
Pattern Matching and Detection in

Extremely Resource Constrained

Wireless Sensor Networks

Michael Zoumboulakis

May 2011

A Dissertation Submitted to

Birkbeck College, University of London

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

School of Computer Science & Information Systems

Birkbeck College

University of London

Declaration

This thesis is the result of my own work, except where explicitly acknowledged

in the text.

Michael Zoumboulakis

May 8, 2011

Abstract

This thesis investigates the problem of pattern matching and detection in ex-

tremely resource constrained Wireless Sensor Networks (WSNs). Specifically, it

introduces a collection of in-network methods and algorithms which exploit the

observation that processing data inside the network, instead of transmitting it off-

network, offers a distinct advantage for sensor node longevity through reduction

of network communication.

Operating on windowed sensor observations, we develop temporal domain

algorithms that apply symbolic conversion and examine the resulting strings

for interesting or unusual patterns with a choice of exact, approximate, non-

parametric, probabilistic and multiple pattern matching and detection methods.

Precise implementation of the algorithms with integer-only arithmetic, results

into a computationally efficient execution profile and modest RAM requirements.

Furthermore, we develop a spatial pattern event location estimation algorithm

that combines a geometric method with the application of the Kalman filter to

iteratively compute an estimate of the pattern event source location and intensity.

This algorithm is decentralised and operates by tasking WSN nodes to collaborate

by exchanging information with local neighbours in order to improve estimate

accuracy with respect to location and intensity of the spatial pattern event source.

We provide evidence that the proposed algorithms are competitive against

alternative methods and validate their operational performance through deploy-

ment on WSN nodes and simulations. Overall, we find the proposed algorithms

support reactive behaviour in the case of WSNs and align well with the generic

goal of preserving resources.

3

To my parents

4

Acknowledgements

I owe my deepest gratitude to my supervisor Dr. George Roussos whose en-

couragement, guidance and support enabled me to gain a deep understanding

of Wireless Sensor Networks and Ubiquitous Computing. I am also indebted

to my second supervisor Prof. Alexandra Poulovassilis for steering my research

and providing valuable feedback. Dr. Eleftheria Katsiri deserves special thanks

and credit for the idea of an efficient Integer-only Complex Event Detection im-

plementation. I am grateful to Prof. Eamonn Keogh for patiently answering

questions about Symbolic Aggregate Approximation and providing relevant test

data. I would like to extend my gratitude to Dr. Nigel Martin who provided the

valuable support for this research.

On a personal level, my warmest thanks go to my parents and my two sisters

whose unconditional love and support made this thesis possible. I am grateful

to my Knowledge Lab colleagues Dimitrios Airantzis, Lucas Zamboulis, Rajesh

Pampapathi and Jenson Taylor for their help and friendship. Marco Luchini

deserves special thanks for financing part of my research in return for (sometimes

frightening) work on critical systems. Finally, I am indebted to my friends Vassili,

Vasso, Michael, Jack and Helge for their friendship and support throughout the

process.

5

Contents

Abstract 3

Acknowledgements 5

1 Introduction 14

1.1 Overview and Motivation . 14

1.1.1 WSN Constraints and Challenges 15

1.1.2 Definitions . 17

1.2 Research Methodology . 18

1.2.1 Requirements and Research Questions 18

1.2.2 Research Methods . 19

1.3 Contributions . 20

1.4 Assumptions and Limitations . 21

1.5 Outline of the Thesis . 22

2 Pattern Matching and Detection in WSNs and Sensor Data 23

2.1 Environmental Monitoring . 24

2.2 Data Centre and Structural Monitoring 25

2.3 Body Sensor Networks and Context Aware Systems 26

2.4 Network Monitoring and Security 28

2.5 Spacecraft and Telemetry Pattern Classification 30

2.6 Spatial Pattern Location Estimation 30

2.7 Generic Approaches and Additional Applications 32

2.8 Summary . 34

6

3 Pattern Matching and Detection in the Temporal Domain 37

3.1 The Basis for Pattern Matching and Detection 37

3.1.1 Advantages of Symbolic Transformation 38

3.1.2 An Overview of Symbolic Aggregate Approximation 40

3.1.3 Assessing Pattern Similarity and Probability 42

3.2 Exact and Approximate Pattern Matching 43

3.3 Multiple Pattern Matching . 44

3.4 Non-Parametric Pattern Detection 46

3.5 Probabilistic Pattern Detection 46

3.6 Summary . 48

4 Temporal Algorithms: Evaluation through Emulation 50

4.1 Methodology and Experimental Setup 50

4.2 Case Study 1: Indoor Deployment 52

4.2.1 Evaluation of Exact and Approximate Matching 52

4.3 Case Study 2: Seismic and Acoustic Data 58

4.3.1 Evaluation of Non-Parametric Pattern Detection 58

4.3.2 The Effect of Measurement Noise to NPPD 64

4.4 Case Study 3: Physiological Data 66

4.4.1 Evaluation of NPPD and PPD 67

4.5 Summary of Findings . 72

5 Temporal Algorithms: Evaluation through Deployment 73

5.1 Execution Profile of Temporal Domain Algorithms 73

5.1.1 Refactoring of Pattern Matching and Detection Algorithms 74

5.2 Dynamic Sampling Frequency Management (DSFM) Algorithm . 81

5.2.1 Data Centre WSN Deployment 83

5.3 Integration with Publish/Subscribe 90

5.4 Observations from Further Deployments 91

5.5 Summary of Findings . 92

7

6 Pattern Location Estimation in the Spatial Domain 94

6.1 The Location Estimation Problem 94

6.2 Kalman Filter Properties . 95

6.3 Spatial Pattern Location Estimation (SPLE) Algorithm 98

6.4 Summary . 103

7 Spatial Algorithm: Evaluation through Simulation 104

7.1 Methodology and Simulation Set-up 104

7.1.1 Maximum Selection Algorithm 105

7.1.2 Dispersion Model . 105

7.1.3 Kalman Filter Initial Parameters 106

7.1.4 Topology Generation . 107

7.2 Evaluation of Spatial Pattern Location Estimation 108

7.2.1 Metrics . 108

7.2.2 Grid Topology . 108

7.2.3 Random Topology . 110

7.3 Summary of Findings . 114

8 Conclusions and Future Work 118

8.1 Summary of the Thesis . 118

8.2 Summary of Contributions . 121

8.3 Critical Appraisal . 122

8.4 Directions for Future Research . 122

Bibliography 129

A Publications 147

B Example of Multiple Pattern Matching 149

C Software Development Timing Model 152

D Maximum Selection Spatial Location Algorithm 154

8

List of Figures

1.1 Typical WSN nodes: TMote Sky and TI ez430-rf2500 16

1.2 Power draw of a TMote Sky . 17

3.1 Scale-independent pattern matching example 39

3.2 Symbolic conversion example . 41

4.1 Emulating data acquisition in MATLAB 51

4.2 Case study 1: APM example . 57

4.3 Case study 2: NPPD example . 62

4.4 Case study 2: NPPD compared to EWMA 63

4.4 Case study 2: NPPD compared to RSAM 64

4.5 Case study 2: Impact of signal noise to NPPD 66

4.6 Case study 3: NPPD example on ECG data 70

4.7 Case study 3: PPD example on EMG data 71

5.1 APM/EPM Runtime comparison 79

5.2 Runtime comparison of MPM and Linear Search. 80

5.3 Node locations from data centre deployment 85

5.4 DC deployment: detected patterns 89

6.1 The Kalman filter loop . 96

6.2 Estimate propagation example . 101

6.3 Example of the SPLE geometric computation 102

7.1 Dispersion plume and concentration intensities 110

9

7.2 Geometric computation example (a) 115

7.2 Geometric computation example (b) 116

7.2 Geometric computation example (c) 117

10

List of Tables

2.1 Comparison of alternative event detection methods 35

2.1 Comparison of alternative event detection methods (cont’d) . . . 36

3.1 Sample distance lookup table for 10-letter alphabet 42

4.1 Mean number of false positives for APM Algorithm 55

4.2 Mean number of false positives for EPM Algorithm 56

4.3 NPPD performance compared to EWMA and RSAM 61

4.4 The effect of noise to NPPD performance 65

4.5 Detection latency on ECG data 69

5.1 Floating Point runtime for EPM and APM Algorithms 77

5.2 Integer-only runtime for EPM and APM Algorithms 78

5.3 Integer-only runtime for NPPD Algorithm 79

5.4 Runtime comparison of MPM and Linear Search 80

5.5 Detection summary from data centre deployment 88

7.1 Parameter values for gas dispersion model 106

7.2 Kalman filter initial parameters 107

7.3 SPLE performance (4,900-node WSN, grid placement) 111

7.4 SPLE performance (1,024-node WSN, grid placement) 112

7.5 SPLE performance (5,000-node WSN, random placement) 113

7.6 SPLE performance (1,000-node WSN, random placement) 113

A.1 Publications related to this thesis 148

11

B.1 Outline of merging and pruning of the array structures 150

B.2 Example of Binary Search over a (Pruned) Suffix Array 151

C.1 A timing model as a WSN development guide 153

12

List of Algorithms

3.1 Exact Pattern Matching (EPM) Algorithm 44

3.2 Approximate Pattern Matching (APM) Algorithm 45

3.3 Multiple Pattern Matching (MPM) Algorithm 46

3.4 Non-Parametric Pattern Detection (NPPD) Algorithm 47

3.5 Probabilistic Pattern Detection (PPD) Algorithm 48

5.1 Dynamic Sampling Frequency Management (DSFM) Algorithm . 82

6.1 Spatial Pattern Location Estimation (SPLE) Algorithm 99

D.1 Maximum Location Estimation Algorithm 155

13

Chapter 1

Introduction

In this thesis, we introduce methods and algorithms that provide pattern match-

ing and detection functionality in Wireless Sensor Networks (WSNs). The context

for this work is set by reactive applications which have to respond to interesting

or unusual changes in the underlying monitored process, phenomenon or struc-

ture. This chapter provides an outline of the problem together with the research

framework and the contributions of the proposed solution.

Section 1.1 offers a brief overview and motivation for the selected problem and

specifically presents characteristics and constraining factors of WSNs. Section 1.2

identifies requirements and research questions and outlines methods employed in

addressing those questions. Section 1.3 presents contributions made in this thesis,

Section 1.4 states the assumptions and limitations of the proposed solution and

Section 1.5 outlines the structure of the thesis.

1.1 Overview and Motivation

Wireless Sensor Networks (WSNs) are often deployed for the purpose of detecting

significant events or anomalies in the monitored phenomenon, process or structure

(henceforth, monitored object) [BPC+07, AK04, ASSC02]. Such reactive systems

typically collect and process sensor observations to programmatically classify the

real world state of the monitored object into one or more classes and take the

14

1. Introduction 15

necessary actions accordingly. For example, in a structural health monitoring sys-

tem, a building is monitored for structural faults by comparing a seismic response

signal to known stress patterns.

Matching or detecting patterns in sensor observations is a common require-

ment in a number of domains (reviewed in Chapter 2) yet the problem of com-

putationally efficient approaches has attracted less attention in comparison with

research in network layer protocols. Moreover, solutions are often based on trans-

mitting observations outside the network or to a tier of high capability devices

for processing.

In this thesis, we assume a homogeneous WSN comprised of resource lim-

ited devices (henceforth, nodes) and we attempt to solve the problem of pattern

matching and detection inside the network. Apart from the ubiquity of the prob-

lem, we are motivated by the benefit of an in-network solution, namely prolonged

lifetime resulting from reduction of radio communication [MGH09, ZG09, TE07,

CES04, GKW+02].

1.1.1 WSN Constraints and Challenges

We target the extremely resource constrained end of the Wireless Sensor Network

(WSN) spectrum that comprises nodes such as those shown in Figure 1.1. The

constraining factors that differentiate such nodes from other distributed systems

are:

(i) Limited power resources. Typically, nodes are powered by batteries which

limit their useful lifetime and specify an energy budget that, in most ap-

plications, must be extended as much as possible. Radio communication,

sensing and processing share this budget and pose a challenge to developers

who must serve the application’s purpose and, at the same time, maximise

node lifetime.

(ii) Restricted functionality. Embedded microcontrollers (MCUs), limited RAM

and — in the vast majority of cases — lack of Floating Point Units (FPUs)

1. Introduction 16

Figure 1.1: Extremely resource constrained WSN nodes: the TelosB / TMote Sky
(left) and the newer ez430-rf2500 (middle). The former features 10KB RAM and
48KB Flash on a 8MHz MCU with active draw 300µA while the latter features
1KB RAM and 32KB Flash on a 16MHz MCU with respective draw of 270µA.

set a limit on the complexity of computations that can be executed on

nodes. Algorithms with complex state and long running computations are

not suitable for this execution environment [ZG09, PLPG06] since they can

consume the nodes’ limited resources and shorten their useful lifetime.

(iii) Costly radio communication and limited bandwidth. The fabric that inter-

connects nodes in a WSN is also the most expensive component with respect

to power draw; typical consumption is shown in Figure 1.2. Minimising

the amount and range of communications, can prolong the lifetime of a

WSN [WDWS10, FCG10, ZG09, GJV+05, Kri05, AY05, SMP+04, HHM03,

ASSC02, PK00]. As a rule of thumb, a bit of data transmitted by radio can

cost as much as executing 1, 000 MCU instructions [MFHH03].

1. Introduction 17

Figure 1.2: Per-component power-draw of a TMote Sky WSN node [Ins06]. Note
the high cost of radio communication in relation to the cost of MCU.

 0

 5

 10

 15

 20

 25

MCU Radio Tx Radio Rx Flash READ Flash WRITE

P
ow

er
 D

ra
w

 (
m

A
)

Further to the above constraints, WSN application designers are challenged

by limited support for software development and a tight coupling between appli-

cation and system layers [ZG09].

1.1.2 Definitions

We define a pattern as an ordered list of sensor observations revealing interest-

ing or unusual activity in the monitored object. We use the term pattern as a

synonym to event or pattern event. We define spatial patterns as patterns with

position and direction in physical space.

We use pattern matching to refer to the problem of finding occurrences of one

or more user-submitted template patterns in the stream of sensor observations.

Similarly, we use pattern detection to refer to the problem of discovering sustained

changes or local anomalies [Han02] in the stream of sensor observations after an

unsupervised learning period. We define a sustained change as one that manifests

in more than two sensor observations [MPL+07] within a time interval (window).

1. Introduction 18

1.2 Research Methodology

We propose pattern matching and detection algorithms and conduct experimental

evaluation to assess their accuracy and operational profile. Evaluation through

deployment demonstrates suitability of our algorithms for the target platform.

Evaluation through simulation investigates the performance of the proposed al-

gorithms under varying parameters and compares their pattern matching and

detection accuracy against competitive techniques.

The following sections state the goals of this thesis and discuss methods em-

ployed in addressing the research questions.

1.2.1 Requirements and Research Questions

We identify the following requirements for a solution that addresses the problem

of in-network pattern matching and detection:

(i) It should cater for a variety of usage scenarios such as matching user submit-

ted template patterns and also detecting unusual patterns without relying

on prior user information.

(ii) It should reduce network communication for pattern matching and detec-

tion, and only engage in localised communication when required.

(iii) It should execute efficiently on extremely resource constrained WSN nodes.

(iv) It should be compatible with existing WSN paradigms and not require

change of underlying communication protocols to accommodate pattern

matching and detection functionality.

(v) It should accommodate WSN applications with different sampling frequency

requirements performing pattern matching and detection in a timely man-

ner, as close to real time as possible.

The thesis addresses the following questions:

1. Introduction 19

(R1.) Is there a class of algorithms that make in-network pattern matching and

detection feasible for extremely resource constrained nodes?

(R2.) How is the algorithms’ matching/detection performance affected by differ-

ent choice of algorithm parameters?

(R3.) Is this class of algorithms a viable alternative in comparison to other event

detection methods?

(R4.) Are the requirements, as stated above, satisfied by such pattern matching

and detection algorithms?

Question R1 is addressed with the algorithms of Chapter 3 and answered

through deployment in Section 5.1. Question R2 is answered initially through

emulation (Section 4.2) and findings are validated through deployment (Sec-

tion 5.2.1). Question R3 is answered through emulating sensor node streaming

data acquisition in software, and specifically by comparing the temporal domain

pattern detection algorithm against two competitive techniques (Section 4.3.1).

Lastly, R4 is answered with the algorithms of Chapters 3 and 6 which are evalu-

ated with a combination of deployment and simulation.

1.2.2 Research Methods

After reviewing literature related to the problem of pattern matching and detec-

tion, evaluation of the proposed solution was conducted through implementation

and deployment on WSN nodes to assess suitability for the extremely resource

constrained execution environment and compatibility with existing WSN com-

munication protocols.

Simulation experiments were conducted to evaluate the performance of the

algorithms with respect to the rate of true and false positives in the temporal

domain, and pattern event location estimation accuracy in the spatial domain.

Data and tools used in evaluation of the proposed algorithms are widely avail-

able, and our experimental setup is described — Sections 4.1, 5.1 and 7.1 — to

encourage peer review of our findings from the WSN community. The software

1. Introduction 20

developed in this thesis is used by fellow researchers and is publicly available

together with data collected from our deployments to encourage reproducibility

of experiments.

1.3 Contributions

The work described in this thesis makes contributions that address the WSN

application issue of pattern matching and detection, and offers a computation-

ally efficient implementation of reactive functionality. Moreover, it limits radio

communication and MCU active time in order to complement the generic goal of

prolonged WSN lifetime. Specifically, we make the following contributions:

(i) Develop temporal domain in-network pattern matching and detection al-

gorithms that reduce network communication. Described in Chapter 3,

the algorithms cater for exact, approximate, multiple, non-parametric and

probabilistic pattern matching and detection.

(ii) Provide evidence that the proposed algorithms produce consistently good

results in three case studies (Chapter 4) with respect to matching/detection

accuracy. The case studies evaluate different aspects of the algorithms such

as the impact of different parameters to false positives and accuracy in

comparison with other event detection techniques.

(iii) Demonstrate that the algorithms are suitable for extremely resource con-

strained nodes by integer arithmetic refactoring and deployment (Chapter

5). Suitability is further demonstrated by incorporating dynamic sampling

frequency adjustments to reduce MCU active time, and integrate the pro-

posed algorithms with a Publish/Subscribe (Pub/Sub) interface that em-

ploys standard TinyOS communication protocols.

(iv) Introduce an iterative algorithm, based on a geometric computation and

a Kalman filter (Chapter 6), that engages in localised communication to

1. Introduction 21

estimate the location of a spatial event inside the network in a collaborative

manner.

(v) Evaluate the estimation performance of the spatial algorithm and, in par-

ticular, investigate the impact of WSN topology and node placement to the

estimation performance in comparison with a competitive approach (Chap-

ter 7).

We believe that the above contributions provide a competitive pattern match-

ing and detection family of algorithms that can be used in a variety of reactive

WSN applications.

1.4 Assumptions and Limitations

The work proposed in this thesis makes the following assumptions:

• Homogeneous network comprised of extremely resource constrained nodes

with characteristics outlined in Section 1.1.1.

• For location estimation, the single pollutant source and WSN nodes are

stationary. The nodes are aware of their location coordinates which are

accurate and error-free.

The first assumption means that the proposed algorithms are not dependent on

a base station, high capability nodes or centralised coordination.

We recognise the following limitations with respect to the proposed algo-

rithms:

• They do not cater for cross correlated matching and detection of patterns

in multiple dimensions (sensed modalities).

• They operate on windowed observations and are not designed to detect

outliers or single data point events.

• They do not provide historic pattern matching and detection for past events

since nodes, by default, do not store sensor observations.

1. Introduction 22

• They do not take into account dynamic metadata that can change the

interpretation of observations and consequently the outcome of matching

and detection.

• The spatial domain algorithm cannot, in its present form, cater for multiple,

mobile sources and dynamic environmental conditions.

A subset of the above limitations is addressed in directions for future work ex-

plored in Section 8.4.

1.5 Outline of the Thesis

Chapter 2 offers a literature review of event detection and pattern classification

methods for WSNs and sensor data. Temporal pattern matching and detec-

tion algorithms are introduced in Chapter 3 and evaluation through emulation

is conducted in Chapter 4. The latter work can be divided in two categories:

investigation of the effect of algorithm parameter selection to pattern matching

and detection and comparison against competitive methods. Chapter 5 describes

the practical work undertaken for the evaluation of the temporal domain algo-

rithms through full implementation and deployment. Specifically, it presents

the refactoring of our algorithms and associated timing measurements obtained

from WSN nodes that demonstrate suitability for extremely resource constrained

nodes. Furthermore, it presents the dynamic sampling frequency extension to

non-parametric pattern detection, and discusses field validation through a data

centre deployment. Chapter 6 introduces the spatial domain algorithm that tar-

gets location estimation of a pollutant-emitting source and Chapter 7 presents

related findings obtained from simulation experiments that include a comparison

to a competitive maximum selection algorithm. Finally, the thesis concludes in

Chapter 8 with a critical appraisal and a detailed plan for future work.

Chapter 2

Pattern Matching and Detection

in WSNs and Sensor Data

Pattern matching and detection can be addressed with a variety of techniques

such as clustering, density estimation, probabilistic matching, Kalman filtering,

expert systems and string matching. In this chapter, we review techniques that

target WSNs or sensor data and present approaches categorised per application

domain.

Techniques for event detection in environmental monitoring applications are

reviewed in Section 2.1, and Section 2.2 presents approaches for data centre and

structural health monitoring. Section 2.3 reviews pattern matching and detection

in body sensor networks and context aware computing. Network monitoring

and security applications are reviewed in Section 2.4. Approaches for pattern

matching and detection in spacecraft image and telemetry data are discussed

in Section 2.5. Spatial pattern location estimation approaches are reviewed in

Section 2.6 and generic approaches are presented in Section 2.7. Finally, we

summarise our findings in Section 2.8.

23

2. Pattern Matching and Detection in WSNs and Sensor Data 24

2.1 Environmental Monitoring

Lance [WADHW08] addresses resource prioritisation and bandwidth allocation

in WSNs. It is a volcano monitoring application where an unusual pattern is

a signal segment denoting activity that may lead to an eruption. Lance caters

for correlated pattern event detection and it employs an Exponentially Weighted

Moving Average (EWMA) method to detect patterns that trigger data upload to

a base station. In Section 4.3, we conduct a comparison between the proposed

Non-Parametric Pattern Detection algorithm and EWMA with data from the

deployment of Lance.

The approach described in [BRR08] presents a model-based system that aims

to detect and predict river flood pattern events in developing countries. The

suggested model is based on statistical methods such as linear regression. This

approach assumes a tiered architecture where resource-constrained sensor nodes

transmit summaries and statistics of raw observations to a set of high capability

computation nodes. The latter determine data correctness, feed it to the model

for event detection/prediction and possibly request additional data from sensors

to reduce uncertainty. PRESTO [DGL+05] is another tiered system based on

an ARIMA (Auto Regressive Integrated Moving Average) forecasting model that

detects unusual patterns by comparing predicted values to sensor observations.

The work described in [KSW+08] employs the symbolic conversion algorithm

SAX [LKLC03], also used by temporal domain algorithms proposed in this thesis,

to obtain a discretised version of Electrical Penetration Graph (EPG) data relat-

ing to the behaviour of insects. Specifically, the authors developed a constant-time

version of the Time Series Bitmap (TSB) [KLK+05] algorithm that can be used on

constrained devices for real-time EPG classification. Their aim is to improve un-

supervised classification of insects’ lifecycle data in experimental conditions. The

work does not provide implementation details but a deployment is mentioned in

their future plans.

The approach described in [BHL07] presents a distributed algorithm for de-

tecting ecological anomalies as well as estimating erroneous or missing data. The

2. Pattern Matching and Detection in WSNs and Sensor Data 25

proposed method performs automatic inference and prediction based on statisti-

cal distributions of differences in observations between a node and its neighbours.

Nodes compute the distribution of differences to perform a p-test that determines

the likelihood of an observation exceeding a significance level. One drawback of

this approach is the radio communication overhead required to compute the dis-

tribution of spatial differences.

2.2 Data Centre and Structural Monitoring

Research described in [PMSR09] proposes a temporal data mining solution to

optimise the performance of data centre chillers. Sensor nodes deployed in data

centres observe temperature and humidity data that varies according to the load

of individual servers, storage and networking equipment. This system illustrates

the operation a Wireless Sensor Actuator Network (WSAN): depending on ob-

served patterns, a decision must be made to turn on/off chillers, select a utili-

sation range and react to cooling demands. The authors focus on motif mining,

which is the identification of frequently occurring temporal patterns. First, a

string representation of the sensor observations is generated with the symbolic

aggregate approximation (SAX) [LKLC03] algorithm. A Run-Length Encoding

(RLE) of the symbolic sequence records transitions from one symbol to another.

Frequent episode mining is conducted over the sequence of transitions to identify

the underlying efficiency profile of the data centre under different environmental

circumstances.

The work described in [XLCL06] employs contour map matching to determine

whether a user-supplied pattern matches sensor produced observations. The ap-

plication scenario is event detection in coal mines, monitoring gas, dust and water

leakage events as well as high/low oxygen density regions. A limitation is that

it assumes users capable of describing the pattern of interest as distributions of

an attribute over space and variations of this distribution over time. A related

approach [LLC07], targeting gas leakage events in mines, tasks nodes to construct

3-dimensional gradient data maps which are transmitted to a sink and compared

2. Pattern Matching and Detection in WSNs and Sensor Data 26

to predefined patterns.

Wisden [XRC+04] is a system that employs a wavelet integer lifting transform

to detect patterns in structural health monitoring applications. It uses wavelet

compression to store vibration data locally and transmits a lossy version to the

base station. Its pattern detection component operates as follows: if samples

within a window are comparable in value and of low magnitude then the structure

is perceived to be in a quiescent state. Such windows are considered normal

and compressed using RLE, in contrast to pattern events which are transmitted

uncompressed. One strength of this approach is that the computational efficiency

of the event detection mechanism is verified through deployment.

