
 1

Semantic Inequivalence:

A Link Between Knowledge Discovery and Query

Optimisation

By Meera Khurana

Birkbeck College

University of London

For the Degree of

Master of Philosophy

 2

Declaration

I declare that the work presented in this thesis is my own.

 3

Abstract

This thesis investigates linking the output produced from data mining of

association rules from a database and the database management system’s query

optimiser, with the aim of supporting improved query optimisation. A novel

query optimisation technique, Semantic Inequivalence (SI), is presented based on

this idea.

The thesis critically reviews data mining of association rules, query processing

and optimisation, with emphasis on research into the areas that are most relevant

to the new idea that the thesis introduces.

SI is described and how it differs from other query processing techniques is

explained. This new concept is also exemplified using sample queries to aid

understanding, and it is shown how the output from the data mining of

association rules can be used in conjunction with query processing in a

complementary way.

An extensible optimiser is reviewed in terms of its structure and how SI can be

incorporated into it. The thesis goes on to formally define SI within the context

of an extensible query optimiser. Its input, processing and output are formally

defined.

An algorithm that implements SI is presented. The costs and savings of using it

within query processing are compared to the costs of not using it. Exceptional

and rare cases are also investigated from an empirical point of view. SI is also

discussed in detail within the context of the established Decomposition Algorithm

for query processing.

Empirical evidence of the usefulness of SI is analysed, by using the presented

algorithm for actual queries posed to real-world large databases with related

association rules. As well as empirical analysis with real data, SI is studied with

 4

synthetic data based on the normal distribution. In all situations the I/O costs of

using SI is compared to not using SI. Thus the most beneficial scenarios for

using SI are documented, as well as those situations that do not reap any

advantage.

 5

Table of Contents

Table of Contents ...5
List of Figures ..8
List of Tables ...9

Chapter 1 ..10
Introduction and Thesis Overview...10

1.1 A Dynamic and Collaborative Computing Environment.......................10
1.2 Motivation and Aims ...11
1.3 Example of Using an Association Rule with a Database Query............11
1.4 Contributions..12
1.5 Structure of the Thesis ...13

Chapter 2 ..16
Data Mining of Association Rules and Query Optimisation: Background......16

2.1 Introduction..16
2.2 Data Mining of Association Rules ...16
2.3 Rules and Functional Dependencies ..17
2.4 Data Mining Research and Scope for Use in Query Optimisation20
2.5 Query Processing and Optimisation...21
2.6 Semantic Query Optimisation..22
2.7 Data Mining Rules ...23
2.8 Extending the Query Optimiser ...24
2.9 Conclusion ...28

Chapter 3 ..29
Semantic Inequivalence ...29

3.1 Introduction..29
3.2 Definition of Semantic Inequivalence..30
3.3 How Semantic Inequivalence Differs from Syntactic Query
Optimisation...31
3.4 Using Semantic Inequivalance With Association Rules........................31

3.4.1 Semantic Inequivalence Example ...33
3.5 Demonstrating Semantic Inequivalence...34
3.6 Data Model Example..38
3.7 Data Mining Association Rules and Semantic Inequivalence Query
Examples ..40
3.8 Rules with 100% Confidence...43
3.9 Physical Access Paths: Rules and Partial Indexing46
3.10 Changes in the Confidence of Association Rules47
3.11 Conclusion ...48

Chapter 4 ..50
Semantic Inequivalence Algorithm..50

4.1 Introduction..50
4.2 Algorithm of Control Section for Semantic Inequivalence Region.......50

4.2.1 Notation used for Semantic Inequivalence Algorithm....................50
4.2.2 Query used for Semantic Inequivalence Algorithm........................53

 6

4.2.3 The Semantic Inequivalence Algorithm..54
4.3 Conclusion ...64

Chapter 5 ..65
Cost Comparison..65

5.1 Introduction..65
5.2 Overview of Semantic Inequivalence in Action66
5.3 Comparing Costs..69

5.3.1 With B-Tree Indexes ...69
5.3.2 B-tree (Non-Clustered) Indexes vs B+tree (Clustered) Indexes75
5.3.3 With Bitmap Indexes ..76

5.4 Exceptional Cases ..80
5.5 Conclusion ...81

Chapter 6 ..83
Real-world Examples ...83

6.1 Introduction..83
6.1.1 Motivation of Research Method..84

6.2 Background and Reasons for the Choices..85
6.2.1 Choice of Databases..85
6.2.2 Finding Association Rules ..87

6.3 Optimiser Plan Explanation ...88
6.4 Statistics Output Overview ..89
6.5 The Query Examples – First Data Set..90
6.6 The Query Examples – Second Data Set ...99
6.7 Results Analysis ...109
6.8 Conclusion ...112

Chapter 7 ..113
Semantic Inequivalence with Synthetic Data Distribution113

7.1 Introduction..113
7.2 Normal Distribution ...114
7.3 Query Examples ...115
7.4 Conclusion ...126

Chapter 8 ..128
Concluding Remarks and Further Research...128

8.1 Introduction..128
8.2 Research Summary ..128
8.3 Review of Aims and Accomplishments...130
8.4 Further Research ..131

References ..133
Appendix A1 ..141
Appendix A2 ..144
Appendix A3 ..145
Appendix A4 ..146

Chapter 6 Queries – First Data Set...147
Chapter 6 Queries – Second Data Set ..172
Chapter 7 Queries...204

Appendix A5 ..247
Processing the Query ...247
Overview of Decomposition ..247
The Decomposition Query Processing Algorithm and the Original Query
..249

 7

The Decomposition Query Processing Algorithm and the Semantically
Inequivalent Query...257

 8

List of Figures

Figure 2.1 Extensible Optimiser Structure 26

Figure 2.2 Region Architecture 27

Figure 3.1 Data Model 39

Figure 6.1 Cost Comparison With and Without SI 85

Figure 7.1 Normal Distribution 115

Figure 7.2 Improvement for Normally Distributed Data with SI 127

Figure A5.1 Incidence Matrix 250

 9

List of Tables

Table 3.1 Sample Data Values 35

Table 6.1 Categorisation of Query Processing with SI 84

Table 6.2 I/O Values Between Original and SI Queries 110

Table 7.1 Data Distributions – Set 1 116

Table 7.2 Data Distributions – Set 2 122

Table 7.3 Average I/O Improvement with SI and Normal Distribution 126

 10

Chapter 1

Introduction and Thesis Overview

1.1 A Dynamic and Collaborative Computing Environment

This thesis brings together two areas related to database management systems

that have so far been kept relatively distinct from each other. These are the areas

of query optimisation and data mining of association rules.

Techniques for query optimisation have been developed which exploit semantic

information about a database derived from integrity constraints [27]. The scope

for query optimisation to exploit association rules (or simply rules) has not been

pursued so fully. This thesis focuses on the exploitation of such rules in query

optimisation.

This thesis demonstrates the benefits that can be achieved when rules are used to

enhance query optimisation. The rules can be exploited by the database’s query

optimiser because they can contribute to reducing the response time, based on

comparing I/O, of queries that would otherwise take significantly longer to

execute. This is demonstrated in the thesis by using real-world databases and

queries, in addition to using synthetic data and queries. An independent costing

algorithm, based on breaking down a query, rather than I/O required, is also used

to show the benefits of the new approach.

 11

1.2 Motivation and Aims

The idea for this thesis originated from the fact that increasingly organisations

are implementing data warehouses using relational database management

technology [8]. Hence there is increasing demand for finding useful knowledge

from data warehouses that can provide otherwise unknown information about an

organisation, a particular industry or customer preferences. This can enhance the

competitive advantage of a company and influence decision making; this

explains the significant interest shown from industry in this area [8].

The motivation for bringing together the two aforesaid areas came from studying

the vast amount of research on efficient rule discovery techniques, and the

potential of how the resultant output can be used by a database management

system. This thesis views query optimisation as an area that can benefit from the

association rules that are output in order to improve query response time. This

has advantages for the user, the organisation and for current and previous

research in terms of faster response times, discovery of information and using the

results of data mining of association rules in novel ways for furthering research,

respectively.

1.3 Example of Using an Association Rule with a Database Query

If from the available association rules, we know that given the value of column

A, we can determine the value of column B, or:

if A = value_a then B = value_b (80% confidence)

If a query is:

SELECT DISTINCT B

FROM table1

 12

WHERE A = 'value_a'

This can be re-written to take this defined relationship into account, and only

retrieve what is now unknown, by taking the information that the associated rule

provides into account.

The rule answers 80% of the query. This is because the query optimiser can

know from the rule that 80% of the values of the requested column, B, which is

being retrieved has the value of value_b. Therefore it can eliminate this pre-

defined partial result from the query that is executed by modifying the query to

only select the rows where column B does not have the value value_b.

The query below demonstrates how the concepts introduced in the thesis propose

taking this known information from the association rule into account and using it

in the query optimisation strategy to partly answer the query. It does not execute

the whole query against the database, but only the subset or part that we do not

know from the defined association rule. The resulting query to process is:

SELECT DISTINCT B

FROM table1

WHERE A = 'value_a'

AND B <> 'value_b'

The resultant query takes the known information about the pertinent data

relationship into account, meaning that it only asks for information that is both

originally requested and not otherwise known.

1.4 Contributions

The thesis introduces a new query processing strategy, Semantic Inequivalence

(SI), that intentionally uses inequivalent queries as part of the transformation

process rather than previously researched query processing extensions [1, 24,

 13

41], which emphasise the importance of semantically equivalent query

transformations [36].

SI can use association rules with 100% or less than 100% confidence to help

answer queries in a number of different ways. Where association rules have less

that 100% confidence, the thesis looks at how they can be used in conjunction

with existing research to build upon and further query optimisation.

An algorithm that implements SI is presented. The algorithm is defined for use

with select-project queries excluding aggregates, group by and having clauses.

Empirical evidence of the usefulness of SI is established with analysis of the

results of using the algorithm with two real data sets and one synthetic data set.

1.5 Structure of the Thesis

The structure and layout of the thesis is now detailed.

Chapter 2 provides an overview of data mining for association rules, and

discusses the scope for its use in query optimisation. Query processing and

optimisation are outlined, as are various aspects of query processing research in

areas that are most relevant to SI.

Chapter 3 defines the new concept ‘Semantic Inequivalence’. It goes on to

discuss how SI differs from other techniques. A data model is then defined upon

which the example queries given throughout the thesis are based. Examples

within the chapter demonstrate how the output from data mining association

rules can be exploited in query processing. The use of SI with rules with 100% or

less than 100% confidence is discussed.

Chapter 4 presents a detailed specification of the SI algorithm. The input,

processing and output are formally defined. The resulting optimiser is hereafter

referred to as the SI algorithm.

 14

Chapter 5 looks at the cost of using SI because for SI to be a useful query

processing technique, it should be able to reduce the cost of answering queries in

some definable situations. The costs of using SI are compared to the costs of not

using it. Exceptional and rare cases are also looked at. For the purpose of

demonstrating the effects of applying the SI algorithm on query processing cost,

the cost of answering queries in their original form is compared with the cost of

using the corresponding SI queries. This is analysed in order to identify the

situations where SI adds the greatest advantage.

Chapter 6 focuses on empirical evidence of the usefulness of SI, by looking at

using the SI algorithm for real-world queries with two real large databases.

Association rules are found from the databases that are relevant to the queries

executed. This provides details on the usefulness of SI by posing actual queries

against large independent databases. The reasons for choosing two distinct real-

world databases are given and the cost outputs that the query optimiser produces

for the original and SI transformed queries are compared.

Chapter 7 focuses on synthetic data distribution – based on the normal

distribution - and uses the SI algorithm. Thus this algorithm is also evaluated in a

controlled environment. It demonstrates how various locations of the data mining

association rule antecedent on the distribution can affect the use of the said

algorithm in terms of query costing for original and transformed queries.

Chapter 8, the concluding chapter, presents a summary of what the thesis has

discussed and achieved. Additionally, it identifies potential areas for further

related research.

Appendix A1 defines terms and keywords that are used within the thesis.

Appendix A2 defines the different typefaces that are used within the thesis.

Appendix A3 defines the abbreviations that are used within the thesis.

 15

Appendix A4, lists all the output that the SI algorithm produces for each of the

queries used to exemplify SI in Chapters 6 and 7. It lists the optimiser’s chosen

query plans and I/O.

Appendix A5 discusses SI within the context of an independent query costing

algorithm - the established Decomposition Algorithm for query processing. This

autonomously demonstrates how SI can reduce the query processing cost in a

generic way, without using any specific query example.

 16

Chapter 2

Data Mining of Association Rules and Query

Optimisation: Background

2.1 Introduction

This chapter provides an overview of the data mining of association rules and

looks at the main focus of previous research in this area. It discusses the current

research limitations and how the boundaries can be extended to improve the

usage of the potentially very valuable information that data mining of association

rules can produce for use in query optimisation. A clear distinction is made

between association rules, functional dependencies and integrity constraints. This

is followed by a discussion of the query optimisation process and existing work

on semantic query optimisation. Finally an approach for the exploitation of data

mining rules within an extensible query optimiser is introduced.

2.2 Data Mining of Association Rules

A large volume of knowledge that may exist can be discovered from a database

[20]. There are ‘intelligent’ ways to associate a query with the discoverable

database knowledge [20]. Interest from industry in this area is due to the fact that

data mining may result in knowledge that can be of vital importance for a

company [8]. Some useful semantic data patterns that exist in a database are

simply not known [16]. If they were known they may have been implemented as

 17

database integrity constraints. This is however unnecessary if they do not need to

hold true, but simply reflect the current state of the data held in the database.

Data Mining of Association Rules can be defined as a process for discovering

association rules from a large database – it is also known as knowledge discovery

[28].

(Unless otherwise stated, the term data mining when used throughout the thesis

refers to data mining of association rules).

2.3 Rules and Functional Dependencies

A rule is not necessarily the same as a functional dependency.

A functional dependency states that the value of an attribute (or set of attributes)

is uniquely determined by the value of some other attribute (or set of attributes)

[20]. Hence, given the value of an attribute A, then the value of attribute B can be

determined with 100% confidence. If a rule has 100% confidence it may be

called a functional dependency. Otherwise it is an approximate dependency [20].

An approximate dependency is a functional dependency that almost holds. Some

rows can contain exceptions to the stated dependency. This is an alternative name

for an association rule [30].

Therefore association rules provide information on data patterns within the

database, plus the probability of them occurring.

Integrity constraints enforce the data values that are acceptable for certain

attributes. In this sense they are like a pre-defined rule. In contrast, association

rules do not protect the integrity of the data, or enforce particular data values but

rather characterise the current database environment [16].

 18

An association rule (or simply a rule) is of the form X Y, where X = {x1, x2,

…xn} and Y = {y1, y2,…ym} are sets of items with xi and yj being distinct items

for all i where 1 ≤ i ≤ n and all j where 1 ≤ j ≤ m. The database is considered as a

set of transactions, each transaction containing such items. Any association rule

has the form LHS (left-hand side) RHS (right-hand side), where LHS and

RHS are sets of items. The LHS is the antecedent of the rule. The RHS is the

consequent of the rule. The set (LHS ∪ RHS) is called an itemset. The meaning

of a rule is that a transaction that contains the antecedent set of items also

contains the consequent set.

In the context of a relational table, X and Y may correspond to values of columns

within the table. For example, a rule might be:

If column_X = value_X then column_Y = value_Y

This means that a row which has value_X for column_X also has value_Y for

column_Y.

For a rule to be of interest it should meet some interest criteria. Two measures for

this are support and confidence. Each itemset has these two associated statistics

[2, 30].

A rule’s support is the proportion of rows that contain both the rule’s antecedent

and the rule’s consequent [12]:

(LHS ∪ RHS) / total number of rows

A rule’s confidence is defined as the number of rows that contain both the rule’s

antecedent and the rule’s consequent divided by the number of rows that contain

the rule’s antecedent [12]:

(LHS ∪ RHS) / number of rows with LHS

 19

This is the probability that a row contains both an antecedent and consequent of

the rule, given that the antecedent occurs. The confidence statistic is the measure

of a rule’s strength.

The confidence and support statistics of a rule are important in the data mining

process because they are used as a way to filter rules so that only the most

prominent ones - those which have a minimum user-specified level of support

and confidence - are output [36]. This is in order to prevent the output of data

mining being unnecessarily or unmanageably large [36], given that output can be

vast. Therefore, data mining rules used by the query optimiser should be limited

to those that are most useful to the database usage pattern.

Association rules are used throughout the thesis with the format:

exp_X exp_Y (N% confidence)

Both exp_X and exp_Y are expressions.

An expression has the form:

<operand><operator><value>

Where:

<operand> is a column

<operator> is in { ‘=’, ‘<’, ‘>’, ‘<>’, ‘>=’, ‘<=’ }

<value> is a literal value

Columns that exist in the rule’s antecedent cannot also exist in the rule’s

consequent and vice versa.

 20

2.4 Data Mining Research and Scope for Use in Query

Optimisation

The data mining of association rules can be a very expensive task in terms of I/O,

processing power and time required [2, 30, 38]. Therefore, data mining research

has very much focused on the development of algorithms that can find rules that

exist in a very large DBMS as quickly and efficiently as possible. If a process is

too expensive it reduces its profitability and worthiness - the advantage of it

compared to its cost – thereby reducing its usefulness. This has given rise to

some prominent data mining algorithms, including Apriori [2, 42], AprioriTid

[2], Partition algorithms [30] and Hash based algorithms [34].

The aim of these algorithms is to find as efficiently as possible, predominantly by

minimising I/O cost, associations that exist between data items in a database that

meet the minimum support and confidence criteria. This can be approached by

breaking the task down into two problems [2]. The first problem is to find all sets

of items that have support above the user-declared minimum support. These are

referred to as large itemsets. This is subsequently used as the input to the second

part of the problem, which is to find all of the rules meeting the minimum

confidence level. This is solved by taking each large itemset generated in solving

the first problem, and for each large itemset, finding 2 subsets within the large

itemset, such that there is no overlap in the attributes in each.

Hence rules are derived from the large itemsets. Algorithms that are based on this

two-phased approach include Apriori, AprioriTid and Partition, plus hybrids or

variants of these. Regardless of the algorithm used, the output is a set of rules

meeting the minimum support and minimum confidence criteria.

The rules discovered could be actual business rules that are unknown, and hence

have not been explicitly specified. Alternatively, rather than unspecified business

rules, they may be what ‘just so happens’ to be the case in the environment

represented by the database.

 21

Even though data mining can discover potentially useful data attribute

relationships, hence information, and even increase knowledge of the database

subject’s environment, research has so far very much focused on algorithms to

produce the output rather than on how to use the output. This thesis proposes

using association rules to optimise user queries.

The discovery of unexpected association rules would be a useful deployment of

data mining applications [20]. This makes the need for automatic usage of the

output more important. An area of the database management system, which

could benefit from the otherwise unknown, or newly acquired knowledge of data

patterns or data relationships among attributes, is the query optimiser.

2.5 Query Processing and Optimisation

Query optimisation is the process of analysing a query, finding out what

resources are required to answer it and how the resources can be reduced to

answer the query more efficiently [45]. Query optimisation is often performed in

two phases: a logical optimisation phase and a physical optimisation phase [8].

During logical query optimisation, the order in which query operations are

performed is determined. The physical query optimisation then determines how

the operations can be most efficiently performed [20]. This depends on the way

the data is stored – its physical schema. Physical optimisation is performed with

respect to a cost model. This involves searching alternative access paths for

accessing the database objects. However, when the search space is very large,

considering all possible alternatives may not be feasible due to the time and

resources required. Hence a control strategy based on a heuristic approach may

be used [14].

 22

Modern optimisers are cost based, rather than syntax based. Input to the

optimiser includes the parsed query, often in Structured Query Language (SQL)

[32, 45], along with information on the database objects. This may include the

size of each table in the query, the indexes on the tables, if any, and the type of

each index, the columns used in the query, the density and distribution of the

indexed columns, join ordering, the use of internal temporary tables, available

data cache and the physical I/O sizes supported [45]. The list depends on the

sophistication of the optimiser’s costing algorithms.

The methods of executing a query are determined and the cost of each found. The

cheapest, most efficient method is selected by the optimiser to execute the query.

2.6 Semantic Query Optimisation

The area of semantic query optimisation (SQO) has been well researched [1, 27,

39, 40, 51]. This is where a query is transformed based on functional

dependencies known about the data [1]. SQO maintains the semantics or

meaning of the query – therefore it produces semantic equivalent queries only

[41]. A transformed query is equivalent to the original one if it gives the same

answer for every legal database state [4].

SQO is achieved by adding a constraint to a query based on a rule with 100%

confidence. The consequent of the rule is added as an additional predicate to the

query [41]. Hence SQO can only be used with functional dependencies and

cannot make use of approximate dependencies. Since the rules that SQO can use

must have 100% confidence, its usability is limited because of not being able to

use high confidence rules, such as those with 80% or 90% confidence levels. In

fact, SQO relies upon data constraints rather than the data values reflected in the

database state. Even association rules discovered with 100% confidence are not

sufficient for SQO – because they may not always be satisfied unless the data

values are explicitly constrained.

 23

Trigoni and Moody [47, 48] take a different approach to SQO, in that they look

at using association rules rather than functional dependencies. However they do

not discuss the probability of rules. This is important when transforming a query

since if the probability is not 100% the semantics will change. They therefore

assume the association rules always hold, hence effectively treating them as

functional dependencies. Additionally, [48] removes predicates from a query if

they are implied by other existing predicates. However, removing predicates

reduces the information supplied to the optimiser. This can reduce the query

paths that the optimiser considers, which may increase the cost of answering a

query.

2.7 Data Mining Rules

Data mining produces information regarding the relationships among data items

stored in a database [2]. Data mining can produce a large quantity of output [38].

Therefore, its output needs to be filtered to those rules that are most useful to the

applications or query profiles against the database. This requires local knowledge

of data usage as an input to the rule filtering process.

While the query optimiser tries to find the cheapest way to access data [32], it

does not currently have the option or availability of using of a rule page to help

process a query. The concept of a rule page is introduced in this thesis. It is a

page managed by the DBMS, which holds the most useful rules relevant to a

database’s querying patterns.

Just as database management systems have data pages, index pages, statistics

pages, etc. [45], rule pages are similarly used specifically for storing one type of

data: rules.

An example of a rule is:

 24

if age = 30 then residence = 'UK' (70% confidence)

This would be stored on a rule page rather than on part of the database’s data,

index or statistics pages. Section 3.9 provides an example of the contents of a

rule page.

Rules to be held on the rule page can be determined by a database administrator

with local knowledge of data usage. Filtering the rules is important to avoid

irrelevant rules from consuming space in the rule page. Alternatively, templates

can be used to describe the pattern of a useful rule [36], so that only those that

meet the template pattern are considered useful, or ‘interesting’ with respect to

the environment. Either way, the aim is to prevent too many rules, or ‘rule

overload’, some of which may not be useful to the environment. Having too

many ‘non-useful’ rules would compromise the usefulness of the concept as

more pages would be required for storing the ‘non-useful’ rules. This would

subsequently result in more I/O required to access the useful rules. The

information in a rule page may answer a query, or the query optimiser may have

a module for re-writing the query into a subset of the original query, taking into

account what is known from the rules. This can be used to answer a subset of the

original query. This results in a ‘narrower’ query to be answered by the DBMS’s

query processor.

2.8 Extending the Query Optimiser

For SI to be a new strategy for the optimisation process, it needs to be

incorporated into the query optimiser. To enable this, the DBMS’s optimiser

requires the flexibility of adding new optimisation strategies or techniques.

Optimiser extensibility refers to the adding of, or the ability to add, new query

processing strategies to the database management system’s optimiser [10, 31].

 25

The strategies are also known as query optimiser components [31]. This thesis

goes one step further from recent research in new query processing strategies

because it uses inequivalent queries as part of the transformation process rather

than previously researched extensions [1, 28, 46], which emphasise the

importance of semantically equivalent query transformations [14, 41].

SI is a new strategy in query optimisation. To study SI in more detail an

extensible optimiser based approach will be used. This means that the optimiser

has a structure that incorporates the flexibility for adding new strategies in

optimisation. This is achieved by its having a modular or component-based

architecture, where each module (also called a region) has a particular goal or

strategy in the query optimisation process.

Regions are effectively query transformations [31]. They take a query as input,

transform it using the region’s particular query transformation strategy, and

produce the transformed query as the region’s output.

Because each region has a particular strategy or goal, for a query optimisation

region this would mean transforming the input query into an output query that

has lower execution cost.

In an extensible optimiser, a new query optimisation strategy, such as SI, can be

added to the optimiser by adding a new region or module to the existing

structure. This region then needs to be integrated into the database management

system’s optimiser. This may be achieved by using a hierarchical control

structure between regions. Hence, the optimiser’s global control region (the

parent region) sends the query being processed to the child regions for

transformations until a final form of the query is produced for execution. The

hierarchical structure of an extensible optimiser is represented in Figure 2.1.

 26

control

region a region b region c

Figure 2.1 – Extensible Optimiser Structure

Using the modular, extensible approach, each region embodies a strategy for

achieving a particular goal in the query optimisation process. For example, there

may be a region to find the most efficient way of ordering the joining of tables in

a query. Another region may have a goal to find the best access strategy for each

table.

There is a parental or control region which is responsible for deciding which

region/s to send the query to for transformation and hence manipulation.

Therefore, SI processing can be incorporated by adding a region to an extensible

optimiser. The region can transform the query into an SI query, if considered

appropriate by the parent region.

The controlling, parent region decides which subordinate regions should be used

to transform a query. To enable this, each region needs to be defined

unambiguously for the parent to decide whether it is suitable to be used for a

query.

To facilitate this, the definition of a region should consist of the following:

1. A description of the set of possible input queries that the region can accept for

transformations.

2. The set of transformations that can be performed on the queries.

3. A goal that characterises the output query produced by the region. This is what

the region aims to achieve.

The concept of regionalised or modular optimisers provides a great deal of

flexibility because it enables new query optimisation processes to be added by

adding a region with an interface that the optimiser understands. This type of

 27

structure is ideal for adding SI to.

The architecture of a region, illustrated in Figure 2.2, has two parts:

1. A control (or implementation) and

2. An interface to the parent region in the hierarchy.

Interface to
parent

Control

Figure 2.2 – Region Architecture

The interface to the parent region is needed in order to communicate what type of

queries it can process. This is required to determine which types of queries can

be passed as input, and what the region’s goal or purpose of its existence is.

The interface informs the parent control about what the region can do and

whether it is suitable for the query. The parent uses this information to decide

which regions the input query should be passed through for manipulation.

The implementation of the region is the region’s control section. This is the

encapsulation of the region’s achieving its goal. It is the embodiment of the

region’s strategy and manipulation of the queries passed into it. The control does

the decision taking and transforming of the query. Hence, via the interface to the

parent, the region receives a query to transform. The region’s control will then

convert the query, as implementation dictates.

An extensible optimiser allows adding a region with the only requirement that

the interface can communicate with the parent. Therefore, adding a region causes

minimal disruption to the existing optimiser features embodied as other regions.

In summary, a region is essentially a query transformation. It has a control

 28

strategy for applying transformations and produces a transformed query as

output.

2.9 Conclusion

This chapter has given a brief overview of data mining of association rules and

outlined the main focus of research in this area. It has highlighted how the data

mining output can be a useful input to the database query optimisation process.

This is by taking the view that there are intelligent ways to associate a query with

the discoverable database knowledge [20] that are represented as association

rules.

For SI to be used as a component of query processing, there should be known

patterns or association rules between data items present in the database.

