61

3.71 8.76 11.37 8.45 9.58 8.57

4.89 8.89 8.87 9.06 9.73 10.10

12.86 6.53 8.03 8.90 10.18 8.74

6.06 8.01 9.65 7.29 7.91 9.75

5.82 11.55 6.17 7.15 10.26 10.17

4.11 8.59 9.73 7.89 10.54 9.17

8.18 6.08 6.79 4.76 6.90 6.73

4.16 6.52 5.57 8.11 6.16 6.98

7.40 8.12 5.85 5.36 7.16 7.36

3.18 5.22 5.52 6.32 5.81 7.17

6.96 6.17 6.22 6.70 5.78 7.01

7.82 6.99 6.27 6.94 6.81 7.32

2.52 7.25 6.48 6.98 6.94 7.89

8.02 5.68 5.13 5.86 5.81 6.77

2.71 10.24 7.39 5.78 6.33 7.96

4.64 6.49 6.54 6.75 6.25 6.87

5.24 4.71 6.81 6.25 7.10 6.45

3.37 5.23 5.44 6.89 7.77 6.05

12.35 6.89 6.07 6.76 7.26 8.15

7.86 6.50 5.47 7.55 7.33 7.58

11.46 5.25 6.67 6.34 6.17 7.00

6.06 5.80 6.27 5.98 6.53 6.80

6.58 6.19 7.00 6.52 6.59 7.46

4.51 5.96 6.17 5.56 6.99 6.64

8.01 6.90 5.50 6.56 6.45 7.58

9.75 5.48 4.55 6.42 7.43 7.28

C.1.9 The Error of Imputation of INI Method

The Proportion of Missing

---------------------------------------------------------

1% 5% 10% 15% 20% 25%

---------------------------------------------------------

14.66 8.04 10.42 8.91 9.41 10.87

5.88 6.07 9.01 10.99 7.14 10.68

8.99 12.28 9.87 9.45 9.89 9.00

6.47 7.03 8.95 9.01 9.10 11.02

7.61 8.73 7.86 9.53 10.48 10.63

16.39 12.34 8.39 9.58 8.63 12.91

13.14 6.78 8.71 9.51 9.84 9.79

6.94 7.30 8.88 8.54 11.22 9.80

16.48 8.49 10.46 8.83 9.74 10.78

9.42 11.95 9.30 9.67 8.84 9.99

4.96 5.03 7.24 6.32 7.36 7.69

11.89 5.74 8.85 6.33 5.84 8.11

3.89 6.01 5.52 8.24 7.29 7.06

12.99 7.15 8.14 7.50 6.55 8.29

8.90 6.97 6.19 7.35 6.59 8.57
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7.87 9.35 6.38 7.33 7.99 8.34