The system presented in [LKQ+03], aims to detect patterns in order to di-

agnose potential damages that could affect the integrity of filament wound com-

posite structures such as solid rocket motors and liquid fuel containers. It uses

actuator nodes either embedded in the structure or placed on its surface, to emit

a diagnostic stress wave signal. A neighbouring sensor node captures the signal

and compares it to a baseline normal signal. If a difference is observed, it indi-

cates change in the surface of the structure that can be attributed to damage.

One challenge with this described method is difficulty of generalisation — for

instance, stress layers’ placement had a significant impact to detection accuracy

— although there is mention of expanding the work such that it applies on other

structures and different materials.

2.3 Body Sensor Networks and Context Aware

Systems

The approach described in [HJCX08] introduces wavelet-based ECG data mining

for Body Sensor Networks (BSNs). The system targets remote patient monitor-

ing through a combination of resource constrained nodes and offline processing.

Nodes are responsible for ECG noise filtering and periodic transmission of ECG

2. Pattern Matching and Detection in WSNs and Sensor Data 27

waveforms to a central server for processing. The server employs feature extrac-

tion with wavelet transforms and the Local Holder Exponent (LHE) function.

Support Vector Machines (SVMs) are used for classification of ECG signal frag-

ments. In contrast to our methods that process data inside the network, this

approach incurs the communication cost of transmitting observations to a base

station.

BiosensorNET [KHW+07] is a BSN comprising resource constrained nodes

for near real-time heart rate variability analysis of ECG signals. It is based on

two algorithmic layers: a real-time layer extracts the QRS complex which is the

significant part of the ECG signal. It passes the QRS to a near real-time layer

that performs variability analysis on the frequency domain and invokes further

processing only if it determines that the QRS is significant. To our knowledge, this

is one of the first efforts to address both pattern detection and implementation

for extremely resource constrained nodes in the field of BSNs.

The work described in [SRT07] employs the symbolic aggregate approxima-

tion SAX [LKLC03] algorithm for string conversion of gesture data obtained

by accelerometers and gyroscopes worn by human subjects. Gestures are char-

acterised by the movement of limbs in Cartesian space and their identification

and classification through wearable sensors can assist in determining the context

and activity of persons. The proposed approach, similar to our work, offers ap-

proximate pattern matching with a different distance metric, the edit distance.

Although they target real-time gesture classification in constrained sensor nodes,

the work lacks WSN deployment evidence and performance results are collected

in a desktop-class machine. A related system [WYC+06] targets human activity

recognition from sensor accelerometer observations using decision trees, neural

networks and Support Vector Machines (SVMs).

A method aimed at pattern matching over trajectory data is described in

[BCFL09] where authors propose a distance metric to determine similarity be-

tween trajectory subsequences. Recognising patterns in trajectory data has appli-

cations ranging from remote monitoring of elderly patients to military detection

of enemy movements. Pattern detection is performed by testing whether a time

2. Pattern Matching and Detection in WSNs and Sensor Data 28

window has fewer than a predetermined number of neighbours in its left and right

sliding windows. Experimental results show efficiency with respect to processing

time measurements, however evaluation is conducted offline lacking validation on

WSN nodes.

The approach of [HMBE06] targets context-aware computing and specifically

mining for unusual patterns in observations representing human interactions with

their environment. The authors propose the use of a Suffix Tree data structure

to encode the structural information of activities and their event statistics at dif-

ferent temporal resolutions. The method aims to identify unusual patterns that

either consist of structural differences to normal behaviour or differences based

on the frequency of occurrence of motifs. The approach relies on training data

to construct the dictionary of legitimate behaviour and sequences are classified

as unusual using a match statistic computed over the suffix tree. The strength of

the approach is that suffix tree traversal requires linear time, however dynamic

suffix tree construction and update is not always suitable to platforms with se-

vere resource constraints due to dynamic memory allocation demands of such

operations.

2.4 Network Monitoring and Security

The approach described in [WDWS10] presents a system for distributed pattern

event detection using training data or statistical means. The system is based

on feature extraction by discretisation in time intervals and computation of the

difference between minimal and maximal observations for each interval. The

output is a feature vector that is compared in terms of Euclidean distance against

a number of prototype vectors. One strength of this approach is that is has been

evaluated through a deployment in a security application detecting trespassing at

a construction site. However, unlike our approach, training requires considerable

memory and processing resources and is performed on a desktop-class machine

rather than on WSN nodes.

The work described in [DSS07] introduces Artificial Immune Systems (AIS)

2. Pattern Matching and Detection in WSNs and Sensor Data 29

for misbehaviour detection. AIS are inspired from the human immune system and

its ability to detect harmful agents such as viruses and infections. The method

facilitates local learning and detection with a gene-based approach. Each node

maintains a local set of detectors produced by negative selection from a larger set

of randomly generated detectors tested on a set of self strings. The detectors test

new strings that represent local network behaviour, and detect non-self strings

denoting unusual patterns. The approach has been evaluated using MAC layer

messages and targets detection of local patterns that indicate misbehaviour over

a layer of the OSI reference model stack.

The approach described in [HGH+06], proposes a Principal Component Anal-

ysis (PCA) method for detecting unusual patterns with complex thresholds in

a distributed manner. Nodes transmit observations to a coordinator responsible

for firing a trigger based on the aggregate behaviour of a subset of nodes. The

individual nodes perform filtering such that they transmit only when observations

deviate significantly from the last transmitted data. Detection is accomplished

with two window triggers that fire on persistent threshold violations over a fixed

or varying window of observations. Although the approach is aimed at detecting

unusual network traffic patterns, it can generalise to other WSN applications.

The main criticism is that coordinator nodes introduce single points of failure in

the detection scheme.

A related approach [LNLP06], considers intrusion detection in WSNs from

samples of routing traffic. First, feature selection of traffic and non-traffic related

data is performed in order to learn the distribution of values affecting routing

conditions and traffic flows. Second, pattern detection is performed locally by

comparing a window of observations to previously collected normal data. This

window contains samples mapped to points in a feature space and are analysed

together with their surrounding region. If a point lies in a sparse region of space

is classified as unusual using a fixed-width clustering algorithm. The method is

capable of locally detecting novel patterns, but it is limited by the number of

modelled attacks.

2. Pattern Matching and Detection in WSNs and Sensor Data 30

2.5 Spacecraft and Telemetry Pattern Classifi-

cation

In [CWC+07], the authors describe mining scientific data on-board a spacecraft in

order to react to dynamic patterns of interest as well as to provide data summaries

and prioritisation. Three image pattern recognition algorithms are presented that

were employed on board the Mars Odyssey spacecraft to detect polar cap edges

and atmospheric opacity events.

The approach described in [SOM07] presents three unsupervised pattern recog-

nition algorithms evaluated offline using historical data obtained from a space

shuttle main engine, comprising up to 90 sensors, for the objective of future in-

clusion in the Ares I and Ares V launch systems. The algorithms employ Support

Vector Machines (SVMs), clustering and nearest neighbour for pattern classifica-

tion.

A system aimed at automatic satellite reliability monitoring is described in

[DTP91]. The diagnosis of faults from, sometimes limited, sensor data is per-

formed by an expert system. The authors describe how the expert system was

built even with limited knowledge and its ability to perform inexact reasoning to

accommodate sparse sensors. A disadvantage is inherited from expert systems

and is attributed to the supervised learning required to describe possible fault

states.

2.6 Spatial Pattern Location Estimation

The approach described in [CYR+08] addresses an instance of the spatial loca-

tion estimation problem considered in Chapter 6. The authors address spatial

pattern location estimation of a radioactive source using an iterative pruning

data fusion algorithm tolerant of measurement noise. The system is based on the

ratio-of-square-distance (RoSD) location estimation algorithm that uses observa-

tions from three nodes and improves estimation accuracy as more nodes become

2. Pattern Matching and Detection in WSNs and Sensor Data 31

available. The outcome of RoSD algorithm is fed into an iterative pruning clus-

tering algorithm that provides a geometric solution to the location estimation

problem. Two strengths of this approach is the evaluation of realistic noise and

error conditions, and the implementation on WSN nodes.

The work described in [GJV+05] proposes VigilNet, a hierarchical system for

in-network detection and classification of vehicles and persons. Using a combina-

tion of magnetometers, motion sensors, and microphones, lower tier nodes apply

a moving average aggregation scheme and forward their summaries to dynamic

cluster heads. The cluster heads examine spatio-temporal correlations, compute

confidence scores over the aggregate data and forward the outcome to a base

station. The base station finalises classification results with linear regression

and estimates metadata such as target location and velocity. One strength of

this system is that it validates spatial pattern detection through deployment on

extremely resource constrained nodes.

The distributed Kalman filter proposed in [SOSM05] targets location estima-

tion in WSNs with imperfect communication links based on an iterative spatial

averaging algorithm. It introduces a transfer function that describes the error

behaviour of the distributed Kalman filter in the case of stationary noise pro-

cesses. The authors focus on location estimation of sonic sources using acoustic

sensors and claim that their method generalises to other domains. Evaluation

is conducted through simulation and the description lacks WSN implementation

details.

We adopt the gas distribution and sensor response model of Ishida [INM97],

described in Section 7.1. In this work, the authors deploy a mobile robot that

detects the concentration of gas in the atmosphere and moves to appropriate

locations in an attempt to estimate the source location. Achieved through fitting

the gas distribution model to the sensor response at each location, they provide

a sensing algorithm that is also capable of estimating the release rate of the gas

pollutant.

Generic coarse grained location estimation techniques include the Centroid

Calculation or Point-in-Triangle (PIT) methods [Kri05]. A variation of the former

2. Pattern Matching and Detection in WSNs and Sensor Data 32

is employed in the geometric computation described in Section 6.3 and used by

our spatial location estimation algorithm. A refinement of the PIT technique is

the Approximate Point in Triangle (APIT) described in [HHB+03]. A geometric

approach based on the circles of Apollonius is described in [CP07]. A family

of methods based on Time Difference of Arrival (TDOA) with geometric and

numerical solutions, can be found in [MPR03], [Rao06], and [XRS07].

2.7 Generic Approaches and Additional Appli-

cations

In [RBLP09] the authors propose a pattern detection system based on elliptical

anomalies which are defined by the ellipsoid or hyperellipsoid caused by the region

of distance around the mean of two or more monitored variables. Given a set of

column vectors representing sensor observations, the aim is to partition the set

into normal and unusual observations. The algorithms for first and second order

elliptical anomaly detection can be fully distributed in the network. A drawback

is that computational cost on WSN nodes is not evaluated, although the authors

assume resource constrained nodes.

The approach presented in [SWJR07] targets the problem of pattern detection

using a density test for distributional changes. Possibly multidimensional sensor

observations are tested against a baseline data set with a statistical test that

determines whether data points in the set of observations were sampled from the

same underlying distribution that produced the baseline set. The test statistic

is distribution-free and based on kernel density estimation and Gaussian kernels.

The baseline distribution is inferred using a combination of the kernel density

estimator with an Expectation Maximisation (EM) algorithm. The capability

of recognising patterns occurring at multiple data dimensions simultaneously is

a strength of this approach. However it lacks implementation details for WSN

nodes and is only evaluated through simulation.

2. Pattern Matching and Detection in WSNs and Sensor Data 33

The approach described in [MP03] proposes online novelty detection on tem-

poral sequences with Support Vector Regression (SVR). A confidence score indi-

cating degree of novelty is used for detection. The method depends on pattern

duration that is not always known in advance, and detection accuracy under

different duration settings is not examined.

The work presented in [SG07] employs a combination of wavelets and neural

networks in order to predict pattern event occurrences. Their approach allows for

Dynamic Power Management (DMP) by alternating sleep states of nodes in times

of inactivity. Similar work presented in [KDS05] employs wavelets and neural

networks for classification of sensor observations. A weakness of both approaches

is that they are evaluated through simulation and lack implementation on WSN

nodes.

The work described in [IPV07], computes anomaly scores from signals when

they differ from reference states. The application scenario is sensor validation —

the task of ensuring correct operation by detecting unexpected behaviour. Once

an unusual pattern is detected, change analysis is performed by pinpointing the

variables causing the change. The system employs a stream of weighted graphs

where each signal corresponds to a node and edges are weighted by the similarity

between a pair of data fragments. Each sensor node produces a dissimilarity ma-

trix of multi-variate observations in a streaming fashion and compares it against

a reference dissimilarity matrix. The anomaly analysis is conducted by graph and

distribution comparison. An approach also targeting validation is presented in

[GN03] where the feasibility of artificial intelligence techniques for the diagnosis

of acceleration sensor faults is investigated.

Localisation Anomaly Detection (LAD) [DFN06] is aimed at detecting anoma-

lies in localisation schemes typically caused by adversaries, for example enemies

in military applications deployed in hostile environments. The authors propose

a number of threshold techniques to infer whether localisation is compromised.

The drawback is that they do not offer implementation evidence with respect to

the computational efficiency of the techniques on WSN nodes.

2. Pattern Matching and Detection in WSNs and Sensor Data 34

An algorithm that detects intrusion in WSNs based on statistical informa-

tion of network packets is presented in [PHCL06]. The approach proposed in

[CPGM06] considers spectral anomaly detection in combination with in-network

fusion to detect attacks or malfunctions. The work presented in [BGGS09], de-

scribes a framework that incorporates in-network processing for spatio-temporal

event detection and state estimation with a focus on applications from the aerospace

domain. Approaches such as [HCM08], that are not limited to WSNs, suggest the

use of machine learning techniques and specifically a dynamic version of predic-

tive coding. DEAMON [STKC09] is an approach capable of monitoring complex

conditions based on distribution and assignment of composite event expressions

in the network.

2.8 Summary

In this chapter, we reviewed alternative approaches for pattern matching and

detection from a range of application domains that address the problem with

different techniques, summarised in Table 2.1. The range of applications high-

lights the wide scope of the pattern matching and detection problem. However,

a number of the reviewed systems are limited because of:

• Lack of operational validation with implementation evidence for extremely

resource constrained WSNs.

• Off-network processing or tiered models that transmit observations for anal-

ysis by high capability nodes.

The first issue casts doubt on the feasibility of these techniques for extremely

resource constrained nodes, and the second point often accelerates resource con-

sumption as a consequence of engaging in radio communication.

In the next chapter, we describe our proposed solution to in-network pattern

matching and detection using computationally efficient methods and algorithms.

2
.
P
a
ttern

M
a
tch

in
g
a
n
d
D
etectio

n
in

W
S
N
s
a
n
d
S
en

so
r
D
a
ta

3
5

Approach Basis Application Strength Weakness

Moving Average

[WADHW08] EWMA Seismic & Acoustic data Lightweight approach Dependence on fixed threshold

[GJV+05] Moving Averages Target Detection and Classification In-network solution evaluated on
real nodes

Dependence on tuning several pa-
rameters

Symbolic

[PMSR09] Symbolic conversion/Run-length encoding Data centre monitoring Dynamic modelling of data centre
chillers

Lack of implementation evidence

[CLD08] Symbolic conversion & TSB EPG Data/Insect monitoring Approximate matching Lack of WSN implementation evi-
dence

[HMBE06] Subsequence matching using Suffix Trees Context-aware computing Linear time matching Not suitable for dynamic tree up-
dates

Regression Analysis & Model-based

[BRR08] Linear regression model River flood pattern events Distributed data-driven model Assumes presence of a resource-rich
tier

[BHL07] Bayesian classification Ecological anomaly detection Automatic Inference & Prediction Radio communication cost involved
in classifier

[MP03] Support Vector Regression Abstract/Temporal sequences Confidence score High computational costs for large
training windows

Kalman Filter & Density Estimation

[SWJR07] Kernel density estimators Abstract/Multidimensional data Detects patterns occurring at mul-
tiple dimensions simultaneously

Performance not evaluated

[SOSM05] Kalman Filter Sonic source localisation Distributed operation Lack of WSN implementation evi-
dence

[INM97] Distribution fitting Gas source localisation Estimates gas release rate Assumes knowledge of gas distribu-
tion model

Expert Systems & Gradient Map Matching

[DSS07] Artificial Immune Systems (AIS) Misbehaviour detection on network
data

Efficiency of local detectors Not clear whether generalisable

[XLCL06] Contour-map matching Coal-mine monitoring SQL extensions allows users to
specify events as pattern

Relies on prior-distribution knowl-
edge by user

[DTP91] Expert System Satellite telemetry data Inexact reasoning Knowledge acquisition bottleneck
of Expert Systems

Table 2.1: Comparison of selected pattern matching and detection methods for WSNs and sensor data

2
.
P
a
ttern

M
a
tch

in
g
a
n
d
D
etectio

n
in

W
S
N
s
a
n
d
S
en

so
r
D
a
ta

3
6

Approach Basis Application Strength Weakness

Nearest Neighbour & Clustering

[WDWS10] Feature extraction & NN Trespassing detection Evaluated through deployment Training relies on desktop-class ma-
chine

[BCFL09] NN/Clustering Trajectory pattern recognition Efficient processing time for classi-
fying new observations

Lack of WSN implementation evi-
dence

[SOM07] NN/Clustering/SVMs Spacecraft engine data Pattern mining in data from up to
90 sensors

Detection accuracy relies on thresh-
olds

[IPV07] Stochastic nearest neighbour Sensor Validation Multidimensional data & change
analysis

Lack of WSN implementation evi-
dence

[LNLP06] Fixed-width clustering Network Intrusion Detection Can detects novel patterns False negatives of slow-occurring
events

Wavelets & SVMs

[HJCX08] Wavelets ECG data mining with SVMs Considers info. security Offline processing

[SG07] Wavelets and neural networks Abstract Dynamic power management Lack of WSN implementation evi-
dence

[XRC+04] Wavelets Structural Health Monitoring
(SHM)

Evaluated through implementation Event data on flash can be overwrit-
ten rapidly

Thresholding

[STKC09] Composite event algebra Abstract Energy efficiency through predicate
distribution

Comp. cost not bounded

[CWC+07] Dynamic Thresholding and SVMs Spacecraft image data Respects resource constraints Suitability for WSN nodes not
demonstrated

[DFN06] Dynamic Thresholding Localisation Anomalies Inference capability Lack of WSN implementation evi-
dence

Signal & Principal Component Analysis

[KHW+07] Two-phase variability analysis Near real-time ECG mining Evaluated through implementation Detection latency of second phase

[HGH+06] Principal Component Analysis (PCA) Distributed network pattern recog-
nition

Source-side filtering Relies on coordinator node (SPoF)

[LKQ+03] Scatter signal analysis SHM of rocket motors and fuel con-
tainers

No false positives Dependence on sensor/actuator
placement

Geometric

[CYR+08] TDOA & RSoD Radioactive source localisation Comparative Evaluation Lack of evaluation on random
topologies

[RBLP09] Elliptical Anomalies Abstract/Environmental data Distributed solution with same ac-
curacy as centralised

Comp. cost not explicitly modelled

Table 2.1: Comparison of selected pattern matching and detection methods for WSNs and sensor data

Chapter 3

Pattern Matching and Detection

in the Temporal Domain

This chapter introduces algorithms for in-network pattern matching and detection

in the temporal domain. The algorithms process incoming sequences of streaming

sensor observations, transform them to a symbolic representation and determine

whether the resulting string matches one or more user-submitted template pat-

terns or, in lieu of the latter, classify it as normal or unusual. All the algorithms

presented in this chapter are autonomous by design and do not rely on network

communication for pattern matching and detection.

We first provide an overview of symbolic conversion, in Section 3.1, which

forms the basis for our algorithms. The pattern matching and detection algo-

rithms are presented in Sections 3.2 to 3.5, and a summary of their characteristics

is presented in Section 3.6.

3.1 The Basis for Pattern Matching and Detec-

tion

The algorithms proposed in this chapter employ an in-network transformation

phase where numeric sensor observations are discretised to produce a symbolic

37

3. Pattern Matching and Detection in the Temporal Domain 38

representation. A sliding window is applied to transform numeric observations to

strings with the Symbolic Aggregate Approximation algorithm (SAX) [LKLC03].

Pattern matching and detection is performed in-the-network by operating on the

symbolic representation alone.

Two broad usage scenarios are considered: first, a matching case where a

sensor-produced string (henceforth, sensor string) is compared to one or more

user submitted template patterns (henceforth templates) and, second, a detection

case where templates for comparison are unavailable and nodes must classify

incoming sensor strings following an unsupervised learning phase.

3.1.1 Advantages of Symbolic Transformation

Transforming numeric sensor observations to sequences of symbols offers the fol-

lowing advantages:

• It fixes the computational cost of pattern matching and detection to a

value known at compile-time (explored further in Chapter 5). This type of

operational predictability is desirable in WSNs since it makes application

behaviour deterministic [LGH+05].

• It allows the application of well-known techniques, from the fields of bioin-

formatics, probability theory and data mining, that can be combined to

meet the requirements of pattern matching and detection.

• It allows pattern similarity to be assessed independently of magnitude of

numeric observations, since it converts numeric sequences to strings of a

finite, and typically small (under 15 characters), alphabet. An example of

scale independence is shown in Figure 3.1.

Further to the above advantages, we specifically considered variants of the SAX

algorithm because it has a proven track record in data mining across a number of

related domains ranging from biometric recognition [CMY05] to anticipating the

formation of tornadoes [MRK+07]. It has desirable properties such as dimension-

ality and numerosity reduction as well as a distance metric that is guaranteed to

3. Pattern Matching and Detection in the Temporal Domain 39

lower bound the Euclidean distance. Moreover, in Chapter 5 we find that SAX

is a relatively computationally lightweight approach thus likely to be a good fit

for the resource constrained nature of WSN nodes.

Figure 3.1: Example of assessing pattern similarity independently of observation
magnitude. Figure (a) shows raw ADC readings of temperature and figure (b)
shows the same data converted to degrees Celsius. The two patterns match, since
they result to the same string (shown in both figures).

(a) Temperature (raw ADC readings)

0 50 100 150 200 250
6400

6450

6500

6550

6600

6650

6700

Time [1/2 sec]

T
em

p
er

a
tu

re
[
ra

w
A

D
C

v
a
ls

]

a

b

e
f f

h
i

i

(b) Temperature (degrees Celsius)

0 50 100 150 200 250
20.5

21

21.5

22

22.5

23

23.5

Time [1/2 sec]

T
em

p
er

a
tu

re
[
C

]

a

b

e
f f

h
i

i

3. Pattern Matching and Detection in the Temporal Domain 40

3.1.2 An Overview of Symbolic Aggregate Approximation

The proposed algorithms treat SAX as a black box that takes a numeric sensor

sequence of observations as input and returns a reduced string representation as

output. Symbolic conversion takes place in three phases:

(i) Normalise the sequence u of numeric sensor observations to a centred, scaled

version where the i element is given by:

ui − µ

σ
, (3.1)

where µ is the mean of u and σ is the standard deviation.

(ii) Transform the normalised sequence to a Piecewise Aggregate Approxima-

tion (PAA) representation. PAA reduces the length of the sequence using

piecewise polynomial approximation which is compression with a numeros-

ity reduction technique that divides the sequence into w equal-sized frames.

The mean value of data falling within a frame is computed and a vector of

these values comprises the data-reduced PAA representation.

(iii) The final step of the conversion process is a table lookup operation. The

lookup table is a two-dimensional tiling of a sorted list of numbers B =

β1, β2, . . . , βα−1 such that the area under a N(0, 1) Gaussian curve from βi

to βi+1 is equal to 1
α
where α is the size of the alphabet Σ. It is assumed

that β0 and βα are −∞ and +∞ respectively. A sample table for a 10-letter

alphabet is shown in Table 3.1.

The transformation process is depicted in Figure 3.2; Figure 3.2a shows the

numeric sequence prior to normalisation, Figure 3.2b shows the intermediate PAA

representation and Figure 3.2c shows the final string. The interested reader can

refer to the literature [KLF05, KLR04, LKLC03] on SAX for a more detailed

treatment of the conversion process.

3. Pattern Matching and Detection in the Temporal Domain 41

Figure 3.2: Example of symbolic conversion of a sensor sequence, to Piecewise
Aggregate Approximation (PAA) and to the final string.

(a) Numeric temperature sequence from data
centre deployment (Section 5.2.1)

0 50 100 150 200 250
20.5

21

21.5

22

22.5

23

23.5

Time [1/2 sec]

T
em

p
er

a
tu

re
[
C

]

(b) PAA approximation of the numeric se-
quence.

0 50 100 150 200 250
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time [1/2 sec]

T
em

p
er

a
tu

re
[
N

o
rm

a
li
se

d
]

(c) Final string mapping of PAA approx-
imation.

0 50 100 150 200 250
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

a

b

e
f f

h
i

i

Time [1/2 sec]

T
em

p
er

a
tu

re
[
N

o
rm

a
li
se

d
]

3. Pattern Matching and Detection in the Temporal Domain 42

3.1.3 Assessing Pattern Similarity and Probability

With the exception of the probabilistic detection and multiple matching algo-

rithms (Sections 3.3 and 3.5), we employ a distance function to quantify the

difference between two string representations ū and r̄. Assuming ū is the sensor

string and r̄ is the template, the calculation depends on a lookup table (Table

3.1) and the below equation:

‖ū− r̄‖S =

√

|u|
|ū|

√

√

√

√

|ū|
∑

i=1

(dist(ūi, r̄i))2, (3.2)

where |u| denotes the length of the input window representing the length of the

numeric sensor sequence, |ū| denotes the length of its corresponding string repre-

sentation, and dist(ūi, r̄i) denotes a lookup to the table (Table 3.1) for characters

i of strings ū and r̄, for instance dist(a, c) = 0.1936.

The two mutually exclusive labels assigned in classification of incoming strings

with the matching algorithms are interesting and normal. Similarly, the pattern

detection algorithms classify a sensor string as either unusual or normal. The

matching and detection outcomes depend on which of the proposed algorithms is

chosen, and are obtained in the following manner:

(i) In the case of matching, a sensor string ū is accepted as a pattern event

and classified as interesting if ‖ū− r̄‖S = 0 (exact match) or ‖ū− r̄‖S ≤ θ

(approximate match) or ū is a substring of r̄ (multiple match), where θ

stands for a user-supplied distance threshold.