The information about data relationships may be viewed as a ‘gap’ in the input to

the query optimiser that can be filled by data mining output. It takes the view that

this can add value to the query optimisation procedure. By connecting these two

separately well-researched areas together we produce a query optimisation

opportunity believed to be highly valuable, as will be seen throughout the thesis.

The chapter distinguished semantic query optimisation, and its limitation

regarding usability. The concept of a rule page was also introduced and how

query optimiser extensibility is required for adding new query processing

techniques.

 29

Chapter 3

Semantic Inequivalence

3.1 Introduction

Chapter 3 defines SI, discusses its concepts, and demonstrates how SI can be

used with practical examples. A data model is set up which subsequent example

queries throughout the thesis are based upon.

The chapter goes on to discuss how the association rules that may be produced

from data mining, or any other source, can be used as an input to the SI process

and the potential gains that can be achieved by using the rules in this way. The

aim of SI bringing together data mining of association rules and query

optimisation is to achieve increased query selectivity resulting in more efficient

query processing possibilities. Instead of pursuing the overhead of repeatedly

requesting known information, SI endeavours to make use of the rules or patterns

known and defined about the data values, with the aim of reducing the cost of

answering the original query.

Following this, the chapter goes on to look at some of the different ways in

which SI can be used in conjunction with other query processing techniques,

such as partial indexing [37].

Lastly, changes in the confidence levels of association rules are reviewed,

followed by the chapter’s concluding remarks.

 30

3.2 Definition of Semantic Inequivalence

Definition:

Semantic Inequivalence (SI) is a process of transforming a query, Q, into

another query, Q', by taking known information about the relationships between

column values that are stored in the database into account.

Let Qr denote the result rows of query Q on relation r. The same obtains for Qr'.

Assume association rule, S, implies the existence of rows Qrs in the result rows

Qr.

SI transforms Q to Q' such that Qr = Qr' ∪ Qrs.

Explanation:

SI intentionally changes the meaning, or the semantics of the query Q, to only

request the unknown part of the query, Q', the rest being known and hence can be

answered from the database’s defined association rules.

The term Semantic Inequivalence is based on the idea of changing the meaning

of a database query, Q, to a subset of Q, represented by Q', which only inquires

for that part of the original query that is unknown from information (the

association rules) held about the column data values in the database. Therefore

the result of the query that is executed, Q', is a subset of the result of the original

query, Q. The rows that are not requested by Q' but are requested by Q is the

implicit information that is provided by the defined association rule, and hence

can be answered without additional data retrieval. Consequently, the semantics,

or the meaning of the query that is executed is different to that of the originally

requested query.

 31

3.3 How Semantic Inequivalence Differs from Syntactic Query

Optimisation

Syntactic query optimisation is based on transforming a query into another one,

which has the same result set as the original query but can be processed more

efficiently [25, 46]. The syntactical query optimisation algorithm takes as input a

query, Q, submitted by a user and aborts it if a contradiction is found, or

otherwise returns as output an equivalent query Q'', which produces the same

answer as Q. Syntactical query optimisation can only use 100% confidence rules

and not approximate dependencies.

This thesis goes one step further from previous research in new query processing

strategies, because it intentionally uses inequivalent queries as part of the

transformation process rather than previously researched query processing

extensions [1, 28, 46], which emphasise the importance of semantically

equivalent query transformations [14, 41].

SI can use association rules with 100% or less than 100% confidence to help

answer queries in a number of different ways. This is seen in the following

section.

3.4 Using Semantic Inequivalance With Association Rules

This section looks at some ways in which SI can be used in conjunction with

database association rules.

Firstly, if a rule has 100% confidence it may be used to completely answer a

query. This may be referred to as rule covering. For rule covered queries, neither

 32

the data pages nor the index pages need to be accessed. For this to be the case,

both, the select list of the query and the column predicate in the where clause

(assuming queries written in SQL) need to be in the rule as the consequent and

antecedent, respectively. This is discussed further in Section 3.10.

Similarly, yet conversely, a 100% confidence rule may also be used to return a

null result set very quickly. This would be the case where a contradiction is

found between the query and the rule, even where a rule does not cover the

query. This is known as incoherence detection [4], and can be a powerful

application of SI in terms of reducing the query processing costs.

Secondly, a rule, with either 100% or less than 100% confidence, can be used to

partially answer a query (where in the former case the rule does not cover the

query). The query can be re-written into an SI one that answers only the subset of

the original query that the rule does not answer. If a query has a very large partial

result set such that it takes a long time to execute, the result from the rule can be

returned first. This provides the user at least with a partial result to look at

immediately.

In yet a third way, rules can be used in conjunction with partial indexing [37].

Rather than index a whole table, partial indexes only index a portion of rows in a

table. That is, they only index those values that are not part of a large repeating

group. Repeating data values in columns is the sort of skew in the data that an

association rule would define. Hence the rules can replace the indexing of non-

indexed covered values. This helps performance [37] by reducing I/O and

reducing the object’s storage requirements by having smaller indexes since the

frequent or commonly occurring values are not repeatedly indexed. Otherwise

these would be included many times in the index – once per record occurrence.

This is complementary to SI because partial indexes have fairly extreme

selectivity involving non-repetitive values, and conversely association rules with

a significant level of support involve repetitive values. The use of SI with partial

indexing is complementary in that the query optimiser can use rules for the

highly repetitive values, and partial indexing for the less repetitive values. The

less repetitive values are those that would not be covered by a rule. Both

 33

techniques, SI and partial indexing, are based on a non-uniform data distribution,

or in other words a skewed data distribution.

By SI being able to use rules with less than 100% confidence, a major restriction

on situations where rules can be used is removed, or at least, reduced.

3.4.1 Semantic Inequivalence Example

This section looks at a sample query based on a set of tables reflecting a simple

database structure. SQL is used with select-project queries, excluding aggregates,

group by, having and order by clauses.

Database Structure:

table1 (A, B, C, D)

table2 (A, E, F, G)

table3 (E, H, I, J)

The letters A to J represent columns. The underlined columns are primary keys.

The columns A and E are foreign keys in tables table2 and table3, respectively.

Sample Query:

This is based on the simple relational database structure, and selecting some

columns across the tables requiring joins between them. The query optimiser has

no information other than what is provided by the query and the known database

structure.

A sample query to pick out information from the tables would be:

SELECT t1.B, t3.I

FROM table1 t1, table2 t2, table3 t3

WHERE t1.A = t2.A

AND t2.E = t3.E

 34

AND t1.A = value_a

Sample Query Explanation:

Looking at this SQL query, the variables defined are t1, t2 and t3. These

represent the ranges table1, table2 and table3, respectively. The qualification or

where clause is a Boolean function fn(table1 * table2 * table3) which is the

product of table1, table2 and table3. The output of the function fn(table1 *

table2 * table3) is applied to the function fn(A = value_a) = true. The columns

retrieved from the resulting table are B and I.

The proposal is for data mining output to be used to extend and hence modify the

sample query to take known column values into account as detailed in example

3.2. This may open up multiple methods for processing the query, with different

data access paths, having the goal of reducing the cost of the query’s execution.

3.5 Demonstrating Semantic Inequivalence

If from the available association rules, we know that given the value of column

A, we can determine the value of column B, or:

if A = value_a then B = value_b (80% confidence)

If a query, Q is:

SELECT DISTINCT B

FROM table1

WHERE A = value_a

This can be re-written to take this defined relationship into account, and only

retrieve what is now unknown, by taking the information that the associated rule

 35

provides into account.

To form the complete query result, the result set of the SI can be formed with a

union of the result set that is known from the rules.

The result set that is known from the rules is what is saved from being processed

unnecessarily through the query optimisation and data access and retrieval

processes.

The association rules give extra and maybe even new information on the

relationships between database attributes. For example, to say that column B in

table1 depends on the value of column A in table1 is the same as saying that

column A determines the value of column B.

Example 3.1:

Based on the above query, with the stated rule:

if A = value_a then B = value_b (80% confidence)

Let the following sample data values exist in table table1.

A B C D

value_a value_b value_c value_d

value_a value_b value_c2 value_d

value_a value_b value_c3 value_d

value_a value_b value_c3 value_d

value_a value_b value_c2 value_d

value_a value_b value_c1 value_d

value_a value_b value_c1 value_d

value_a value_b value_c1 value_d1

value_a value_b1 value_c2 value_d1

value_a value_b2 value_c value_d2

 Table 3.1 – Sample Data Values

 36

Using the query, Q:

SELECT DISTINCT B

FROM table1

WHERE A = value_a

The rule answers 80% of the query. This is because the query optimiser can

know from the rule that 80% of the requested column, B, which is being retrieved

has the value of value_b. Therefore it can eliminate this pre-defined partial result

from the query that is executed by modifying the query to only select the rows

where column B does not have the value value_b.

The query below demonstrates how SI proposes taking this known information

from the association rule into account and using it in the query optimisation

strategy to partly answer the query. It does not execute the whole query against

the database, but only the subset or part that we do not know from the defined

association rule. The reduction in data that is being requested can lead to

increased efficiency if less I/O is required to answer the query. This is discussed

in detail in Chapter 4. The resulting SI query is:

SELECT DISTINCT B

FROM table1

WHERE A = value_a

AND B <> value_b

This is a simple style example that provides a practical overview of the concept

of SI.

Example 3.2:

Based on the query defined in Section 3.6.1,

 37

Original query:

SELECT t1.B, t3.I

FROM table1 t1, table2 t2, table3 t3

WHERE t1.A = t2.A

AND t2.E = t3.E

AND t1.A = value_a

Applying SI to the original query, by taking what is known into account from the

example association rule:

if A = value_a then D = value_d (70% confidence)

then we have the following SI query:

SI Query:

SELECT t1.B, t3.I

FROM table1 t1, table2 t2, table3 t3

WHERE t1.A = t2.A

AND t2.E = t3.E

AND t1.A = value_a

AND t1.d = value_d

UNION

SELECT t1.B, t3.I

FROM table1 t1, table2 t2, table3 t3

WHERE t1.A = t2.A

AND t2.E = t3.E

AND t1.A = value_a

AND t1.d <> value_d

This new query may be particularly useful in determining results in a very large

database if there is an index on column D, or alternatively a composite index on

columns (A, D), (D, A) or (D, another_column). This transformation will be

 38

beneficial if selectivity of the query is increased by the possibility that more

access paths are made available. If the column, D, or columns A and D are

indexed, then selectivity should be increased by the query otherwise there would

be little benefit to having the index in the first place.

In this situation, syntactical query optimisation cannot be used because the rule

does not have 100% confidence. This effectively ‘wastes’ the opportunity to use

a highly confident rule that could improve query response time.

3.6 Data Model Example

The following data model example will be used throughout the thesis to

exemplify the SI process.

It is based on publishers of books and their associated relationships with authors,

titles, stores and customers.

A rectangle is used to indicate a table object.

An arrow indicates a one-many relationship between the objects it connects.

 39

author_id title_id publisher_id
title_id title publisher_name
 subject_type city
 publisher_id country
 price
 total_sold
 pub_date

author_id store_id store_id
surname order_no order_no
firstname title_id date
date_of_birth qty
sex total_spent
phone
address
city
country
postal_code manager_id store_id
eye_colour name store_name
hair_colour contact_no address

mobile city
 date_of_birth country
 sex postalcode
 contact
 manager_id
 no_of_staff

 customer_id
 date_of_birth

 sex
 address
 city
 country
 postalcode
 contact_no
 main_interest
 store_id

Figure 3.1 – Data Model

TitleAuthor

Authors

Managers

SalesDetails

Titles Publishers

Sales

Stores

Customers

 40

3.7 Data Mining Association Rules and Semantic Inequivalence

Query Examples

Here are examples of association rules that may result from a data mining

process executed on the above data model example instance that can be used as

input to the SI process. They were derived manually by inspection. These rules

serve as an example of the contents of a rule page.

if subject_type = 'cooking' then total_sold = 10000

(75% confidence)

if Stores.city = 'London' then Stores.country = 'UK'

(100% confidence)

if subject_type = 'Astronomy' then price = 29.95 (70%

confidence)

if title = 'Maths for beginners' then price = 15.00

(70% confidence)

if title = 'Maths for beginners' then total_sold =

100000 (75% confidence)

if qty = 5 then total_spent = 150 (80% confidence)

if eye_colour = 'brown' then hair_colour = 'brown'

(70% confidence)

if Customers.city = 'NY' then main_interest =

'Financial' (65% confidence)

if Customers.city = 'Paris' then main_interest =

'Fashion' (70% confidence)

 41

if store_name = 'The Bookshop' then no_of_staff = 6

(100% confidence)

As stated in Section 2.7, data mining can produce a large quantity of rules [38].

Hence filtering the rules to those that are most useful to the applications is

important to avoid wasting rule page space that would slow down the

optimisation process. For example, if it is known that all city attribute values are

unique in the database so that the country attribute is not needed in order to

determine the location, then the rules of the form:

if table.city = value then table.country = value

can be discarded.

Similarly, if there is no interest from the database users (no requirement for such

information via business applications or user queries), in personal attributes of

authors, then rules on their hair_colour and eye_colour, for example, may be

discarded.

Example 3.3:

The following example also shows how the output of the data mining process can

be useful for the SI process and additionally demonstrates how to reduce the cost

of query execution.

Assume we want to know the prices of books based on the subject ‘Astronomy’.

For this, we have a query, Q, with the following SQL:

Original Query:

SELECT DISTINCT price

FROM Titles

WHERE subject_type = 'Astronomy'

 42

Knowing that 70% of Astronomy books have a price of 29.95 based on the rule:

if subject_type = 'Astronomy' then price = 29.95 (70%

confidence)

we only need to ask for prices of Astronomy books where the price is not 29.95:

SELECT DISTINCT price

FROM Titles

WHERE subject_type = 'Astronomy'

AND price <> 29.95

This query requests 30% of the rows that have subject_type =

'Astronomy' rather than all of them since 70% are answered by the rule.

In the SI algorithm in Section 5.3, we will see that the actual predicate added

would be:

(price < 29.95 or price > 29.95)

Therefore, if there are 500 books with subject_type = 'Astronomy',

instead of accessing all 500 records, the SI query would access only 30% of the

500 records where subject_type = 'Astronomy', which is 150 records

compared to 500. This would require access to fewer rows than the original

query. If there is an index on just the price column, especially if it is a clustered,

B+ tree style index, or if there is a composite index on the (subject, price)

columns, or on (price, subject), then applying SI would be a useful

transformation, asking for only that part of the original query that is not

answerable from rules. The new query is efficient if it has a lower execution cost,

in terms of physical I/O, compared to the original query. The costing of the

queries is detailed throughout Chapter 5.

 43

3.8 Rules with 100% Confidence

In very large databases, data mining may produce some rules with 100%

confidence. These may not be defined business rules with enforced integrity.

They may be what ‘just so happens’ to be the case, or they may be ‘unknown’

business rules – rules that exist but are not actually known to the business or

formally pre-defined.

In the case of rules with 100% confidence, these may be able to directly answer

some queries, without requiring access to the database at all. This is an area that

has been covered by existing research [41], and discussed in Section 2.6, where

functional dependencies or 100% integrity constraint rules that are pre-defined

can be used to help answer a query. This is done by adding the consequent part

of the rule as an additional predicate to the query [1]. However, even though a

100% confidence rule may be used this way, it is not the same as a functional

dependency or integrity constraint, because it may not be pre-defined or always

be the case. It reflects the database state, which may change. Adding a new

predicate may help the optimiser find a better access path by giving it more

information. Moreover, if the column is indexed, a greater or improved choice of

access paths may be available.

Work on semantic query optimisation encompasses the possibility that a query

may be wholly answered from a rule, or more generally, an integrity constraint

[27]. This thesis exploits this concept of ‘rule covering’ – where a rule ‘covers’

or completely answers a query, and does not require access to the data or index

pages of the database. With ‘rule covering’, the rule is used to answer the query

rather than to add a clause to potentially change the access path of a query to

become efficient. The I/O associated with this is equal to the number of rule

pages that need to be read. If there is a single rule page, then only 1 I/O is

required. Hence, this can be an extremely powerful and efficient way of

executing a query.

 44

Example 3.4:

This example demonstrates the case of rule covering using a 100% confidence

rule.

SELECT no_of_staff

FROM Stores

WHERE store_name = 'The Bookshop'

The rule:

if store_name = 'The Bookshop' then no_of_staff = 6

(100% confidence)

exists with 100% confidence, as defined, and is therefore suitable to answer the

above query completely. This is an example of rule covering. It demonstrates the

biggest possible advantage that rules can give when used together with the SI

process.

The rule ‘covers’ or completely answers the query because both the predicate

column and the column being selected are contained in the rule as the antecedent

and consequent, respectively. With 100% confidence, there can be no other

values contained in the query result set. That is:

Qrs ⊇ Qr

Example 3.5:

This example is also based on a 100% confidence rule, but does not cover the

query. That is:

 45

Qr ⊄ Qrs

Even if a rule with 100% confidence does not answer a query via rule covering, it

may still be useful in the SI process. Let the table have an index on the

no_of_staff column. Given the query:

SELECT *

FROM Stores

WHERE store_name = 'The Bookshop'

From this query, we know that ‘The Bookshop’ is the only store name we are

interested in from the where clause predicate. Using the same association rule as

in example 3.4, on store_name, we know that no_of_staff = 6. Hence we can add

this consequent clause so that the query becomes:

SELECT *

FROM Stores

WHERE store_name = 'The Bookshop'

AND no_of_staff = 6

In this situation, an existing index on no_of_staff can be used to access the table.

This strategy can also be used if there is a join in the query. For example, if there

is a nested-loop join such that the new clause can be added to the outer table in

the join, and the index is used to filter the rows in the outer table, then the inner

table needs to be accessed fewer times. The next example query demonstrates

this by searching for the names of the managers of stores called ‘The Bookshop’.

Example 3.6:

This example uses a join with a 100% rule that does not cover the query. This

demonstrates that the SI principle can still be applied.

 46

SELECT Managers.name

FROM Managers, Stores

WHERE Stores.manager_id = Managers.manager_id

AND store_name = 'The Bookshop'

As there is a predicate on the table, Stores, this can be used to filter rows from

the table to join with the Managers table. If Managers is indexed on its primary

key, manager_id, then this is likely to be the inner table of the join, so that for

each row in the outer table the inner table can be accessed via the primary key

index. If the query is as above, as there is no index on stores.store_name, the

optimiser will need to fully scan the stores table. However, given the rule:

if store_name = 'The Bookshop' then no_of_staff = 6

(100% confidence)

the optimiser can add the consequent as a predicate to the outer table, Stores.

This way it has an index on the new column that can be used to access the table

to filter the rows that it needs to use to join on the manager_id attribute of the

inner table.

3.9 Physical Access Paths: Rules and Partial Indexing

The advantage of SI is most significant when a predicate is added that can

change the data retrieval path to a more efficient one. For example, if the

modified query results in the use of an appropriate index instead of a full table

scan, this can reduce the required I/O. Detailed cost comparisons of different

access paths resulting from changing the query are demonstrated in Section 5.4.

Even if using the same access path for both the original and SI queries, the SI

query may still be more efficient (for an indexed path) if the SI query accesses

fewer index pages than the original query due to ‘reducing’ or narrowing the

 47

query by requesting fewer rows, thus filtering rows that need to be accessed

higher up the B-tree index.

3.10 Changes in the Confidence of Association Rules

The generation of association rules and their associated confidence is a relatively

infrequently executed ‘batch’ style process rather than a frequent online process

[36]. Since SI is oriented at very large databases, or data warehouses, the rules

generated from data mining can take a significant amount of time to produce.

Subsequently they should be filtered by the local database administrator’s

knowledge regarding those rules that are useful to the environment. However,

even though SI is meant for relatively static data and not for online transaction

processing type of databases, the rule generation should not need to be performed

often because the data is not intended for frequent change. Moreover, due to the

large quantities of data held (100’s of gigabytes or terabytes) if a row needs an

ad hoc change, it would not be considered significant enough to impact the rule’s

probability. Hence association rules would not need re-calculating if there is no

change to the rules’ confidence levels. This assumes that there are rules based on

the columns that are updated. It is not considered cost-effective to maintain rules

for each data change. There is the rare case whereby a 100% confidence rule no

longer holds. However given this is a rare or extreme case, it is not explicitly

dealt with. The change would be taken into account when the association rules

are periodically refreshed.

If there is a requirement to make more frequent data changes such that the skew

of the data does change, then a ‘subset’ process could be implemented to go

through and verify the confidence of the association rules on the affected objects

only. This would involve only re-calculating the rules on the affected objects - or

even only the affected columns. The verification or re-calculation of rules on a

per table or column basis would be significantly faster than full rule calculation

database-wide.

 48

Due to the above reasons, changes in association rule confidence are not dealt

with in the thesis. If, however, despite the reasons above, it is considered

necessary, it is a large enough area to be dealt with as another research topic in

its own right.

3.11 Conclusion

This chapter has defined SI and given examples of how it can reduce a query to

only request data that is not known from mined association rules held about

column values in the database.

SI brings together database association rules, which may be output from data

mining, with the query optimisation process, ensuring that generated rules are

actually used to improve the efficiency of answering queries, by promoting

automated usage of the rules.

The notion of SI promotes and is based upon the idea that association rules, held

about the data in the database, can and should be used to help answer queries.

This is reasonable given that the association rules are effectively data values that

are already known to the DBMS. Hence when they can be used to form part of

the query result set, the query optimiser should take advantage of this.

By adding more predicates to the query to eliminate requesting what is known, it

has been demonstrated that the number of rows that need to be accessed by the SI

query may be significantly less than the original query. This is useful if it opens

up new data access paths, such as paths that enable the use of an index instead of

a full table scan if this reduces the I/O required for answering a query. Section

3.10 demonstrates the special case of rule covering.

 49

Rules with less than 100% confidence have also been shown to be very useful to

the query optimiser. They can be used to partially answer a query and may be

used in conjunction with other complementary processing techniques, such as

partial indexing.

The data model example presented in this chapter is used for sample queries

throughout the thesis.

 50

Chapter 4

Semantic Inequivalence Algorithm

4.1 Introduction

While Chapter 3 gave an overview and examples of SI, this chapter provides a

detailed specification of the SI algorithm. The algorithm is subsequently

demonstrated using a sample query. This is followed by further illustrative

examples of queries using the SI algorithm.

4.2 Algorithm of Control Section for Semantic Inequivalence
Region

4.2.1 Notation used for Semantic Inequivalence Algorithm

Before defining the SI algorithm, this section introduces the notation used for the

algorithm.

The query structure used is:

SELECT DISTINCT select_list

FROM table

WHERE predicate_list

Where:

 51

select_list is the list or projection of columns requested by the query

table is the table used in the query

predicate_list is a conjunction of predicates Pi ∈ {P1,…,PN}, in the query

A SARG, or search argument, is a predicate in the form:

 <operand><operator><value>

Where:

<operand> is a column

<operator> is in { ‘=’, ‘<’, ‘>’, ‘<>’, ‘≤’, ‘≥’ }

<value> is a literal value

Even though the input to the SI query is a conjunction of simple predicates, the

output may be a disjunction of predicates.

The notation used:

Q represents the query

Pi and Pj represent predicates that are SARGs.

i, j represent variables with values 1 to N

Ci represents the column of Pi. Likewise, Cj represents the column of Pj

Vi represents the value of Pi. Likewise, Vj represents the value of Pj

Pi.operator is the operator used in Pi

Ci.number_of_distinct_values represents the number of unique values that the

column Ci contains

Ci.distinct_values represents the set of unique values that the column Ci contains

An association rule, R, has the form:

If <ant> then <cons>

Where:

 52

ant is the antecedent of the rule

cons is the consequent of the rule

Ant and cons have the form:

<operand> = <value>

Where:

<operand> is a column

<value> is a literal value

The SI algorithm uses a set of known association rules.

S is the number of known rules

Rk represents a rule where Rk ∈ {R1,…,Rs}

k represents a variable with values 1 to S

ant represents an antecedent of a rule, Rk

cons represents a consequent of a rule, Rk

ant.Ck refers to the column of antecedent of rule Rk

cons.Ck refers to the column of consequent of rule Rk

Rk.ant.Ck.Vk (or simply ant.Vk) refers to the value used in Rk’s antecedent

Rk.cons.Ck.Vk (or simply cons.Vk) refers to the value used in Rk’s consequent

Two auxiliary functions are used:

Add_pred(Pi): this changes the query by adding an additional predicate Pi to the

query’s predicate_list.

Replace_pred(Pi, Pj.): this changes the query by removing the predicate Pi and

adding the predicate Pj to the query’s predicate_list.

The ceiling function ⎡ ⎤ is also used: ⎡X⎤ is the smallest integer greater than or

equal to X.

 53

4.2.2 Query used for Semantic Inequivalence Algorithm

The query, Q, is used to demonstrate the SI algorithm subroutines defined in

Section 4.2.3:

SELECT DISTINCT a

FROM table_t

WHERE column_i <operator> value_i

AND column_j <operator> value_j

This is the minimum query structure required to exemplify the SI algorithm

subroutines. This is because 2 predicates are required for incoherence detection.

Otherwise only 1 is needed.

The example query, Q, is based on table_t.

Let table table_t have columns a, b, c, d, e, f

There is an B+ tree index on columns (a,b), a B-tree index on column (c) and a

B-tree index on column (e).

Let table table_t have n rows. Each page holds r rows. So the number of pages is

NPAG = ⎡ n/r ⎤

Let the rules exist:

If b = value_1 then a = value_2 (75% confidence)

If b = value_1 then f = value_2 (75% confidence)

If d = value_4 then e = value_5 (70% confidence)

 54

4.2.3 The Semantic Inequivalence Algorithm

This section defines the SI algorithm, using the notation defined in Section 4.2.1.

Following the definition of each subroutine, the subroutine is demonstrated

against the sample query and predicates.

Input: Query, Q

Output: Transformed Query, Q' UNION Q'' where Q' is the semantic

inequivalent query and Q'' is the query corresponding to information known from

association rules where the rule that is used has less than 100% confidence.

Where the used rule has 100% confidence Q' is output only since this is

semantically equivalent to Q. Where a rule covers a query, only Q'' is output.

Null is output in the case of the algorithm determining that a result set is not

possible.

Even though the input to the SI query is a conjunction of simple predicates, the

output may include a disjunction of predicates.

The algorithm steps through each predicate of a query, that is each simple

expression within the where clause of an SQL statement. If the column used in

the predicate is also the antecedent of a rule, then the rule may be useful to help

answer the query.

In the SI algorithm, it is seen that the main components of the control region are

decision making and transformation of the query. The decision making, shown

as the IF statements, determine the transformation that will be made to the query

by the algorithm.

FOR EACH predicate Pi ∈ {P1,…,PN}, in Q:

BEGIN

/* depending on the operator value apply one of these functions if criteria
specified are met. These will increase the potential for using SI by
replacing inequality with equality */

 55

IF (Pi.operator = '<>') /* NOT EQUAL */

BEGIN

 Execute inequ_operator
END

IF (Pi.operator = '>')

BEGIN
 Execute greater_than_operator

END

IF (Pi.operator = '<')

BEGIN
 Execute less_than_operator

END

IF (Ci = ant.Ck for some k ∈ {1,…,S})
/* predicate column is same as the antecedent column in 1 or more
rules */

BEGIN

/* choose a rule. This calls the subroutine to select a rule for
applying to the query to create the SI query */

 Rk = rule_selection()
 END

 ELSE
 BEGIN

 Output Q

EXIT algorithm /* since no further rule transformation can take
place */

 END

IF (select_list =cons.Ck OR select_list= (cons.Ck , ant.Ck))

BEGIN

 Execute select_col_in_rule
END

 56

IF (cons.Ck ∉ select_list)

BEGIN

 Execute select_col_not_in_rule
END

IF (cons.Ck = Cj for some j ∈ {1,…,N})

/* if the rule’s consequent.column is equal to the column
of a different predicate in the query */

BEGIN

 Execute rule_alt_predicate
END

END

Definition of inequ_operator

 IF (Ci = ant.Ck for some k ∈ {1,…,S}
 AND Ci.number_of_distinct_values = 2
AND Ci.distinct_values = {V1, V2}
AND Ci.Vi = V1)

 BEGIN

P(N+1)= (Ci = V2)

Replace_pred (Pi,P(N+1))

/* this will replace a <> SARG with =. This is useful if there is a
composite index */

END

 End of definition of inequ_operator

 Example of inequ_operator:

 Using the predicate:

b <> value_0

 by substituting for Q’s predicate:

 column_i <operator> value_i

 57

If there are only 2 distinct values for b, then the condition

Ci.number_of_distinct_values = 2 is met.

