
Event-Condition-Action Rule Languages

over Semistructured Data

George Papamarkos

March 2007

A Dissertation Submitted to

Birkbeck College, University of London

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

School of Computer Science & Information Systems

Birkbeck College

University of London

2

To my parents and my partner Ioanna

Acknowledgments

First and foremost, my gratitude goes out to my two supervisors, Prof. Alexandra

Poulovassilis and Dr. Peter Wood. They have been, each one in their own way,

real mentors that deeply influenced my way of thinking and working. I will

always be grateful for their encouragement, continuous support and indefatigable

guidance.

My thanks also to many colleagues and friends at the School of Computer

Science & Information Systems and London Knowledge Lab: Rajesh Pampap-

athi, Lucas Zamboulis, Dionisis Dimakopoulos, Hao Fan and especially Aristoklis

Anastasiadis for their precious friendship and timely help during my years at

Birkbeck. I cannot forget to mention George Roussos for his help and his advice

at some critical times during my research.

Special appreciation also goes to my good friend and flatmate Yiannis Papan-

toniou for all the time we have spent together during these years and our intense

and profound conversations under the depressing skies of Hyperborea. I cannot

forget my friend and flatmate Chrissy Kotretsou and my childhood friend Elias

Karavangelis for their everlasting jocular attitude, even during difficult periods

for us all.

Last, but not least, my utmost gratitude must go to my parents, to whom I

will be forever indebted for their love, support, wise guidance and their dedication

throughout the years, without which I would have never be in the position to write

3

this thesis. I thank also my brother Demosthenes, not only for his axiomatic love

and support, but also for all those moments we have spent on arguing during our

sparkling and passionate conversations. Finally, I owe a deep appreciation to my

partner Ioanna for her inexhaustible patience, devotion and for pouring oil on

my, often troubled, waters during these four years when we started together this

long and unpredictable journey.

4

Abstract

The increasing use of semistructured data technologies such as XML and RDF,

in dynamic applications in areas such as data integration and e-commerce make

it necessary to support reactivity over such data. Event-Condition-Action (ECA)

rules are one of the technologies that can provide such functionality.

In this thesis we investigate potential languages and supportive technologies

that enable reactive functionality over both XML and RDF data using ECA rules.

We first review the syntax and the execution semantics of an ECA language

for XML data and conduct a study regarding its expressiveness. We also describe

an implementation of this language that can be utilised to provide reactivity

over XML files and we study its performance using analytical and experimental

methods.

We introduce a new language for supporting ECA rules over RDF data, called

RDFTL, and define its semantics. We also describe the architecture and imple-

mentation of a system that provides reactive functionality over RDF data in a

peer-to-peer environment using RDFTL. Issues relating to indexing and man-

agement of RDF data, indexing and management of RDFTL rules, and change

detection are discussed.

We develop an analytical model for analysing the behaviour of our RDFTL

rule processing system using as the main performance criterion the time required

to complete all rule processing after an initial top-level update. For the purposes

5

of the performance study, we employ both this analytical model and a simulation

of the system.

The overall conclusions of this thesis are that ECA rules are a promising tech-

nology for providing reactive functionality over the commonly used semistruc-

tured data formats today, XML and RDF, in both centralised and distributed

environments. In the case of peer-to-peer environments, choosing the appropri-

ate network topology can enable the scalability of ECA rule processing and points

to the practical usefulness of ECA rules as a means to provide reactivity in such

environments.