(ii) In the case of inverted matching, a sensor string is rejected (not pattern

a b c d e f g h i k

a 0 0 0.1936 0.5776 1.0609 1.6384 2.3409 3.24 4.4944 6.5536
b 0 0 0 0.1024 0.3481 0.7056 1.1881 1.8496 2.8224 4.4944
c 0.1936 0 0 0 0.0729 0.2704 0.5929 1.0816 1.8496 3.24
d 0.5776 0.1024 0 0 0 0.0625 0.25 0.5929 1.1881 2.3409
e 1.0609 0.3481 0.0729 0 0 0 0.0625 0.2704 0.7056 1.6384
f 1.6384 0.7056 0.2704 0.0625 0 0 0 0.0729 0.3481 1.0609
g 2.3409 1.1881 0.5929 0.25 0.0625 0 0 0 0.1024 0.5776
h 3.24 1.8496 1.0816 0.5929 0.2704 0.0729 0 0 0 0.1936
i 4.4944 2.8224 1.8496 1.1881 0.7056 0.3481 0.1024 0 0 0
k 6.5536 4.4944 3.24 2.3409 1.6384 1.0609 0.5776 0.1936 0 0

Table 3.1: Sample Distance Lookup Table for a 10-letter Alphabet.

3. Pattern Matching and Detection in the Temporal Domain 43

event) and classified as normal if ‖ū − r̄‖S 6= 0 (inverted exact match)

or ‖ū − r̄‖S > θ (inverted approximate match) or ū is not a substring

of r̄ (inverted multiple match). For inverted detection, the most recent

sensor string ūt is rejected (not pattern event) and classified as normal if

‖ūt−ūt−1‖S ≤ θ (inverted non-parametric detection) or P (ūt) 6= 0 (inverted

probabilistic detection), where ūt is the string obtained at time t (similar

for t− 1), θ is obtained as a maximum learnt distance between temporally

adjacent strings, and P (ūt) is the path probability of string ūt.

(iii) In the case of detection, the most recent sensor string ūt is accepted as a

pattern event and classified as unusual if ‖ūt− ūt−1‖S > θ (non-parametric

detection) or P (ūt) = 0 (probabilistic detection).

In summary, a sensor string is classified as interesting if it matches a template

exactly or approximately, otherwise it is classified as normal. Multiple pattern

matching assumes |r̄| ≫ |ū|, where |r̄| is the cumulative length of the templates

(henceforth, the text) and |ū| is the length of the sensor string. In this case,

classification reduces to an exact string matching problem that classifies the string

as interesting, if ū is a substring of r̄. Non-parametric pattern detection compares

temporally adjacent sensor strings and classifies the most recent as unusual if it

exceeds a maximum distance learnt during a training phase. Probabilistic pattern

detection computes the path probability of P (ūt), given some learning data, and

classifies a sensor string as normal if it has a non-zero probability of occurrence,

or otherwise unusual.

3.2 Exact and Approximate Pattern Matching

Exact and approximate pattern matching assumes that users are able to de-

scribe patterns of interest. An example is a user with observations from past or

related deployments, submitting one or more ordered subsets of observations as

templates. A WSN node receives a template, stores it and attempts matching

against incoming sensor strings. However, due to node storage access costs and

3. Pattern Matching and Detection in the Temporal Domain 44

Algorithm 3.1 Exact Pattern Matching (EPM) Algorithm

Require: template 6= ε
1: if template is numeric then
2: r̄ ← int sax(template)
3: else
4: r̄ ← template

5: end if
6: repeat
7: ūr ← int sax(sensor-values[])
8: δ ← ‖ūt − r̄‖S
9: until δ == 0
10: call Notify and goto line 6

limitations, historic searches are not supported — a node cannot match a user-

submitted template against past sensor strings as the nodes do not, by default,

store past strings. Instead, they apply a sliding window over the stream of obser-

vations, convert them to a string and attempt to match against user-submitted

templates, close to real-time.

Matching, shown in lines 8-9 of Algorithms 3.1 and 3.2, is performed as a

distance calculation between two strings: the user-submitted template and the

sensor string. The distance is calculated using a character look up table and the

SAX distance metric, both discussed in Section 3.1.3. Matching is not tightly-

coupled with the specific distance metric and alternative metrics are possible.

The approximate matching algorithm is a variation on exact pattern matching.

In order to determine whether the sensor string matches a template, the output

of the distance calculation ‖ū − r̄‖S is compared to a threshold θ (line 9 of the

algorithms) as described previously (Section 3.1.3). The threshold value depends

on desired matching sensitivity and is application dependent.

3.3 Multiple Pattern Matching

The scenarios for multiple pattern matching are: (a.) one or more users

interested in exact occurrences of smaller substrings in much longer text, and

3. Pattern Matching and Detection in the Temporal Domain 45

Algorithm 3.2 Approximate Pattern Matching (APM) Algorithm

Require: template 6= ε
Require: theta 6= ε
1: if template is numeric then
2: r̄ ← int sax(template)
3: else
4: r̄ ← template

5: end if
6: repeat
7: ūt ← int sax(sensor-values[])
8: δ ← ‖ūt − r̄‖S
9: until δ ≤ θ
10: call Notify and goto line 6

(b.) a number of users submitting numerous templates of arbitrary length for

matching. Both cases are accommodated in a computationally space and time

efficient manner, owing to the use of a Suffix Array [Gus97] data structure.

The Suffix Array is defined as an array of integers in the range 0 to |r̄| −
1, specifying the lexicographic order of the |r̄| suffixes of text (user-submitted

templates). The array requires O(|r̄|) space and can be searched in O(|ū| log |r̄|)
time [MM90], where |ū| is the length of the sensor string and |r̄| is the length of

the text. The array enables sensor nodes to determine whether their produced

string matches stored user-submitted templates, maintaining theoretical search

efficiency as the size of stored templates grows. A sensor string that is a substring

of the text is classified as interesting.

The procedural steps for MPM are outlined in Algorithm 3.3. Although the

listed algorithm does not show how the suffix array can be updated — for instance,

if a user submits a new pattern at runtime — this can be achieved using the

procedure described in [SLLM09]. An extended example that highlights the array

construction and search process can be found in Appendix B, Tables B.1 and B.2,

respectively.

3. Pattern Matching and Detection in the Temporal Domain 46

Algorithm 3.3 Multiple Pattern Matching (MPM) Algorithm

Require: templates[] 6= ε
1: for i = 0 to Length(templates[]) do
2: Construct Array for Suffixes of templates[i] with suffix length ≥ min

length of templates[]
3: end for
4: SuffixArray ← merge Arrays dropping duplicate Suffixes
5: loop
6: ūt ← int sax(sensor-values[])
7: Index ← call BinarySearch(SuffixArray, ūt)
8: if Index ≥ 0 then
9: call Notify and goto line 5
10: end if
11: end loop

3.4 Non-Parametric Pattern Detection

The Non-Parametric Pattern Detection (NPPD) algorithm can classify sensor

strings as unusual without relying on user-submitted templates. The typical use

case involves users who wish to be informed of sustained unusual changes in the

monitored object but are unable to quantify or describe changes in a manner that

can be translated to one or more pattern matching expressions or templates.

Algorithm 3.4 shows the procedural steps for learning that takes place in lines

2-10. The rate of change of the monitored object is computed by comparing the

string distance of temporally adjacent sensor strings. As the rate of change in

the monitored object decreases, the distance between temporally adjacent strings

approaches zero. With learning completed, a node stores the maximum witnessed

change perceived normal as a string distance (line 7), to be used later (line 15) as

a threshold value. Distance between two temporally adjacent sensor strings that

exceeds the maximum learnt distance, results in the classification of the most

recent sensor string as unusual.

3.5 Probabilistic Pattern Detection

3. Pattern Matching and Detection in the Temporal Domain 47

Algorithm 3.4 Non-Parametric Pattern Detection (NPPD) Algorithm

Require: learnPeriod 6= ε
1: maxδ, learnCounter← 0
2: while learnCounter ≤ learnPeriod do
3: ūt ← int sax(sensor-valuest[])

{sensor-valuest is a window with the most recent observations}
4: ūt−1 ← int sax(sensor-valuest−1[])

{sensor-valuest−1 is a window temporally shifted by one time unit}
5: δ ← ‖ūt − ūt−1‖S
6: if δ > maxδ then
7: maxδ ← δ
8: end if
9: Increment learnCounter by 1
10: end while
11: loop
12: ūt ← int sax(sensor-valuest[])
13: ūt−1 ← int sax(sensor-valuest−1[])
14: δ ← ‖ūt − ūt−1‖S
15: if δ > maxδ then
16: call Notify and goto line 11 {Current distance is greater than max dis-

tance learnt}
17: end if
18: end loop

Probabilistic Pattern Detection (PPD) (Algorithm 3.5) is procedurally similar

to non-parametric detection, in that it also undergoes a learning phase. The

difference is that PPD does not employ the distance metric of Equation 3.2 to

determine similarity between strings. Instead, it relies on a Markov model to

compute the probability of occurrence of a sensor string, given symbol transitions

observed during training.

PPD handles symbolic conversion as a Markov process where the set of states

equals the size of the alphabet. If the process outputs ūi at time t and then moves

to ūj at time t + 1, the probability for this transition is represented by pij and

a state transition from state i to j is observed. To encode symbol transitions, a

square matrix called the transition matrix is populated. For simplicity, we employ

a Markov chain of order one, however higher order (memory) Markov chains can

3. Pattern Matching and Detection in the Temporal Domain 48

Algorithm 3.5 Probabilistic Pattern Detection (PPD) Algorithm

Require: learnPeriod, θ 6= ε
1: learnCounter← 0
2: TransitionMatrix[][]← 0
3: while learnCounter ≤ learnPeriod do
4: ū← int sax(sensor-values[])
5: for i = 0 to |ū| do
6: Update TransitionMatrix[][] {Update state transition probabilities}
7: end for
8: Increment learnCounter by 1
9: end while
10: loop
11: ūt ← int sax(sensor-values[])
12: if P (ūt) ≤ θ then
13: call Notify and goto line 10
14: end if
15: end loop

be used.

Path probabilities are computed using the Markov model built during the

learning phase (line 12). A path probability is a realisation of a Markov chain

as a path in time through its state space [Nor97]. Such a probability for path

(ū1, ū2 . . . ūt) is given by:

P (ūt) = pū1ū2pū2ū3 . . . pūt−1ūt

A zero probability for a sensor string results in its classification as unusual

since the individual transitions in the string were improbable, given the learning

data that populated the transition matrix.

3.6 Summary

In this chapter we introduced a collection of algorithms that provide pattern

matching and detection functionality. The basis for the algorithms is SAX, a

symbolic conversion method employed to transform sliding windows of sensor

3. Pattern Matching and Detection in the Temporal Domain 49

observations to strings such that pattern matching and detection can be accom-

plished using the strings alone.

The proposed algorithms cater for the following situations:

(i) Exact pattern matching, that matches a sensor string against a user sub-

mitted template.

(ii) Approximate pattern matching, that offers similarity searches between sen-

sor strings and templates.

(iii) Multiple pattern matching, that implements exact pattern matching with

theoretical search efficiency when the cumulative length of templates is much

larger than the sensor string.

(iv) Non-parametric pattern detection, that learns the normal rate of change be-

tween temporally adjacent sensor strings, and uses it to classify new strings

as normal or unusual.

(v) Probabilistic pattern detection, similar to the above, classifies a sensor string

according to the path probability of the string given a transition matrix

populated during learning.

In the next chapter we evaluate the performance of our algorithms, with re-

spect to true and false positives, in real world sensor data sets.

Chapter 4

Temporal Algorithms: Evaluation

through Emulation

In this chapter, we initiate the performance evaluation of the pattern matching

and detection algorithms introduced in Chapter 3. The aim is twofold: first,

to assess matching and detection accuracy across a selection of real-world sen-

sor data and different choice of algorithm parameters, and second, to compare

the algorithms with competitive methods for event detection. Evaluation is per-

formed by emulation, a type of simulation where a computer program imitates

functions of another device [Jai91], in our case a WSN node — we defer discussion

of practical evaluation through deployment to Chapter 5.

We begin with a discussion of methodology and experimental setup in Section

4.1 which is common across all the experiments described in this chapter. We

categorise experiments in three broad case studies (Sections 4.2 to 4.4) examining

data from different sensors and summarise findings in Section 4.5.

4.1 Methodology and Experimental Setup

We emulate the data acquisition process as it would be typically implemented in

a WSN setting: sensors are sampled at a specific (configurable) frequency and

observations are processed by our algorithms. The sequence, shown in Figure 4.1,

50

4. Temporal Algorithms: Evaluation through Emulation 51

Figure 4.1: Emulating data acquisition in MATLAB: the loop of a timer firing,
data read from a file, and data processed by one of the pattern matching and
detection algorithms.

Timer fired Read data Process

involves the following tasks:

(i) A virtual sensor node’s timer firing, for instance signalling the fired()

event in TinyOS [STG07].

(ii) A callback function sampling a hypothetical sensor which in this case is a

call to fetch the next value from a data file.

(iii) A processing task, which is a call to our temporal pattern matching and

detection algorithms, posted once the function from the previous step has

returned the value representing the sensor observation.

The experiments described in this chapter were conducted using implementa-

tions of the temporal pattern matching and detection algorithms in MATLAB

R2008b [Mat10]. We employ the MATLAB timer object [Mat08d] to emulate

the streaming nature of data acquisition in WSNs. The timer object reproduces

sensor data, stored in a file, at the original sampling frequency using the timer

Period property.

For each matched or detected pattern, the emulation program displays a

message in the MATLAB command window indicating that a pattern has been

matched against a user-submitted template or detected/discovered. In addition,

an entry is written to an experiment log file indicating the data file name sup-

plying the sensor observations and the relative time point in the data file corre-

sponding to match/detection. A plot of the sensor data is generated and contains

a visual marker denoting the starting time point of detection or a user-submitted

template overlaid on the sensor data. Plots were used in conjunction with the

log files for counting true and false positives.

4. Temporal Algorithms: Evaluation through Emulation 52

To validate the emulated implementation in MATLAB, experiments were re-

produced on the WSN-specific TOSSIM [LLWC03] simulator. Verification was

performed by tasking a TOSSIM-simulated node to execute the same steps as the

MATLAB program and confirm pattern classification by displaying the relative

timestamp (in timer ticks) of match/detection on the command window. This

process confirmed that the relative time point of match/detection by MATLAB

emulation was identical with that reported by TOSSIM.

4.2 Case Study 1: Indoor Deployment

The experiments of this case study were conducted on data from the indoor

deployment [Int04] of 54 nodes at the Intel Lab, Berkeley. This data set was

selected for the following reasons:

• It is representative of the class of applications we are targeting with char-

acteristics specific to indoor deployments.

• It contains imperfections, in the form of outliers and missing values, that

were not corrected to assess detection performance under realistic data char-

acteristics.

The data set contains approximately 2.3 million observations of temperature,

humidity, light, and voltage sampled at a frequency of 0.031Hz. The data is

made available as a single file with timestamped observations.

4.2.1 Evaluation of Exact and Approximate Matching

In this section we evaluate Algorithms 3.1 and 3.2 which require the input of

a specific template pattern by a user for matching against strings obtained by

symbolic conversion of the sensor stream.

4. Temporal Algorithms: Evaluation through Emulation 53

Metric

We employ the mean number of false positives per node to characterise the impact

of symbolic conversion parameters to the number of incorrect pattern matches

reported by the exact and approximate matching algorithms of Chapter 3.

Hypothesis

There are values of symbolic conversion parameters — alphabet size, window

length and compression ratio — that reduce false positives reported by the exact

and approximate pattern matching algorithms, on data from different sensors.

Experiments

For this series of experiments, the data set was divided to observations per node

in order to emulate data acquisition in MATLAB in the manner described pre-

viously. To simulate users interested in pattern events, template patterns were

supplied by extracting sequences of data and providing them as input to the algo-

rithms for matching. An example of a user-submitted template pattern employed

in the experiments is the sustained increase in temperature observed between

7.00 am and 7.20 am, possibly due to the effect of sunrise or automated heating

system.

The expected behaviour of exact pattern matching is to identify an occurrence

of the user-submitted template pattern. As described in Section 3.2, the algorithm

positively matches a sensor string to the template pattern when the distance

between the two strings is zero. False positives are counted when the exact pattern

matching algorithm produces a zero distance between the template pattern and

a sensor string that does not correspond to the template pattern. Using the early

morning sustained increase in temperature as a template pattern example, a false

positive is counted if the algorithm matches with zero distance this template to

a sensor string from a different time of day.

4. Temporal Algorithms: Evaluation through Emulation 54

The expected behaviour of approximate matching is to identify similarities be-

tween user supplied template patterns and sensor strings. This translates to pos-

itively matching a sensor string to a template pattern when the distance between

them is zero or below a user-supplied threshold. This user-supplied threshold

determines the desired similarity between the template and the sensor strings.

For the purpose of the experiment, appropriate values for thresholds were se-

lected by specifying that the template pattern and the sensor string can have

up to 10% of their symbols at most 2 characters apart. For instance, in this

experiments the template pattern “aabbccddee“ would approximately match the

sensor string “abbbccddde“, with their character differences highlighted in bold

typeface. A false positive is counted when the algorithm matches with distance

below the threshold a pattern template to a sensor string from a different time

of day. Figures 4.2a and 4.2b show examples of approximate pattern matching

with windows of varying sizes.

The experiment was conducted over temperature, humidity, light, and voltage

sensor data and different symbolic conversion parameter values were explored.

Specifically, input window lengths of 28, 40, 160, 496, 836 and 1260 were tested

as these values represent a choice likely to cater for a variety of both short and

long duration pattern events. Finally, a range of symbolic conversion compression

ratios (1/1, 2/1, 4/1, and 6/1) and alphabets (5, 10, 15 and 20 characters) were

tested to explore the effect of string approximation information content to false

positives.

Findings

The main finding of this experiment is that the number of false positives reported

by the exact and approximate pattern matching algorithms depend on symbolic

conversion parameters such as compression ratio, input window length and type

of sensor data. For instance, Table 4.1 shows that increasing the window length

from 40 sensor readings to 160 sensor readings with a symbolic compression ratio

of 2/1, reduces false positives from 13 to 3. We believe that this is a positive

result as three false positive reports in a 30-day deployment period incurs only a

4. Temporal Algorithms: Evaluation through Emulation 55

Window length Comp. Ratio
40 160 486 836

Mean False Positives

Alphabet Size 5
11 6 2 0 None
17 8 4 2 2/1
34 29 26 23 4/1

Alphabet Size 10
2 1 0 0 None
13 3 3 1 2/1
22 16 15 9 4/1

Alphabet Size 15
1 1 0 0 None
13 3 3 1 2/1
21 16 16 9 4/1

Table 4.1: Relationship of alphabet size, window length and compression ratio
with the mean number of false positives (per node) reported by the Approximate
Pattern Matching (APM) algorithm on the temperature attribute over a data set
spanning a period of 30 days.

moderate use of the radio, for instance only three notifications transmitted.

We find that longer windows are necessary in order to reduce false positives for

data with less smooth changes such as light. The average values of false positives

over the light attribute are shown on Table 4.2 and their relationship to window

length is in agreement with the observations made in [KLF05], in particular the

view that larger windows are necessary for data with a high degree of variability.

Moreover, increasing the alphabet size above 10 characters does not significantly

reduce the number of false positives.

Overall, our hypothesis was confirmed as there are certain symbolic conversion

parameter values that reduce the number of false positives. Specifically, we settle

on an alphabet size of 10 characters, compression ratio of 2/1 or 4/1 and input

window lengths of 40 and above. Although the pattern matching algorithms can

use default values for these parameters, there is some benefit for users who choose

to fine tune compression ratio and window length — either at pre-deployment or

at runtime — according to characteristics of the sensed data such as variability

and sampling frequency.

4. Temporal Algorithms: Evaluation through Emulation 56

Window length Comp. Ratio
40 160 486 836

Mean False Positives

Alphabet Size 5
67 55 32 6 None
113 98 67 29 2/1
119 101 74 34 4/1

Alphabet Size 10
44 37 16 5 None
87 66 41 18 2/1
91 72 50 28 4/1

Alphabet Size 15
44 37 16 3 None
79 64 41 18 2/1
90 72 49 28 4/1

Table 4.2: Relationship of alphabet size, window length and compression ratio
with the mean number of false positives (per node) reported by the Exact Pattern
Matching (EPM) algorithm on the light attribute over a data set spanning a
period of 30 days.

4. Temporal Algorithms: Evaluation through Emulation 57

Figure 4.2: Case study 1: Approximate Matching on the Intel Data Set.

(a) A pattern event of 486 data points (from 20/03 08:00am) is submitted for
approximate matching in the week 01/03-07/03 (Node 10). A similar pattern
is identified at point 11,976, with string distance 0.5.

0 2000 4000 6000 8000 10000 12000
17

18

19

20

21

22

23

24

25

26

Time [32 secs]

T
em

p
er

a
tu

re
[
C

]

sensor data
template

(b) A pattern event of 160 observations (from 17/03 06:30am) is submitted for
approximate matching in the three days 01/03-03/03 (Node 3). A similar
pattern from the morning spike in temperature on the 2nd of March is identified
at point 2485 with string distance 0.19.

0 1000 2000 3000 4000 5000
17

18

19

20

21

22

23

24

25

26

27

Time [32 secs]

T
em

p
er

a
tu

re
[
C

]

sensor data
template

4. Temporal Algorithms: Evaluation through Emulation 58

4.3 Case Study 2: Seismic and Acoustic Data

The purpose of this case study is to conduct an accuracy comparison of the

Non-Parametric Pattern Detection (NPPD) algorithm with two alternative tech-

niques, and to perform a preliminary study of the effects of measurement noise

to detection accuracy.

The experiments were carried out on data from the volcanic monitoring de-

ployment [WALJ+06] at Reventador, an active volcano in Ecuador. The data set

was selected for the following reasons:

• It is also representative of a class of reactive environmental applications

aimed at detecting unusual activity, which is a good fit with our research

goals.

• It contains a large number of pattern events recorded in two sensing modal-

ities: seismic and acoustic.

According to [WALJ+06], the deployment comprised 16 sensor nodes that sam-

pled seismic and acoustic data at a frequency of 100Hz for a 19-day period in

2005. The data is made available as a collection of 1, 209 files out of which we

identified 947 contained pattern events while the rest were either data segments

without unusual patterns or noise possibly due to faulty sensors. Each file in-

cludes a header section with the timestamps of the data sample including the

time length of the pattern event.

4.3.1 Evaluation of Non-Parametric Pattern Detection

The experiments of this section compare the accuracy of the Non-Parametric

Pattern Detection (NPPD) algorithm (Section 3.4) against two competitive tech-

niques:

• Exponentially Weighted Moving Average (EWMA) according to the imple-

mentation details described in [WALJ+06].

4. Temporal Algorithms: Evaluation through Emulation 59

• Real-time Seismic Amplitude Measurement (RSAM), which is an alternative

method for detecting unusual volcanic activity [EM91].

The first technique was employed by the researchers who carried out the data

collection while the second technique is an alternative method for measuring

volcanic activity.

Metrics

To characterise the accuracy of the pattern detection algorithm with respect to

true positives, we employ the sensitivity [WF05] metric given by:

S =
TP

TP + FN
, (4.1)

where TP is the total number of true positives classified by a pattern matching

and detection method and FN is the total number of false negatives. In addition,

we use the false positive rate which is given by:

FPR =
FP

TP + FN
, (4.2)

where FP is the total number of false positives or patterns misclassified as unusual

by our algorithm.

Hypothesis

The Non-Parametric Pattern Detection (NPPD) algorithm (Section 3.4) can per-

form competitively against EWMA and RSAM.

Experiments

The process followed measures the accuracy of NPPD by counting the number of

true and false pattern event occurrences reported by the algorithm and comparing

it against the corresponding figures for EWMA and RSAM. To investigate the

impact of algorithmic parameters to pattern detection accuracy we conduct the

4. Temporal Algorithms: Evaluation through Emulation 60

experiments using two settings: high sensitivity aiming to make pattern detection

more sensitive to seismic events of relatively small magnitude and low sensitivity

for detecting seismic disturbances of relatively higher magnitude. For NPPD

the choice of high/low sensitivity was represented by the symbolic conversion

compression ratios of 2/1 and 4/1. In the case of EWMA and RSAM, high/low

sensitivity was implemented by selecting different values for the thresholds.

For this case study, NPPD uses a window length of 128 readings and a 10-

letter alphabet. The values for these parameters relate to the symbolic conversion

component of the NPPD algorithm and were obtained during earlier empirical

studies, discussed in Section 4.2.1. The NPPD algorithm was trained on a subse-

quence of 1, 024 data points that did not contain any pattern events. Distances

were computed using Equation 3.2 for the comparison of adjacent strings ob-

tained by transforming temporally adjacent numeric sensor observations using

the algorithm of Section 3.4.

Both EWMA and RSAM rely on a threshold to determine whether the un-

derlying activity of the monitored process is unusual. In the case of EWMA, the

ratio of two exponentially-weighted moving averages (EWMAs) over the input

signal is compared to the threshold. The short-term average (STA) contained 30

observations, the long-term average (LTA) contained 300 observations and the

threshold was set to 0.3 and to 0.25 to represent low and high sensitivity respec-

tively. We obtained values for STA/LTA window lengths, weights and thresholds

empirically after testing numerous alternatives on a 1/4 of the data 1.

RSAM [EM91] is similar to EWMA, but instead of operating on ratios of

averages it sums the mean amplitude of the signal during a given interval to

provide a measure of the level of activity. When the RSAM amplitude exceeds a

threshold an event is triggered. We employed an interval of 3, 000 observations

and thresholds of 0.02 and 0.01 to represent low and high sensitivity respectively.