Additionally, column b is the antecedent of a rule, hence the

criterion Ci = ant.Ck is also met.

If the only other value for column b is value_1, then the predicate

b <> value_0

is replaced with:

b = value_1

If there are more than 2 distinct values for b, then the condition

Ci.number_of_distinct_values = 2 is not met. Hence no

transformation takes place.

 End of inequ_operator example.

 Definition of greater_than_operator

IF Ci = ant.Ck for some k ∈ {1,…,S}
AND Ci.Vi = V1
AND {x | x ∈ Ci.distinct_values AND x > V1 } = {V2}

BEGIN

P(N+1) = (Ci = V2)

Replace_pred (Pi,P(N+1))

/* if there is a rule where ant.Ck.Vk = the greater value , then it
will be able to be used for partially answering the query and
forming a SI query */

END

 End of definition of greater_than_operator

 Example of greater_than_operator:

 Using the predicate:

b > value_0

by substituting for Q’s predicate:

 58

column_i <operator> value_i

If there is only one value for b which is greater than value_0, then

the last condition is met.

Additionally, column b is the antecedent of a rule, hence the

criterion Ci = ant.Ck is also met.

If the only value for column b that is greater than value_0, the

value specified in the predicate, is value_1, then the predicate

b > value_0

is replaced with:

b = value_1

If there is more than one value for b which is greater than value_0,

then the last condition is not met. Hence no transformation takes

place.

End of greater_than_operator example.

Definition of less_than_operator

 IF Ci = ant.Ck for some k ∈ {1,…,S}
AND Ci.Vi = V1
AND {x | x ∈ Ci.distinct_values AND x < V1 } = {V2}

BEGIN

 P(N+1) = (Ci = V2)

Replace_pred (Pi,P(N+1))

/* if there is a rule where ant.Ck.Vk = the lesser value, then it will
be able to be used for partially answering the query and forming a
SI query */

END

 End of definition of less_than_operator

 59

 Example of less_than_operator:

 Using the predicate:

b < value_1

by substituting for Q’s predicate:

 column_i <operator> value_i

If there is only one value for b which is less than value_1, then the

last condition is met.

Additionally, column b is the antecedent of a rule, hence the

criterion Ci = ant.Ck is also met.

If the only value for column b that is less than value_0, the value

specified in the predicate, is value_1, then the predicate

b < value_1

is replaced with:

b = value_0

If there is more than one value for b which is less than value_1,

then the last condition is not met. Hence no transformation takes

place.

End of less_than_operator example.

Definition of rule_selection

/* rule_selection returns the rule to be applied to transform the query.
This is the rule most likely to enable an improved data access path to
answer the query. */

 IF rule exists where cons.Ck has B+ tree index
 BEGIN
 return Rk
 END

ELSE

BEGIN

IF rule exists where cons.Ck has B tree index

BEGIN

 60

IF more than 1 rule

choose rule with highest confidence : return Rk

END
ELSE /* no indexes */
BEGIN

choose rule with highest confidence : return Rk

END
 END

End of definition of rule_selection

Example of rule_selection:

Using the predicate:

b = value_1

by substituting for Q’s predicate:

 column_i <operator> value_i

Column b is the antecedent of 2 rules:

If b = value_1 then a = value_2 (75%) and

If b = value_1 then f = value_2 (75%)

The consequent of the first rule has a B+ tree index. Hence

rule_selection will choose the first rule. Output of rule_selection

is the rule:

If b = value_1 then a = value_2

 End of rule_selection example.

 Definition of select_col_in_rule

IF (Rk.confidence = 100%)

BEGIN

IF {Pi } = { P1,..,Pn } /* there is the only 1 predicate in Q */
 BEGIN

 61

 Q is answered completely by cons.Vk /* rule covering */

Q'' = select cons.Vk /* Sybase allows select of a literal
without a from clause */

Output Q''

 EXIT algorithm

 END

 ELSE
 BEGIN
 P(N+1) = (cons.Ck)

 Q' = Add_pred(P(N+1)) to Q

 Output Q'

 EXIT algorithm

 END

END

ELSE /* confidence < 100% */

BEGIN

 Q is answered partially by cons.Ck

 IF (cons.Ck has an index)

 BEGIN

P(N+1) = (cons.Ck < cons.Vk OR cons.Ck > cons.Vk)

use < and > rather than <> /* the query will no longer
request what is known from the rule */

Q' = Add_pred(P(N+1)) to Q

 END

 ELSE /* no index on cons.Ck */

 BEGIN

 62

 P(N+1) = (cons.Ck <> cons.Vk)

 Q' = Add_pred(P(N+1)) to Q

 END

 /* add the ‘known’ part of query – known from the rule */

 Q'' = select cons.Vk

 Output Q' UNION Q''

EXIT algorithm

END

End of definition of select_col_in_rule

 Example of select_col_in_rule:

The select list of Q is column a. This is also the consequent of the

rule output from rule_selection. The rule has less than 100%

confidence hence the else part of the subroutine will be executed.

The consequent of the rule a = value_2 is the partial result set.

P(N+1) is the negation of the rule’s consequent, that is:

a <> value_2

Since the consequent column is indexed, P(N+1) will be:

(a < value_2 or a > value_2).

This is union-ed with the known part of the query that is the rule’s

conseqent.

However, if the rule did have 100% confidence and the query Q

only had the 1 predicate: b = value_1, then the rule would

answer the query, with the consequent a = value_2 being the

result set.

End of select_col_in_rule example.

Definition of select_col_not_in_rule

 63

IF (Rk.confidence = 100%)

BEGIN
 P(N+1) = (cons.Ck)

 Q' = Add_pred(P(N+1)) to Q

 Output Q'

 EXIT algorithm
END

End of definition of select_col_not_in_rule

 Example of select_col_not_in_rule:

Let the select list of query Q be column c instead of column a.

If the rule has 100% confidence then the predicate

a = value_2

is added to the query.

End of select_col_not_in_rule example

Definition of rule_alt_predicate

 IF (Rk.confidence = 100%)
 BEGIN

IF (Cj.Vj <> cons.Ck.Vk)

 BEGIN

 Q has no result set

 Output NULL

 EXIT algorithm

 END
 END

 End of definition of rule_alt_predicate

Example of rule_alt_predicate:

Using the predicate, Pj

 64

a = value_3

by substituting for Q’s second predicate:

 column_j <operator> value_j

If the rule has 100% confidence, then there is a null result set

since the query is contradicting a rule with 100% confidence.

 End of rule_alt_predicate example.

4.3 Conclusion

This chapter has defined and demonstrated the SI algorithm in detail. A sample

query was defined that was used to exemplify each module of the SI algorithm

and how it transformed the query.

 65

Chapter 5

Cost Comparison

5.1 Introduction

Chapter 4 specified and exemplified the SI algorithm in detail. To build upon

this, this chapter looks at the cost of using SI because for SI to be a useful query

processing technique, it should be able to reduce the cost of answering queries in

some definable situations. There is no single solution that is ideal for every

possible scenario. Hence SI should be an efficient method in some identifiable

circumstances.

In Section 1.2, we discussed that the motivation for this thesis is to increase the

usage of association rules by employing them to partly execute a query. The rules

are taken advantage of by using them to re-write the query into one that is

semantically different to the original query - hence taking the information from

the database rules into account. This chapter demonstrates that by using SI in this

way it can reduce the cost of answering queries because it reduces the requested

information, consequently making the result set narrower due to requiring less

data to be retrieved. This is efficient if it results in lower query processing cost. It

is seen that the response time for answering the SI query may be less than that for

answering the original query, given by the potential of being able to use a more

efficient data access path that would not have been used by the original query but

is suitable for the modified query.

 66

For the purpose of demonstrating the effects of applying the SI algorithm on

query processing cost, this chapter compares the cost of answering queries in

their original form, with the cost of using the corresponding SI queries. This is

done in order to help identify and establish the situations where SI adds the

greatest advantage. The effect on the cost of processing a query is examined by

using sample database queries, based on the data model defined in Section 3.8.

Each query is walked through the SI algorithm. The cost of the original query,

before applying SI, is compared with that of the SI query, which is achieved as

the resultant output of the SI algorithm. Hence the effect of SI on query cost is

demonstrated.

To further and independently demonstrate the benefits that SI has on query

processing costing, Appendix A5 describes a formal query processing algorithm

known as the Decomposition Algorithm [50]. This is used for autonomously

demonstrating how SI can reduce the query processing cost in a generic way,

without using any specific query example.

5.2 Overview of Semantic Inequivalence in Action

This section gives an overview of how the application of the SI algorithm can

help process a simple query. For this, we use a query based on the table, table1.

Let table table1 have 4 columns, a, b, c and d, each of equal data type and length,

with a composite index on columns (a, b).

Say table1 has 1,000,000 records stored on 100,000 pages. Hence a full table

scan would require 100,000 I/Os – that is 1 I/O per page.

Example 5.1:

A query, Q, is:

 67

SELECT DISTINCT a

FROM table1

WHERE b = value_1

Let the rule:

if b = value_1 then a = value_2

exist with 75% confidence.

With SI application, the query Q would be changed to Q':

SELECT DISTINCT a

FROM table1

WHERE b = value_1

AND (a > value_2

OR a < value_2)

The SI query, Q', takes into account that value_2 must be in the result set. This is

given by definition of the rule, and hence can be eliminated from being requested

by the query. It is removed from being requested by the extra specification via

the addition of predicates to only retrieve column a where the value is not equal

to value_2, the value known or given from the association rule.

The additional query conditions may encourage use of the index for two reasons.

- With the new predicates that are added to form query Q', the optimiser would

be more likely to use the index, since there is an increase in selectivity.

- Moreover, the leading column of the index is being used for Q' as a predicate in

the query, giving a key column starting point for an indexed-based search.

Say for example, column b has value_1 for 20% of the rows (200000 rows), then

given the association rule, we know that column a has the value of value_2 for

75% of these 200000 records. Using the index this would involve reading only

index pages - no data pages would need to be read because the index covers the

 68

query, and only a subset of the index pages would need to be read – that is, those

where (a > value_2 or a < value_2) and b = value_1.

If the index size is 50% of the table size - assuming equal sized columns, then

this would result in 50000 pages being read if the whole index is scanned.

However, with the SI query, if approximately 75% of 20% (where b = value_1)

of the index pages are read, then only 7500 pages would be read plus 1 rule page,

assuming there is a single rule page.

If an average index is 10% of table size [45], then by SI enabling index usage it

will reduce I/O to approximately 10% of what it would have been previously,

with the original query.

If the rule has 100% confidence then only nrp I/Os would be needed, where nrp

is the number of rule pages. This compares to 100000 I/Os for a full table scan.

This is because the rule would answer the query completely – the situation of

rule covering.

If however the rule’s confidence is 75% as given, and there is no index on the

columns (a,b), then using SI would actually be more expensive, because it would

still require 100000 I/Os for the full table scan, plus nrp I/Os for reading the

rules page. In this situation, the original query should not be changed.

This demonstrates a crude, yet common style of query that can benefit from the

application of SI. It aims to provide an explanation via an example of the

advantage of using the SI process and its effects. It is extensible for more

complex queries, as will be seen in the examples throughout Chapters 6 and 7.

 69

5.3 Comparing Costs

This section compares the cost of using SI to not using SI, with both B-tree

indexes and bitmap indexes. The comparison is based on the query example in

Section 4.2.2:

SELECT DISTINCT a

FROM table1

WHERE b = value_1

Costs are based and compared on the I/O required to answer the query. I/O is

used instead of elapsed time or CPU time for several reasons: it is consistent

across query executions, it is not dependent on other processes running on the

machine and it is independent of how slow or fast the underlying hardware may

be. Hence it is more reliable.

5.3.1 With B-Tree Indexes

Given the original query, Q:

SELECT DISTINCT a

FROM table1

WHERE b = value_1

If there is no index on column b, this would require a full table scan, which is

NPAG I/Os, as defined in Section 4.2.2.

With a composite index on columns (a,b), the original query Q cannot make use

of the index since Q’s predicate operand is not the leading indexed column, a.

However, an SI query, Q', derived from Q can make use of the index as now

discussed.

 70

The SI query, Q' , is:

SELECT DISTINCT a

FROM table1

WHERE b = value_1

AND (a > value_2

OR a < value_2)

This is formed because the original query can be answered partly by the first of

the three association rules defined in Section 4.2.2 namely,

If b = value_1 then a = value_2 (75% confidence)

 and can therefore be altered accordingly by application of the algorithm.

The resulting SI query Q' can make use of the index because it has a predicate

within its predicate list whose operand is the leading indexed column, a.

The I/O required for the SI query would be:

number of data pages to read while using the index

+ number of rule pages to read

+ number of index pages to read

We consider these below.

IF:

(number of index pages to read + number of rule pages)

is less than

(NPAG – number of data pages to read while using index)

THEN:

The application of SI has resulted in less I/O to answer the query.

 71

This condition reflects the difference between executing the SI query, Q', with

the original query, Q, in terms of the difference in the I/O cost that would result.

Number of Data Pages

The number of data pages that must be read may be significantly reduced given

the information in the rule relevant to the original query. If half of the rows in

table1 have b = value_1, then since the confidence of the rule is 75%,

approximately 25% of those rows, that is 12.5% of the rows in the table as a

whole, do not have a = value_2 and therefore can satisfy the predicate (a >

value_2 or a < value_2). The query only needs to access those rows. The exact

number accessed may be less that 25% of the rows with b = value_1: for

example, null values would not satisfy the predicate although not being equal to

value_2 and so between 0% and 25% of the rows with b = value_1 would need

to be accessed.

Number of Rule Pages

To enable SI to be efficient, the number of rules and hence rule pages should be

limited to those that are most useful to the database querying patterns, coupled

with those that are most powerful or appropriate. This means that the stored

association rules should be of relatively high relevance, such that they can be

used for ad hoc queries in a very large database, or a data warehouse, and

significantly improve response time. This is the pre-requisite of the association

rules that should be selected for storage. For example, a rule that has a high

confidence level but is not providing information that is relevant to the database

querying should be filtered out. Minimising the number of rule pages is

important to minimise the impact on I/O. The greater the number of rule pages,

then the more read I/Os are required, offseting the advantage of using SI.

Such a set of ‘most relevant rules’ can be determined by a database administrator

or database specialist with local knowledge of data usage. The criteria used for

selecting rules should be based on criteria such as:

 72

- how frequently the attributes in the rule are queried. For example if a

rule’s attributes are never queried it may not be relevant to the

applications

- high confidence level of rule. The greater the rule’s confidence the

more impact it has on query selectivity when a query is changed to

use it.

The most ‘powerful’ or ‘relevant’ rules refer to those association rules that help

reduce the query processing cost by changing the data access path. This includes

those rules that:

- enable rule covering

- enable an index to be used

- enable an index to be ‘better’ or more efficiently used

- enable incoherence detection.

Number of Index Pages

The depth of an index or number of index levels is a direct measure of

performance of using an index in evaluating a query [24].

The number of index levels to traverse through depends upon the number of rows

in the table and the length of the indexed key / columns. The number of index

levels can also be affected by fragmentation in the database. Therefore the

number of index levels can be hard to predict precisely. However, using a

RDBMS, such as Sybase Adaptive Server Enterprise, a table structure such as

table1 with 1 million records and an index on (a,b) has 3 levels in the index

(determined using a Sybase system command, sp_estspace), and NPAG is 16000.

Substituting this in the above cost comparison formula:

(number of index pages to read + number of rule pages) < (NPAG – number of

data pages to read while using index)

The number of rule pages should be as small as possible since more rule pages

 73

will progressively provide less and less relevant rules, whilst requiring more I/O.

Hence assuming a single rule page and substituting 1 in the formula for number

of rule pages, we have:

If (3 + 1) < (16000 – number of data pages to read using index)

then the query transformation will have been effective.

Given that NPAG is the total number of datapages,

number of data pages to read while using index will be approximately:

percentage of rows that need to be read * NPAG

Hence the more selective the query becomes the percentage of rows that need to

be read becomes less, reducing the number of data pages to read using index.

This being true is likely with effective indexing. Given the number of index

pages to read is relatively small [45], rarely above 3, we can safely assume the

reduction in I/O attributed to SI application as being the reduction in the number

of data pages to read using the index.

In this scenario, if 12.5% of rows need to be read and assuming that the index is

clustered, then the number of data pages to read using the indexed access would

be 12.5% of 16000 pages, or 2000 pages. Substituting this in the SI cost

reduction formula:

(3 + 1 + 2000) < 16000.

Therefore with SI, there is a reduction in I/O of 13096 or nearly 81%.

If the original query could have used the index, such that SI would not change

the access path, then there may still be some advantage in using SI. This would

be the case if it adds a predicate on a column that is also included in the index

because this would increase the data selectivity. However, the advantage would

not be as profound as when SI enables the access path to be changed from a full

table scan to indexed access as in the example.

 74

If the index were on the same columns but in the reverse order, (b,a), such that it

could have been used by the optimiser as the access strategy before applying the

SI algorithm, then there may still be some cost advantage in using SI. The

advantage would not however be as prominent as when SI enables the index to

be used when otherwise a full table scan would be used.

If the index were on columns (b,a), the original query would be able to use it, as

the predicate’s column b is on the leading column of the index, providing a

starting point for an index-based search. In this case, the number of pages

accessed would be:

number of index pages to read + number of data pages to read

If 10% of the rows have b = value_1, then 10% of data rows would need to be

accessed. If additionally, SI introduces the clause of a <> value_2, and 75% of

rows have (a = value_2 where b = value_1), as the rule stipulates, then only

25% of the 10% of the rows need to be accessed with SI application. Therefore,

using SI to change the query, rather than 10% of total rows being accessed in this

case, only 10% * 25% of rows would need to be accessed, or 2.5%. This is

approximately 2.5% of the data pages rather than 10% of the total data pages – a

75% reduction. Given the number of index pages to read is relatively small [45],

rarely above 3, we can safely assume the reduction in I/O can be attributed to SI

application.

Generally, rather than x% of rows being accessed, where x is the selectivity of

the leading index column that the query would be able to use, (100 – y)% * x%

of rows would need to be accessed, where y is the confidence of the rule. This

results in only (100 – y)% of the number of rows that would otherwise be

retrieved. Hence the higher y is, or the higher the rule’s confidence, then the

more selective the SI query becomes – resulting in greater impact using the same

query plan.

 75

5.3.2 B-tree (Non-Clustered) Indexes vs B+tree (Clustered) Indexes

Clustered indexes work well with predicates that include a range, such as, less

than < and greater than >, and therefore with SI. This is because the existence of

rules, upon which SI is based, implies that values are repeated. Hence clustering

them, or physically storing them together, can help process a query more

efficiently, since more ‘relevant’ data is read from a page compared to

randomised data ordering.

Non-clustered indexes are generally more suitable for highly selective point

queries or where less than 10% of rows would be retrieved [32].

For example, a query Q has a predicate on column b with 30% selectivity of the

table’s records. Even if column b has a non-clustered index on it, then a full table

scan is likely to be chosen as the access strategy by the optimiser rather than the

non-clustered index, because of the high range of values that need to be accessed

that are not physically stored together. Rather they are disparately stored among

different pages, unlike with a clustered index storage strategy.

Non-clustered indexes can be useful with SI if previously the index would not be

used by the original query due to it not being selective enough. The chance of a

more efficient access path is likely to arise if SI creates either a point query or a

significantly more selective query, from what previously was not selective

enough, or not including the leading column of an index. If none of these are

case, then SI is unlikely to improve the cost of processing the query.

If, however, predicates with < and > are added, where the predicate column is

indexed, or is the leading column of a composite index, then SI is less likely to

change a query plan if the predicate does not filter a significant proportion of

rows. Full table scanning may be more efficient than using a non-clustered index

where data is not physically in order and a significant proportion of pages need to

be accessed. This is because if most rows need to be read then indexed access for

a large number of rows can result in more I/O than accessing the entire table just

once with a full table scan. Full table scanning also uses sequential access, which

 76

in practice, with multiple block reads and large I/O sizes, increases the efficiency

of this type of access.

Non-clustered indexes may help in conjunction with SI for rules with less than

100% confidence and where even adding an inequality clause (for example, a >

value_2 or a < value_2) is selective enough for non-clustered indexes to be

preferred over other access strategies.

A unique usage of non-clustered indexes is their ability to completely answer a

query, known as index covering. This is where the index has sufficient

information to answer the query without requiring access to the data pages. Only

non-clustered indexes have this ability because they are dense indexes. This

means that they have an entry for every data row, unlike clustered indexes, which

have an entry for the first row of each data page.

If SI enables index covering to be used, then the advantage can be higher than

when it enables a clustered index to be used.

For clustered and non-clustered indexes, the principles are similar, except that

increasing selectivity is not as important with clustered indexes. Additionally, the

benefits can be achieved even when the query is a range query. SI will be

beneficial with both clustered and non-clustered indexing if either:

- SI enables an index to be used by adding the leading column of the index to

the query

- Selectivity is increased to improve the filtering of the query result set higher

up the index levels.

If the index is clustered, then using < and > in a new predicate will generally be

more valuable than using it in a non-clustered index, as the data in a clustered

index is physically in the indexed attribute order.

5.3.3 With Bitmap Indexes

Even though the cost saving criteria, as defined above, are especially useful with

 77

‘index enabling’, it has so far only been discussed with the variants of the B-tree

index structure. However, given that SI is suitable for very large databases, such

as data warehouses, which bit-mapped indexes are very much oriented at [22],

the use of bitmap indexes should be looked into in conjunction with SI as they

can complement each other.

Both bitmap indexing and SI are especially beneficial for ad hoc queries and

very large databases with low levels of data modification transactions. Hence

they can be used complementarily.

Bitmap indexes can give huge performance gains even on the lowest end of

hardware and reduce response time dramatically for some ad hoc queries [32], if

they can be used.

Bitmap indexes are most effective for low cardinality columns (such as

marital_status). These types of attributes often have rules intuitively associated

with them, and can be highly efficient for tables with many rows as would be

found in a data warehouse type scenario. When bitmap indexes are used for

columns where each value is repeated many times, the bitmap index will

typically be less than 25% of the size of a regular B-tree index [22].

If the use of a bitmap index for query optimisation is enabled by SI application or

at least further improved by promoting selectivity, then I/O can be significantly

reduced.

For example, given the query:

SELECT DISTINCT a

FROM table1

WHERE b = value_1

With SI, the query becomes:

SELECT DISTINCT a

 78

FROM table1

WHERE b = value_1

AND a <> value_2

Bitmap indexes can be used as effectively for inequality (<>) as they can for

equality (=). This is demonstrated below using the NOT operator.

If there are 5 distinct values for column b and 3 distinct values for column a, an

example bitmap index on column a is:

a = value_1 a = value_2 a = value_3

1 0 0

0 1 0

0 1 0

0 0 1

Each row represents a row in the actual table. A 1 bit indicates the row has the

value. A 0 bit indicates that it does not have the value.

Using bitmap indexes for the query:

b = value_1 AND NOT a = value_2

1 AND NOT 1 = 0

1 AND NOT 0 = 1

0 AND NOT 0 = 0

0 AND NOT 1 = 0

This shows that only the second row meets the criteria of the where clause, with

a result bit of 1, or true.

If bitmap indexes are used correctly, on columns with the same value repeated

many times, which is complementary to SI, because association rules also require

 79

values to be repeated to give data patterns - then they typically take less than

25% of the size of a regular B-tree index. Therefore storage can be very compact,

consequently requiring less I/O for accessing them.

Let table table1 have 1million rows with column b having 3 distinct values and

column a having 5 distinct values.

Using bitmap indexes on these would require:

1000000 * 8 bits = 1 million bytes or 1MB to store the index.

The cost advantage of using a bitmapped index in this way depends upon

whether it would have been used before SI was applied to the query, or if SI

enables it to be used when it would not have been used otherwise.

If a bitmapped index is used after SI is applied only and would not have been

used previously, then the cost of the SI query using the bitmap index is:

number of bitmap index pages to read + number of rule pages to read

If this is less than NPAG, then SI is useful in reducing query cost.

The number of bitmap index pages is x MB, where x is:

(number of rows) + (number of distinct values in column) = n bits.

(n bits / 8) / (1024 * 1024) = x MB.

If the bitmap index could be used first before SI, then adding SI will increase

selectivity, hence making bitmap index use more effective in reducing the

number of rows returned.

Taking the original query, Q, for example,

SELECT DISTINCT a

FROM table1

WHERE b = value_1

 80

Only the bitmapped index on column b would need to be accessed. If this has 3

distinct values, then 1000000 * 3 bits would need to be accessed, resulting in

accessing approximately one-third of the table’s records assuming uniform data

distribution.

Now, with the SI query, rather than selecting one-third of the rows, it only selects

(1/3 * selectivity of new predicate) of the table rows.

The higher the selectivity of the additional predicate is, the fewer the number of

rows that need to be accessed.

Hence, SI can reduce the number of pages that need to be read at the table level

by the selectivity of the predicates that are added as a result of applying the SI

algorithm.

5.4 Exceptional Cases

The above cost criteria for success are applicable if a relevant rule has less than

100% confidence. There may however be some cases where a rule has 100%

confidence, and can cover, or completely answer, a query. The query that can be

answered using this rule would have I/O reduced to the number of rule pages in

the database. If there exists only 1 rule page, then only 1 I/O would be required

to answer the query. Undoubtedly this would be more efficient than any other

access strategy, such as a full table scan or an indexed access path.

The rule page is likely to be cached if it is used frequently for the SI process,

using a least-recently-used cache page-ageing algorithm. Alternatively, it can be

pinned to a page in memory to prevent the need to read it from disk.

Rule covering can be a useful and powerful access strategy in a very large

 81

database that has some data patterns that are otherwise unknown to the DBMS

(without the searched rules) and hence would otherwise require a large amount of

resource to execute.

Example 5.2:

SELECT no_of_staff

FROM stores

WHERE store_name = 'The Bookshop'

This has the relevant rule:

If store_name = 'The Bookshop' then no_of_staff = 6

(100% confidence)

This rule answers the query, not requiring access to the data or index pages.

There is also the opposite exceptional case where the SI algorithm may discover

a query has no result set via incoherence detection (the last part of the SI

algorithm). This is efficient compared to finding an empty result set by reading a

table or index, as this can be found with the SI algorithm, with minimum

computational cost, if any I/O, in particular since the rule page, is cached.

5.5 Conclusion

This chapter has exemplified the effects of SI on the cost of processing a query.

A query is appropriate for SI application if there is a useful rule that can be

applied. A useful rule is one that can add predicates to a query, such that the

addition of the predicates enables an access path to be chosen by the query

optimiser that results in less I/O.

 82

Generally, SI can reduce the cost of processing a query in situations where the

access path used by the optimiser for the SI query is more efficient than the path

that would be used for the original query, holding other factors constant.