6

Contents

Acknowledgments 3

Abstract 5

1 Introduction 14

1.1 Event-Condition-Actions Rules and the Web 14

1.2 Motivation for the Research . 16

1.3 Problem Statement . 17

1.4 Dissertation Outline . 18

1.5 Thesis Contributions . 20

2 Semi-Structured Data Models and Languages 21

2.1 Introduction . 21

2.2 Semi-Structured Data Models . 22

2.2.1 The XML Data Model . 22

2.2.2 Schema Definition Languages for XML 24

2.2.3 The RDF Data Model . 27

2.2.4 RDFSchema . 29

2.3 Query Languages . 33

2.3.1 XML Query Languages . 33

7

2.3.2 RDF Query Languages . 38

2.4 Update Languages . 40

2.4.1 Update Languages for XML 40

2.4.2 Update Languages for RDF 44

2.5 Event-Condition-Action Rule Languages 46

2.5.1 Syntax . 46

2.5.2 ECA Rule Execution Model 49

2.5.3 ECA Rules on Structured Data 51

2.5.4 The SQL3 Standard . 55

2.5.5 ECA Rules on Semi-structured Data 57

2.6 Summary . 59

3 XTL: an XML ECA Language 60

3.1 Introduction . 60

3.2 Designing Event-Condition-Action Languages for Semistructured

Data . 61

3.3 XTL: an Event-Condition-Action language for XML 65

3.3.1 Syntax . 66

3.3.2 Rule Execution Model . 70

3.4 Expressiveness of XTL . 75

3.4.1 Review of Relational Language Expressiveness 75

3.4.2 Relational to XML Conversion 77

3.4.3 Expressiveness of our Language 78

3.5 Active XQuery . 93

3.5.1 Syntactic Comparison with XTL 93

3.5.2 Semantic Comparison with XTL 95

3.6 Summary . 97

8

4 An XML ECA Rule Processing System 100

4.1 Introduction . 100

4.2 System Architecture . 101

4.3 Rule Registration . 105

4.4 Performance Study . 108

4.4.1 Rule Triggering Assumptions for the Analytical Model . . 109

4.4.2 Rule Execution Modelling 111

4.4.3 Modelling Update Response Time 113

4.4.4 Experimental Results . 119

4.5 Indexing XTL Rules . 124

4.5.1 Analytical Performance Model Using Index 131

4.5.2 Comparison with a hard-coded approach 133

4.6 Summary . 137

5 RDFTL: An Event-Condition-Action Language for RDF 138

5.1 Introduction . 138

5.2 The RDFTL Language . 139

5.2.1 RDFTL Query Sublanguage 141

5.2.2 RDFTL Rule Syntax . 144

5.2.3 RDFTL Update Sublanguage 150

5.3 Discussion . 152

6 RDFTL Rules in P2P Environments 154

6.1 Introduction . 154

6.2 Overview of P2P Systems . 155

6.3 RDFTL P2P System Architecture 160

6.3.1 RDFTL Rule Registration 166

6.3.2 P2P Rule Execution . 167

9

6.3.3 Service-based Architecture 177

6.3.4 RDFTL Support for SeLeNe Requirements 183

6.3.5 Concurrency Control and Recovery 189

6.4 Summary . 193

7 RDFTL System Performance 194

7.1 Introduction . 194

7.2 Analytical Model . 195

7.2.1 Homogeneity Assumption 196

7.2.2 Rule triggering assumptions 196

7.2.3 System Modelling . 198

7.2.4 Modelling Update Response Time 199

7.3 Experimental Results . 210

7.3.1 Analytical Study Results 212

7.3.2 Comparison with a hard-coded approach 216

7.3.3 The Simulator . 219

7.3.4 Simulation Results . 224

7.4 Summary . 227

8 Conclusions and Future Work 230

Bibliography 236

10

List of Tables

4.1 Parameter Base Values . 120

4.2 Rules triggered per triggering level (for 50 rules in Rule Base) . . 123

7.1 Parameter Base Values . 211

11

List of Figures

2.1 Example XML document, shares.xml 23

2.2 Example DTD document, shares.dtd 25

2.3 Example XMLSchema, shares.xsd 28

2.4 RDF data describing a learning object. 30

2.5 RDF schema describing users and learning objects. 33

3.1 Example data conversion . 78

3.2 Relations R1 and R2 . 83

3.3 R after the execution of r3 . 85

3.4 R after the execution of r5 . 87

3.5 R after the execution of r6 . 89

3.6 R after the execution of r7 . 90

3.7 Example XML tree . 98

4.1 XML ECA Rule Processing System Architecture 101

4.2 Analytical Performance Results 120

4.3 Experimental Results . 124

4.4 Index Searching Algorithm . 129

4.5 Example XTL rule index . 130

4.6 Analytical Performance Results — With Index (pmt = 0.01) . . . 132

4.7 Analytical Performance Results — With Index (pmt = 0.1) 133

12

4.8 Analytical Performance Results — With Index (pmt = 0.2) 134

4.9 Analytical Performance Results — With Index (pmt = 0.4) 135

4.10 Analytical Performance Results — Hard-Coded Case 136

6.1 RDFTL P2P System Architecture 162

6.2 Example P2P network . 172

6.3 Example P2P network with the rules at each superpeer 175

6.4 Inserted Learning Object . 176

6.5 Service Distribution in Peers and Superpeers 178

6.6 Example of Learning Object Descriptions 187

6.7 Example Abort Graph . 193

7.1 Model, Replication 10%, Full Net 213

7.2 Model, Replication 10%, HyperCup 214

7.3 Model, Replication 50%, HyperCup 215

7.4 Model, Replication 90%, HyperCup 216

7.5 Varying Rules; Model, Replication 10% , HyperCup 217

7.6 Model, Replication 10%, Full Net — Hard-Coded Case 219

7.7 Model, Replication 10%, HyperCup — Hard-Coded Case 220

7.8 Model, Replication 50%, HyperCup — Hard-Coded Case 220

7.9 Model, Replication 90%, HyperCup — Hard-Coded Case 221

7.10 Varying Rules; Model, Replication 10% , HyperCup — Hard-

Coded Case . 221

7.11 Simulation, Replication 10%, Full Net 226

7.12 Simulation, Replication 10%, HyperCup 227

7.13 Simulation, Replication 50%, HyperCup 228

7.14 Simulation, Replication 90%, HyperCup 229

7.15 Varying Rules; Simulation, Replication 10%, HyperCup 229

13

Chapter 1

Introduction

1.1 Event-Condition-Actions Rules and the Web

An Event-Condition-Action (ECA) rule performs actions in response to events

provided stated conditions hold. For example, in a database system an event may

be any update operation on the data, e.g. inserting a new tuple into a table, and

may lead to an action which is another update operation, e.g. the deletion of

another tuple in another table. This behaviour, whereby actions are performed

in response to events, is described as reactive behaviour.