1We attempted to communicate with the authors of the original work [WALJ+06,
WADHW08] to enquire about their choice of parameter values but unfortunately we did not
receive a reply.

4. Temporal Algorithms: Evaluation through Emulation 61

NPPD EWMA RSAM
TP FP TP FP TP FP

Low Sensitivity 77.4% 3.8% 76.8% 8.2% 56.9% 1.06%
High Sensitivity 92.7% 18.9% 91.9% 20.2% 84.5% 2.2%

Table 4.3: Summary of detection accuracy results of NPPD compared with
EWMA and RSAM. TP stands for True Positives and FP stands for False Pos-
itives.

Findings

The main findings of the experiments are summarised in Table 4.3. We found

that NPPD detected 92.7% or 878 of the total 947 events with a false positive

ratio of 18.9% or 179 patterns falsely classified as unusual. These results are on

par with the accuracy of EWMA that detected 91.9% or 870 events with a false

positive ratio of 20.2% or 192 events. RSAM performed less well in detection,

with true positive rate of 84.48% or 800 events, but produced a significantly lower

number of false positives (2.2% or 21 events).

To highlight the type of seismic events contained in the data set we show two

examples in Figure 4.3. We also show how these patterns are detected by NPPD

with both low (4/1 compression ratio) and high sensitivity (2/1 compression

ratio) detection depicted as vertical lines marking the starting point of the most

recent unusual pattern. Similarly, Figure 4.4 shows an example of a seismic event

and corresponding summarised seismic amplitude using the EWMA and RSAM

methods.

In line with our expectations, decreasing compression ratio produces better

approximations of the numeric sensor data. This improves the rate of true pos-

itives detected by NPPD since relatively smaller changes in seismic activity are

represented by different symbols causing higher distances between temporally

adjacent sensor strings. This illustrates the tradeoffs between low and high sen-

sitivity: for both NPPD and EWMA, high sensitivity increases the true positive

rate (from 77.4% to 92.7% for NPPD) but there is a corresponding rise in the

number of false positives (from 3.8% to 18.9%). RSAM performed better in that

4. Temporal Algorithms: Evaluation through Emulation 62

respect as the rate of growth in false positives was much smaller — from 1% with

low sensitivity to 2.2% with high sensitivity.

In summary, the hypothesis that NPPD can perform competitively against

EWMA and RSAM was confirmed by the experimental results of this case study.

Figure 4.3: Case study 2: Examples of seismic pattern events detected by NPPD
with two sensitivity levels and corresponding compression settings. The solid
vertical line denotes 4/1 compression and the dashed line denotes 2/1 ratio.

(a) Seismic events at node 200 (13/08/2005, 12.29). The rectangle shows the
length of the unusual pattern.

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time [1/100 sec]

A
m

p
li
tu

d
e

[
N

o
rm

.
se

n
so

r
re

sp
o
n
se

]

(b) Seismic events at node 209 (16/08/2005, 04.04). The rectangle shows the
length of the unusual pattern.

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.1

−0.05

0

0.05

0.1

0.15

Time [1/100 sec]

A
m

p
li
tu

d
e

[
N

o
rm

.
se

n
so

r
re

sp
o
n
se

]

4. Temporal Algorithms: Evaluation through Emulation 63

Figure 4.4: Case study 2: A comparison of pattern detection using NPPD with
EWMA and RSAM. In Figure 4.4a, the vertical line (node 201, 14/08/2005,
01.50) denotes the beginning of the unusual pattern and the rectangle shows the
pattern length (128). Figure 4.4b shows the EWMA ratio of averages with a
horizontal line representing the threshold.

(a) Pattern detected as unusual (denoted by the vertical line) using NPPD

0 1000 2000 3000 4000 5000 6000 7000
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Time [1/100 sec]

A
m

p
li
tu

d
e

[
N

o
rm

.
se

n
so

r
re

sp
o
n
se

]

(b) Seismic activity summarisation with EWMA, denoted by the STA/LTA
ratio, and event detection shown by the STA/LTA ratio crossing the hori-
zontal threshold line

0 1000 2000 3000 4000 5000 6000 7000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time [1/100 sec]

S
T
A

/
LT

A
R

a
ti

o
[
N

o
rm

.
se

n
so

r
re

sp
o
n
se

]

Threshold

4. Temporal Algorithms: Evaluation through Emulation 64

Figure 4.4: Case study 2: Figure 4.4c shows the RSAM measure with the hori-
zontal line representing the threshold.

(c) Seismic amplitude summarisation with RSAM, denoted by the RSAM
measure, and event detection shown by the summarised amplitude crossing
the horizontal threshold line

0 1000 2000 3000 4000 5000 6000 7000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time [1/100 sec]

A
m

p
li
tu

d
e

(R
S
A

M
)

[
N

o
rm

.
se

n
so

r
re

sp
o
n
se

]

Threshold

4.3.2 The Effect of Measurement Noise to NPPD

This experiment is a preliminary investigation into the effect of measurement

noise to pattern detection accuracy. It employs a simplified additive noise model

and aims to provide an insight in the noise magnitude tolerated by the NPPD

algorithm.

Hypothesis

Sensitivity and false positive rate of the NPPD algorithm degrade gracefully with

respect to increasing signal noise.

Experiments

We focus on a subset of the entire data set, specifically the data from an ac-

tive volcanic day with 90 natural events — the 14th of August 2005 from 00:58

to 21:08. Observations are corrupted by additive random noise of progressively

4. Temporal Algorithms: Evaluation through Emulation 65

Mean SNR Mean SNR (dB) True Positives False Positives

1 0 87.78% 14.44%
0.87 −0.6048 87.78% 7.78%
0.73 −1.3668 86.52% 6.74%
0.49 −3.098 83.33% 6.67%
0.36 −4.437 76.67% 4.44%
0.17 −7.6955 60.00% 3.33%
0.09 −10.4576 18.89% 7.78%

Table 4.4: The effect of additive random noise to NPPD detection accuracy,
represented by sensitivity and false positive rate.

higher magnitudes obtained by MATLAB’s randn function [Mat08c] that gener-

ates pseudorandom values drawn from the standard normal distribution.

The Signal-to-Noise Ratio (SNR) for each experiment was calculated as the

power ratio of the signal over the noise [Byr05], and specifically using the following

formula over the square amplitude ratio:

SNR =

(

ASignal

ANoise

)2

,

where ASignal stands for the amplitude of the signal and ANoise stands for the

amplitude of the noise. The symbolic conversion component of the NPPD algo-

rithm employed similar parameters to the previous experiment: a window length

of 128, compression ratio of 2/1 and alphabet size of 10.

Findings

As seen in Table 4.4 and Figure 4.5, we find that detection accuracy degrades

gracefully in relationship to decreasing SNR: deteriorating the signal to a mean

SNR of 0.73 reduced sensitivity from 87.78% to 86.52%. NPPD accuracy, rep-

resented by true positive rate, reduces to 83.33% even when signal is corrupted

with mean SNR of 0.49.

One, perhaps unexpected, result is that a mean SNR of 0.73 reduced the

number of false positives from 14.44% to 6.74%. This reduction is attributed

to variations in signal amplitude, previously falsely detected as unusual patterns

4. Temporal Algorithms: Evaluation through Emulation 66

Figure 4.5: Impact of Signal to Noise Ratio (SNR) on true positives.

 10

 20

 30

 40

 50

 60

 70

 80

 90

-10-8-6-4-2 0

T
ru

e
P

os
iti

ve
s

[%
]

SNR [dB]

which, in this case, become less prominent as they are surrounded by similar

variations caused by noise.

These preliminary findings confirm the hypothesis that the NPPD algorithm

can tolerate a degree of additive noise in the signal without significantly compro-

mising pattern detection accuracy.

4.4 Case Study 3: Physiological Data

This data set was obtained from the UCR Time Series Data Mining archive

[UoC08] and contains Electrocardiography (ECG) and Electromyography (EMG)

data. It was selected for the following reasons:

• It is representative of a large class of systems, such as body sensor networks,

targeted by our approach.

• It incorporates pattern events with different characteristics than the other

case studies: specifically changes tend to be in signal periodicity rather than

in sensor reading magnitude.

4. Temporal Algorithms: Evaluation through Emulation 67

The ECG data contains segments of 512 normal observations sampled at 128Hz

that change to supraventricular and malignant ventricular — both different types

of arrythmias — for the remaining 512 observations. The EMG data contains two

sets of 30, 000 observations sampled at 1KHz of an athlete’s Gluteus Maximus

activity during the last 30 seconds of a 3 min exercise on a treadmill at 3.72 m/s

for the first set and 4.56 m/s for the second set.

4.4.1 Evaluation of Non-Parametric and Probabilistic Pat-

tern Detection

The purpose of this experiment is to evaluate the detection latency of non-

parametric and probabilistic pattern detection, Algorithms 3.4 and 3.5 of the

previous chapter respectively.

Metric

To characterise the delay in pattern detection, we employ detection latency as

the time elapsed, in seconds, between the starting point of a pattern event and

the time point that the pattern was classified as unusual by the algorithms. This

metric is important in the context of medical applications since timely notifica-

tion of pattern events concerning the health status of a patient can be critical

[MFjWM04].

Hypothesis

Non-parametric and probabilistic algorithms are capable of detecting patterns in

high frequency physiological data with relatively low detection latency.

Experiments

To simulate an ECG pattern event, we append segments from supraventricular

and malignant ventricular ECG data to normal ECG data. There are 18 ECG

segments of normal data, 30 segments of supraventricular and 22 segments of

4. Temporal Algorithms: Evaluation through Emulation 68

malignant ventricular. The experiment tests 52 combinations of normal ECG

changing to either supraventricular or malignant ventricular. For EMG data we

append two sets recording muscular activity from the same athlete on a treadmill

workout with different speed settings.

For NPPD, a window length of 128 observations was used with compression

ratio of 2/1, alphabet size of 10 and training data set to a 1/4 of each data set.

The PPD algorithm does not require any parameters apart from a learn

counter which was set to a 1/4 of each data set or 128 and 7, 500 observations, for

ECG and EMG respectively. Recall that detection occurs when distance between

temporally adjacent strings exceeds the maximum learnt distance in the case of

NPPD, and for PPD, when the path probability for observed strings obtained

from symbolic conversion of numeric observations is equal to zero.

Findings

Table 4.5 summarises the minimum, maximum and average latencies over the

52 ECG experiments. These findings confirm the hypothesis and show relatively

low NPPD mean latency: 0.086 seconds for normal ECG turning to malignant

ventricular and 0.102 seconds for normal ECG turning to supraventricular. Cor-

responding times for the detection latency of the PPD algorithm, were 0.047 and

0.109 seconds. We believe that the worst-case scenario with maximum detection

latency of 0.797 seconds shows a delay that could satisfy bounds of time critical

medical applications.

Examples of pattern detection for ECG data and the NPPD algorithm are

shown in Figures 4.6a (malignant ventricular) and 4.6b (supraventricular).

Due to lack of additional data, the EMG evaluation consisted of only one

experiment where the PPD algorithm flagged a string of length 512 with 0-

probability at time 30.412 shown in Figure 4.7 — a latency of 0.412 seconds.

4. Temporal Algorithms: Evaluation through Emulation 69

Pattern Detection Latency (secs)
Min Max Mean

Non Parametric Pattern Detection
Normal ECG chang-
ing to Malignant Ven-
tricular

0.055 0.492 0.086

Normal ECG chang-
ing to Supraventricu-
lar

0.062 0.797 0.102

Probabilistic Pattern Detection
Normal ECG chang-
ing to Malignant Ven-
tricular

0.039 0.156 0.047

Normal ECG chang-
ing to Supraventricu-
lar

0.07 0.359 0.109

Table 4.5: Minimum, maximum and mean detection latency (in seconds) over 52
experiments of NPPD and PPD algorithms on ECG data. Learning counter was
set to 1/4 of the data set, or exactly 1 second. Latency is the elapsed number of
seconds from the time of the pattern event (exactly at 4 seconds) to the time of
detection.

4. Temporal Algorithms: Evaluation through Emulation 70

Figure 4.6: Case study 3: Example of NPPD on ECG data: the ECG changes
from normal to arrhythmic at precisely 4 seconds. The vertical line denotes the
beginning of an unusual pattern detected and the rectangle denotes the length of
the pattern (128 data points).

(a) ECG— normal turning to Malignant Ventricular (trial 12). The change happens
at precisely 4 seconds. The pattern is identified at 4.18.

0 1 2 3 4 5 6 7 8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Time [sec]

E
C

G
S
ig

n
a
l
2

[
m

V
]

(b) ECG — normal turning to Supraventricular (trial 1). The change occurs at
precisely 4 seconds. The pattern is identified at 4.38.

0 1 2 3 4 5 6 7 8
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time [sec]

E
C

G
S
ig

n
a
l
1

[
m

V
]

4. Temporal Algorithms: Evaluation through Emulation 71

Figure 4.7: Case study 3: Example of PPD on EMG Data — a string of length
512 is classified as unusual with a zero path probability at time point 30.412. The
change occurs at precisely 30 seconds. The vertical line denotes the beginning of
an unusual pattern and the rectangle denotes the length of the pattern (512 data
points).

25 26 27 28 29 30 31 32 33 34 35
−30

−25

−20

−15

−10

−5

0

Time [sec]

E
M

G
S
ig

n
a
l
[
m

V
]

4. Temporal Algorithms: Evaluation through Emulation 72

4.5 Summary of Findings

We conducted evaluation of the temporal pattern matching and detection algo-

rithms on three data sets and the following eight sensing modalities: seismic,

acoustic, temperature, humidity, voltage, light, ECG and EMG. The data sets

were selected to represent target reactive applications that can benefit from pat-

tern matching and detection functionality.

We found the following:

(i) Symbolic conversion parameter values play a role in the number of false pos-

itives reported by the exact and approximate pattern matching algorithms.

Longer input windows reduce false positives especially on data with a high

degree of variability.

(ii) The non-parametric pattern detection algorithm is competitive with other

techniques such as EWMA and RSAM. NPPD provides higher detection

sensitivity (true positive rate) than both EWMA and RSAM.

(iii) NPPD sensitivity degrades gracefully with respect to increasing signal noise:

detection accuracy remains over 80% even with a mean SNR of 0.49.

(iv) Both NPPD and PPD algorithms show relatively low detection latency —

approximately a tenth of a second on average — on physiological data such

as ECG and EMG.

We continue the evaluation of the temporal algorithms in the next chapter with

a discussion of findings obtained through deployment.

Chapter 5

Temporal Algorithms: Evaluation

through Deployment

This chapter analyses the runtime behaviour and operational profile of the pro-

posed temporal domain algorithms, and shows their suitability for the extremely

resource constrained execution platform through deployment on real WSNs.

First, Section 5.1 demonstrates execution efficiency through measurement of

the algorithms’ runtime on WSN nodes. Second, Section 5.2 introduces a dynamic

sampling frequency management method that allows nodes to reduce MCU work-

load during periods of inactivity. Third, Section 5.3 describes integration with a

Publish/Subscribe system that provides the user interface to the pattern match-

ing and detection algorithms. Finally, Section 5.4 illustrates suitability for a

novel type of node that lacks on-board power source and Section 5.5 summarises

findings from deployments.

5.1 Execution Profile of Temporal Domain Al-

gorithms

The vast majority of extremely resource constrained WSN nodes lack floating

point units (FPUs) forcing floating point operations to be executed in software

73

5. Temporal Algorithms: Evaluation through Deployment 74

penalising performance and accuracy of arithmetic results [Gol91, Hig02]. The

floating point arithmetic impact identified in conventional computing as capable

of reducing system performance by half [OF02], is magnified in WSNs since apart

from affecting performance it can consequently reduce useful node lifetime.

Motivated by the dependence of symbolic conversion and distance calculation

components of the temporal algorithms on floating-point operations, we initiated

a study into their execution profile. We identify the cost of floating point oper-

ations involved in the temporal algorithms, and we refactor such that they use

exclusively integer arithmetic. To this effect, we employ a combination of scal-

ing, fixed-point arithmetic, bitwise techniques and related optimisations such as

loop unrolling. In the following sections, we show the runtime savings achieved

through the application of these techniques. A detailed discussion of methods

and techniques employed can be found in [ZR09d].

Timing measurements reported in this chapter are collected on TMote Sky/

TelosB [Sen08] nodes running TinyOS 2 [LBC+08] applications compiled with

msp430-gcc 3.2.3. Execution times are measured at entry and exit points of

functions with the Timer [STG07] component of TinyOS and specifically the

startOneShot and stop commands. Elapsed execution times for blocks of code

under investigation are reported using the TinyOS printf library.

5.1.1 Refactoring of Pattern Matching and Detection Al-

gorithms

The purpose of this experiment is to profile the pattern matching and detection

algorithms in order to show that they are suitable for extremely resource con-

strained WSN nodes. For reference, we first identify (Appendix C) the relative

cost of different arithmetic operations on the target platform. The outcome is a

timing model (cf. Table C.1) used as a guide in the software development process

of the integer-only pattern matching and detection algorithms.

5. Temporal Algorithms: Evaluation through Deployment 75

Metrics

The execution profile of the pattern matching and detection algorithms is char-

acterised by:

• Total processing runtime (in milliseconds) required by the pattern matching

and detection algorithms.

• Total RAM usage (in bytes) occupied by the program image.

Hypothesis

There are significant runtime savings to be gained from the application of inte-

ger arithmetic combined with related optimisations to the pattern matching and

detection algorithms.

Experiments

We compare the execution time required for our temporal algorithms between

floating point and integer arithmetic implementations. We use an alphabet of 10

characters and compression ratio of 2/1, as these are typical parameter choices

established in the last chapter. Time requirements for exact and approximate

matching are identical since they involve the same procedural steps.

For the Multiple Pattern Matching (MPM) algorithm, we implement a lin-

ear search algorithm (cf. [Gus97] for a description of linear search algorithms

on strings) as a basis for comparison with respect to search costs, for example

searching whether a sensor string exists among a collection of user submitted

templates. We collect timing measurements for MPM from nodes that produce

strings of length 20 from numeric sensor observations of length 40.

We begin our analysis by profiling operations, through execution time mea-

surement, involved in a floating-point implementation of the pattern matching

algorithm. The execution profile shows that the larger share of processing time

is attributed to normalisation of numeric sensor values according to the formula:

5. Temporal Algorithms: Evaluation through Deployment 76

ui − µ

σ

where µ is the mean and σ is the standard deviation of the sequence of numeric

sensor values u. To reduce this cost attributed to floating point division and

subtraction, we replace floats with integers and eliminate division altogether. In-

stead, we scale1 the row of breakpoints — (Table 3.1, in Chapter 3) corresponding

to alphabet size — by integer σ. To operate on numbers of the same magnitude,

we multiply the intermediate Piecewise Aggregate Approximation (PAA) repre-

sentation by the same scaling factor. The number of multiplications required,

is equal to the length of the resulting string representation. Scaling the break-

points involves 10 — the length of breakpoints and typical size of alphabet —

multiplications compared to 40 or more — the length of the numeric sequence —

divisions previously required to standardise u.

We introduce an integer square root is for computation of standard deviation

σ. Substituting integer square root for operating on numbers of higher magnitude

requiring 64-bit types is a costly decision according to Table C.1 (Appendix C)

which shows 64-bit division requiring almost as much MCU time as floating point

division. With integer square root and the maximum value produced by the

Analog-to-Digital Converter (ADC), 32-bit numbers are sufficient for representing

the maximum values of scaled results.

Findings

The main finding of this experiment is the improved execution time of the in-

teger pattern matching algorithm, shown in Figure 5.1, in comparison with a

floating point implementation. Table 5.1 shows a more detailed account of the

timing measurements for operations involved in a floating-point implementation

of pattern matching. The corresponding timing measurements for the integer-only

implementation of the exact and approximate algorithms are shown in Table 5.2:

1We use binary scaling with a scaling factor of 2048.

5. Temporal Algorithms: Evaluation through Deployment 77

Number of data points in input window
Operation 40 80 120

Time % of to- Time % of to- Time % of to-
(ms) tal time (ms) tal time (ms) tal time

Normalisation

a. Mean 12 (10.34%) 24 (10.3%) 37 (10.72%)
b. Std Dev 42 (36.21%) 81 (34.76%) 120 (34.78%)
c. Subtract &
Divide 25 (21.55%) 53 (22.75%) 78 (22.61%)

PAA

Transform 24 (20.69%) 48 (20.6%) 73 (21.16%)
Symbolic

Transform 10 (8.62%) 20 (8.58%) 28 (8.12%)
Distance

Calculation 3 (2.59%) 7 (3.0%) 9 (2.61%)

Total Time 116ms 233ms 345ms
RAM Image
Size (Bytes) 766 846 926

Table 5.1: Performance Times (in ms) for Exact Pattern Matching (EPM) and
Approximate Pattern Matching (APM) algorithms implemented in floating point
operations.

the process of converting a window of 40 data points to a string and then match-

ing against a user-submitted template takes 11.74ms compared to 116ms for the

floating point pattern matching algorithms, a factor of ten improvement.

To illustrate the difference in current consumption, the floating point pattern

matching algorithm requires 60.3mA 2 while its integer-only counterpart requires

8.43mA, based on a sampling frequency of 1Hz and input window of 40 data

points. Apart from the direct benefit of reducing power draw due to reduced

MCU workload, reduced execution times also allow WSN application designers

to shut off node components for longer achieving further savings in resources.

The runtime performance of the Non-Parametric Pattern Detection (NPPD)

algorithm is comparable with exact and approximate pattern matching since it

2Calculated consulting the datasheet power draw for active and idle MCU time [Sen08].

5. Temporal Algorithms: Evaluation through Deployment 78

Number of data points in input window
Operation 40 80 120

Time % of to- Time % of to- Time % of to-
(ms) tal time (ms) tal time (ms) tal time

Normalisation

5.96 (51.95%) 9.97 (50.87%) 15.59 (49.36%)
PAA

Transform 4.13 (35.97%) 6.81 (34.74%) 11.41 (36.13%)
Symbolic

Transform 0.92 (7.99%) 1.81 (9.23%) 2.91 (9.21%)
Distance

Calculation 0.47 (4.1%) 1.01 (5.15%) 1.67 (5.3%)

Total Time 11.74ms 19.6ms 31.58ms
RAM Image
Size (Bytes) 1180 1371 1591

Table 5.2: Performance Times (in ms) for Exact Pattern Matching (EPM) and
Approximate Pattern Matching (APM) algorithms implemented in integer arith-
metic.

involves similar procedural steps. However, NPPD requires two calls to sym-

bolic conversion to convert the temporally adjacent windows of numeric sensor

observations to strings. The execution times for NPPD are shown in Table 5.3.

For Multiple Pattern Matching (MPM), Table 5.4 shows the comparison in

terms of the runtime cost of matching a sensor produced string in the collection of

user-submitted patterns against a linear search approach. MPM requires 8ms to

search for a sensor string of length 20 in a collection of templates of cumulative size

of 256, compared to 14ms for the linear search. None of the test cases represent

a worst-case for linear search, that is when the sensor string is not found at all

in the user-submitted collection of templates.

These findings confirm the hypothesis as there is a factor of ten improvement

in runtime performance achieved through precise implementation of the temporal

domain algorithms with integer arithmetic and related optimisations.

5. Temporal Algorithms: Evaluation through Deployment 79

Figure 5.1: Runtime comparison of floating-point and integer-only APM/EPM
algorithm implementations on a TMote Sky /TelosB.

 0

 50

 100

 150

 200

 250

 300

 350

 40 50 60 70 80 90 100 110 120

P
ro

ce
ss

in
g

tim
e

[m
s

]

Window Length [data points]

11.47

116

19.6

233

31.5

345Integer-only
Float Point

Number of data points in input window
Operation 40 80 120

Time % of to- Time % of to- Time % of to-
(ms) tal time (ms) tal time (ms) tal time

Normalisation

6.23 (47.13%) 11.96 (49.83%) 18.11 (50.11%)
PAA

Transform 5.09 (38.5%) 8.92 (37.17%) 13.23 (36.6%)
Symbolic

Transform 1.43 (10.82%) 2.11 (8.79%) 3.13 (8.66%)
Distance

Calculation 0.47 (3.56%) 1.01 (4.21%) 1.67 (4.63%)

Total Time 13.22ms 24.0ms 36.14ms
RAM Image
Size (Bytes) 1941 2620 3210

Table 5.3: Performance Times (in ms) for Non-Parametric Pattern Detection
(NPPD) algorithm implemented in integer arithmetic.

5. Temporal Algorithms: Evaluation through Deployment 80

Figure 5.2: Comparison of MPM with linear search. The MPM search is for a
sensor string of length 20 in the cumulative text of templates.

 2

 4

 6

 8

 10

 12

 14

 100 150 200 250

P
ro

ce
ss

in
g

T
im

e
(f

or
 m

at
ch

in
g)

 [
m

s
]

Text length (Cumulative length of templates)

Multiple Pattern Matching
Linear Search

Cumulative Length Time (ms) RAM (bytes)
of template patterns MPM Linear MPM Linear

64 2 4 728 591
96 4 6 776 623
128 5 8 824 655
160 6 9 872 688
192 6 11 920 721
224 8 13 968 754
256 8 14 1016 786

Table 5.4: Search cost execution times (in ms) and RAM usage (in bytes) for
MPM compared to linear search. The MPM search is for a sensor string of length
20 in the collection of user-submitted template patterns.

5. Temporal Algorithms: Evaluation through Deployment 81

5.2 Dynamic Sampling Frequency Management

(DSFM) Algorithm

Dynamic Sampling Frequency Management (DSFM) extends Non-Parametric

Pattern Detection (NPPD) by allowing WSN nodes to automatically adjust their

sampling frequency according to the rate of change of the monitored object. The

aim of DSFM is to reduce resource expenditure attributed to MCU and sensor

acquisition during periods of relative stability of the monitored object.