However, even with the same access path (if an indexed path) being used for the

original and SI query, the latter may still be more efficient, but the improvement

will not be as significant. If full table scan access is used before and after, then

there will be no gain to using SI.

The cost will be more reduced if there is an improved physical data access path,

such as a useful index which can be used after SI is applied, which would not

have been used otherwise, either because without the additional column the

query would not be selective enough or because the leading part of the index was

not being used before SI. I/O will be reduced by the number of pages read for a

full table scan, minus the number of pages read using an alternative access

technique, plus nrp rule pages.

A generic style query was used to show the cost comparison with both B-tree and

bitmap indexes. This was subsequently mapped to specific queries. As

demonstrated by the examples, SI will give the greatest advantage where adding

a query predicate enables the use of an index where a full table scan would have

been used otherwise.

SI also adds a big advantage where either a rule covers, or answers, a query or

where a rule tells that there is no result set, because both of these scenarios can

prevent an otherwise expensive operation, such as a full table scan, from taking

place.

Appendix A5 demonstrates cost comparison of queries before and after applying

SI using an independent costing technique with the established QUEL

Decomposition Algorithm, but replacing QUEL with the SQL query language.

 83

Chapter 6

Real-world Examples

6.1 Introduction

Chapter 6 puts the SI algorithm to practical use by applying it to tackle real

world queries, hence providing empirical evidence of its usefulness. For this

purpose, two completely separate and independent real-world databases are used.

Two databases are used to strengthen the evidence for the usefulness of SI. Also,

the effect of possible bias existing in one database and hence arriving at skewed

conclusions is reduced.

First of all, a set of rules was manually derived from each database. The rules

have varying degrees of confidence – some below 100% and a few at 100%. The

cross section of queries executed is selected to show cases where the application

of SI provides huge advantages to cases where there is no improvement at all

with the application of SI.

Prior to the demonstration and use of SI against the real database queries, this

chapter provides some background on the choice of databases, rules and queries

that are used. This is followed by an overview of the information produced by

the DBMS optimiser’s query plan and what it means. Then the actual queries are

listed.

In Sections 6.5 and 6.6, for the real-world queries, each query example set lists

the I/O costs, the original query followed by appropriate association rules if any,

 84

and the corresponding SI query. Each ‘query set’ (consisting of an original query

plus its corresponding SI query) is compared in terms of the I/O required for each

– showing the situations where SI gives benefit and how significant the benefit

actually is. The detailed query plans chosen by the optimiser are listed in

Appendix A4. The results and findings are summarised in the following section.

6.1.1 Motivation of Research Method

Six main categories were identified in terms of the effect of SI on query

processing cost. Each query fell into one of these categories. These categories are

listed in Table 6.1 along with the impact on I/O and the query examples that

exemplify them.

Seeing the impact on I/O reduction that SI can have helps motivation for the

study of SI queries and their comparison with original queries as conducted in

Section 6.5 and Section 6.6.

Cause of change between original query and SI query

Average

approximate

change in I/O

SI answered by rule (either rule covering or incoherence

detection) – requires 100% confidence rule (6.3, 6.8,

6.15)

4000 times less

100% confidence rule that does not answer SI query but

enables index access (6.6)

1000 times less

SI enables index covering (6.2, 6.11, 6.15) 75 times less

SI enables use of index (6.1, 6.5, 6.7, 6.12, 6.16, 6.17,

6.18, 6.19)

24 times less

SI improves selectivity – but same access path (6.9, 6.10) 4 times less

No change in access path (6.4) 1.5 times more

Table 6.1 – Categorisation of Query Processing with SI

 85

This shows that SI may be a very powerful query processing technique in several

types of situation. The most powerful usage is in the situation where I/O is

reduced to 1 via rule covering. Substantial degrees of improvement are also seen

where a more efficient access path is made available to the query optimiser

following the application of the SI algorithm. Section 6.7 discusses the results in

more detail.

The graph below compares the I/O for each query example.

Cost Comparision

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

1 3 5 7 9 11 13 15 17 19

Example

I/O
Original Query
SI Query

Figure 6.1 – Cost Comparison With and Without SI

6.2 Background and Reasons for the Choices

6.2.1 Choice of Databases

For the empirical analysis of SI, two large real-world databases were used,

running on Sybase Adaptive Server Enterprise.

The first database is a 14 gigabyte (Gb) management information system (MIS)

database used to derive a set of sample rules and execute queries against. This

 86

database was chosen for a number of reasons. Firstly, it is the type of database

that SI has the most potential value added for. This is because it is a large data

warehouse type database with relatively static data used for a decision support

system (DSS) and MIS type applications and queries. As highlighted throughout

Chapter 2, this is the type of database system that SI is ideal for. This MIS

database is actually used for reports and ad hoc queries for historical information

on stocks and asset portfolios. It is not updated frequently and is used to provide

a data warehouse style database for a host of asset management business

applications. It is also relatively large in size, and there are not many such large

real world databases that one has access to, and are simultaneously suitable for

this purpose.

The second database used for the set of real world examples is a 9Gb online

trading database with live data feeds. Some tables were holding many millions of

records. However, despite updates to the data, patterns remained similar, hence

rules were found to exist. With respect to association rules, the database was

therefore relatively static. The type of data that was changed were attributes like

security prices – whereas rules existed on other non-price attributes, which are

queried for reporting purposes, including regulatory reporting.

The SI algorithm was applied to each query against its respective database and

the costs, based on I/O, of the original query and SI query were compared.

The sets of sample queries were manually extracted from the applications that

use the databases. The queries were found either embedded in the client

applications or within stored procedures that the clients execute. The selection of

queries aim to show where SI is most useful, and where it is not useful. A wide

cross-section of queries was taken with the intention of providing a varied

sample, yet choosing queries that ‘fit’ into the SI framework in terms of having

relevant rules that can be used to help answer the queries and enable

transformation. Thus if an association rule existed on column currency for

example, a query with currency as a predicate would be a good candidate for

selection. If none of the column attributes used in a query had any relevance to

the rules found, then SI is not relevant to use hence such a query was not selected

 87

as it would give no value to demonstrating SI because the SI query would be the

same as the original query.

6.2.2 Finding Association Rules

To manually search for rules, a subset of queries were picked from the

applications that use the database, and rules based on attributes that these queries

used were searched for. Rules were found by searching for patterns among

columns of some of the largest tables used by the queries. Columns that hold data

items such as codes and indicator values were predominantly searched as they

are likely to have data relationships or patterns more than those highly unique

attributes with date/timestamp values, float data types or identifier values (such

as primary or alternate keys) which tend to be used for point queries. The

searching was done by manually querying the database tables.

Moreover, it was also observed in the applications that queries were often based

upon columns that hold codes and/or indicator values. For example, queries may

be based on finding currency codes for particular country codes or account types

etc. This type of data is generally useful for DSS type applications or DSS

queries. Hence finding rules that SI can use may be very useful for corporate

decision system queries and vice versa.

The rules used for query cost comparison have single column antecedents. This

is to keep the process of demonstrating SI simple and to the point. Also, the

example association rules from researched data mining papers were very much

based around single attributes. Hence this was considered sufficient for

demonstrating SI.

In the first database, a lot of data was found to be stored on the clients of the

organisation – customers or clients being a core part of any company’s data.

Likewise, it was found that many of the application queries were based on

retrieving client information. Hence rules were especially sought for regarding

clients. For example, a common query found was based on finding the currency

that the client uses as his/her base or main currency for dealing in stocks and

 88

shares. However, given the base currency, there is a high confidence of the

client’s country of residence being a particular value, and here SI enables the

optimiser to take advantage of this sort of relationship.

In the second database, the data stored is based on trades, securities, and curves,

which are used for the pricing of trades. Therefore, the queries found were based

around attributes of these entities for the second set of real-world sample queries.

The corresponding SI queries were manually generated by stepping the original

queries through the SI algorithm.

6.3 Optimiser Plan Explanation

Each query is followed by the I/O statistics required to answer it followed by the

I/O needed to answer the corresponding SI query. The detailed query plan or

execution path that the optimiser chose to process the original and SI queries is

listed in Appendix A4. The statistics for the queries were collected using a

Sybase Adaptive Server Enterprise feature to display the query plan chosen by

the optimiser (set showplan on) and the I/O cost involved (set statistics io on).

The core information in the query plan tells us the table/s being accessed, and

whether an index or full table scan is being used for the data access. If it is using

an index, it specifies which one, and the keys or columns in the index that are

being used for the search request. ASC stands for an ascending index scan, whilst

DESC for descending index scan – which is effectively backwards reading of the

index.

We can identify index covering by the description ‘Index contains all needed

columns. Base table will not be read’.

 89

I/O size can be between 2Kb and 16Kb, and may be different for a table and its

index. The buffer replacement strategy refers to the cache replacement strategy if

pages need to be read from disk. Pages read from disk can either replace the LRU

page in cache or the MRU page in cache.

Dynamic index refers to using an OR or an IN within a query.

Getsorted may be used where for example the distinct keyword is used in a

query, so that the optimiser needs to sort the rows into a worktable (or temporary

holding space) for the operation.

Worktable signifies a table created by the optimiser during query execution, for

example, when performing distinct, sort (for ordering data) or grouping

operations.

Forward scan means that access is starting at the beginning of the index or first

qualifying row, going through subsequent pages by following page pointers to

the next page.

6.4 Statistics Output Overview

As well as including the query path that the optimiser chooses for each query, the

query optimiser’s output also includes statistics on the input and output that is

required for query execution.

The statistics section provides information on the number of table accesses, page

reads and disk reads that are performed.

Scan count is the number of times that a table is accessed by a query.

Logical reads refers to the total number of reads – from cache or disk.

 90

Physical reads are the number of reads from disk.

APF (asynchronous pre-fetch) refers to the number of reads that the optimiser

makes from disk in anticipation of a page being requested, even though it is not

needed at the time it is read into cache. The optimiser may decide to bring pages

physically located together on disk into cache if it thinks it will be needed for the

query. The rest of reads are ‘regular’- pages read from disk due to the data on

them being requested. Therefore,

Total reads = regular reads + APF reads

Total writes: the number of writes can be greater than 0 for a query if by its

reading pages into cache, it causes a dirty (or modified) page in cache to move

past a marker that indicates that it needs to be flushed or written to disk.

6.5 The Query Examples – First Data Set

The tables and indexes used for the first data set examples are listed. Following

the table name is the list of columns, their datatype and the indexes on the table.

Table: TClnt
(ClientId int
ClientType char(4)
Title char(10)
Fname char(40)
Lname char(40)
AddrLine char(200)
CtryResidenceCode int
Profession char(20)
PrInd int
TelNo char(20)
FaxNo char(20)
Email char(40)
LastUpdate datetime
Ccy char(3)
Charity char(1)

 91

Deal char(1)
LocalInt char(1)
Description char(255))
Indexes:
Clnt_x1 (ClientId) – Primary Key
Clnt_x2 on (CtryResidenceCode, Ccy)
Clnt_x3 on (PrInd, Profession)
Clnt_x4 (ClientType)
Number of records: 100000

Table: tPortfolio
(PortNo int
PortName char(5)
Description char(255)
Ccy char(3)
Base char(1)
GroupSector int
Industry int
IndexCategory int)
Indexes:
Pf_ix1 (PortNo) – Primary Key
Pf_ix2 (Base)
Pf_ix3 (IndexCategory, GroupSector)
Number of records: 100000

Table: tCompRet
(PortNo int
CompositeType int
BalDate datetime
ClassificationCode int
BaseFee char(1)
HurdleRate float
ExpEstimate float
FundingSpread float)
Indexes:
IxCompReturn1 (PortNo, CompositeType) – Primary Key
IxCompReturn2 (BalDate)
IxCompReturn3 (ClassificationCode, CompositeType)
Number of records: 150000

Table: TQuote
(SecId int
SecType char(4)
Category char(4)
QuoteCode char(12)
MarketCode char(2)
Bid float
Offer float
Base float)
Indexes:

 92

Tqu_x1 (QuoteCode, MaketCode)
Number of records: 1000000

Example 6.1:

In this example, I/O is reduced by 95%. The original query uses a full table scan

while the SI query enables the use of an indexed access because the predicate

that is added is on an indexed column.

Original Query:

1> select * from TClnt where Ccy = 'ZAR'

Rule: if Ccy = 'ZAR' then CtryResidenceCode = 220 (90%

confidence)

SI Query:

1> select * from TClnt where ccy = 'ZAR'

2> and ctrycodeofresidence = 220

3> union

4> select * from TClnt where ccy = 'ZAR'

5> and (ctrycodeofresidence < 220

6> or ctrycodeofresidence > 220)

Original Query: 6154 I/Os

SI Query: 364 I/Os

Example 6.2:

In this example, I/O is reduced by 200 times. This is because the query optimiser

decides to full table scan for the original query, while the SI query enables an

 93

index to be used which covers the query so that the underlying table does not

need to be accessed. The index answers the SI query.

Original Query:

1> select distinct PrInd from TClnt

2> where profession = '160'

Rule: if Profession = '160' then PrInd = 'Y' (95%

confidence)

SI Query:

1> select distinct PrInd from TClnt

2> where profession = '160'

3> and (PrInd < 'Y' or PrInd > 'Y')

Original Query: 6348 I/Os

SI Query: 37 I/Os

Example 6.3:

This example demonstrates the most powerful use of SI – where the rule has

100% confidence and ‘covers’ or answers the SI query without the need to access

the table or index. The SI algorithm will answer this without the need for an SI

query. There are no indexes on either of these columns.

The original query requires a full table scan. With SI, read of the rule page is

required where it is determined that the rule answers the query.

Original Query:

 94

1> select distinct Deal from TClnt where Charity = 'Y'

Rule: if Charity = 'Y' then Deal = 'N' (100% confidence)

Original Query: 6154 I/Os

SI Query: 1 I/O (rule page – rule covered query).

Example 6.4

This is similar to a previous example, but the column being selected is not in the

rule or indexed. This example results in the SI query requiring marginally more

I/O, hence it is more expensive to execute than the original query. This is

because it uses the same query plan as the original query for part of the SI query

(which is 2 queries union-ed), and indexed access to the second part of the union-

ed query. The total I/O therefore is the sum of a table scan plus the cost of the

indexed access.

Original Query:

1> select Description from TClnt

2> where profession = '160'

Rule: if Profession = '160' then PrInd = 'Y' (95%

confidence)

SI Query:

1> select Description from TClnt

2> where profession = '160'

3> and (PrInd < 'Y' or PrInd > 'Y')

4> union

 95

5> select Description from TClnt

6> where profession = '160'

7> and PrInd = 'Y'

Original Query: 6154 I/Os

SI Query: 6385 I/Os

Example 6.5:

This reduces I/O by two-thirds of the original query, from 33957 to 11745, by

using indexed access instead of a table scan. However, the reduction is not as

great as some of the previous examples (examples 6.1 and 6.2) because the SI

query is a union’ed query, requiring access for each of the 2 parts of the query.

Original Query:

1> select count(*) from tPortfolio

2> where GroupSector = 13770

Rule: if GroupSector = 13770 then IndexCategory = 8 (99%

confidence)

SI Query:

The SI query is produced from using the rule:

if GroupSector = 13770 then IndexCategory = 8 (99%

confidence)

1> select count(*) from tPortfolio

2> where GroupSector = 13770

3> and IndexCategory = 8

4> union

 96

5> select count(*) from tPortfolio

6> where GroupSector = 13770

7> and (IndexCategory < 8 or IndexCategory > 8)

Original Query: 33957 I/Os

SI Query: 11745 I/Os

Example 6.6:

This example enables the SI query to use a useful index and has a rule with 100%

confidence. The rule does not cover or answer the query, hence table and index

access is required to answer the query.

Original Query:

1> select * from TCompRet

2> where CompositeType = 40

Rule: if CompositeType = 40 then ClassificationCode =

157 (100% confidence)

SI Query:

1> select * from TCompRet

2> where CompositeType = 40

3> and ClassificationCode = 157

Original Query: 11470 I/Os

SI Query: 11 I/Os

Example 6.7:

 97

This example reduces I/O by changing the access path from a table scan to an

indexed path. The reduction in I/O is profound, but not as much as some queries,

because the SI query is a union’ed query, requiring access for each of the 2 parts

of the query.

Original Query:

1> select * from TCompRet where CompositeType = 39

Rule: if CompositeType = 39 then ClassificationCode =

147 (95% confidence)

SI Query:

1> select * from TCompRet where CompositeType = 39

2> and ClassificationCode = 147

3> union

4> select * from TCompRet where CompositeType = 39

5> and (ClassificationCode < 147

6> or ClassificationCode > 147)

Original Query: 11470 I/Os

SI Query: 1936 I/Os

Example 6.8:

This is an ‘inverse’ example, where the 2 predicates in the where clause conflict

with a 100% rule, hence no results will be returned. This is an example of

incoherence detection.

This example is different in that it uses the SI algorithm to answer the query

indirectly by telling us that it has no result set. This is because there is a 100%

confidence rule that the query’s predicate conflicts with.

 98

Original Query:

1> select * from TClnt where Charity = 'Y' and Deal =

'Y'

Rule: if Charity = 'Y' then Deal = 'N' (100% confidence)

With SI, a read of the rule page is required where it is determined that the rule:

If Charity = 'Y' then Deal = 'N' (100% confidence)

‘inversely’ answers the query (inverse rule covering).

Original Query: 6154 I/O

SI Query: 1 I/O – for the rule page

Example 6.9:

In this example, I/O is reduced in the SI query even though the same access path

is used (indexed access). In this case, SI enables greater selectivity of the index,

reducing the I/O required by about 85%.

Original Query:

1> select distinct Security from TQuote

2> where QuoteCode = 'SETTLEMENT'

Rule: if QuoteCode = 'SETTLEMENT' then MarketCode = 'MM'

(72% confidence)

SI Query:

 99

1> select distinct Security from TQuote

2> where QuoteCode = 'SETTLEMENT'

3> and (MarketCode > 'MM' or MarketCode < 'MM')

4> union

5> select distinct Security from Tquote

6> where QuoteCode = 'SETTLEMENT'

7> and MarketCode = 'MM'

Original Query: 58134 I/Os

SI Query: 8724 I/Os

6.6 The Query Examples – Second Data Set

The tables and indexes used for the second data set examples are listed.

Following the table name is the list of columns, their datatype and the indexes on

the table.

Table: Login_info
(login_name char(8)
machine_name char(8)
machine_user_name char(12)
location char(12)
login_time datetime
attempts int)
Indexes:
ix2_login_info (login_name, machine_name)
Number of records: 10000

Table: Flow
(flow_no int
flow_type_code char(8)
instrument char(1)
flow_calc_code char(8)
flow_ind char(1)
flow_date dateetime
ccy char(3)
flow_amount float)

 100

Indexes:
ix1_flow (flow_calc_code)
Number of records: 8000000

Table: Curve
(curve_id int
curve_type_code char(10)
no_of_instances int
currency_code char(3)
schedule int)
Indexes:
ix1_curve (curve_id) – Primary key
Number of records: 6000000

Table: Trade
(trade_no int
instrument char(1)
trade_type char(1)
trade_info_code char(4)
trade_status_code char(8)
trade_date datetime
spot_date datetime
far_date datetime
process_org_id int
subject_org_id int
consideration float
reversed char(1))
Indexes:
ix1_trade (trade_no) – Primary key
ix2_trade (trade_info_code, trade_status_code)
ix3_trade (subject_org_id, process_org_id)
Number of records: 1000000

Table: Sec
(Sec_no int
Sec_code char(3)
Sec_type char(5)
Class_name char(15)
Description char(30)
Sec_def_code char(10)
Industry char(10))
Indexes:
ix_sec (sec_no) – Primary key
ix1_sec (sec_def_code, class_name)
Number of records: 5000000

Table: auth_status
(auth_category char(3)
auth_type_code char(10)
data_group_code char(15)

 101

description char(255)
auth int
rejected int)
Indexes:
ix1_auth_status (auth_category) – Primary key
ix2_auth_status (data_group_code)
Number of records: 10000000

Example 6.10:

This is a sample query that would be executed by a Security/Audit group to

check the machines that logins are from. The same indexed access path is used

but I/O is reduced in the SI query because it enables greater selectivity by using 2

indexed columns rather than 1.

Original Query:

1> select distinct machine_user_name from login_info

2> where login_name = 'PWalds'

Rule: if login_name = 'PWalds' then machine_name = 'RD-

02727' (85% confidence)

SI Query:

1> select distinct machine_user_name from login_info

2> where login_name = 'PWalds'

3> and machine_name = 'RD-02727'

4> union

5> select distinct machine_user_name from login_info

6> where login_name = 'PWalds'

8> and (machine_name < 'RD-02727'

9> OR machine_name > 'RD-02727')

Original Query: 2078 I/Os

SI Query: 1426 I/Os

 102

Example 6.11:

This query is similar to the previous one, but the column in the select list is

indexed (whereas in the previous query it is not). Hence this is an ‘index

covered’ query, and the improvement can be compared to the non-index covered

query above.

Since the rule’s consequent is the partial result set it is concatenated to the result

set of the SI query.

Original Query:

1> select distinct machine_name from login_info

2> where login_name = 'PWalds'

Rule: if login_name = 'PWalds' then machine name = 'RD-
02727' (85% confidence)

SI Query:

1> select distinct machine_name from login_info

2> where login_name = 'PWalds'

3> and (machine_name < 'RD-02727'

4> or machine_name > 'RD-02727')

5> union

6> select 'RD-02727'

Using Sybase, a SELECT statement is permitted without a FROM clause, for

literal values and variables.

Original Query: 1312 I/Os

SI Query: 197 I/Os

 103

Example 6.12:

This query is selecting the type of cash flow from a table storing all types of

flows. It retrieves the type of calculation that is used for interest-rate based cash

flows.

The data access path and query plan are changed significantly, impacting on I/O.

The main change is from a full table scan to using an appropriate index.

Since the rule’s consequent is the partial result set it is concatenated to the result

set of the SI query.

Original Query:

1> select distinct flow_calc_code from flow

2> where flow_type_code = 'INTEREST'

Rule: if flow_type_code = 'INTEREST' then flow_calc_code

= 'SIMPLEINT' (99% confidence)

SI Query:

1> select distinct flow_calc_code from flow

2> where flow_type_code = 'INTEREST'

3> and (flow_calc_code < 'SIMPLEINT'

4> or flow_calc_code > 'SIMPLEINT')

5> union

6> select 'SIMPLEINT'

Original Query: 198161 I/Os

SI Query: 2097 I/Os

 104

Example 6.13:

This is a ‘rule covered’ query – the rule used by the SI algorithm answers the

query completely. With SI, a read of the rule page is required where it is

determined that the rule answers the query.

Original Query:

1> select distinct curve_type_code from curve

2> where currency_code = 'CZK'

Rule: if currency_code = 'CZK' then curve_type_code =

'INTEREST' (100% confidence)

Original Query: 479 I/Os

SI Query: 1 I/O (rule covered - assuming a single rule page)

Example 6.14:

This is similar to the previous query but is not rule covered – as the rule is not

with 100% confidence.

In this example, SI is actually detrimental to performance, because the table

involved has to be accessed more than once, although the same access path is

used.

Original Query:

1> select count(*) from curve

2> where currency_code = 'USD'

Rule: if currency_code = 'USD' then curve_type_code =

'FX' (79% confidence)

 105

SI Query:

1> select count(*) from curve

2> where currency_code = 'USD'

3> and curve_type_code = 'FX'

4> union

5> select count(*) from curve

6> where currency_code = 'USD'

7> and (curve_type_code < 'FX'

or curve_type_code > 'FX')

Original Query: 394 I/Os

SI Query: 797 I/Os

Example 6.15:

This query is based on trades that have matured (expired or settled in the past).

The rule shows that 90% of the matured trades are foreign exchange (FX) trades,

which is because they mature quicker than other types of trades.

SI is shown to provide a huge advantage by reducing I/O significantly. This is

due to being able to use an indexed access path instead of a table scan.

Original Query:

1> select count(*) from trade

2> where trade_status_code = 'MATURED'

Rule: if trade_status_code = 'MATURED' then

trade_info_code = 'FX' (90% confidence)

 106

SI Query:

1> select count(*) from trade

2> where trade_status_code = 'MATURED'

3> and trade_info_code = 'FX'

4> union

5> select count(*) from trade

6> where trade_status_code = 'MATURED'

7> and (trade_info_code < 'FX'

8> or trade_info_code > 'FX')

Original Query: 106799 I/Os

SI Query: 2328 I/Os

Example 6.16:

This query is based on looking at the classifications in a security table.

The use of SI reduces I/O significantly. This is due to being able to use an index

that covers the query, instead of a table scan.

Original Query:

1> select count(*) from sec where class_name =

'ISwapLeg'

Rule: if class_name = 'ISwapLeg' then sec_def_code =

'SPECIFIC' (93% confidence)

SI Query:

1> select count(*)

2> from sec where class_name = 'ISwapLeg'

 107

3> and sec_def_code = 'SPECIFIC'

4> union

5> select count(*)

6> from sec where class_name = 'ISwapLeg'

7> and (sec_def_code < 'SPECIFIC'

8> or sec_def_code > 'SPECIFIC')

Original Query: 8820 I/Os

SI Query: 683 I/Os

Example 6.17:

This query is based on a security table.

The use of SI reduces I/O significantly. This is due to being able to use an index

that covers the query, instead of a table scan.

Original Query:

1> select distinct source from sec

2> where class_name = 'ISwapLeg'

Rule: if class_name = 'ISwapLeg' then sec_def_code =

'SPECIFIC' (93% confidence)

SI Query:

1> select distinct source from sec

2> where class_name = 'ISwapLeg'

3> and sec_def_code = 'SPECIFIC'

4> union

 108

5> select distinct source from sec

6> where class_name = 'ISwapLeg'

7> and (sec_def_code < 'SPECIFIC'

8> or sec_def_code > 'SPECIFIC')

Original Query: 121441 I/Os

SI Query: 9808 I/Os

Example 6.18:

This query is based on finding out about authorisation groups (for traders that

can authorise a trade execution).

I/O is reduced by about 8 times by using the SI query. This is due to being able

to use an indexed access path instead of a table scan.

Original Query:

1> select distinct data_group_code

2> from auth_status

3> where auth_type_code = 'NEW'

Rule:if auth_type_code = 'NEW' then data_group_code =

'trade_stlmt' (80% confidence)

SI Query:

1> select distinct data_group_code

2> from auth_status where auth_type_code = 'NEW'

3> and (data_group_code < 'trade_stlmt'

4> or data_group_code > 'trade_stlmt')

Original Query: 893681 I/Os

SI Query: 114758 I/Os

 109

Example 6.19:

In this example, SI enables a change to the access path, giving some

improvement in the computational efficiency of execution. Although the

applicable rule has 100% confidence, this is not a rule-covered query.

Original Query:

1> select spot_date from trade

2> where process_org_id = 3

Rule: if process_org_id = 3 then subject_org_id = 1

(100% confidence)

SI Query:

1> select spot_date from trade

2> where process_org_id = 3

3> and subject_org_id = 1

Original query: 78373 I/Os

SI query: 49316 I/Os

6.7 Results Analysis

Table 6.2 below lists the difference in the I/O required between queries executed

in their original state and their corresponding SI query. The last column gives the

reason for the difference in I/O – the reason why the SI query uses less I/O or

more I/O than the original query.

 110

From the empirical examples, the impact of SI on query processing is most

significant for ‘rule covered’ queries. In this situation, SI can reduce the I/O

required from as much as several million I/Os to just 1 single I/O (being that of

the rule page). Examples 6.3 and 6.8 from the first dataset, and example 6.13

from the second dataset attest to this.