7.12 4.74 6.02 8.65 7.20 7.47

8.15 6.73 6.78 8.16 6.49 8.48

8.77 6.07 5.84 6.95 8.18 7.92

5.58 7.67 6.54 8.17 7.09 9.47

7.23 7.30 7.46 9.64 9.28 9.41

6.34 10.21 8.23 8.21 8.43 10.00

6.97 5.76 7.08 8.72 10.18 10.97

4.68 4.70 6.73 8.96 10.44 11.48

5.02 8.43 8.89 7.08 8.46 10.58

9.99 10.08 7.54 7.93 7.80 10.08

10.57 8.61 8.18 8.78 8.87 9.23

4.51 9.50 7.02 7.00 10.21 12.10

3.26 6.42 8.93 7.61 12.54 9.45

3.58 11.20 7.49 8.75 11.38 7.55

8.88 7.58 7.62 9.62 8.73 11.76

6.00 8.56 9.94 9.94 9.20 12.73

4.35 9.45 7.71 7.65 9.59 11.95

7.71 7.16 9.53 9.16 8.68 11.04

8.20 9.98 9.83 9.32 9.24 15.11

5.92 10.85 8.33 7.93 9.00 11.92

8.97 11.74 8.81 8.10 11.80 9.81

10.08 9.18 9.57 8.11 9.19 13.17

5.89 9.58 8.66 8.30 11.83 12.51

10.06 11.25 8.42 10.02 11.22 11.23

10.35 8.60 7.35 8.99 9.19 9.89

5.49 8.46 7.35 9.01 9.91 9.55

10.04 7.78 7.79 8.58 9.92 10.36

8.21 9.97 8.05 7.23 10.37 9.96

8.66 7.05 9.42 8.81 8.73 8.67

9.11 7.75 7.98 7.87 9.01 10.58

2.75 8.25 7.17 9.07 8.52 11.13

5.05 6.03 7.50 11.61 10.44 10.35

8.96 8.77 9.86 7.84 7.97 8.52

8.72 6.28 6.83 8.33 8.33 8.35

7.08 9.78 6.63 8.34 7.07 8.09

5.59 9.88 6.58 7.45 7.88 9.32

4.56 9.09 8.17 8.74 7.38 7.52

5.88 6.05 8.83 8.34 8.36 8.15

6.14 8.91 8.03 7.25 7.76 9.61

7.47 6.04 8.45 9.23 7.60 7.48

4.67 6.10 7.95 7.30 8.61 10.03

8.52 8.23 7.17 7.08 7.16 7.93

5.12 5.82 9.51 7.84 6.85 6.90

7.71 7.72 7.76 6.90 8.24 7.68

7.36 6.24 6.41 7.32 12.98 14.71

11.06 6.21 5.80 6.72 7.95 8.93

7.88 7.82 6.00 8.85 8.55 12.88

6.52 3.76 6.27 8.43 14.59 16.03

12.89 6.64 6.96 6.12 8.22 12.91

7.54 13.75 7.13 8.41 8.29 8.24

4.04 4.99 8.68 6.15 8.63 10.11

3.86 4.35 6.16 7.99 12.60 9.42

3.96 7.38 7.71 7.18 15.09 9.69

4.06 5.71 6.73 7.09 9.08 12.19

4.31 7.76 9.07 10.49 8.74 11.19

5.96 9.20 7.70 7.99 12.63 11.54

21.15 9.00 8.31 9.27 9.33 12.00

4.63 9.80 6.98 9.03 10.05 11.28

3.92 9.00 10.43 9.53 9.30 9.40

4.93 9.31 12.61 10.05 9.93 8.87
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12.04 7.18 7.41 8.66 10.12 10.03

