
XPath Query Satisfiability and Containment
under DTD Constraints

A Dissertation Submitted to

Birkbeck, University of London

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

by

Manizheh Montazerian

Department of Computer Science

Birkbeck College

Malet Street, Bloomsbury, London WC1E 7HX

JANUARY 16, 2014

2

I certify that this thesis, and the research to which it refers, are the product of my own work,

and that any ideas or quotations from the work of other people, published or otherwise, are

fully acknowledged in accordance with the standard referencing practices of the discipline.

Signed:

3

To my loving sons Sepehr, Sina and Parsa

and

my dear husband Rasoul

4

Abstract

In this thesis, we consider the XML query language XPath, along with XML documents

whose integrity constraints are presented in the form of document type definitions (DTDs).

In particular, we study the problems of XPath satisfiability and XPath containment in the

presence of DTDs. The motivation for studying XPath is that it is the main language

for navigating in and extracting information from XML documents. The motivation for

studying DTDs, as opposed to some other newer XML schema formalism, is that DTDs

are well-known, stable, and well-tested. Furthermore, they are still widely-used in various

domains.

The major contributions of the thesis can be classified into those on satisfiability and

those on containment of XPath queries under DTDs. With respect to the satisfiability

problem, we show that the XPath satisfiability problem for the fragment XP{/,[]} is NP-

hard in general. In order to study whether this worst-case behaviour arises often in practice,

we investigate real-world DTDs and discover that the majority of them satisfy a property

we called the covering property. We then show that XPath satisfiability for the fragment

XP{/,[],∗,//,∪} is in PTIME under covering DTDs. We also show that it is decidable in

PTIME for duplicate-free DTDs (a property introduced in [91]), which also occur often in

practice.

Despite the positive results for the satisfiability problem, we prove that XPath contain-

ment under covering DTDs for XP{/,[]} is still coNP-hard. However, we define a class

of DTDs, called well-behaved DTDs, under which containment for XP{/,[]} is tractable

5

provided that certain constraints inferred from the DTD are given. These constraints are

modified forms of previously defined sibling constraints and functional constraints. Fi-

nally, we show that, given a set of such constraints, containment of queries in XP{/,[]}

under a special case of well-behaved DTDs, called well-formed DTDs, is tractable. Well-

formed DTDs also arise frequently in practice.

6

Acknowledgements

I would like to thank my supervisor, Dr. Peter Wood, who has greatly helped me during

my Ph.D. studies. His support has been far beyond the usual limit of the support expected

from a supervisor. I can claim that he has been even more caring than me about my

studies. I extremely appreciate his help and support, and I wish him a life full of goodness

and success.

I thank my children Sepehr, Sina and Parsa who tolerated difficulties and hardship

stemming from my study. Finally, I would like to thank Rasoul for his kindness, love and

support, and everyone who either directly or indirectly helped me doing my Ph.D.

Manizheh Montazerian

7

Table of contents

Abstract 4

1 Introduction 12
1.1 Contributions . 16
1.2 Structure of the thesis . 19

2 Overview of XML, Query Languages, and Schemas 20
2.1 XML . 20
2.2 Syntax of XPath . 21
2.3 XQuery and other XML languages . 24

2.3.1 XQuery . 24
2.3.2 Extensible Stylesheet Language Transformations (XSLT) 25
2.3.3 XML Pointer Language (XPointer) 25

2.4 Schema languages for XML . 26
2.4.1 Document Type Definition (DTD) 26
2.4.2 XML Schema Definition Language 29
2.4.3 Relax-NG . 30
2.4.4 Extended Document Type Definition (EDTD) 31
2.4.5 Schematron . 32
2.4.6 Comparisons between the schema languages 33

3 Previous Work 35
3.1 Previous results on XPath Containment 35

3.1.1 Techniques for Solving Query Containment 36
3.1.2 Complexity of Deciding Query Containment 39

3.2 Previous results on XPath Satisfiability 48
3.2.1 Satisfiability in the absence of constraints 49
3.2.2 Satisfiability in the presence of constraints 50

3.3 Summary . 52

4 Constraints Inferred from DTDs 54
4.1 Basic Definitions . 55
4.2 Bag derivatives of regular expressions 56
4.3 The DERIVATIVE NON-EMPTINESS problem 62
4.4 Main DTD Constraints in the Literature 63

8

4.4.1 Constraints from Recursive DTDs 63
4.4.2 Child Constraints . 64
4.4.3 Parent Constraints . 65
4.4.4 Descendant Constraints . 65
4.4.5 Ancestor Constraints . 65
4.4.6 Cousin Constraints . 66
4.4.7 Intermediate Node Constraints 66
4.4.8 Parent-Child Constraints . 66
4.4.9 Sibling Constraints . 66
4.4.10 Family Constraints . 67
4.4.11 Functional Constraints . 68

4.5 Bag Sibling and Functional Constraints 68
4.5.1 Properties and axioms for BSC and BFC 70

4.6 Conclusion . 74

5 XPath Satisfiability under DTDs 76
5.1 Notation and Background Material . 77
5.2 Real-World DTDs . 81
5.3 XPath Satisfiability under Real-World DTDs 83

5.3.1 XPath Satisfiability under Duplicate-free DTDs 83
5.3.2 XPath Satisfiability under Covering DTDs 88

5.4 Conclusion . 97

6 XPath Containment under DTDs 99
6.1 The well-behaved property . 100
6.2 Determining Minimum Numbers of Query Nodes 101
6.3 Chasing the queries . 109
6.4 Using BSCs and BFCs for D-containment 110
6.5 Tractability of D-containment for queries in XP{/,[]} 115
6.6 Intractability results regarding covering DTDs 123
6.7 Conclusion . 126

7 Conclusions 127
7.1 Summary . 127
7.2 Future Work . 129

A DTDs and their application domains 132

B Covering DTDs 135

C Well-formed DTDs 138

References 146

9

List of Figures

1.1 An instance of an XML tree and its corresponding document. 13
1.2 Tree patterns for q, q1 and q2. 14

2.1 The tree pattern corresponding to the XPath expression in Example 2.1. . 23
2.2 Label-guarded subtree exchange. The labels of v1 and v2 are the same. . . 28

3.1 (a) tree pattern of p, (b) tree pattern of q, and (c) tree pattern of ChaseD(p). 38

5.1 A covering DTD and its digraph G. 89
5.2 The tree pattern corresponding to the XPath queries in Example 5.3. . . . 91
5.3 The pseudo-code of algorithm CalculateMatch which calculates r.match,

given a query p rooted at r. 92

6.1 An XPath query expressed as a tree pattern. 102
6.2 The query tree used in Example 6.3 and Example 6.4. 103
6.3 The merged trees used in Example 6.4. 105
6.4 The pseudo-code of Algorithm calculateMCB which calculates MCB(v,r),

where v is a node in sub(r). 106
6.5 Queries p and qC and tree fragment t in case (i) 113
6.6 Queries p and qC and tree fragment t in case (ii) 114

10

List of Tables

1 List of symbols . 11

3.1 The complexity of containment for different XPath fragments. 41
3.2 The complexity of containment for expressions with disjunction. 43
3.3 The complexity of containment in the presence of DTDs [71]. 45
3.4 The complexity of satisfiability in the absence of DTDs [45]. 49

5.1 The classification of DTD rules . 82
5.2 The number of DTDs (out of 100) in each of the four categories 83

A.1 DTD names and their application domains 132

LIST OF TABLES 11

Table 1: List of symbols

Σ alphabet
Σa alphabet appearing in Ra

Ra content model of element a
/0 emptyset
ε empty string
δBR derivation of R with respect to bag B
[w] bag of symbols appearing in string w
{w} set of symbols appearing in string w
λ (v) label of node v
root(t) root node of tree t
[R] unordered regular expression
R covering regular expression
∪ max union
] additive union
|b|A multiplicity of symbol b in bag A
v(X) node v with bag of children X
C set of constraints
C+ closure of C
X+ BSC bag closure of X

12

Chapter 1

Introduction

The eXtensible Markup Language (XML) is one of the major data storage formats used

within both databases and the World Wide Web [15]. It is a recommendation issued by

the World Wide Web Consortium (W3C), an organization aimed at promoting the infras-

tructure of the Web. The explosive growth of dynamic applications, such as e-commerce

and e-learning, in recent years has remarkably increased the number of organizations that

use XML to exchange data. Over the past years, XML also became popular for general-

purpose platform-independent data exchange [14, 47, 79].

An XML document is modelled as a rooted tree called an XML tree. The labels in

an XML tree are called XML tags, which belong to an infinite alphabet. Every node in

the tree corresponds to an element; the root of the tree corresponds to the root element

of the document. Figure 1.1 displays an instance of an XML tree and its corresponding

document.

Two standards associated with XML technology are XML schemas and the XPath lan-

guage, which are introduced next.

In contrast to relational databases, XML documents are self-describing and do not nec-

essarily require any schema or type system. However, there are usually logical relations,

or constraints, among XML tags. Such constraints constitute a so-called XML schema,

CHAPTER 1. INTRODUCTION 13

XML Tutorial

Ian Bex

2002

Harry Potter

J. Rowling

10

title author year title author price

book book

myLib

@
@�

�

�
� @

@
@

@
�

�

< myLib >

< book >< title >XML Tutorial< /title >

< author >Ian Bex< /author >

< year >2002< /year >< /book >

< book >< title >Harry Potter< /title >

< author >J. Rowling< /author >

< price >10< /price >< /book >

< /myLib >

Figure 1.1: An instance of an XML tree and its corresponding document.

which could be represented in many ways. In other words, XML documents may be

constrained by a schema. Exploiting the schema associated with an XML document pro-

vides the possibility for more efficient query processing. Several schema formalisms have

emerged, among which are those recommended by the W3C, which include Document

Type Definitions (DTDs) [26] and the XML Schema Definition Language [15], and more

formal language-based schema systems, such as RELAX NG [30] and Schematron [49].

Schema languages are either grammar-based or rule-based languages. In the former, the

language is created based on a context-free grammar and according to top-down produc-

tion rules in a specified formalism. DTD, XML Schema, and Relax-NG belong to this

group. In rule-based languages, the rules that XML document must satisfy are specified.

Schematron belongs to this category. The specification provided by a schema language

is either open, meaning all that is not forbidden is allowed, or closed, meaning all that is

not allowed is forbidden. In Chapter 2, some of the well-known schema languages are

explained in more detail.

XPath [9] is a W3C standard for navigating a document tree and selecting a set of

nodes for processing. XPath expressions are a core component of XML transformers

like XSL(T) [8, 28] and other query languages such as XQuery [13]. An expression of

XPath can be interpreted as a tree pattern query. A tree pattern query is a tree where

nodes are element names and the hierarchical relationships between nodes are speci-

14

year

year∗ title

book

myLib

q

��

����

@@

year

myLib

q1

year title

book

myLib

q2

�� @@

Figure 1.2: Tree patterns for q, q1 and q2.

fied by child (‘/’) and descendant (‘//’) edges. For example, let q be the expression

myLib[.//year]/book[title]/year presented as the tree pattern shown in Figure 1.2,

where double-lines represent descendant edges and single-lines show child-edges. The

node marked with an asterisk “∗” is a result node which corresponds to the output of the

query. Each XPath expression belongs to an XPath fragment indicated by listing the al-

lowed operators. For instance, q belongs to XP{/,[],//} which is an XPath fragment where

only descendant, child and filter (‘[]’) operators are allowed. In Chapter 2, XPath frag-

ments are explained in more detail.

XPath is the main XML selection language. Indeed, XPath is used as a sublanguage in

other XML languages to specify the documents in which users are interested. If an XPath

expression matches a document or a part of a document, that document or part is returned

to the user. Although, for every expression e and every document d, the test whether e

matches d is not efficient, there is a partial order on expressions which may simplify the

test. More clearly, for some expressions p and q, it might hold that whenever a document

matches p, it also matches q. This leads to the problem of XPath query containment.

More formally, the problem of query containment is, for two XPath expressions p and q,

to decide whether every document matching p also matches q (denoted by p ⊆ q). If the

answer to this decision problem is positive, then given that a document matches p, there

is no need to check for whether it matches q. Correspondingly, if we know that q does not

match a document then p will not match it either.

Algorithms for XPath query containment are important in several contexts. XPath

expressions are used as basic patterns in other XML languges like XQuery (to bind vari-

CHAPTER 1. INTRODUCTION 15

ables), XSLT (to match expressions), XLink and XPointer (to reference elements). In

every such context an instance of the containment problem is present (for more detail, see

Chapter 2). In addition, as XPath is used to define keys in the XML Schema Definition

Language, understanding the key inference problem requires an understanding of the prob-

lem of XPath containment. For example, if an expression p represents a key for a given

schema, then every expression p1 such that p1 ⊆ p is also a key.

Further, the problem of XPath query containment, together with the closely related

problem of XPath query equivalence (two-way containment), may be viewed as a core

problem of query optimisation. For example, consider the query q shown in Figure 1.2.

The figure shows the graphical tree patterns of q and its two sub-patterns, q1 and q2. It is

easy to verify that q2 ⊆ q1. This implies that every document that matches q2 also matches

q1. Therefore, the sub-pattern q1 of q is redundant and can be eliminated. This means that

q may be reduced to q2.

In the above containment analysis, no schema was considered. Suppose now that there

is a schema associated with the documents being queried. The existence of the schema

affects the containment problem in that, while a query p may not contain a query q in gen-

eral, it may do so when only documents valid with respect to the schema are considered.

That is because not all of the documents matching q preserve (the constraints implied by)

the schema, and those which do so will certainly match p as well. In this thesis, we study

containment in the presence of DTD constraints (DTD-containment for short). Given two

XPath queries p and q and a DTD D, deciding whether p is contained in q under D, which

is called D-containment and denoted by p ⊆D q), is the problem of deciding whether, for

every XML document d ∈ SAT (D), the output of p on d is contained in the output of q on

d. Similar to [91], we use SAT (D) to denote the set of all document trees satisfying D.

Example 1.1 Consider the following DTD rule:

<!ELEMENT book (title, author+, year?, price?)>

1.1. CONTRIBUTIONS 16

According to this DTD rule, in every document which satisfies the DTD rule, each book

element should have one title child. This means, for example, that myLib/book/price

⊆D myLib/book[title]/price.

A related problem studied in this thesis is the XPath satisfiability problem, which is to

decide, given a query q, whether or not the evaluation of q returns a non-empty result for

some input document. It can be shown that the XPath satisfiability problem is (the negation

of) a special case of the containment problem, where the containing XPath expression

returns an empty set on any document tree (for more detail, see Chapter 5) [7]. The

XPath satisfiability problem can be used in query optimisation to avoid the submission,

and consequently redundant computation, of unsatisfiable queries. Thus, applying the

satisfiability test before executing a query can save processing time and query costs.

1.1 Contributions

XPath D-containment and XPath D-satisfiability are two computationally hard problems,

unless P = NP. Solving these problems requires analysis of DTD content models. Each

content model specifies, for each label, a set of sequences of its children by a regular ex-

pression. In this thesis, our main goal is to find certain cases for which D-containment and

D-satisfiability become tractable. Our approach is to analyse the problem and determine

which (undesirable) features of regular expressions cause the high (apparently exponen-

tial) complexity in processing. Then, we define a reasonably limited form of DTDs, with

emphasis on characteristics of real-world DTDs, to avoid the undesirable features.

One undesirable feature which increases the complexity is the existence of the disjunc-

tion operator in the regular expressions. The complexity of deciding XPath D-satisfiability

is reduced when DTDs are disjunction-free. However, the disjunction-freeness require-

ment is very restrictive from the practical point of view. We define the covering property

of DTDs which is less restrictive than the disjunction-free property but can still reduce the

CHAPTER 1. INTRODUCTION 17

complexity of deciding D-satisfiability. The tractability results of disjunction-free DTDs

are inherited by covering DTDs. Another undesirable feature is duplicate labels in the

DTD content models. Previously, duplicate-freeness was proposed to prevent duplicate

labels, but this feature is also very restrictive. Our solution is to define a superset of

duplicate-free DTDs that semantically limits each query such that each node either has at

most one child with some label or can have any number of children with that label. We

call such DTDs well-behaved DTDs, formally defined in Chapter 6.

The following are the main contributions of this thesis:

1. We have defined an operation on a regular expression R, yielding a new regular

expression called the derivative of R. The notion of the derivative of a regular ex-

pression had been previously introduced [17], but in that case was concerned with

sequences of symbols. We define the derivative of a regular expression with re-

spect to a bag of symbols, which is tailored to the needs of XPath containment and

satisfiability. We have devised an algorithm to compute the derivative of a regular

expression with respect to a bag, but have proved that computing the derivative of

a regular expression with respect to a bag of symbols is NP-hard in general. These

results are provided in Chapter 4.

2. We have proposed a method based on the derivatives of regular expressions to re-

duce the problem of extracting sibling constraints to the problem of extracting child

constraints from DTDs. We have presented a PTIME algorithm to extract child

constraints from DTDs. Another method is also presented to extract functional con-

straints from DTDs using derivatives of regular expressions. These results are pre-

sented in Chapter 4.

3. We introduce, in Chapter 4, two types of constraints called Bag Sibling Constraints

(BSCs) and Bag Functional Constraints (BFCs). Later, in Chapter 6, we define a

new DTD property, called well-behaved and prove that BSCs and BFCs are nec-

1.1. CONTRIBUTIONS 18

essary and sufficient to capture D-containment of queries in XP{/,[]} under well-

behaved DTDs. Finally, we show that, given a set of BSCs and BFCs, D-containment

of queries in XP{/,[]} under a special case of well-behaved DTDs is tractable.

4. We have examined real-world DTDs, using Google search and DTD benchmarks

available on the web, and discovered a new property, called the covering property,

which most of them satisfy. We also observed that the minority of the examined

real DTDs which did not possess the covering property were duplicate-free. The

notion of a duplicate-free DTD was introduced in [91]. It was redefined and referred

to as SOREs (Single Occurrence Regular Expressions) in [10], where it was shown

that SOREs capture by far the majority of regular expressions occurring in practical

DTDs. Our investigation of real-world DTDs, which led to the discovery of the

prevalent property of covering, revealed the fact that, for many real-world cases, the

XPath satisfiability problem can be solved in PTIME. These results are provided in

Chapter 5.

5. The XPath satisfiability problem for the fragment XP{/,[]}, denoted by SAT(XP{/,[]}),

is NP-hard in general. This result follows from a result in [91]. In Chapter 5,

we show that it is decidable in PTIME for duplicate-free DTDs, although results

from [7] imply that it remains NP-hard for the fragments XP{/,[],∗} and XP{/,[],//}.

More significantly in this chapter, we show that XPath satisfiability for the fragment

XP{/,[],∗,//,∪}, i.e. SAT(XP{/,[],∗,//,∪}), is in PTIME for covering DTDs. As another

result, we have proved that, by combining the methods for covering and duplicate-

free DTDs, SAT(XP{/,[]}) can be decided in PTIME if each rule has at least one of

the covering or duplicate-free properties.

6. We define, in Chapter 6, a class of regular expressions called well-formed for which

the computation of derivatives is tractable, and show that this class arises commonly

in XML DTDs. This class is a sub-class of well-behaved expressions and a super-

CHAPTER 1. INTRODUCTION 19

class of duplicate-free expressions. Wood in [92] showed that D-containment under

duplicate-free DTDs for XP{/,[]} is in PTIME. We show that it is also in PTIME

under well-formed DTDs. We also use the results in [7] to show that the problem

is in coNP-hard for the fragments XP{/,//}, XP{/,[],∗}, and XP{/,[],∪} even if the

queries are duplicate-free.

1.2 Structure of the thesis

This thesis is organised as follows. Chapter 2 presents an introduction to XML and its

related concepts including XPath, XML query languages, and XML schemas.

In Chapter 3, we survey previous work on XPath containment and XPath satisfiability.

This provides an overview of previous results on XPath containment, including proposed

techniques and their complexities, and the results on XPath satisfiability.

In Chapter 4, we introduce the derivative of a regular expression with respect to a bag

of symbols. This chapter also covers the various types of constraints inferred from DTDs

which have been previously defined in the literature. Two new types of DTD constraints,

together with their properties, are defined, and some algorithms to extract constraints from

DTDs based on the derivatives of regular expressions are proposed.

In Chapter 5, we concentrate on the satisfiability problem under two special classes

of DTDs, covering and duplicate-free DTDs, for a variety of XPath sub-fragments of

XP{/,[],∗,//,∪}.

Chapter 6 deals with introducing a new DTD property, called well-behaved and two

types of constraints, BSCs and BFCs, which are necessary and sufficient to capture D-

containment of queries in XP{/,[]}under well-behaved DTDs. We also show that D-containment

of queries in XP{/,[]}under a special case of well-behaved DTDs, called well-formed, is

tractable provided that the set of constraints is given.

The last chapter of this thesis, Chapter 7, summarises the thesis and introduces some

possible avenues for future work.

20

Chapter 2

Overview of XML, Query Languages,

and Schemas

This chapter gives an introduction to XML and some of its dependent concepts, namely

XPath, XML query languages, and XML schemas.

2.1 XML

XML [15], which stands for eXtensible Markup Language, is a framework for defining

and using markup languages. The primary purpose of introducing markup languages is to

facilitate the sharing of structured data across different information systems, particularly

via the Internet. They provide facilities to describe data formats, data types, data linking,

data transfer, and data processing [2, 70]. Markup languages are used for creating units

of information called XML documents. An XML document consists of textual data and

markup. The markup indicates the syntactical structure of the document.

XML documents are organised into elements. An element starts from a start tag and

ends at an end tag, including the tags themselves. Any attributes are found in the start tag.

An element’s content (which could be just text) lies between the tags. Each document has

a root element that is unique and the ancestor of all the other elements. As an example,

CHAPTER 2. OVERVIEW OF XML, QUERY LANGUAGES, AND SCHEMAS 21

Figure 1.1 shows an XML document.

XML usually uses an XML schema to describe the underlying data. XML without a

schema is designed to be self-descriptive. Essentially, schemas help XML developers to

describe the structure and data within their XML documents. Validating an XML docu-

ment is the process of verifying whether it conforms to the set of structural and content

rules expressed in its associated schema. For example, if a document contains an undefined

element, then it is not valid.

A number of different schema languages for XML documents have been proposed in

the past. In Section 2.4, we give an overview of DTD, XML-Schema, Relax-NG, EDTD,

and Schematron, which are among the best-known schema languages.

2.2 Syntax of XPath

XPath [9, 27] is a simple query language, which allows for querying and navigation of

XML documents. XPath expressions are usually embedded in other high-level XML re-

lated technologies such as XPointer [32], XQuery [13], and XSL Transformations [28].

XPath queries are formulated using references to various XML structural elements, such

as elements and attributes. They also provide basic facilities for manipulation of strings,

numbers, and Booleans.

Below we describe only the subset of XPath studied in this thesis. The primary syn-

tactic construct in XPath is the expression. One important kind of expression is a location

path step. Every location path step can be expressed using a straightforward syntax. A

location path step l is an expression of the form axis :: nodeTest [exp]∗, which is evaluated

with respect to a context node. In the step l, axis refers to one of the XPath axes. XPath

has 13 axes among which we only consider the four most frequently used ones, namely the

self, child, descendant and descendant-or-self axes. Each axis specifies the relationship

between the context node and the nodes to be selected next. Further, nodeTest is one of

node(), a tag name, or a wildcard ” ∗ ”. The syntax “[]” denotes a filter which filters the

2.2. SYNTAX OF XPATH 22

results based on the criteria enclosed within “[]”; [exp]∗ is a (possibly empty) sequence of

filters in which exp is an expression whose syntax is given by the following rule:

exp ::= l | l/exp | exp∪ exp | /exp.

A location path selects a set of nodes relative to the context node.1 There are two kinds

of location path: relative and absolute location paths [27]. A relative location path consists

of a sequence of one or more location steps separated by “/”. An initial sequence of steps

selects a set of nodes relative to a context node. Then, each node in the selected set is

used as a context node for the subsequent step. The sets of nodes which are identified

by that step are unioned together. Finally, the result is the set of nodes identified by

the composition of the steps. For example, child::book/child::author selects the

author element children of the book element children of the context node, or, in other

words, the author element grandchildren that have book parents.

An absolute location path consists of “/” optionally followed by a relative location

path. A “/” by itself selects the root node of the document as the context node. If it is

followed by a relative location path, then the location path selects the set of nodes that

would be selected by the relative location path, relative to the root node of the document.

As mentioned before, XML data can be modelled as a forest of ordered trees, where

each node corresponds to an element and the edges represent element-subelement relation-

ships. XPath queries, which are based on the structural composition of an XML document,

can be modelled as unordered tree patterns [25, 6]. A tree pattern p is specified by a set of

nodes labeled with symbols in Σ∪{∗}, a set of edges which are either descendant-edges

shown as double lines or child-edges shown as single lines, and a k-tuple of nodes called

result nodes denoted by result(p). The integer k is called the arity of p.

Example 2.1 Consider the following XPath expression

1In this thesis, we use the same semantics as [84] and fix the root node as the context node.

CHAPTER 2. OVERVIEW OF XML, QUERY LANGUAGES, AND SCHEMAS 23

person

telf irstname∗

persons

@
@
@@��

��

Figure 2.1: The tree pattern corresponding to the XPath expression in Example 2.1.

/persons/person[.//tel]/firstname

The tree pattern representation of this expression is shown in Figure 2.1. The arity is

one (i.e. k = 1), and the double line connectors represent the descendant axis, whereas the

single line connectors represent the child axis. The node labeled with firstname is the

result node (marked with an asterisk “∗”), and the path from the root to the result node is

called the distinguished path. A distinguished path is only well-defined for a tree pattern

with a single result node.

The following notation is adopted from [92] and [65]. Let p be a tree pattern, with

result node x, and t be a tree in TΣ. The result of evaluating p on t, denoted by p(t), is

defined as:

p(t) = {(h(x)) | h is a homomorphism from the nodes of p to the nodes of t}

where h is defined as follows:

• h(root(p)) = root(t)

• h preserves labels: for each node v in p, h(v) has the same label as v unless v carries

a wildcard

• h preserves child edges: for each pair of nodes u,v in p, if (u,v) is a child edge in p

then (h(u),h(v)) is a child edge in t.

• h preserves descendant edges: for each pair of nodes u,v in p, if (u,v) is a descendant

edge in p then h(u) is an ancestor of h(v) in t.

2.3. XQUERY AND OTHER XML LANGUAGES 24

A pattern p is called a Boolean pattern if its arity is zero. For a Boolean pattern p and tree

t, p(t) is true if there is a homomorphism from p to t; it is false otherwise.

It has been shown that, for the problem of containment, it is sufficient to limit the pat-

terns to Boolean tree patterns [65]. In particular, every k-ary tree pattern can be translated

to a Boolean tree pattern such that for any k-ary patterns p, q and their corresponding

translations p′, q′, p ⊆ q iff p′ ⊆ q′. Similar to [92], we consider XPath queries as tree

pattern queries and in the rest of the thesis, we consider only Boolean tree patterns.

A containment mapping between two tree patterns is similar to homomorphism from

a query pattern to a tree [92].

In this thesis, we study XPath expressions that use various subsets of the following

operators: “/”, “//”, “[]”, “∗”, and “∪”, which we refer to as child, descendant, filter,

wildcard, and union, respectively. Each XPath fragment is indicated by listing the allowed

operators, as proposed in [65]. For instance, XP{/,[],//}denotes the XPath fragment where

only child, descendant, and filter are allowed.

2.3 XQuery and other XML languages

In this section, we very briefly introduce three other XML languages recommended by

W3C: XQuery, XSLT, and XPointer.

2.3.1 XQuery

XQuery is a query language for XML, defined by W3C [13]. XQuery is a strongly typed

functional language, which supports the common processing, transformation, and query-

ing tasks of XML applications. Informally speaking, the relation between XQuery and

XML is similar to that between SQL and relational databases. XQuery provides the means

to extract and manipulate data from XML documents or any data source that can be viewed

as XML, such as relational databases or office documents [72].

CHAPTER 2. OVERVIEW OF XML, QUERY LANGUAGES, AND SCHEMAS 25

XPath expressions are basic patterns used in XQuery for navigation and extracting

fragments of XML documents. Optimising XPath expressions hence eliminates unneces-

sary operations such as tree navigation and reduces the cost of the evaluation process. One

way to check whether an XPath query q1 can be optimised to a simpler XPath query q2 is

to check whether q1 contains q2 and q2 contains q1. For this reason, some optimisation al-

gorithms are based on the containment problem [91]. The containment problem for XPath

is studied in this thesis.

2.3.2 Extensible Stylesheet Language Transformations (XSLT)

The main purpose of using XSLT is to transform an XML document either into another

XML document or to another type of document, such as HTML or XHTML, that is recog-

nised by a browser [28]. This is normally performed by transforming each XML element

into an (X)HTML element. In simple words, XSLT transforms an XML source-tree into

an XML result-tree.

XPath containment is a key component for the static analysis of XSLT and for improv-

ing its performance. As already explained, XPath is a fundamental part of XSLT which

allows for definition of matching expressions. In practice, complex XPath expressions are

difficult to interpret and are, therefore, error prone. One way to verify the consistency

(satisfiability) of an expression p is to check that it is not contained in an XPath expression

which returns the empty set on any document tree (p⊆ /0). XPath containment algorithms

can also be helpful to optimise the XPath expressions. For example, let p1 ∪ p2 be an

XPath expression such that p1 ⊆ p2. Then, evaluation of p1 is redundant since all nodes

have already been selected in the evaluation of p2.