Example Original Query

 (I/Os)

SI Query

 (I/Os)

Reason for Difference

6.1 6154 364 Enable index access

6.2 6348 37 Enable index covering

6.3 6154 1 Rule covering

6.4 6154 6385 Accessed twice (once via index)

6.5 33957 11745 Enable index access

6.6 11470 11 Rule + index access

6.7 11470 1936 Enable Index access

6.8 6154 1 Incoherence detection (via rule)

6.9 58134 8724 Improved predicate selectivity

6.10 2078 1426 Improved predicate selectivity

6.11 1312 197 Index covering

6.12 198161 2097 Enable index access

6.13 479 1 Rule covering

6.14 394 797 Accessed twice

6.15 106799 2328 Index covering

6.16 8820 683 Enable index access

6.17 121441 9808 Enable index access

6.18 893681 114758 Enable index access

6.19 78373 49316 Enable index access

Table 6.2 – I/O Values Between Original and SI Queries

 111

With rules that have less than 100% confidence, SI proved to be most useful

under query conditions where it enabled the use of an index that would not have

been used otherwise, because the optimiser would not have deemed it selective

enough without the additional clauses or predicates added by the application of

the SI algorithm. If by adding a first or an additional indexed column to the

predicate where clause of the query, so that the optimiser finds it possible and

efficient to change the query plan to the one used for the original query, then it

was seen to be beneficial for reducing I/O. This was more pronounced where it

replaced a table scan. From our examples, it can be seen that where this was the

case, I/O was reduced by up to about 20 times – to only 5% of the I/O required

by the original query. This is seen in example 6.1 of the first dataset. Examples

6.12, 6.18 and 6.19 of the second dataset also benefited from this type of query

optimisation plan transformation. Example 6.10 introduces an extra predicate

such that the predicate’s column is part of the composite index that is used by the

original query. Hence SI improves selectivity because the SI query can use both

the columns of the composite index. This narrows the searching.

Where the application of SI enabled index covering, then the impact was even

greater. The I/O was reduced by 200 times in example 6.2 of the first dataset.

Examples 6.11 and 6.15 of the second dataset also demonstrated the advantage of

replacing full table scan by index covered access.

However, if SI leads to a situation where one part of the SI query uses the same

plan as the original query, and another part of a union-ed SI query uses a

different access plan, as in example 6.4 of the first dataset and example 6.14 of

the second dataset, this can lead to more I/O being required. Hence it can be

more inefficient in this type of situation, requiring the cost of a full table scan

plus the cost of indexed access.

 112

6.8 Conclusion

This chapter has put SI to practical use – by applying it to two large, real world

databases. This provides empirical evidence of its usefulness.

A set of queries for each of the databases has been processed using the SI

algorithm and the cost of processing the original query was compared to the cost

of processing the corresponding SI query.

Chapter 6 has demonstrated, with real-world databases, the conditions where SI

is useful, and the situations in which its application is beneficial to varying

degrees. Additionally, the conditions where it is not advisable to employ SI were

demonstrated. The results are discussed and summarised in Section 6.7.

 113

Chapter 7

Semantic Inequivalence with Synthetic Data Distribution

7.1 Introduction

This chapter focuses on the effect of using SI with a synthetic data distribution,

based on the normal distribution. This is undertaken to provide an independent

and well established data distribution pattern to evaluate the usefulness of SI.

First of all, an overview of the normal distribution is provided and an explanation

as to why it is considered useful for statistical analysis.

Following the overview, a set of example queries are executed against the

synthetic data where the query predicate’s variable is on varying parts of the

normal distribution curve. This enables us to look at changes in impact and

effectiveness of the SI algorithm along the distribution. Initially, the query

variable is on the ‘low end’ of the normal distribution. Identical queries are

subsequently performed where the query predicate’s variable is on the ‘high end’

of the normal distribution, and at various points in between the two extremes. In

all of the example cases the original query’s I/O cost is compared with the

corresponding SI query’s I/O cost.

The queries are devised to exemplify the cases of the SI transformation

categories: where predicate selectivity is increased enabling more efficient index

access / usage (such as examples 7.1, 7.2, 7.3, 7.4), the situation where the SI

query involves 2 different access strategies - full table scan and index based

access in place of just a table scan (such as examples 7.5, 7.6, 7.7, 7.8) and where

 114

the association rule answers part of the query and index usage is enabled (such as

examples 7.9, 7.10, 7.11). The second category increases the cost of query

processing. The other two categories reduce the cost of query processing.

7.2 Normal Distribution

The normal distribution is an important statistical distribution. All normal

distributions are symmetric and have bell-shaped density curves with a single

peak.

To speak specifically of any normal distribution, two quantities have to be

specified: the mean and the standard deviation. The mean is where the peak of

the density occurs, and the standard deviation indicates the spread or girth of the

bell curve.

A prominent reason that the normal distribution is considered important is

because many psychological and educational variables have an approximate

normal distribution. Measures of reading ability, introversion, job satisfaction,

and memory are among the many psychological variables approximately

normally distributed [29]. Although the distributions are only approximately

normal, they are usually quite close. A second reason the normal distribution is

considered to be so important is that it is easy for mathematical statisticians to

work with. This means that many kinds of statistical tests can be derived for

normal distributions. Generally, these tests work very well even if the

distribution is only approximately normally distributed [29]. The normal

distribution curve is illustrated in Figure 7.1.

 115

 A B C D

Figure 7.1 – Normal Distribution

In our query examples, the horizontal axis is the attribute value of the query’s

predicate, such as subject_type. The vertical axis represents the frequency of its

occurrence – or the number of rows containing that value.

Four positions in the normally distributed data are used for each query example:

point A, at the lowest end hence the predicate having a low frequency to point D

at the highest end hence the predicate having a high frequency, and at two points

in between.

7.3 Query Examples

The query examples for demonstrating the effects of SI with the normal

distribution are based on the titles table from the example data model set up in

Section 3.8.

For the data and queries, a titles table was created with the structure defined in

the data model, and the column subject_type is used as the predicate variable’s

attribute.

 116

Hence the subject_type column is populated with a normally distributed set of

values. This single variable is used to exemplify the SI impact along the normal

distribution curve.

Table 7.1 shows the 4 data distributions used for the queries in examples 7.1 to

7.4. The points (A, B, C or D) indicate the position of the predicate on the curve

in Figure 7.1.

Subject Type Predicate
variable at
low end of
normal
distribution
(point A)

Predicate
variable at
low-mid end
of normal
distribution
(point B)

Predicate
variable at
high-mid
end of
normal
distribution
(point C)

Predicate
variable at
high end of
normal
distribution
(point D)

Astronomy 60 2500 10000 150000

Media 60 60 60 60

Astrology 120 120 120 120

Health 120 120 120 120

Design 250 250 250 250

Travelling 250 250 250 250

Geography 500 500 500 500

Sociology 500 500 500 500

Chemicals 1000 1000 1000 1000

Gardening 1000 1000 1000 1000

Business 2500 2500 2500 2500

Economics 2500 5000 2500 2500

Beauty 5000 5000 5000 5000

History 5000 10000 5000 5000

Biology 10000 10000 10000 10000

Plants 10000 50000 50000 10000

Languages 50000 50000 50000 50000

Science 50000 100000 100000 50000

Maths 100000 100000 100000 100000

Music 100000 150000 150000 100000

Art 150000 60 60 60

Table 7.1 – Data Distributions – Set 1

 117

Initially the data sample is such that the predicate variable, subject_type is at the

low end of the normal distribution, at point A in Figure 7.1. For subsequent

examples, the data distribution is changed, being defined each time, so that the

antecedent moves to the high end of the normal distribution, up to point D and at

the various points in between. Therefore the differences in the effect of applying

SI at various points along the curve in Figure 7.1 can be demonstrated.

The query examples 7.1 to 7.4 are based on the queries and pseudo rule from the

example data model defined in Section 3.8:

if subject_type = 'Astronomy' then price = 29.95 (70%

confidence)

The original query used for examples 7.1 to 7.4 is:

1> select distinct price from titles

2> where subject_type = 'Astronomy'

The corresponding SI query only asks for the information requested by the

original query and unknown from this rule:

1> select distinct price from titles

2> where subject_type = 'Astronomy'

3> and (price < 29.95 or price > 29.95)

The subsequent examples (from 7.5 onwards) are based on the rule:

if title = 'Maths for beginners' then price = 15.00

(70% confidence).

Two groups of queries are used to demonstrate the impact of SI where costs are

reduced and where costs are increased.

 118

The detailed query optimiser’s processing plan that is output for each query is

listed in Appendix A4.

Example 7.1:

With data distribution such that the predicate variable is at the lowest end

of the normal distribution curve, as shown in Table 7.1 (point A in Figure

7.1).

Original Query: 79 1/Os

SI Query: 37 I/Os

The SI query is more efficient than the original query by 42 fewer I/Os (79 I/Os

for the original and 37 I/Os for the SI query). This is 46% of the original query’s

I/O – over a 50% improvement. This is due to increased data selectivity

enhancing the use of the index.

Example 7.2:

With data distribution changed so that predicate variable is at the lower-

mid end of the normal distribution curve, as shown in Table 7.1 (point B in

Figure 7.1).

Here the data is changed so that the antecedent is at neither the top end nor the

bottom end of the normal distribution – but at the lower-mid end, as can be seen,

where subject_type = 'Astronomy'.

Original Query: 2666 1/Os

SI Query: 886 I/Os

 119

Here, the benefit is also profound – I/O for the SI query is reduced to just over

33% of that of the original query – from 2666 I/Os to 886 I/Os due to the

increased data selectivity reducing the number of pages that need to be accessed.

Example 7.3:

With the data distribution changed again so that the predicate variable is at

the middle-upper range on the normal distribution curve, as shown in Table

7.1 (point C in Figure 7.1)

Original Query: 10616 1/Os

SI Query: 3490 I/Os

Here I/O is reduced to less than 33% of the original query from 10616 I/Os to

3490 I/Os. Again this is due to increased data selectivity enhancing the use of the

index.

Example 7.4:

With data distribution changed so that predicate variable is at the high or

top end of the normal distribution curve, as shown in Table 7.1 (point D in

Figure 7.1).

When the data is changed so that subject_type = 'Astronomy' is at the

top end of the normal distribution, as illustrated in the last column of Table 7.1.

Original Query: 159229 1/Os

SI Query: 33146 I/Os

In this case, with the predicate variable at the high end of the normal distribution,

the I/O is reduced by 126083 I/Os - from 159229 I/Os to 33146 I/Os. This is 20%

of the I/O of the original query.

 120

The reason for this is because the predicate variable, being at the top end of the

normal distribution curve, has had its selectivity increased sufficiently to have

made a difference. However, when the variable was at the low end of the normal

distribution as in example 7.1, selectivity was relatively high to start with,

therefore adding the additional SI predicate did not increase selectivity by the

same magnitude.

From the previous 4 examples, we can see that the higher on the normal

distribution curve the variable is positioned, the greater the benefit of SI in

reducing I/O by a higher proportion.

The rest of the examples are based on the rule:

if title = 'Maths for beginners' then price = 15.00

(70% confidence).

For each data distribution, there are 2 different queries based on it, for which the

same rule is applicable, by using the SI procedure.

The original query used for examples 7.5 to 7.8 is:

1> select distinct total_sold from titles

2> where title = 'Maths for beginners'

The corresponding SI query only asks for the information requested by the

original query and unknown from this rule:

1> select distinct total_sold from titles

2> where title = 'Maths for beginners'

3> and (price < 15 or price > 15)

4> union

5> select distinct total_sold from titles

 121

6> where title = 'Maths for beginners'

7> and price = 15

The original query used for examples 7.9 to 7.12 is:

1> select distinct price from titles

2> where title = 'Maths for beginners'

The corresponding SI query only asks for the information requested by the

original query and unknown from this rule. The rule indicates the existence of

price = 15 for this title, hence this is eliminated from the query.

SI Query:

1> select distinct price from titles

2> where title = 'Maths for beginners'

3> and (price < 15 or price > 15)

4> union

5> select 15

As noted in example 6.11, using Sybase, a SELECT statement may retrieve a

literal value without a FROM clause.

The rule’s antecedent is initially at the low end of the normal distribution. Then

the data distribution is changed so that it is at intermediate positions on the

normal distribution curve and lastly on the highest end with examples included at

each point.

The data distributions used for the following queries are detailed in Table 7.2

below. The points (A, B, C or D) indicate the position of the predicate on the

curve in Figure 7.1.

 122

Title Predicate
variable at
low end of
normal
distribution
(point A)

Predicate
variable at
low-mid end
of normal
distribution
(point B)

Predicate
variable at
high-mid end
of normal
distribution
(point C)

Predicate
variable at high
end of normal
distribution
(point D)

Maths for beginners 60 2000 20000 100000

World Discovery 60 60 60 60

European Cities 125 125 125 125

Houses and Gardens 125 125 125 125

Cats and Dogs 250 250 250 250

Zoo Animals 250 250 250 250

House Plants 500 500 500 500

Make Up Colour 500 500 500 500

Australia 1000 1000 1000 1000

PC World 1000 1000 1000 1000

Running 2000 60 2000 2000

Yoga for All 2000 2000 2000 2000

Internet Design 3500 3500 3500 3500

Starting on the Internet 3500 3500 3500 3500

Holistic Health 6000 6000 6000 6000

Operating Systems 6000 6000 6000 6000

Java Beans 10000 10000 10000 10000

Networks 10000 10000 10000 10000

Horticulture 20000 20000 100000 20000

Jewellery Design 20000 20000 20000 20000

Gardening 25000 25000 25000 25000

Refloxology for Hands 25000 25000 25000 25000

Algebra 50000 50000 50000 50000

Style 50000 50000 50000 50000

Advanced Maths 75000 75000 75000 75000

Basic Grammar 75000 75000 75000 75000

Costumes 100000 100000 60 60

Table 7.2 – Data Distributions – Set 2

 123

Example 7.5:

With data distribution such that the antecedent is at the low end of the

normal distribution curve, as defined in Table 7.2 (point A in Figure 7.1).

Original Query: 77 1/Os

SI Query: 84 I/Os

In this example, there is no advantage in using SI. I/O is increased by 9%.

Predicate selectivity was high in the original query, and the SI query did not add

sufficient extra selectivity that could reduce I/O. Also the columns selected were

not included in the index hence access to underlying data pages was necessary.

Example 7.6:

When the data distribution changed so that the antecedent is on the lower-

mid range of the normal distribution, as shown in Table 7.2 (point B in

Figure 7.1).

Original Query: 2751 1/Os

SI Query: 2861 I/Os

In this example, with the antecedent at the lower-mid range of the normal

distribution, I/O is increased from 2751 to 2861. This is a 4% increase. Again,

this is because predicate selectivity was high in the original query, and the SI

query did not add sufficient extra selectivity that could reduce I/O.

Example 7.7:

When the antecedent is changed so that it is at the mid-higher end of the

normal distribution curve (point C in Figure 7.1).

 124

Original Query: 41534 1/Os

SI Query: 62823 I/Os

This example shows that SI has actually increased the I/O from 41534 to 62823,

- nearly a 50% increase. Since indexed access is not used for this query, an extra

table scan is required, causing the large increase in I/O.

Example 7.8:

With data distribution such that antecedent is at the highest end of the

normal distribution curve (point D in Figure 7.1).

Original Query: 107837 1/Os

SI Query: 112476 I/Os

This gives no improvement in I/O, but actually increases the cost from 107837 to

112476 I/Os. This is a 4% increase. Selectivity is not increased enough to effect

the query plan, since predicate selectivity was high in the original query.

Example 7.9:

This example query is based on the same data distribution as example 7.5.

Original Query: 75 1/Os

SI Query: 33 I/Os

With the antecedent at the low end, the SI query has reduced I/O to 44% of the

original query – over 50% improvement, from 75 to 33 I/Os. The indexed access

covers the query and selectivity is increased enough to reduce the I/O required.

 125

Example 7.10:

This example query is based on the same data distribution as example 7.6.

Original Query: 2130 1/Os

SI Query: 909 I/Os

SI has reduced I/O to 42% of that required by the original query, from 2130 to

909. Again, this is because the indexed access covers the query and selectivity is

increased enough to reduce the I/O required.

Example 7.11:

This example query is based on the same data distribution as example 7.7.

Original Query: 21077 1/Os

SI Query: 6825 I/Os

In this example, I/O required by the SI query has been reduced to 33% of the

I/Os of the original query from 21077 to 6825 for the same reasons as the

previous example.

Example 7.12

This example query is based on the same data distribution as example 7.8.

Original Query: 104079 1/Os

SI Query: 32777 I/Os

This gives a large improvement in I/O - from 104079 to 32777, which is only

31% of the I/Os of the original query, due to increased selectivity enabling

increase in the use of the index.

 126

7.4 Conclusion

For the sample query set, we can see that SI is generally better where the

antecedent is at the high end of the normal distribution. This is because the

application of the SI algorithm increases the selectivity by a greater order of

magnitude compared to when the antecedent is at the low end.

Table 7.3 shows the rounded average improvement in I/O in relation to where the

antecedent lies on the normal distribution of the queries, where an improvement

is noted.

Position on normal distribution Approximate Average % improvement

Highest end (point D) 75%

Upper middle (point C) 70%

Lower middle (point B) 60%

Lowest end (point A) 50%

Table 7.3 – Average I/O Improvement with SI and Normal Distribution

The following graph similarly represents the effect of SI in terms of the

proportion of I/O used for the transformed query depending on where on the

normal distribution curve the antecedent is. This takes all the sample queries into

account including where there is no improvement due to there being no change in

the data access path.

 127

0
5

10
15
20
25
30
35
40
45
50

high (D) mid-high (C) mid-low (B) low (A)

Antecedent location on normal distribution

%
 o

f I
/O

 u
se

d
fo

r S
I Q

ue
ry

Series1

Figure 7.2 – Improvement for Normally Distributed Data with SI

Improvement can also be seen where the antecedent is at point A, the low end of

the normal distribution, although it is not by the same proportion because

selectivity is relatively high to start with in such cases. Moreover, the SI

improvement is greater where the increased selectivity is supported by an

indexed access strategy.

From the examples, it can also be seen that SI provides a distinct advantage

where the rule actually reduces the query being asked – that is, it especially helps

where less data is requested because the rule answers some of the original query.

This is more profound the higher up the normal distribution curve that the

antecedent is, although the advantage in this situation can be seen all the way

through, but to a lesser degree on the lower end of the normal distribution curve.

 128

Chapter 8

Concluding Remarks and Further Research

8.1 Introduction

The work presented in this thesis has been motivated by the scope for

exploitation in query optimisation of the potentially valuable information that

association rules, produced from database mining, can provide.

This thesis aims to help fill this gap by introducing a new strategy in query

processing that brings together two areas of DBMS research. These are data

mining of association rules and query optimisation. How they can be used

together in a complementary and novel way is analysed by proposing the new

concept of SI.

This concluding chapter presents a summary of what the thesis has discussed and

achieved. Additionally, it identifies some potential areas for further related

research.

8.2 Research Summary

Following a review of related work on data mining of association rules and

DBMS query optimisation, the new concept of SI was introduced and discussed

in detail. How it is distinguishable from other query processing strategies and can

 129

add value in situations, where the current or existing strategies cannot, was also

examined.

For SI to be practical, it should be able to be used within an existing extensible

database query optimiser. For it to be usable as a new strategy within an existing

DBMS query optimiser architecture, it is defined in a modular, encapsulated

fashion. Hence it is shown how it can be incorporated into the extensible

architecture as a new query processing module, or component.

The thesis has defined an algorithm for implementing SI, and representative

database queries processed by stepping through the algorithm. The query I/O

costs are compared before using SI with the cost of the post-SI transformed

query.

Following this, empirical evidence of the value of SI has been demonstrated by

using queries against two large real-world databases and comparing the

respective costs of processing both the original and the corresponding SI query.

This was followed by a discussion on when SI is most appropriate to use. For

this, a wide range of queries were used to help identify the situations where SI

resulted in increased efficiency. The types of situations that can give rise to

varying degrees of improvement were reviewed. Moreover, the situations that do

not benefit from the application of SI were also identified. Exceptional cases and

the effect that SI has on them were also analysed and presented.

To reduce the potential of bias in a single dataset, two independent real-world

databases were used for producing empirical results. In addition, a synthetic data

distribution based on the normal distribution was used to test SI against.

For facilitating further analysis, the independent well-established Decomposition

Algorithm for query processing was introduced. This enabled the comparison of

the costs of using SI with the costs of not using it, under a completely separate

query processing costing algorithm.

 130

8.3 Review of Aims and Accomplishments

The aim of using the output from the data mining of association rules in query

optimisation is achieved by SI providing a link between the two areas. The

reason for the introduction of SI is to reduce the query processing costs in some

situations where existing methods fail to achieve the same cost reduction. By

using the database association rules, query processing is extended beyond using

column value distribution statistics to being able to use relationships that exist

between data values held in the database. This increases the input to the query

optimisation process by providing more information than was previously made

available to it. The information may be sourced from the vast research carried out

in efficient database association rule mining or from any other source that

produces similar output. The use of the extra information that association rules

provide is demonstrated in both the situations where it can and the situations

where it cannot reduce the cost of answering the query.

Generally, SI reduces the cost of processing a query in situations where the data

access path used by the DBMS is more efficient for the SI query than for the

original query. The biggest advantage was seen where a rule can ‘cover’ or

completely answer a query, or demonstrates that there is a null or empty result

set.

Relatively large improvements were seen when the SI query is able to use an

index where previously a full table scan was required. The SI transformation

process was also useful where the data access path was the same but the

selectivity was increased so that the indexed search, for example, was narrowed

earlier in the index traversal procedure.

However, where the SI query resulted in the same access path, or resulted in a

union query with each part requiring a different access strategy, it was less

efficient to answer than the original query.

These results were seen with both the synthetic data and the real-world data.

 131

With the normally distributed data, SI overall improves the efficiency of query

processing; however, the improvement was greater where the rule antecedent had

a higher frequency (higher up on the curve).

It is seen that in addition to encouraging use of concepts such as rule pages and

rule covering, SI can also be used in conjunction with existing researched

concepts, such as partial indexing in a complementary manner. This adds to the

value of related existing research.

8.4 Further Research

The research started in this thesis can be taken further and built upon in several

ways.

SI has been studied in respect of SQL select-project queries, excluding

aggregates, group by and having clauses. Investigation of a wider class of

queries in particular those involving joins, remains for future work.

The thesis has studied SI with respect to relational databases only. However, SI

can be researched with non-relational databases, such as object-oriented or

network databases. Its applicability and usefulness can similarly be considered

and a SI query processing region or component introduced into an object-

oriented (or alternatively structured) database’s extensible query optimiser. A

limitation to be aware of is that there is not so vast a base of research on data

mining of association rules for databases other than relational.

Although SI is considered more suitable for very large databases such as data

warehouses, where the skewness of the data is relatively stable, research could be

carried out to investigate the effects of varying degrees of changes in the data

distribution. The impact of SI on query processing efficiency could be

investigated. The point when it becomes feasible or profitable to update the

 132

association rules that are used as input may be studied in more detail, as well as

the data change volatility impact on the suitability of using SI.

SI and partial indexing are complementary. Research into using these strategies

in conjunction with each other can be taken further. This may look into

situations, for example, where a useful high confidence rule is found; the

question then arises as to whether the remainder of the data should be partially

indexed? What space saving and performance advantage could this achieve? The

various trade-offs and turning points in profitability can thus be analysed.

 133

References

1. K Aberer and G Fischer

Semantic Query Optimisation for Methods in Object Oriented Database Systems

IEEE International Conference on Data Engineering, Taipei, March 1995, pp 70–

79.

2. R Agrawal and R Srikant

Fast Algorithms for Mining Association Rules in Large Databases

International Conference on Very Large Databases, Santiago, September 1994,

pp 487-500.

3. R Agrawal, T Imielinski and A Swami

Mining Association Rules Between Sets of Items in Large Databases

Proceedings of ACM SIGMOD International Conference on Management of

Data, Washington, May 1993, pp 207-216.

4. D Beneventano, S Bergamaschi and C Sartori

Description Logics for Semantic Query Optimization in Object-Oriented

Database Systems

ACM Transactions on Database Systems, Volume 28, Issue 1, March 2003, pp 1-

50.

5. S Ceri and J Widom

Managing Semantic Heterogeneity with Production Rules and Persistent Queries

International Conference on Very Large Databases, Dublin, August 1993, pp

108-119.

6. U Chakravarthy, J Grant and J Minker

Logic-Based Approach to Semantic Query Optimization

 134

ACM Transactions on Database Systems, Volume 15, Issue 2, June 1990, pp162-

207

7. C Chan, B Ooi and H Lu

Extensible Buffer Management of Indexes

International Conference on Very Large Databases, Vancouver, August 1992, pp

444-454.

8. R Choenni and A Siebes

A Framework for Query Optimisation to Support Data Mining

Computer Science/Department of Algorithmics and Architecture, Report CS-

R9637 ISSN 0169-118X, Proceedings of the International Workshop on

Database and Expert Systems Application, Toulouse, September 1997.

9. H Darwen

The Role of Functional Dependence in Query Decomposition

Relational Database Writings 1989-1991, Addison-Wesley 1992, Chapter 10, pp

133-154.

10. D Das

Making Database Optimisers More Extensible

PhD thesis, University of Texas at Austin, 1995.

11. D Das and D Batory

Prairie: An Algebraic Framework for Rule Specification in Query Optimisers

IEEE International Conference on Data Engineering, Taipei, March 1995, pp

201-210.

12. R Elmasri and S Navathe

Fundamentals of Database Systems

Addison-Wesley, 4th edition 2003.

13. U Fayyed, G Piatetsky-Shapiro, R Uthurusamy

 135

Panel and workshop reports from KDD-2003: Data Mining: the next 10 years

ACM SIGKDD Explorations Newsletter, Volume 5, Issue 2, December 2003, pp

191-196.

14. L Feagres, D Maier and T Sheard

Specifying Rule based Query Optimisers in a Reflective Framework

IEEE International Conference on Deductive and Object-Oriented Databases,

Phoenix, December 1993, pp 146-168.

15. J Freytag

A Rule Based View of Query Optimisation

Proceedings of ACM SIGMOD International Conference on the Management of

Data, San Francisco, May 1987, pp 173-180.

16. P Godfrey, J Gryz and C Zuzarte

Exploiting Constraint-like Data Characterizations in Query Optimisation

Proceedings of ACM SIGMOD International Conference on the Management of

Data, California, May 2001, pp 582-592.

17. G Graefe

Volcano: An Extensible and Parallel Query Evaluation System

University of Colorado at Boulder, Technical Report No 481, 1990.

18. L Haas, J Freytag, G Loman and H Pirahesh

Extensible Query Processing in Starburst
Proceedings of ACM SIGMOD International Conference on the Management of

Data, Oregon, May 1989, pp 377-388.

19. J Han and Y Fu

Discovery of Multiple Level Association Rules from Large Databases

J Han and Y Fu, International Conference on Very Large Databases, Zurich,

September 1995, pp 420-431.

20. J Han, Huang, N Cercone and Y Fu

 136

Intelligent Query Answering by Knowledge Discovery Techniques

IEEE Transactions on Knowledge and Data Engineering, Volume 8, Issue 3,

June 1996, pp 373-390.

21. C Hsu and C Knoblock

Rule Induction for Semantic Query Optimization

Proc of the 11th International Conference on Machine Learning, New

Brunswick, NJ, 1994, pp 112-120

22. Y Huhtala, J Karkkainen, P Porkka and H Toivonen

Efficient Discovery of Functional and Approximate Dependencies Using

Partitions

International Conference on Data Engineering, Orlando, February 1998, pp 392-

401.