6.47 7.38 8.88 7.00 10.96 9.66

5.78 13.60 7.36 7.13 11.52 9.45

4.52 9.27 8.34 7.10 10.68 10.30

9.39 6.07 6.79 5.38 7.55 8.48

6.13 6.20 6.07 8.94 7.34 8.37

7.35 8.92 6.72 6.25 9.35 7.94

3.44 7.46 6.50 7.84 7.56 9.43

7.16 6.00 6.97 7.40 7.14 11.83

8.21 7.36 6.90 7.26 6.98 8.99

2.82 8.19 8.92 8.71 8.25 8.91

7.67 5.69 5.23 6.97 7.74 8.51

3.16 12.67 7.83 6.86 6.60 11.05

9.74 6.66 6.71 8.94 7.75 9.77

5.11 4.96 6.57 6.33 7.46 6.24

3.47 5.24 5.49 6.86 7.26 7.20

11.49 6.50 6.05 6.52 7.57 7.90

6.94 6.43 5.19 7.00 7.16 7.70

11.00 6.03 6.20 6.51 6.90 6.97

5.71 5.74 6.36 5.83 6.62 7.67

9.19 6.10 6.50 6.51 6.84 7.15

3.90 5.89 6.41 5.90 6.44 7.16

8.01 7.04 5.56 6.42 6.49 7.32

9.43 5.64 4.89 6.75 6.88 7.58

C.1.10 The Error of Imputation of N-Mean Method

The Proportion of Missing

---------------------------------------------------------

1% 5% 10% 15% 20% 25%

---------------------------------------------------------

16.10 29.28 53.68 66.12 72.19 78.39

10.35 26.92 52.71 67.93 73.71 69.32

13.34 34.75 59.31 61.51 73.28 78.05

29.66 29.45 41.00 65.86 76.07 78.38

12.50 34.07 50.13 59.03 80.25 85.15

20.57 35.75 62.70 75.65 77.56 72.38

16.50 35.76 54.20 61.49 84.36 76.40

12.07 28.34 53.97 67.43 86.22 83.61

17.17 33.06 49.62 79.76 71.14 78.86

19.71 36.63 67.54 81.44 79.62 66.50

28.00 41.23 74.19 89.74 118.75 86.87

21.06 47.46 65.27 102.24 95.46 112.21

12.03 28.01 88.94 91.79 108.26 108.26

22.45 48.49 62.03 79.52 92.01 107.70

12.42 28.71 84.98 99.17 96.18 105.01

17.67 56.15 72.20 81.80 108.95 80.97

10.30 32.72 66.88 101.05 89.24 99.56

12.41 38.76 80.11 102.27 84.39 98.80

10.46 35.37 81.83 110.59 88.80 112.54

21.03 39.12 73.88 84.87 79.93 120.79

7.86 32.49 59.57 63.81 89.31 106.77

5.07 51.92 49.75 51.15 68.58 79.80

9.11 23.47 51.10 67.40 76.16 98.22

9.70 24.63 48.37 83.59 90.80 85.22

5.27 24.69 53.14 66.74 90.10 92.51

6.96 26.14 43.33 75.81 68.22 81.40

21.65 19.56 45.54 59.02 74.80 99.39

3.64 27.08 46.44 72.06 82.38 84.82

15.07 26.53 57.55 61.29 72.14 82.89
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5.54 26.64 57.58 72.51 83.36 85.59