The procedural steps for DSFM are listed in Algorithm 5.1 and are similar to

Non-Parametric Pattern Detection (cf. Section 3.4) involving an identical learn-

ing phase. When learning completes, a node progressively reduces its sampling

frequency until the minimum allowed sampling frequency is achieved. If a node

observes a distance greater than the maximum distance learnt caused by a pattern

classified as unusual, the maximum allowed sampling frequency is restored.

We recognise that certain WSN applications have strict sampling frequency

requirements dictated by signal periodicity. If these requirements can be specified

as a sampling frequency interval, DSFM selects and adjusts sampling frequency

within the interval relaxing the need for pre-deployment signal analysis.

5. Temporal Algorithms: Evaluation through Deployment 82

Algorithm 5.1 Dynamic Sampling Frequency Management (DSFM) Algorithm

Require: learnPeriod 6= ε
Require: min-sampling-frequency, max-sampling-frequency

1: maxδ, learnCounter← 0
2: while learnCounter ≤ learnPeriod do
3: ūt ← int sax(sensor-valuest[])

{sensor-valuest is a window with the most recent observations}
4: ūt−1 ← int sax(sensor-valuest−1[])

{sensor-valuest−1 is a window temporally shifted by one time unit}
5: δ ← ‖ūt − ūt−1‖
6: if δ > maxδ then
7: maxδ ← δ
8: end if
9: Increment learnCounter by 1
10: end while
11: loop
12: ūt ← int sax(sensor-valuest[])
13: ūt−1 ← int sax(sensor-valuest−1[])
14: δ ← ‖ūt − ūt−1‖
15: if δ ≥ maxδ then
16: Call Notify
17: if sampling-frequency < max-sampling-frequency then
18: sampling-frequency ← max-sampling-frequency

{Set sampling frequency to maximum allowed}
19: end if
20: else
21: if sampling-frequency > min-sampling-frequency then
22: if sampling-frequency ×.9 > min-sampling-frequency then
23: sampling-frequency ← sampling-frequency ×.9

{Reduce sampling frequency by 10%}
24: else
25: sampling-frequency ← min-sampling-frequency

26: end if
27: end if
28: end if
29: end loop

5. Temporal Algorithms: Evaluation through Deployment 83

5.2.1 Data Centre WSN Deployment

To assess the operation of Dynamic Sampling Frequency Management (DSFM),

we deploy the algorithm on a network of seven TMote Sky/TelosB nodes in a

commercial data centre.

Context and Deployment Details

The deployment was commissioned by a global telecommunications company as

a proof of concept for a data centre monitoring solution. It was carried out at

the company’s London headquarters in a data centre hosting over 200 servers and

associated storage and networking equipment.

The most common type of failures observed by this company are due to cooling

problems that cause, sometimes unrecoverable, hardware failures. These cooling

failures are usually attended by a dedicated team of four facilities employees.

A Building Management System (BMS) with wired sensors is responsible for

detecting increases in temperature and notifying the facilities team. However,

in the last two years technical employees noticed a large number of BMS false

negatives where sustained high temperature events were not identified. A number

of servers equipped with built-in sensors and management agents periodically

alert on high inlet or ambient temperature observations without a corresponding

alert from the BMS.

On the 2nd of May 2010, the company experienced a substantial failure of

one of the two air conditioning units in its London data centre. The failure re-

duced the cooling capacity to half and caused concern for critical systems hosted

in the data centre. The facilities team investigated the problem and found that

the failed cooling unit was in need of complete replacement. While waiting for

the purchase, delivery and replacement of the faulty unit, the facilities team

decided to temporarily reduce rising temperatures by opening windows, to facil-

itate cold air circulation, and deploying several portable air-conditioning units.

In hindsight, the open windows adversely affected the operation of computing

equipment and caused latent failures, due to dust particles gathering on air ducts

5. Temporal Algorithms: Evaluation through Deployment 84

of sensitive hardware.

Metric

In order to assess the benefit of the DSFM algorithm the metric of MCU work-

load saving is introduced as the number of timer ticks saved due to DSFM in

comparison with operating under constant sampling frequency.

Hypothesis

The DSFM algorithm can reduce MCU workload, expressed as total number of

timer ticks, by autonomously adjusting node sampling frequency without com-

promising detection of pattern events.

Experiments

During the time of the cooling failure, we were asked to deploy a WSN for a

week with an application objective of alerting upon any significant and sustained

changes in temperature or humidity. This offered us the opportunity to validate

the operation of DSFM.

The floor plan and deployed nodes are shown in Figure 5.3 with the circled

numbers representing node IDs and locations. Nodes 1, 3 and 4 were located

on top of equipment racks at a height of 215cm, nodes 5 and 6 were placed on

the middle of racks at approximate height of 110cm and nodes 2 and 7 were

placed on workbench surfaces at a height of 105cm. Node 1 is the base station,

running the TinyOS BaseStation utility, and the only node powered by a USB/

serial connection to a computer, with the latter used to log notification packets

received from nodes 2 − 7 via node 1. Instead of running DSFM, it passively

collects temperature and relative humidity at a constant frequency of 0.5Hz.

Nodes 2−7 run the DSFM algorithm and employ an alphabet of 10 characters

for pattern detection and a compression ratio of 2/1. DSFM requires a sampling

frequency interval with minimum and maximum sampling frequencies acceptable

by the user. The interval is specified as [0.5, 0.125]Hz (or [2048, 8192] sampling

5
.
T
em

po
ra
l
A
lgo

rith
m
s:

E
va
lu
a
tio

n
th
ro
u
gh

D
ep
lo
ym

en
t

8
5

Figure 5.3: Node locations from data centre deployment. Circled numbers represent node IDs.

5. Temporal Algorithms: Evaluation through Deployment 86

period using TinyOS Timers’ binary milliseconds [STG07]). WSN nodes were

tasked with different symbolic input window lengths, specifically: 128 data points

for nodes 3 and 6, 256 data points for nodes 4 and 5 and 512 data points for nodes

2 and 7.

Nodes 2−7 initiate learning the normal rate of change by monitoring distances

between temporally adjacent strings as described in Section 3.4. Learning dura-

tion was set to the first day of deployment or (approximately) 43, 200 timer ticks.

When learning completes, nodes let DSFM manage the sampling frequency using

the TinyOS stop and startPeriodic timer commands. There are two separate

independent timers for each monitored attribute (temperature and humidity).

Whenever DSFM adjusts the frequency, it sends a packet to the base station to

notify the relative time of adjustment (in timer ticks), the string distance caus-

ing the adjustment, the name of the timer monitored attribute and old and new

sampling frequencies. In practice, transmission is not necessary and was used for

experiment verification purposes.

During the deployment, there was one natural pattern event caused by a

thunderstorm that triggered a rise in relative humidity spanning a period of over

12 hours. Such external events do not usually impact ambient temperature and

indoor humidity, however this was not the case during the deployment since data

centre windows were ajar.

The DSFM algorithm detected two and five pattern events over relative hu-

midity and temperature attributes respectively. Except one, all patterns detected

on the relative humidity attribute were during and after the thunderstorm which

caused an approximately 7% increase of relative humidity. Nine pattern events

were triggered during the drop in relative humidity after the thunderstorm. There

was one false positive triggered by node 3. In line with the emulation results of

Section 4.2.1, the number of patterns classified as unusual reduced as the window

length increased. Although all the detected patterns refer to the same physi-

cal event that spanned several hours, the algorithms detected 22 patterns that

represent changes in the signal spanning, at most, a few minutes.

On the temperature attribute, there was a total of five pattern events, out

5. Temporal Algorithms: Evaluation through Deployment 87

of which two were false positives. Nodes with input window lengths above 128

did not report false positives, in line with expectations from results described in

Section 4.2.1. The remaining three unusual patterns coincided with increases and

sustained high observations. True and false positives were confirmed by technical

engineers of the company, and the three true temperature pattern events were

matched with notifications by the BMS3 and alerts sent from server management

agents. An example of the data, as recorded by the base station, with markers

of patterns detected by nodes 2− 7 is shown in Figure 5.4.

Findings

The main finding of this experiment is that savings in node workload attributed

to DSFM amount to 64% fewer timer ticks and related sensor data acquisition.

Taking into account that WSN nodes typically execute tasks in a constant loop

dictated by their timers, reducing the frequency of task execution can conse-

quently conserve resources.

Per-node results including the number of true and false positives reported are

shown in Table 5.5. If we use node 4 as an example, without DSFM its timers

would have fired 604, 800 times, assuming a constant sampling frequency of 0.5Hz.

With DSFM, its timers fired 216, 059 times. There was a total of 495 sampling

frequency adjustments by DSFM that were verified correct, as they would either

follow the end of the learning phase or a detected pattern event.

Overall the hypothesis that DSFM can reduce the MCU workload was con-

firmed in this deployment. The majority of reported patterns coincided with the

thunderstorm event, suggesting that pattern detection is not adversely affected

by automatic sampling frequency adjustments.

3The BMS cannot monitor relative humidity.

5. Temporal Algorithms: Evaluation through Deployment 88

Node ID
3 6 4 5 2 7

Window Length 128 256 512

True Patterns (RH) 9 6 1 3 2 0
False Patterns (RH) 1 0 0 0 0 0

True Patterns (T) 0 0 0 1 1 1
False Patterns (T) 2 0 0 0 0 0

DSFM Adjustments 195 105 30 75 60 30
Total Timer ticks 216378 216204 216059 216146 216117 216064
Ticks Saved (as %) 64.22% 64.25% 64.27% 64.26% 64.26% 64.27%

Table 5.5: Summary of true and false positives, and DSM timer adjustments from
data centre deployment. (RH) stands for Relative Humidity and (T) stands for
Temperature.

5. Temporal Algorithms: Evaluation through Deployment 89

Figure 5.4: Observations of relative humidity and temperature recorded by Node
1 of the data centre deployment. Detected pattern events are shown as circles.

(a) Relative Humidity as recorded by Node 1. Circles represent detected patterns.

13−May−2010 00:00:00 14−May−2010 18:00:00 16−May−2010 12:00:00 18−May−2010 06:00:00 20−May−2010 00:00:00
20

22

24

26

28

30

32

34

36

38

40

Time

R
el

.
H

u
m

id
it

y

(b) Temperature as recorded by Node 1. Circles represent detected patterns.

13−May−2010 00:00:00 15−May−2010 08:00:00 17−May−2010 16:00:00 20−May−2010 00:00:00
24

25

26

27

28

29

30

31

32

33

34

35

Time

T
em

p
er

a
tu

re
[
C

]

5. Temporal Algorithms: Evaluation through Deployment 90

5.3 Integration with Publish/Subscribe

The proposed pattern matching and detection algorithms are accessible via a

Publish/Subscribe (Pub/Sub) interface that serves two purposes:

• It allows users to express interests in events as subscriptions [EFGK03].

• It allows nodes to notify users upon pattern event occurrences.

A subscription for a pattern of interest is disseminated in the WSN, stored by

nodes and compared against sensor produced strings according to matching oper-

ators described in Section 3.1.3. A notification is a message destined for the sub-

scriber when a pattern event is detected or matched against a template by a WSN

node. We refer the reader to the Pub/Sub literature [DGH+06, HGM04, EFGK03,

CJ02] for a detailed discussion of the Pub/Sub communication paradigm.

The pattern matching and detection algorithms are integrated with a Publish/

Subscribe (Pub/Sub) interface by extending the TinyCOPS [HHK+08] framework

which provides a content-based Pub/Sub service for WSN nodes. This integra-

tion of pattern matching and detection with Publish/Subscribe was tested in the

data centre deployment of Section 5.2.1 where the notification delivery protocol

[HHK+08] was responsible for delivering pattern event notifications from nodes

to the base station.

TinyCOPS allows additional functionality to be introduced into the framework

with Service Extension Components (SECs) without modification of the existing

Pub/Sub core. The temporal pattern matching and detection algorithms fol-

low this mechanism and provide their functionality through an Attribute Service

Extension Component (ASEC) that processes WSN observations in the manner

described in the algorithms of Chapter 3.

The pattern matching and detection algorithms employ default initialisation

values for alphabet size, compression ratio and numeric sensor window length,

however users can override these values by sending subscription metadata mes-

sages to WSN nodes. Such messages are widely used in TinyCOPS and interact

5. Temporal Algorithms: Evaluation through Deployment 91

with our algorithms via the developed ASEC. Subscription metadata is repre-

sented as attribute-value pairs, for example 〈CompRatio, 4〉 instructs one or more

nodes to set their symbolic conversion compression ratio to 4/1.

TinyCOPS employs TinyOS protocols such as Trickle [LPCS04] for dissem-

ination of subscriptions and Collection Tree Protocol (CTP) for collection of

notifications. The integration of our pattern matching and detection algorithms

through the developed ASEC with the communication mechanisms of TinyCOPS,

confirms that our algorithms are compatible with standard TinyOS protocols and

do not require any code modifications in the underlying networking layers. This

means that pattern matching and detection algorithms are agnostic of lower layer

protocols and decoupled from both the WSN naming/addressing schemes and the

choice of subscription/notification delivery protocols.

5.4 Observations from Further Deployments

In order to show that our algorithms can operate in a new class of extremely

resource constrained devices, we select the Wireless Identification and Sensing

Platform (WISP) node developed by Intel Research [Res08]. The WISP is a

node that combines the capabilities of RFID tags with those of WSN nodes.

Its distinctive feature is that it lacks on-board power supply. Instead, it harvests

power from an off-the-shelf RFID reader to operate its MSP430 MCU and sensors.

This execution environment poses the challenge of achieving a computational goal

with intermittently powered hardware resources.

To verify operation in this battery-free platform, we ported the NPPD algo-

rithm and demonstrated4 pattern detection during a 2009 Knowledge Transfer

Network (KTN) event. The demonstration [ZR09c] tasked the algorithm to clas-

sify accelerometer patterns in a system used for teaching primary education pupils

the basic laws of motion (cf. [PSFR08] for more information on the project).

We found the NPPD algorithm suited this challenging environment as it does

not require prior configuration and takes approximately 13ms to classify new

4This demonstration won the Best R&D award [ZR09e].

5. Temporal Algorithms: Evaluation through Deployment 92

patterns. The algorithm spent 10 seconds to learn normal motions from on-board

accelerometer observations and subsequently classified other motions — induced

by users shaking and moving the WISP — as unusual. For this demonstration, a

window of 80 data points was employed with a sampling frequency of 20Hz and

a compression ratio of 2/1.

To alleviate the effects of intermittent and unpredictable power resources,

we installed a supercapacitor that stores accumulated power and prolongs the

lifetime of the WISP, by up to 30 seconds, when it is not within the range of the

RFID reader.

Other past deployments include a small testbed of four nodes installed in

one of our laboratory buildings for five weeks during December 2008. Having

processed over one million temperature observations, two nodes were running

probabilistic pattern detection and the other two were running non-parametric

pattern detection with the first day of deployment used as learning period.

Nodes converted numeric sequences of 40 observations to strings using a 4/1

compression ratio and a 10 letter alphabet. Neither true nor false positives were

detected, in line with expectations as temperature observations were normal in

comparison with the first day of deployment that was used as training period.

5.5 Summary of Findings

We described practical work and findings from implementing our temporal pat-

tern matching and detection algorithms and deploying on real resource con-

strained sensor networks. We found the following:

(i) The precise implementation of pattern matching and detection algorithms

incorporating integer arithmetic and related optimisations showed a factor

of ten runtime improvement in comparison with a floating point implemen-

tation.

(ii) The Dynamic Sampling Frequency Management (DSFM) algorithm was as-

sessed in a data centre deployment where it resulted in 64% fewer timer

5. Temporal Algorithms: Evaluation through Deployment 93

ticks in comparison with constant sampling frequency. The company that

commissioned the work decided to deploy a further WSN (scheduled for

summer 2011) comprised of Zolertia Z1 [Zol10] nodes.

(iii) Integration with a Publish/Subscribe framework shows that the proposed

pattern matching and detection algorithms are compatible with standard

TinyOS communication protocols and do not require modifications of lower

networking layers.

(iv) NPPD execution profile was sufficiently low to support use in a new class

of energy harvesting nodes powered from RFID readers.

These findings provide evidence that the family of algorithms introduced in Chap-

ter 3 are well-suited to extremely resource constrained nodes since they require

minimal processing time and modest RAM for the task of pattern matching and

detection.

Chapter 6

Pattern Location Estimation in

the Spatial Domain

We introduce an algorithm that operates on the spatial domain and computes

a coarse estimate of a spatial pattern event location. We focus on a particular

type of pattern event, the dispersion of a plume from a pollutant-emitting point

source in space. In contrast to the temporal algorithms of Chapter 3 that operate

autonomously without radio communication, the spatial algorithm relies on ex-

changing information with local neighbours in order to collaboratively solve the

location estimation problem.

Section 6.1 provides a more detailed description of the problem and Section

6.2 reviews the Kalman filter which forms the statistical foundation for the solu-

tion. The proposed algorithm, presented in Section 6.3, introduces a geometric

computation which is combined with the Kalman filter to estimate the location

and intensity of the source.

6.1 The Location Estimation Problem

As sensor technologies mature, costs are reduced and wireless connectivity be-

comes ubiquitous, it is possible to have dense in-situ networks of sensor nodes

in urban centres for people protection from terrorists detonating “dirty bombs”

94

6. Pattern Location Estimation in the Spatial Domain 95

[CYR+08]. WSN nodes can sense the presence of pollutants in the atmosphere

and collaborate to estimate the location, intensity and type of threat. Notifica-

tions can be sent to emergency personnel that use the information to evacuate

citizens from the affected area and neutralise the threat to the general public.

The focus of this chapter is the problem of estimating the location and inten-

sity of the “dirty bomb” inside the network. This is an instance of the Inverse

Problem [ATB05] where dispersion parameters must be estimated from sensor-

observed data.

Specifically, the problem is characterised by the following parameters: a sin-

gle static point source emits a pollutant of chemical or radiological nature. The

source is located at the unknown coordinates (xs, ys) in two dimensional space.

The presence and intensity of the pollutant in the atmosphere is sensed by N sen-

sor nodes located at (xi, yi) coordinates with i = 1, 2, . . . , N . The problem is the

distributed, collaborative and iterative estimation of the pollutant source coordi-

nates (x̂s, ŷs) and intensity I from zi sensor observations collected at coordinates

(xi, yi).

Coarse-grained estimation is chosen on the basis that it requires lower resource

consumption [Kri05], at the expense of reduced estimate accuracy, in comparison

with fine-grained approaches such as Time Difference of Arrival (TDOA) that

usually rely on strict time synchronisation. We limit the scope to an in-network

solution, in order to avoid the high energy costs associated with transmitting

observations across multihop paths to far located sinks [WDWS10, FCG10, ZG09,

GJV+05].

6.2 Kalman Filter Properties

The foundation for the pattern location estimation algorithm of this chapter is a

Kalman Filter which is an optimal estimator of the true state of a dynamic linear

system whose observations may be corrupted by noise [Sim06].

The operation of a Kalman filter is based on a Predict-Correct cycle shown

in Figure 6.1. In its simplest form, it incorporates five equations, with the first

6. Pattern Location Estimation in the Spatial Domain 96

Figure 6.1: The Kalman filter loop (Reproduced from [WB95]). A prediction of
the state is made together with a projection of the error covariance. Once an
observation becomes available the estimate and error covariance are updated.

Time Update
[Predict]

Measurement Update
[Correct]

two (Time Update — Equations 6.1 and 6.2) — predicting the system’s varying

quantities (state) which in our case comprise the source location and intensity, and

the remaining three (Measurement Update — Equations 6.3 to 6.5) — correcting

the prediction when sensor observations become available.

Project the state ahead:

x̂k
− = Ax̂k−1 + wk−1 (6.1)

Project the error covariance ahead:

P k
− = AP

k−1
AT +Q (6.2)

Compute the Kalman Gain:

Kk = P k
−HT (HP k

−HT +R)−1 (6.3)

Update estimate with observation zk:

x̂k = x̂k
− +Kk(zk −Hx̂k

−) (6.4)

6. Pattern Location Estimation in the Spatial Domain 97

Update the error covariance:

Pk = (I −KkH)P k
− (6.5)

Where:

x̂k
− is the a priori state estimate.

x̂k is the a posteriori state estimate.

A is the state transition matrix.

w is the white, zero-mean, uncorrelated noise.

P k
− is the a priori error covariance.

P k is the a posteriori error covariance.

Q is the process covariance.

R is the observation (measurement) noise covariance.

H is the observation (measurement) matrix.

zk is the observation taken at time k.

K is the Kalman Gain.

The goal of the Kalman filter is to formulate an a posteriori estimate x̂k

as a linear combination of an a priori estimate x̂k
− and a weighted difference

between an actual observation zk and a predicted observation Hx̂k
−, as shown in

Equation 6.4 [WB95]. The optimal nature of the filter stems from the fact that

as the observation noise covariance R approaches zero the matrix (or scalar) K

weighs the innovation (the term (zk −Hx̂k
−) — also referred to as the residual

or the error) more heavily. Conversely, as the a priori estimate error covariance

P k
− approaches zero, the gain K weighs the residual less heavily.

The Kalman filter has several advantages that make it a suitable estimator

for our context:

• It is an optimal estimator, under the least square errors criterion.

• It is designed to tolerate measurement noise and process errors, both com-

mon properties of chemical and radiological sensors [CYR+08].

• There exist efficient integer-only implementations from the DSP community

[TK88] that can be adapted for WSN nodes.

6. Pattern Location Estimation in the Spatial Domain 98

Lastly, the Kalman filter operates in a recursive manner suitable for in-network

implementation since it only requires the last estimate instead of the entire esti-

mate history to produce the next estimate.

6.3 Spatial Pattern Location Estimation (SPLE)

Algorithm

Assuming a WSN deployed in an urban area, the estimation process initiates

independently at nodes that detect the presence of pollutant in the atmosphere

using the algorithms of Chapter 3. To avoid congestion effects from having all the

nodes in a WSN transmitting simultaneously upon detection, we assume that the

WSN is clustered with an approach such as LEACH [HCB02] or HEED [YF04].

Nodes that are assigned the role of cluster head at detection time initiate the

estimation process.

An initiating node that detects the event, estimates the state of the pattern

event as it would be observed by the neighbours of its immediate vicinity (line 2,

Algorithm 6.1). This estimate is a linear transformation of the local observation

(Equation 6.1). Next, the node tasks its nearest unvisited neighbours to report

their observations (line 4). This is shown in Figure 6.2a and is achieved by a local

broadcast. At each information exchange, the objective of the sender node is to

select a receiver located closer to the source than itself.

Neighbours receiving the message, take a current observation of the gas con-

centration and transmit is as a response to the initiating node. This is shown

in Figure 6.2b. For each response received, the Kalman filter innovation Zn =

(zk
(i) − Hx̂k

−) is calculated (lines 5-7). Note that x̂ is the estimate of the ini-

tiating node and each observation zk
(i) has a superscript i to indicate which

neighbour reported it. The initiating node calculates the minimum innova-

tion argmin
z

(zk
(i) − Hx̂k

−) and selects the neighbour i who reported the error-

minimising observation as the next hop (line 8). This is shown in Figure 6.2c.

During node selection, the selecting node changes its state to visited and

6. Pattern Location Estimation in the Spatial Domain 99

Algorithm 6.1 Spatial Pattern Location Estimation (SPLE) Algorithm

1: variables Estimate Error Covariance P , Measurement Noise Variance R,
Process Variance Q, State Transition Matrix A, Measurement Matrix H ,
Initial Estimate x̂k

−, maxhopcount=1, netpath[], observations[], counter c =
0;

2: Project state estimate x̂k
− ahead (Eq. 6.1).

3: Project error covariance P k
− ahead (Eq. 6.2).

4: Task unvisited neighbours within maxhopcount to report observations.
5: for (each of replies received) do
6: calculate innovations (zk

(i) −Hx̂k
−)

7: end for
8: Select as next hop the node that minimises the innovation.
9: Compute the Kalman gain (Eq. 6.3).
10: Correct (Update) estimate with observation zk (Eq. 6.4).
11: Correct (Update) the error covariance Pk (Eq. 6.5).
12: Compute relative error.
13: if abs(relative error) >=multiple·(E[Rel Error]) then
14: exit
15: else
16: Set state to visited, add local address to netpath[c], add zk to observations[]

and increment c.
17: Send command message to selected node (line 8) and task it to start at

Line 1.
18: end if

sends the selected node a command message with necessary Kalman filter param-

eters so the latter can continue the estimation process (line 17).

The stopping condition of the estimation process is bound to the relative es-

timation error (Algorithm 6.1 — line 13) such that when the relative estimation

error exceeds a multiple of the mean relative error, the process stops. Typically,

the relative error diminishes after a few iterations as more available observations

increase confidence in estimates. A sharp rise in the relative error reveals the

estimation process moved to a node outside the plume or to an area where ob-

servations differ significantly given the initial estimates and observations.

A successful estimation process ends at a node that is as close to the real

6. Pattern Location Estimation in the Spatial Domain 100

pollutant source as possible. The coordinates and observation of that node, be-

come the final estimate and are transmitted to the application user together with

the netpath and observations arrays. The former is a trajectory sequence of

coordinates that indicate the path of the estimation process and the latter is a

sequence of observations taken by nodes participating in the estimation process.

The enhance the quality of the estimates we introduce a geometric computa-

tion that operates in the following manner: at initiation of the estimation process,

the cluster heads (or initiating nodes) communicate with each other to establish

the centroid of the Convex Hull formed by their coordinates. The convex hull

is the boundary of the minimal convex set containing a finite set of points, rep-

resenting WSN nodes. This is shown in Figure 6.3a. The coordinates of the

centroid are stored for later use.

After four1 hops nodes carrying out the estimation task re-evaluate the cen-

troid of the convex hull formed by their current coordinates. By differencing

the coordinates of the previously evaluated convex hull centroid with those of

the current centroid, a quadrant direction is established. This is one of the four

Cartesian space regions in which the majority of nodes participating in the pro-

cess estimate the source location. This region becomes the consensus and is used

to directionally propagate estimates. If a node does not have neighbours in the

mean direction of movement quadrant, it aborts the estimation run. An exam-

ple of the geometric computation is shown in Figure 6.3b: the mean direction of

movement has been established as the top-right quadrant, therefore estimates are

only propagated towards that direction.