2.3.3 XML Pointer Language (XPointer)

XPointer is an XML language which defines several schemes, one of which is the address-

ing scheme for referencing parts of an XML document. Providing this capability, XPointer

2.4. SCHEMA LANGUAGES FOR XML 26

is used by other applications to identify parts of XML documents or their locations. It can

be used to reference any element or subsets of elements within a document.

Example 2.2 Consider the XML document shown in Figure 1.1:

• xpointer(//book) addresses all book elements in the XML document.

XPath is a fundamental part of XPointer which allows for the referencing of parts

of the documents. Once again, optimising such XPath expressions reduces unnecessary

operations, such as tree navigation, and speeds up evaluation of expressions.

2.4 Schema languages for XML

In this section, we introduce five representative XML schema language proposals: DTD [26],

XML-Schema [36], RELAX-NG [30], EDTD [73], and Schematron [49].

2.4.1 Document Type Definition (DTD)

DTDs are the most commonly used schemas, whose main benefit is their simplicity.

Nevertheless, there exist serious problems in defining types and in referencing mecha-

nisms [35, 48]. In particular, DTDs have few basic types, and they lack modularity. An-

other drawback is the lack of type safety of references. Also, the content of a node depends

only on the label of that node and not on its context.

Definition 2.1 A DTD over a finite alphabet Σ is a tuple (D,S0,Σ) where S0 ∈Σ is the start

symbol, and D is a mapping from Σ to a set of regular expressions over Σ. Let a ∈ Σ, Ra

be the regular expression which is associated with a by D, Σa be the alphabet of symbols

in Ra, and L(Ra) be the language denoted by Ra. Then we say that Ra is the content model

for a and write a→ Ra (which we also call a production rule).

CHAPTER 2. OVERVIEW OF XML, QUERY LANGUAGES, AND SCHEMAS 27

Definition 2.2 Given a DTD (D,S0,Σ), GD is the dependency graph of D whenever it

contains an edge from node labeled a to a node labeled b if and only if b ∈ (Σa). A DTD

(D,S0,Σ) is called recursive if GD has a cycle.

From now on, we refer to a DTD simply by D rather than (D,S0,Σ) and assume that Σ

is the set of symbols appearing in D. In examples, we will usually drop the arrow symbol

from rules, and will often use the DTD syntax for regular expressions, namely, “,” for

concatenation, “|” for alternation (disjunction), “∗” for reflexive transitive closure, “+”

for transitive closure and “?” for optional.

A tree t satisfies a DTD D if and only if λ (root(t)) = S0, where λ (root(t)) is the

label of root(t), and for each node u in t with n children u1, . . . ,un : (λ (u1)) . . .(λ (un)) ∈

L(Rλ (u)). The set of all trees that satisfy D is denoted by SAT (D).

DTDs contain two kinds of definition components, element definitions and attribute

definitions. In this thesis, we only consider the element definitions. Element definitions

have the form:

<!ELEMENT s (content-model-s)>

where s is the name of the element to be defined, and content-model-s is a regular

expression over element names, or #PCDATA, or #EMPTY. Regular expressions may employ

the well-known operators: iteration (∗ and +), alternative choice (|), optional (?) and

sequence (,), as well as parentheses for grouping. #EMPTY denotes a regular expression

accepting only the empty sequence.

The content models are required to be deterministic [42]. Intuitively, a regular ex-

pression is deterministic if, when processing the input from left to right, it can always

be determined which symbol in the expression matches the next input symbol without

lookahead. The following shows an example of a non-deterministic content model:

<!ELEMENT Contact ((ZipCod, Tel?) | ZipCod)>

2.4. SCHEMA LANGUAGES FOR XML 28

�
�
�
�
�
�

A
A

A
A

A
A

A
A

A

�
�
�
�
�
�

A
A

A
A

A
A

�
�
�

A
A

A

�
�
�
�
�
�

A
A

A
A

A
A

�
�
�

A
A

A

v1

t1

v2

t2

⇒ v1

t1

Figure 2.2: Label-guarded subtree exchange. The labels of v1 and v2 are the same.

<!ELEMENT ZipCod (#PCDATA)>

<!ELEMENT Tel (#PCDATA)>

For a document instance such as <Contact><ZipCod>12345</Zipcod></Contact>,

it is not clear (without lookahead) whether the content of the contact element is as an

instance of (ZipCod, Tel?) or of (ZipCod). This means the content model can match

identical XML element sequences in more than one way. Such a content model is called

ambiguous.

Among all well-known schema languages, DTDs are the most widespread because of

their simplicity. The DTD language is compact and highly readable. However, there is

limited support for defining the type of the contained data. DTDs are primarily structural

in nature. They do not have the ability to specify that an element contains, for example,

an integral number, a real number, or a date. Furthermore, the classes of XML documents

definable by DTDs are restricted to local classes [69]. In fact, only languages which have

the property of label-guarded subtree exchange can be expressed by DTDs [73]. More

precisely, the set of trees TΣ is definable by a DTD if and only if for each pair of trees

(t1, t2) in TΣ, and pair of nodes v1 in t1 and v2 in t2 with the same label, the trees obtained

by exchanging the subtrees rooted at v1 and v2 are also in the set TΣ. This property is called

label-guarded subtree exchange and is illustrated in Figure 2.2.

Example 2.3 Consider the following DTD rules:

<!ELEMENT Book (Title, Author+, Publisher?)>

CHAPTER 2. OVERVIEW OF XML, QUERY LANGUAGES, AND SCHEMAS 29

<!ELEMENT Publisher (Name, Address)>

<!ELEMENT Author (Name, Birthday)>

<!ELEMENT Name ((PublishedBy)|(FirstName,LastName))>

Suppose that the desirable constraint is: “a PublishedBy element can only occur as the

grandchild of a Publisher element while FirstName and LastName elements can only

occur as the grandchildren of an Author element”. No DTD can express this constraint,

because it contradicts the label-guarded subtree exchange property. In other words, the

content of a node depends only on its label.

2.4.2 XML Schema Definition Language

A large number of schema languages have been proposed to overcome the limitations of

DTDs. In [1], 15 different schema languages for XML are listed besides DTDs. One of

these languages, the XML Schema Definition Language (XSDL) [12, 82], is considered as

the only schema language for XML documents recommended by the W3C. XSDL offers

facilities for describing the structure and constraining the contents of XML documents,

including those which exploit the XML namespace facility [82].

XSDL is more powerful than DTDs. The first and most evident improvement is the

switch to an XML-based syntax, which provides a high degree of flexibility and automatic

processability. Another major contribution of XSDL is the Post Schema Validation Infoset

(PSVI), i.e. the additional information that the validation adds to the nodes of the XML

document so that downstream applications can use of it for their own purposes. The most

important advantages of PSVI are certainly the type information and the set of legal values

that nodes can have [82].

Although XSDL has many complicated mechanisms, it is not believed to be very ex-

pressive from the viewpoint of formal languages [63, 69]. It has been shown that XSDL

is closer in expressiveness to DTDs than to tree automata [11], because the XSDL spec-

ification enforces an extra constraint called the Element Declaration Consistent (EDC)

2.4. SCHEMA LANGUAGES FOR XML 30

constraint. An EDC constraint is imposed to facilitate validation tasks. It prohibits the oc-

currence of two different types being associated with the same element name in the same

content model. This remarkably simplifies the process of validation. In fact, for an XSDL

admitting EDC, there exists a very efficient one-pass algorithm to validate a document

against the schema [63].

2.4.3 Relax-NG

RELAX-NG [30] is a schema language for XML which is based on two preceding lan-

guages, TREX [29], designed by James Clark, and RELAX [62], designed by Murata

Makoto. The central concept of RELAX-NG is patterns, which extend the concept of con-

tent model. In particular, a pattern in RELAX-NG is an expression over elements, text

nodes and attributes, whereas, in DTDs, a content model is an expression over elements

(and, very limitedly, text). External definitions of datatypes can be used to restrict the

set of values of text nodes and attributes. The most common datatype library is the one

defined by XSDL in [12].

Relax-NG supports namespaces, modularity, extensibility and obtains a higher expres-

sive power by extending DTDs with a typing mechanism which allows one to define types,

possibly recursively, in terms of other types. Although Relax-NG has only two built-in

data types (string and token), it allows for the definition of many more.

In contrast to DTDs and XSDL, Relax-NG imposes no restriction on elements with un-

ordered content and allows for ambiguous definitions, i.e., elements with the same name

and different content models, in the same context [54]. The symmetric treatment of el-

ements, attributes and text nodes and the introduction of ambiguous definitions allows

Relax-NG to specify a number of co-constraints on XML documents, such as mutual ex-

clusion and inter-dependencies between elements and attributes. To illustrate this feature,

consider the following example:

Compared to XSDL, Relax-NG has slightly poorer expressiveness in certain aspects.

CHAPTER 2. OVERVIEW OF XML, QUERY LANGUAGES, AND SCHEMAS 31

For example, there is no specification to define a precise number or range of repetitions

of patterns under Relax-NG; under XSDL, there is. Relax-NG has only two built-in data

types, while XSDL provides many more. In practice, however, most Relax-NG processors

support the XSDL set of data types. Finally, another limitation of Relax-NG is its inability

to define default values for elements and attributes.

2.4.4 Extended Document Type Definition (EDTD)

The expressive power of DTDs can be extended by adding types. Recall that in DTDs, the

type of an element is its name. The Extended DTDs (EDTDs) are defined as follows [73]:

Definition 2.3 An extended DTD is a tuple E = (Σ,∆,d,Sd,µ), where ∆ is a finite set of

types, µ is a mapping from ∆ to Σ, and (∆,d,Sd) is a DTD; i.e., d is a function that maps

symbols in ∆ to regular expressions over ∆, and Sd is the start symbol.

Example 2.4 Consider the following EDTD rules:

<!ELEMENT market (oldCar | newCar)*>

<!ELEMENT oldCar (code, year?, price)>

<!ELEMENT newCar (code, model, price)>

Where µ(oldCar) = µ(newCar) = Car, i.e. oldCar and newCar are types that are asso-

ciated to Car elements. All other types are associated with the element of the same name;

for instance, type market corresponds to a market element.

In EDTDs, each type is assigned to a unique element name and the start symbol has

only one possible type. The types are selected from a finite set of types [73]. Formally, a

tree t satisfies an EDTD E if there exists an assignment of types to all nodes of t such that

the typed tree satisfies E.

From a structural perspective, EDTDs express exactly the well-known regular tree

languages. In particular, EDTDs are as expressive as unranked tree automata [16]. It

2.4. SCHEMA LANGUAGES FOR XML 32

should be noted that the formal underpinnings of the schema language Relax-NG are also

based upon regular tree languages.

2.4.5 Schematron

Schematron [49] is a rule-based validation language, defined as an alternative to existing

grammar-based approaches. Schematron and Relax-NG are parts of ISO standards for a

Document Schema Definition Language [83]. A Schematron document defines a sequence

of <rules>, logically grouped in <pattern> elements. Each rule has a context attribute,

which is an XPath pattern determining the elements in the instance document to which the

rule applies. Within a rule, a sequence of <report> and <assert> elements is specified,

each having a test attribute. Such a test attribute is an XPath expression which is evaluated

to a Boolean value for each node in the context.

The content of both <report> and <assert> is a declarative sentence in natural lan-

guage. The <report> and <assert> elements are effectively the inverse of each other.

That is, in the former the content is output when the test of the <report> succeeds,

whereas, in the latter it is output when the test fails. Thus, the <report> element is

used to tag negative assertions about the instance document, while the <assert> element

is used to tag positive ones. Therefore, the output of the Schematron validation process is

a list of assertions.

An advantage of Schematron is its suitability of being embedded within other schema

languages [35, 75]. Another advantage is its expressive power with respect to the other

schema languages already introduced in this section. However, its way of specifying basic

structure of a document, i.e. which elements can go where, results in a schema which is

more complicated than necessary. This is usually overcome by combining Schematron

with Relax-NG or XSDL, which allows Schematron rules to specify additional constraints

on the structure defined by XSDL or Relax-NG and hence avoid verbose schemas.

CHAPTER 2. OVERVIEW OF XML, QUERY LANGUAGES, AND SCHEMAS 33

2.4.6 Comparisons between the schema languages

In [54] six schema languages including DTD, XML Schema and Schematron have been

compared in terms of their expressive power. These schemas have been categorised into

three classes from the least expressive, class 1, to the most expressive, class 3. DTD

belongs to the first class which has the least support for schema structure and does not

support schema data types and constraints. On the other hand, XML Schema and Schema-

tron are categorised to be in the third class which corresponds to the greatest expressive

power. XML Schema fully supports features for schema data types and structures, and

Schematron enjoys a very flexible pattern language that allows for describing the detailed

semantics of the schema.

Murata et. al. [69] compare six schema languages from the viewpoint of formal lan-

guage theory. They define four subclasses of regular tree grammars, namely local, single-

type, restrained-competition, and regular grammar. They show that the most expressive

class is the regular class. However, it may provide more than one interpretation of a doc-

ument. RELAX and TREX (the two predecessors of Relax-NG) belong to this class. The

results indicate that DTD is placed in the local class which is the least expressive class.

Finally, XML-Schema is in the single-type class which is more expressive than the local

class.

In [85], the strengths and weaknesses of four schema languages, namely, DTDs, XSDL,

Relax-NG, and Schematron, have been compared along five major dimensions:

1. Content models and datatypes: expressive power of the rules with respect to defining

constraints on structures and data

2. Modularity: power and flexibility of defining and using independent modules

3. Namespaces: degree of support for namespaces

4. Linking: expressiveness with respect to defining relations between attributes and

elements of a document

2.4. SCHEMA LANGUAGES FOR XML 34

5. Co-constraints: possibility for expressing constraints on attributes and elements

based on the presence or values of other attributes and elements

It was reported, in [85], that most of the above-mentioned features are supported by

Schematron, especially the co-constraints feature, which is not supported by XSDL and

DTDs at all, and which is supported by Relax-NG in a rather limited way. With respect

to user-defined types, XSDL was reported to be the best provider for built-in datatypes,

whereas Schematron has a limited number of data types and cannot specify default values.

All the above-mentioned works regarding the comparison of XML schema languages

indicate that DTDs do not provide as much expressiveness as the other XML schema lan-

guages. This may lead to an apparent inferiority of DTDs compared to the other schema

languages. However, DTDs are still the most prevalent schema used in real-world appli-

cations. The main point to note here is how much of the extra expressiveness provided by

the other schemas is used in practice. Research on this is carried out in [63], where the

authors examine several hundred real-world schemas. They report that 85 percent of the

schemas they observed are equivalent to DTDs. This indicates that DTDs are still among

the best XML schema choices and that many would prefer to use DTDs rather than other

more complicated schema languages.

It is important to note that the choice of a suitable schema language is application-

dependant. In fact, no schema language could be claimed to be the best, providing all the

necessary features for all XML documents. For example, DTDs are good with respect to

character entities, XSDL has a rich set of predefined data types and an advanced derivation

mechanism, Schematron is the best provider for XPath-based rule constraint checking, and

Relax-NG provides support for simple and straightforward syntax and the ability to define

regular tree languages.

35

Chapter 3

Previous Work

The answer to a given XPath query is built by matching the tree pattern representing the

query against a document. The efficiency of the matching operation depends on the size

of the query, so it is important to have queries of minimum size. To achieve this goal,

queries should be rewritten to avoid redundant conditions. As explained in Chapter 1, the

problem of minimising and optimising XPath queries is related to the problem of XPath

containment. Another problem related to XPath containment is the satisfiability of an

XPath expression, which can be seen as a special case of XPath containment (for more

detail, see Chapter 5).

In this Chapter, we review previous studies on XPath containment and XPath satisfia-

bility. Section 3.1 gives an overview of previous results on XPath containment including

techniques and the complexity results. In Section 3.2, we discuss the known results on

XPath satisfiability.

3.1 Previous results on XPath Containment

Algorithms for query containment are studied in different contexts. They have been

applied to find redundant conjuncts in relational conjunctive queries in the context of

query optimisation [3, 21, 77], to specify when queries are independent of updates to

3.1. PREVIOUS RESULTS ON XPATH CONTAINMENT 36

the database [57], to maintain integrity constraints [44], to reformulate queries using

views [22, 55], and as a tool in data integration [39, 40, 56].

None of the above-mentioned works study the containment problem for XPath queries.

In this section, we review techniques that have been used for deciding containment for

XPath queries as well as the complexity results for this problem obtained from the litera-

ture.

3.1.1 Techniques for Solving Query Containment

The containment problem has been studied both in the presence and in the absence of

constraints. In these studies, there are several complexity results most of which have

matching upper and lower bounds. To obtain the upper bounds for various fragments

of XPath, several techniques have been introduced [78]. These techniques are based on

canonical models, containment mapping, tree automata, and the chase procedure. All these

techniques use the fact that, for XPath queries p and q, p 6⊆ q if and only if there is a tree t

on which p(t) 6= /0 but q(t) = /0.

1. Canonical models

Canonical models were introduced in [65] to check containment between Boolean

patterns in XP{/,[],∗,//}. To decide p ⊆ q, this technique tries to prune the search

space based on the fact that every counter-example, if any, matches p. The con-

tainment of boolean patterns reduces to the implication of them, i.e. p ⊆ q if and

only if ∀t ∈ TΣ: p(t)⇒ q(t), where p and q are two boolean patterns as defined in

Chapter 2. It has also been shown that the containment of boolean patterns can be

restated in terms of models [65]. A model of a boolean pattern p is defined as a tree

t ∈ TΣ on which p evaluates to true: Mod(p) = {t ∈ TΣ | p(t) is true}. Now, p ⊆ q

if and only if Mod(p)⊆Mod(q) [65].

To solve the containment problem, it suffices to search for a tree t on which p(t)

CHAPTER 3. PREVIOUS WORK 37

is true and q(t) is false. Clearly, it suffices to search for t in Mod(p). However,

Mod(p) may be an infinite set. To further restrict this set, Miklau et al. [65] intro-

duced canonical models. Using this method, the containment of XP{/,[],∗,//} expres-

sions is shown to be coNP-complete [65].

2. Containment mapping

In this method [5, 65], p⊆ q if there exists a containment mapping from q to p (see

the definitions in Chapter 2).

For example, let p and q be the two queries whose tree patterns are shown in Fig-

ures 3.1(a) and 3.1(b), respectively. Obviously p 6⊆ q, as there is only one target in

p for the b-node of q but no possible targets for its c and d children.

Although the proposed containment algorithms based on containment mapping are

very efficient, the existence of a containment mapping is not always a necessary con-

dition for containment, such as when ∗ and // are allowed in the expressions [65].

Finally, it has also been shown that for fragments in XP{/,[],∗,//}, the containment

mapping technique is essentially a special case of the canonical model technique, in

which only one tree has to be tested [78].

3. Tree automata

The previous two methods have been used to solve the containment problem in the

absence of constraints, whereas, the method of tree automata, introduced in [71],

is applied to solve the problem in the presence of constraints. Given queries p and

q and a DTD D, it has been shown that p ⊆ q if and only if ∀t ∈ SAT (D) : t |=

p⇒ t |= q, where t |= p means there exists a homomorphism from p to t [65].

The automata method computes the set C of all counter-examples to p ⊆ q, i.e. C

contains all trees t such that t |= p and t 6|= q. For containment, the problem is then to

check whether C is empty. Although C might be infinite, it can often be represented

by a tree automaton. Let Ap and Aq be, respectively, the automata which accept a

3.1. PREVIOUS RESULTS ON XPATH CONTAINMENT 38

(a)

b

e

ai
i
i

(b)

a

b

cd

e

i
i

i
i

i@@�
�

�
�

(c)

a

b

ced

e ��i

i
i

i i i�
�
�@

@
@

Figure 3.1: (a) tree pattern of p, (b) tree pattern of q, and (c) tree pattern of ChaseD(p).

tree t if t |= p and t 6|= q. Neven et al [71] has shown that, for an expression p in

XP{/,//,∗,[],∪}, an exponential size automaton Ap can be constructed such that Ap

accepts a tree t if and only if t |= p. Therefore, this approach gives an EXPTIME

algorithm for containment of XP{/,//,∗,[],∪} in the presence of DTDs, which has been

shown in [71] to be optimal.

4. Chase procedure

In the relational case the homomorphism technique can be extended by the chase

procedure [61] to check query containment in the presence of integrity constraints.

This approach can also be used for deciding XPath containment in the presence of

constraints [5, 92]. As an example, Figure 3.1(a) and Figure 3.1(b) show two tree

pattern queries for expressions p and q with no homomorphism from q to p. Now,

consider, for instance, the following DTD rules:

<!ELEMENT b (d,c,(x|y))>

<!ELEMENT d (e,(x|y))>

The rules imply that each b element has a d-child as well as a c-child, and each d

element has an e-child. Applying the chase procedure with these constraints to the

query p will add a d-child and a c-child to the b-node and an e-child to the d-node.

The resulting query is called the chase of p by D and is denoted by ChaseD(p).

CHAPTER 3. PREVIOUS WORK 39

Now, there is an obvious homomorphism from q (Figure 3.1(b)) to ChaseD(p) (Fig-

ure 3.1(c)).

3.1.2 Complexity of Deciding Query Containment

XPath supports a wide variety of operators whose presence or absence affects the com-

plexity of the containment problem. This has led to the study of various XPath fragments

that include only certain operators. In practice, many applications do not need the power

of the full XPath language; they use only a fragment of XPath. For example, XML Schema

specifies integrity constraints with an XPath fragment that does not support the parent or

ancestor axes.

One of the most frequently used XPath fragments is the fragment that consists of the

following operators: /, //, [], ∗, |, which denote, respectively, child, descendant, filter,

wildcard, and disjunction. As in [65], we denote an XPath fragment by listing the al-

lowed operators. For instance, XP{/,[],//}denotes the XPath fragment where only child,

descendant and filter are allowed.

The containment problem can be categorised into two separate problems:

• Containment in the absence of constraints

• Containment in the presence of constraints such as a DTD

For the former problem, the inputs are two queries, say p and q, and we would like to

see if the answer of p always includes the answer of q. Whereas, in the latter problem,

in addition to the input queries, there is another input which is a set of constraints on the

documents (trees) being queried. Therefore, while query p may not contain query q in

general, it may be the case that, in the presence of the constraints, p does contain q when

both are evaluated on documents valid for the constraints. More discussion on this issue

is presented later in Chapter 6. In the rest of this section, we review previous results on

XPath containment in both cases.

3.1. PREVIOUS RESULTS ON XPATH CONTAINMENT 40

Containment in the absence of constraints

In this section, we review the previous results on XPath containment in the absence of

constraints. Table 3.1 summarises the results.

One of the main challenges with respect to the containment problem is to achieve al-

gorithms with low, ideally PTIME, complexity and there has been much research in the

literature in this regard [5, 74, 92]. Most of the PTIME algorithms already proposed for

the containment problem, e.g. for XP{/,[],//}and XP{/,∗,[]}, are based on the use of the ho-

momorphism method. Given a fragment of XPath, if the existence of a homomorphism is

a necessary and sufficient condition for containment, then there exists a PTIME algorithm.

However, in some fragments, for instance when ∗ and // are allowed in tree patterns, the

existence of a homomorphism is no longer a necessary condition [65].

Most of the early results on query containment concern relational conjunctive queries

and their extensions [21, 38]. In particular, it has been proved that containment for con-

junctive queries is NP-complete [21]. However, it is in PTIME for acyclic conjunctive

queries [93]. Several works have considered the extension of containment algorithms for

queries involving order [44, 51, 57], and queries over complex objects [58].

Florescu et al. [38] consider the problem of query containment for a query language

over semi-structured data in which the queries are allowed to include regular path expres-

sions over the attributes and express queries about the schema, roughly a combination of

conjuctive queries with Regular Path Queries(RPQ). An RPQ ρ asks for all pairs of ob-

jects that are connected by a path conforming to a regular expression R. They show that

containment of queries expressed in their query language is decidable(PSPACE-hard).

Calvanese et al. [20] study Conjunctive Two-way Regular Path Queries (C2RPQs).

Two-way Regular Path Queries (2RPQs) include the inverse operator, which enables us to

navigate edges backwards, and C2RPQs is the conjunction of 2RPQs, which enables us

to perform joins and projections over 2RPQs. Using two-way automata, a PSPACE upper

bound is shown for this class of queries (for unions of C2RPQs).

CHAPTER 3. PREVIOUS WORK 41

Table 3.1: The complexity of containment for different XPath fragments.

Fragment Complexity Reference
XP{/,[],//} PTIME [5]
XP{/,//} PTIME [18]
XP{/,∗,[]} PTIME [93, 91, 65]
XP{/,//,[],evars} NP-hard [34]
XP{/,[],∗,//} CoNP-Complete [65]
XP{/,//,∗,[],∪} CoNP-Complete [71]
XP{∗,//} PSPACE-Complete [80]
XP{/,//,[],∪,evars} ΠP

2 -hard [34]
XP{/,//,[],∗,evars} ΠP

2 -hard [34]
XP{/,//,[],∪,evars,6=} ΠP

2 -hard [71]
XP{/,//,[],∪,∗,evars,6=} Undecidable [71]

Deutsch and Tannen [34] define XBind queries and show that XPath containment is a

particular case of (single-atom) XBind containment. When the fragment allows for nav-

igation to descendant-or-self/ancestor-or-self, arbitrary equalities, disjunction/alternation,

and inequalities deciding containment is Π
p
2-complete, whereas it is NP-complete when

the fragment disallows path alternation, filter, disjunction, ancestor-or-self navigation,

non-equalities and equality on node identities.

For XPath expressions, Miklau and Suciu [65] show that containment of XP{/,[],∗,//} is

coNP-complete, while for any combination of two of the constructs ∗, //, and [] the con-

tainment problem is in PTIME. In the absence of descendant edges, for XP{/,∗,[]}, whose

queries can be viewed as conjunctive queries over a tree structure, a PTIME containment

algorithm follows from classic results on acyclic conjunctive queries [93]. This bound

for XP{/,∗,[]} is also noted in [91]. For XP{/,[],//}, without label wildcards, containment

is shown to be in PTIME and every tree pattern query has a unique equivalent minimal

query [5]. Queries in XP{/,//,∗} are a special case of regular expressions on strings, for

which there is a PSPACE-complete containment algorithm in general [80]. For the frag-

ment of regular string expressions in XP{/,//,∗}, a linear time containment algorithm is

announced in [66]. A PTIME algorithm for queries in XP{/,//} is provided in [18].

As another result in [65], the authors describe a sound and complete EXPTIME algo-

3.1. PREVIOUS RESULTS ON XPATH CONTAINMENT 42

rithm for containment of two expressions in XP{/,[],∗,//}. They also claim that the algo-

rithm runs in PTIME whenever the number of //’s in a contained pattern is bounded by

a constant. Even when the number of filters or wildcards is restricted, the containment

of XP{/,[],∗,//} is coNP-complete. Also for queries in XP{/,[],//,∗}, when every node has

at most one child, motivated by [66], the authors of [65] describe a sound and complete

algorithm which always runs in PTIME, however, it may return false negatives in some

cases, where the containing query has filters ([]). Their method shows that containment

can be decided in PTIME by combining adjacent //’s and ∗’s in patterns into single units

and then searching for a homomorphism.

In [37], the authors analyse the complexity of the minimisation problem and show that

it is the same as the complexity of the containment problem. They identify a subclass of

XP{/,[],∗,//} which can be minimised in PTIME. They show that the queries in this frag-

ment have the subpattern property, which means a minimum size tree pattern equivalent to

p can be found among the subpatterns of p. Obviously, this property does not hold in the

presence of constraints.

Wood in [91] studies the minimisation of XPath queries in XP{/,[]} which corresponds

to a class of conjunctive queries. He shows that containment for XP{/,[]} is decidable in

PTIME. Moreover, in [89], he shows that the Datalog fragment needed for XP{/,[],∗,//}

has a decidable containment problem. The technique is based on the chase procedure

introduced in Section 3.1.1.

In other research, Neven and Schwentick [71] have concentrated on XPath expressions

with child and descendant axes that can only navigate downwards in an XML tree, and do

not use the order between siblings. They show that, in principle, adding disjunction to the

fragment studied by Miklau and Suciu [65], XP{/,[],∗,//}, does not make the containment

problem any harder when the input alphabet is infinite. However, when the set of allowed

element names (labels) in XML documents is restricted and is given as a part of the input,

they prove that the containment problem turns to PSPACE-complete. The reason for this

CHAPTER 3. PREVIOUS WORK 43

Table 3.2: The complexity of containment for expressions with disjunction.

/ // [] | ∗ Complexity
+ + + + coNP-complete

+ + + + + coNP-complete

+ + coNP-complete

+ + coNP-complete

+ + + + + PSPACE-complete (given alphabet)

+ + + PSPACE-complete (given alphabet)

complexity jump is that when the alphabet is finite, disjunction allows the expression of

negation. The results on fragments with disjunction are shown in Table 3.2 [71].

The containment of XPath expressions with variables has been studied in [34]. The

XPath semantics allows variables to be used in XPath expressions: an expression matches

a document if there exists a suitable assignment for the variables. They show that contain-

ment of XP{/,//,[],∗,evars} and XP{/,//,[],∪,evars} is ΠP
2 -hard, where evars denote variables

with existential semantics. This result has been extended in [71] by showing that contain-

ment of XP{/,//,[],∪,evars,6=}, that is, inequality tests on variables and attribute values are

allowed, remains in ΠP
2 . Surprisingly, the further addition of ∗ to this fragment makes the

containment problem undecidable.