23. K Joshi

Analysis of Data Mining Algorithms

Added to www.gl.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm in March 2004.

24. C Kilger and G Moerkotte

Indexing Multiple Sets

International Conference on Very Large Databases, Santiago, September 1994,

pp 180-191.

25. W Kim, K Kim and A Dale

Indexing Techniques for Object Oriented Databases

Object Oriented Concepts, Databases and Applications, Addison-Wesley, 1989,

pp 371-394.

26. W Kim, D Reiner and D Batory (editors)

Query Processing in Database Systems

Springer-Verlag, 1995.

27. J J King

http://www.gl.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm

 137

QUIST: A System for Semantic Query Optimization in Relational Databases

International Conference on Very Large Data Bases, Cannes, September 9-11,

1981, pp 510-517

28. M Klemettinen, H Mannila, P Ronkainen, H Toivonen and A Verkamo

Finding Interesting Rules from Large Sets of Discovered Association Rules

IEEE International Conference on Information and Knowledge Management,

Maryland, December 1994, pp 401-407.

29. D Lane

HyperStat Online Textbook, http://www.davidmlane.com/hyperstat/

Professor of Psychology, Statistics and Management, Rice University, 2003.

30. H Mannila, H Toivonen and A Verkamo

Efficient Algorithms for Discovering Association Rules

AAAI Workshop of Knowledge Discovery in Databases, Seattle, July 1994, pp

181-192.

31. G Mitchell

Extensible Query Processing in an Object Oriented Database

PhD thesis, Brown University, May 1993

32. Oracle Corporation

Oracle Product Manuals.

33. H Pang, H Lu, and B Ooi.

An Efficient Semantic Query Optimization Algorithm.

IEEE International Conference on Data Engineering, Kobe Japan, April 1991 pp

326-335.

34. J Park, M Chen and P Yu

An Effective Hash - Based Algorithm for Mining Association Rules

ACM SIGMOD International Conference on the Management of Data, San Jose,

May 1995, pp 175-186.

 138

35. T Ravindra-Babu, M Narasimha-Murty, V Agrawal

Hybrid Learning Scheme for Data Mining Applications

Fourth International Conference on Hybrid Intelligent Systems, Kitakyushu,

Japan, December 2004, pp 266-271.

36. S Sarawagi, S Thomas and R Agrawal

Integrating Association Rule Mining with Relational Database Systems:

Alternatives and Implications

ACM SIGMOD International Conference on the Management of Data, Seattle,

June 1998, pp 343-355.

37. C Sartori and M Scalas

Partial Indexing for Non Uniform Data Distributions in Relational Database

Management Systems

IEEE Transactions on Knowledge and Data Engineering, Volume 6, Issue 3,

June1994, pp 420-429.

38. A Savasere, E Omiecinski and S Navathe

An Efficient Algorithm for Mining Association Rules in Large Databases

International Conference on Very Large Databases, Zurich, September 1995, pp

432-444.

39. S Shekhar, B Hamidzadeh, A Kohli and M Coyle

Learning Transformation Rules for Semantic Query Optimization: A Data-

Driven Approach

IEEE Transactions on Knowledge and Data Engineering Volume 5, Issue 6,

December 1993, pp 950-964.

40. S Shenoy and Z Ozsoyoglu

Design and Implementation of a Semantic Query Optimizer

IEEE Transactions on Knowledge and Data Engineering, Volume 1, Issue 3,

September 1989, pp 344-361.

 139

41. M Siegel, E Sciore and S Salveter

A Method for Automatic Rule Derivation to Support Semantic Query

Optimisation

ACM Transactions on Database Systems, Volume 17, Issue 4, December 1992,

pp 563-600.

42. R Srikant and R Agrawal

Mining Generalised Association Rules

International Conference on Very Large Databases, Zurich, September 1995, pp

407-419.

43. R Srikant and R Agrawal

Mining Quantitative Association Rules in Large Relational Tables

Proceedings of ACM SIGMOD International Conference on Management of

Data, Montreal, June 1996, pp 1-12.

44. M Stonebraker, L Rowe and M Hirohama

The Implementation of POSTGRES

IEEE Transactions on Knowledge and Data Engineering Volume 2, Issue 1,

March 1990, pp 125-142.

45. Sybase Inc.

Sybase Adaptive Server Enterprise Manuals.

46. T Topaloglou, A Illarramandi, and L Sbattella

Query Optimisation for Knowledge Base Management Systems: Temporal,

Syntactic and Semantic Transformations

IEEE International Conference on Data Engineering, Tempe, February 1992, pp

310-319.

47. A Trigoni

Ch 6: Using Association Rules to Optimize Queries Semantically from ‘Semantic

Optimization of OQL Queries’

 140

Technical Report No 547, ISSN 1476-2986, October 2002, University of

Cambridge Computer Laboratory

48. A Trigoni and K Moody

Using Association Rules to Add or Eliminate Query Constraints Automatically

IEEE Proceedings of the Thirteenth International Conference on Scientific and

Statistical Database Management (SSDBM 01), 2001, pp 124-133.

49. Whitecross Systems Inc.

Mining Very Large Databases to Support Knowledge Exploration

Whitepaper, Jan 2001.

50. E Wong and K Yousefi

Decomposition - A Strategy for Query Processing

ACM Transactions on Database Systems, Volume 1, Issue 3, New York,

September 1976, pp 223-241.

51. C Yu and W Sun

Automatic Knowledge Acquisition and Maintenance for Semantic Query

Optimization

IEEE Transactions on Knowledge and Data Engineering, Volume 1, Issue 3,

September 1989, pp 362-375.

52. N Zhong, L Chunnian, Y Yao, M Ohshima, M Huang, J Huang

Relational Peculiarity Oriented Data Mining

IEEE International Conference on Data Mining, Brighton, November 2004, pp

575-578.

 141

Appendix A1

In this appendix, some terms and keywords that are used throughout the thesis

are defined. The definitions are with respect to relational databases. Terms in

italics are subsequently defined in the ensuing list of definitions

Approximate dependency

A functional dependency that almost holds. Some rows can contain exceptions to

the stated dependency. This is an alternative name for an association rule [30].

Bitmap Index

An index that uses a string of bits that corresponds to rows in a table to indicate

whether the indexed value is stored in a row. There is a bit string for each

possible data value [12].

Clustered Index

An index where the data is physically stored in the order of the indexed columns.

This contrasts to a non-clustered index where the storage order of data in the

table is not related to the indexed keys (or columns) [12].

Confidence

The probability that a row contains both the antecedent and the consequent of a

rule given that the antecedent occurs. The confidence statistic is the measure of a

rule’s strength [12].

Database page

A unit of storage for the database objects. Data pages store data rows for the

tables, index pages store index nodes for the indexes [45].

Data Mining of Association Rules

A process for discovering association rules from a large database. This is also

known as knowledge discovery [12].

 142

Functional dependency

This states that the value of an attribute (or set of attributes) is uniquely

determined by the value of some other attribute (or set of attributes) [12].

Index

A database object that can speed access to specific data rows by providing an

access path allowing direct access to data based on an index term [12].

Integrity constraints

Enforce the data values that are acceptable for certain attributes [12].

Optimiser extensibility

The ability to add new query processing strategies to the database management

system’s optimiser [17].

Partial indexes

A partial index is an index that has some condition applied to it such that it only

includes a portion of the rows in a table. This can allow the index to remain small

even though the table may be rather large, and have fairly extreme selectivity

[37].

Query optimisation

The process of analysing a query to find out what resources are needed to answer

it and how the resources can be minimized to answer the query more efficiently

[12].

Rule covering

This is where a rule has 100% confidence and may be used to completely answer

a query if the query’s request has all parts satisfied by the rule.

Rule page

This is a new concept introduced in the thesis. A rule page is a database page for

storing the association rules that are relevant to the database querying patterns.

 143

Semantic query optimisation

A query optimisation strategy whereby a query is transformed based on the

functional dependencies known about the data. It maintains the semantics or

meaning of the query [12].

 144

Appendix A2

The following typefaces are used throughout the thesis for the purposes defined.

Times New Roman is used for general text.

Courier New is used for code fragments.

Italic is used for definitions, formulae and algorithms. It is also used for
synonyms and variables.

Arial Narrow is used for query optimiser output and the Decomposition Algorithm
output.

 145

Appendix A3

This lists the main abbreviations used throughout the thesis.

DBMS - Database Management System

DSS - Decision Support System

I/O – Input / Output

LRU - Least Recently Used

MIS - Management Information System

MRU - Most Recently Used

NPAG – Number of Pages

OLTP – On-Line Transaction Processing

RDBMS – Relational Database Management System

SARG – Search Argument

SI - Semantic Inequivalence

SQL - Structured Query Language

SQO – Semantic Query Optimisation

VLDB – Very Large Database

 146

Appendix A4

This appendix contains the detailed query plans produced by the optimiser, of the

original queries and corresponding SI queries that are used in Chapters 6 and 7.

A short explanation of the Sybase Adaptive Server query plans is:

Step: output displays "STEP N" for every query, where N is an integer,

beginning with "STEP 1". For some queries, Adaptive Server cannot retrieve the

results in a single step and breaks the query plan into several steps.

From Table: indicates which table the query is reading from. The "FROM

TABLE" message is followed on the next line by the table name.

To Table: for operations that require an intermediate step to insert rows into a

worktable, "TO TABLE" indicates that the results are going to the "Worktable"

table rather than to a user table.

Nested Iteration: indicates one or more loops through a table to return rows.

Table Scan: indicates the query performs a table scan.

Clustered Index: indicates that the query optimizer chose to use the clustered

index on a table to retrieve the rows.

Index Name: indicates that the query is using an index to retrieve the rows. The

message includes the index name.

Scan Direction: indicate the direction of a table or index scan – can be Forward

scan or Backward scan.

Index Covering: indicates that an index covers the query.

Keys: indicates the indexed columns used when an index is used to locate rows.

I/O Size: this reports the I/O size used in the query.

Cache Strategy: indicates the buffer cache replacement strategy used for data

pages and for index leaf pages - least recently used (LRU) pages or most recently

used (MRU).

 147

Chapter 6 Queries – First Data Set

Example 6.1:

Original Query: select * from TClnt where Ccy = 'ZAR'

Rule: if Ccy = 'ZAR' then CtryResidenceCode = 220 (90% confidence)

Original Query: 6154 I/Os

SI Query: 364 I/Os

Original Query:

1> select * from TClnt

2> where Ccy = 'ZAR'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 TClnt
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

Table: TClnt scan count 1, logical reads: (regular=6154 apf=0 total=6154),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

 148

SI Query:

1> select * from TClnt where ccy = 'ZAR'

2> and ctryresidencecode = 220

3> union

4> select * from TClnt where ccy = 'ZAR'

5> and (ctryresidencecode < 220

6> or ctryresidencecode > 220)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

FROM TABLE
 TClnt
 Nested iteration.
 Index : Clnt_x2
 Forward scan.
 Positioning by key.
 Keys are:
 CtryResidenceCode ASC
 Ccy ASC
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

 FROM TABLE
 TClnt

 149

 Nested iteration.
 Index : Clnt_x2
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:

CtryResidenceCode ASC
 Ccy ASC
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

 FROM TABLE
 TClnt
 Nested iteration.
 Index : Clnt_x2
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 CtryResidenceCode ASC
 Ccy ASC
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

FROM TABLE
 TClnt
 Nested iteration.
 Index : Clnt_x2
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:

 150

 CtryResidenceCode ASC
 Ccy ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

 FROM TABLE
 TClnt
 Nested iteration.
 Using Dynamic Index.
 Forward scan.
 Positioning by Row IDentifier (RID).
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 1
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.
Table: TClnt scan count 1, logical reads: (regular=7 apf=0 total=7),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
The sort for Worktable2 is done in Serial

Table: TClnt scan count 2, logical reads: (regular=316 apf=0 total=316),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable2 scan count 1, logical reads: (regular=20 apf=0 total=20),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
The sort for Worktable1 is done in Serial

Table: Worktable1 scan count 0, logical reads: (regular=21 apf=0 total=21),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0

 151

Total writes for this command: 5

Example 6.2:

Original Query: select distinct PrInd from TClnt where profession = '160'

Rule: if Profession = '160' then PrInd = 'Y' – 95% confidence

Original Query: 6348 I/Os

SI Query: 37 I/Os

In this example, I/O is reduced by 200 times. This is because the query optimiser

decides to full table scan for the original query, while the SI query enables an

index to be used which covers the query so that the underlying table does not

need to be accessed. The index answers the SI query.

Original Query:

1> select distinct PrInd from TClnt

2> where profession = '160'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 TClnt
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.

 152

 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: TClnt scan count 1, logical reads: (regular=6154 apf=0 total=6154), physical reads: (regular=0 apf=0
total=0), a
pf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=194 apf=0 total=194), physical reads: (regular=0
apf=0 total=0), apf IOs used=0
Total writes for this command: 0

SI Query:

1> select distinct PrInd from TClnt

2> where profession = '160'

3> and (PrInd < 'Y' or PrInd > 'Y')

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 153

 FROM TABLE
 TClnt
 Nested iteration.
 Index : Clnt_x3
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 PrInd ASC
 Profession ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

 FROM TABLE
 TClnt
 Nested iteration.
 Index : Clnt_x3
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 PrInd ASC
 Profession ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

FROM TABLE
 TClnt
 Nested iteration.
 Using Dynamic Index.
 Forward scan.
 Positioning by Row IDentifier (RID).
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 154

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable2 is done in Serial

The sort for Worktable1 is done in Serial

Table: TClnt scan count 2, logical reads: (regular=7 apf=0 total=7), physical reads: (regular=0 apf=0
total=0), apf IOs
 used=0
Table: Worktable1 scan count 0, logical reads: (regular=12 apf=0 total=12), physical reads: (regular=0
apf=0 total=0), apf
IOs used=0
Table: Worktable2 scan count 1, logical reads: (regular=18 apf=0 total=18), physical reads: (regular=0
apf=0 total=0), apf
IOs used=0
Total writes for this command: 5

Example 6.3:

Original Query: select distinct Deal from TClnt where Charity = 'Y'

Rule: if Charity = 'Y' then Deal = 'N' (100% confidence)

Original query: 6154 I/Os

SI query: 1 I/O (rule page – rule covered query).

This example demonstrates the most powerful use of SI – where the rule has

100% confidence and ‘covers’ or answers the SI query without the need to access

the table or index.

 155

Original Query:

1> select distinct Deal from TClnt

2> where Charity = 'Y'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 TClnt
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

 156

Table: TClnt scan count 1, logical reads: (regular=6154 apf=0 total=6154),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=925 apf=0 total=925),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

versus: 1 read of the rule page via rule covering. There are no indexes on either

of these columns.

The rule is (if Charity = 'Y' then Deal = 'N') – 100%

confidence

Example 6.4

Original Query: select Description from TClnt where profession = '160'

Rule: if Profession = '160' then PrInd = 'Y' (95% confidence)

Original Query: 6154 I/Os

SI Query: 6385 I/Os

Original Query:

1> select Description from TClnt

2> where profession = '160'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 TClnt
 Nested iteration.
 Table Scan.

 157

 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

Table: TClnt scan count 1, logical reads: (regular=6154 apf=0 total=6154), physical reads: (regular=21
apf=756 total=777), apf IOs used=756
Total writes for this command: 0

SI Query:

1> select Description from TClnt

2> where profession = '160'

3> and (PrInd < 'Y' or PrInd > 'Y')

4> union

5> select Description from TClnt

6> where profession = '160'

7> and PrInd = 'Y'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

 FROM TABLE
 TClnt
 Nested iteration.
 Index : Clnt_x3
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 PrInd ASC
 Profession ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

 158

FROM TABLE
 TClnt
 Nested iteration.
 Index : Clnt_x3
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 PrInd ASC
 Profession ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

 FROM TABLE
 TClnt
 Nested iteration.
 Using Dynamic Index.
 Forward scan.
 Positioning by Row IDentifier (RID).
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

 FROM TABLE
 TClnt
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.
STEP 1
 The type of query is SELECT.

 159

 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable2 is done in Serial

Table: TClnt scan count 2, logical reads: (regular=7 apf=0 total=7), physical reads: (regular=0 apf=0
total=0), apf IOs
 used=0
Table: Worktable2 scan count 1, logical reads: (regular=18 apf=0 total=18), physical reads: (regular=0
apf=0 total=0), apf IOs used=0
Table: TClnt scan count 1, logical reads: (regular=6154 apf=0 total=6154), physical reads: (regular=0 apf=0
total=0), apf IOs used=0
The sort for Worktable1 is done in Serial

Table: Worktable1 scan count 0, logical reads: (regular=206 apf=0 total=206), physical reads: (regular=0
apf=0 total=0), apf IOs used=0
Total writes for this command: 6

Example 6.5:

Original Query: select count(*) from tPortfolio where GroupSector = 13770

Rule: if GroupSector = 13770 then IndexCategory = 8 (99% confidence)

Original Query: 33957 I/Os

SI Query: 11745 I/Os

 160

This reduces I/O by two-thirds of the original, by using indexed access rather

than a table scan. However, the reduction is not as great as some of the previous

examples because the index is accessed twice.

Original Query:

1> select count(*) from tPortfolio

2> where GroupSector = 13770

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped COUNT AGGREGATE.

 FROM TABLE
 tPortfolio
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

 STEP 2
 The type of query is SELECT.

Table: tPortfolio scan count 1, logical reads: (regular=33957 apf=0
total=33957), physical reads: (regular=8 apf=5026 total=5034), apf IOs
used=5026
Total writes for this command: 0

SI Query:

1> select count(*) from tPortfolio

2> where GroupSector = 13770 and IndexCategory = 8

 161

3> union

4> select count(*) from tPortfolio

5> where GroupSector = 13770

6> and (IndexCategory < 8 or IndexCategory >8)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped COUNT AGGREGATE.

 FROM TABLE
 tPortfolio
 Nested iteration.
 Index : Pf_ix3
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 IndexCategory ASC
 GroupSector ASC
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

 STEP 2
 The type of query is INSERT.
 The update mode is direct.
 TO TABLE
 Worktable1.
 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped COUNT AGGREGATE.

 FROM TABLE
 tPortfolio
 Nested iteration.
 Index : Pf_ix3
 Forward scan.
 Positioning at index start.

 162

 Index contains all needed columns. Base table will not be read.
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

 STEP 2
 The type of query is INSERT.
 The update mode is direct.
 TO TABLE
 Worktable1.

 STEP 1
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

Table: tPortfolio scan count 1, logical reads: (regular=4274 apf=0
total=4274), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: tPortfolio scan count 1, logical reads: (regular=7463 apf=0
total=7463), physical reads: (regular=8 apf=380 total=388), apf IOs used=394
The sort for Worktable1 is done in Serial

Table: Worktable1 scan count 0, logical reads: (regular=10 apf=0 total=10),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

Example 6.6:

Original Query: select * from TCompRet where CompositeType = 40

 163

Rule: if CompositeType = 40 then ClassificationCode = 157 (100%

confidence)

Original Query: 11470 I/Os

SI Query: 11 I/Os

This example enables the SI query to use a useful index and has a rule with 100%

confidence. The rule does not ‘cover’ or answer the query, hence table and index

access are required to answer the query.

Original Query:

1> select * from TCompRet

2> where CompositeType = 40

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 TCompRet
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

Table: TCompRet scan count 1, logical reads: (regular=11470 apf=0
total=11470), physical reads: (regular=453 apf=930 total=1383), apf IOs
used=930
Total writes for this command: 0

SI Query:

1> select * from TCompRet

 164

2> where CompositeType = 40

3> and ClassificationCode = 157

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 TCompRet
 Nested iteration.
 Index : ixcompreturn3
 Forward scan.
 Positioning by key.
 Keys are:
 ClassificationCode ASC
 CompositeType ASC
 Using I/O Size 16 Kbytes for index leaf pages.
 With MRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

Table: TCompRet scan count 1, logical reads: (regular=11 apf=0 total=11),
physical reads: (regular=7 apf=0 total=7), apf IOs used=0
Total writes for this command: 0

Example 6.7:

Original Query: select * from TCompRet where CompositeType = 39

Rule: If CompositeType = 39 then ClassificationCode = 147 (95%)

Original Query: 11470 I/Os

SI Query: 1936 I/Os

 165

This example reduces I/O by changing the data access path from a table scan to

an index. The reduction is I/O is profound, but not as much as some queries

because the SI query is a union’ed query – and the index is accessed twice – once

for each part of the union-ed query.

Original Query:

1> select * from TCompRet

2> where CompositeType = 39

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 TCompRet
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

Table: TCompRet scan count 1, logical reads: (regular=11470 apf=0
total=11386), physical reads: (regular=8 apf=392 total=400), apf IOs used=392
Total writes for this command: 0

SI Query:

1> select * from TCompRet where CompositeType = 39

2> and ClassificationCode = 147

3> union

4> select * from TCompRet where CompositeType = 39

5> and (ClassificationCode < 147

6> or ClassificationCode > 147)

 166

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

 FROM TABLE
 TCompRet
 Nested iteration.
 Index : ixcompreturn3
 Forward scan.
 Positioning by key.
 Keys are:
 ClassificationCode ASC
 CompositeType ASC
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

FROM TABLE
 TCompRet
 Nested iteration.
 Index : ixcompreturn3
 Forward scan.
 Positioning at index start.
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 167

 STEP 1
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

Table: TCompRet scan count 1, logical reads: (regular=20 apf=0 total=20),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: TCompRet scan count 1, logical reads: (regular=1887 apf=0
total=1887), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
The sort for Worktable1 is done in Serial

Table: Worktable1 scan count 0, logical reads: (regular=29 apf=0 total=29),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

Example 6.8:

Original Query: select * from TClnt where Charity = 'Y' and Deal = 'Y'

Rule: if Charity = 'Y' then Deal = 'N' (100% confidence)

Original query: 6154 I/O

SI Query: 1 I/O – for the rule page.

This is an ‘inverse’ example, where the 2 predicates in the where clause conflict

with a 100% rule, hence no results will be returned.

 168

This example is different in that it uses the SI algorithm to answer the query

indirectly by telling that it has no result set. This is because there is a 100%

confidence rule that the query’s predicate conflicts with.

Original Query:

1> select * from TClnt

2> where Charity = 'Y' and Deal = 'Y'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 TClnt
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

Table: TClnt scan count 1, logical reads: (regular=6154 apf=8 total=6162),
physical reads: (regular=8 apf=664 total=672), apf IOs used=664
Total writes for this command: 0

Example 6.9:

Original Query: select distinct Security from TQuote where QuoteCode =

'SETTLEMENT'

Rule: if QuoteCode = 'SETTLEMENT' then MarketCode = 'MM' (72%)

 169

Original Query: 58134 I/Os

SI Query: 8724 I/Os

In this example, I/O is reduced in the SI query even though the same access path

is used (indexed acccess). In this, SI enables greater selectivity of the index,

reducing the I/O required by some 85%.

Original Query:

1> select distinct Security from TQuote

2> where QuoteCode = 'SETTLEMENT'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Executed in parallel by coordinating process and 3 worker processes.
 Worktable1 created for DISTINCT.

 FROM TABLE
 TQuote
 Nested iteration.
 Index : tqu_x1
 Forward scan.
 Positioning by key.
 Keys are:
 QuoteCode ASC
 Executed in parallel with a 3-way hash scan.
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2

 170

 The type of query is SELECT.
 Executed by coordinating process.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: TQuote scan count 3, logical reads: (regular=8424 apf=0
total=8424), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=49710 apf=0
total=49710), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

SI Query:

1> select distinct Security from TQuote

2> where QuoteCode = 'SETTLEMENT'

3> and (MarketCode > 'MM' or MarketCode < 'MM')

4> union

5> select distinct Security from TQuote

6> where QuoteCode = 'SETTLEMENT'

7> and MarketCode = 'MM'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Executed in parallel by coordinating process and 3 worker processes.

 171

 FROM TABLE
 TQuote
 Nested iteration.
 Index : tqu_x1
 Forward scan.
 Positioning by key.
 Keys are:
 QuoteCode ASC
 MarketCode ASC
 Executed in parallel with a 3-way hash scan.
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Executed in parallel by coordinating process and 3 worker processes.

 FROM TABLE
 TQuote
 Nested iteration.
 Index : tqu_x1
 Forward scan.
 Positioning by key.
 Keys are:
 QuoteCode ASC
 MarketCode ASC
 Executed in parallel with a 3-way hash scan.
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 1

 172

 The type of query is SELECT.
 Executed by coordinating process.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

Table: TQuote scan count 3, logical reads: (regular=1681 apf=0
total=1681), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: TQuote scan count 3, logical reads: (regular=6755 apf=0
total=6755), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
The sort for Worktable1 is done in Serial

Chapter 6 Queries – Second Data Set

Example 6.10:

Original Query: select distinct machine_user_name from login_info

 where login_name = 'PWalds'

Rule: if login_name = 'PWalds' then machine name = 'RD-02727' (85%

confidence)

Original Query: 2078 I/Os

SI Query: 1426 I/Os

This is a sample query that would be executed by a Security/Audit group to

check the machines that logins are from.

 173

Original Query:

1> select distinct machine_user_name

2> from login_info

3> where login_name = 'PWalds'

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 3 worker processes.

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Executed in parallel by coordinating process and 3 worker processes.
 Worktable1 created for DISTINCT.

 FROM TABLE
 login_info
 Nested iteration.
 Index : ix2_login_info
 Forward scan.
 Positioning by key.
 Keys are:
 login_name ASC
 Executed in parallel with a 3-way hash scan.
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 Executed by coordinating process.
 This step involves sorting.

 FROM TABLE
 Worktable1.

 174

 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: login_info scan count 3, logical reads: (regular=738 apf=0 total=738),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=1340 apf=0
total=1340), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

SI Query:

1> select distinct machine_user_name

2> from login_info

3> where login_name = 'PWalds'

4> and machine_name = 'RD-02727'

5> union

6> select distinct machine_user_name

7> from login_info

8> where login_name = 'PWalds'

9> and (machine_name < 'RD-02727'

10> OR machine_name > 'RD-02727')

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 3 worker processes.

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Executed in parallel by coordinating process and 3 worker processes.

 FROM TABLE
 login_info

 175

 Nested iteration.
 Index : ix2_login_info
 Forward scan.
 Positioning by key.
 Keys are:
 login_name ASC
 machine_name ASC
 Executed in parallel with a 3-way hash scan.
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Executed in parallel by coordinating process and 3 worker processes.

 FROM TABLE
 login_info
 Nested iteration.
 Index : ix2_login_info
 Forward scan.
 Positioning by key.
 Keys are:
 login_name ASC
 Executed in parallel with a 3-way hash scan.
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 1
 The type of query is SELECT.
 Executed by coordinating process.
 This step involves sorting.

 176

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

Table: login_info scan count 3, logical reads: (regular=643 apf=0 total=643),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: login_info scan count 3, logical reads: (regular=738 apf=0 total=738),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
The sort for Worktable1 is done in Serial

Table: Worktable1 scan count 0, logical reads: (regular=45 apf=0 total=45),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

Example 6.11:

Original Query: select distinct machine_name from login_info

where login_name = 'PWalds'

Rule: if login_name = 'PWalds' then machine name = 'RD-02727' (85%

confidence)

Original query: 1312 I/Os

SI Query: 197 I/Os

This query is similar to the previous one, but the column in the select list is

indexed (whereas in the previous query it is not). Hence this is an ‘index

covered’ query, and the improvement can be compared to the non-index covered

query above.