The following chapter evaluates the geometric computation and finds that

estimation accuracy of the algorithm is improved as minority errors made by

individual nodes cannot affect the overall estimation decision.

1This parameter is configurable, but we empirically found that four hops represents a good
choice for re-evaluating the mean direction of movement.

6. Pattern Location Estimation in the Spatial Domain 101

Figure 6.2: An example of SPLE estimate propagation: first, an estimate is trans-
mitted to 1-hop neighbours. Second, the neighbours report their observations.
Third, the neighbour whose reading minimises the estimation error is selected as
next hop, and repeats the process

(a) Step 1 — Transmit esti-
mate to 1-hop neighbours

3

0 5

2

4

6 7 8

1

(b) Step 2 — Collect Observa-
tions

3

0 5

2

4

6 7 8

1

(c) Step 3 — Select Node for
Next Hop

3

0 5

2

4

6 7 8

1

6. Pattern Location Estimation in the Spatial Domain 102

Figure 6.3: Example of the geometric computation to establish the mean direction
of movement

(a) Nodes initiating an estimation process. The dashed lines inside the polygon point
to the current centroid of the Convex Hull formed by the four cluster heads. The
thick arrow lines point to neighbours selected individually by the initiating nodes
as next hops.

SourceCluster 1

Cluster 2

Cluster 3 Cluster 4

(b) The centroid is re-evaluated after one iteration. Differencing the coordinates
of the previous centroid with those of the current results to the mean quadrant
direction of movement. Note that the incorrect decision of the bottom-left
node (in Cluster 3 of the above figure) does not affect the overall estimation.
Once the top-right quadrant has been established as consensus, the only node
that has valid choices for next hops, is the one on the bottom right of the
figure.

Source

6. Pattern Location Estimation in the Spatial Domain 103

6.4 Summary

We presented an iterative coarse-grained location estimation algorithm of a point

source emitting a pollutant plume. The algorithm operates in-the-network and

provides an alternative to techniques that rely on network-wide observation har-

vesting and offline processing. A Kalman filter supplies the optimal estimation

functionality and an in-network localised information exchange builds a collabo-

rative solution to the problem.

In addition, we described a geometric computation employed to augment the

estimation accuracy by adding a consensus or majority rule to the estimation

proceedings. The consensus assumes that a group of collaborating nodes establish

mean direction of movement in order to preclude estimation deviations made by

incorrect individual node decisions.

Chapter 7

Spatial Algorithm: Evaluation

through Simulation

The purpose of this chapter is to evaluate the estimation accuracy, with respect

to varying parameters such as WSN density and node placement, of the proposed

Spatial Pattern Location Estimation (SPLE) algorithm through simulation.

Section 7.1 outlines the evaluation methodology and the setup of the simu-

lation environment including the gas dispersion model. The evaluation study of

Section 7.2 is categorised according to WSN topology of both grid and random

node placements. A summary of findings is presented in Section 7.3.

7.1 Methodology and Simulation Set-up

The experiments described in this chapter were conducted using a MATLAB

[Mat10] implementation of the SPLE algorithm. MATLAB is selected on the

basis that it offers an environment where the behaviour of the SPLE algorithm

can be tested and compared against a baseline algorithm in relatively large WSNs

fields of varying densities.

104

7. Spatial Algorithm: Evaluation through Simulation 105

7.1.1 Maximum Selection Algorithm

In order to compare the estimation accuracy of SPLE against a competitive

approach, we use the Maximum Selection algorithm. The choice of this algo-

rithm as a baseline for comparison was made on the basis of its application

[HMG03, SLV93] in contexts similar to ours and its relative simplicity. It is in-

spired from the biological approach chemotaxis [ZSST04, Ate96] where animals

and insects iteratively locate odours by moving to spatial regions where their

receptors sense a higher intensity odour than their previous position.

Similar to SPLE, the maximum selection algorithm is iterative and operates in

the following manner: the estimation process starts when one or more initiating

nodes sense the spatial pattern event. The assumptions made in Section 6.3

hold, in particular that WSN nodes participate in a cluster scheme with the

cluster heads initiating the estimation process. Upon sensing the spatial pattern

event using the algorithms of Chapter 3, nodes send a message to their local

neighbours tasking them to report their observations. The initiating node collects

the observations of its neighbours and selects the neighbour with the maximum

observation as the next hop, as it represents a node closer to the source. The

selected node changes its state to visited and repeats the process until it runs

out of unvisited local neighbours with higher intensity observations than itself.

The procedural steps for maximum selection are shown in Appendix D, Algo-

rithm D.1.

7.1.2 Dispersion Model

We use the gas dispersion and sensor response model proposed in [INM97] due

to the similarity of the investigated problem, namely a sensing system with the

capacity to locate a gas or odour source.

The model assumes one-directional wind field, constant wind speed, homoge-

neous turbulence and single pollutant source emitting gas at a constant rate. The

dimensionality of the problem is reduced by not taking height into account and

assuming that the source is placed on the floor. The resultant gas distribution

7. Spatial Algorithm: Evaluation through Simulation 106

C0 and sensor response r0 are governed by the following two equations:

C0(x, y) = p1
1

ds
exp[−p2(ds −∆x)] (7.1)

r0(x, y) = [1 + 0.2309C0(x, y)]
−0.6705 (7.2)

where:

C0(x, y) is the time-averaged gas concentration at coordinates (x, y)

p1 is given by p1 =
q

2πK

q is the gas emission rate (in g/sec)

K is the turbulent diffusion coefficient

p2 is given by p2 =
U
2K

U is the wind speed (in m/sec)

ds is given by ds =
√

(xs − x)2 + (ys − y)2

(xs, ys) are the true coordinates of the source

∆x is given by (xs − x) cos θ + (ys − y) sin θ

θ is the angle from the x-axis to the upwind direction
The experiments of Section 7.2, use the parameter values shown in Table 7.1.

7.1.3 Kalman Filter Initial Parameters

As described in the previous chapter, the estimation functionality of the SPLE al-

gorithm is realised by the combination of a geometric computation with a Kalman

filter. The filter was optimised using the functions fminsearch [Mat08b] and

Parameter Description Value

q Gas-emission rate 45, 000
K Turbulent diffusion coefficient 17.463
U Wind speed 3.1
θ Upwind direction angle 1
(xs, ys) True source coordinates) (95, 95)

Table 7.1: Parameter values for gas dispersion model

7. Spatial Algorithm: Evaluation through Simulation 107

KF Parameter Description Value

A State transition scalar 1.0315
P Estimation error covariance 0.1021
Q Process error covariance 0.0503
R Measurement noise covariance 0.1

Table 7.2: Kalman filter initial parameters obtained by MATLAB functions
fminsearch and fminbnd. For a more detailed discussion of their role to the
Kalman filter, refer to Section 6.2 and references therein.

fminbnd [Mat08a] of MATLAB in order to obtain necessary initialisation param-

eters for state transition scalar, error covariance, process covariance and observa-

tion noise covariance.

Minimisation was performed by repeatedly executing the SPLE algorithm

for simulated nodes with different coordinates. Function minimisation selects

appropriate Kalman filter parameter values such that the estimation error, in

terms of distance and intensity of the real source, is minimised. The final set of

parameter values is shown in Table 7.2 and is used globally for all nodes in the

WSN field and all experiments described in this chapter. Adaptation of Kalman

filter parameters is often necessary and common in estimation tasks, for example

[GRG88] describes a similar optimisation process.

7.1.4 Topology Generation

We use the Link Layer model and topology generator1 described in [ZK05] to

generate the network topologies. The same model is used by TinyOS and gen-

erates topologies and network links, as a collection of coordinates and Packet

Reception Rates (PRR) respectively. For simplicity, we do not explicitly model

radio communications and only use the topology coordinates generated by the

software.

1Distributed as MATLAB and Java software.

7. Spatial Algorithm: Evaluation through Simulation 108

7.2 Evaluation of Spatial Pattern Location Es-

timation

For this study, we classify an estimation run as accurate if it terminates at a

WSN node located no farther than six meters from the true source. We refer to

this measure as proximity accuracy and impose the limit of six meters (Euclidean

distance) because we are targeting a coarse-grained estimation technique.

An estimation run is the estimation process of Section 6.3, from the starting

point where a node first senses the pattern event until one (or more) of its neigh-

bours, tasked with continuing the estimation process, decide to terminate because

either the terminating condition has been met or there are no more unvisited local

neighbours to continue the estimation process.

The topology terrain is a plane of 100-by-100 meters with the true source

located at coordinates (95, 95).

7.2.1 Metrics

To evaluate the estimation accuracy of SPLE, we use the following metrics:

• The Euclidean distance, in meters, between the estimated source coordi-

nates and the true source coordinates.

• The error, in relative terms, between the final intensity estimate and the

true intensity of the source.

• The length of the path, in hops, followed from beginning to end of an

estimation run.

The first two parameters determine estimation accuracy and the third parameter

offers a coarse indication of communication cost and detection latency.

7.2.2 Grid Topology

To conduct an initial investigation on the impact of WSN density to the perfor-

mance of the SPLE algorithm, we consider two grid topologies of 4, 900 and 1, 024

7. Spatial Algorithm: Evaluation through Simulation 109

nodes.

Hypothesis

The SPLE algorithm can perform competitively against a maximum selection

algorithm with respect to estimation accuracy as distance from the true source,

error in intensity estimate and path length as the number of nodes visited during

an estimation run.

Experiments

We cover the WSN by initiating our SPLE algorithm without the geometric

computation at every simulated node in the field. In the 4, 900 topology, we

exclude 192 nodes as they were placed within a region of less than 16 meters to

the source and they would bias the results in favour of the SPLE algorithm. For

the same reason, we exclude 33 nodes in the 1, 024-node topology. An example

of the dispersion plume labelled with gas concentration intensities is shown in

Figure 7.1.

Findings

A summary of the results over both topologies is shown in Tables 7.3 and 7.4:

out of 4, 708 nodes that initiated a SPLE run, 2, 905 or 61.7% estimated the

source location within six meters in the 4, 900-node topology. For the 1, 024-node

topology, 54.59% or 541 nodes estimated the source within six meters.

The maximum selection algorithm underperformed with respect to both es-

timation accuracy and path lengths: 53.29% and 50.01% of nodes terminated

within six meters of the source in the 4, 900 and 1, 024 node topologies respec-

tively. On the basis of these experiments the hypothesis that SPLE can perform

competitively against a maximum selection algorithm was confirmed.

7. Spatial Algorithm: Evaluation through Simulation 110

Figure 7.1: The dispersion plume considered by the experiments. Gas concentra-
tion intensities are labelled on the contour lines. The source is located at the top
right of the figure at coordinates (95, 95) marked with a circle.

0.
1

0.
1

0.
1

0.
2

0.
2

0.
2

0.2
0.2

0.2

0.
3

0.
3

0.
3

0.3

0.3

0.3

0.
4

0.
4

0.
4

0.
40.4

0.4

0.4

0.5

0.5

0.5

0.
50.5

0.5

0.5

0.6

0.6

0.6

0.
6

0.6

0.6

0.6

0.7

0.7

0.7

0.7
0.7

0.7

0.7

0.8

0.8

0.8
0.8

0.8

0.8

0.8

0.9

0.9

0.9
0.9

0.9

0.9

0.9

Terrain Dimension X [meters]

T
er

ra
in

D
im

en
si

o
n

Y
[m

et
er

s]

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

7.2.3 Random Topology

Similar to the previous experiment, we consider two topologies of different den-

sities: a 5, 000-node and a 1, 000-node topology.

Hypothesis

The SPLE algorithm is capable of computing accurate estimates — within six

meters of the true source — with random placement and selection of initiating

nodes.

7. Spatial Algorithm: Evaluation through Simulation 111

SPLE Max Selection

Proximity Accuracy
(% of nodes ending an estimation
run within six meters of the source) 61.7 % 53.29 %
Mean Distance 3.26 2.87
Median Distance 3 3
Intensity Accuracy
(Mean Relative Error) 6.73 % 8.17%
Mean Path Length (hops) 72.16 77.01
Median Path Length (hops) 74 79

Table 7.3: Baseline comparison of our SPLE algorithm with the Maximum Se-
lection algorithm over 4, 900-node grid topology. 4, 708 WSN nodes initiate the
estimation run and their results are summarised.

Experiments

We assume a WSN that arranges nodes in clusters using a method like LEACH

[HCB02] or HEED [YF04]. As described in Section 6.3, the role of a cluster head

is to initiate an estimation run and to collaborate with neighbouring cluster heads

in order to compute the geometric mean direction of movement.

Similar to the previous experiments, to avoid bias of results in favour of the

SPLE algorithm nodes placed within 16 meters of the true source are not consid-

ered as candidates for initiating an estimation run.

The experiments are divided into eight trials testing 1, 000 possible clusters

with 4 and 5 nodes per cluster.

Findings

For reference, we perform an initial evaluation of the SPLE algorithm without its

geometric computation component. The results were comparable with those of

the grid topologies: 50.74% and 46.09% of nodes computed an accurate proximity

estimate, for the 5, 000 and 1, 000 topologies respectively.

The strength of the geometric computation is demonstrated by achieving im-

proved mean proximity accuracy of 87.24% and 90.91% with four and five cluster

7. Spatial Algorithm: Evaluation through Simulation 112

SPLE Max Selection

Proximity Accuracy
(% of nodes ending an estimation
run within six meters of the source) 54.59 % 50.01 %
Mean Distance 4.13 3.99
Median Distance 4 4
Intensity Accuracy
(Mean Relative Error) 9.11 % 10.33%
Mean Path Length (hops) 39.52 41.91
Median Path Length (hops) 38 43

Table 7.4: Baseline comparison of our SPLE algorithm with the Maximum Se-
lection algorithm over 1, 024-node grid topology. 991 WSN nodes initiate the
estimation run and their results are summarised.

heads participating in the geometric computation respectively. This means that

over eight trials, the geometric computation with SPLE maintained estimation

accuracy over 85%; that is over 85% of nodes were successful in estimating the

true source coordinates within six meters. In addition, mean distance to the

source and path lengths also improve with results for the 5, 000-node topology

summarised in Table 7.5.

The experiments were repeated on five 1, 000-node topologies and the results

are shown in Table 7.6. It can be seen that proximity accuracy is affected by

topology with a worst case of 86.53% of nodes successfully estimating the true

source coordinates within six meters. Results for five cluster heads participating

in the geometric computation (not shown on the table for clarity) are slightly

higher with a maximum of 98.21% of nodes successfully estimating the true source

within six meters of its actual location.

An example of the geometric computation with multiple evaluations of the

convex hull centroids is shown in Figure 7.2. Overall the hypothesis that SPLE

can compute estimates accurate within six meters of the true source location with-

out relying on particular initiating node selection or placement was confirmed.

7. Spatial Algorithm: Evaluation through Simulation 113

4 cluster heads 5 cluster heads
of Accurate Clusters

Trials (At least one node terminates within 6m)

Trial #1 : 897/1000 918/1000
Trial #2 : 873/1000 916/1000
Trial #3 : 862/1000 894/1000
Trial #4 : 891/1000 909/1000
Trial #5 : 865/1000 924/1000
Trial #6 : 874/1000 906/1000
Trial #7 : 855/1000 900/1000
Trial #8 : 862/1000 906/1000
Proximity Accuracy
(Average over 8 trials) 87.24% 90.91%
Mean distance 2.7811 2.7263
Median distance 2.6861 2.6681
Intensity Accuracy
(Mean Relative Error) 5.28 % 5.24%
Mean Path Length 26.79 20.09
Median Path Length 21 21

Table 7.5: The general performance of the SPLE algorithm over the 5, 000-node
random topology. In total, we average the results for the eight trials with a cluster
considered accurate if at least one of the member nodes terminates the estimation
run within six meters to the true source.

Overall performance
Topology #1 #2 #3 #4 #5

Proximity Accuracy
(Average over 8 trials) 86.53% 97.33% 94.45 % 94.5% 86.71
Mean distance 3.66 5.12 5.64 3.2 2.29
Median distance 3.44 5.16 5.92 3.07 2.19
Intensity Accuracy
(Mean Relative Error) 6.91% 8.12% 8.19% 6.07% 5.1%
Mean Path Length 23.71 25.68 23.2 26.11 27.02
Median path Length 21 23 21 22 24

Table 7.6: The performance of the SPLE algorithm over five 1, 000-node topolo-
gies with 4-node clusters initiating the estimation run.

7. Spatial Algorithm: Evaluation through Simulation 114

7.3 Summary of Findings

We conducted evaluation through simulation of the Spatial Pattern Location Esti-

mation (SPLE) algorithm. We found that, under certain assumptions, the SPLE

algorithm is accurate at the task of locating the pollutant source coordinates

within six meters. Specifically we found the following:

(i) The SPLE algorithm is competitive against a maximum selection algorithm.

The latter follows the maximum sensor observations in an attempt to locate

the pollutant source.

(ii) Four cluster heads collaborating in the geometric computation improve the

proximity accuracy of SPLE with 86%-97% of nodes estimating the source

location within six meters of its actual coordinates on the random topologies.

(iii) The overall performance of the SPLE algorithm is not significantly affected

by placement and selection of initiating nodes with a worst-case accuracy

of over 85% across the random topologies.

Finally, the study described in this chapter opens several directions for future

work further explored in Section 8.4.

7. Spatial Algorithm: Evaluation through Simulation 115

Figure 7.2: SPLE algorithm with geometric computation of the mean direction
of movement shown as the arrow joining the two convex hull centroids (denoted
by the ’X’). Solid points represent node locations and the polygon surrounding
them is the convex hull. True source is located at coordinates (95,95).

(a) First evaluation of the geometric computation. Nodes form a cluster in or-
der to establish the current centroid of the polygon formed by the edge node
coordinates.

Terrain Dimension X [meters]

T
er

ra
in

D
im

en
si

o
n

Y
[
m

et
er

s
]

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

7. Spatial Algorithm: Evaluation through Simulation 116

Figure 7.2: SPLE algorithm with geometric computation of the mean direction
of movement shown as the arrow joining the two convex hull centroids (denoted
by the ’X’). Solid points represent node locations and the polygon surrounding
them is the convex hull. True source is located at coordinates (95,95).

(b) Second evaluation of the geometric computation. Cluster heads establish con-
sensus by determining the mean direction of movement, as difference between
the previous and the current convex hull centroids. The centroids are marked
with ’X’ and the direction of movement is marked with an arrow.

Terrain Dimension X [meters]

T
er

ra
in

D
im

en
si

o
n

Y
[
m

et
er

s
]

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

7. Spatial Algorithm: Evaluation through Simulation 117

Figure 7.2: SPLE algorithm with geometric computation of the mean direction
of movement shown as the arrow joining the two convex hull centroids (denoted
by the ’X’). Solid points represent node locations and the polygon surrounding
them is the convex hull. True source is located at coordinates (95,95).

(c) Final outcome of the estimation run: two (out of 4) nodes achieve estimates
of 2.364 and 2.7431 (Euclidean) distance to the true source. Their paths are
shown by the thick solid lines. Two of the other nodes (shown in the bottom
right of the figure) cannot identify neighbours in the consensus direction of
movement and terminate the process. Their paths are shown by the normal
weight solid lines.

Terrain Dimension X [meters]

T
er

ra
in

D
im

en
si

o
n

Y
[
m

et
er

s
]

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Chapter 8

Conclusions and Future Work

In this thesis, we introduced methods and algorithms that provide pattern match-

ing and detection in extremely resource constrained Wireless Sensor Networks

(WSNs). Specifically, we presented temporal domain algorithms that process

streaming sensor observations to classify patterns that reveal interesting or un-

usual activity in the monitored process, phenomenon or structure (monitored

object). Moreover, we designed a spatial domain iterative algorithm, based on a

geometric computation and a Kalman filter that estimates the location of a gas

emitting source.

This final chapter, summarises the thesis in Section 8.1 and reviews the con-

tributions in Section 8.2. A critical appraisal of the thesis is presented in Section

8.3 and directions for future work are explored in Section 8.4.

8.1 Summary of the Thesis

Target Platform Constraints As discussed in Chapter 1, this thesis intro-

duces methods and algorithms that target extremely resource constrained WSN

nodes. A characteristic of such devices is that they are limited in power resources

and computational capabilities. In particular, Section 1.1.1 identified the high

power draw of radio in relation to other components in agreement with the view

[ZG09, MGH09, TE07, CES04, GKW+02] that locally processing sensor data to

118

8. Conclusions and Future Work 119

determine the presence of interesting or unusual activity can reduce the number

of unnecessary transmissions and, as a consequence, prolong node lifetime.

Problem Formulation The problem investigated is the provision of compu-

tationally efficient in-network pattern matching and detection algorithms that

involve solely local processing for temporal patterns and localised communica-

tion for location estimation of spatial patterns.

A pattern was defined as an ordered list of potentially non-unique sensor

observations revealing interesting or unusual activity in the monitored object.

Interesting and unusual are class labels [CBK09] defined in terms of distance,

probability or string searching.

Rationale Motivation for selecting this problem was twofold: first, pattern

matching and detection can benefit a number of reactive applications from differ-

ent domains reviewed in Chapter 2. Second, after examining related literature,

we found a number of approaches either lacked evidence of implementation for

resource constrained WSNs or assumed an out-of-network processing model that

relies on radio communication for transmitting observations to base stations.

Temporal domain patterns Chapter 3 introduced temporal domain pattern

matching and detection algorithms. The basis for the algorithms is symbolic

aggregate approximation (SAX [LKLC03]) that converts windows of streaming

sensor observations to strings. Pattern matching is performed by computing the

distance between a sensor produced pattern (sensor string) with a user submitted

template pattern (template), or by determining whether the sensor string appears

in the collection of templates. Non-parametric detection compares two temporally

adjacent sensor strings to a maximum learnt distance and probabilistic detection

computes the path probability of a sensor string, given learning data.

Evaluation was conducted in two parts: the first part (Chapter 4) emulated

the timer, sensor and ADC components of a node to simulate sensor data acqui-

sition. Experiments investigated the impact of symbolic conversion parameters

8. Conclusions and Future Work 120

— such as alphabet size, window length and compression ratio — to false posi-

tives. Further experiments compared Non-Parametric Pattern Detection against

two alternative event detection techniques. Findings confirmed that our approach

was competitive with 92.7% sensitivity (cf. Section 4.3.1). In addition, findings

from a preliminary study into the effects of measurement noise were encouraging:

detection accuracy degraded gracefully in relationship to increasing signal noise

(cf. Section 4.3.2).

The second part (Chapter 5) of evaluation validated the operational profile

of the algorithms through deployments and full implementation. The algorithms

were refactored to ensure computationally efficient pattern matching and detec-

tion runtime (cf. Section 5.1). The runtime cost is known at compile-time and

depends only on the window length of sensor observations. To achieve a re-

duction of MCU active time, an algorithm that automatically adjusts sampling

frequency according to the perceived activity level of the monitored object was

introduced (cf. Section 5.2). For validation, a WSN was deployed in a data centre

and findings showed that both automatic sampling frequency management and

non-parametric detection are feasible (cf. Section 5.2.1).

The temporal algorithms are made available to users of a reactive system

via a Publish/Subscribe (Pub/Sub) interface. Integration with Pub/Sub through

implementation (cf. Section 5.3) shows that the proposed methods and algo-

rithms are compatible with standard TinyOS communication protocols and do

not require modifications in the underlying networking layers.

Spatial Domain Patterns Spatial patterns are events with position and direc-

tion in physical space. Chapter 6 introduces a localised communication algorithm

that combines a geometric computation with a Kalman filter to solve the problem

of estimating the location and intensity of a pollutant emitting source. The mo-

tivating scenario is urban deployment of WSNs for in-network detection of dirty

bombs as an alternative to transmitting observations across multihop paths to

base stations.

Initial evaluation of the spatial pattern location estimation algorithm, shows

8. Conclusions and Future Work 121

it is competitive (cf. Section 7.2.2) compared to a maximum selection algorithm.

Furthermore, evaluation of estimation performance on a number of random WSN

topologies provides evidence that the collaborative geometric computation com-

ponent of the algorithm improves location estimation accuracy (cf. Section 7.2.3).

8.2 Summary of Contributions

This thesis makes the following contributions:

(i) Introduces five temporal domain in-network pattern matching and detection

algorithms (Chapter 3).

(ii) Provides evidence (Chapter 4) that the algorithms produce consistent results

across three case studies and are competitive against other pattern event

detection methods.

(iii) Demonstrates suitability for extremely resource constrained WSN nodes by

verifying the modest runtime requirements through implementation (Chap-

ter 5).

(iv) Introduces a geometric computation combined with a Kalman filter into a

collaborative algorithm (Chapter 6) that iteratively estimates the location

of a spatial pattern event inside-the-network.

(v) Provides evidence (Chapter 7) that the spatial algorithm is competitive

against a maximum selection approach without relying on node placement.

Overall, we believe our findings contribute towards WSN-related research in the

field of reactive systems by proposing computationally efficient algorithms for

in-network pattern matching and detection.

8. Conclusions and Future Work 122

8.3 Critical Appraisal

Despite the findings from evaluation of the proposed algorithms through deploy-

ments and simulation, further work is required to establish their general appli-

cability and competitiveness with other approaches across a number of domains.

There are several directions for improving the findings and extending the work,

explored in the next section.

8.4 Directions for Future Research

Temporal Algorithms In order to demonstrate that the algorithms can gen-

eralise beyond the range of domains already tested, that are resilient to signal

noise and competitive against a number of other event detection approaches, we

propose the following actions:

(i) Conduct a comparative evaluation of all five temporal algorithms of Chapter

3 against additional competitive techniques on a range of data sets with

varying characteristics.

(ii) Investigate the noise model of different hardware sensors and extend the

preliminary study of Section 4.3.2 with respect to accuracy of temporal

domain algorithms under varying magnitudes and types of noise.