Geerts and Fan [41] provide the lower bounds for the containment problem for XPath

fragments with sibling axes and establish the complexity of the problem in the absence

of DTDs. They show that the problem is coNP-hard for XP{[],←,∪} and XP{[],→,∪}, is

PSPACE-hard for XP{[],←,¬} and XP{[],→,¬}, finally, it is undecidable for XP{[],→,←,→∗,↑,∪,=,¬},

a fragment with filters, immediate right/left sibling, right sibling, parent, union, data-value

joins, and negation.

All the above-mentioned works are restricted to the case where no constraints exist. In

this thesis, on the contrary, the containment problem is investigated in the presence of con-

straints. In particular, DTD constraints are considered for a number of XPath fragments.

3.1. PREVIOUS RESULTS ON XPATH CONTAINMENT 44

Containment in the presence of constraints

All the research reviewed in the previous section involve the containment problem in the

absence of constraints. However, as already mentioned, it may happen that a query p

does not contain a query q in general but does contain it under some constraints on the

underlying database. Therefore, this presents the containment problem under constraints

as another challenge, which has been the subject of much research over recent years [5,

33, 74, 88].

The advantages offered by imposing constraints on XML data are numerous. Con-

straints capture the semantics of data objects in an XML document. As a result, it facili-

tates automatic validation of the document structure.

The query containment problem for relational conjunctive queries in the presence of

integrity constraints, in particular functional and inclusion dependencies, was first stud-

ied in [50]. Calvanese et al. [19] consider the problem of conjunctive query (with regular

expressions) containment in the presence of a special class of inclusion dependencies and

establish a number of decidability/undecidability results. In [94], the integrity constraints

are extended to implication constraints and referential constraints, which are generalised

forms of functional constraints and inclusion dependencies, respectively. In order to han-

dle incomplete information in the database, Wei and Lausen [87] suggest that disjunctions

need to be expressed as integrity constraints. They introduce disjunctive referential in-

tegrity constraints and give a sound and complete algorithm, ΠP
2 -complete for checking

the containment of conjunctive queries under disjunctive referential and implication con-

straints. The technique for handling disjunctive referential constraints is related to the

well-known minimal model semantics for disjunctive logic programming [59].

Deutsch et al. [33] consider XPath containment in the presence of DTDs and Simple

XPath Integrity Constraints (SXICs). Although SXICs can express many constraints im-

plied by DTDs, DTDs and SXICs are in general incomparable. SXICs cannot express the

order of sibling elements in DTD and the feature that an element admits only subelements

CHAPTER 3. PREVIOUS WORK 45

Table 3.3: The complexity of containment in the presence of DTDs [71].

DT D / // [] ∪ ∗ Complexity
+ + + in P

+ + + coNP-complete

+ + + coNP-hard

+ + + + + + EXPTIME-complete

+ + + + EXPTIME-complete

of given tags.

The authors obtain that containment of XP{/,//,[],∪,evars} under bounded SXICs is de-

cidable. Bounded SXICs are a subclass of SXICs which allow the same generality as all

SXICs in the left-hand-side of the implication, but restrict the form of the right-hand-side

of the implication. They claim that the problem is in EXPTIME in the size of constraints,

while the complexity drops to NP when both expressions and constraints are disjunction-

free. They also show that the problem is undecidable (1) under unbounded SXICs or (2)

in the presence of bounded SXICs and DTDs. When only DTDs are present, they give a

PSPACE lower bound and leave the exact complexity as an open question.

A general result establishing a strong upper bound for a large fragment of XPath is due

to Marx [64]. He shows that the containment problem for navigational XPath, allowing

navigation along all axes, even relative to a specialized form of DTD(similar to XML

Schema), is in EXPTIME. He proves that containment testing for XP{/,//,∗,[],∪} under

DTD constraints is in EXPTIME. This result has also been reported in [71].

Another result in [71] shows that containment under DTD constraints for XP{/,//,∪}

and for XP{/,[],∗,//} are hard for EXPTIME. In addition, the authors study the complexity

of more restrictive fragments in the presence of DTDs. It turns out that DTD-containment

of XP{/,//} is in PTIME. On the other hand, DTD-containment of XP{/,[]} and XP{/,[],//}

are coNP-complete and coNP-hard, respectively. The results about the containment prob-

lem in the presence of DTDs are summarised in Table 3.3 [71].

When sibling axes are included, Geerts and Fan [41] establish the complexity of the

containment problem for various XPath fragments in the presence of various restricted

3.1. PREVIOUS RESULTS ON XPATH CONTAINMENT 46

forms of DTD. For non-recursive, disjunction-free and fixed DTDs, they show that the

problem is undecidable for XP{[],→,←,→∗,↑,∪,=,¬}, a fragment with filters, immediate right/left

sibling, right sibling, parent, union, data-value joins, and negation. On the same setting, it

is coNP-hard for XP{[],→} and XP{[],←} and is EXPTIME-hard for XP{[],→,↑,¬}. Finally,

the problem is PSPACE-hard for XP{[],→,¬} and XP{[],←,¬} under non-recursive and star-

free DTDs.

In the presence of DTD constraints, in the most relevant study to ours, Wood [92]

proves that the containment for XP{/,[]} is coNP-hard. He defines two types of constraints,

called Sibling Constraints (SCs) and Functional Constraints (FCs), which are implied by

DTDs. He obtains that SCs capture containment for queries in XP{/,[]} that are duplicate-

free. A query p in XP{/,[]} is duplicate-free if each node in the tree pattern corresponding

to p has children with distinct labels. However, when DTDs are duplicate-free, both con-

straints are necessary and sufficient to decide containment in PTIME.

The notion of a duplicate-free DTD was introduced in [91] and also used in [92]. A

regular expression R is duplicate-free if each symbol occurs exactly once in R. A DTD

D is called duplicate-free if and only if each content model in D is duplicate-free. For

instance, (b?,(a|c)+) is a duplicate-free regular expression while a,(b|a) is not. In recent

work [10], duplicate-free regular expressions are redefined and referred to as SOREs (Sin-

gle Occurrence Regular Expressions). That paper also shows that SOREs capture the far

majority of the regular expressions occurring in practical DTDs.

More recently, Lakshmanan et al. [53] have shown that containment for queries in

XP{/,[],//} under disjunction-free and recursion-free (simplified) DTDs can be reduced to

containment of tree patterns. They have used a chase algorithm with a set of constraints

including intermediate node, parent-child and cousin constraints.

In [24], the authors investigate the query minimisation problem for XP{/,[],//} under

FBST-constraints which includes child, descendant, subtype, parent, ancestor and sibling

constraints. They design an efficient algorithm based on containment mappings to min-

CHAPTER 3. PREVIOUS WORK 47

imise a given XPath expression both to obtain a unique minimal query and to enumerate all

possible minimal queries. Their proposed method is similar to [74]. However, their con-

straints are not sufficient even for XP{/,[]} when the underlying DTD is not duplicate-free.

For example, assume queries p = a[b[d][f][g]] and q = a[b[c][f][g]][b[d][e][g]][b[d][f][h]]

and the following DTD rules:

<!ELEMENT a (b,b)>

<!ELEMENT b (c,f,g)?,(d,e,g)?,(d,f,h)?>

There is no containment mapping from p to q because no b-node in q has all children of

the b-node of p. However, p contains q in all trees in SAT (D), because whenever there is

a homomorphism from q to a tree t in SAT (D), at least two of the b-nodes of q must map

to the same b-node in t and the union of any two sets of children of b-nodes in q includes

{d, f ,g}, so there will be a homomorphism from p to t.

Finally, Wang and Yu [86] have defined a new set of constraints to deal with disjunction-

free but recursive DTDs. They have proposed two chase algorithms, one of which may

not terminate in some cases (even in XP{/,//}) and the other of which can result in a set

of chased queries whose size is exponential in the number of descendant-edges in the

query. Montazerian and Wood [67] have introduced a rewriting algorithm for XP{/,//} and

produced a complete procedure for deciding containment using the chase and the set of

previously-defined constraints. They considered recursive but non-disjunctive DTDs.

Because the D-containment problem is NP-hard in general, one of the main purposes

of this thesis is to determine specific XPath fragments and types of DTD for which the

problem becomes tractable. In particular, we determine characteristics, especially in real-

world DTDs, which reduce the complexity of D-containment.

3.2. PREVIOUS RESULTS ON XPATH SATISFIABILITY 48

3.2 Previous results on XPath Satisfiability

Particularly when an XPath query is to be evaluated over documents known to be valid with

respect to a schema, it is possible that the query might be unsatisfiable, that is, the query

always returns an empty result, no matter what document (valid with respect to the DTD)

is queried. For instance, irrespective of the underlying DTD, the query self::a/self::b

is always unsatisfiable as it looks for a node labeled with both a and b.

Example 3.1 As another example, consider the query a[b]/c and the following DTD rule:

<!ELEMENT a (b|c)>

The query is unsatisfiable, because the rule implies that every a-node can have either a

b-node or a c-node as a child, but not both.

Relatively little work has been done on detecting whether a given XPath query is satis-

fiable [7, 41, 45, 52]. However, it is potentially important to detect unsatisfiable XPath

queries and optimise queries to remove expressions that will always return an empty result

set. Indeed, Lakshmanan et al. show that checking satisfiability as a first step in query

processing often yields substantial savings in overall query processing time [52].

Satisfiability analysis can be related to the containment problem. In fact, the satisfiabil-

ity problem is reducible to the complement of the containment problem [7]. More specifi-

cally, Given a DTD D, for any XPath fragment XP and query p ∈ XP, p is D-satisfiable if

and only if p 6⊆ /0D under D, where /0D is a special query that returns the empty set on any

XML tree of SAT (D). While there has also been much work on containment analysis, as

reviewed in the previous section, previous results on the containment cannot answer the

questions of satisfiability analysis. Indeed, as already indicated by [7], the lower bounds

for containment are often much higher than its satisfiability counterpart.

CHAPTER 3. PREVIOUS WORK 49

Table 3.4: The complexity of satisfiability in the absence of DTDs [45].

⇑ [] ∪ ∩ ¬ Complexity
X PTIME

X PTIME
X NP-complete

X X NP-complete
X X NP-complete

X X X X NP-complete
X NP-hard

3.2.1 Satisfiability in the absence of constraints

Lakshmanan et al. [52] study the satisfiability problem for a tree pattern formalism simi-

lar to XPath in the absence of DTDs. The formalism expresses tree-shaped queries with

a node identity operator which can compare data values. In particular, they reduce sat-

isfiability reasoning to making inferences about relationships between nodes and/or their

contents or attribute values. They identify conditions under which the problem can be

solved in PTIME.

Hidders classifies the complexity of satisfiability for various XPath fragments as ei-

ther PTIME or NP-hard [45]. He shows that deciding satisfiability for filters, sibling axes,

backward axes(↑ ∗,↑), and the root test is in PTIME. The main contribution of [45] is to

show that testing satisfiability for each of XP{⇑,[]}, XP{∩}, XP{[],∪}, and XP{⇑,[],∪,∩} is

NP-complete. Moreover, he proves that when filtering, forward(↓ ∗,↓) and backward axes,

and order are present, satisfiability can be tested in PTIME. To prove this, he uses a tree

description graph. The procedure he applies is slightly similar to the chase procedure

used in [52]. He also shows that when all the axes and root are present, but none of the

set operations or filtering is allowed, satisfiability can again be tested in PTIME. Hidders

points out that the satisfiability problem is NP-complete when forward axes and intersec-

tion operators are present. Finally, he obtains that satisfiability is NP-hard in the presence

of a complement operator. The results for different XPath fragments are summarised in

Table 3.4 [45].

3.2. PREVIOUS RESULTS ON XPATH SATISFIABILITY 50

In the absence of DTDs, Geerts and Fan [41] show that the satifibility for queries in

XP{[],∪,→} and XP{[],∪,←} is NP-hard. The problem is PSPACE-hard for XP{[],¬,→} and

XP{[],¬,←} and is undecidable for XP{[],→,←,→∗,↑,∪,=,¬}.

All the above-mentioned works on the satisfiability problem are restricted to the case

where no constraints exist, whereas, in this thesis, the satisfiability problem is investigated

in the presence of DTD constraints.

3.2.2 Satisfiability in the presence of constraints

Lakshmanan et al [52] study the satisfiability problem for a tree pattern formalism which is

similar to XPath. They investigate the problem in the presence of non-recursive disjunction-

free DTDs. Based on the proposed formalism, they introduce a constraint graph which

consists of a structural part to capture structural constraints and a value-based part for

value-based constraints. They propose some inference rules to close the graph with re-

spect to all constraints implied by the given constraints and show that the rules are com-

plete when the query contains no wildcards. Moreover, they show that testing satisfiability

is in PTIME for the tree patterns containing child, descendant, filter and NIC, where NIC

stands for Node Identity Constraint which is a structural constraint. These results do not

overlap with our results as they only consider a limited form of DTDs.

Groppe et al. [43] focus on the satisfiability problem for XPath, including all XPath

axes and negation in predicates, and propose a schema-based satisfiability tester which

checks whether or not an XPath query conforms to the constraints in a given schema. The

proposed tester evaluates XPath queries on XML Schema definitions. They represent an

XML Schema definition by a directed graph and prove that in the worst case, i.e. each node

in the graph has edges to all nodes, the complexity of their approach is O(a×N× (N!×

3)a), where a is the number of location steps in the query Q and N is the number of nodes in

the given XML Schema. They consider real-world schemas where each node in the given

schema, S, has only a small number of succeeding nodes compared with the number of

CHAPTER 3. PREVIOUS WORK 51

nodes in S. In addition, they assume that in a given query Q, the average number of visited

nodes in each location step is less than a constant C. They prove that the complexity of their

approach under these assumptions is O(a×N×C). Finally, they implement experimental

results to show the correctness and the performance of their tester. They show that the

overhead of checking satisfiable XPath queries by their approach is very low. Since the

problem has been shown to be undecidable [7], their approach is sound but incomplete.

Inspired by our proposed covering property published in [68], the authors in [46] in-

troduce a subclass of DTDs, called DCDTDs, whose content models are a subclass of

covering DTDs and a superclass of disjunction-free DTDs. In DCDTDs (Disjunction Cap-

sulated DTDs), every disjunction operators in the content models are capsulated by wild-

cards. They show that the satisfiability problem for XPath fragments with forward(child

and descendant), backward(parent) and sibling axes along with union and filter operators,

under DCDTDs is tractable.

The most relevant work to our study is [7], in which the authors study a variety of

widely-used XPath fragments and show the impact of different XPath operators on the

satisfiability problem in the presence of DTDs. More specifically, they study the problem

for XPath fragments with and without upward axes (parent and ancestor axes), negation,

recursion (XPath with descendant and ancestor axes), and data-value joins (XPath with

comparisons of data values). They show that the presence of filters makes the satisfiability

analysis harder. They prove that satisfiability is in PTIME for XP{/,//,∗,∪} under any DTDs

and for XP{/,//,∗,[],∪} under disjunction-free DTDs. They identify the tractable cases and

the factors which lead to NP-completeness. They prove that, with negation, the complexity

alters from PSPACE to EXPTIME, while it changes from NEXPTIME to undecidable

in the presence of both data values and negation. Their results also indicate that XPath

satisfiability in the presence of DTDs for the fragment with all of the features of [45], i.e.

XP{/,[],∩,∪,¬}, is in EXPTIME.

The results in [7] are extended in [41] by adding sibling axes to the fragments stud-

3.3. SUMMARY 52

ied in [7] in the presence and absence of DTDs and under various restricted DTDs. They

indicate that, in the presence of DTDs, for XPath fragments with child, filter, sibling and

upward axes satisfiability is NP-hard. Moreover, they give PTIME bounds in the absence

of filters and in the presence of sibling and upward axes. They also establish lower and up-

per bounds for satisfiability analysis in various settings, which range from NLOGSPACE

to undecidable. They prove that in the absence of XPath filters ([]), the presence of sibling

axes does not impact the complixity. However, in the presence of filters, sibling axes make

the problem even harder. For instance, XPath satisfiability for XP{/,[]} under fixed or under

disjunction-free DTDs is in PTIME, but the complexity rises to NP-hard in the presence

of sibling axes. They amend the result reported in [64] which places an EXPTIME bound

on the complexity of satisfiability for an XPath fragment with all axes, union, filters and

negation in the presence of DTDs. More specifically, they show that the complexity for

the fragment without descendant and ancestor axes is still in EXPTIME.

3.3 Summary

In summary, extensive research has focused on analysing the complexity of D-containment

and D-satisfiability problems, which are shown to be intractable in general, unless P = NP.

Consequently, a number of works attempt to reduce the complexity of these problems for

certain cases. In particular, it is shown the under duplicate-free DTDs, D-containment of

XP{/,[]} is tractable. It is also shown that under disjunction-free DTDs, D-satisfiability of

XP{/,[],∗,//,∪} is tractable [7].

However, research in this direction is still required due to the (co)NP-hardness of the

problems. The existing results are limited both with respect to the number of cases for

which the problems become tractable and with respect to the restrictive nature of them.

For example, the disjunction-freeness is rather restrictive and is not often preserved in

practice. Therefore, the main goal of this thesis is to provide further cases for which the

D-satisfiability and D-containment problems become tractable. Furthermore, in devising

CHAPTER 3. PREVIOUS WORK 53

such cases, we closely observed real-word DTDs in order to avoid proposing cases that

are too restrictive.

In this thesis, we concentrate on the satisfiability problem under two special classes

of DTDs for a variety of XPath fragments with child axes (/), descendant axes (//), filters

([]), unions(∪) and wildcards (*). We establish various lower and upper bounds for the

problem in these settings. The two classes of DTDs we consider are duplicate-free DTDs

and covering DTDs. The covering property is less restrictive than the disjunction-free

property but can still be easily analyzed. In Chapter 5, we show that under covering DTDs

the satisfiability problem for XP{/,[],∗,//,∪} is in PTIME. Ishihara et al. extend this result

and show that adding sibling-axes to this fragment makes the problem NP-complete [46].

We also show that testing satisfiability for XP{/,[]} is decidable in PTIME for duplicate-

free DTDs. Motivated by our results presented in [68], Suzuki et al. [81] show that the

problem is also in PTIME for XPath fragments consisting of child, parent, and sibling

axes. When only a constant number of descendant axes are considered, the problem is still

in PTIME. Without any restrictions, however, the problem becomes NP-complete, even

for fragments without sibling axes.

54

Chapter 4

Constraints Inferred from DTDs

The containment and equivalence problems of various fragments of XPath queries under

DTDs have been studied in the literature [34, 5, 91, 74, 92, 71, 71, 31] which was sur-

veyed in the previous chapter. Some of these proposals are based on the use of constraints

derived from DTDs, as opposed to the use of the DTDs themselves. Constraints are used

in order to transform the DTD-containment/DTD-equivalence problem to one of simple

containment/equivalence [74, 5, 31, 91, 92]. There are, however, two issues with such an

approach: (i) whether the derived constraints completely capture the restrictions imposed

by the DTDs and (ii) how to extract such constraints from the DTDs.

Regarding the first issue, Wood [91, 92] has defined two constraints called Sibling

Constraints (SCs) and Functional Constraints (FCs) and has shown that SCs are neces-

sary and sufficient to decide containment under DTDs, when restricted to duplicate-free

queries in the XPath fragment XP{/,[]}. He also proves that SCs and FCs are necessary and

sufficient to decide containment under DTDs in PTIME for XP{/,[]}, as long as the DTD is

duplicate-free (defined in Chapter 3). However, these constraints are not powerful enough

to capture DTD-containment for XP{/,[]} when neither the query nor the underlying DTD

is duplicate-free. In this chapter, we introduce two new types of constraints called Bag

Sibling Constraints (BSCs) and Bag Functional Constraints (BFCs) which not only gener-

CHAPTER 4. CONSTRAINTS INFERRED FROM DTDS 55

alise, respectively, SCs and FCs, but also overcome their limitation to sets, as opposed to

bags, of labels. In particular, we show in Chapter 6 that BSCs and BFCs are necessary and

sufficient to decide containment under well-behaved DTDs for XP{/,[]}. Duplicate-free

DTDs are a subset of well-behaved DTDs (the property of well-behavedness is defined in

Chapter 6). In the general case, however, i.e. when there is no restriction on the DTD, the

full power of the DTD is necessary to decide containment for XP{/,[]} [92].

In this chapter, we also define derivatives of regular expressions, with respect to a bag

of symbols. Derivatives of regular expressions have been previously defined [17], but with

respect to strings of symbols. We use regular expression derivatives to determine whether

a given query q is satisfiable with respect to a given DTD D. Based on this idea, we

define the DERIVATIVE NON-EMPTINESS problem and prove that it is NP-complete. In

Chapter 6, we define a new class of regular expressions for which solving DERIVATIVE

NON-EMPTINESS is in PTIME.

The rest of this chapter is organised as follows. Section 4.1 provides the basic notation

and definitions used in the rest of the chapter. In Section 4.2, our variation of derivatives of

regular expressions is defined. Section 4.3 introduces the DERIVATIVE NON-EMPTINESS

problem. Section 4.4 describes the concept of DTDs and some types of DTD constraint

previously defined in the literature. New types of DTD constraints, together with their

properties, are defined in Section 4.5. Finally, Section 4.6 concludes the chapter.

4.1 Basic Definitions

The following notation is adapted from [4] and [23]. A bag is a set of annotated elements;

the annotation of an element, also called its multiplicity, is a positive integer. If bag B

contains the element a, we write a∈B. The multiplicity of element a in bag B is denoted by

|a|B. If a 6∈ B, then |a|B = 0. When enumerating the elements in a bag we use superscripts

to indicate the multiplicity of elements. Thus a bag containing 2 copies of a and 3 copies

of b is written as {a2,b3}.

4.2. BAG DERIVATIVES OF REGULAR EXPRESSIONS 56

We use⊆ to denote (bag) containment, defined as follows: A⊆ B if ∀x∈ A, |x|A≤ |x|B.

We use ∪ to denote (bag) union (also called maximal union), defined as follows: x ∈ A∪B

if x ∈ A or x ∈ B and |x|A∪B = max(|x|A, |x|B). On the other hand, additive union, denoted

by], is defined as follows: x ∈ A]B if x ∈ A or x ∈ B and |x|A]B = |x|A + |x|B. Finally,

given two bags A and B, A−B is the bag of symbols resulting from removing, for each

b ∈ A, |b|B occurrences of b from A(|b|A = 0 if |b|A ≤ |b|B). Note that for maximal union

A− (B∪C) is not necessarily equal to (A−B)−C, but, for additive union, A− (B]C) =

(A−B)−C = (A−C)−B.

Given a string v and a bag of symbols B, we denote by v−B the set of strings result-

ing from removing, for each b ∈ B, |b|B occurrences of b from v. For example babba−

{a,b2}= {ab,ba}. For string v, we denote the bag of symbols appearing in v by [v]. Hence

[babba]−{a,b2}= {a,b}.

If w is a string of symbols over alphabet Σ, then we use the notations [w] and {w} to

denote, respectively, the bag and the set of symbols appearing in w.

4.2 Bag derivatives of regular expressions

Brzozowski [17] defined derivatives of regular expressions with respect to strings. In this

section, we define derivatives with respect to bags of symbols. Throughout, we use Σ as

an alphabet of symbols.

Definition 4.1 Let B ⊆ Σ be a (non-empty) bag of symbols, and L ⊆ Σ∗ be a language.

The derivative of L with respect to B, denoted δBL, is the language

{u | v ∈ L,B⊆ [v],u ∈ v−B}. (4.1)

Recall that, according to the notation introduced in Section 4.1, [v] is a bag of symbols,

while v−B is a set of strings.

CHAPTER 4. CONSTRAINTS INFERRED FROM DTDS 57

We next define the derivative of a regular expression. Recall that a regular expression

over a set Σ is defined recursively as follows [76]:

• /0 is a regular expression.

• ε is a regular expression.

• The symbol a is a regular expression where a ∈ Σ.

• (P,Q), (P|Q) and P∗ are regular expressions, where P and Q are regular expressions.

In this chapter, by PQ, we mean the concatenation P,Q of regular expressions P and Q.

Definition 4.2 Let b,c ∈ Σ (b 6= c), and R be a regular expression over Σ. The derivative

δ{b}R of R with respect to the singleton bag {b} is an expression recursively defined as

follows:

δ{b}b = ε

δ{b}c = δ{b}ε = δ{b} /0 = /0

If P and Q are regular expressions over Σ, then

δ{b}(P|Q) = (δ{b}P)|(δ{b}Q)

δ{b}(PQ) = δ{b}PQ|Pδ{b}Q

δ{b}(P
∗) = P∗δ{b}PP∗

For b ∈ Σ and regular expression R over Σ, let us denote by δ n
{b}R the n’th derivative of R

with respect to {b}, that is,

δ
n
{b}R =

n times︷ ︸︸ ︷
δ{b}(δ{b} · · ·(δ{b}R)).

4.2. BAG DERIVATIVES OF REGULAR EXPRESSIONS 58

Definition 4.3 Let R be a regular expression over Σ, and B = {bn1
1 , . . . ,bnm

m } be a bag

of symbols over Σ. A regular expression denoting the derivative of R with respect to B,

denoted δBR, is defined as follows:

δBR = δ
n1
{b1}(δ

n2
{b2} · · ·(δ

nm
{bm}R)) (4.2)

Next, we show that the language denoted by the (bag) derivative of a regular expression R

is equal to the derivative of the language denoted by R.

Theorem 4.1 Let R be a regular expression and B a bag of symbols over Σ. Then δBL(R)=

L(δBR).

Proof. We first consider the case of B = {b}, b ∈ Σ. The proof proceeds by induction,

based on Definition 4.2.

Base case: There are four cases to consider: (1) when R = b, (2) when R = c (c 6= b),

and (3) when R = ε , and (4) when R = /0. The proofs for cases (3) and (4) are similar to

that for case (2) and so are omitted.

(1) When R = b and δbR = ε:

δ{b}L(R) = δ{b}L(b)

= {u | v ∈ {b},{b} ⊆ [v],u ∈ v−{b}}

= {u | {b} ⊆ [b],u ∈ b−{b}}

= {ε} = L(ε) = L(δ{b}R)

(2) When R = c and δ{b}R = /0:

δ{b}L(R) = δ{b}L(c)

= {u | v ∈ {c},{b} ⊆ [v],u ∈ v−{b}}

= {u | {b} ⊆ [c],u ∈ c−{b}}

CHAPTER 4. CONSTRAINTS INFERRED FROM DTDS 59

= {u | {b} ⊆ [c],u ∈ /0} = /0 = L(δ{b}R)

Induction step: There are three cases to consider: (1) when R = P|Q, (2) when R = PQ,

and (3) when R = P∗.

(1) When R = P|Q and δ{b}R = (δ{b}P)|(δ{b}Q):

δ{b}L(R) = δ{b}L(P|Q)

= {u | v ∈ L(P|Q),{b} ⊆ [v],u ∈ v−{b}}

= {u | (v ∈ L(P))∨ (v ∈ L(Q)),{b} ⊆ [v],u ∈ v−{b}}

= {u | v ∈ L(P),{b} ⊆ [v],u ∈ v−{b}}∪{u | v ∈ L(Q),{b} ⊆ [v],u ∈ v−{b})}

= δ{b}L(P)∪δ{b}L(Q)

By the inductive hypothesis:

L(δ{b}P)∪L(δ{b}Q) = L(δ{b}P|δ{b}Q) = L(δ{b}R)

(2) When R = PQ and δ{b}(PQ) = δ{b}PQ|Pδ{b}Q

δ{b}L(R) = δ{b}L(PQ)

= {u | v ∈ L(PQ),{b} ⊆ [v],u ∈ v−{b}}

= {u | v1 ∈ L(P),v2 ∈ L(Q),{b} ⊆ [v1v2],u ∈ v1v2−{b}}

= {u | v1 ∈ L(P),v2 ∈ L(Q),({b} ⊆ [v1],u1 ∈ v1−{b},u = u1v2)∨

({b} ⊆ [v2],u2 ∈ v2−{b},u = v1u2)}

= {u1v2 | v1 ∈ L(P),{b} ⊆ [v1],u1 ∈ v1−{b},v2 ∈ L(Q)}∪

{v1u2 | v1 ∈ L(P),{b} ⊆ [v2],u2 ∈ v2−{b},v2 ∈ L(Q)}

= {u1v2 | u1 ∈ δ{b}L(P),v2 ∈ L(Q)}∪

{v1u2 | v1 ∈ L(P),u2 ∈ δ{b}L(Q)}

4.2. BAG DERIVATIVES OF REGULAR EXPRESSIONS 60

By the inductive hypothesis:

= {u1v2 | u1 ∈ L(δ{b}P),v2 ∈ L(Q)}∪{v1u2 | v1 ∈ L(P),u2 ∈ L(δ{b}Q)}

= L(δ{b}PQ)∪L(Pδ{b}Q) = L(δ{b}PQ|Pδ{b}Q) = L(δ{b}R)

(3) When R = P∗ and δ{b}(P∗) = P∗δ{b}PP∗

δ{b}L(R) = δ{b}L(P∗)

= {u | v ∈ L(P∗),{b} ⊆ [v],u ∈ v−{b}}

= {u | v ∈ L(ε|P+),{b} ⊆ [v],u ∈ v−{b}}

= {u | v ∈ L(ε)∪L(P+),{b} ⊆ [v],u ∈ v−{b}}

= {u | v ∈ L(P+),{b} ⊆ [v],u ∈ v−{b}}

Since P+ = P∗PP∗:

= {u | v = v1v2v3,v1 ∈ L(P∗),v2 ∈ L(P),v3 ∈ L(P∗),{b} ⊆ [v2],u ∈ v2−{b}}

= {v1uv3 | v1 ∈ L(P∗),v2 ∈ L(P),v3 ∈ L(P∗),{b} ⊆ [v2],u ∈ v2−{b}}

= {v1uv3 | v1 ∈ L(P∗),u ∈ δ{b}L(P),v3 ∈ L(P∗)}

By the inductive hypothesis:

= {v1uv3 | v1 ∈ L(P∗),u ∈ L(δ{b}P),v3 ∈ L(P∗)}

= L(P∗δ{b}PP∗) = L(δ{b}R)

Based on Definition 4.3, we now consider the case when B is not necessarily a singleton.