13.40 35.67 62.24 91.89 78.21 91.08

10.42 33.77 83.78 74.85 85.86 90.84

5.08 35.33 52.70 86.66 94.18 93.44

7.46 29.13 67.48 67.77 89.07 88.33

29.09 37.57 44.92 75.41 86.90 85.04

9.75 33.80 70.71 73.62 80.56 98.06

7.10 52.87 57.12 84.36 98.88 90.45

21.83 38.96 69.71 88.83 91.59 85.96

15.80 39.15 74.82 68.35 85.16 113.52

10.78 40.74 68.91 72.40 98.58 93.21

11.78 25.98 76.15 77.79 86.22 82.98

7.76 34.88 57.38 73.27 74.38 87.74

28.07 29.38 58.89 70.04 97.22 82.51

22.72 31.90 73.51 72.84 93.85 88.11

12.91 39.42 71.11 81.78 84.36 95.37

10.10 33.91 48.53 72.65 77.87 101.84

15.74 37.94 49.54 72.16 83.31 85.60

8.69 31.47 65.46 80.54 89.08 86.65

21.51 35.98 55.28 73.39 93.39 84.79

18.44 30.63 53.05 74.90 88.71 95.22

16.05 41.88 67.53 93.41 99.20 122.92

9.79 48.67 65.05 91.08 96.79 104.05

9.68 38.47 79.39 95.91 95.04 159.45

17.27 35.45 83.38 124.24 108.01 109.93

16.20 45.04 63.04 86.71 93.93 113.72

10.72 40.39 54.21 104.30 84.13 105.77

17.45 46.21 68.12 118.74 122.20 127.07

21.86 28.78 78.50 102.38 110.44 131.45

17.35 64.08 73.17 82.91 118.14 91.11

21.75 40.73 71.54 99.28 102.92 124.55

6.95 27.57 55.29 77.23 91.51 93.13

10.39 45.69 63.81 78.87 76.50 78.95

16.66 22.05 47.47 59.79 85.70 90.00

5.23 30.86 61.55 87.55 95.40 95.20

12.90 30.72 63.10 71.57 90.17 90.55

8.38 29.02 50.19 64.80 89.43 96.66

6.21 55.22 57.47 66.42 80.60 84.50

5.42 31.90 52.64 87.17 78.68 110.76

19.04 18.32 65.73 83.52 80.96 77.20

12.91 44.50 74.90 77.13 73.63 89.67

6.91 32.13 49.43 66.45 63.65 75.75

8.56 24.64 57.27 58.25 80.06 75.65

25.66 30.75 35.91 64.64 71.10 75.02

19.71 51.34 51.97 54.68 84.95 84.85

11.55 36.43 41.83 82.32 83.26 76.23

18.00 28.17 56.61 59.83 66.59 69.79

15.04 28.40 44.97 83.01 92.24 79.02

18.47 29.12 46.93 73.28 74.60 82.68

7.41 35.62 50.36 58.75 87.10 79.36

6.92 29.02 42.65 62.69 78.94 94.96

10.25 30.17 70.13 81.12 106.40 107.50

19.39 32.84 72.26 107.39 107.12 115.14

7.26 25.08 59.24 118.23 107.43 110.01

3.70 29.15 66.68 100.52 108.55 110.72

26.11 41.61 70.79 74.81 108.75 123.74

13.65 34.01 78.68 110.21 94.02 106.36

7.42 51.19 86.16 101.77 95.19 109.00

12.52 37.14 77.21 119.19 115.00 104.79

35.31 37.85 75.96 98.75 108.80 122.42

12.48 27.23 54.58 100.69 94.49 105.17
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18.62 36.98 94.28 96.31 103.88 104.59

25.10 29.31 62.98 121.25 115.50 146.77

14.07 48.99 87.74 112.57 117.49 129.24

23.28 37.35 75.98 125.79 105.61 121.74

26.92 43.99 70.41 105.38 126.73 122.66

12.75 50.62 77.48 112.14 103.16 112.03

13.03 42.03 78.76 95.79 106.35 134.86

9.55 39.20 72.26 86.31 111.47 118.29

18.01 51.17 94.00 130.07 108.79 132.46

26.16 46.30 80.95 115.48 120.69 109.29

C.2 The Results of Experiments with Marketing

Database

C.2.1 Errors for Different Data Samples with 1% Missing

Error of Imputation (in %)

-------------------------------------------------

INI EM-Strauss EM-Schafer

-------------------------------------------------

35.06 245.42 889.56

57.94 32.84 35.14

34.71 128.90 1002.45

39.33 183.30 542.80

18.34 204.06 1235.70

241.97 1005.38 1905.87

43.37 202.68 370.86

22.58 737.89 235.80

165.25 1740.86 5656.27

18.31 8.57 121.01

65.26 51.89 21323767000.00

97.77 302.13 106.55

432.95 226.58 102.41

870.39 2027.37 100.00

87.17 74.41 1139386100.00

87.27 101.42 14722486.00

358.48 2151.72 15253037.00

65.50 201.41 100.00

76.23 52.13 1441.58

46.90 17.11 127.59

50.23 706.56 4912.40

16.39 371.91 3448.14

56.61 229.73 404.24

35.22 27.81 9.04

163.24 153.27 256.93

38.64 1.63 40.61

71.15 121.77 599.85

307.36 242.52 110.47

27.30 307.36 2440.13

4.90 18.02 185.28

54.04 127.86 1171.20

100.02 70.28 NaN

54.43 353.28 5046.96

57252.87 55878.16 374457.91

44.82 16.80 111.82

124.52 381.68 864.16
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34.90 119.91 70.29

4398.05 3573.77 4241.88

81.74 249.72 313.01

62.66 42.27 118.28

31.49 35.19 34.34

39.57 51.02 51.66

72.11 132.76 1078.70

1805.45 4203.04 61075.00

66.82 32.29 74.68

58.91 64.46 721.21

43.29 36.47 84.89

304.36 399.30 74.68

38.03 54.32 77.68

59.01 149.39 100.27
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