(iii) Perform a matching and detection accuracy comparison between the pro-

posed algorithms and a straightforward thresholding technique. The latter

will require adaptation to data sets and specification of threshold values and

predicates, nevertheless shortcomings of such a technique can be quantified,

for instance with an investigation into the effect of outliers on false positives.

(iv) Compare the execution profile of the proposed algorithms to competitive

techniques and evaluate the runtime of the probabilistic pattern detection

algorithm.

8. Conclusions and Future Work 123

(v) Conduct a study into the effects of dynamic sampling frequency manage-

ment (Section 5.2) with respect to false negatives that may occur as a side

effect of reduced sensor data acquisition frequency.

Spatial Algorithm The plume dispersion scenario of Chapter 6 makes a num-

ber of simplifying assumptions to study and understand the problem parameters,

common with related research by others [GRG88, INM97, CYR+08]. To address

properties of the real world problem and extend evaluation of the proposed solu-

tion, the following directions can be pursued:

(vi) Alter the gas dispersion model assumptions and investigate the performance

of the algorithm with respect to multiple sources, variations in wind speed

and atmospheric turbulence and irregular topologies with sparse or discon-

nected regions.

(vii) Evaluate against competitive techniques such as TDOA and comparatively

investigate the communication cost and estimation latency of the algorithm.

(viii) Implement the proposed spatial algorithm for resource constrained WSN

nodes and conduct a processing measurement evaluation to verify execution

efficiency. Moreover, consider and evaluate the operational cost of a range of

filters to cater for different situations. Runtime cost analysis will contribute

towards operational predictability of the spatial algorithm.

Additional opportunities Further to the above directions that extend the

findings of this thesis in the short term, we aim to explore the following longer

term issues:

(ix) Extension of pattern matching and detection to automated diagnosis sys-

tems. In the past, we conducted data analysis from breath samples of cystic

fibrosis patients collected using a Cyranose 320 [Det07] electronic nose com-

prising an array of 32 sensors, each one responding to a particular gas. The

objective was to aid diagnosis of bacterial lung infections using samples from

8. Conclusions and Future Work 124

the electronic nose. Although the device is accompanied by classification

algorithms such as PCA and nearest neighbour, other classification algo-

rithms can be applied in vertical applications designed with a particular

objective. Research in the use of the electronic nose for classification (cf.

[DD06, SMD+04, ATH03]), indicates this is an application area where the

algorithms of Chapter 3 can apply.

(x) Development of an integer-only library comprising functions defined in the

math.h C header specification [KR78], such as sqrt, sin, cos, tan. A

software library with fixed-point implementation of varying precision for

these functions can be a valuable tool to applications that perform target

tracking or data analysis. The temporal domain algorithms rely on square

root and an integer version has already been implemented, however extend-

ing the implementation to functions outside the scope of this thesis can

benefit practitioners in the wider WSN community.

(xi) Continue to adapt the algorithms to devices with intermittent power such

as the battery-free Intel WISP [Res08] that has been used as a target plat-

form for deployment (cf. Section 5.4). A related platform [Alb08], combines

RFID tags with chemically or biologically sensitive films capable of detect-

ing chemical vapours in scenarios similar to the one considered by spatial

pattern location estimation. These devices introduce a new paradigm where

computation is intermittent and dictated by the presence of power sources

such as RFID readers. Scavenged energy is usually available in short bursts

and fluctuations can cause abrupt changes in power levels, interrupting on-

going operations. We intend to investigate the possibility and associated

cost of intermittent checkpoints to save pattern matching and detection

state in case of power failures.

Overall, we will continue to pursue deployment of WSNs targeting reactive

applications since the practical work involved often uncovers issues deeply inter-

twined with the restricted functionality of nodes and extend empirical application-

level research in WSNs.

Glossary

ADC An Analog-to-Digital Converter is a hardware component responsible for

converting continuous analog signals to discrete digital numbers. It is typi-

cally found as the interfacing component between the sensors and the pro-

cessor in a wireless sensor node. 76, 119

AIS An Artificial Immune System (AIS) is a biologically inspired system that

mimics the human immune system to solve a problem. 28, 35

BMS A Building Management System (BMS) is a computer-based system that

aims to monitor a building’s mechanical and electrical equipment such as

cooling, heating, lighting and power. 83

BSN A more specific type of WSN that employs various sensors to provide con-

tinuous monitoring and analysis of physiological parameters of human sub-

jects. 26, 27

Convex Hull A Convex Hull for a set of points P in a real vector space V is

the minimal convex set containing P . It represents the boundary of the

minimal convex set containing the set of points P in the plane. 100

EWMA An Exponentially Weighted Moving Average (EWMA) is a statistical

technique used to analyse a set of data points by creating an average of one

subset of the full data set at a time, with each number in the subset given

a weighting factor that decreases exponentially giving more importance to

125

Glossary 126

recent observations while still not discarding older observations entirely. 24,

35, 58–60

FPU The floating point unit (FPU) is a computer chip that has been designed to

carry out arithmetic operations involving floating point numbers. Modern

desktop and server-class processors integrate the FPU in the main CPU,

however a number of embedded devices lack an FPU altogether and op-

erations involving floating-point numbers must be carried out in software.

15

MAC The Medium (or Media) Access Control sublayer provides access control

mechanisms that make it possible for nodes to communicate in a network.

It is responsible for framing, medium access, reliability, flow control and

error detection. 29

MCU A Microcontroller Unit (MCU) is a small computer on a single integrated

circuit consisting of a relatively simple CPU combined with support func-

tions such as a crystal oscillator, timers, watchdog, serial and analog I/O

and so on. 15, 20, 73, 76, 77, 81, 84, 91, 120, 152

OSI The Open Systems Interconnection (OSI) is a joint effort to standardise

networking protocols started by the International Organisation for Stan-

dardisation. 29

PCA Principal Component Analysis (PCA) aims to reduce dimensionality of a

data set consisting of a large number of interrelated variables while retaining

as much information as possible on the variations present in the data set

[Jol02]. 29, 36, 124

PRR The Packet Reception Rate (PRR) is the ratio of packets received by

a receiving node to packets sent by a transmitting node. A PRR of 1

indicates a perfect link while a PRR of 0 indicates no path between source

and destination. 107

Glossary 127

Pub/Sub Publish/Subscribe (Pub/Sub) is a loosely-coupled communication paradigm

that is primarily used to deliver interests in events (subscriptions) to event

producers and to disseminate event notifications from producers (publish-

ers) to interested parties (event consumers). 20, 90, 120

RAM Random-Access Memory (RAM) is a form of computer data storage with

constant access time regardless of the location of the data. 15

RFID Radio-frequency identification (RFID) is an automatic identification method,

relying on storing and remotely retrieving data using devices called RFID

tags or transponders. 91, 93

RLE Run Length Encoding (RLE) is a technique that reduces the the size of

a repeating string of characters by replacing one long string of consecutive

characters with a single data value and count. 25, 26

RSAM Real-time Seismic Amplitude Measurement (RSAM) sums the average

amplitude of a seismic signal during an interval to output a measure of the

overall level of seismic activity. 59

SHM Structural Health Monitoring (SHM) is the process of implementing a

damage detection strategy for aerospace, civil and mechanical engineering

infrastructure. 36

SNR The Signal-to-Noise Ratio (SNR or S/N) is the ratio of the signal power

to the noise corrupting this signal. In the context of WSNs it is sometimes

used as a Link Estimation metric. 65, 70

SPoF A Single Point of Failure (SPoF) is a network node whose failure compro-

mises or even stops the operation of the entire system. 36

SVM The original Support Vector Machine (SVM) is a non-probabilistic linear

classifier that aims to predict one of two appropriate classes for given input

data. SVMs are collections of related classifiers used, among other purposes,

for pattern classification. 27, 30, 36

Glossary 128

TDOA Time Difference Of Arrival (TDOA) is a localisation method based on

combining the time of arrival of a signal emitted from a source and received

by three, or more, receivers. 32, 36, 123

WSAN A Wireless Sensor Actuator Network (WSAN) is a kind of control sys-

tem in which sensing, actuation and decision making are distributed while

resource-constrained system components communicate with each other [KC08].

25

WSN A Wireless Sensor Network (WSN) is a wireless network consisting of spa-

tially distributed autonomous devices using sensors to cooperatively mon-

itor physical or environmental conditions, such as temperature, sound, vi-

bration, pressure, motion or pollutants, at different locations. 14, 15, 50,

118

Bibliography

[AK04] Ian F. Akyildiz and Ismail H. Kasimoglu. Wireless sensor and

actor networks: research challenges. Ad Hoc Networks, 2(4):351–

367, 2004.

[Alb08] Brian Albright. RFID Sensor Platform from GE Breaks New

Ground. http://www.rfidupdate.com/articles/index.php?

id=1691, October 2008.

[ASSC02] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci.

Wireless sensor networks: a survey. Computer Networks,

38(4):393–422, 2002.

[ATB05] R. C. Aster, C. H. Thurber, and B. Borchers. Parameter estimation

and inverse problems. Academic Press, 2005.

[Ate96] J. Atema. Eddy chemotaxis and odor landscapes: exploration of

nature with animal sensors. Biological Bulletin, 191(1):129–138,

1996.

[ATH03] Anna Aronzon, Erica R. Thaler, and C. William Hanson. Differen-

tiation between cerebrospinal fluid and serum with electronic nose.

Otolaryngology - Head and Neck Surgery, 129(2):–204, 2003. An-

nual Meeting of the American Academy of Otolaryngology-Head

and Neck Surgery Foundation, Inc.

129

http://www.rfidupdate.com/articles/index.php?id=1691
http://www.rfidupdate.com/articles/index.php?id=1691

BIBLIOGRAPHY 130

[AY05] Kemal Akkaya and Mohamed Younis. A survey on routing proto-

cols for wireless sensor networks. Ad Hoc Networks, 3(3):325–349,

2005.

[BCFL09] Yingyi Bu, Lei Chen, Ada Wai-Chee Fu, and Dawei Liu. Efficient

anomaly monitoring over moving object trajectory streams. In

KDD ’09: Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 159–

168, 2009.

[Ben99] Jon Bentley. Programming Pearls (2nd Edition). Addison-Wesley

, 1999.

[BGGS09] J. Brusey, E. Gaura, D. Goldsmith, and J. Shuttleworth.

FieldMAP: A Spatio-Temporal Field Monitoring Application Pro-

totyping Framework. IEEE Sensors Journal, 9(11):1378–1390,

2009.

[BHL07] L. M. A. Bettencourt, A. A. Hagberg, and L. B. Larkey. Separating

the wheat from the chaff: practical anomaly detection schemes

in ecological applications of distributed sensor networks. Lecture

Notes in Computer Science, 4549:223–239, 2007.

[BPC+07] Paolo Barontib, Prashant Pillaia, Vince W. C. Chooka, Stefano

Chessab, Alberto Gottab, and Y. Fun Hu. Wireless Sensor Net-

works: A Survey on the State of the Art and the 802.15.4 and

ZigBee Standards. Computer Communications, 30(7):1655–1695,

2007.

[BRR08] Elizabeth A. Basha, Sai Ravela, and Daniela Rus. Model-based

monitoring for early warning flood detection. In SenSys ’08: Pro-

ceedings of the 6th ACM conference on Embedded network sensor

systems, pages 295–308, New York, NY, USA, 2008. ACM.

BIBLIOGRAPHY 131

[Byr05] C. L. Byrne. Signal Processing: a mathematical approach. AK

Peters Ltd, 2005.

[CBK09] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly

Detection: A Survey. ACM Computing Surveys, 2009.

[CES04] David E. Culler, Deborah Estrin, and Mani B. Srivastava. Guest

Editors’ Introduction: Overview of Sensor Networks. IEEE Com-

puter, 37(8):41–49, 2004.

[CJ02] Gianpaolo Cugola and H. Arno Jacobsen. Using publish/subscribe

middleware for mobile systems. SIGMOBILE Mob. Comput. Com-

mun. Rev., 6(4):25–33, 2002.

[CLD08] Kenan Casey, Alvin Lim, and Gerry Dozier. A Sensor Network

Architecture for Tsunami Detection and Response. International

Journal of Distributed Sensor Networks, 4(1):28–43, 2008.

[CMY05] Jiansheng Chen, Yiu Sang Moon, and Hoi-Wo Yeung. Palmprint

Authentication Using Time Series. In Takeo Kanade, Anil K. Jain,

and Nalini K. Ratha, editors, AVBPA, pages 376–385. Springer,

2005.

[CP07] Joseph Cox and Michael Partensky. Spatial Localization Problem

and the Circle of Apollonius. http://arxiv.org/abs/physics/

0701146, January 2007.

[CPGM06] V. Chatzigiannakis, S. Papavassiliou, M. Grammatikou, and

B. Maglaris. Hierarchical Anomaly Detection in Distributed Large-

Scale Sensor Networks. In ISCC ’06: Proceedings of the 11th IEEE

Symposium on Computers and Communications, pages 761–767,

Washington, DC, USA, 2006. IEEE Computer Society.

[CWC+07] Rebecca Castano, Kiri L. Wagstaff, Steve Chien, Timothy M.

Stough, and Benyang Tang. On-board analysis of uncalibrated

http://arxiv.org/abs/physics/0701146
http://arxiv.org/abs/physics/0701146

BIBLIOGRAPHY 132

data for a spacecraft at mars. In KDD ’07: Proceedings of the 13th

ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 922–930, 2007.

[CYR+08] Jren-Chit Chin, David K. Y. Yau, Nageswara S. V. Rao, Yong

Yang, Chris Y. T. Ma, and Mallikarjun Shankar. Accurate local-

ization of low-level radioactive source under noise and measurement

errors. In SenSys ’08: Proceedings of the 6th ACM conference on

Embedded network sensor systems, pages 183–196, New York, NY,

USA, 2008. ACM.

[DD06] Ritabrata Dutta and Ritaban Dutta. ”Maximum Probability

Rule” based classification of MRSA infections in hospital environ-

ment: Using electronic nose. Sensors and Actuators B: Chemical,

120(1):156–165, 2006.

[Det07] Smiths Detection. Cyranose 320 Electronic Nose. http://www.

smithsdetection.com/eng/Cyranose_320.php, 2007.

[DFN06] Wenliang Du, Lei Fang, and Peng Ning. LAD: localization anomaly

detection for wireless sensor networks. Journal of Parallel and

Distributed Computing, 66(7):874–886, 2006.

[DGH+06] Alan J. Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riede-

wald, and Walker M. White. Towards Expressive Publish/Sub-

scribe Systems. In EDBT, pages 627–644. Springer, 2006.

[DGL+05] P. Desnoyers, D. Ganesan, H. Li, M. Li, and P. Shenoy. PRESTO:

A predictive storage architecture for sensor networks. In Tenth

Workshop on Hot Topics in Operating Systems (HotOS X), 2005.

[DSS07] M. Drozda, S. Schaust, and H. Szczerbicka. Is AIS based misbehav-

ior detection suitable for wireless sensor networks. In Proc. IEEE

Wireless Communications and Networking Conference (WCNC).

Citeseer, 2007.

http://www.smithsdetection.com/eng/Cyranose_320.php
http://www.smithsdetection.com/eng/Cyranose_320.php

BIBLIOGRAPHY 133

[DTP91] J. Durkin, D. Tallo, and E. J. Petrik. FIDEX: An expert system for

satellite diagnostics. In In its Space Communications Technology

Conference: Onboard Processing and Switching p 143-152 (SEE

N92-14202 05-32), pages 143–152, 1991.

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and

Anne-Marie Kermarrec. The many faces of publish/subscribe.

ACM Comput. Surv., 35(2):114–131, 2003.

[EM91] E. T. Endo and T. Murray. Real-time seismic amplitude measure-

ment (RSAM): a volcano monitoring and prediction tool. Bulletin

of Volcanology, 53(7):533–545, 1991.

[FCG10] P. A. Forero, A. Cano, and G. B. Giannakis. Consensus-based

distributed support vector machines. Journal of Machine Learning

Research, 11:1663–1707, 2010.

[GJV+05] L. Gu, D. Jia, P. Vicaire, T. Yan, L. Luo, A. Tirumala, Q. Cao,

T. He, J. A. Stankovic, and T. Abdelzaher. Lightweight detection

and classification for wireless sensor networks in realistic environ-

ments. In SenSys’ 05, pages 205–217. Citeseer, 2005.

[GKW+02] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and

S. Wicker. Complex Behavior at Scale: An Experimental Study of

Low-Power Wireless Sensor Networks. Technical report, 2002.

[GN03] E. Gaura and R. M. Newman. Microsensors, arrays and auto-

matic diagnosis of sensor faults. In IEEE International Conference

on Advanced Intelligent Mechatronic (AIM2003), pages 360–366,

2003.

[Gol91] D. Goldberg. What every computer scientist should know about

floating-point arithmetic. ACM Computing Surveys (CSUR),

23(1):5–48, 1991.

BIBLIOGRAPHY 134

[GRG88] Ajith Gunatilaka, Branko Ristic, and Ralph Gailis. Radiological

Source Localisation, 1988. DSTO-TR-1988.

[Gus97] Dan Gusfield. Algorithms on Strings, Trees and Sequences: Com-

puter Science and Computational Biology. Cambridge University

Press, 1997.

[Han02] D. Hand. Pattern detection and discovery. Pattern Detection and

Discovery, pages 161–173, 2002.

[HCB02] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan.

An application-specific protocol architecture for wireless microsen-

sor networks. Wireless Communications, IEEE Transactions on,

1(4):660–670, Oct 2002.

[HCM08] Simon J. Haggett, Dominique F. Chu, and Ian W. Marshall. Evolv-

ing a dynamic predictive coding mechanism for novelty detection.

Knowledge-Based Systems, 21(3):217–224, 2008.

[HGH+06] Ling Huang, Minos Garofalakis, Joseph Hellerstein, Anthony

Joseph, and Nina Taft. Toward sophisticated detection with dis-

tributed triggers. In MineNet ’06: Proceedings of the 2006 SIG-

COMM workshop on Mining network data, pages 311–316, New

York, NY, USA, 2006. ACM.

[HGM04] Yongqiang Huang and Hector Garcia-Molina. Publish/Subscribe

in a Mobile Environment. Wireless Networks, 10(6):643–652, 2004.

[HHB+03] Tian He, Chengdu Huang, Brian M. Blum, John A. Stankovic,

and Tarek Abdelzaher. Range-free localization schemes for large

scale sensor networks. In MobiCom ’03: Proceedings of the 9th an-

nual international conference on Mobile computing and networking,

pages 81–95, New York, NY, USA, 2003. ACM.

BIBLIOGRAPHY 135

[HHK+08] Jan-Hinrich Hauer, Vlado Handziski, Andreas Köpke, Andreas

Willig, and Adam Wolisz. A Component Framework for Content-

Based Publish/Subscribe in Sensor Networks. In EWSN, pages

369–385. Springer, 2008.

[HHM03] Joseph M. Hellerstein, Wei Hong, and Samuel Madden. The sensor

spectrum: technology, trends, and requirements. SIGMOD Record,

32(4):22–27, 2003.

[Hig02] N. J. Higham. Accuracy and stability of numerical algorithms. So-

ciety for Industrial Mathematics, 2002.

[HJCX08] Fei Hu, Meng Jiang, Laura Celentano, and Yang Xiao. Robust

medical ad hoc sensor networks (MASN) with wavelet-based ECG

data mining. Ad Hoc Netw., 6(7):986–1012, 2008.

[HMBE06] Raffay Hamid, Siddhartha Maddi, Aaron Bobick, and Irfan Essa.

Unsupervised analysis of activity sequences using event-motifs. In

VSSN ’06: Proceedings of the 4th ACM international workshop on

Video surveillance and sensor networks, pages 71–78, 2006.

[HMG03] Adam T. Hayes, Alcherio Martinoli, and Rodney M. Goodman.

Swarm robotic odor localization: Off-line optimization and valida-

tion with real robots. Robotica, 21(4):427–441, 2003.

[INM97] Hiroshi Ishida, Takamichi Nakamoto, and Toyosaka Moriizumi. Re-

mote sensing of gas/odor source location and concentration distri-

bution using mobile system. Solid State Sensors and Actuators,

1(16):559–562, 1997.

[Ins06] Texas Instruments. MSP430x2xx Family: User’s guide, 2006.

[Int04] Intel. Lab Data (Berkeley). http://db.csail.mit.edu/labdata/

labdata.html, 2004.

http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html

BIBLIOGRAPHY 136

[IPV07] Tsuyoshi Idé, Spiros Papadimitriou, and Michail Vlachos. Comput-

ing Correlation Anomaly Scores Using Stochastic Nearest Neigh-

bors. In ICDM, pages 523–528. IEEE Computer Society, 2007.

[Jai91] R. Jain. The art of computer systems performance analysis. Wiley

New York, 1991.

[Jol02] I. Jolliffe. Principal component analysis. Springer Series in Statis-

tics. Springer-Verlag, 2002.

[KC08] Marcin Karpi´nski and Vinny Cahill. Stream-based macro-

programming of wireless sensor, actuator network applications with

SOSNA. In DMSN ’08: Proceedings of the 5th workshop on Data

management for sensor networks, pages 49–55, New York, NY,

USA, 2008. ACM.

[KDS05] Andrea Kulakov, Danco Davcev, and Georgi Stojanov. Learning

patterns in wireless sensor networks based on wavelet neural net-

works. In ICPADS ’05: Proceedings of the 11th International Con-

ference on Parallel and Distributed Systems - Workshops, pages

373–377, Washington, DC, USA, 2005. IEEE Computer Society.

[KHW+07] Eleftheria Katsiri, Mel Ho, Lei Wang, Benny Lo, and Chris Touma-

zou. Embedded Real-Time Heart Variability Analysis . In 4th In-

ternational Workshop on Wearable and Implantable Body Sensor

Networks (BSN 2007), pages 128–132, 2007.

[KLF05] Eamonn Keogh, Jessica Lin, and Ada Fu. HOT SAX: Efficiently

Finding the Most Unusual Time Series Subsequence. Data Mining,

IEEE International Conference on, pages 226–233, 2005.

[KLK+05] N. Kumar, N. Lolla, E. Keogh, S. Lonardi, C. Ratanamahatana,

and L. Wei. Time-series bitmaps: A practical visualization tool

for working with large time series databases. In SIAM 2005 Data

Mining Conference, pages 531–535. Citeseer, 2005.

BIBLIOGRAPHY 137

[KLR04] Eamonn Keogh, Stefano Lonardi, and Chotirat Ann Ratanama-

hatana. Towards parameter-free data mining. In KDD ’04: Pro-

ceedings of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 206–215, New York,

NY, USA, 2004. ACM.

[KR78] B. W. Kerningham and D. M. Ritchie. Programming in C. Prentice

Hall, 1978.

[Kri05] Bhaskar Krishnamachari. Networking Wireless Sensors. Cam-

bridge University Press, 2005.

[KSW+08] S. Kasetty, C. Stafford, G. P. Walker, X. Wang, and E. Keogh.

Real-time classification of streaming sensor data. In Tools with

Artificial Intelligence, 2008. ICTAI’08. 20th IEEE International

Conference on, volume 1, pages 149–156, 2008.

[LBC+08] Philip Levis, Eric Brewer, David Culler, David Gay, Samuel Mad-

den, Neil Patel, Joe Polastre, Scott Shenker, Robert Szewczyk,

and Alec Woo. The Emergence of a Networking Primitive in Wire-

less Sensor Networks. Communications of the ACM, 51(7):99–106,

2008.

[LGH+05] P. Levis, D. Gay, V. Handziski, J. H. Hauer, B. Greenstein,

M. Turon, J. Hui, K. Klues, C. Sharp, and R. Szewczyk. T2: A

second generation os for embedded sensor networks. Telecommuni-

cation Networks Group, Technische Universitat Berlin, Technical

Report TKN-05-007, 2005.

[LKLC03] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu.

A symbolic representation of time series, with implications for

streaming algorithms. In DMKD ’03: Proceedings of the 8th ACM

SIGMOD workshop on Research issues in data mining and knowl-

edge discovery, pages 2–11, New York, NY, USA, 2003. ACM.

BIBLIOGRAPHY 138

[LKQ+03] M. Lin, A. Kumar, X. Qing, S. J. Beard, S. S. Russell, J. L. Walker,

and T. K. Delay. Monitoring the integrity of filament-wound struc-

tures using built-in sensor networks. In Society of Photo-Optical In-

strumentation Engineers (SPIE) Conference Series, volume 5054,

pages 222–229, 2003.

[LLC07] Mo Li, Yunhao Liu, and Lei Chen. Non-Threshold based Event

Detection for 3D Environment Monitoring in Sensor Networks. In

ICDCS ’07: Proceedings of the 27th International Conference on

Distributed Computing Systems , page 9. IEEE Computer Society,

2007.

[LLWC03] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and

scalable simulation of entire TinyOS applications. In Proceedings

of the 1st international conference on Embedded networked sensor

systems, pages 126–137. ACM New York, NY, USA, 2003.

[LNLP06] C. E. Loo, M. Y. Ng, C. Leckie, and M. Palaniswami. Intrusion de-

tection for routing attacks in sensor networks. International Jour-

nal of Distributed Sensor Networks, 2(4):313–332, 2006.

[LPCS04] Philip Levis, Neil Patel, David Culler, and Scott Shenker. Trickle:

a self-regulating algorithm for code propagation and maintenance

in wireless sensor networks. In NSDI’04: Proceedings of the 1st

conference on Symposium on Networked Systems Design and Im-

plementation, pages 2–2, Berkeley, CA, USA, 2004. USENIX As-

sociation.

[Mat08a] Mathworks. fminbnd — Find minimum of single-variable function

on fixed interval. Matlab R2008b Function Reference, 2008.

[Mat08b] Mathworks. fminsearch — Find minimum of unconstrained mul-

tivariable function using derivative-free method. Matlab R2008b

Function Reference, 2008.