For simplicity we assume B = {b1,b2, . . . ,bn}, n≥ 1, where for each bi and b j (i 6= j), bi

may or may not be equal to b j. Therefore, we have δ{b1,b2,...,bn}R = δb1(δb2 . . .(δbnR)). We

CHAPTER 4. CONSTRAINTS INFERRED FROM DTDS 61

proceed by induction on |B|.

Base case: For |B|= 1, B = {b1} and δ{b1}L(R) = L(δ{b1}R) as already shown.

Induction step: We assume the result holds for |B|= k, k ≥ 1, i.e. δ{b1,b2,...,bk}L(R) =

L(δb1(δb2(. . .(δbkR)), and prove that it also holds for |B| = k + 1. Let us assume B1 =

{b1, . . . ,bk} and B2 = {b1, . . . ,bk,bk+1}. Then we have

δ{b1,b2,...,bk,bk+1}L(R) = {u | v ∈ L(R),B2 ⊆ [v],u ∈ v−B2}

= {u | v ∈ L(R),B1]{bk+1} ⊆ [v],u ∈ v− (B1]bk+1)}

Recall from Section 4.1 that A− (B]C) = (A−B)−C = (A−C)−B, hence:

= {u | v ∈ L(R),B1]{bk+1} ⊆ [v],u ∈ (v−{bk+1})−B1}

Let V = {u | v ∈ L(R),{bk+1} ⊆ [v],u ∈ v−{bk+1}}. Then

= {u | v ∈V,B1 ⊆ [v],u ∈ v−B1}

Based on the proof of the base case, we have {u | v∈ L(R),{bk+1}⊆ [v],u∈ v−{bk+1}}=

L(δbk+1(R)) = δbk+1L(R):

= {u | v ∈ δbk+1L(R),u ∈ v−B1}

= {u | v ∈ L(δbk+1R),u ∈ v−B1}

= δB1(L(δbk+1R))

And by the inductive hypothesis:

= L(δB1(δbk+1R)) = L(δb1(δb2(. . .(δbk+1R))

4.3. THE DERIVATIVE NON-EMPTINESS PROBLEM 62

4.3 The DERIVATIVE NON-EMPTINESS problem

In the previous section, we defined derivatives of regular expressions with respect to a bag

of symbols. This is because we want to use derivatives in the static analysis of XPath

queries posed on XML documents that are valid with respect to some Document Type

Definition (DTD) D. More specifically, we want to determine, when querying documents

valid with respect to D, whether a given node v in an XPath query q can have a set of child

nodes whose labels form the bag B, irrespective of the order of the child nodes. This turns

out to be equivalent to determining whether the derivative of the content model (regular

expression) for v in D with respect to B is non-empty. We call this the DERIVATIVE NON-

EMPTINESS problem.

We define the DERIVATIVE NON-EMPTINESS problem as follows: given regular ex-

pression R over finite alphabet Σ and (non-empty) bag B⊆ Σ, is L(δBR) non-empty?

Next we show that DERIVATIVE NON-EMPTINESS is NP-complete. Then, in Chapter

6, we introduce a class of regular expressions for which DERIVATIVE NON-EMPTINESS

can be decided in polynomial time.

In [91], the problem of STRING COVER was introduced in the context of determining

containment of XPath queries. Given an alphabet Σ, let w be a string over Σ and B be a

non-empty subset of Σ. We say that w covers B if w contains each symbol in B. Given a

regular expression R over Σ and (non-empty) set B⊆ Σ, STRING COVER asks if there is a

string w ∈ L(R) which covers B. STRING COVER was shown to be NP-hard in [91].

Theorem 4.2 DERIVATIVE NON-EMPTINESS is NP-complete.

Proof. We reduce STRING COVER to DERIVATIVE NON-EMPTINESS. Assume we

are given R and (non-empty) set B⊆ Σ. We show δBR is non-empty if and only if there is

CHAPTER 4. CONSTRAINTS INFERRED FROM DTDS 63

a string v ∈ L(R) which covers B.

(If) Assume that string v ∈ L(R) covers B. Hence B ⊆ [v] and therefore {u | v ∈

L(R),B⊆ [v],u ∈ v−B} 6= /0. Thus, δBR is non-empty.

(Only if) Assume that δBR is non-empty. Then, based on Equation (4.1), there is a

v ∈ L(R) such that B⊆ [v]. This implies that v covers B.

We now show that the problem belongs to NP. Consider a certificate C for a “yes”

instance to be a string w ∈ L(R) such that B ⊆ [w]. We can easily check in polynomial-

time in the sizes of C, B and R that the certificate is valid (e.g., by constructing an non-

deterministic finite automaton(NFA) M for R to check whether w ∈ L(M), and using a

simple set-containment test).

We state the following straightforward result:

Proposition 4.1 DERIVATIVE NON-EMPTINESS is in PTIME if the set B is a singleton.

4.4 Main DTD Constraints in the Literature

In this section, we review several types of constraints previously introduced in the litera-

ture.

4.4.1 Constraints from Recursive DTDs

Child of First Node Constraints A DTD D implies the Child of First Node (CFN)

Constraint a
/x→ b, where a,b,x ∈ Σ, if in every tree t in SAT (D), on every path from an

a-node to a b-node, the node immediately following the a-node must be an x-node [86].

Parent of Last Node Constraints A DTD D implies the Parent of Last Node (PLN)

Constraint a
x/→ b, where a,b,x ∈ Σ, if in every tree t in SAT (D), on every path from an

a-node to a b-node, the node immediately preceding the b-node must be an x-node [86].

4.4. MAIN DTD CONSTRAINTS IN THE LITERATURE 64

Essential Edge Constraints A DTD D implies the Essential Edge (EE) Constraint a
x/y→

b, where a,b,x,y ∈ Σ, if in every tree t in SAT (D), every path from an a-node to a b-node,

must contain an edge from an x-node to a y-node [86].

Example 4.1 Consider the following recursive DTD rules:

<!ELEMENT Books (Book*)>

<!ELEMENT Book (Publisher?,author+)>

<!ELEMENT Publisher (Name, Book*)>

The DTD implies Books
/Book→ author, Books

Book/→ author, and Books
Book/Publisher→ Name

(among others).

4.4.2 Child Constraints

Given a DTD D, let a and c be symbols in Σ and Ra be the regular expression which is

associated with a by D. Then D implies the Child Constraint a Ra
→ c if in every tree t in

SAT (D), each a-node must have (at least) a c-child [5, 88]. When the regular expression

Ra is clear from the context, it may simply be dropped and a→ c be used.

The child constraints implied by the production rules in Example 4.1 are Publisher→

Name and Book→ author.

In what follows we show that there exists a relationship between the concept of deriva-

tives and child constraints. Similar to [92], we define an unordered regular expression as

follows:

Definition 4.4 Let R be a regular expression over Σ. An unordered regular expression,

[R], is the set {[w] | w ∈ L(R)}.

Theorem 4.3 Let a and c be symbols in Σ and Ra be the content model for a. The child

constraint a→ c holds if and only if [Ra] = [cδcRa].

CHAPTER 4. CONSTRAINTS INFERRED FROM DTDS 65

Proof. Trivially holds.

A child constraint a→ c can be derived in PTIME [90]. The method is based on

deleting transitions corresponding to c in an NFA M for Ra and then checking if L(M) is

empty.

4.4.3 Parent Constraints

Given a DTD D, let a and c be symbols in Σ and Ra be the regular expression which is

associated with a by D. Then D implies the Parent Constraint c Ra
← a if, in every tree t

in SAT (D), each node labeled c must have a node labeled a as a parent [88]. When the

regular expression Ra is clear from the context, it may simply be dropped and c← a be

used.

4.4.4 Descendant Constraints

A DTD D implies a descendant Constraint a⇒ c, where a,c ∈ Σ, if, in every tree t in

SAT (D), every node labeled a must have a descendant node labeled with c [88]. The child

constraint a→ c implies the descendant constraint a⇒ c.

Descendant constraints are closed with respect to transitivity. In other words, if a⇒ c

and c⇒ b, then a⇒ b.

4.4.5 Ancestor Constraints

A DTD D implies the Ancestor Constraint a⇐ c, where a,c ∈ Σ, if in every tree t in

SAT (D), every node labeled c must always have an ancestor node labeled a [88]. The

Parent constraint c← a implies the ancestor constraint c⇐ a.

4.4. MAIN DTD CONSTRAINTS IN THE LITERATURE 66

4.4.6 Cousin Constraints

A DTD D implies the Cousin Constraint (CC) a : b⇒ c, where a,b,c ∈ Σ, means that in

every tree t in SAT (D), every node labeled a that has a descendant labeled b must also

have a descendant labeled c [53].

4.4.7 Intermediate Node Constraints

A DTD D implies the Intermediate node Constraint (IC) a c→ b, where a,b,c ∈ Σ, if in

every tree t in SAT (D), every path from an a-node to a b-node includes a c-node [53].

4.4.8 Parent-Child Constraints

A DTD D implies the Parent-child Constraint (PC) a ⇓1 b, where a,b ∈ Σ, if for every t in

SAT (D), whenever a b-node is a descendant of an a-node, it is necessarily a child [53].

4.4.9 Sibling Constraints

A DTD D implies the SC a : B ⇓ c, where a,c ∈ Σ and B⊆ Σ, if in every tree t in SAT (D),

each node labeled a that has children labeled with each b∈ B, also has a child node labeled

c [91].

A child constraint a→ c is a special case of the SC a : B ⇓ c, when B = /0. The SCs

shown in the previous example are not child constraints.

Given a DTD D, it has been shown that SCs implied by D capture D-containment for

queries in XP{/,[]} that are duplicate-free. A query q in XP{/,[]} is duplicate-free if each

node in the tree pattern corresponding to q has children with distinct labels. However,

when DTDs are duplicate-free both SCs and FCs are necessary and sufficient to decide

containment in PTIME [92]. Moreover, it has been proved that deciding whether a sibling

constraint is implied by the content model of an element in a DTD is coNP-hard [91] in

general, but it is in PTIME whenever the content model is duplicate-free.

CHAPTER 4. CONSTRAINTS INFERRED FROM DTDS 67

In the following, we use the derivatives of regular expressions to reduce the problem of

determining a sibling constraint a : B ⇓ c to the problem of determining a child constraint

for the non-trivial case of c 6∈ B.

Theorem 4.4 Let a and c be symbols in Σ,B ⊆ Σ,c /∈ B, and Ra be the content model for

a. The sibling constraint a : B ⇓ c holds if and only if the child constraint a
δBRa
→ c holds.

Proof. Trivially holds.

4.4.10 Family Constraints

A DTD D implies the Family Constraint a[$1b] ⇓ [$2c], where each of $1 and $2 is either

/ or //, if, whenever an a-node has a b-node as a child (if $1 is /) or descendant (if $1 is //),

then it also has a c-node as a child (if $2 is /) or descendant (if $2 is //), respectively [67].

As special cases, if every a-node must have a c-node as a child (or descendant), this can be

shown by a ⇓ [/c] (or a ⇓ [//c]). When both $1 and $2 are / (respectively //), then a family

constraint corresponds to an SC (respectively CC).

Example 4.2 Consider the following DTD:

<!ELEMENT a (b | (c, (d|e)))>

<!ELEMENT b (c)>

<!ELEMENT d (f)>

<!ELEMENT e (f)>

If an a-node has a c-child then it must have an f -descendant, and if an a-node has an

f -descendant then it must have a c-child. So the family constraints a[/c] ⇓ [// f] and

a[// f] ⇓ [/c] hold. Note that an a-node can have a c-descendant without having an f -

descendant, so a CC will not capture the first constraint.

4.5. BAG SIBLING AND FUNCTIONAL CONSTRAINTS 68

4.4.11 Functional Constraints

A DTD D implies the functional constraint (FC) a ↓ b, where a,b ∈ Σ, if for every t in

SAT (D), no node labeled a can have two distinct children labeled b [91]. Deriving the set

of FCs implied by a DTD can be done in PTIME [92].

In [92] deriving FCs was stated to be in PTIME. However, no formal proof was pre-

sented for this purpose. In what follows we use the concept of derivatives to show this.

Theorem 4.5 Let a and c be symbols in Σa and Ra be the content model for a. The func-

tional constraint a ↓ c holds if and only if δc2Ra = /0.

Proof. Trivially holds.

In the next section, we generalise the definition of SC and FC into two new types

of constraints, respectively, called Bag Sibling Constraint (BSC) and Bag Functional Con-

straint (BSC). We use these constraints in Chapter 6, where we show that they are sufficient

and necessary to capture containment of XP{/,[]} under well-behaved DTDs.

4.5 Bag Sibling and Functional Constraints

In this section, we introduce two types of constraints which capture D-containment of

queries in XP{/,[]} under well-behaved DTDs. These constraints are generalised forms

of the well-known FCs and SCs and are called, respectively, bag functional constraints

(BFCs) and bag sibling constraints (BSCs). We first define the notion of an infinity bag

schema.

Definition 4.5 An infinity bag schema B is a bag specification in which the annotation on

each element is either 1 or > 1. By x1 ∈ B we mean that the multiplicity of x in B is 1,

while by x>1 ∈ B we mean the multiplicity of x in B can be any value greater than 1. By

x ∈ B, we mean either x1 ∈ B or x>1 ∈ B.

CHAPTER 4. CONSTRAINTS INFERRED FROM DTDS 69

Note that an infinity bag schema is not a bag but a specification of a set of bags. More

specifically, an infinity bag schema B specifies the set of bags Bi such that for each member

b1 ∈ B, |b|Bi = 1, for each b>1 ∈ B, |b|Bi > 1, and Bi includes no symbol other than those

appearing in B.

Definition 4.6 Let A and B be two infinity bag schemas. We say A⊆ B , if ∀x∈ A we have:

• if x>1 ∈ A, then x>1 ∈ B

• if x1 ∈ A, then x1 ∈ B or x>1 ∈ B

Now let B be an ordinary bag. Then A⊆ B if ∀x ∈ A:

• if x>1 ∈ A, then xk ∈ B, for some k > 1

• if x1 ∈ A then xk ∈ B, for some k ≥ 1

Definition 4.7 Let A and B be two infinity bag schemas, then A∪B = {xi | x ∈ A or x ∈ B}

where :

i =

 > 1 if x>1 ∈ A or x>1 ∈ B

1 otherwise

and also we define A]B = {xi | x ∈ A or x ∈ B} such that:

i =

 > 1 if (x1 ∈ A and x1 ∈ B) or x>1 ∈ A or x>1 ∈ B

1 otherwise

Definition 4.8 A bag sibling constraint (BSC) is of the form a : B ⇓ c, where a,c ∈ Σ, and

B is a possibly an infinity bag schema defined on Σ. A DTD D implies the BSC a : B ⇓ c

if in every tree t in SAT (D), every node labeled ‘a’ that has a bag of children A such that

B⊆ A also has a child node labeled c.

Definition 4.9 A bag functional constraint (BFC) is of the form a : B ↓ c, where a,c ∈ Σ

and B is a possibly infinity bag schema defined on Σ. A DTD D implies the BFC a : B ↓ c

4.5. BAG SIBLING AND FUNCTIONAL CONSTRAINTS 70

if in every tree t in SAT (D), every node labeled ‘a’ that has a bag of children A such that

B⊆ A, can have at most one child node labeled c.

Example 4.3 Consider the following DTD rule:

a → (b∗,d) | (b,d∗)

While this DTD rule does not imply any FCs or SCs, it does imply the BSCs a : {b>1} ⇓ d

and a : {d>1} ⇓ b, and the BFCs a : {b>1} ↓ d and a : {d>1} ↓ b.

Note that for a bag B used in (the left hand side of) a BFC (respectively BSC), it does

not matter whether the degree of a label in B is 2 or any greater integer. This property fa-

cilitates determination/application of BFCs and BSCs. In other words, it is only important

whether the occurrence of a label in B is 0, 1, or > 1.

4.5.1 Properties and axioms for BSC and BFC

In this section, we introduce sound and complete axioms for BSCs and BFCs. The moti-

vation for defining these axioms is reducing redundancy in set of DTD constraints. The

running times of query optimization, containment and minimisation algorithms depend on

the size of the set of constraints used as input. A smaller set of constraints guarantees

faster execution of some algorithms, for example, the chase procedure.

BSC axiomatization

Let X be an infinity bag schema and c ∈ Σ. We use X ⇓ c and X ↓ c, respectively, as op-

posed to a : X ⇓ c and a : X ↓ c to denote a BSC and a BFC, when the a-node is known

from the context. We also use C to denote a set of BSCs and/or BFCs. We now present ax-

ioms satisfied by BSCs, which are analogous to the standard axioms defined for functional

dependencies (FDs) in relational databases [60].

CHAPTER 4. CONSTRAINTS INFERRED FROM DTDS 71

Definition 4.10 Let v be a node with a bag of children B′. By saying that v(X) holds, or

is true, we mean X ⊆ B′. Also, saying that v(c) holds or is true, means that the node v has

a c-child.

Let X ,Y = {y1, . . . ,ym}, and Z be infinity bag schemas in Σ, c,b ∈ Σ and C denote a

set of BSCs. Let ∪,] and ⊆ be the maximal union, additive union and subset operators

defined on infinity bag schemas. For any BSC in C, the following axioms hold:

1. X ⇓ c holds for each c ∈ X

2. X ⇓ c and X ⊆ Y ⇒ Y ⇓ c

3. X ⇓ y1, . . . ,X ⇓ ym and Y ∪Z ⇓ c⇒ X ∪Z ⇓ c

Note that axiom 3 will become the pure transitivity axiom when Z = /0. However, its

general case, allowing for augmentation by Z, is proposed here for showing completeness

of the set of axioms 1 to 3, as shown later in this section. Other rules which may be derived

from the axioms include:

• X ⇓ c and {c} ⇓ b⇒ X ⇓ b

• X ⇓ c and {c}∪Y ⇓ b⇒ X ∪Y ⇓ b

• X ∪Y ⇓ c⇒ X]Y ⇓ c.

Theorem 4.6 Axioms 1 to 3 are sound.

Proof. For axiom 1, we assume that v(X) holds for some node v. Now if c ∈ X and v(X)

holds, then obviously v(c) holds. To prove axiom 2, we assume that v(Y) holds for some

node v. Now if X ⊆ Y and v(Y) holds, then v(X) is true. Given that X ⇓ c holds, then

v(c) must hold. To prove axiom 3, assume that X ⇓ y1, . . . ,X ⇓ ym and Y ∪Z ⇓ c as well

as v(X ∪Z) hold. Since v(X ∪Z) holds, obviously v(X) and v(Z) must hold. Then v(yi)

holds(1≤ i≤ m) which means v(Y) is true. Since v(Y ∪Z) is true, v(c) is true because of

4.5. BAG SIBLING AND FUNCTIONAL CONSTRAINTS 72

the assumption Y ∪Z ⇓ c.

Definition 4.11 Let C be a set of BSCs. We denote by C+ the closure of C, i.e, the smallest

set containing C such that axioms 1 to 3 cannot be applied to the set to yield a constraint

not in the set.

Definition 4.12 Let X be an infinity bag schema X ⊆ X+ and let c ∈ Σ. We say that X+ is

the BSC bag closure of X if for any constraint X ⇓ c in C+ , c ∈ X+.

Definition 4.13 A set C of BSCs implies a constraint X ⇓ c, written C |= X ⇓ c, if every

document tree d which satisfies all the constraints in C also satisfies the constraint X ⇓ c.

Theorem 4.7 Axioms 1 to 3 are complete, i.e., given a set C of BSC constraints, if C |=

X ⇓ c then X ⇓ c ∈ C+.

Proof. The following proof has been adapted from [60] for the corresponding theorem

on FDs. We will show that if X ⇓ c is not in C+, then C |= X ⇓ c will not hold either. To

that end, assume that the BSC constraint X ⇓ c is not in C+. We will show there exists a

document tree containing a node v that satisfies C but not X ⇓ c.

Let v have children labeled with each symbol in X only and not having a c child. Given

that X ⇓ c is not in C+, we claim that the document tree t containing the node v satisfies

C but not X ⇓ c. The only way the node v does not conform to some constraints in C is

that the constraints in C do not allow v to have the children labeled with the symbols in X

unless it also has a child labeled with c, which is possible only if (1) c is a member of X ,

(2) there is a constraint X1 ⇓ c in C, X1 ⊆ X , or (3) there is a chain of constraints that imply

v has children labeled with each label in a set Y and there is a constraint Y ∪Z ⇓ c (where

Z may be empty in the special case) in C as well. We now go through each of these cases

and show that none of them is applicable.

CHAPTER 4. CONSTRAINTS INFERRED FROM DTDS 73

In case (1), if c was a member of X , then axiom 1 would apply and put the constraint

X ⇓ c in C+, which is a contradiction. Similarly, in case (2), axiom 2 would add the con-

straint X ⇓ c to C+, a contradiction. Now consider case (3). In this case there is a constraint

Y ∪Z ⇓ c in C, Y = {y1, . . . ,ym} and some constraints in C imply the constraints X ⇓ yk

(i.e. C |= X ⇓ yk), k = 1, . . . ,m. There are now two sub cases: (a) all the constraints X ⇓ yk,

k = 1, . . . ,m are in C+, or (b) at least one of them, say X ⇓ y j, is not a member of C+. In

the former case, the iterative application of axiom 3 to the constraints X ⇓ yk, k = 1, . . . ,m

will yield the constraint X ⇓ c and we will have X ⇓ c ∈ C+. On the other hand, the latter

case, case (b), implies that there is also another constraint X ⇓ y j, in addition to the original

constraint X ⇓ c, that is implied by C but is not in C+. To summarise our reasoning so far,

we assumed that the constraint X ⇓ c is implied by C but does not belong to C+ and we

have concluded that there must be another constraint X ⇓ y j that is so, i.e. is implied by

C but does not belong to C+. This will give rise to a contradiction because repeating the

same reasoning with the new constraint X ⇓ y j will in turn imply there will be yet another

constraint that is implied by C but not in C+ and these constraints only differ in their right

hand symbol, but the number of distinct symbols is finite.

BFC axiomatization

The only inference axiom for BFCs is

X ↓ c and X ⊆ Y ⊆ Σ⇒ Y ↓ c

Other rules which may be derived from the inference axiom are:

1. X ↓ c⇒ X ∪Y ↓ c

2. X ∪Y ↓ c⇒ X]Y ↓ c

4.6. CONCLUSION 74

To prove rule 1, assume that X ↓ c and also v(X ∪Y). Obviously v(X) holds and also

X ∪Y ↓ c because of the assumption X ↓ c. The correctness of rule 2 follows from the

inference axiom and the fact that X ∪Y ⊆ X]Y .

Theorem 4.8 The inference axiom for BFCs is sound and complete.

Proof. To prove that the axiom is sound, assume that X ↓ c holds and X ⊆Y ⊆ Σ. Now

if v(Y) holds, v(X) also holds because X ⊆ Y . Then v(c) is true because of X ↓ c.

To prove completeness, we will show that if X ↓ c is not in C+, then C |= X ↓ c will

not hold either. To that end, assume that the BFC constraint X ↓ c is not in C+. We will

show there exists a document tree containing a node v that satisfies C but not X ↓ c.

Let v have children labeled with each symbol in X and it has more than one c child.

Given that X ↓ c is not in C+, we claim that the document tree t containing the node v sat-

isfies C but not X ↓ c. The only way the node v does not conform to some constraints in C

is that the constraints in C do not allow v to have the children labeled with the symbols in

X unless it also has only a single c-child. This is possible only if there is a constraint Y ↓ c

in C, X ⊆Y . In this case the axiom would add the constraint X ↓ c to C+, a contradiction.

Note that the axioms that hold for BSCs are not true for BFCs, for instance a : X ↓ c

and a : {c} ↓ d 6|= a : X ↓ d. As an example, consider the following DTD rule:

<!ELEMENT a ((y,t)|(x,t)|t*|(x,y)*)>

The constraints a : {y} ↓ t and a : {t} ↓ x hold but a : {y} ↓ x does not.

4.6 Conclusion

In this chapter we first defined a variant of the concept of derivatives of regular expressions

customised for DTDs. We proved that even to decide whether or not the derivative of a

DTD rule is empty is NP-hard. We then showed the relationship between the concept of

CHAPTER 4. CONSTRAINTS INFERRED FROM DTDS 75

derivatives of regular expressions and existing DTD constraints. We also introduced two

types of DTD constraints along with their inference axioms.

The main motivation for studying DTD constraints is their importance as a useful tool

to decide the containment problem in the presence of DTDs. In fact, the presence of a DTD

D can give rise to implicit nodes in an XPath query. An implicit node is one that does not

explicitly exist in the query but has to exist in every document satisfying the query and the

DTD. This implies that two syntactically different queries might have the same semantics.

Moreover, there may be two nodes in one query pattern mapped to the same document

node in all trees in SAT (D). For example, consider query a[b/c][b/d][c/e][c/ f] and the

following DTD rules:

<!ELEMENT a ((b*,c,d)|(b,c*))>

<!ELEMENT b (c|d)>

<!ELEMENT c (e?, f?)>

According to the DTD, every node labeled a which has more than one b-child, must also

have only one c-child and only one d-child. This implies the BSCs a : {b>1} ⇓ c and

a : {b>1} ⇓ d and the BFCs a : {b>1} ↓ c and a : {b>1} ↓ d. So the query is equivalent to

a[b/c][b/d][c[e][f]][d], where the two copies of c have been merged and the implicit node

d has been added.

To find an implicit node typically we want to check whether or not a given constraint

is in C+. One way to answer this question is to check whether the constraint can be

derived from C by using the axioms, which may take a long time. The other way is to

use the concept of BSC bag closure which is similar to the concept of attribute closure in

relational databases. Using attribute closure to check if a given FD can be derived from a

given set of FDs is a well-known method in relational databases. More explicitly, to check

if a given constraint, X ⇓ c, can be derived from a set of constraints, i.e. deciding whether

C |= X ⇓ c, the BSC bag closure X+ can first be determined and then checked for whether

it contains c.

76

Chapter 5

XPath Satisfiability under DTDs

In this chapter, we concentrate on the satisfiability problem under two special classes of

DTDs, for a variety of XPath fragments with child axis (‘/’), descendant axis (‘//’), qual-

ifier (‘[]’), wildcard (‘∗’) and union (‘∪’). The two classes of DTDs we consider are

duplicate-free DTDs and covering DTDs. Most of the results presented in this chapter

were published previously in [68]. Informally, a duplicate-free DTD is one in which no

regular expression uses the same symbol more than once. A covering DTD, on the other

hand, is one in which each regular expression R is such that the language L(R) contains a

string in which all the symbols used in R appear. Formal definitions of these properties are

provided in Section 5.1.

We show that the classes of covering and duplicate-free DTDs comprise most real-

world DTDs, i.e. those used in real-world applications. We identify a number of XPath

fragments for which the complexity of the satisfiability problem reduces to PTIME when

duplicate-free or covering DTDs are used. For example, the fact that satisfiability for the

fragment XP{/,[]} is NP-hard in general follows from a result in [91]. Here we show that

it becomes decidable in PTIME for duplicate-free DTDs, although results from [7] imply

that it remains NP-hard for the fragments XP{/,[],∗} and XP{/,[],//}. More significantly, for

covering DTDs we show that satisfiability for the fragment XP{/,[],∗,//,∪} is in PTIME.

CHAPTER 5. XPATH SATISFIABILITY UNDER DTDS 77

The next section contains the definitions of the various forms of DTDs and fragments

of XPath. Section 5.2 provides the results of our investigation into the relative frequency

of covering and duplicate-free real-world DTDs. Section 5.3 presents our complexity

results for a number of XPath fragments under duplicate-free and covering DTDs. Finally,

Section 5.4 concludes the chapter.

5.1 Notation and Background Material

In this section, we define various subclasses of DTDs, the XPath fragments studied in this

chapter, and the notion of XPath satisfiability.

Recall from Chapter 4 that we will use the DTD syntax for regular expressions, namely,

‘,’ for concatenation, ‘|’ for alternation (disjunction), ‘∗’ for reflexive transitive closure,

‘+’ for transitive closure and ‘?’ for optional.

XPath supports a wide variety of operators whose presence or absence affects the com-

plexity of the satisfiability problem. This has led to the study of various XPath fragments

that include only certain operators. For example, in this chapter we study the fragment

with child axis (‘/’), descendant axis (‘//’), qualifier (‘[]’), wildcard (‘∗’) and union (‘∪’).

Larger fragments allow operators such as negation, additional axes such as parent, ancestor

and sibling, as well as comparisons involving data values or node identities [41].

Example 5.1 The XMark benchmark project1 is based on an online auction application.

A fragment of the XMark DTD is given below:

site (regions, categories, catgraph, people, open_auctions,

closed_auctions)

categories (category+)

category (name, description)

description (text | parlist)

1http://monetdb.cwi.nl/xml/

5.1. NOTATION AND BACKGROUND MATERIAL 78

open_auctions (open_auction*)

open_auction (initial, reserve?, bidder*, current, privacy?, itemref,

seller, annotation, quantity, type, interval)

with site being the document (top-level) element. The XPath query

/site/open_auctions/open_auction[bidder][reserve]/seller

selects seller nodes that are children of open_auction nodes that have both a bidder

and reserve child. It is easy to see that this query is satisfiable on documents valid with

respect to the above DTD fragment.