 177

Original Query:

1> select distinct machine_name

2> from login_info

3> where login_name = 'PWalds'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 login_info
 Nested iteration.
 Index : ix2_login_info
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 login_name ASC
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

 178

The sort for Worktable1 is done in Serial

Table: login_info scan count 1, logical reads: (regular=22 apf=0 total=22),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=1290 apf=0
total=1290), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

SI Query:

1> select distinct machine_name from login_info

2> where login_name = 'PWalds'

3> and (machine_name < 'RD-02727'

4> or machine_name > 'RD-02727')

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 login_info
 Nested iteration.
 Index : ix2_login_info
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 login_name ASC
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.

 179

 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: login_info scan count 1, logical reads: (regular=22 apf=0 total=22),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=175 apf=0 total=175),
 physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

Example 6.12:

Original query: select distinct flow_calc_code from flow

where flow_type_code = 'INTEREST'

Rule: if flow_type_code = 'INTEREST' then flow_calc_code = 'SIMPLE'

(99% confidence)

Original Query: 198161

SI Query: 2097

This query is selecting the type of cash flow from a table storing all types of

flows. This looks at the calculation type used for Interest based cash flows.

Original Query:

1> select distinct flow_calc_code from flow

 180

2> where flow_type_code = 'INTEREST'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 flow
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: flow scan count 1, logical reads: (regular=44849 apf=0 total=44849),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=153312 apf=0
total=153312), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 2

 181

SI Query:

1> select distinct flow_calc_code from flow

2> where flow_type_code = 'INTEREST'

3> and (flow_calc_code < 'SIMPLEINT'

4> or flow_calc_code > 'SIMPLEINT')

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 flow
 Nested iteration.
 Index : ix_flow
 Forward scan.
 Positioning by key.
 Keys are:
 flow_calc_code ASC
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 flow
 Nested iteration.
 Index : ix_flow
 Forward scan.
 Positioning by key.
 Keys are:
 flow_calc_code ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.

 182

 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 flow
 Nested iteration.
 Using Dynamic Index.
 Forward scan.
 Positioning by Row IDentifier (RID).
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable2 is done in Serial

The sort for Worktable1 is done in Serial

Table: flow scan count 2, logical reads: (regular=1719 apf=0 total=1719),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=188 apf=0 total=188),
 physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable2 scan count 1, logical reads: (regular=190 apf=0 total=190),
 physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 5

Example 6.13:

 183

Original Query: select distinct curve_type_code from curve

where currency_code = 'CZK'

Rule: if currency_code = 'CZK' then curve_type_code = 'INTEREST'

(100% confidence)

Original Query: 479 I/Os

SI query: 1 I/O (rule covered - assuming a single rule page)

This is a ‘rule covered’ query – the rule used by SI algorithm answers the query

completely.

Original Query:

1> select distinct curve_type_code from curve

2> where currency_code = 'CZK'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 curve
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2

 184

 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: curve scan count 1, logical reads: (regular=394 apf=0 total=394),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=85 apf=0 total=85),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

Example 6.14:

Original Query: select count(*) from curve where currency_code = 'USD'

Rule: if currency_code = 'USD' then curve_type_code = 'FX' (79%

confidence)

Original Query: 394 I/Os

SI Query: 797 I/Os.

This is similar to the previous query but is not rule covered – as the rule is not

with 100% confidence.

In this example, SI is actually detrimental to performance.

Original Query:

 185

1> select count(*) from curve

2> where currency_code = 'USD'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped COUNT AGGREGATE.

 FROM TABLE
 curve
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 STEP 2
 The type of query is SELECT.

Table: curve scan count 1, logical reads: (regular=394 apf=0 total=394),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

SI Query:

1> select count(*) from curve

2> where currency_code = 'USD'

3> and curve_type_code = 'FX'

4> union

5> select count(*) from curve

6> where currency_code = 'USD'

7> and (curve_type_code < 'FX' or curve_type_code >

'FX')

 186

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped COUNT AGGREGATE.

 FROM TABLE
 curve
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 STEP 2
 The type of query is INSERT.
 The update mode is direct.
 TO TABLE
 Worktable1.

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped COUNT AGGREGATE.

 FROM TABLE
 curve
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 STEP 2
 The type of query is INSERT.
 The update mode is direct.
 TO TABLE
 Worktable1.

 187

 STEP 1
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

Table: curve scan count 1, logical reads: (regular=394 apf=0 total=394),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: curve scan count 1, logical reads: (regular=394 apf=0 total=394),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
The sort for Worktable1 is done in Serial

Table: Worktable1 scan count 0, logical reads: (regular=9 apf=0 total=9),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

Example 6.15:

Original Query: select count(*) from trade where trade_status_code =

'MATURED'

Rule: if trade_status_code = 'MATURED' then trade_info_code = 'FX'

(90% confidence)

Original Query: 106799 I/Os

SI Query: 2328 I/Os.

 188

This query is based on trades that have matured (expired or settled in the past).

The rule shows that 90% of the matured trades are foreign exchange trades,

which is because the mature quicker than other types.

SI is shown to provide a huge advantage in reducing the I/O required to answer

the query.

Original Query:

1> select count(*) from trade

2> where trade_status_code = 'MATURED'

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 3 worker processes.

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped COUNT AGGREGATE.
 Executed in parallel by coordinating process and 3 worker processes.

 FROM TABLE
 trade
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Executed in parallel with a 3-way hash scan.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 Parallel result buffer merge.

 STEP 2
 The type of query is SELECT.
 Executed by coordinating process.

Table: trade scan count 3, logical reads: (regular=106799 apf=0 total=106799),
 physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

 189

SI Query:

1> select count(*) from trade

2> where trade_status_code = 'MATURED'

3> and trade_info_code = 'FX'

4> union

5> select count(*) from trade

6> where trade_status_code = 'MATURED'

7> and (trade_info_code < 'FX' or trade_info_code >

'FX')

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped COUNT AGGREGATE.

 FROM TABLE
 trade
 Nested iteration.
 Index : ix2_trade
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 trade_info_code ASC
 trade_status_code ASC
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

 STEP 2
 The type of query is INSERT.
 The update mode is direct.
 TO TABLE
 Worktable1.

 STEP 1

 190

 The type of query is SELECT.
 Evaluate Ungrouped COUNT AGGREGATE.

 FROM TABLE
 trade
 Nested iteration.
 Index : ix2_trade
 Forward scan.
 Positioning at index start.
 Index contains all needed columns. Base table will not be read.
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

 STEP 2
 The type of query is INSERT.
 The update mode is direct.
 TO TABLE
 Worktable1.

 STEP 1
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

Table: trade scan count 1, logical reads: (regular=3 apf=0 total=3), physical
reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: trade scan count 1, logical reads: (regular=2316 apf=0 total=2316),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
The sort for Worktable1 is done in Serial

Table: Worktable1 scan count 0, logical reads: (regular=9 apf=0 total=9),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0

 191

Total writes for this command: 0

Example 6.16:

Original Query: select count(*) from sec where class_name = 'ISwapLeg'

Rule: if class_name = 'ISwapLeg' then sec_def_code = 'SPECIFIC' (93%

confidence)

Original query: 8820 I/Os

SI query: 683 I/Os

This query is based on looking at the classifications in a security table.

Original Query:

1> select count(*) from sec

2> where class_name = 'ISwapLeg'

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 3 worker processes.

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped COUNT AGGREGATE.
 Executed in parallel by coordinating process and 3 worker processes.

 FROM TABLE
 sec
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Executed in parallel with a 3-way hash scan.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 192

 Parallel result buffer merge.

 STEP 2
 The type of query is SELECT.
 Executed by coordinating process.

Table: sec scan count 3, logical reads: (regular=8820 apf=0 total=8820),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

SI Query:

1> select count(*)

2> from sec where class_name = 'ISwapLeg'

3> and sec_def_code = 'SPECIFIC'

4> union

5> select count(*)

6> from sec where class_name = 'ISwapLeg'

7> and (sec_def_code < 'SPECIFIC'

8> or sec_def_code > 'SPECIFIC')

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped COUNT AGGREGATE.

 FROM TABLE
 sec
 Nested iteration.
 Index : ix1_sec
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 sec_def_code ASC
 class_name ASC

 193

 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

 STEP 2
 The type of query is INSERT.
 The update mode is direct.
 TO TABLE
 Worktable1.

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped COUNT AGGREGATE.

 FROM TABLE
 sec
 Nested iteration.
 Index : ix1_sec
 Forward scan.
 Positioning at index start.
 Index contains all needed columns. Base table will not be read.
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

 STEP 2
 The type of query is INSERT.
 The update mode is direct.
 TO TABLE
 Worktable1.

 STEP 1
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.

 194

 With MRU Buffer Replacement Strategy for data pages.

Table: sec scan count 1, logical reads: (regular=334 apf=0 total=334),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: sec scan count 1, logical reads: (regular=340 apf=0 total=340),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
The sort for Worktable1 is done in Serial

Table: Worktable1 scan count 0, logical reads: (regular=9 apf=0 total=9),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

Example 6.17:

Original Query: select distinct source from sec where class_name =

'ISwapLeg'

Rule: if class_name = 'ISwapLeg' then sec_def_code = 'SPECIFIC' (93%

confidence)

Original Query: 121441 I/Os

SI Query: 9808 I/Os

Original Query:

1> select distinct source from sec

2> where class_name = 'ISwapLeg'

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 3 worker processes.

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Executed in parallel by coordinating process and 3 worker processes.
 Worktable1 created for DISTINCT.

 195

 FROM TABLE
 sec
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Executed in parallel with a 3-way hash scan.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 Executed by coordinating process.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: sec scan count 3, logical reads: (regular=8858 apf=0 total=8858),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=112583 apf=0
total=112583), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

SI Query:

1> select distinct source from sec

2> where class_name = 'ISwapLeg'

 196

3> and sec_def_code = 'SPECIFIC'

4> union

5> select distinct source from sec

6> where class_name = 'ISwapLeg'

8> and (sec_def_code < 'SPECIFIC'

9> or sec_def_code > 'SPECIFIC')

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 3 worker processes.

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Executed in parallel by coordinating process and 3 worker processes.

 FROM TABLE
 sec
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Executed in parallel with a 3-way hash scan.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Executed by coordinating process.

 FROM TABLE
 sec
 Nested iteration.
 Index : ix1_sec
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.

 197

 Keys are:
 sec_def_code ASC
 class_name ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

 FROM TABLE
 sec
 Nested iteration.
 Index : ix1_sec
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 sec_def_code ASC
 class_name ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

 FROM TABLE
 sec
 Nested iteration.
 Using Dynamic Index.
 Forward scan.
 Positioning by Row IDentifier (RID).
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 1
 The type of query is SELECT.
 Executed by coordinating process.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.

 198

 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

Table: sec scan count 3, logical reads: (regular=8858 apf=0 total=8858),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
The sort for Worktable2 is done in Serial

Table: sec scan count 3, logical reads: (regular=38 apf=0 total=38), physical
reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable2 scan count 1, logical reads: (regular=233 apf=0 total=233),
 physical reads: (regular=0 apf=0 total=0), apf IOs used=0
The sort for Worktable1 is done in Serial

Table: Worktable1 scan count 0, logical reads: (regular=679 apf=0 total=679),
 physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 7

Example 6.18:

Original Query: select distinct data_group_code from auth_status where

auth_type_code = 'NEW'

Rule: if auth_type_code = 'NEW' then data_group_code = 'trade_stlmt'

(80% confidence)

Original Query: 893681 I/Os

SI query: 114758 I/Os

Original Query:

1> select distinct data_group_code

2> from auth_status

3> where auth_type_code = 'NEW'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 199

Executed in parallel by coordinating process and 3 worker processes.

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Executed in parallel by coordinating process and 3 worker processes.
 Worktable1 created for DISTINCT.

 FROM TABLE
 auth_status
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Executed in parallel with a 3-way hash scan.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 Executed by coordinating process.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Parallel

Table: auth_status scan count 3, logical reads: (regular=56487 apf=0
total=56487), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=837194 apf=0
total=837194), physical reads: (regular=0 apf=0 total=0), apf IOs used=0

 200

Total writes for this command: 3

SI Query:

1> select distinct data_group_code

2> from auth_status

3> where auth_type_code = 'NEW'

4> and (data_group_code < 'trade_stlmt'

5> or data_group_code > 'trade_stlmt')

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 auth_status
 Nested iteration.
 Index : ix2_auth_status
 Forward scan.
 Positioning by key.
 Keys are:
 data_group_code ASC
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 auth_status
 Nested iteration.
 Index : ix2_auth_status
 Forward scan.
 Positioning by key.
 Keys are:
 data_group_code ASC
 Using I/O Size 2 Kbytes for index leaf pages.

 201

 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 auth_status
 Nested iteration.
 Using Dynamic Index.
 Forward scan.
 Positioning by Row IDentifier (RID).
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable2 is done in Serial

The sort for Worktable1 is done in Serial

Table: auth_status scan count 3, logical reads: (regular=16405 apf=0
total=16405), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=1043 apf=0
total=1043), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable2 scan count 1, logical reads: (regular=97310 apf=0
total=97310), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 541

 202

Example 6.19:

Original Query: select spot_date from trade where process_org_id = 3

Rule: if process_org_id = 3 then subject_org_id = 1 (100% confidence)

Original query: 78373 I/Os

SI query: 49316 I/Os

In this example, SI enables a change to the access path, giving some

improvement in the efficiency of execution.

Original Query:

1> select spot_date from trade

2> where process_org_id = 3

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SET STATUS ON.

Total writes for this command: 0

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 trade
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.

 203

 With LRU Buffer Replacement Strategy for data pages.

Table: trade scan count 1, logical reads: (regular=78373 apf=0 total=78373),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

SI Query:

1> select spot_date from trade

2> where process_org_id = 3

3> and subject_org_id = 1

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SET STATUS ON.

Total writes for this command: 0

QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and 3 worker processes.

 STEP 1
 The type of query is SELECT.
 Executed in parallel by coordinating process and 3 worker processes.

 FROM TABLE
 trade
 Nested iteration.
 Index : ix3_trade
 Forward scan.
 Positioning by key.
 Keys are:
 subject_org_id ASC
 process_org_id ASC
 Executed in parallel with a 3-way hash scan.
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

 204

 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 Parallel network buffer merge.

Table: trade scan count 3, logical reads: (regular=49316 apf=0 total=49316),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

Chapter 7 Queries

Example 7.1:

With data distribution such that the antecedent is at the lowest end of the

normal distribution curve:

Data distribution:

select count(*), subject_type from titles

group by subject_type

order by 1

 Total Subject

 60 Astronomy

 60 Media

 120 Astrology

 120 Health

 250 Design

 250 Travelling

 500 Geography

 500 Sociology

 1000 Chemicals

 205

 1000 Gardening

 2500 Business

 2500 Economics

 5000 Beauty

 5000 History

 10000 Biology

 10000 Plants

 50000 Languages

 50000 Science

 100000 Maths

 100000 Music

 150000 Art

Original Query:

1> select distinct price from titles

2> where subject_type = 'Astronomy'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 titles
 Nested iteration.
 Using Clustered Index.
 Index : Cl_1x
 Forward scan.
 Positioning by key.
 Keys are:
 subject_type ASC
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 206

 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: titles scan count 1, logical reads: (regular=11 apf=0 total=11), physical
reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=68 apf=0 total=68),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

SI Query:

From the rule, we know that:

if subject_type = 'Astronomy' then price = 29.95 (70%

confidence)

Hence the corresponding SI query only asks for the information requested by the

original query and unknown from the rule.

1> select distinct price from titles

2> where subject_type = 'Astronomy'

3> and (price < 29.95 or price > 29.95)

 207

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 titles
 Nested iteration.
 Using Clustered Index.
 Index : Cl_1x
 Forward scan.
 Positioning by key.
 Keys are:
 subject_type ASC
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: titles scan count 1, logical reads: (regular=11 apf=0 total=11), physical
reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=26 apf=0 total=26),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0

 208

Total writes for this command: 0

From this example, we can see that the SI query is more efficient than the

original query by 42 fewer I/Os (79 I/Os for the original and 37 I/Os for the SI

query), which is 46% of the original query’s I/O – over a 50% improvement.

Example 7.2:

With data distribution changed so that antecedent is at the high or top end

of the normal distribution curve:

When the data is changed so that subject_type = 'Astronomy' is at

the top end of the normal distribution, as follows:

select count(*), subject_type from titles

group by subject_type

order by 1

 Total Subject

 60 Art

 60 Media

 120 Astrology

 120 Health

 250 Design

 250 Travelling

 500 Geography

 500 Sociology

 1000 Chemicals

 1000 Gardening

 2500 Business

 2500 Economics

 5000 Beauty

 209

 5000 History

 10000 Biology

 10000 Plants

 50000 Languages

 50000 Science

 100000 Maths

 100000 Music

 150000 Astronomy

Original Query:

1> select distinct price from titles

2> where subject_type = 'Astronomy'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 titles
 Nested iteration.
 Using Clustered Index.
 Index : Cl_1x
 Forward scan.
 Positioning by key.
 Keys are:
 subject_type ASC
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.

 210

 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: titles scan count 1, logical reads: (regular=6533 apf=0 total=6533),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=152696 apf=0
total=152696), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 2

SI Query:

1> select distinct price from titles

2> where subject_type = 'Astronomy'

3> and (price < 29.95 or price > 29.95)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 titles
 Nested iteration.
 Using Clustered Index.
 Index : Cl_1x
 Forward scan.
 Positioning by key.

 211

 Keys are:
 subject_type ASC
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: titles scan count 1, logical reads: (regular=6533 apf=0 total=6533),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=26613 apf=0
total=26613), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

In this case, where the antecedent is at the high end of the normal distribution,

I/O is reduced by 126079 I/Os. This is 20% of the I/O of the original query.

This is because the antecedent, being at the top end of the normal distribution

curve, has had its selectivity increased significantly enough to have made a

difference, whereas when the antecedent was at the low end of the normal

distribution, selectivity was high to start with, hence adding the SI did not

increase selectivity by the same magnitude.

Example 7.3:

 212

Here the data is changed so that the antecedent is at neither the top end nor the

bottom end of the normal distribution – but at the lower-mid end, as can be seen,

where subject_type = 'Astronomy'.

With data distribution changed so that antecedent is at the lower-mid end of

the normal distribution curve:

select count(*), subject_type from titles

group by subject_type

order by 1

 Total Subject

 60 Art

 60 Media

 120 Astrology

 120 Health

 250 Design

 250 Travelling

 500 Geography

 500 Sociology

 1000 Chemicals

 1000 Gardening

 2500 Astronomy

 2500 Business

 5000 Beauty

 5000 History

 10000 Biology

 10000 Plants

 50000 Languages

 50000 Science

 100000 Maths

 100000 Music

 150000 Economics

 213

Original Query:

1> select distinct price from titles

2> where subject_type = 'Astronomy'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 titles
 Nested iteration.
 Using Clustered Index.
 Index : Cl_1x
 Forward scan.
 Positioning by key.
 Keys are:
 subject_type ASC
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

 214

The sort for Worktable1 is done in Serial

Table: titles scan count 1, logical reads: (regular=116 apf=0 total=116),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=2550 apf=0 total=2550),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

SI Query:

1> select distinct price from titles

2> where subject_type = 'Astronomy'

3> and (price < 29.95 or price > 29.95)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 titles
 Nested iteration.
 Using Clustered Index.
 Index : Cl_1x
 Forward scan.
 Positioning by key.
 Keys are:
 subject_type ASC
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 215

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: titles scan count 1, logical reads: (regular=116 apf=0 total=116),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=770 apf=0 total=770),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

Here, the benefit is also profound – I/O for the SI query is reduced to just over

33% of that of the original query.

Example 7.4:

With the data distribution changed again so that the antecedent is at the

middle-upper range on the normal distribution curve:

select count(*), subject_type from titles

group by subject_type

order by 1

 Total Subject

 60 Art

 60 Media

 120 Astrology

 120 Health

 250 Design

 216

 250 Travelling

 500 Geography

 500 Sociology

 1000 Chemicals

 1000 Gardening

 2500 Business

 2500 Plants

 5000 Beauty

 5000 History

 10000 Astronomy

 10000 Biology

 50000 Languages

 50000 Science

 100000 Maths

 100000 Music

 150000 Economics

Original Query:

1> select distinct price from titles

2> where subject_type = 'Astronomy'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 titles
 Nested iteration.
 Using Clustered Index.
 Index : testx
 Forward scan.

 217

 Positioning by key.
 Keys are:
 subject_type ASC
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: titles scan count 1, logical reads: (regular=431 apf=0 total=431),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=10185 apf=0
total=10185), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

SI Query:

1> select distinct price from titles

2> where subject_type = 'Astronomy'

3> and (price < 29.95 or price > 29.95)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.

 218

 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 titles
 Nested iteration.
 Using Clustered Index.
 Index : testx
 Forward scan.
 Positioning by key.
 Keys are:
 subject_type ASC
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: titles scan count 1, logical reads: (regular=431 apf=0 total=431),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=3059 apf=0 total=3059),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

Here I/O is reduced to less than 33% of the original query.

 219

From the previous 4 examples, we can see that the higher on the normal

distribution curve that the antecedent is, the greater the benefit of SI in reducing

I/O by a higher proportion.

The following examples are based on the rule:

if title = 'Maths for beginners' then price = 15.00

(70% confidence)

The rule’s antecedent is first at the low end of the normal distribution, then the

data is changed so that it is at the high end with examples included in the

intermediate positions on the normal distribution curve.

Example 7.5:

With data distribution changed so that antecedent is at the low end of the

normal distribution curve:

select count(*), title from titles

group by title

order by 1

 Total Title

 60 Maths for beginners

 60 World Discovery

 125 European Cities

 125 Houses and Gardens

 250 Cats and Dogs

 250 Zoo Animals

 500 House Plants

 500 Make Up Colour

 220

 1000 Australia

 1000 PC World

 2000 Running

 2000 Yoga for All

 3500 Internet Design

 3500 Starting on the Internet

 6000 Holistic Health

 6000 Operating Systems

 10000 Java Beans

 10000 Networks

 20000 Horticulture

 20000 Jewellery Design

 25000 Gardening

 25000 Refloxology for Hands

 50000 Algebra

 50000 Style

 75000 Advanced Maths

 75000 Basic Grammar

 100000 Costumes

Original Query:

1> select distinct total_sold from titles

2> where title = 'Maths for beginners'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 titles
 Nested iteration.

 221

 Index : I_x2
 Forward scan.
 Positioning by key.
 Keys are:
 title ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: titles scan count 1, logical reads: (regular=9 apf=0 total=9), physical
reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=68 apf=0 total=68),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

SI Query:

1> select distinct total_sold from titles

2> where title = 'Maths for beginners'

3> and (price < 15 or price > 15)

4> union

 222

5> select distinct total_sold from titles

6> where title = 'Maths for beginners'

7> and price = 15

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

 FROM TABLE
 titles
 Nested iteration.
 Index : I_x2
 Forward scan.
 Positioning by key.
 Keys are:
 title ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

 FROM TABLE
 titles
 Nested iteration.
 Index : I_x2
 Forward scan.
 Positioning by key.
 Keys are:
 title ASC
 price ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

 223

 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 1
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

Table: titles scan count 1, logical reads: (regular=9 apf=0 total=9), physical
reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: titles scan count 1, logical reads: (regular=7 apf=0 total=7), physical
reads: (regular=0 apf=0 total=0), apf IOs used=0
The sort for Worktable1 is done in Serial

Table: Worktable1 scan count 0, logical reads: (regular=68 apf=0 total=68),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

In this example, there is no advantage to using SI. Selectivity was high in the

original query, and the SI query did not add sufficient extra selectivity that could

reduce I/O. Also the columns selected were not included in the index hence

access to underlying data pages was necessary.

Example 7.6:

This is another example query based on the same data and rule.

 224

Original Query:

1> select distinct price from titles

2> where title = 'Maths for beginners'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 titles
 Nested iteration.
 Index : testx2
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 title ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

 225

The sort for Worktable1 is done in Serial

Table: titles scan count 1, logical reads: (regular=7 apf=0 total=7), physical
reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=68 apf=0 total=68),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

SI Query:

1> select distinct price from titles

2> where title = 'Maths for beginners'

3> and (price < 15 or price > 15)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 titles
 Nested iteration.
 Index : testx2
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 title ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 226

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: titles scan count 1, logical reads: (regular=7 apf=0 total=7), physical
reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=26 apf=0 total=26),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

With the antecedent at the low end, the SI query has reduced I/O to 44% of the

original query – over 50% improvement.

With data distribution changed so that antecedent is at the highest end of

the normal distribution curve:

select count(*), title from titles

group by title

order by 1 desc

 Total Title

 100000 Maths for beginners

 75000 Advanced Maths

 75000 Basic Grammar

 50000 Algebra

 50000 Style

 25000 Gardening

 25000 Refloxology for Hands

 20000 Horticulture

 227

 20000 Jewellery Design

 10000 Java Beans

 10000 Networks

 6000 Operating Systems

 6000 Holistic Health

 3500 Internet Design

 3500 Starting on the Internet

 2000 Running

 2000 Yoga for All

 1000 Australia

 1000 PC World

 500 House Plants

 500 Make Up Colour

 250 Cats and Dogs

 250 Zoo Animals

 125 European Cities

 125 Houses and Gardens

 60 Costumes

 60 World Discovery

Example 7.7:

Original Query:

1> select distinct total_sold from titles

2> where title = 'Maths for beginners'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 228

 FROM TABLE
 titles
 Nested iteration.
 Index : I_x2
 Forward scan.
 Positioning by key.
 Keys are:
 title ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: titles scan count 1, logical reads: (regular=6638 apf=0 total=6638),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=101199 apf=0
total=101199), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

SI Query:

1> select distinct total_sold from titles

 229

2> where title = 'Maths for beginners'

3> and (price < 15 or price > 15)

4> union

5> select distinct total_sold from titles

6> where title = 'Maths for beginners'

7> and price = 15

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

 FROM TABLE
 titles
 Nested iteration.
 Index : I_x2
 Forward scan.
 Positioning by key.
 Keys are:
 title ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

 FROM TABLE
 titles
 Nested iteration.
 Index : I_x2
 Forward scan.
 Positioning by key.
 Keys are:

 230

 title ASC
 price ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 1
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

Table: titles scan count 1, logical reads: (regular=6638 apf=0 total=6638),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: titles scan count 1, logical reads: (regular=4639 apf=0 total=4639),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
The sort for Worktable1 is done in Serial

Table: Worktable1 scan count 0, logical reads: (regular=101199 apf=0
total=101199), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

This gives no improvement in I/O.

Example 7.8

Original Query:

 231

1> select distinct price from titles

2> where title = 'Maths for beginners'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 titles
 Nested iteration.
 Index : I_x2
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 title ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: titles scan count 1, logical reads: (regular=2277 apf=0 total=2277),

 232

physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=101802 apf=0
total=101802), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 1

SI Query:

1> select distinct price from titles

2> where title = 'Maths for beginners'

3> and (price < 15 or price > 15)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 titles
 Nested iteration.
 Index : I_x2
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 title ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED

 233

 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: titles scan count 1, logical reads: (regular=2277 apf=0 total=2277),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=30500 apf=0
total=30500), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

This gives a large improvement in I/O – 69664 fewer I/Os – which is only 31%

of the I/Os of the original query, due to increased selectivity enabling increase in

the use of the index.