BIBLIOGRAPHY 139

[Mat08c] Mathworks. randn — Normally distributed pseudorandom num-

bers. MATLAB R2008b Function Reference, 2008.

[Mat08d] Mathworks. Timer — Function Reference. MATLAB 2008b Doc-

umentation, 2008.

[Mat10] Mathworks. MATLAB — The Language Of Technical Computing.

http://www.mathworks.com/products/matlab/, 2010.

[MFHH03] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and

Wei Hong. The design of an acquisitional query processor for sen-

sor networks. In SIGMOD ’03: Proceedings of the 2003 ACM SIG-

MOD international conference on Management of data, pages 491–

502, New York, NY, USA, 2003. ACM.

[MFjWM04] David Malan, Thaddeus Fulford-jones, Matt Welsh, and Steve

Moulton. CodeBlue: An ad hoc sensor network infrastructure for

emergency medical care. In International Workshop on Wearable

and Implantable Body Sensor Networks, 2004.

[MGH09] Alexandra Meliou, Carlos Guestrin, and Joseph Hellerstein. Ap-

proximating Sensor Network Queries Using In-Network Summaries.

In IPSN, 2009.

[MM90] Udi Manber and Gene Myers. Suffix arrays: a new method for

on-line string searches. In SODA ’90: Proceedings of the first an-

nual ACM-SIAM symposium on Discrete algorithms, pages 319–

327, Philadelphia, PA, USA, 1990. Society for Industrial and Ap-

plied Mathematics.

[MP03] Junshui Ma and Simon Perkins. Online novelty detection on tempo-

ral sequences. In KDD ’03: Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining,

pages 613–618, New York, NY, USA, 2003. ACM.

http://www.mathworks.com/products/matlab/

BIBLIOGRAPHY 140

[MPL+07] Ian W. Marshall, Mark C. Price, Hai Li, N. Boyd, and Steve Boult.

Multi-sensor Cross Correlation for Alarm Generation in a Deployed

Sensor Network. In EuroSSC, pages 286–299. Springer, 2007.

[MPR03] G Mellen, M Pachter, and J Raquet. Closed-form solution for de-

termining emitter location using time difference of arrival measure-

ments. IEEE Transactions on Aerospace and Electronic Systems,

39(3):1056–1058, 2003.

[MRK+07] Amy McGovern, D. H. Rosendahl, A. Kruger, M. G. Beaton, R. A.

Brown, and K. K. Droegemeier. Anticipating the formation of

tornadoes through data mining. In Fifth Conference on Artificial

Intelligence Applications to Environmental Science, 2007.

[Nor97] James R. Norris. Markov Chains. Cambridge University Press,

1997.

[OF02] S. F. Oberman and M. J. Flynn. Design issues in division and

other floating-point operations. Computers, IEEE Transactions

on, 46(2):154–161, 2002.

[PHCL06] Tran Van Phuong, Le Xuan Hung, Seong Jin Cho, and Young-

Koo Leeand Sungyoung Lee. An Anomaly Detection Algorithm

for Detecting Attacks in Wireless Sensor Networks . In Intelligence

and Security Informatics, pages 735–736, 2006.

[PK00] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors.

Communications of the ACM, 43(5):51–58, 2000.

[PLPG06] S. Phoha, T. F. La Porta, and C. Griffin. Sensor network opera-

tions. Wiley-IEEE Press, 2006.

[PMSR09] Debprakash Patnaik, Manish Marwah, Ratnesh Sharma, and

Naren Ramakrishnan. Sustainable operation and management of

BIBLIOGRAPHY 141

data center chillers using temporal data mining. In KDD ’09: Pro-

ceedings of the 15th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 1305–1314, 2009.

[PSFR08] S. Price, J. G. Sheridan, T. P. Falcao, and G. Roussos. Towards

a framework for investigating tangible environments for learning.

International Journal of Arts and Technology, 1(3):351–368, 2008.

[Rao06] Nageswara Rao. Identification of simple product-form plumes using

networks of sensors with random errors. 9th International Confer-

ence on Information Fusion, pages 1–8, 2006.

[RBLP09] Sutharshan Rajasegarar, James C. Bezdek, Christopher Leckie,

and Marimuthu Palaniswami. Elliptical anomalies in wireless sen-

sor networks. ACM Trans. Sen. Netw., 6(1):1–28, 2009.

[Res08] Intel Research. WISP: Wireless Identification and Sensing Plat-

form. http://seattle.intel-research.net/wisp/, 2008.

[Sen08] MoteIV (later renamed to Sentilla). TMote Sky Datasheets

and Downloads. http://www.sentilla.com/pdf/eol/

tmote-sky-datasheet.pdf, 2008.

[Sen10] Sensirion. Datasheet SHT1x — Temperature and Hu-

midity Sensor. http://www.sensirion.com/en/pdf/product_

information/Datasheet-humidity-sensor-SHT1x.pdf, 2010.

[SG07] Yan Shen and Bing Guo. Dynamic Power Management based on

Wavelet Neural Network in Wireless Sensor Networks. In NPC ’07:

Proceedings of the 2007 IFIP International Conference on Network

and Parallel Computing Workshops, pages 431–436, Washington,

DC, USA, 2007. IEEE Computer Society.

[Sim06] Dan Simon. Optimal State Estimation: Kalman, H Infinity, and

Nonlinear Approaches. WileyBlackwell, 2006.

http://seattle.intel-research.net/wisp/
http://www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf
http://www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf
http://www.sensirion.com/en/pdf/product_information/Datasheet-humidity-sensor-SHT1x.pdf
http://www.sensirion.com/en/pdf/product_information/Datasheet-humidity-sensor-SHT1x.pdf

BIBLIOGRAPHY 142

[SLLM09] M. Salson, T. Lecroq, M. Léonard, and L. Mouchard. Dynamic

extended suffix arrays. Journal of Discrete Algorithms, 2009.

[SLV93] G. Sandini, G. Lucarini, and M. Varoli. Gradient driven self-

organizing systems. In Intelligent Robots and Systems’ 93,

IROS’93. Proceedings of the 1993 IEEE/RSJ International Con-

ference on, volume 1, pages 429–432. IEEE, 1993.

[SMD+04] M. E. Shykhon, D. W. Morgan, R. Dutta, E. L. Hines, and J. W.

Gardner. Clinical evaluation of the electronic nose in the diagnosis

of ear, nose and throat infection: a preliminary study. The Journal

of Laryngology & Otology, 118(09):706–709, 2004.

[SMP+04] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and

D. Culler. An analysis of a large scale habitat monitoring ap-

plication. In Proceedings of the 2nd international conference on

Embedded networked sensor systems, pages 214–226. ACM, 2004.

[SOM07] M Schwabacher, N Oza, and B Matthews. Unsupervised Anomaly

Detection for Liquid-Fueled Rocket Propulsion Health Monitoring.

Journal of Aerospace Computing, Information, and Communica-

tion, 6(7):464–482, 2007.

[SOSM05] Demetri P. Spanos, Reza Olfati-Saber, and Richard M. Murray.

Approximate distributed Kalman filtering in sensor networks with

quantifiable performance. In IPSN ’05: Proceedings of the 4th

international symposium on Information processing in sensor net-

works, page 18, Piscataway, NJ, USA, 2005. IEEE Press.

[SRT07] Thomas Stiefmeier, Daniel Roggen, and Gerhard Tröster. Gestures

are strings: efficient online gesture spotting and classification using

string matching. In BodyNets ’07: Proceedings of the ICST 2nd

international conference on Body area networks, pages 1–8, 2007.

BIBLIOGRAPHY 143

[STG07] Cory Sharp, Martin Turon, and David Gay. TinyOS Enhancement

Proposal (TEP) 102: Timers. http://tinyos.cvs.sourceforge.

net/tinyos/tinyos-2.x/doc/html/tep102.html, 2007.

[STKC09] Minho Shin, Patrick Tsang, David Kotz, and Cory Cornelius.

DEAMON: Energy-efficient Sensor Monitoring. In Sensor, Mesh

and Ad Hoc Communications and Networks, 2009. SECON ’09.

6th Annual IEEE Communications Society Conference on, pages

1–9, June 2009.

[SWJR07] Xiuyao Song, Mingxi Wu, Christopher Jermaine, and Sanjay

Ranka. Statistical change detection for multi-dimensional data.

In KDD ’07: Proceedings of the 13th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 667–

676, New York, NY, USA, 2007. ACM.

[TE07] Y. Tian and E. Ekici. Cross-layer collaborative in-network process-

ing in multihop wireless sensor networks. IEEE Transactions on

Mobile Computing, pages 297–310, 2007.

[TK88] Jimfron Tan and Nicholas Kyfuakopoulos. Implementation of a

Tracking Kalman Filter on a Digital Signal Processor. IEEE Trans-

actions on Industrial Electronics, 35(1):126–134, 1988.

[UoC08] Riverside University of California. The UCR Time Series Data

Mining Archive. http://www.cs.ucr.edu/~eamonn/TSDMA, 2008.

[WADHW08] Geoffrey Werner-Allen, Stephen Dawson-Haggerty, and Matt

Welsh. Lance: optimizing high-resolution signal collection in wire-

less sensor networks. In SenSys ’08: Proceedings of the 6th ACM

conference on Embedded network sensor systems, pages 169–182,

New York, NY, USA, 2008.

[WALJ+06] Geoffrey Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan

Lees, and Matt Welsh. Fidelity and Yield in a Volcano Monitoring

http://tinyos.cvs.sourceforge.net/tinyos/tinyos-2.x/doc/html/tep102.html
http://tinyos.cvs.sourceforge.net/tinyos/tinyos-2.x/doc/html/tep102.html
http://www.cs.ucr.edu/~eamonn/TSDMA

BIBLIOGRAPHY 144

Sensor Network. In OSDI, pages 381–396. USENIX Association,

2006.

[WB95] Greg Welch and Gary Bishop. An Introduction to the Kalman

Filter. Technical Report 95-041, Chapel Hill, NC, USA, 1995.

[WDWS10] GeorgWittenburg, Norman Dziengel, Christian Wartenburger, and

Jochen Schiller. A system for distributed event detection in wireless

sensor networks. In Proceedings of the 9th ACM/IEEE Interna-

tional Conference on Information Processing in Sensor Networks,

pages 94–104, New York, NY, USA, 2010.

[WF05] I. H. Witten and E. Frank. Data Mining: Practical machine learn-

ing tools and techniques. Morgan Kaufmann Pub, 2005.

[WYC+06] S. Wang, J. Yang, N. Chen, X. Chen, and Q. Zhang. Human activ-

ity recognition with user-free accelerometers in the sensor networks.

In Neural Networks and Brain, 2005. ICNN&B’05. International

Conference on, volume 2, pages 1212–1217. IEEE, 2006.

[XLCL06] Wenwei Xue, Qiong Luo, Lei Chen, and Yunhao Liu. Contour map

matching for event detection in sensor networks. In SIGMOD ’06:

Proceedings of the 2006 ACM SIGMOD international conference on

Management of data, pages 145–156, New York, NY, USA, 2006.

ACM.

[XRC+04] Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak

Ganesan, Alan Broad, Ramesh Govindan, and Deborah Estrin.

A wireless sensor network For structural monitoring. In SenSys

’04: Proceedings of the 2nd international conference on Embedded

networked sensor systems, pages 13–24, New York, NY, USA, 2004.

ACM.

BIBLIOGRAPHY 145

[XRS07] Xiaochun Xu, Nageswara Rao, and Sartaj Sahni. A computational

geometry method for DTOA triangulation. In 10th International

Conference on Information Fusion, pages 1–7, 2007.

[YF04] O. Younis and S. Fahmy. HEED: a hybrid, energy-efficient, dis-

tributed clustering approach for ad hoc sensor networks. Mobile

Computing, IEEE Transactions on, 3(4):366–379, Oct.-Dec. 2004.

[ZG09] F. Zhao and L. Guibas. Wireless sensor networks. Communications

Engineering Desk Reference, page 247, 2009.

[ZK05] Marco Zuniga and Bhaskar Krishnamachari. Link Layer Mod-

els for Wireless Sensor Networks. http://ceng.usc.edu/~anrg/

downloads/LinkModellingTutorial.pdf, December 2005.

[Zol10] Zolertia. Z1 WSN Module. http://www.zolertia.com/

products/Z1, 2010.

[ZR] M. Zoumboulakis and G. Roussos. Complex Event Detection in

Extremely Resource-Constrained Wireless Sensor Networks. Mo-

bile Networks and Applications, pages 1–20.

[ZR07] Michael Zoumboulakis and George Roussos. Escalation: Complex

Event Detection in Wireless Sensor Networks. In Gerd Kortuem,

Joe Finney, Rodger Lea, and Vasughi Sundramoorthy, editors, Eu-

roSSC, pages 270–285. Springer, 2007.

[ZR09a] Michael Zoumboulakis and George Roussos. Efficient pattern de-

tection in extremely resource-constrained devices. In SECON’09:

Proceedings of the 6th Annual IEEE communications society con-

ference on Sensor, Mesh and Ad Hoc Communications and Net-

works, pages 10–18, 2009.

[ZR09b] Michael Zoumboulakis and George Roussos. Estimation of

Pollutant-Emitting Point-Sources Using Resource-Constrained

http://ceng.usc.edu/~anrg/downloads/LinkModellingTutorial.pdf
http://ceng.usc.edu/~anrg/downloads/LinkModellingTutorial.pdf
http://www.zolertia.com/products/Z1
http://www.zolertia.com/products/Z1

BIBLIOGRAPHY 146

Sensor Networks. In GSN ’09: Proceedings of the 3rd International

Conference on GeoSensor Networks, pages 21–30, 2009.

[ZR09c] Michael Zoumboulakis and George Roussos. In-network Pattern

Detection on Intel WISPs. (Demo Abstract) in Proceedings of

Wireless Sensing Showcase, 2009.

[ZR09d] Michael Zoumboulakis and George Roussos. Integer-Based Opti-

misations for Resource-Constrained Sensor Platforms . In First In-

ternational ICST Conference, S-CUBE 2009, pages 144–157, 2009.

[ZR09e] Michael Zoumboulakis and George Roussos. SIKTN 2009 wireless

sensing winners, 2009.

[ZR11] Michael Zoumboulakis and Geoge Roussos. Pattern Recognition

in Extremely Resource Constrained Devices. Reasoning in Event-

based Distributed Systems. Springer, 2011.

[ZRP04a] M. Zoumboulakis, G. Roussos, and A. Poulovassilis. Active rules

for sensor databases. In Proceeedings of the 1st international work-

shop on Data management for sensor networks: in conjunction

with VLDB 2004, pages 98–103. ACM, 2004.

[ZRP04b] M. Zoumboulakis, G. Roussos, and A. Poulovassilis. Active rules

for wireless networks of sensors & actuators. In Proceedings of

the 2nd international conference on Embedded networked sensor

systems, pages 263–264. ACM, 2004.

[ZSST04] Dimitri Zarzhitsky, Diana F. Spears, William M. Spears, and

David R. Thayer. A Fluid Dynamics Approach to Multi-Robot

Chemical Plume Tracing. In AAMAS ’04: Proceedings of the Third

International Joint Conference on Autonomous Agents and Mul-

tiagent Systems, pages 1476–1477, Washington, DC, USA, 2004.

IEEE Computer Society.

Appendix A

Publications

Our peer reviewed publications related to this thesis are shown in reverse chrono-

logical order in Table A.1. Publication [ZR11] is a critical review of recent

advances in the fields of anomaly and novelty detection in extremely resource

constrained systems (related to Chapter 2), together with a presentation of the

spatial pattern location estimation algorithm of Chapter 6. Publication [ZR]

presents the temporal domain algorithms of Chapter 3. [ZR09d] describes the

implementation and deployment work (Chapter 5) involved in refactoring the

temporal domain algorithm. The spatial algorithm of Chapter 6 are described in

[ZR09b]. An implementation and demonstration of the non-parametric pattern

detection algorithm on the battery-free Intel WISP nodes is described in [ZR09c].

Publications [ZR09a] and [ZR07] describe the temporal domain algorithms and

related findings. Finally, publications [ZRP04a] and [ZRP04b] cover earlier work

and involve adapting active database technologies to reactive WSNs; a direction

not pursued further in this thesis.

147

A
.
P
u
blica

tio
n
s

1
4
8

Ref. Key Title Appeared in: Year

[ZR11] Pattern Detection in Extremely Resource Constrained Devices Book chapter in: Reasoning in Event-based Distributed Sys-
tems

2011 (to appear)

[ZR] Complex Event Detection in Extremely Resource-Constrained
Wireless Sensor Networks

Article in: ACM Mobile Networks and Applications 2010

[ZR09d] Integer-based Optimisations for Resource-constrained Sensor
Platforms

in Proceedings of: First International Conference on Sensor,
Systems and Software (S-CUBE)

2009

[ZR09b] Estimation of Pollutant Emitting Point-Sources using Re-
source Constrained Sensor Networks

in Proceedings of: Third International Conference on Geosen-
sor Networks (GSN3)

2009

[ZR09c] In-network Pattern Detection on Intel WISPs (Demo Abstract) in Proceedings of: Wireless Sensing Showcase
(KTN)

2009

[ZR09a] Efficient Pattern Detection in Extremely Resource Constrained
Devices

in Proceedings of: Sixth Annual IEEE Communications Soci-
ety Conference on Sensor, Mesh and Ad Hoc Communications
and Networks (SECON)

2009

[ZR07] Escalation: Complex Event Detection in Wireless Sensor Net-
works

in Proceedings of 2nd European Conference on Smart Sensing
and Context (EuroSSC)

2007

[ZRP04a] Active Rules for Sensor Databases Proceedings of: 1st international workshop on Data manage-
ment for sensor networks: in conjunction with VLDB

2004

[ZRP04b] Active rules for wireless networks of sensors & actuators (Demo abstract) Proceedings of the 2nd international confer-
ence on Embedded networked sensor systems, ACM SenSys

2004

Table A.1: Publications related to this thesis

Appendix B

Example of Multiple Pattern

Matching

This is a simplified example of a suffix array construction for the three user

submitted templates abbbcdbb, eeeghaahe, hgaaiaab. In practice, we anticipate

longer templates to be supplied by users. The first step involves the construction

of the individual arrays. Although for the sake of the example all the suffixes

are shown in the table, in practice we prune the Suffix Array as we construct it.

Pruning involves the removal of suffixes with length smaller than the minimum

length of the user submitted template. This examples assumes that the smaller

template has a length of 5, therefore any suffixes smaller than 5 characters are

removed.

The resulting Suffix Array is shown in table B.2 with an example of the binary

search positions. In this instance the binary search identifies the suffix with two

comparisons.

149

B. Example of Multiple Pattern Matching 150

String 1: abbbcdbb String 2: eeeghaahe String 3: hgaaiaab
Step 1 (Build Individual Arrays)

Suffix Array 1 Suffix Array 2 Suffix Array 3

abbbcdbb aahe aab

b ahe aaiaab

bb e ab

bbbcdbb eeeghaahe aiaab

bbcdbb eeghaahe b

bcdbb eghaahe gaaiaab

cdbb ghaahe hgaaiaab

dbb haahe iaab

he

Step 3 (Prune Structure)
Pos Index Suffix

0 (19) aaiaab

1 (00) abbbcdbb

2 (20) aiaab

3 (01) bbbcdbb

4 (02) bbcdbb

5 (03) bcdbb

6 (08) eeeghaahe

7 (09) eeghaahe

8 (10) eghaahe

9 (18) gaaiaab

10 (11) ghaahe

11 (12) haahe

12 (17) hgaaiaab

Table B.1: Outline of merging and pruning of the array structures involved in
Multiple Pattern Matching.

B. Example of Multiple Pattern Matching 151

Pos Index Suffix Search Order Match
0 (19) aaiaab

1 (00) abbbcdbb

2 (20) aiaab (2) (
√
)

3 (01) bbbcdbb

4 (02) bbcdbb

5 (03) bcdbb

6 (08) eeeghaahe (1) (X)
7 (09) eeghaahe

8 (10) eghaahe

9 (18) gaaiaab

10 (11) ghaahe

11 (12) haahe

12 (17) hgaaiaab

Table B.2: Example of Binary Search over a (Pruned) Suffix Array. The template
of interest is “aiaab”.

Appendix C

Software Development Timing

Model

We construct a timing model for WSN nodes, analogous to the one introduced

by Bentley [Ben99] for guiding software development, by investigating program

performance according to implementation choices of data types and operations.

Timing measurements in milliseconds per 5, 000 trials are presented in Table

C.1 and the impact of floating point arithmetic is illustrated by a factor of 432

slow-down for addition in comparison with integer addition. Integer arithmetic

operations larger than the MCU word size require more time than their 16-bit

counterparts. 64-bit integer division is almost as slow as floating point division,

while other 64-bit operations require less time than floating point operations.

Bitwise operations are slower than addition and subtraction but bitwise shifts

are faster than division and multiplication. TinyOS tasks, which are placed in

separate FIFO queues, are slower — almost by a factor of 2 — than C or TinyOS

functions. Hardware-specific results show sampling light and internal voltage

sensors slower than sampling temperature and humidity; the similarity between

temperature and humidity access times is attributed to sensors located on the

same chip (Sensirion SHT1x — [Sen10]).

152

C. Software Development Timing Model 153

Arithmetic (Integer)

Operation 16-bit 32-bit 64-bit

Increment 6,734 12,824 67,271
Addition 7,955 15,319 88,301
Subtraction 7,969 15,310 87,985
Multiplication 145,020 159,060 316,755
Division 226,265 709,720 3,519,055
Remainder 225,375 706,875 3,540,080

Bitwise

AND 7,965 15,285 88,095
OR 7,985 15,325 88,360
XOR 7,955 15,315 88,310
SHIFT 56,735 62,880 573,665

Floating Point Arithmetic

Assignment & Cast 2,687,535
Addition 3,438,530
Subtraction 3,499,920
Multiplication 4,841,490
Division 4,041,785

Array Comparisons & Swaps

Straight Comp 104,095
Comp C Fcn 83,315
Comp TOS Fcn 83,335
Comp TOS task 159,055
Swap C Macro 93,085
Swap C Function 83,320

Max Function

Straight Max 137,565
Max C Macro 137,075
Max C Function 79,110

Built-in Sensors

ReadLight 327,510
ReadTemperature 154,125
ReadHumidity 154,175
ReadIVoltage 321,635

External Flash Chip IO

Reads (4-bytes) 158,750
Writes (4-bytes) 191,280

Table C.1: Performance Times (in ms) for various operations executed by the
TMote Sky (measured using TinyOS 2.x and msp430-gcc 3.2.3).

Appendix D

Maximum Selection Spatial

Location Algorithm

The procedural steps of the Maximum Selection Spatial Location Estimation

Algorithm, used as a baseline comparison in the evaluation of Chapter 6 are

shown in Algorithm D.1.

154

D. Maximum Selection Spatial Location Algorithm 155

Algorithm D.1 Maximum Location Estimation Algorithm

1: variables maxhopcount=1, maxpathlength, netpath[], observations[],
counter c = 0;

2: if c >= maxpathlength then
3: exit
4: end if
5: Task unvisited neighbours within maxhopcount to report measurement.
6: for (each of replies received) do
7: calculate maximum observation max(zk

(i))
8: break and exit if remote observation max(zk

(i)) is less than local observa-
tion.

9: end for
10: Select as next hop the node that maximises the observation.
11: Set state to visited, add local address to netpath[c], add zk to observations[]

and increment c.
12: Send command message to selected node (line 8) and task it to start at Line

1.

	Abstract
	Acknowledgements
	Introduction
	Overview and Motivation
	WSN Constraints and Challenges
	Definitions

	Research Methodology
	Requirements and Research Questions
	Research Methods

	Contributions
	Assumptions and Limitations
	Outline of the Thesis

	Pattern Matching and Detection in WSNs and Sensor Data
	Environmental Monitoring
	Data Centre and Structural Monitoring
	Body Sensor Networks and Context Aware Systems
	Network Monitoring and Security
	Spacecraft and Telemetry Pattern Classification
	Spatial Pattern Location Estimation
	Generic Approaches and Additional Applications
	Summary

	Pattern Matching and Detection in the Temporal Domain
	The Basis for Pattern Matching and Detection
	Advantages of Symbolic Transformation
	An Overview of Symbolic Aggregate Approximation
	Assessing Pattern Similarity and Probability

	Exact and Approximate Pattern Matching
	Multiple Pattern Matching
	Non-Parametric Pattern Detection
	Probabilistic Pattern Detection
	Summary

	Temporal Algorithms: Evaluation through Emulation
	Methodology and Experimental Setup
	Case Study 1: Indoor Deployment
	Evaluation of Exact and Approximate Matching

	Case Study 2: Seismic and Acoustic Data
	Evaluation of Non-Parametric Pattern Detection
	The Effect of Measurement Noise to NPPD

	Case Study 3: Physiological Data
	Evaluation of NPPD and PPD

	Summary of Findings

	Temporal Algorithms: Evaluation through Deployment
	Execution Profile of Temporal Domain Algorithms
	Refactoring of Pattern Matching and Detection Algorithms

	Dynamic Sampling Frequency Management (DSFM) Algorithm
	Data Centre WSN Deployment

	Integration with Publish/Subscribe
	Observations from Further Deployments
	Summary of Findings

	Pattern Location Estimation in the Spatial Domain
	The Location Estimation Problem
	Kalman Filter Properties
	Spatial Pattern Location Estimation (SPLE) Algorithm
	Summary

	Spatial Algorithm: Evaluation through Simulation
	Methodology and Simulation Set-up
	Maximum Selection Algorithm
	Dispersion Model
	Kalman Filter Initial Parameters
	Topology Generation

	Evaluation of Spatial Pattern Location Estimation
	Metrics
	Grid Topology
	Random Topology

	Summary of Findings

	Conclusions and Future Work
	Summary of the Thesis
	Summary of Contributions
	Critical Appraisal
	Directions for Future Research

	Bibliography
	Publications
	Example of Multiple Pattern Matching
	Software Development Timing Model
	Maximum Selection Spatial Location Algorithm