In the full DTD, a description can occur as a descendant of more than one element,

so one might write

/site//description[text][parlist]

to retrieve all description nodes that have both text and parlist children. However,

this query is unsatisfiable with respect to the DTD, because a description can have only

one of text or parlist as a child, not both.

Definition 5.1 Let R be a regular expression and Σ be the set of symbols appearing in

R. We say that R covers Σ, or simply that R is covering, if there is a string in L(R) that

contains every symbol in Σ. A DTD D is called covering if and only if each content model

in D is covering.

Note that a number of common content models used in DTDs are covering. For exam-

ple, the content models one gets from the naive representation of relational data as XML

are covering, as are the so-called mixed content models found in “document-oriented”

XML. Some examples of covering and non-covering content models are given in Exam-

ple 5.2 below.

The notion of a duplicate-free DTD was introduced in [91, 92]. Although the definition

was given in Chapter 3, we repeat it here for convenience. Let R be a regular expression

CHAPTER 5. XPATH SATISFIABILITY UNDER DTDS 79

and Σ be the set of symbols appearing in R. R is duplicate-free if each symbol in Σ occurs

exactly once in R. A DTD D is called duplicate-free if and only if each content model in

D is duplicate-free.

Example 5.2 All of the DTD rules for the XMark DTD fragment shown in Example 5.1

are covering, except the following

description (text | parlist)

since the language denoted by (text | parlist) does not contain a sequence that

includes both element names. In addition, all of the rules in the XMark fragment are

duplicate-free. The following is an example of a rule with duplicates, taken from the XML

Schema DTD2 after replacing entity references and ignoring namespace prefixes

schema ((include | import | redefine | annotation)*,

((simpleType | complexType | element | attribute

| attributeGroup | group | notation), (annotation)*)*)

where the element name annotation is repeated.

Note that the definition of duplicate-free is syntactic. In other words, we can have two

regular expressions which denote the same language such that one expression is duplicate-

free while the other is not. For example, a?,b and (a,b)|b denote the same language, but

only the former expression is duplicate-free.

A number of other subclasses of DTDs have been defined in order to study the com-

plexity of problems such as XPath satisfiability. For example, [7] considers disjunction-

free DTDs, while [11] considers simple regular expressions defined as follows.

Definition 5.2 A base symbol is a regular expression a, a? or a∗ where a∈ Σ; a factor is of

the form e, e∗ or e? where e is a disjunction of base symbols. A simple regular expression

is ε , /0 or a sequence of factors.

2http://www.w3.org/2001/XMLSchema.dtd

5.1. NOTATION AND BACKGROUND MATERIAL 80

Clearly, a simple regular expression need not be duplicate-free nor covering. On the

other hand, a|(b,c) is duplicate-free but not simple, and (a,b)∗ is covering but not simple.

We conclude that the 3 subclasses of DTDs are pairwise incomparable.

Definition 5.3 The syntax of XPath expressions used in this chapter is given by the fol-

lowing grammar:

q → ‘/’ p

p → p ‘/’ p | p ‘//’ p | p ‘∪’ p | p ‘[’ p ‘]’ | ‘∗’ | n | ‘.’

where q is the start symbol, n is an element name and ‘.’ refers to the context node.

As mentioned earlier, fragments of XPath are denoted by indicating which operators

are supported. So the above fragment is denoted by XP{/,[],∗,//,∪}, since child axis (‘/’),

descendant axis (‘//’), qualifiers (‘[]’), wildcard (‘∗’) and union (‘∪’) are all permitted.

Papers such as [7] use an alternative syntax where ↓ denotes use of the child axis

without specifying an element name. So ↓ in their syntax corresponds to ∗ in ours, with

↓ /a corresponding to a. One consequence of this is that ‘∗’ is implicitly permitted in all

the XPath fragments considered by [7] that include the child axis, whereas we distinguish

explicitly whether or not ∗ is included.

Definition 5.4 The following notation is adapted from [7]. Given a DTD D and a query

p, p is D-satisfiable if there is an XML tree t ∈ SAT (D) such that the answer of p on t is

not empty, denoted by t |= p. Given a DTD D, we denote the fact that an XML tree satisfies

(or is valid with respect to) D by t |= D. Given a DTD D and a query p, an XML tree t

satisfies p and D, denoted by t |= (p,D), iff t |= p and t |= D. For an XPath fragment X,

the XPath satisfiability problem SAT (X) is, given a DTD D and a query p in X, is there

an XML tree t such that t |= (p,D)?

CHAPTER 5. XPATH SATISFIABILITY UNDER DTDS 81

5.2 Real-World DTDs

In this section, we report on our investigation of “real-world” DTDs, i.e. those frequently

used in real applications. For the purpose of this chapter, we were concerned with two fea-

tures of such DTDs, namely whether or not they were duplicate-free or covering. We will

see that most of the real-world DTDs we studied have at least one of these two properties.

In order to examine the frequency of covering and duplicate-free DTD rules in real-

world applications, we obtained 100 real-world DTDs, 86 using the Google search engine

and 14 from the XML Data Repository3. The DTD names and a brief description of their

application domains are given in Table A.1 in Appendix A.

Table 5.1 shows the classification of 20 DTDs with respect to the covering and duplicate-

free properties. The first and the second columns of Table 5.1 show, respectively, the DTD

names, and the number of rules in each DTD. The last four columns show, respectively,

the number of rules that are (i) covering and duplicate-free, (ii) covering with duplicates,

(iii) non-covering but duplicate-free, and (iv) non-covering with duplicates. The complete

results (100 DTDs) are shown in Table B.1 in Appendix B.

A quick glance at Table 5.1 reveals that the majority of the rules (91.3%) in these

applications possess both the covering and duplicate-free properties. Most of the rest

(7.9%) have exactly one of these properties, and less than 1.0% of the rules are neither

covering nor duplicate-free.

It should be pointed out that the 3 rules from the Music ML DTD4 that contain dupli-

cates are as follows:

musicrow ((entrysegment, segment+) | (entrysegment, segment+, text))

entrysegment ((entrypart) | (entrypart, entrypart))

segment ((subsegment) | (subsegment, subsegment))

3http://www.cs.washington.edu/research/xmldatasets

4http://xml.coverpages.org/musicML-DTD.txt

5.2. REAL-WORLD DTDS 82

Table 5.1: The classification of DTD rules

DTD Number Non-covering Covering
Name of Rules Dup-free Dup Dup-free Dup
CDisc-11 85 0 0 84 1
Docbooks 360 18 7 314 21
Docutils 89 3 0 86 0
Ecoknowmics 224 1 0 221 2
FOT 83 0 0 83 0
FGDC-1.00 340 5 2 315 18
Geophysical ML 444 0 1 414 29
kpresenter-1.3 86 0 0 86 0
kword-1.3 79 0 0 76 3
News ML 116 0 0 112 4
Oagis 617 161 18 422 16
Resume 106 0 0 97 9
Sun-domain-1.20 109 0 0 108 1
TieXLite 143 26 6 109 2
web-facesconfig-1-1 80 0 0 76 4
web-app-2-3 77 0 0 74 3
XHTML1-Frameset 91 1 0 88 2
XHTML1-Strict 77 1 0 74 2
XHTML1-Transitional 89 1 0 86 2
XMark 77 1 0 75 1
Other 2162 19 10 2052 81
Total 5534 236 44 5053 201
Percentage 100% 4.3 0.8 91.3 3.6%

These rules are not even “unambiguous” as required by the XML specification. They can,

however, easily be rewritten to be unambiguous as follows

musicrow (entrysegment, segment+, text?)

entrysegment (entrypart, entrypart?)

segment (subsegment, subsegment?)

resulting in the first rule becoming duplicate-free as well.

Because of our assumption that even a single rule that is non-covering (or contains

duplicates) results in the DTD being classified as non-covering (or not duplicate-free),

we need to determine which DTDs, as opposed to which rules, are covering (duplicate-

free). Table 5.2 classifies the examined 100 DTDs into the four categories of covering and

CHAPTER 5. XPATH SATISFIABILITY UNDER DTDS 83

duplicate-free (top left), covering with duplicates (top right), non-covering but duplicate-

free (bottom left) and non-covering with duplicates (bottom right). As shown in Table 5.2,

the largest number (47%) of DTDs possess both properties, with only 17% possessing

neither property. These experiments show that most real-word DTDs should be covering or

Table 5.2: The number of DTDs (out of 100) in each of the four categories

Duplicate-free Duplicates
Covering 47 8
Non-covering 28 17

duplicate-free. In fact, 55% of the DTDs examined in the experiments were covering, and

about 62% of the remaining (non-covering) DTDs (i.e. 28% of the whole) were duplicate-

free. That is, 83% of the examined DTDs possessed at least one of the properties of being

covering or duplicate-free.

5.3 XPath Satisfiability under Real-World DTDs

In this section, we concentrate on the satisfiability problem of XPath queries under “real-

world” DTDs, i.e. those which are either duplicate-free or covering. We will see that

although the satisfiability problem is NP-complete or worse for many XPath fragments

under general DTDs, it is in PTIME for certain XPath fragments when the underlying

DTDs have the duplicate-free or covering property.

5.3.1 XPath Satisfiability under Duplicate-free DTDs

Recall that a DTD is duplicate-free if each element name appears at most once in each

content model. The fact that duplicate-free DTDs are easier to analyze was previously

noted in [92], where it is shown that deciding containment under a DTD even for XP{/,[]}

is coNP-complete, but that it reduces to PTIME when the DTD is duplicate-free. Below

we show that the analysis of XPath satisfiability under duplicate-free DTDs is also simpler

for certain fragments.

5.3. XPATH SATISFIABILITY UNDER REAL-WORLD DTDS 84

Before doing so, we state the following straightforward result.

Proposition 5.1 Given a DTD D, deciding whether D is duplicate-free can be done in

PTIME.

Benedickt et al. show that, in general, SAT(XP{/,[],∗}) and SAT(XP{/,[],//}) are both

NP-hard [7]. In fact, a result in [91] implies that SAT(XP{/,[]}) is also NP-hard. However,

we have the following result for duplicate-free DTDs.

Theorem 5.1 Under duplicate-free DTDs, SAT(XP{/,[]}) is in PTIME.

Proof. To prove the theorem, we first present two lemmas:

Lemma 5.1 Let R be a duplicate-free regular expression and C be a nonempty subset of

symbols appearing in R. Then there is a string wc in L(R) which covers all the symbols in

C if and only if every subexpression (R1|R2) of R, where both R1 and R2 contain a symbol

in C, appears as a subexpression of (R3)∗ or (R3)+ for some R3.

Proof. It is important to note firstly that R is duplicate-free and that R is assumed to

use every symbol in C. Therefore, each symbol in C appears exactly once in R. Moreover,

R1 and R2 should each contain a different symbol from C for the result to hold.

Assume R contains a subexpression (R1|R2) to which no closure operator applies, such

that R1 contains c1 ∈C and R2 contains c2 ∈C, where c1 6= c2. Then each string in L(R)

containing c1 has to exclude c2 and each string in L(R) containing c2 has to exclude c1,

which means that no string in L(R) covers C.

Conversely, assume there is no string in L(R) which covers C. Since all the symbols in

C appear in R, there must be a pair of distinct symbols c1 and c2 in C such that there are

strings w1 and w2 in L(R) such that c1 (but not c2) appears in w1 and c2 (but not c1) appears

in w2, but no string in L(R) contains both c1 and c2. Hence there must be a subexpression

(R1|R2) in R such that c1 appears in R1 (or R2) and c2 appears in R2 (respectively R1). Fur-

thermore, the expression (R1|R2) cannot be subject to a closure operator; otherwise there

CHAPTER 5. XPATH SATISFIABILITY UNDER DTDS 85

would be a string in L(R) containing both c1 and c2.

Lemma 5.2 Let p be a two-level XPath query in the fragment XP{/,[]} such that the root

vroot has n≥ 0 leaf children. Then the satisfiability of p under a duplicate-free DTD D can

be decided in PTIME.

Proof. Let Rroot be the regular expression representing the content model in the DTD

D for the root node vroot of p. In the case that more than one child of vroot has the same

label, say b, either the symbol b is subject to some closure operator in Rroot (i.e. “∗” or “+”

applies to b or to a term in which b is contained) or it is not. In the former case, vroot can

have a b-child (while D-consistent) if, and only if, it can have many of them, and in the

latter case all such b-children must map to the same b-node in any document tree which

satisfies D. Therefore, we only need to check whether L(Rroot) contains a word wc which

includes all of the labels in C (with an arbitrary ordering), where C is the set, as opposed

to the bag, of labels of the children of vroot .

For each symbol b in C, if there is no symbol b in Rroot , which can be checked in

PTIME, then the answer (to whether L(Rroot) contains wc) is false. Otherwise, Lemma 5.1

applies and we only need to check whether Rroot contains some expression (R1|R2) to

which no closure operator applies and such that both R1 and R2 contain some different

symbol in C. The number of “|” operators in Rroot is O(|Rroot |) and to obtain each ex-

pression (R1|R2) in Rroot requires O(|Rroot |) time. For each expression (R1|R2) in Rroot , to

check whether Ri, i = 1,2, covers some symbol in C requires O(|Ri|× |C|) time.

We now prove the theorem:

Let p be a given XPath query in the fragment XP{/,[]}. For each internal node v in p,

if v has more than one child with the same label, say b, then there are two possibilities:

(i) the symbol b is subject to some closure operator in the regular expression, say Rv,

5.3. XPATH SATISFIABILITY UNDER REAL-WORLD DTDS 86

corresponding to the content model of v in the DTD (i.e. “∗” or “+” applies to b or to a

term in which b is contained), or (ii) the symbol b is not subject to a closure operator, hence

all such b-children must map to the same b-node in any document tree which satisfies the

DTD D (because D is duplicate-free). The latter case was previously called a functional

constraint in [92] and was shown to be detectable in PTIME. Let us denote by merge(p)

the query tree resulting from the merging of nodes satisfying case (ii). It is clear that p is

satisfiable iff merge(p) is satisfiable.

In case (i), there is no restriction on the number of b-children of λ (v) (where λ (v)

denotes the label of v) in any document tree which satisfies D, hence such b-children need

not be merged. Let subMerge(v) denote the two-level subtree of p rooted at v. This implies

that subMerge(v) has all the children of v as leaves.

Based on the above terminology and the definition of satisfiability, p is satisfiable if

and only if the subtree subMerge(v) is satisfiable for each internal node v in p. Using

Lemma 5.2, to decide whether such a subtree is satisfiable is in PTIME. On the other

hand, there are altogether m subtrees, where m is the number of internal nodes, that is

m = O(|p|). Therefore, to decide whether p is satisfiable is in PTIME.

Even if a DTD as a whole is not duplicate-free, the above positive results can be used.

For example, given a DTD D and a query p in XP{/,[]}, if every internal node in the tree

representing p is labeled by an element name whose content model is duplicate-free, then

the satisfiability of p can be determined in PTIME. This gives us the following.

Corollary 5.1 Given a query p in XP{/,[]} and a DTD D, SAT(XP{/,[]}) is in PTIME if

each rule in D in which a symbol from p appears is duplicate-free.

We now consider the satisfiability of some other fragments of XPath under duplicate-

free DTDs. The fact that SAT(XP{/,//,∗}) is in PTIME under duplicate-free DTDs follows

trivially from a result in [7] showing that this fragment including union is in PTIME in

general. However, we have the following negative results.

CHAPTER 5. XPATH SATISFIABILITY UNDER DTDS 87

Theorem 5.2 Under duplicate-free DTDs, the following problems are NP-hard:

1. SAT(XP{/,[],∗})

2. SAT(XP{/,[],//})

3. SAT(XP{/,[],∪})

Proof. (1) We use the same method as used in [7], where the authors show that

SAT(XP{/,[],∗}) is NP-hard by reduction from the 3SAT problem.

Given a Boolean formula φ = C1 ∧ ·· · ∧Cn over variables x1, . . . ,xm, the DTD D is

defined as follows:

S → x1, . . . ,xm

Xi → Ti|Fi, for i ∈ [1,m]

Tj → C j1, . . . ,C jk /* all clauses C ji in which x j appears */

Fj → C j1, . . . ,C jk /* all clauses C ji in which x j appears */

Furthermore, the query XP(φ) = /S[∗/ ∗ /C1] · · · [∗/ ∗ /Cn] is constructed. In fact, there

exists a one-to-one correspondence between variable assignments that satisfies φ and XML

trees in SAT (D) [7]. This means φ is satisfiable iff (XP(φ),D) is satisfiable. As the DTD

rules are duplicate-free, we can deduce that SAT(XP{/,[],∗}) under duplicate-free DTDs is

NP-hard.

(2) The proof is the same as the proof of (1), except that XP(φ) is defined as XP(φ) =

/S[.//C1] · · · [.//Cn].

(3) Using the same approach as (1), Benedikt et al. show in [7] that SAT(XP{/,[],∪}) is

NP-hard. The DTD rules used in the proof are the following:

S → X

X → (X?),(T |F)

5.3. XPATH SATISFIABILITY UNDER REAL-WORLD DTDS 88

and XP(φ) = /S[XP(C1)] · · · [XP(Cn)], where XP(Ci) is defined as follows:

• For each variable xi in φ , XP(xi) = X i/T and XP(x̄i) = X i/F , where X i is the chain

X/ · · ·/X of length i.

• For each clause C j, XP(C j) is C j in which each xi is replaced by XP(xi) and each x̄i

is replaced by XP(x̄i).

As the DTD rules are duplicate-free, it can be deduced that SAT(XP{/,[],∪}) under duplicate-

free DTDs is NP-hard.

5.3.2 XPath Satisfiability under Covering DTDs

Recall that the majority of DTDs studied in Section 5.2 were classified as covering. In this

section we prove that SAT(XP{/,[],∗,//,∪}) is in PTIME under covering DTDs. We should

first point out the following fact which follows directly from a result in [91].

Proposition 5.2 Given a DTD D, deciding whether D is covering is NP-complete.

However, since we expect query processors to have to deal with relatively few, known

DTDs while answering large numbers of XPath queries, the cost of detecting the covering

property will be a one-off cost for each DTD.

The following theorem provides a positive result about D-satisfiability of queries in

XP{/,[],∗,//,∪}under covering DTDs. This result is important because it shows that the

problem, which is in general NP-complete, becomes tractable when the DTD is covering

for a significant XPath fragment. In addition, most real-world DTDs possess the covering

property.

Theorem 5.3 Under covering DTDs, SAT(XP{/,[],∗,//,∪}) is in PTIME.

CHAPTER 5. XPATH SATISFIABILITY UNDER DTDS 89

a→ (b|d)∗
a→ f ,c?

a→ c
a→ c?

am bm
fm

cmdm
-

@@R

�
�

	?
-

?

G

Figure 5.1: A covering DTD and its digraph G.

We prove this using the same idea as Benedikt et al. used in [7], where they show that

SAT(XP{/,[],∗,//,∪}) under disjunction-free DTDs is in PTIME. Clearly, a disjunction-free

DTD is a special case of a covering DTD. Moreover, in [7], “∗” is implicitly permitted

in all the XPath fragments which include the child axis, whereas we distinguish explicitly

whether or not ∗ is included.

Let p be a query in XP{/,[],∗,//,∪} and D be a covering DTD. We first construct a DTD

digraph G(V,E), with the set V of element names in D. G is rooted at S0 ∈ V , where S0

is the start symbol of D. For simplicity and without loss of generality, we assume that

neither D nor p is empty. Let a and b be two distinct symbols in V . There is an edge in E

from the vertex a to the vertex b if and only if b appears in the content model of a in D.

As an example, see Figure 5.1. Note that because the DTD D is covering, the existence of

such an edge in G means that an edge from an a-node to a b-node in p is also permissible

irrespective of other children of the a-node in p. That is, even if p is D-satisfiable, any

a-node in p can have a b-child no matter if the b-child has siblings and, if so, what labels

they have. The converse also holds, that is, if a child-edge exists in a D-satisfiable query

from an a-node to a b-node, then there exists an edge from the a-node to the b-node in

G. Consequently, if a descendant-edge exists in a D-satisfiable query from an a-node to

a b-node then there exists a path from the a-node to the b-node in G. We also use the

following definitions:

5.3. XPATH SATISFIABILITY UNDER REAL-WORLD DTDS 90

Definition 5.5 Let a and b be two nodes representing element names in G, then:

hasPath(a,b) =

 true if there is a path of length ≥ 1 from a to b in G

f alse otherwise

We consider the given XPath query p as a tree pattern query where the label of each

node is either a symbol in Σ or “∗”. We define for each node u a type u.type which is either

∨ or ∧. The default node type is ∧, and we use ∨ to model the union operator in queries

in XP{/,[],∗,//,∪}. More specifically, when a node u has several children v1, . . . ,vn, having

u.type = ∨means that it is sufficient to have any of the constraints imposed by the subtree

sub(vi), i = 1, . . . ,n satisfied, whereas the type ∧ means that all these constraints must be

satisfied. The following example, though simple, illustrates the difference between these

types.

Example 5.3 Consider two XPath queries p = a[b//d ∪ c// f] and q = a[b//d][c// f].

The tree pattern shown in Figure 5.2 represents p if u.type = ∨, while it represents q if

u.type = ∧, where u is the node labeled with a.

Definition 5.6 Let u and v be two nodes in p. We use Child(u,v) to show there is a child-

edge from u to v and Desc(u,v) to show there is a descendant-edge from u to v.

We now provide a recursive definition for the concept of match(u), where u is a node

in a query p rooted at r. This concept is adapted from the concept of reachability used

in [7], so match(r) = /0 if and only if p is unsatisfiable.

Definition 5.7 We define match(u) recursively as follows:

• If u is a leaf:

match(u) =

 λ (u) if λ (u) 6=′ ∗′

Σ if λ (u) =′ ∗′
(5.1)

CHAPTER 5. XPATH SATISFIABILITY UNDER DTDS 91

b c

d f

a

��@@

Figure 5.2: The tree pattern corresponding to the XPath queries in Example 5.3.

• If u is not a leaf:

match(u) =

⋃

vi∈Cu
match(u,vi) if u.type = ∨⋂

vi∈Cu
match(u,vi) if u.type = ∧

(5.2)

where Cu = {vi|Child(u,vi)∨Desc(u,vi)} and

match(u,vi) =

{x|λ (u) = x∨λ (u) =′ ∗′,∃y ∈ match(vi)s.t.(x,y) ∈ E}

if Child(u,vi)

{x|λ (u) = x∨λ (u) =′ ∗′,∃y ∈ match(vi)s.t.hasPath(x,y)}

if Desc(u,vi)
(5.3)

Based on the definition of match(.), the query p is satisfiable if match(r) 6= /0 where r

is the root of p; it is unsatisfiable otherwise. Therefore, in the rest of the proof, it is enough

to show that match(r) can be determined in polynomial time. To that end, we present a

polynomial-time method based on dynamic programming that determines match(u) for

each node u in p, moving from the leaves to the root. The proposed algorithm is shown in

Figure 5.3.

The algorithm goes through each level of the tree from the leaves, at level Lmax, to

the root, where L = 0 (lines 2–33). At each level L, it goes through every node u j and

calculates match(u j) using dynamic programming (lines 3–32). To that end, if u j is a

leaf-node, it is straightforward to calculate match(u j) (lines 5–11). If u j is not a leaf,

the algorithm first calculates, for each child vi of u j, match(u j,vi) (lines 13–25) and then

determines match(u j) (lines 26–30), following Definition 5.2. Having calculated match(u)

5.3. XPATH SATISFIABILITY UNDER REAL-WORLD DTDS 92

Algorithm CalculateMatch
Input: Query p, Graph G(V,E)
Output: r.match, where r is the root of p

1: Let Lmax be the depth of the tree pattern p
2: for l = Lmax to 0 do
3: for all u j, j = 1, . . . ,m in level l do
4: if u j is a leaf-node then
5: if λ (u j) ∈V then
6: u j.match←{λ (u j)}
7: else if λ (u j) = ∗ then
8: u j.match← Σ

9: else
10: u j.match← /0
11: end if
12: else
13: for all vi such that Child(u j,vi)∨Desc(u j,vi) do
14: Let E ji be the direct edge from u j to vi
15: if λ (u j) ∈ Σ then
16: Let a be the label of u j
17: if ∃b ∈ vi.match such that ((a,b) ∈ E ∧Child(u j,vi))∨ (hasPath(a,b)∧Desc(u j,vi)) then
18: E ji.match←{a}
19: else
20: E ji.match← /0
21: end if
22: else if λ (u j) = ∗ then
23: E ji.match←{a ∈ Σ | ∃b ∈ vi.match;((a,b) ∈ E ∧Child(u j,vi))∨ (hasPath(a,b)∧Desc(u j,vi))}
24: end if
25: end for
26: if u j.type = ∨ then
27: u j.match←

⋃
vi∈Cu j

E ji.match

28: else if u j.type = ∧ then
29: u j.match←

⋂
vi∈Cu j

E ji.match

30: end if
31: end if
32: end for
33: end for
34: return r.match

Figure 5.3: The pseudo-code of algorithm CalculateMatch which calculates r.match, given
a query p rooted at r.

for every node u in the tree, the algorithm finally returns match(r) (line 34).

We now present two lemmas, the first to prove that the algorithm, CalculateMatch, is

correct, i.e. it returns match(r) for the root r of the given query p, and the second to show

that it runs in polynomial time.

Lemma 5.3 Given a tree pattern query p rooted at r, algorithm CalculateMatch returns

match(r).

Proof. We prove that the algorithm calculates, for each node u j in p, u j.match as the

set match(u j). Then the lemma will immediately follow for u j = r. We prove this by

CHAPTER 5. XPATH SATISFIABILITY UNDER DTDS 93

induction on the level L of u j, from Lmax to 0.

Base Case: When the level of u j is Lmax, u j is a leaf. In this case, the label of u j

is either a specific label, say a, or the wildcard “∗”. In these cases, the algorithm sets

u j.match to {a} and Σ, respectively, at lines 6 and 8, which is trivially consistent with the

definition of match(u j).

Induction hypothesis: We assume that the algorithm sets u j.match to match(u j), for

each node u j in some level L≥ 1.

Induction step: We prove that the algorithm sets u j.match to match(u j), for each node

u j in level L−1. If the node u j is a leaf node, the proof is similar to that in the base case.

Otherwise, the set Cu j is nonempty and, by the induction hypothesis, the algorithm has

already set vi.match to match(vi), for each node vi in Cu j . Also in this case, the algorithm

determines E ji.match, for each such a node vi in Cu j in lines 13 to 25. Assume that this

part of the algorithm sets E ji.match to match(u j,vi). Then, the algorithm, in lines 26 to

30, simply sets u j.match to match(u j) based on Definition 5.2. Therefore, we only need

to show that lines 13 to 25 set E ji.match to match(u j,vi), for each node in Cu j .

To that end, we consider all possible cases with respect to possible labels of u j and

vi. Note that match(u j,vi) depends on λ (u j), which is either a specific label, say a, or the

wildcard. First assume that λ (u j) = a. In this case, by definition, match(u j,vi) = a if, and

only if, there is some label, say b, in match(vi) such that either there is an edge in G from

a to b and the edge in p from u j to vi is a child edge or there is a path in G from a to b and

the edge in p from u j to vi is a descendant edge; otherwise, match(u j,vi) will be empty.

This compound condition is exactly what is captured in line 17, based on the definitions

of the Child(., .), hasPath(., .), and Desc(., .) predicates. The next case is when the label

of u j is “∗”. This case is a generalised form of the previous case, where the label of u j

can be any label and not just a specific one. Therefore, match(u j,vi) in this case may be

considered as the union of that computed in the previous case, where now the label of u j

iterates over all alphabet symbols in Σ as opposed to a specific one; this is exactly what is

5.3. XPATH SATISFIABILITY UNDER REAL-WORLD DTDS 94

computed in line 23. Finally, the algorithm returns r.match, which completes the proof.

Lemma 5.4 Algorithm CalculateMatch runs in polynomial time.

Proof. Let n be the number of nodes in p and Σ be the alphabet. First, note that the func-

tion hasPath(., .) can be computed in O(n3), e.g. using Warshall’s algorithm [76]. It can

be precomputed and represented as a two-dimensional array so each subsequent instance

hasPath(a,b), ∀a ∈ Σ, ∀b ∈ Σ is decided in O(1). In addition, the adjacency matrix of the

graph G can be precomuted in O(n2), so the precomuptation of both hasPath(., .) and the

adjacency matrix has a one-off time cost of O(n3), which we will add to the complexity of

the code residing in lines 1 to 34.

As can be seen, except for line 1 and line 34, which run in O(1) time, the code resides

within two nested for-loops starting at lines 2 and 3. These two for-loops iterate n times

in total. So, we first determine the time complexity of the code from line 4 to line 31 and

then multiply it by n.

The code fragment from line 4 to line 31 is an “if-else” statement, with its “if” branch

being the code within lines 4–12 and the else branch within lines 12–31. The complexity of

the “if” branch, which is in turn an “if-else” statement, is O(Σ) (for its “else” branch). As

we shall see this complexity is less than that of the code within lines 12–31, and therefore

can be ignored. This latter code consists of a “for” loop (lines 13–25) followed by an “if-

else” statement (lines 26–30), which we analyse in turn. The “for” loop at line 13 iterates

once per internal node of p, which is O(n) altogether. Line 14 runs in O(1) and the rest of

the code inside the “for” loop is a series of nested “if-else” statements. So, to analyse the

complexity of the “for” loop (lines 13–25), we determine the complexity of each of the

branches within the nested “if-else” statement and multiply the worst of them by n (for an

upper bound on the number of iterations).