With the data distribution changed so that the antecedent is on the lower-

mid range of the normal distribution

select count(*), title from titles

group by title

order by 1

 Total Title

 60 Running

 60 World Discovery

 125 European Cities

 125 Houses and Gardens

 250 Cats and Dogs

 250 Zoo Animals

 500 House Plants

 500 Make Up Colour

 234

 1000 Australia

 1000 PC World

 2000 Maths for beginners

 2000 Yoga for All

 3500 Internet Design

 3500 Starting on the Internet

 6000 Holistic Health

 6000 Operating Systems

 10000 Java Beans

 10000 Networks

 20000 Horticulture

 20000 Jewellery Design

 25000 Gardening

 25000 Refloxology for Hands

 50000 Algebra

 50000 Style

 75000 Advanced Maths

 75000 Basic Grammar

 100000 Costumes

Example 7.9:

Original Query:

1> select distinct total_sold from titles

2> where title = 'Maths for beginners'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 235

 FROM TABLE
 titles
 Nested iteration.
 Index : I_x2
 Forward scan.
 Positioning by key.
 Keys are:
 title ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: titles scan count 1, logical reads: (regular=722 apf=0 total=722),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=2029 apf=0 total=2029),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

SI Query:

1> select distinct total_sold from titles

 236

2> where title = 'Maths for beginners'

3> and (price < 15 or price > 15)

4> union

5> select distinct total_sold from titles

6> where title = 'Maths for beginners'

7> and price = 15

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 titles
 Nested iteration.
 Index : I_x2
 Forward scan.
 Positioning by key.
 Keys are:
 title ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.

 237

 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: titles scan count 1, logical reads: (regular=722 apf=0 total=722),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: titles scan count 1, logical reads: (regular=110 apf=0 total=110),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
The sort for Worktable1 is done in Serial

Table: Worktable1 scan count 0, logical reads: (regular=2029 apf=0 total=2029),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

Example 7.10:

Original Query:

1> select distinct price from titles

2> where title = 'Maths for beginners'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 titles
 Nested iteration.
 Index : I_x2
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 title ASC

 238

 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: titles scan count 1, logical reads: (regular=89 apf=0 total=89), physical
reads: (regular=8 apf=129 total=137), apf IOs used=81
Table: Worktable1 scan count 0, logical reads: (regular=2041 apf=0 total=2041),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

SI Query:

1> select distinct price from titles

2> where title = 'Maths for beginners'

3> and (price < 15 or price > 15)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 239

 FROM TABLE
 titles
 Nested iteration.
 Index : I_x2
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 title ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: titles scan count 1, logical reads: (regular=89 apf=0 total=89), physical
reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=820 apf=0 total=820),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

SI has reduced I/O to 42% of that required by the original query.

When the antecedent is changed so that it is at the mid-higher end of the

normal distribution curve:

 240

select count(*), title from titles

group by title

order by 1

 Total Title

 60 Costumes

 60 World Discovery

 125 European Cities

 125 Houses and Gardens

 250 Cats and Dogs

 250 Zoo Animals

 500 House Plants

 500 Make Up Colour

 1000 Australia

 1000 PC World

 2000 Running

 2000 Yoga for All

 3500 Internet Design

 3500 Starting on the Internet

 6000 Holistic Health

 6000 Operating Systems

 10000 Java Beans

 10000 Networks

 20000 Jewellery Design

 20000 Maths for beginners

 25000 Gardening

 25000 Refloxology for Hands

 50000 Algebra

 50000 Style

 75000 Advanced Maths

 75000 Basic Grammar

 100000 Horticulture

 241

Example 7.11:

Original Query:

1> select distinct total_sold from titles

2> where title = 'Maths for beginners'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

 242

The sort for Worktable1 is done in Serial

Table: titles scan count 1, logical reads: (regular=21289 apf=0 total=21289),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=20245 apf=0
total=20245), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

SI Query:

1> select distinct total_sold from titles

2> where title = 'Maths for beginners'

3> and (price < 15 or price > 15)

4> union

5> select distinct total_sold from titles

6> where title = 'Maths for beginners'

7> and price = 15

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

 243

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 1
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

Table: titles scan count 1, logical reads: (regular=21289 apf=0 total=21289),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: titles scan count 1, logical reads: (regular=21289 apf=0 total=21289),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
The sort for Worktable1 is done in Serial

Table: Worktable1 scan count 0, logical reads: (regular=20245 apf=0
total=20245), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

Example 7.12:

 244

Original Query:

1> select distinct price from titles

2> where title = 'Maths for beginners'

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 titles
 Nested iteration.
 Index: I_x2
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 Title ASC
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

 245

The sort for Worktable1 is done in Serial

Table: titles scan count 1, logical reads: (regular=712 apf=0 total=712),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=20365 apf=0
total=20365), physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

SI Query:

1> select distinct price from titles

2> where title = 'Maths for beginners'

3> and (price < 15 or price > 15)

QUERY PLAN FOR STATEMENT 1 (at line 1).
 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 titles
 Nested iteration.
 Index: I_x2
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 Title ASC
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE

 246

 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The sort for Worktable1 is done in Serial

Table: titles scan count 1, logical reads: (regular=712 apf=0 total=712),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Table: Worktable1 scan count 0, logical reads: (regular=6113 apf=0 total=6113),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total writes for this command: 0

In this example, I/O required by the SI query has been reduced to 33% of the

I/Os of the original query.

 247

Appendix A5

This appendix provides independent costing of SI using the established

Decomposition Algorithm [50] for query processing. It looks at original queries

along with their corresponding SI queries in conjunction with the Decomposition

Algorithm for costing and comparison.

Processing the Query

The following query is used for demonstrating the Decomposition Algorithm.

Example:

SELECT A.b, C.i

FROM table1 A, table2 B, table3 C

WHERE A.a = B.a

AND B.e = C.e

AND A.a = value_1

Processing the query in the intuitive way of forming a cartesian product,

determining which tuples satisfy the f(A(selection a = 'value') * B * C) = true condition,

and performing a projection on the restricted subset is highly expensive. This is

because the cardinality of the product is equal to the product of the cardinalities

of A(selection a = 'value') , B and C. Therefore, query processing algorithms attempt to

make this more efficient.

Overview of Decomposition

The Decomposition Algorithm for query processing is called so because it is

based on reducing a multi variable query (in this case the variables are A, B and

C with corresponding ranges table1, table2 and table3, respectively) into smaller

 248

single variable queries. Therefore it decomposes or breaks down the query until it

cannot be reduced any further.

This is done by two types of operation, which together, can decompose any

query completely:

1. Tuple substitution - this is where a query with n variables is replaced by a

query with (n-1) variables. This is done by replacing one of the variables with

each individual tuple comprising the range of the variable.

2. Detachment - this is the process where a query with an overlapping variable is

replaced by two sub-queries, such that each has a single variable in common.

Restriction, or the application of predicates, and projection are special cases of

detachment.

Tuple substitution should only be used when detachment operations cannot be

used to reduce the query. The reason is that the range of variables should be as

small as possible by applying detachment before applying tuple substitution,

because by applying tuple substitution, the cost of processing the rest of the

query is multiplied by the cardinality of the variable that is to be substituted for

(tuple by tuple). Therefore this cardinality should be minimised prior to tuple

substitution. Hence, as much detachment as possible is performed before using

tuple substitution.

The Decomposition Algorithm is made up of four steps, or sub algorithms. The

first is reduction. This breaks a query into irreducible components. This is then

passed to the second step, sub-query sequencing, which generates a succession of

sub-queries, by using the result of reduction, and passes them, one by one, to the

third step, tuple substitution. Tuple substitution manages the process of

substituting a variable by each tuple in its range. It calls variable selection, the

final step, in order to choose the variable to substitute for. Variable selection

chooses the variable with minimum estimated cost to use for tuple substitution.

For this, it may pre-process restriction operations which are one-variable clauses.

 249

The Decomposition Query Processing Algorithm and the Original Query

This section gives a practical in-depth application of the Ingres Decomposition

Algorithm for query processing, using SQL instead of QUEL, by applying it to

the original query. The next section applies it to the corresponding SI query to

allow for subsequent comparison. Hence this provides an independent costing

mechanism for comparing the effect of SI on query processing.

The original query, without using association rules and SI, is:

SELECT A.b, C.i

FROM table1 A, table2 B, table3 C

WHERE A.a = B.a

AND B.e = C.e

AND A.a = value_1

The first step of decomposition is reduction - or breaking the query into

irreducible components.

An irreducible component of a query is defined by the query having no disjoint

sub-query and being one-free. A disjoint sub-query is a part of the query that can

be broken off from the rest of the query, having no variables in common with the

rest of the query. One-free means the query has no sub-queries or components

with only one variable overlapping (or in common) with a variable in the rest of

the query. This query is one-free.

The query must be broken into irreducible components before going any further.

The algorithm for reduction is (paraphrased from [50]):

IF (number of variables in query) > 1 THEN

 IF (query is connected) THEN

 separate into irreducible components

 ELSE

 250

 separate into disjoint components

ELSE

 no reduction required

From this algorithm, we need a method to tell if a query is connected. This is

called a connectivity algorithm. The Decomposition query processing strategy

provides us with this procedure by using the concept of an incidence matrix. This

is a method of representing a query using a matrix with a row for each predicate

in the where clause, plus a row for the projection list, and a column for each

variable in the query.

The incidence matrix for the original query is defined in Figure A5.1:

 A B C

T : A.b, C.i 1 0 1

C1 : A.a = B.a 1 1 0

C2 : B.e = C.e 0 1 1

C3 : A.a = value_1 1 0 0

Figure A5.1 – Incidence Matrix

The 1 digit in the incidence matrix implies the presence of the variable in the

clause on the left-hand side, a 0 implies the absence of the variable in the clause.

For each variable (column 1 to column n, where n is 3 in this example), the

logical OR of all rows with a 1 for the variable (or column) is formed. This

replaces the first row with the occurrence of a 1 in the column. The rest of the

rows with a 1 in the column are deleted.

This is the procedure for the connectivity algorithm. Applying this to the above

incidence matrix, we successively get:

First do for the presence of 1 in column one:

 251

 A B C

T, C1, C3 : 1 1 1

C2 : 0 1 1

Next, do for the presence of 1 in column two:

T, C1, C3, C2 : 1 1 1

If the final matrix has only one row at the end of applying the algorithm, then it

is connected, as above. If there is more than one row, then the query is disjoint,

and the connected components of the disjoint query are in the same row of the

final matrix. Each row of the final matrix represents a disjoint sub-query.

Now that we know that the original query is a connected, multi-variable query, it

needs to be reduced, if possible, into irreducible components. The connectivity

algorithm again can be used for this. A query is irreducible if the elimination of

any variable causes the query to be disconnected. Such a variable, whose

elimination disconnects a query, is called a joining variable. Hence, if a query

has no joining variable it is irreducible - fulfilling the reduction stage of the

Decomposition Algorithm.

To break this query into irreducible components, we need to check for each

variable being a joining variable. We use the connectivity algorithm for this

because a variable is joining if its removal causes the query to be disconnected.

After applying this - removing each variable (column) successively, and testing

for connectedness - the query Q can be represented by the irreducible

components, in a similar matrix, using variables for columns and the irreducible

components as rows. From this we generate a reduced incidence matrix.

An irreducible component of Q is comprised of 1 or more rows of the original

query incidence matrix, and is represented by the logical OR of those rows.

 252

Using the incidence matrix defined in Figure A5.1, the query is irreducible

because there is no variable whose elimination would disconnect the query.

The reduced incidence matrix is:

 A B C

C3 : 1 0 0

C1 : 1 1 0

C2, T: 1 1 1

This is done by organising the rows so that the single-variable clauses, if any, are

first, excluding the target list. Then rows that do not contain the target list are

listed. The target list is always last.

Once the reduction stage is complete, the output is sent to the second stage, sub-

query sequencing. This forms sub-queries from the rows in the reduced-

incidence matrix to pass to the tuple substitution stage.

Sub-query sequencing is relatively simple. It takes the first multi-variable row of

the reduced incidence matrix, and combines it with one-variable clauses in the

same variables. This means combining C1 with C3.

Hence, the sub-queries are:

Q1 : C1, C3

Q2 : C2, T

Or in SQL query form:

Q1 is:

 SELECT A.b, B.e INTO table_temp

 FROM table1 A, table2 B

 WHERE (A.a = B.a)

 253

 AND (A.a = value_1)

Q2 is:

 SELECT (X.b, C.i)

 FROM table_temp X, table3 C

 WHERE (X.e = C.e)

Q2 uses the output of Q1.

For each sub-query, in this case two, Q1 and Q2, the tuple substitution step

processes each one. For this it calls variable selection, in order to determine the

best variable in the now irreducible query that should be substituted for, tuple by

tuple, or row by row.

The first query, Q1, is a two-variable query. When passed to tuple substitution,

and a variable is selected by variable selection, it becomes a single variable query

for each tuple in the second variable that is having its range substituted by a

value. Each such query (number of such queries is equal to the number of tuples

in the range of the substituted variable) is passed to reduction, returning the

result. The larger the range of the variable to be substituted for, the greater the

number of single-variable tuple substituted ‘reduced’ queries that will need to be

executed. Results from all ‘tuple reduced’ queries are concatenated to form the

final result.

Variable selection aims to optimise the query by choosing the optimal, or lowest

cost variable to substitute for. The variable that is chosen for tuple substitution

should have its range reduced as much as possible, by applying query predicates

on the variable where possible. The fewer the number of tuples to substitute for

tuple by tuple, the smaller the number of reduced tuple substituted queries to

execute via the decomposition process again. Hence, a variable with a small

range should be chosen and reduced where possible. This can be done for the

original query, because there is one single-variable predicate that reduces the

range of the variable A. However, more variables can have their range reduced in

 254

the SI query, rather than just that of variable A.

Reducing the variable reduces the query processing cost. If a variable, say Xi, in

a query Q, is chosen for tuple substitution, then the new tuple substituted query is

denoted by Qi(t), where t represents a tuple. There is a query for each

substituted tuple from Xi. Let C(Q) denote the cost of processing a query. Then

the cost of processing a tuple substituted query is C(Qi(t)). The variable from the

query that is selected for tuple substitution should correspond to the i which

minimises an estimated value for:

C = ∑ C(Qi(t))
 t∈Ri

where t ranges over the tuples of Ri.

The variable that is selected for substitution should minimise this cost. Hence,

the optimisation that is performed by variable selection is in minimising cost. If

the cost of processing a tuple substituted query is C(Qi(t)), and if this is taken to

be independent of the tuple, t, and of the variable i, then the minimum cost, Ci,

corresponds to the smallest range R of the variable substituted. Hence we try to

reduce the range R of a variable by applying predicates. This is the variable

selection method in the query processing that is used in Ingres.

Using this, taking Q1 into account,

Q1 is:

SELECT A.b, B.e

INTO table_temp

FROM table1 A, table2 B

WHERE (A.a = B.a)

AND (A.a = value_1)

Let table1 have n1 records and table2 have n2 records. If n1 < n2, then table1

 255

has the smallest range. In addition, the variable, table1 can be reduced because

there is a single-variable predicate to restrict it. Hence, table1 should be chosen

for tuple substitution by the variable selection process according to the cost

minimisation algorithm of Ingres. If table1 has d distinct values, this will

generate approximately n1/d sub-queries (Q1(t)) - one for each tuple in table1

assuming the values are evenly distributed.

Applying the predicate on table1 gives us n1/d records left for the tuple

substituted queries, as opposed to n2 queries if table2 was used, and hence would

be generated by substituting for table2. Each such sub-query is now single

variable. It has only the variable table table2. The table, table1 has been replaced

by its actual record values, each one generating a query. The query cost would

be:

 n1/d

∑ C(Qi(t))
 i=1

The smaller the value of n1, and the more selective the predicate on it (the higher

the value of d) then the lower the total query cost.

However, if n2 < n1, and the single variable predicate is on table1, then the

variable used for tuple substitution should be whichever is less out of n1/d or n2.

In this case, if n2 is still less than n1/d, then table2 would be used for tuple

substitution rather than table1. Nonetheless, in the next section it is shown that

the cost would still be less for the SI query than for the original query, because of

the additional predicate increasing the filtering in the resulting single variable

query, with table1.

If table1 has 30 records and table2 has 5000 records, then table1 has the smallest

range and additionally the variable, table1, can be reduced because there is a

single-variable predicate to reduce it. Hence, table1 should be chosen for tuple

substitution by the variable selection process according to the cost minimisation

algorithm of Ingres. If table1 has 3 distinct values, this will generate

 256

approximately 10 sub-queries (Q1(t)) - one for each tuple in table1 assuming the

values are evenly distributed, so that applying the predicate on table1 gives us 10

records left from it in the query (as opposed to 5000 tuple substituted queries that

would be generated by substituting for table2). Each such sub-query is now

single variable. It has only the table table2. Table1 has been replaced by actual

tuple values in place of the table. For example, if the first record in table1 has the

values:

a = '3' and b = '5'

then the first tuple substituted query becomes :

SELECT B.e, '5'

INTO table_temp

FROM table2 B

WHERE (B.a = '3')

The query, (Q1(t)), will be executed for each of the 10 tuples in table1, that have

a = '3' and the results concatenated to produce a list of B.e and A.b that are held

in table_temp table, to be used in Q2.

After Q1 is processed by applying tuple substitution, the next sub-query

generated by sub-query sequencing, Q2, is passed into tuple substitution for

processing.

Q2 is:

SELECT (X.b, C.i)

FROM table_temp X, table3 C

WHERE (X.e = C.e)

If there are 5000 records in table_temp table, which is passed into Q2, and the

table3 table has 500 records in it, then the table3 table will be chosen for tuple

substitution in order to get each student name and course name. As there are no

 257

predicates to reduce the range of either variable, this will require 500 tuple-

substituted queries - one for each table3 table entry.

So, the complete query requires 10 tuple-substituted sub-queries for Q1, and 500

for Q2, totalling 530 single variable queries. Using the Ingres minimum cost

estimate for processing the query, this is the cheapest method for the original

unmodified query.

The Decomposition Query Processing Algorithm and the Semantically

Inequivalent Query

The SI query that results from applying the SI algorithm to the original query is:

SELECT (A.b, C.i)

FROM table1 A, table2 B, table3 C

WHERE A.a = B.a

AND B.e = C.e

AND A.a = value_1

AND B.f = value_2

This uses the rule that given the value of a, the value of f can be determined.

Passing this through the Decomposition Algorithm for query processing, this

query is first broken into irreducible components by reduction. To perform this,

the incidence matrix needs to be generated for the SI query. This is:

 A B C

T : A.b, C.i 1 0 1

C1 : A.a = B.a 1 1 0

C2 : B.e = C.e 0 1 1

C3 : A.a = value_1 1 0 0

C4 : B.f = value_2 0 1 0

 258

This has two additional rows compared to the original query - for the additional

predicates that apply the rules to the tables.

Applying the connectivity algorithm, where each column is taken, and the logical

OR of all rows with a 1 in the column is formed, replacing the first row with a 1

in the column, and deleting the rest, we successively get:

(for 1 in column one) :

 A B C

T, C1, C3 : 1 1 1

C2 : 0 1 1

C4 : 0 1 0

(for 1 in column 2) :

 A B C

T, C1, C2, C3, C4 : 1 1 1

(for 1 in column 3) :

 A B C

T, C1, C2, C3, C4 : 1 1 1

The final matrix has one row, hence the query is connected, and has no disjoint

components.

Since this is a connected, multi-variable query it needs to be reduced into

irreducible components. The query can be reduced if the elimination of any

variable causes the incidence matrix to become disconnected. This query has no

such joining variable (the removal of no single variable is enough to disconnect

the incidence matrix), hence it is irreducible, fulfilling the reduction stage of the

Decomposition Algorithm.

To generate the reduced-incidence matrix to pass to sub-query sequencing, the

original matrix is re-organised, placing the single variable rows first, and the

target list last. The reduced- incidence matrix is therefore:

 259

 A B C

C3 : 0 0 1

C4 : 0 1 0

C1 : 0 1 1

C2, T 1 1 1

This reduced-incidence matrix is passed into sub-query sequencing, where sub-

queries are formed based on this matrix, to pass to tuple substitution.

When passed to sub-query sequencing, the first multi-variable row from the

reduced-incidence matrix is taken and combined with one-variable clauses in the

same variables as in the multi-variable clause.

Applying this, the sub-queries generated are:

Q1 : C1, C3, C4

Q2 : C2, T

In SQL query form, these are:

Q1 is:

SELECT INTO table_temp (A.b, B.e)

FROM table1 A, table2 B

WHERE (A.a = B.a)

AND (A.a = value_1)

AND (B.f = value_2)

Q2 is:

SELECT (X.b, C.i)

FROM table_temp X, table3 C

 260

WHERE (X.e = C.e)

where Q2 uses the output of Q1 via the intermediary table, table_temp.

Each sub-query is passed to tuple substitution, where it is processed, and variable

selection is invoked to determine which variable to tuple substitute for.

When variable selection is called from tuple substitution, it will optimise the

query by choosing the lowest cost variable to replace by tuple substitution. For

this, it will reduce the range of variables as much as possible by applying the

single-variable query predicates on the variable, to help determine how efficient

tuple substitution for the variable would be. It tries to choose a variable with as

small a range as possible, because the fewer the tuples in the range, the fewer the

number of tuple substituted single-variable queries there are to execute via the

decomposition process. With the additional predicates, derived from applying the

rules added to the original query to produce the SI query, the range of the

variables can be reduced, resulting in fewer tuple-substituted queries, Qi(t), to

execute. The cost of each one of these queries is C(Qi(t)), and the variable that

we choose should minimise the cost for substituting by reducing and selecting

the variable which minimises it :

 R

C = ∑ (Qi(t))
 i=1

which corresponds to the smallest range of the substituted variable.

Taking Q1 into account:

Q1 is:

SELECT A.b, B.e

INTO table_temp

FROM table1 A, table2 B

WHERE (A.a = B.a)

 261

AND (A.a = value_1)

AND (B.f = value_2)

Again, let table1 have n1 records and table2 have n2 records. If n1 < n2, then

table1 has the smaller range. The variable, table1 can be reduced because there is

a single-variable predicate to restrict it. However, table2 can also be reduced

now with the SI query, given the predicate that SI has added to it. If table1 has

d1 distinct values for attribute a, this will generate approximately n1/d1 sub-

queries (Q1(t)) - one for each tuple in table1 assuming the values are evenly

distributed, if used for tuple substitution.

If table2 has d2 distinct values for attribute f, this would generate approximately

n2/d2 sub-queries (Q1(t)) - one for each tuple in table2 again assuming the

values are evenly distributed.

If the table, table1, has been replaced by its actual record values, each one

generating a query. The query cost would be:

n1/d1

∑ C(Qi(t))
 i=1

The smaller the value of n1, and the more selective the predicate on it (the higher

the value of d1), then the lower the total query cost would be.

If table2 has been replaced by its actual record values, each one generating a

query, the query cost would be:

n2/d2

∑ C(Qi(t))
 i=1

The smaller the value of n2, and the more selective the predicate on it (the higher

the value of d2), then the lower the total query cost would be.

 262

The tuple substitution procedure would chose table1 to substitute for if n1/d1 is

less than n2/d2. It would chose table2 if n2/d2 < n1/d1.

To compare the cost with the original query, the same table example statistics

will be used. Hence, let table1 have 30 records and table2 have 5000 records.

Both variables can be reduced due to the extra predicates, which variable

selection would perform in order to improve query processing in accordance with

the cost minimisation algorithm of Ingres.

Applying the single variable predicates:

(A.a = value_1) and (B.f = value_2)

(A.a = value_1) would leave table1 with 24 tuples, instead of 30.

The predicate (B.f = value_2) would leave table2 with 2000 records

(assuming that there are 2000 rows with B.f = value_2).

Hence, the ranges of variables have been reduced. Table1 has been reduced from

30 to 24 tuples and table2 has been reduced from 5000 to 2000 tuples.

The SI query requires a total of 24 + 500 = 524 tuple-substituted queries,

compared to 530 for the original queries. 500 of the queries required to process

the SI query are on a table (table_temp) of significantly reduced size - due to

rules applied in Q1, which made it much smaller, prior to it being used by Q2.

According to the cost estimate based on the number of pages in the queried table

(table_temp), each of the 500 queries, produced for Q2, will have 40% of the

cost of counterpart queries in the original (ignoring issues of data fragmentation)

query.

Therefore, the greater the selectivity is, increased by SI introducing additional

predicates, the fewer the number of single variable queries there will be.

Assuming that each single variable query has the same cost due to being

 263

processed in the same way by the query optimiser, then SI reduces the query

processing cost by the same proportion that it increases the selectivity by.

	Table of Contents
	 List of Figures
	List of Tables

	Chapter 1
	Introduction and Thesis Overview
	1.1 A Dynamic and Collaborative Computing Environment
	1.2 Motivation and Aims
	1.3 Example of Using an Association Rule with a Database Query
	1.4 Contributions
	1.5 Structure of the Thesis

	 Chapter 2
	Data Mining of Association Rules and Query Optimisation: Background
	2.1 Introduction
	2.2 Data Mining of Association Rules
	2.3 Rules and Functional Dependencies
	2.4 Data Mining Research and Scope for Use in Query Optimisation
	2.5 Query Processing and Optimisation
	2.6 Semantic Query Optimisation
	2.7 Data Mining Rules
	2.8 Extending the Query Optimiser
	2.9 Conclusion

	 Chapter 3
	Semantic Inequivalence
	3.1 Introduction
	3.2 Definition of Semantic Inequivalence
	3.3 How Semantic Inequivalence Differs from Syntactic Query Optimisation
	3.4 Using Semantic Inequivalance With Association Rules
	3.4.1 Semantic Inequivalence Example

	3.5 Demonstrating Semantic Inequivalence
	3.6 Data Model Example
	3.7 Data Mining Association Rules and Semantic Inequivalence Query Examples
	3.8 Rules with 100% Confidence
	3.9 Physical Access Paths: Rules and Partial Indexing
	3.10 Changes in the Confidence of Association Rules
	3.11 Conclusion

	Chapter 4
	Semantic Inequivalence Algorithm
	4.1 Introduction
	4.2 Algorithm of Control Section for Semantic Inequivalence Region
	4.2.1 Notation used for Semantic Inequivalence Algorithm
	4.2.2 Query used for Semantic Inequivalence Algorithm
	4.2.3 The Semantic Inequivalence Algorithm

	4.3 Conclusion

	Chapter 5
	Cost Comparison
	5.1 Introduction
	5.2 Overview of Semantic Inequivalence in Action
	5.3 Comparing Costs
	5.3.1 With B-Tree Indexes
	Number of Rule Pages
	Number of Index Pages

	5.3.2 B-tree (Non-Clustered) Indexes vs B+tree (Clustered) Indexes
	5.3.3 With Bitmap Indexes

	5.4 Exceptional Cases
	5.5 Conclusion

	Chapter 6
	Real-world Examples
	6.1 Introduction
	6.1.1 Motivation of Research Method

	6.2 Background and Reasons for the Choices
	6.2.1 Choice of Databases
	6.2.2 Finding Association Rules

	6.3 Optimiser Plan Explanation
	6.4 Statistics Output Overview
	6.5 The Query Examples – First Data Set
	6.6 The Query Examples – Second Data Set
	6.7 Results Analysis
	6.8 Conclusion

	 Chapter 7
	Semantic Inequivalence with Synthetic Data Distribution
	7.1 Introduction
	7.2 Normal Distribution
	7.3 Query Examples
	7.4 Conclusion

	Chapter 8
	Concluding Remarks and Further Research
	8.1 Introduction
	8.2 Research Summary
	8.3 Review of Aims and Accomplishments
	8.4 Further Research

	References
	Appendix A1
	 Appendix A2
	 Appendix A3
	 Appendix A4
	Chapter 6 Queries – First Data Set
	Chapter 6 Queries – Second Data Set
	Chapter 7 Queries

	 Appendix A5
	Processing the Query
	Overview of Decomposition
	The Decomposition Query Processing Algorithm and the Original Query
	The Decomposition Query Processing Algorithm and the Semantically Inequivalent Query