The condition of the “if” statement at line 17, which uses the hasPath(., .) function at

most |vi.match| times, is determined in O(|Σ|), because |vi.match|< |Σ| and each evalua-

CHAPTER 5. XPATH SATISFIABILITY UNDER DTDS 95

tion of whether an edge is in E can be performed in O(1) using the adjacency matrix of G.

The statements at lines 18 and 20 run in O(1) time and hence do not add to the complexity

of the “if” statement. Therefore, the complexity of the code within lines 17–21 is O(|Σ|).

However, this is dominated by the complexity of the branch specified at line 23, because

the latter corresponds to the same amount of computation for each of the alphabet symbols

and, therefore, is more than the former by a factor of |Σ|. That is, line 23 runs in O(|Σ|2).

So far, we have obtained the complexity of the code within the lines 14–24 as O(|Σ|2).

On the other hand, the code from line 26 to line 30 determines the union or the intersec-

tion of |Cu j | sets, each of which is of size O(|Σ|), which can be performed in O(|Cu j | ·

Σ2) = O(n ·Σ2). Therefore, the complexity of the code from line 13 to line 30 will be

O(n ·Σ2 +n ·Σ2) = O(n ·Σ2). This implies that the complexity of Lines 1–34 is O(n2 ·Σ2).

By adding the one-off time cost of O(n3) for precomputing hasPath(., .) and the adjacency

matrix of G, the total complexity of the algorithm CalculateMatch is O(n2 · |Σ|2 + n3),

which is polynomial in n and |Σ|.

Note that it is possible to obtain a tighter bound on the time complexity of the algo-

rithm. However, the obtained bound is sufficient for the purpose of Lemma 5.4.

Corollary 5.2 Given a query p in XP{/,[],∗,//,∪} and a DTD D, SAT(XP{/,[],∗,//,∪}) is in

PTIME if each rule in D in which a symbol from p appears is covering.

Corollary 5.3 Given a query p in XP{/,[]}and a DTD D, SAT(XP{/,[]}) is in PTIME if

each rule in D is either covering or duplicate-free.

We know so far that SAT(XP{/,[],∗,//,∪}) is PTIME under covering DTDs but NP-

complete under general non-covering DTDs. We now show that our PTIME algorithm for

SAT(XP{/,[],∗,//,∪}) under covering DTDs remains complete, though unsound, for non-

covering DTDs. That is, given a query p in XP{/,[],∗,//,∪}and a non-covering DTD D,

5.3. XPATH SATISFIABILITY UNDER REAL-WORLD DTDS 96

our PTIME algorithm returns true if p is satisfiable under D. Note that the algorithm is

unsound, i.e. it may still return true even if p is not satisfiable under D.

Notation 5.1 Let R be a non-covering regular expression. We use Rcov to denote the cov-

ering regular expression (R|w), where w is a string of all the symbols in R. Let D be a

non-covering DTD, i.e. a DTD which includes at least one non-covering DTD rule, which

is a rule whose regular expression is non-covering. We use Dcov to denote the DTD ob-

tained from D by replacing each non-covering regular expression R in D with Rcov.

Notation 5.2 Let t be a document tree. We use V (t) to denote the set of the nodes in t. For

each v in V (t), we use Cv to denote the bag {b | u is a child of v, λ (u) = b}.

Proposition 5.3 Let D be a DTD, Ra be the regular expression corresponding to the con-

tent model for the label a, and t be a document tree. Then:

t ∈ SAT (D) iff (∀v ∈V (t),∃w ∈ L(Rλ (v)) such that Cv ⊆ [w]).

This result follows directly from the definition of a tree satisfying a DTD.

Notation 5.3 Let q be an XPath query and D be a DTD. By unSAT (q,D) we mean the

problem of deciding whether q is not satisfiable under D, that is, for every document tree

t whether t 6|= (q,D).

Theorem 5.4 Let q be an XPath query in XP{/,[],∗,//,∪} and D be a non-covering DTD.

Then,

unSAT (q,Dcov)⇒ unSAT (q,D).

Proof.

unSAT (q,Dcov) ⇒ ∀t, t 6|= q∨ t 6|= Dcov

⇒ ∀t, t 6|= q∨ (∃v ∈V (t),@w ∈ L(Rλ (v)
cov),Cv ⊆ [w]))

CHAPTER 5. XPATH SATISFIABILITY UNDER DTDS 97

⇒ ∀t, t 6|= q∨ (∃v ∈V (t),@w ∈ L(Rλ (v)),Cv ⊆ [w]))

(because L(Rλ (v))⊆ L(Rλ (v)
cov)

⇒ ∀t, t 6|= q∨ t 6|= D

⇒ unSAT (q,D)

Based on the above theorem, given a query Q in XP{/,[],∗,//,∪} and a non-covering

DTD D, the following PTIME algorithm may be used to return true if unSAT (Q,D) is

true:

ALGORITHM unSatAlg

Input: an XPath query Q, a DTD D

Output: Boolean value stating if Q is D-unsatisfiable

Step 1. Form Dcov from D by replacing each content model Ra in D

with Ra|wa, where wa is a string of all symbols in Ra.

Step 2. Using a PTIME algorithm to decide unSAT (Q,Dcov),

return true if unSAT (Q,Dcov) is so.

End unSatAlg

Obviously, both Step1 and Step 2 can be performed in PTIME. Algorithm UnSatAlg is

sound (but not complete) for non-covering DTDs. More specifically, when the algorithm

returns true, then the query is indeed unsatisfiable, but if it returns false then the query

may or may not be satisfiable.

5.4 Conclusion

This chapter was concerned with discovering properties of real-world DTDs and their

impact on the satisfiability problem for XPath. The motivation behind this was our belief

5.4. CONCLUSION 98

that although common XPath problems are of high complexity, e.g. NP-hard, in general,

real-world applications usually provide simpler structures under which such otherwise

hard problems could be performed in PTIME.

In particular, we examined several real-world DTDs and discovered a new property,

called covering, which most of them satisfied. We observed that even the minority of the

examined real DTDs which did not possess the covering property were duplicate-free. We

showed that the satisfiability problem for the XPath fragment XP{/,[],∗,//,∪} can be solved

in PTIME when the underlying DTD has the covering property. We also showed that the

satisfiability problem for the fragment XP{/,[]} can also be solved in PTIME when the

underlying DTD is duplicate-free. These problems were previously shown to be NP-hard

under general DTDs.

99

Chapter 6

XPath Containment under DTDs

In this chapter we study the problem of containment for various fragments of XPath using

only the most common axes, / and //, wildcard(∗), union (∪), and filter([]). In all cases,

we are interested in the containment problem for XPath queries considered together with

a DTD D (which we refer to as D-containment): given two XPath queries q and p and a

DTD D, whether or not, on every document tree t which satisfies D, every answer of q on

t is also an answer of p on t. The problem is in general coNP-hard, and extensive research

has been conducted to determine special cases where it becomes tractable.

In this chapter, we first introduce a new DTD property, called well-behaved. Then, we

prove that BSCs and BFCs, defined in Chapter 4, are necessary and sufficient to capture

D-containment of queries in XP{/,[]}under well-behaved DTDs. Finally, we show that,

given the set BSCs and BFCs, D-containment of queries in XP{/,[]} under a special case of

well-behaved DTDs, called well-formed DTDs, is tractable. An investigation of real-world

DTDs shows that well-formed DTD rules arise frequently in practice.

This chapter shows how the chase method can be applied to decide D-containment

when both DTDs and queries have duplicates. In particular, this chapter introduces a new

concept of MinChildBag. Although the idea of using MinChildBag and chase procedure

to decide D-contanment is not limited to the queries in XP{/,[]}, we used this fragment

6.1. THE WELL-BEHAVED PROPERTY 100

because it is sufficient to demonstrate the approach and the concept of MinChildBag and

also allows for simpler proofs.

6.1 The well-behaved property

Recall the definitions relating to bags from Chapter 4. In particular, recall that if w is

a string of symbols over alphabet Σ, then we use the notations [w] and {w} to denote,

respectively, the bag and the set of symbols appearing in w.

The existence of duplicate elements in queries, particularly duplicate siblings, compli-

cates the D-containment problem. The main difficulty is related to the question of whether

or not two or more such siblings in a query could map to the same node in a document tree.

For this reason, in some research the D-containment problem is studied under duplicate-

free DTDs [92]. A duplicate-free DTD is one in which no regular expression uses the same

symbol more than once. When the DTD is duplicate-free, either all the duplicate siblings

must always map to the same document node (detected by a functional constraint (FC)

implied by the underlying DTD) or there can be an arbitrary number of such document

nodes. In the first case, all the duplicate siblings in a query should be merged, while in the

latter case no action is needed. Although the duplicate-free property of DTDs simplifies

the problem, it is rather restrictive. That is, each duplicate-free rule is syntactically limited

to use each symbol only once. A less restrictive idea is to limit the rules semantically. In

other words, it is only important whether each label of a set of siblings can occur either

only once or infinitely often. Based on this idea, we define the well-behaved property

below and introduce two types of DTD constraints which are necessary and sufficient to

decide D-containment under such DTDs.

Definition 6.1 A DTD is well-behaved if for each symbol a∈ Σ and each b∈ Σa, whenever

there exists a string u ∈ L(Ra) such that |b|[u] = k, k > 1, then ∀n > k, ∃v ∈ L(Ra) such

CHAPTER 6. XPATH CONTAINMENT UNDER DTDS 101

that

i) |b|[v] ≥ n

ii) {u}= {v}

iii) ∀c ∈ [u], |c|[u] ≤ |c|[v]

Informally speaking, the above definition says that if a string u in L(R) has more than

one instance of a symbol b, then we can find another string, still in L(R), by increasing the

number of bs to any value (with possibly increasing the number of other symbols in u and

irrespective of the order). Intuitively, this means that if in a query there are some duplicate

b-siblings and there is no FC to merge all of them, then we cannot merge any number of

them either. That is, if two distinct b-siblings are allowed, then any number of them are

allowed too.

Example 6.1 The following DTD rule is well-behaved:

a → (b,e, f ?) | (f∗,(e∗ |b∗),d) | (d,b∗)

However, the following DTD rule is not:

a → (b,e,e) | (e,b,b)

6.2 Determining Minimum Numbers of Query Nodes

When an XPath query q containing no duplicate occurrences of element names is matched

against a document tree t, every node in q is mapped to a distinct node in t. This simplifies

the analysis of D-containment, as opposed to the case when a node in a query has children

labeled with the same name; these children may or may not always be mapped to distinct

nodes in a document tree t ∈ SAT (D), depending on D.

6.2. DETERMINING MINIMUM NUMBERS OF QUERY NODES 102

c d

b b

a

�� @@

Figure 6.1: An XPath query expressed as a tree pattern.

Example 6.2 Consider the query tree q shown in Figure 6.1. If the rule for b in DTD D is

b → (c |d)

then the b-nodes in q must always be mapped to distinct nodes in any tree t ∈ SAT (D). On

the other hand, if the rule for b in D is

b → (c?,d?)

then, when evaluating q on a tree t ∈ SAT (D), the b-nodes in q may sometimes be mapped

to the same node in t and sometimes to different ones.

It is essential to know whether or not such nodes in a query q must be mapped to distinct

nodes in a tree t because it can affect whether other nodes must exist in t and hence can be

added to q (by applying DTD constraints). For example, consider the query tree q shown

in Figure 6.1. If the rule for a in DTD D above is

a → (b,e) | (f ,b∗)

then in the case of the first rule for b, since we know that the b-nodes in q will always be

mapped to distinct tree nodes, we also know that the b-nodes must have an f -node as a

sibling. Hence an f -node can be added to q as a child of a. However, in the case of the

second rule for b, we could not add an f -child to the a-node because the b-nodes in q may

sometimes map to the same b-node in a tree in SAT (D). This means when we want to

CHAPTER 6. XPATH CONTAINMENT UNDER DTDS 103

mv0

mv2v1m
mu1 mu2 mu3 mu4 mu5 mu6

mi j k l m n

d d d d e e g h

b b c c

a

w1 mw2 mw3 mw4 mw5 mw6

mv3 mv4

mu7 mu8

�� @@ �
�

@@�� HHH
���

���

H
HHHH

PPPPPPPP

Figure 6.2: The query tree used in Example 6.3 and Example 6.4.

apply a BSC a : B ⇓ f to an a-node in a query q, we must make sure that the minimum bag

of labels of children of the a-node includes B. The minimum bag of labels of children of a

node v is called the MinChildBag of v, which is formally defined in this section.

Definition 6.2 Let r be a node in a query q and u and v be two nodes in sub(r). We say

u and v are Potential Siblings (PS) in t, written PS(u,v,r), if (1) u = v, (2) u and v are

siblings, or (3) (λ (parent(u)) = λ (parent(v)) and PS(parent(u), parent(v),r) and u 6= r

and v 6= r.

The PS(., .,r) relation is reflexive (PS(v,v,r), ∀v in t), symmetric (PS(v,u,r)→PS(u,v,r),

∀v,u in t), and transitive (PS(v,u,r)∧PS(u,w,r)→ PS(v,w,r), ∀v,u,w in t). Therefore, it

is an equivalence relation. We also use PS(∗,v,r) to indicate the set of potential siblings

of v in sub(r), i.e. PS(∗,v,r) = {u | PS(u,v,r)}.

Definition 6.3 Let r be a node in a query q and v be a node in sub(r) with set of children

children(v). Then Potential Children PC(v,r) is the set of nodes defined as follows:

PC(v,r) =

 /0 if v is a leaf

PS(∗,u,r), for some u ∈ children(v) otherwise

We also define LPC(v,r) = {λ (u) | u∈PC(v,r)} as the set of labels of the nodes in PC(v,r).

Example 6.3 Consider the query tree shown in Figure 6.2 and the subtree sub(v0). The

following results hold:

6.2. DETERMINING MINIMUM NUMBERS OF QUERY NODES 104

PC(v0,v0) = {v1,v2,v3,v4}

PC(v1,v0) = PC(v2,v0) = {u1,u2,u3,u4,u5,u6}

PC(v3,v0) = PC(v4,v0) = {u7,u8}

PC(u1,v0) = PC(u2,v0) = PC(u3,v0) = PC(u4,v0) = {w1,w2,w3,w4}

PC(u5,v0) = PC(u6,v0) = {w5,w6}

Now consider the subtree sub(v2). We have:

PC(v2,v2) = {u3,u4,u5,u6}

PC(u3,v2) = {w3,w4}

PC(u4,v2) = {w3,w4}

PC(u5,v2) = {w5,w6}

PC(u6,v2) = {w5,w6}

Definition 6.4 Given a tree t and a node w in t, by sub(w), we mean the subtree of t

rooted at w. Given a DTD D, a document tree t ∈ SAT (D), and a node w in t, by SAT (w)

we mean the set of all subtrees s such that the root of s is labeled λ (w) and the tree

obtained by replacing sub(w) in t with s is still in SAT (D).

Definition 6.5 Let r be a node in a query q and v be a node in sub(r). Also let {u1, . . . ,un}⊆

PC(v,r) such that λ (ui) = α where 1≤ i≤ n and α ∈ Σ. Then merge(α,v,r) is defined as

a tree whose root v′ is labeled with λ (v) and has n children u′1, . . . ,u
′
n such that sub(u′i) in

merge(α,v,r) is identical to sub(ui) in q, i = 1, . . . ,n.

Example 6.4 Figure 6.3(a) and (b) depict merge(d,v1,v0) and merge(e,v1,v0), respec-

tively, which are the result of merging the b-nodes in the query shown in Figure 6.2.

Definition 6.6 Let D be a well-behaved DTD, and q be a D-satisfiable query in XP{/,[]}.

Then the MinChildBag of v in sub(r) in q is denoted by MCB(v,r) and is defined as follows:

CHAPTER 6. XPATH CONTAINMENT UNDER DTDS 105

mv′
mu′1 mu′2 mu′3 mu′4

mi j k l

d d d d

b

w1 mw2 mw3 mw4

�
�

�
�

��

�
�
��

A
A

AA

mv′
mu′1 mu′2

e e

b

mw1 mw2

m n

(a) (b)

Figure 6.3: The merged trees used in Example 6.4.

1. if v = r then MCB(v,r) = {ck1
1 , . . . ,ckn

n }, where each ci ∈ LPC(v,r), i = 1, . . . ,n, and

ki is 1 if there is a tree t in SAT (D) on which q has a nonempty answer such that all

the ci-children of v can be mapped to the same node in t; ki is > 1 otherwise.

2. if v 6= r then MCB(v,r)=
⋃

α∈LPC(v,r) MCB(v′,v′) where v′ is the root of merge(α,v,r).

First note that MCB(v,r) = /0 if v does not have any children. Also note that, for a label

ci, i = 1, . . . ,n, if all the ci-children of v are leaves then ki = 1. Finally, by the MinChildBag

of v, we simply mean MCB(v,v).

Example 6.5 Consider the query tree q in Figure 6.2 and the following DTD D:

a → (b,c∗) | (c,b∗)

b → (d,e) | (e,d∗, f)

c → (g |h)

d → (i | (j?,k?) | l)

e → (m?,n?)

We will have MCB(v0,v0) = {b,c>1} because no document tree t in SAT (D) exists on

which q has a nonempty answer such that both c-nodes map to the same node in t (be-

cause of the D-rule for c and the children of the c-nodes in q). Moreover, MCB(v1,v0) =

merge(d,v1,v0)∪merge(e,v1,v0) for the subtrees shown in Figure 6.3(a) and (b). Since

6.2. DETERMINING MINIMUM NUMBERS OF QUERY NODES 106

Algorithm calculateMCB
Input: v and r; v is a node in sub(r)
Output: MCB(v,r)

if v = r then
Calculate PC(u,r) and LPC(u,r) for each node u in sub(r)
{To be used also in all the subsequent recursive calls}

end if
B = /0
for all b ∈ LPC(v,r) do

if all b-nodes in PC(v,r) are leaves then
B = B∪{b}

else
Let u be an arbitrary b-node in PC(v,r)
tmpMCB = calculateMCB(u,r)
if δtmpMCBRb 6= /0 then

B = B]{b}
else

B = B]{b>1}
end if

end if
end for
return B

Figure 6.4: The pseudo-code of Algorithm calculateMCB which calculates MCB(v,r),
where v is a node in sub(r).

the d-nodes can not be mapped to the same node in a document tree in SAT (D)∩SAT (q),therefore,

MCB(v1,v0) = {d>1,e}.

We now present Algorithm calculateMCB which, given v and r, calculates MCB(v,r)

where v is a node in sub(r). The algorithm is given in Figure 6.4. In the special case where

v is a leaf, the f or-loop is not entered and the algorithm returns the empty bag B, which is

consistent with the definition of MCB(v,r). Otherwise, the bag B will be constructed from

the labels in LPC(v,r); the only question is, for each such label b, whether the multiplicity

is 1 (i.e., b ∈ B) or >1 (i.e., b>1 ∈ B). Of course, by the definition of MCB(v,r), the

multiplicity is 1 if all the b-nodes in PC(v,r) are leaves, which is captured by the outer

i f -statement. However, if at least one of these nodes is not a leaf, then the else-branch of

the outer i f -statement is entered, which is the recursive part of the algorithm.

In this part of the algorithm, first MCB(u,r), where u is a b-node (for some label b)

in PC(v,r), is calculated and called tmpMCB. Then, the concept of derivatives introduced

in Chapter 4 is used to determine whether one or more occurrences of b is required in B.

More specifically, by the definition of derivatives, a b-node in a document tree in SAT (D)

CHAPTER 6. XPATH CONTAINMENT UNDER DTDS 107

can have children specified in tmpMCB if, and only if, the derivative of the regular expres-

sion Rb of the DTD rule for b with respect to tmpMCB is nonempty. This is exactly what

is examined by the inner i f -statement. If the derivative is nonempty, one b, or otherwise

more than one (> 1) b, will be added to B. However, the problem here seems to be that

tmpMCB is an infinity, as opposed to an ordinary, bag. The key point here lies in the well-

behavedness of the underlying DTD D, where a b-node in a document tree in SAT (D) can

have children specified in an infinity bag tmpMCB if, and only if, it can have children spec-

ified in the corresponding ordinary bag, say tmpMCB-ordinary, where tmpMCB-ordinary

is the bag obtained from tmpMCB by replacing every multiplicity which is > 1 in tmpMCB

with multiplicity 2 in tmpMCB-ordinary.

Example 6.6 Consider the query tree q in Figure 6.2 and the DTD in Example 6.5. As-

sume that the algorithm is called to compute MCB(v0,v0). Because v0 is not a leaf, the

f or-loop is entered. The sets PC(v0,v0) and LPC(v0,v0) are {v1,v2,v3,v4} and {b,c},

respectively. Let v1 be the arbitrary node chosen, so calculateMCB(v1,v0) is called. The

new parameters are LPC(v1,v0) = {d,e} and PC(v1,v0) = {u1,u2,u3,u4,u5,u6}. Let d

be the first label considered by the f or-loop. Now, let u1 be the arbitrary d-node chosen.

We have LPC(u1,v0) = {i, j,k, l} and PC(u1,v0) = {w1,w2,w3,w4}. Then the algorithm

returns {i, j,k, l} because all children in PC(u1,v0) are leaves. Therefore, {d>1} since

δ{i, j,k,l}Rd = /0. Similarly, when considering label e next in the f or-loop, let u5 be the

arbitrary e-node chosen. The algorithm returns B = {m,n}. Because δ{m,n}Re 6= /0, e is

added to B to give {d>1,e}. Now returning to the first invocation and considering label

c in the f or-loop, we find out MCB(v3,v0) = {g,h} (because the children of the c-nodes

are leaves). Finally, we discover that MCB(v0,v0) = {b,c>1} because δ{d>1,e}R
b 6= /0 and

δ{g,h}Rc = /0.

Theorem 6.1 Let D be a well-behaved DTD, q be a D-satisfiable query in XP{/,[]}, r

be a node in q, and v be a node in sub(r). Then the bag B returned by the algorithm

calculateMCB on the inputs v and r is MCB(v,r).

6.2. DETERMINING MINIMUM NUMBERS OF QUERY NODES 108

Proof. Let L be the level at which the node v is located in sub(r), having defined the

level of r as 0. Let Lmax be the depth of the subtree, i.e. the level of the deepest node in

sub(r). We use induction on L, starting from L = Lmax as the base case and proving that if

the theorem holds for the nodes at a level L > 0, it will also hold for the nodes at the level

L−1.

Base case: In this case L = Lmax and v and all nodes u such that PS(v,u,r) are leaves.

Therefore, merge(−,v,r) will be a singleton tree, which implies that MCB(v,r) = /0. As

can be seen, in this case the algorithm returns B = /0 as well.

Inductive hypothesis: We assume that the algorithm properly returns MCB(v,r) where

v is at a level 0 < L≤ Lmax.

Induction step: We prove that the algorithm properly returns MCB(v,r) where v is

located at the level L−1. To that end, we need to show that the returned bag B is equal to

MCB(v′,v′), where v′ is the root of merge(−,v,r). By Definition 6.6, if v′ does not have

any children, i.e. PC(v,r) = LPC(v,r) = /0, then MCB(v′,v′) will be /0. In this case, the

algorithm does not execute the for-loop and B = /0 is returned.

If PC(v,r) 6= /0, then MCB(v′,v′) is a bag composed of the labels of the children of v′,

each with either 1 or > 1 as its multiplicity. Similarly, the bag returned by the algorithm is

composed of the labels in LPC(v,r), which are the same as the labels of the children v′, by

the definition of merge(−,v,r). Therefore, we only need to show that, for each label b in

LPC(v,r), the multiplicity of b in B is the same as that in MCB(v′,v′). However, because

the multiplicity is either 1 or > 1, we need to show that there is one b in B if and only if

there is one b in MCB(v′,v′).

First assume that there is one b in MCB(v′,v′). Then all the b-children of v′ can be

mapped to the same b-node in a tree t ′ ∈ SAT (merge(b,v,r))∩SAT (D). By the inductive

hypothesis, we conclude that the bag of labels of the children of the single b-node in t ′

must at least include MCB(u,r), where u is a b-child of the root v′ (note that MCB(ui,r) =

MCB(u j,r) for all pairs ui and u j of b-children of v′). However, by the definition of

CHAPTER 6. XPATH CONTAINMENT UNDER DTDS 109

derivatives, this implies δMCB(u,r)Rb 6= /0. In this case the condition of the if-statement in

the algorithm evaluates to true and the multiplicity of b in B will also be 1.

Conversely, assume that the multiplicity of b in B is 1. Then, the condition of the

if-statement in the algorithm must have evaluated to true, i.e., δMCB(u,r)Rb 6= /0, where

u is an arbitrary b-node in PC(v,r). By the definition of derivatives, this implies the

existence of a tree in SAT (D) in which a b-node exists whose bag of labels of chil-

dren includes the bag MCB(u,r). By the induction hypothesis, we conclude that a tree

t ′ ∈ SAT (merge(b,v,r))∩SAT (D) must exist such that all the b-children of v′ are mapped

to the same b-node in t ′. That is, the multiplicity of b in MCB(v,r) is also 1.

6.3 Chasing the queries

Given two XPath queries p and q in XP{/,[]}, p contains q iff there is a containment map-

ping from p to q [65] (for the definition of containment mapping see Chapter 2). However,

before we can check the existence of a containment mapping from p to q, we need to

apply the constraints inferred from the underlying DTD to q. This can be done by the

well-known chase procedure adapted from [92]. Let C be a set of BSCs and BFCs, the

chase qC of q by C is obtained by repeatedly applying the constraints in C to each node v

labeled, say a, in q, as shown in the following steps:

1. Let f ∈ C be a BFC of the form a : B ↓ b. If B ⊆MCB(v,v) and v also has distinct

children u1 and u2 both labeled with b, then the BFC f is applicable to q. The result

of applying f to v is a query identical to q but with the nodes u1 and u2 being merged.

2. Let s ∈ C be a BSC of the form a : B ⇓ c. If B ⊆MCB(v,v) and v does not have a

child labeled c, then the BSC s is applicable to q. The result of applying s to v is a

query identical to q but with v having an additional child labeled c.

6.4. USING BSCS AND BFCS FOR D-CONTAINMENT 110

The result of chasing q by C is a sequence q0, . . . ,qk such that q0 = q, qi+1 is the

result of applying some constraints in C to qi, and no constraint can be applied to qk.

Because each qi+1, i = 0, . . . ,k− 1, is obtained from applying a DTD constraint in C

to its predecessor qi, the final query qk = qC will be D-equivalent to q0 = q (also see

Proposition 6.2 in Section 6.4). The following lemma shows that chasing sequences are

finite.

Lemma 6.1 Let C be the set of BSCs and BFCs implied by DTD D, and q be an XPath

query in XP{/,[]}. Every chasing sequence of q by C is finite.

Proof. A BFC can only be applied to a pair of original nodes (or nodes resulting from

the merging of two original nodes) in q since applying a BSC does not introduce sibling

nodes with duplicate labels. In addition, applying a BFC reduces the number of nodes in

q by one. Hence, at some point in the chasing sequence, no BFC in C will be applicable

to q. Each BSC in C can be applied at most once to each original node in q. Only child

constraints can be applied to newly added nodes since when they are first introduced such

nodes have no children. Since DTD D is satisfiable, there can be no cycle of child con-

straints. Hence, each child constraint can be applied only a finite number of times.

6.4 Using BSCs and BFCs for D-containment

In this section, we prove that BFCs and BSCs are necessary and sufficient constraints

to capture D-containment for XPath queries in XP{/,[]} when the underlying DTD is well-

behaved. Before presenting the main theorem, we present the following propositions, each

holding trivially. In each case, we assume that q is an XPath query, D is a DTD, C is the

set of constraints implied by D, and qC is the chase of q by C.

Proposition 6.1 q ≡SAT (C) qC (regardless of the XPath fragment q is in and the types of

constraints in C).

CHAPTER 6. XPATH CONTAINMENT UNDER DTDS 111

The proof follows from the fact that qC is obtained by sound chase operations, none of

which affects the result of executing q over any document tree in SAT (C).

Proposition 6.2 q≡SAT (D) qC.

The proof follows from the fact that SAT (D)⊆ SAT (C) and Proposition 6.1.

Proposition 6.3 q⊆SAT (C) p if qC ⊆ p.

Proof.

qC ⊆ p ≡ qC ⊆SAT (C) p

⇒ q⊆SAT (C) p (since q≡SAT (C) qC, by Proposition 6.1)

We now introduce some terminology used in the proof of the theorem below. Given a

D-satisfiable query q in XP{/,[]} and a document tree t in SAT (D), we use g to denote a

homomorphism from q to t (since q has a nonempty answer on t, such a homomorphism

exists). We use gC to denote a homomorphism from qC to t such that gC(v) = g(v) for all

v in both q and qC (since qC is the chase of q such a homomorphism exists). Furthermore,

we will use two different colours, namely white and black, to distinguish between the

nodes in t, as follows:

• every node which is in the codomain of g or gC is coloured black.

• all other nodes are coloured white.

Theorem 6.2 Let q and p be two queries in XP{/,[]}, D be a well-behaved DTD, and C be

the set of BSCs and BFCs implied by D. If q is D-satisfiable, then q⊆SAT (D) p if and only

if q⊆SAT (C) p.

6.4. USING BSCS AND BFCS FOR D-CONTAINMENT 112

Proof. The (if) direction follows from the fact that SAT (D) ⊆ SAT (C). In order to

prove the (only if) direction, it is enough, by Proposition 6.3, to prove that q ⊆SAT (D) p

implies qC ⊆ p. To that end, we provide a containment mapping from p to qC, given that

q ⊆SAT (D) p. More specifically, we show that there exists a document tree t ∈ SAT (D), a

one-to-one mapping gC from qC to the document tree t, and a homomorphism h from p to

t such that the following hold:

1. h is covering, i.e. it maps every node in p to a black node in t.

2. h maps every child edge in p to a pair of nodes (z′,z) in t such that z′ is the parent of

z and there is a pair of nodes (u′,u) in qC, where u′ is the parent of u and z′ = gC(u′)

and z = gC(u).

The composite function g−1
C ◦ h will become a containment mapping from p to qC (note

that in order for g−1
C ◦ h to be a function, as opposed to a relation in general, gC, but not

necessarily h, must be one-to-one).

We first prove that there exists a pair < t,gC >, where t is a finite document tree in

SAT (D) and gC is a one-to-one mapping from qC to t such that gC(v) = g(v) for all nodes

v in both q and qC. We already know that there exists a document tree t in SAT (D) on

which q has some nonempty answer. Then there must be a homomorphism g from q to t.

Because qC has the same answer as q on t, there must also be a homomorphism from qC to

t. Let us define a homomorphism gC from qC to t such that gC(v) = g(v) for all nodes v in

both q and qC. If gC is not one-to-one, then there must be two sibling nodes u1 and u2 in

qC that are mapped to a same node z in t. Let b be the label of z. Because the DTD is well-

behaved there must be another tree in SAT (D) that is the same as t but has an additional

node labeled b allowing for u1 and u2 to map to distinct nodes. If such a tree does not

exist, then u1 and u2 must have already been merged as the result of chasing q (because

of a BFC), which is a contradiction. Similarly, we can obtain a document tree such that

all siblings in qC with the same label can map to distinct nodes in the tree. Therefore,

CHAPTER 6. XPATH CONTAINMENT UNDER DTDS 113

mv
mv′

p

b

a
a

b

mz′
mz
t

a

mu
mu′

qC

h

h

gC

R

R

	

Figure 6.5: Queries p and qC and tree fragment t in case (i)

there must exist a tree in SAT (D) and a one-to-one mapping from qC to that tree whose

codomain is the same as the codomain of g. We still refer to them as t and gC, respectively.

We colour the nodes of t based on g and gC as described above.

Now we show that there exists a covering homomorphism h from p to t whose codomain

does not include any white node in t. Assume that there is no covering homomorphism

from p to t that maps every node in p to a black node in t. We already know that there

must be a covering homomorphism from p to t because p D-contains q and must have a

nonempty answer on t. Let h be a covering homomorphism from p to t. Assume that there

is a node v in P such that h(v) is white. Since the roots of p, q, and qC are mapped to the

root of each document tree in SAT (D), v cannot be the root of p, hence it has a parent. Let

v′ be the parent of v, z′ = h(v′), z = h(v), and u′ be the node in qC which is mapped by gC

to z′ (see Figure 6.5). Also let the labels of v′ and v, be a and b, respectively (in the special

case, a = b). There are two possible cases as follows:

i) z′ in t does not have any black b-child.

ii) z′ in t has some black b-children which are siblings of z.

Case i) In this case, u′ in qC cannot have a b-child. Hence, there can be no BSC requiring

a b-child to be present when all of the other children of u′ are present. This means that

z and all other b-children of z′ in t (and possibly other children too) must be present in

t because of D and possibly children of u′ in qC, but they do not always have to appear

(otherwise there must be a BSC implied by D for a). Hence, we must be able to replace

6.4. USING BSCS AND BFCS FOR D-CONTAINMENT 114

mv
mv′

p

b

a
a

b

mz′
mz mz1

t

b
b

a

mu
mu′

qC

h

h

gC

gC
@@

R

R

	

	

Figure 6.6: Queries p and qC and tree fragment t in case (ii)

sub(z′) in t with a subtree s in SAT (z′) whose root has no b-child, and therefore there is no

longer a homomorphism from p that maps v′ to z′.

Case ii) Now consider case (ii), where z′ in t has at least one black b-child z1 (see Figure

6.6). By assumption, no homomorphism from p can map v to z1, but h maps v to some

sibling z of z1. Since z1 and z are both b-nodes, we can replace sub(z) (and that rooted at

any other white b-child of z′) with that rooted at z1 to obtain a tree that is still in SAT (D)∩

SAT (q) and to which gC is still a one-to-one mapping from qC, but to which there is no

homomorphism from p that maps v′ to z′.

Finally, for every homomorphism from p to t, we can perform the replacements identi-

fied in case (i) or (ii) to t in order to obtain a tree t ′ in which every a-node to which v′ was

previously mapped by a homomorphism either has no b-children or has only b-children

to which v cannot be mapped. Hence, there is no homomorphism from p to t ′. Since

t ′ ∈ SAT (D)∩SAT (q) and there is still a one-to-one mapping from qC to t ′, we have that

p does not D-contain q, a contradiction. We conclude, therefore, that there must be a ho-

momorphism h and a one-to-one mapping gC such that h(v) is a black node.

The above result, together with the chase procedure presented in Section 6.3, which in

turn uses the algorithm calculateMCB, suggests that the D-containment q ⊆SAT (D) p can

be determined by first obtaining the chase qC of q, followed by deciding the containment

qC ⊆ p. However, this method is based on finding the derivative of a regular expression

with respect to a bag, as part of the calculateMCB procedure, which was shown in Chapter

CHAPTER 6. XPATH CONTAINMENT UNDER DTDS 115

4 to be exponential in the input size in the worst case. Therefore, we define, in the next

section, a special class of well-behaved DTDs for which D-containment of XPath queries

in XP{/,[]} can be tested in PTIME.

6.5 Tractability of D-containment for queries in XP{/,[]}

In this section, we introduce a type of DTDs, called well-formed DTDs, which are well-

behaved and for which the D-containment of XPath queries in XP{/,[]} is in PTIME pro-

vided that the set of BSCs and BFCs implied by D is given.

Definition 6.7 A regular expression R over alphabet ΣR is well-formed if for each subex-

pression p,q in R, Σp ∩ Σq = /0. A DTD D is well-formed if each content model (i.e.,

regular expression) in D is well-formed.

Example 6.7 The following DTD is well-formed:

a → (b,e) | (d,e∗)

However, the following DTD is not well-formed as there exists a concatenation of two

occurrences of “e”:

a → (b,e,e) | (d,e∗)

Well-formed regular expressions occur often in practice. We have examined 100 real-

world DTDs with more than 5000 rules. Our experiments reveal that about 92 percent of

the content models in the DTDs are well-formed. Table C.1 in Appendix C shows our

results.

We now present several theoretical results.

Theorem 6.3 Every well-formed regular expression is also well-behaved.

6.5. TRACTABILITY OF D-CONTAINMENT FOR QUERIES IN XP{/,[]} 116

Proof. Let R be a well-formed regular expression over ΣR, b ∈ Σ, and u be a string in L(R)

such that |b|[u] = k where k > 1. Since R is well-formed, by Definition 6.7, there is no

sub-expression p,q in R such that b∈ Σp and b∈ Σq. Therefore, the only way to have more

than one b in u is to have a Kleene-star in R applied to either b (i.e. b∗) or a sub-expression

containing b. In the first case, we can simply make another string v, still in L(R), from u

by increasing the number of bs to any value n > k, thereby meeting the first requirement in

Definition 6.1. Moreover, the same symbols appear in both u and v, i.e. {u}= {v}, which

means the second requirement is also met. Finally, the number of occurrences of every

symbol other than b in [u] remains intact in v, i.e. ∀c ∈ [u], |c|[u] ≤ |c|[v], therefore the third

requirement is also met, and R is well-behaved.

In the second case, suppose that R′ is the sub-expression containing b to which a

Kleene-star is applied, and u = xu′y, where u′ is the substring of u that matches (R′)∗.

We form another string v, still in L(R), by increasing the number of times the Kleene-star

is applied to R′, i.e. by iterating u′ n times, n > k. Therefore, the first and third require-

ments are met (|b|[v]≥ n and ∀c∈ [u], |c|[u]≤ |c|[v]). Moreover, the same symbols appear in

both u and v, i.e. {u}= {v}, which means the second requirement is also met. Therefore,

R is well-behaved.

Definition 6.8 Let R be a regular expression and B be a bag of symbols. We define a

function f as follows:

f (R,B) =

 1 if δBR 6= /0

0 otherwise

When f (R,B) = 1, we say R covers B.

In Theorem 6.4 we will show that f (R,B) can be determined in PTIME, when R is well-

formed. To that end, we first present some lemmas. The first lemma obviously holds:

CHAPTER 6. XPATH CONTAINMENT UNDER DTDS 117

Lemma 6.2 Let R be a regular expression over alphabet ΣR, and B be a bag of symbols

in ΣR. Then, f (R∗,B) = 1 if and only if for all b ∈ B, b appears in R.

In the following, for completeness, we allow for the derivative of a regular expression

with respect to the empty set, defined as leaving the regular expression intact. That is,

δ /0R = R.

Lemma 6.3 Let R = R1,R2 be a nonempty well-formed regular expression over ΣR, and

B be a nonempty bag of symbols in ΣR. Then, δBR = (δB1R1),(δB2R2) where Bi = {bk|b ∈

ΣRi and k = |b|B}, i = 1,2.

Proof. First note that B1∩B2 = /0, because of the well-formedness of R. We now prove

the lemma by induction on |B|.

Base Case: Let B be a singleton {b}, i.e. |B| = 1. Without loss of generality, assume

b ∈ ΣR1 (and, therefore, b /∈ ΣR2). Then, B1 = {b} and B2 = /0. Therefore,

δBR = δB(R1,R2)

= (δBR1),R2

= (δB1R1),(δB2R2).

Induction hypothesis: We assume that for all |B| ≤ n, δBR = (δB1R1),(δB2R2).

Induction step: We assume that we are given B] {b} of size n + 1 and also, without

loss of generality, that b appears in R1, and hence not in R2. We show that δB]{b}R =

(δB1]{b}R1),(δB2R2).

δB]{b}R = δB1∪B2]{b}R

= δB1∪B2]{b}(R1,R2)

= δB1∪B2((δbR1),R2) using Equation 4.2, because δbR2 = /0

6.5. TRACTABILITY OF D-CONTAINMENT FOR QUERIES IN XP{/,[]} 118

First, consider the case where B1 ∪B2 is a bag of symbols in Σδb(R1,R2). In this case,

using the induction hypothesis,

δB]{b}R = (δB1(δbR1)),(δB2R2)

= (δB1]{b}R1),(δB2R2)

Now consider the case where B1∪B2 is not a bag of symbols in Σδb(R1,R2). In this case,

obviously, δB1∪B2((δbR1),R2)= /0. We now show that in this case also (δB1]{b}R1),(δB2R2)=

/0 to complete the proof. To that end, note that B1 ∪ B2 is a bag of symbols in ΣR1,R2

and the only reason for B1 ∪ B2 not being a bag of symbols in Σδb(R1,R2) is that b ∈

ΣR1 , b /∈ ΣδbR1 , and |b|B1 > 0. However, in this case, (δB1(δbR1)) = /0, which implies

(δB1]{b}R1),(δB2R2) = /0.

Lemma 6.4 Let R = R1|R2 be a nonempty well-formed regular expression over ΣR, and B

be a nonempty bag of symbols in ΣR. Then, δBR = (δBR1)|(δBR2).

Proof. We use induction on |B|.

Base Case: Let B be a singleton {b}, i.e. |B|= 1. Then,

δBR = δB(R1|R2)

= (δBR1)|(δBR2)

Induction hypothesis: We assume for |B|= n, δBR = (δBR1)|(δBR2).

Induction step: We show that δB]{b}R = (δB]{b}R1)|(δB]{b}R2).

δB]{b}R = δB]{b}(R1|R2)

= δB((δbR1)|(δbR2)) using Equation 4.2

= (δB(δbR1))|(δB(δbR2)) by the induction hypothesis

CHAPTER 6. XPATH CONTAINMENT UNDER DTDS 119

= (δB]{b}R1))|(δB]{b}R2)

Theorem 6.4 Let R be a nonempty well-formed regular expression over ΣR, and B be a

nonempty bag of symbols in ΣR. Then, f (R,B) can be determined in polynomial time.

Proof. We use strong induction on |R|.

Base case: Assume |R|= 1. In this case, trivially, f (R,B) = 1 if and only if B is a singleton

that contains the only symbol in R; this can be decided in polynomial time. Let B = {a};

based on the answer to whether or not the symbol a occurs in R, f (R,B) returns 1 or 0 in

O(|R|).

Induction hypothesis: We assume that f (R,B) is decidable in polynomial time, for all

|R| ≤ n, for some n≥ 1.

Induction step: We prove that f (R,B) is decidable in polynomial time, where |R|= n+1.

To that end, we note that f (R,B) = 1 if and only if δBR is not empty; it is 0 otherwise.

Therefore, we show that we can decide in polynomial time whether δBR is not empty.

Since |R| > 1, R is not a singleton and one of the following three cases must hold, where

R1 and R2 are in turn well-formed regular expressions with size no greater than n:

1. R = R1,R2. In this case, by Lemma 6.3, δBR = (δB1R1),(δB2R2), where Bi = {bk|b∈

ΣRi and k = |b|B}, i = 1,2. Therefore, δBR is not empty if and only if neither δB1R1

nor δB2R2 is empty. That is, f (R,B) = f (R1,B1), f (R2,B2). On the other hand, both

the bags B1 and B2 and, by the induction hypothesis, both the values f (R1,B1) and

f (R2,B2) can be determined in polynomial time. That is, f (R,B) is decidable in

polynomial time.

2. R = R1|R2. In this case, by Lemma 6.4, δBR = (δBR1)|(δBR2). Therefore, δBR is not

empty if and only if either δBR1 or δBR2 is not empty. That is, f (R,B) = 1 if, and

6.5. TRACTABILITY OF D-CONTAINMENT FOR QUERIES IN XP{/,[]} 120

only if, f (R1,B) + f (R2,B) > 0. On the other hand, by the induction hypothesis,

both the values f (R1,B) and f (R2,B) can be determined in polynomial time. That

is, f (R,B) is decidable in polynomial time.

3. R = (R∗1). In this case, by Lemma 6.2, δBR = 1 if and only every symbol in B appears

in R1, which is decidable in polynomial time.

Given a set C of BSCs and BFCs implied by DTD D and queries p and q in XP{/,[]},

we will prove, in Theorem 6.5, that deciding D-containment is in PTIME. To that end, we

first show in Lemma 6.5 that MCB(v,v), for each node v in q, can be calculated in PTIME.

Then, in Lemma 6.6, we prove that the chase of q by C can be determined in PTIME.

Lemma 6.5 Let D be a well-formed DTD and q be a D-satisfiable query in XP{/,[]} whose

root is r. Then MCB(r,r) can be determined in polynomial time.

Proof. First, we show that the calculation of the sets PC(v,r) and LPC(v,r) for all

nodes v in the tree q rooted at r can be accomplished in polynomial time. These sets are

calculated only once in the first (the highest) recursive call, when v = r, and used in all the

subsequent recursive calls, where v is a non-root node in the tree q rooted at r. We only

show that the calculation of PC(v,r), for all the nodes v in the tree q, can be accomplished

in polynomial time, because the calculation of LPC(v,r) will then be simply performed in

polynomial time too.

To that end, we process the nodes v in the tree from the root r to the leaves. That is, for

each level L of the tree in increasing order, starting from L = 0 for the root, we calculate

PS(∗,v,r) and PC(v,r) for every node v in level L. For each node v in a level L, PS(∗,v,r)

is obtained by going through all the nodes v′ in the level L of the tree and checking whether

v′ is a potential sibling of v, i.e. whether PS(v,v′,r) holds. That is, we need to determine

whether parent(v′) has the same label as parent(v) and belongs to PS(∗, parent(v),r).

CHAPTER 6. XPATH CONTAINMENT UNDER DTDS 121

Because of processing the nodes from top to bottom (in a dynamic programming fashion),

we already know PS(∗, parent(v),r). Because PS(∗, parent(v),r) = O(|q|), it takes O(|q|)

to decide whether v′ belongs to PS(∗, parent(v),r). Similarly, because there are O(|q|)

nodes which we go through, it takes O(|q|2) to determine PS(∗,v,r). Finally, the definition

of PC(v,r) implies that it will be the empty set if v is a leaf. Otherwise, let u be a child

of v (which resides in the level L+1). Then, PC(v,r) will be the set PS(∗,u,r), which we

just showed can be determined in polynomial time.

Having calculated PC(v,r) (and consequently LPC(v,r)) in polynomial time, we now

show the rest of the algorithm also runs in polynomial time. To that end, we use induction

to prove the proposition that each invocation of calculateMCB(v,r), where v is a node in

the tree q rooted at r, runs in polynomial time. Let L be the level at which the node v is

located in the tree and Lmax be the depth of the tree, i.e. the level of the deepest node in

q. We use induction on L, this time starting from L = Lmax as the base case and proving

that if the proposition holds for the nodes at a level greater than 0, it will also hold for the

nodes at the level L−1.

Base case: In this case L = Lmax and v is a leaf (LPC(v,r) = /0), and the algorithm

returns /0 in O(1).

Induction hypothesis: We assume that the algorithm is run in polynomial time, where

v is at a level 0 < L≤ Lmax.

Induction step: We prove that the algorithm runs in polynomial time, where v is lo-

cated at level L− 1. If v is a leaf, then the algorithm runs in O(1) time. Otherwise,

LPC(v,r) is nonempty and the for-loop iterates |LPC(v,r)| = O(|q|) times. At each itera-

tion of the for-loop, the first if-condition is evaluated in |PC(v,r)|= O(|q|) and if evaluated

to true, the algorithm returns in polynomial time. Otherwise, the first else-block is run,

which includes a recursive invocation of the algorithm, which is performed in polynomial

time by the induction hypothesis. The rest of the code (including the second if-statement,

based on Theorem 6.4) also runs in polynomial time. Therefore, each iteration of the for-

6.5. TRACTABILITY OF D-CONTAINMENT FOR QUERIES IN XP{/,[]} 122

loop runs in polynomial time, and there are O(|q|2) of these iterations, which completes

the proof.

Lemma 6.6 Let D be a well-formed DTD, C be the set of BSCs and BFCs implied by D,

and q be a tree in XP{/,[]}. Then the chase qC of q by C can be determined in polynomial

time.

Proof. In order to obtain the chase of q by C, we go through each vertex v in q, from

level 0 to the last level of the tree of q, and check whether there are some constraints in

C applicable to v. In particular, for each BFC a : B ↓ b (respectively BSC a : B ⇓ c) in

C, we first check whether B ⊆MCB(v,v). Consequently, two or more children of v may

be merged (respectively, a child may be added). However, each merge procedure (respec-

tively, addition of a child) is performed in polynomial time, calculation of MCB(v,v) is

performed in polynomial time by Lemma 6.5, checking for B ⊆ MCB(v,v) is decided in

O(|MCB(v,v)|× |B|) = O(|q|× |Σ|), where Σ is the alphabet, and there are |C| constraints

to check. Therefore, the whole process of checking and applying constraints, if any, to a

node v is performed in polynomial time. Since the number of nodes in q is O(|q|), the

chase of q by C is obtained in polynomial time.

Theorem 6.5 Let D be a well-formed DTD and C be the set of BSCs and BFCs implied

by D. Then the D-containment of queries in XP{/,[]} can be decided in PTIME.

Proof. In (the only-if part of) Theorem 6.2, we showed that q ⊆SAT (D) p implies qC ⊆ p.

Conversely, qC ⊆ p also implies q⊆SAT (D) p, because qC ⊆ p implies qC ⊆SAT (C) p which

(by Proposition 6.1) implies q ⊆SAT (C) p, which in turn implies q ⊆SAT (D) p (because

SAT (D) ⊆ SAT (C)). Therefore, to decide the D-containment q ⊆SAT (D) p, we only need

to decide the containment qC ⊆ p. By Lemma 6.6, qC is obtained in polynomial time.

CHAPTER 6. XPATH CONTAINMENT UNDER DTDS 123

Finally, because the containment of XPath queries in XP{/,[]}is in PTIME [65], the con-

tainment qC ⊆ p can be decided in polynomial time, which completes the proof.

Theorem 6.6 Under well-formed DTDs, the containment problem for XPath queries in

each of the following fragments is coNP-hard:

1. XP{/,[],∗}

2. XP{/,[],//}

3. XP{/,[],∪}

Proof. The proof follows immediately from Theorem 5.2 and the fact that each duplicate-

free DTD is also well-formed and the satisfiability problem is reducible to the complement

of containment problem [7].

6.6 Intractability results regarding covering DTDs

In this section, we present several theoretical results regarding the containment problem in

the presence of covering DTDs.

The following theorem shows that, under covering DTDs, the D-containment of queries

in XP{/,[]} is intractable, unless P = NP, even though the D-satisfiability of such queries

under covering DTDs was shown in the previous chapter to be tractable. This result is

important because it implies that for any other fragment that include child axis and fil-

ter operators the problem, under covering DTDs, remain coNP-hard. This is the case in

practical applications, and most real world XPath queries contain these operators.

Theorem 6.7 XPath containment under covering DTDs for XP{/,[]} is coNP-hard.

6.6. INTRACTABILITY RESULTS REGARDING COVERING DTDS 124

We prove the theorem by reduction from the Sibling Constraint Implication (SC IMP)

problem, which has been shown to be coNP-hard for general DTDs [91]. First, we show

that it is also coNP-hard for covering regular expressions.

Let Ra be the regular expression representing the content model of an element a in a

DTD D, Σa be the set of element names appearing in Ra, and B be a bag of symbols in

Σa. Ra implies the sibling constraint a : B ⇓ c, denoted Ra |= a : B ⇓ c, if ∀w ∈ L(Ra),

when the bag [w] contains the bag B then it also contains c. In other words, we have

∀w ∈ L(δBRa) : c ∈ [w].

Now we prove that SC IMP is coNP-hard for covering regular expressions.

Lemma 6.7 SC IMP for covering regular expressions is coNP-hard.

Proof. We show that SC IMP remains coNP-hard for covering regular expressions by

reduction from the SC IMP problem.

Let Ra be the regular expression representing the content model of an element a in a

DTD D, Σa be the set of element names appearing in Ra, B be a bag of symbols in Σa,

and c ∈ Σa be a symbol such that c /∈ B (when c is an element of B, the SC is trivial, i.e.

always holds independently of the regular expression, in both covering and non-covering

regular expressions). Also let Ra = (Ra|w), where [w] = Σa. So Ra is a covering regular

expression. Ra can easily be obtained by adding w to Ra in PTIME. Now we show that

Ra |= a : B ⇓ c if and only if Ra |= a : B ⇓ c.

We first note that:

δBRa = (δBRa)|(δBw), where δBw =

 [w]−B if B⊆ [w]

/0 otherwise
(6.1)

The only-if direction (trivial): Assume that Ra |= a : B ⇓ c. This means ∀w′ ∈ L(δBRa) :

c ∈ [w′]. Using Equation 6.1: ∀w′ ∈ L((δBRa)|(δBw)) : c ∈ [w′]. This means: ∀w′ ∈

L(δBRa) : c ∈ [w′], i.e. Ra |= a : B ⇓ c.

CHAPTER 6. XPATH CONTAINMENT UNDER DTDS 125

The if direction: Assume that Ra |= a : B ⇓ c. There exist two possible cases:

1. B 6⊆ [w] (trivial)

This means that ∀w′ ∈ L(δBRa) : c∈ [w′], which is equivalent to Ra |= a : B ⇓ c when

B 6⊆ [w] (Equation 6.1).

2. B⊆ [w]

This means:

∀w′ ∈ L(δBRa) : c ∈ [w′] (6.2)

On the other hand:

if c ∈ Σ
a and c 6∈ B, then c ∈ [w]−B (6.3)

because [w] = Σa. Now consider Ra and an arbitrary string w′ ∈ L(δBRa):

w′ ∈ L(δBRa) ⇒ w′ ∈ L(δBRa|δBw)

⇒ (w′ ∈ L(δBRa)|(w′ ∈ L(δBw))

⇒ (c ∈ [w′])|(c ∈ [w′]) using Equations 6.2 and 6.3

⇒ c ∈ [w′]

This means Ra |= a : B ⇓ c.

Now we prove Theorem 6.7:

Proof. Given an instance of SC IMP:

Instance: A covering expression R over alphabet ΣR, B = {b1, . . . ,bk} ⊆ ΣR, and c ∈ ΣR.

Question: Does every string w∈ L(R) that contains B, i.e. B⊆ [w], also contain the symbol

c (denoted R |= a : B ⇓ c)?

We construct the following instance of the D-containment problem for XP{/,[]}. Assume

6.7. CONCLUSION 126

that D is a DTD with just one rule a→ R, and p = a[b1] . . . [bk] and q = a[c] are two XPath

queries which are D-satisfiable. Then a[b1] . . . [bk]⊆SAT (D) a[c] if and only if R |= a : B ⇓ c.

According to Lemma 6.7 deciding whether R |= a : B ⇓ c is coNP-hard, and the construc-

tion of the D-containment instance is accomplished in polynomial time. Therefore, decid-

ing a[b1] . . . [bk]⊆SAT (D) a[c] is also coNP-hard.

6.7 Conclusion

In this chapter, we first introduced a new DTD property, called well-behaved, which is

a semantic rather than a syntactic property. It is a generalisation of the duplicate-free

property. However, syntactically, a symbol may appear more than once in a well-behaved

DTD content model. We then showed that BFCs and BSCs (DTD constraints defined in

Chapter 4) are necessary and sufficient for deciding D-containment of XPath queries in

XP{/,[]} under well-behaved DTDs.

Furthermore, we introduced a subclass of well-behaved DTDs, called well-formed

DTDs, and formally proved the tractability of D-containment of XPath queries in XP{/,[]}

under such DTDs, given the set of BFCs and BSCs. Moreover, the tractability result still

holds for other classes of well-behaved DTDs as long as determining whether the con-

tent model of a DTD rule covers a bag of symbols can be accomplished in polynomial

time. Therefore, a potential avenue for future work is to determine other subclasses of

well-behaved DTDs that meet this requirement.

127

Chapter 7

Conclusions

This chapter summarises the contributions of the thesis and introduces some possible av-

enues for future work.

7.1 Summary

In this thesis, we have studied different aspects of the XPath query containment and sat-

isfiability problems under DTDs (Document Type Definitions). In general, there are no

efficient solutions for these problems, so the main purpose of this study is to determine

special cases in which the problems become tractable.

We first defined derivatives of regular expressions, with respect to bags of symbols.

Derivatives of regular expressions had been previously defined but with respect to strings

of symbols. However, we want to use derivatives in the static analysis of XPath queries

posed on XML documents that are valid with respect to some DTD D. More specifically,

we want to determine, when querying documents that are valid with respect to D, whether

a given node v in an XPath query can have a set of child nodes whose labels form the bag B,

irrespective of the order of the child nodes. This turns out to be equivalent to determining

whether the derivative of the content model (regular expression) for v in D with respect to

B is non-empty. We called this the DERIVATIVE NON-EMPTINESS problem. We proved

7.1. SUMMARY 128

that DERIVATIVE NON-EMPTINESS is NP-complete.

Previous studies have introduced constraints inferred from DTDs to decide contain-

ment in terms of the chase procedure. Several procedures for different fragments of XPath

have been proposed and different DTD constraints have been applied. However, the results

are still not satisfactory, partially because the proposed DTD constraints do not include all

the DTD information. Motivated by such difficulties, in Chapter 4, we studied constraints

implied by DTDs. We defined more general constraints based on bags, as opposed to sets,

of element names and proved some of their properties. In particular, two types of DTD

constraints, Bag Sibling Constraints (BSCs) and Bag Functional Constraints (BFCs) were

introduced.

One of our concerns was discovering properties of real-world DTDs and their impact

on the satisfiability and containment problems for XPath queries. The XPath satisfiability

problem is, given a DTD D and an XPath query q, to decide whether or not the query q

can ever return a non-empty answer over any document preserving the DTD constraints

expressed by D. In other words, it is to decide whether q is consistent with D. The XPath

D-containment problem, on the other hand, is, given a DTD D and two XPath queries p

and q, whether or not every answer returned by evaluating p over a document preserving D

is also an answer returned by evaluating q over that document. The problem is in general

coNP-hard, and extensive research has been conducted to determine special cases where it

becomes tractable.

The satisfiability problem for the fragment XP{/,[]}, denoted by SAT(XP{/,[]}), is NP-

hard in general. This result follows from a result in [91]. A contribution of this thesis

regarding the satisfiability problem is the discovery of a property we called the cover-

ing property. We showed that XPath satisfiability for the fragment XP{/,[],∗,//,∪} is in

PTIME for covering DTDs. We also showed that SAT(XP{/,[]}) is decidable in PTIME

for duplicate-free DTDs. The notion of a duplicate-free DTD was introduced in [91]. Our

investigation of real-world DTDs, which led to the discovery of the prevalent property of

CHAPTER 7. CONCLUSIONS 129

covering, revealed the pleasing fact that for many real-world cases, the XPath satisfiability

problem can be solved in PTIME [68].

One of the situations that increases the complexity of XPath containment is the exis-

tence of duplicate elements in queries, particularly duplicate siblings. The main difficulty

with this situation is related to the question of whether or not two or more such siblings

could map to the same node in a document tree. However, by examining real-world DTDs,

we observed that it is only important whether each label of a set of siblings can occur ei-

ther only once or infinitely often. Based on this idea, we defined the well-behaved property

and showed that Bag Sibling Constraints (BSCs) and Bag Functional Constraints (BFCs)

are necessary and sufficient to decide D-containment under such DTDs. Unfortunately,

the well-behaved property does not allow for an efficient test for D-containment, so we

defined a subclass of well-behaved DTDs called well-formed DTDs.

In particular, we showed that DERIVATIVE NON-EMPTINESS for well-formed regu-

lar expressions can be solved in polynomial time. This tractability result has promising

application in deciding whether or not a regular expression covers a bag of symbols, an

important problem in the context of deciding containment of XPath queries [92]. Finally,

we showed that, given the set BSCs and BFCs implied by a DTD D, D-containment of

queries in XP{/,[]} under well-formed DTDs is tractable.

7.2 Future Work

The presented work is just a starting point in the direction of discovering features of real-

world applications and deriving low-cost algorithms for such problems as query satisfia-

bility, containment, and optimisation. Among possible avenues for further research in this

regard are the following.

1. In this thesis, we found sets of constraints implied by certain types of DTD that are

sound and complete for deciding containment for XP{/,[]} using the chase procedure

7.2. FUTURE WORK 130

and containment mappings. Corresponding results in the following areas remain to

be investigated:

• Extending the analysis to larger XPath fragments.

• Extending the analysis to other, more general, types of DTDs and showing that

the restricted nature of the DTD results in particular constraints being sufficient

and necessary to capture all possibilities.

2. It would be interesting to investigate a precise classification of XPath features and

determine, for each class, the complexity of containment under well-behaved/well-

formed DTDs, so it is known which classes yield tractability, NP-hardness, or even

undecidability. Similarly, such a classification is open for the satisfiability problem

under covering DTDs.

3. Further work is needed to investigate the problem of satisfiability in the presence of

other axes, for example sibling-axes, for which the problem remains tractable.

4. The number of all constraints implied by a given DTD may be enormous, some of

which are redundant. Another challenge is to investigate the methods to derive a set

of constraints with no redundancy.

5. In Chapter 3, we used a counter-example to show that the constraints proposed

by [53] are not sufficient to capture containment when the underlying DTD is not

duplicate-free. It would be interesting to prove that they are sufficient when the

underlying DTD is duplicate-free.

6. The experimental results in this thesis showed that when DTDs are classified as

non-covering, it is mostly due to only a few of their rules being non-covering. This

suggests for the notion of ‘locally’, vs. ‘globally’, covering DTDs. Consequently, a

possibility for future work is to determine features of queries for which the satisfia-

CHAPTER 7. CONCLUSIONS 131

bility problem under locally covering DTDs (respectively, the containment problem

under locally well-behaved DTDs) remains tractable.

7. It would be worthwhile to further investigate real-world schema constraints, includ-

ing DTDs, and discover new features; and also to investigate the effect of such

features on achieving PTIME algorithms for common XPath problems. For such re-

search which is highly dependent on real-world data, it is first required to determine

how to obtain reliable real-world XPath DTDs, or in general schema constraints, as

well as real-world XPath queries.

8. Another suggestion for future work is to extend the constraints, for the purpose

of containment under constraints, from simple DTDs to more general schema lan-

guages such as XML schema or even Relax NG, as these have not yet been studied

sufficiently in the literature.

132

Appendix A

DTDs and their application domains

Table A.1: DTD names and their application domains

DTD Name Application Domain
Oagis Open Applications Group archives
Odm1-1-0 Optimal Design Markup Language
LevelOne HL7 Clinical document Architecture
Ecoknowmics Economic Knowledge Management
XML Schema XML Schema
HP HL7 Document architecture
Meerkat-xml-flavour Storehouse of News about Technological Developments
OSD Open Software Description
Opml Outline Processing Markup Language
Rss-091 XML vocabulary for describing metadata about websites
TV-Schedule TV Schedule
Xbel 1.0 XML Bookmarks Exchange Language
XHTML1-strict Extensible HTML version 1.0 Strict
Newspaper Newspaper
DBLP Digital Bibliography Library Project
Music ML Music Digital Library
XMark DTD XML Benchmark
Yahoo Yahoo auction data
Reed Courses from Reed College
Nlm Medline National Library of Medicine
SigmodRecord Index of articles from SIGMOD Record
Ubid UBid auction data
Ebay EBay auction data
News ML News
PSD Protein Sequence Database
Mondial 3.1 World geographic database

APPENDIX A. DTDS AND THEIR APPLICATION DOMAINS 133

Table A.1: (continued)

DTD Name Application Domain
321gone Auction
ADL-Access-Report ADL Access Report Model
Docbooks.dtd DocBook XML DTD
XHTML1-Frameset Extensible HTML Frameset
XHTML1-Strict Extensible HTML Strict
XHTML1-Transitional Extensible HTML Transitional
E-Invoice Electronic invoice
Hibernate-mapping-2.0 Java object/relational mapping tool
Imagelib Image Library used in Docbook
RecipeML Recipe Markup Language
RSS-2.0 Really Simple Syndication - Web content syndication for-

mat
TieXLite SGML TEI Lite
Tr9401 Oasis Catalog Standard
PFA Legal XML JNET Messages
PropertyList Apple’s developer tools
RDF SGML Resource Description Framework
MathML Mathematical Markup Language
DSSSL DSSSL Architectural Forms
Web-app-2-3 Web Application 2.3 Model
XTM1 XML Topic Map DTD
Olinksum OLINK Summary Information
QAML Frequently Asked Questions
Repository the grammar of the Descriptor repository
Soextblx Exchange Table Model
Interim Legal XML JNET Messages
FOT DTD DSSSL Flow Object Tree
FGDC-1.00 Declaration for formal metadata
Arrest Legal XML - JNET Messages
Catalog OASIS XML catalog
ComicsML Comics Markup Language
web-facesconfig-1-1 JavaServer Faces Application Configuration File
Ag-1.1 Annotation Graphs
springbeans Namespace for JavaBeans Objects
article-R.1.3.dtd Scientific and scholarly articles
autoupdate-catalog-1 Update Center Modules
Oil Ontology Integration Language OIL
cml-10 Chemical Markup Language
document-info-1.3 Store information about documents
docutils Store information about documents
DS-DevInf-V1-2 SyncML Device Information
ebBPSS Execution of business transactions
Groupstats Group Statistics
Userstats User Statistics
HDF5-File-1-2-2 NCSA Hierarchical Data Format

134

Table A.1: (continued)

DTD Name Application Domain
ibtwsh Itsy Bitsy Teeny Weeny Simple Hypertext
karbon-1.3 Karbon Markup Language
kdatabase-1.2 KDatabase document format
kformula-1.3 Math symbols and formulas
kontour-1.2 KIllustrator Markup Language
kpresenter-1.3 KPresenter document format
kspread-1.3 KSpread document format
kugartemplate-1.3 Kugar template
kword-1.3 KWord document format
oebdoc12 Open eBook Publication Structure
request Electronic communications
Resume Resume Document Type Definition
Shoe-xml An extension to HTML
RTML-2.1 Remote Telescope Markup Language
rfc2629 RFC document series
Sodaconstructor Browser-based applet
TMML-1.0 Turing Machine Markup Language
videoCD VCDImager VideoCD XML
VOTable Virtual Observatory Tabular Format
wddx-dtd-10 Web Distributed Data Exchange
xbn XML Belief Network file Format
xmlTV TV listings representation
zthes-05 Thesaurus Navigation
Fo2000 XSL FO documents
SYNCML-METINF-1.1 SyncML Representation Protocol
DMDDFDTD-1.2 OMA DM Device Description Framework
pap-2.1 Push Access Protocol
tabletemplatestes-1.3 Tablestyle Marlup Language
CDisc-11 Clinical Data Interchange Standards Consortium
Sun-domain-1.20 Glassfish configuration

135

Appendix B

Covering DTDs

Table B.1: The classification of DTD rules

DTD Number Non-covering Covering
Name of Rules Dup-free Dup Dup-free Dup
ADL-Access-Report 19 2 0 16 1
Docbooks.dtd 360 18 7 314 21
XHTML1-Frameset 91 1 0 88 2
XHTML1-Strict 77 1 0 74 2
XHTML1-Transitional 89 1 0 86 2
E-Invoice 66 0 0 66 0
Hibernate-mapping-2.0 49 3 0 38 8
Imagelib 7 0 0 7 0
RecipeML 68 3 4 58 3
RSS-2.0 30 0 0 29 1
TieXLite 143 26 6 109 2
Tr9401 7 0 0 7 0
PFA 24 0 0 24 0
PropertyList 11 0 0 10 1
RDF 11 0 0 11 0
MathML 39 0 0 39 0
DSSSL 16 0 0 16 0
Web-app-2-3 77 0 0 74 3
XTM1 19 0 0 15 4
Olinksum 8 0 0 8 0
FAQ 28 0 0 26 2
Repository 25 0 1 24 0
soextblx 7 0 0 7 0
Iterim 11 0 0 11 0
FOT 83 0 0 83 0
FGDC-1.00 340 5 2 315 18
Arrest 38 0 0 38 0
Catalog 6 0 0 6 0

136

Table B.1: (continued)

DTD Number Non-covering Covering
Name of Rules Dup-free Dup Dup-free Dup
ComicsML 31 0 0 31 0
web-facesconfig-1-1 80 0 0 76 4
Ag-1.1 9 0 0 9 0
springbeans 22 0 0 18 4
article-R.1.3.dtd 74 1 0 68 5
autoupdate-catalog-1-0 14 0 0 11 3
Oil 49 2 1 45 1
cml-10 24 0 0 24 0
Document-info-1.3 15 0 0 15 0
Docutils 89 3 0 86 0
DS-DevInf-V1-2 47 0 0 47 0
ebBPSS 28 1 0 27 0
Groupstats 14 0 0 14 0
Userstats 17 0 0 17 0
HDF5-File-1-2-2 48 0 0 39 9
Ibtwsh 37 1 0 36 0
karbon-1.3 10 0 0 10 0
Kdatabase-1.2 16 0 0 16 0
kformula-1.3 27 0 0 27 0
kontour-1.2 26 0 0 20 6
kpresenter-1.3 86 0 0 86 0
Sodaconstructor 11 0 0 11 0
TMML-1.0 8 0 0 8 0
videoCD 45 0 0 44 1
voTable 24 0 0 23 1
wddx-dtd-10 16 0 0 14 2
Xbn 28 0 0 28 0
xmlTV 40 0 0 40 0
zthes-05 15 0 0 15 0
Fo2000 56 1 0 52 3
SYNCML-METINF-1.1 17 0 0 17 0
DMDDFDTD-1.2 56 0 0 48 8
pap-2.1 18 0 0 17 1
tabletemplates-1.3 8 0 0 7 1
CDisc-11 85 0 0 84 1
Sun-domain-1.20 109 0 0 108 1
Oagis 617 161 18 422 16
Geophysical ML 444 0 1 414 29
LevelOne 31 0 0 29 2
Ecoknowmics 224 1 0 221 2
XML Schema 26 1 0 19 6
HP 59 0 0 59 0

APPENDIX B. COVERING DTDS 137

Table B.1: (continued)

DTD Number Non-covering Covering
Name of Rules Dup-free Dup Dup-free Dup
Meerkat 14 0 0 14 0
OSD 15 0 0 14 1
Opml 15 0 0 15 0
RSS-091 24 0 0 24 0
TV-Schedule 10 0 0 10 0
Xbel-1.0 9 0 0 9 0
PRI-PSD 56 0 0 56 0
Newspaper 7 0 0 7 0
DBLP 37 0 0 37 0
Music ML 12 3 0 9 0
XMark 77 1 0 75 1
Yahoo 32 0 0 32 0
Reed 16 0 0 16 0
NLM Medline 41 0 0 41 0
Sigmod Record 11 0 0 11 0
Ubid 32 0 0 32 0
Ebay 32 0 0 32 0
News ML 116 0 0 112 4
PSD 66 0 0 64 2
Mondial 3.1 23 0 0 23 0
321gone 32 0 0 32 0
kspread-1.3 36 0 0 35 1
kugartemplate-1.3 13 0 0 13 0
kword-1.3 79 0 0 76 3
oebdoc12 66 1 0 64 1
Request 6 0 0 5 1
Resume 106 0 0 97 9
Shoe-xml 17 1 0 16 0
RTML-2.1 39 0 0 37 2
Rfc2629 46 0 0 46 0

Total 5534 236 44 5053 201
Percentage 100% 4.3 0.8 91.3 3.6%

138

Appendix C

Well-formed DTDs

Table C.1: The classification of DTD rules

DTD Number Number
Name of Rules of well-formed Rules
ADL-Access-Report 19 18
Docbooks.dtd 360 332
XHTML1-Frameset 91 89
XHTML1-Strict 77 75
XHTML1-Transitional 89 87
E-Invoice 66 66
Hibernate-mapping-2.0 49 41
Imagelib 7 7
RecipeML 68 61
RSS-2.0 30 29
TieXLite 143 135
Tr9401 7 7
PFA 24 24
PropertyList 11 10
RDF 11 11
MathML 39 39
DSSSL 16 16
Web-app-2-3 77 74
XTM1 19 15
Olinksum 8 8
FAQ 28 26
Repository 25 24
soextblx 7 7
Iterim 11 11
FOT 83 83
FGDC-1.00 340 324
Arrest 38 38
Catalog 6 6

APPENDIX C. WELL-FORMED DTDS 139

Table C.1: (continued)

DTD Number Number
Name of Rules of well-formed Rules
ComicsML 31 31
web-facesconfig-1-1 80 76
Ag-1.1 9 9
springbeans 22 18
article-R.1.3.dtd 74 69
autoupdate-catalog-1-0 14 12
Oil 49 47
cml-10 24 24
Document-info-1.3 15 15
Docutils 89 89
DS-DevInf-V1-2 47 47
ebBPSS 28 28
Groupstats 14 14
Userstats 17 17
HDF5-File-1-2-2 48 44
Ibtwsh 37 37
karbon-1.3 10 10
Kdatabase-1.2 16 16
kformula-1.3 27 27
kontour-1.2 26 26
kpresenter-1.3 86 86
Sodaconstructor 11 11
TMML-1.0 8 8
videoCD 45 44
voTable 24 23
wddx-dtd-10 16 16
Xbn 28 28
xmlTV 40 40
zthes-05 15 15
Fo2000 56 54
SYNCML-METINF-1.1 17 17
DMDDFDTD-1.2 56 55
pap-2.1 18 18
tabletemplates-1.3 8 8
CDisc-11 85 85
Sun-domain-1.20 109 108
Oagis 404 364
Geophysical ML 444 418
LevelOne 31 29
Ecoknowmics 224 223
XML Schema 26 21
HP 59 59

140

Table C.1: (continued)

DTD Number Number
Name of Rules of well-formed Rules
Meerkat 14 14
OSD 15 15
Opml 15 15
RSS-091 24 24
TV-Schedule 10 10
Xbel-1.0 9 9
PRI-PSD 56 56
Newspaper 7 7
DBLP 37 37
Music ML 12 12
XMark 77 77
Yahoo 32 32
Reed 16 16
NLM Medline 41 41
Sigmod Record 11 11
Ubid 32 32
Ebay 32 32
News ML 116 112
PSD 66 65
Mondial 3.1 23 23
321gone 32 32
kspread-1.3 36 36
kugartemplate-1.3 13 13
kword-1.3 79 78
oebdoc12 66 64
Request 6 6
Resume 106 98
Shoe-xml 17 17
RTML-2.1 39 37
Rfc2629 46 46

Total 5321 4944
Percentage 100% 92.3%

141

References

[1] The OASIS cover pages: The online resource for markup language technologies. Available
at http://www.oasis-open.org/cover/schemas.html, 2003.

[2] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to Semistructured
Data and XML. Morgan Kaufmann, 2000.

[3] A. Aho, Y. Sagiv, and J. D. Ullman. Equivalence of relational expressions. SIAM J. Comput-
ing, 8(2):218–246, 1979.

[4] J. Albert. Algebraic properties of bag data types. In Proc. 17th Int. Conf. on Very Large Data
Bases, pages 211–219, 1991.

[5] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Srivastava. Tree pattern query mini-
mization. The VLDB Journal, 11(4):315–331, 2002.

[6] T. Amoth, P. Cull, and P. Tadepalli. Exact learning of unordered tree patterns from queries.
In Proc. of the twelfth conference on Computational Learning Theory, pages 323–332, 1999.

[7] M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs. J. ACM,
55(2):1–79, 2008.

[8] A. Berglund. Extensible Stylesheet Language (XSL), Version 1.1. Available at
http://www.w3.org/TR/xsl, December 2006.

[9] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, M. Kay, J. Robie, and J. Simeon.
XML path language (XPath) 2.0. Available at http://www.w3.org/TR/xpath20, January
2007.

[10] G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference of concise DTDs from XML
data. In Proc. 32th Int. Conf. on Very Large Data Bases, pages 115–126, 2006.

[11] G. J. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML schema: A practical study.
In Proc. Seventh Int. Workshop on the Web and Databases, pages 79–84, 2004.

[12] P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes Second Edition. Available at
http://www.w3.org/TR/xmlschema-2/, October 2004.

[13] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and J. Simeon. XQuery 1.0:
An XML query language. Available at http://www.w3.org/TR/xquery, January 2007.

[14] A. Bonifati, S. Ceri, and S. Paraboschi. Active rules for XML; a new paradigm for e-services.
The VLDB Journal, 10(1):39–47, 2001.

REFERENCES 142

[15] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Y. eds.
Extensible markup language (XML) 1.0 (fifth edition). Available at
http://www.w3.org/TR/2008/REC-xml-20081126/, November 2008.

[16] A. Bruggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge languages
over unranked alphabets. Technical Report HKUST-TCSC-2002-0, Hong-Kong University
of Science and Technology, April 2001.

[17] J. A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, October 1964.

[18] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Keys for XML. In Proc. 10th Int.
Conf. on the World Wide Web, pages 201–210, 2001.

[19] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query containment
under constraints. In Proc. Seventeenth ACM Symp. on Principles of Databases Systems,
pages 149–158, 1998.

[20] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. View-based query answering
and query containment over semi-structured data. In Proc. 8th Int. Workshop on Database
Programming Languages, pages 40–61, 2001.

[21] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in relational
databases. In Proc. of the 9th ACM symposium on Theory of Computing, pages 77–90, 1977.

[22] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Optimizing queries with
materialized views. In Proc. 11th Int. Conf. on Data Engineering, pages 190–200, 1995.

[23] S. Chaudhuri and M. Y. Vardi. Optimization of real conjunctive queries. In Proc. 12th ACM
Symp. on Principles of Databases Systems, pages 59–70, 1993.

[24] D. Chen and C. Y. Chan. Minimisation of tree pattern queries with constraints. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 609–622, 2008.

[25] Z. Chen, H. Jagadish, L. Lakshmanan, and S. Paparizos. From tree patterns to generalized
tree patterns: on efficient evaluation of XQuery. In 29th International Conference on Very
Large Data Bases, pages 237–248, 2003.

[26] B. Choi. What are real DTDs like? In Proc. Fifth Int. Workshop on the Web and Databases,
pages 43–48, 2002.

[27] J. Clark. XML path language (XPath), version 1.0. Available at
http://www.w3.org/TR/xpath, November 1999.

[28] J. Clark. XSL Transformations (XSLT), Version 1.0. Available at
http://www.w3.org/TR/xslt, November 1999.

[29] J. Clark. TREX - Tree Regular Expressions for XML., 2001. Available at
http://www.thaiopensource.com/trex.

[30] J. Clark and M. Makoto. Relax-NG Tutorial, March 2003. Available at
www.oasis-open.org/committees/relax-ng/tutorial.html.

REFERENCES 143

[31] B. Den Cate and C. Lutz. The complexity of query containment in expressive fragments of
XPath 2.0. In Proc. Twenty-sixth ACM Symp. on Principles of database systems, pages 73–82,
2007.

[32] S. DeRose, R. Daniel, P. Grosso, E. Maler, J. Marsh, and N. Walsh. XML Pointer Language
(XPointer), Version 1.0. Available at http://www.w3.org/TR/xptr, August 2002. W3C
Working Draft.

[33] A. Deutsch and V. Tannen. Containment and integrity constraints for XPath fragments. In
Proc. 8th Int. Workshop on Knowledge Representation Meets Databases, 2001.

[34] A. Deutsch and V. Tannen. XML queries and constraints, containment and reformulation.
Theoretical Comput. Sci., 336(1):57–87, 2005.

[35] B. Ducharme. Filling in the DTD gaps with Schematron. Available at:
http://www.xml.com/lpt/a/968, 2002.

[36] D. C. Fallside and P. Walmsley. XML Schema Part 0: Primer. Available at
http://www.w3.org/TR/xmlschema-0, October 2004.

[37] S. Flesca, F. Furfaro, and E. Masciari. On the minimization of XPath queries. J. ACM,
55(1):2, 2008.

[38] D. Florescu, A. Y. Levy, and D. Suciu. Query containment for conjunctive queries with
regular expressions. In Proc. Seventeenth ACM Symp. on Principles of Databases Systems,
pages 139–148. ACM Press, 1998.

[39] D. Florescu, L. Rashid, and P. Valduriez. Answering queries using OQL view expressions. In
Workshop on Materialised Views in conjunction with ACM SIGMOD, pages 84–90, 1996.

[40] M. Friedman and D. Weld. Efficient execution of information gathering plans. In Int. Joint
Conf. on Artificial Intelligence, pages 785–791, 1997.

[41] F. Geerts and W. Fan. Satisfiability of XPath queries with sibling axes. In Proc. 10th Int.
Workshop on Database Programming Languages, pages 122–137, 2005.

[42] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu. Processing XML streams with
deterministic automata and stream indexes. ACM Trans. on Database Syst., 29(4):752–788,
December 2004.

[43] J. Groppe and S. Groppe. Filtering unsatisfiable XPath queries. Data and Knowledge Engi-
neering, 64(1):134–169, 2008.

[44] A. Gupta, Y. Sagiv, J. D. Ullman, and J. Widom. Constraint checking with partial information.
In Proc. 13th ACM Symp. on Principles of Databases Systems, pages 45–55, 1994.

[45] J. Hidders. Satisfiability of XPath expressions. In Proc. 9th Int. Workshop on Database
Programming Languages, pages 21–36, 2003.

[46] Y. Ishihara, T. Morimoto, S. Shimizu, K. Hashimoto, and T. Fujiwara. A tractable subclass
of DTDs for XPath satisfiability with sibling axes. In Proc. 14th Int. Workshop on Database
Programming Languages, pages 68–83, 2009.

REFERENCES 144

[47] H. Ishikawa and M. Ohata. An active web-based distributed database system for e-commerce.
In Proc. First Int. Workshop on Web Dynamics, page 27, 2001.

[48] R. Jelliffe. The current state of the art of schema languages for XML. In Presentation at XML
Asia Pacific Conference, 2001.

[49] R. Jelliffe. The Schematron assertion language 1.6, October 2002. Available at
http://xml.ascc.net/resource/schematron/Schematron2000.html.

[50] D. S. Johnson and A. C. Klug. Testing containment of conjunctive queries under functional
and inclusion dependencies. Journal of Computer and System Sciences, 28(1):167–189, 1984.

[51] A. C. Klug. On conjunctive queries containing inequalities. J. ACM, 35(1):146–160, 1988.

[52] L. Lakshmanan, G. Ramesh, H. Wang, and Z. Zhao. On testing satisfiability of tree pattern
queries. In Proc. 30th Int. Conf. on Very Large Data Bases, pages 120–131, 2004.

[53] L. Lakshmanan, H. Wang, and Z. Zhao. Answering tree pattern queries using views. In Proc.
32th Int. Conf. on Very Large Data Bases, pages 571–582, 2006.

[54] D. Lee and W. W. Chu. Comparative analysis of six XML schema languages. SIGMOD
RECORD, 29(3):76–87, September 2000.

[55] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering queries using views.
In Proc. Fourteenth ACM Symp. on Principles of Databases Systems, pages 95–104, 1995.

[56] A. Y. Levy, A. Rajaraman, and J. Ordille. Query heterogeneous information sources using
source descriptions. In Proc. 22th Int. Conf. on Very Large Data Bases, pages 251–262, 1996.

[57] A. Y. Levy and Y. Sagiv. Queries independent of updates. In Proc. 19th Int. Conf. on Very
Large Data Bases, pages 171–181, 1993.

[58] A. Y. Levy and D. Suciu. Deciding containment for queries with complex objects and ag-
gregations. In Proc. Sixteenth ACM Symp. on Principles of Databases Systems, pages 20–31,
1997.

[59] J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Programming. MIT
Press, 1992.

[60] D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.

[61] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications of data dependencies. ACM
Trans. on Database Syst., 4(4):455–469, September 1979.

[62] M. Makoto. RELAX (REgular LAnguage description for XML), 2000. Available at
http://www.xml.gr.jp/relax.

[63] W. Martens, F. Neven, and G. J. Bex. Expressiveness and complexity of XML schema. ACM
Trans. on Database Syst., 31(3):770–813, September 2006.

[64] M. Marx. XPath with conditional axis relations. In Proc. 9th Int. Conf. on Extending Database
Technology, pages 477–494, 2004.

REFERENCES 145

[65] G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath. J. ACM,
51(1):2–45, January 2004.

[66] T. Milo and D. Suciu. Index structure for path expressions. In Proc. 7th Int. Conf. on Database
Theory, pages 277–295, 1999.

[67] M. Montazerian and P. T. Wood. Chasing one’s tail: XPath containment under cyclic DTDs.
In Proc. 15th Int. Workshop on Database Programming Languages, 2011.

[68] M. Montazerian, P. T. Wood, and S. R. Mousavi. XPath query satisfiability is in PTIME for
real-world DTDs. In Proc. 5th Int. XML Database Symposium, pages 17–30, 2007.

[69] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML schema languages
using formal language theory. ACM Trans. on Internet Tech., 5(4):1–45, 2005.

[70] A. Nakhimovsky and T. Myers. XML Programming: Web Applications and Web Services
with JSP and ASP. Apress, 2002.

[71] F. Neven and T. Schwentick. On the complexity of XPath containment in the presence of
disjunction, DTDs, and variables. ACM Trans. on Database Syst., 31(3):770–813, 2006.

[72] S. Pal, I. Cseri, O. Seeliger, M. Rys, G. Schaller, W. Yu, D. Tomic, A. Baras, B. Berg,
D. Churin, and E. Kogan. XQuery implementation in a relational database system. In Proc.
31th Int. Conf. on Very Large Data Bases, pages 1175–1186, 2005.

[73] Y. Papakonstantinou and V. Vianu. DTD inference for views of XML data. In Proc. Nine-
teenth ACM Symp. on Principles of Databases Systems, pages 35–46, 2000.

[74] P. Ramanan. Efficient algorithms for minimizing tree pattern queries. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 299–309, 2002.

[75] E. Robertsson. Combining Schematron with other XML schema languages, 2002. Available
at http://www.topologi.com/public/Schtrn XSD/Paper.html.

[76] K. H. Rosen. Discrete Mathematics and its Applications. McGraw-Hill, 2007.

[77] Y. Sagiv and M. Yannakakis. Equivalence among relational expressions with the union and
difference operators. J. ACM, 27(4):633–655, 1981.

[78] T. Schwentick. XPath query containment. SIGMOD RECORD, 33(1):101–109, 2004.

[79] B. Simon. Smart space for learning; a mediation infrastructure for learning services. In
Proceedings of the Twelfth International Conference on World Wide Web, pages 20–24, 2003.

[80] L. J. Stockmeyer and A. Meyer. Word problems requiring exponential time. In Proc. of the
5th ACM symposium on Theory of Computing, pages 1–9, 1973.

[81] N. Suzuki and Y. Fukushima. Satisfiability of simple XPath fragments in the presence of
DTDs. In Proceedings of the Eleventh International Workshop on Web Information and Data
Management, pages 15–22, 2009.

[82] H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema
Definition Language (XSD)- Part I: Structures, June 2008. Available at
http://www.w3.org/TR/xmlschema11-1.

REFERENCES 146

[83] E. van der Vlist. ISO DSDL overview. Available at
http://www.idealliance.org/papers/dx-xml03/papers /04-03-03
/04-03-03.html, 2003.

[84] P. Wadler. A formal semantics of patterns in XSLT. In Markup Technologies, pages 183–202,
1999.

[85] N. Walsh and J. Cowan. Schema language comparison. Available at
http://nwalsh.com/xml2001/schematownhall/slides/, December 2001.

[86] J. Wang and X. Yu. Chasing tree pattern under recursive DTDs. In Database Systems for
Advanced Applications, pages 250–261, 2010.

[87] F. Wei and G. Lausen. Conjunctive query containment in the presence of disjunctive integrity
constraints. In Computer Science in Perspective, pages 231–244, 2003.

[88] P. T. Wood. Optimizing web queries using document type definitions. In Proc. 2nd Int.
Workshop on Web Information and Data Management, pages 28–32, 1999.

[89] P. T. Wood. On the equivalence of XML patterns. In Proc. 1st Int. Conf. on Computational
Logic, pages 1152–1166, 2000.

[90] P. T. Wood. Rewriting XQL queries on XML repositories. In Proc. 17th British National
Conf. on Databases, pages 209–226, 2000.

[91] P. T. Wood. Minimising simple XPath expressions. In Proc. Fourth Int. Workshop on the Web
and Databases, pages 13–18, 2001.

[92] P. T. Wood. Containment for XPath fragments under DTD constraints. In Proc. 9th Int. Conf.
on Database Theory, pages 300–314, 2003.

[93] M. Yannakakis. Algorithms for acyclic database schemes. In Proc. 7th Int. Conf. on Very
Large Data Bases, pages 82–94, 1981.

[94] X. Zhang and Z. M. Ozsoyoglu. Implication and referential constraints: A new formal rea-
soning. IEEE Trans. on Knowledge and Data Eng., 9(6):894–910, 1997.