ECA rules are used to enable this kind of reactive behaviour in many set-

tings including active databases [Pat99, WC96], workflow management [CFP99],

publish/subscribe technology [BCP01a, BCP01b, ABEYH00] and implementing

business processes [AVFY98, IO01]. ECA rules specify the desired reactive be-

haviour and can be manually defined by users or generated by applications. In

their general form, they consist of three parts:

• The event part describes the events that the rule should respond to. When

a rule responds to an event then the rule is said to be triggered.

14

• The condition part describes a condition that has to hold in order for the

rule to fire.

• The action part describes the actions to be performed by the rule if the

specified event has occurred and the condition has evaluated to True.

The fact that ECA rules are defined and managed within a single rule base

rather than being encoded in diverse programs, and the high-level declarative syn-

tax of ECA rules making them amenable to analysis and optimisation techniques,

are two key advantages of using ECA rules to support reactive functionality in

applications as opposed to implementing such functionality directly using a pro-

gramming language.

The increasing number of dynamic Web applications, the rise of Semantic

Web [TJO01] technologies together with the increasing adoption of distributed

architectures and peer-to-peer technologies set the scene of today’s application

development and deployment.

The Semantic Web is not a separate Web but an extension of the current

Web, in which Web-based information is assigned a description in a controlled

formalism, better enabling computers and people to work in cooperation. The

Semantic Web is based on XML [W3C06a] and RDF [W3C04c] as its fundamental

standards for storing and exchanging information in Web applications. This,

combined with the increasing number of dynamic applications requiring timely

notification of data changes, makes timely this study of ECA rules as a candidate

technology for providing reactive functionality over XML and RDF data.

A peer-to-peer (P2P) network is a network of computers in which all the

participants, named peers, share a part of their resources in order to provide

services and content offered by the network as a whole. The peers act as both

15

resource (service and content) providers and resource requestors. One classifi-

cation of P2P networks is according to their degree of centralisation. In pure

P2P networks [YGM01], peers are equals with no central peer or group of peers

managing the network. All peers provide all or some of the overall set of services

and can establish connection with any other peer in the network. In hybrid P2P

networks [YGM01] there is a peer (or group of peers), often called superpeer(s),

that generally provide more services and resources than other peers, and control

the way other peers join and leave the network and are connected, and the way

that messages are routed through the network.

1.2 Motivation for the Research

Our work on the design and the implementation of an ECA rule language over

RDF data was motivated by the “SeLeNe: Self e-Learning Networks” project [SeLeNe].

The aim of this project was to investigate techniques for managing evolving RDF

repositories of educational metadata and for providing a wide variety of services

over such repositories, including syndication, notification and personalisation ser-

vices. According to the SeLeNe User Requirements Document [KPPL03], peers

in a SeLeNe (Self e-Learning Network) store RDF descriptions relating to learn-

ing objects registered with the SeLeNe, and also RDF descriptions relating to

users of the SeLeNe. Each peer manages some fragment of the overall RDF/S

descriptions.

SeLeNe’s reactive functionality was intended to provide the following aspects

of the user requirements [PPW03a]:

• automatic notification to users of the registration of new LOs of interest to

them;

16

• automatic notification to users of the registration of new users who have

information in common with them in their personal profile;

• automatic notification to users of changes in the description of resources of

interest to them;

• automatic propagation of changes in the description of one resource to the

descriptions of other, related resources, e.g. propagating changes in the

description of a LO to the description of any composite LOs defined in

terms of it.

In the SeLeNe project, we identified and investigated ECA rules over RDF data

as a candidate technology for providing this reactive functionality.

1.3 Problem Statement

The research problems considered in this thesis are the following:

• What constructs and features should be present in ECA languages in order

to support the definition and processing of ECA rules over XML and RDF

data?

• What are the architectural requirements of systems that support ECA rule

processing over XML and RDF data in centralised and P2P environments?

• What factors affect the performance of such ECA rule processing systems?

• What are the performance trends and the scalability characteristics of such

ECA rule processing systems?

17

This new combination of ECA rules and semi-structured data gives rise to

new research issues, including the design of new architectures to support the pro-

cessing of ECA rules over centralised or distributed XML and RDF repositories,

the design of ECA rule languages for XML and RDF data, event detection and

rule execution over such data and the development of analysis and optimisation

techniques for these new languages.

Although ECA rules are supported by most of the modern relational database

systems, there is currently limited support for ECA rules over semi-structured

data. Triggers on XML data are supported by all the major DBMS vendors and

also by some native XML repository vendors [eXist, Xindice, dbXML]. However,

these are confined to document-level triggering, and only events concerning in-

sertion, deletion or update of an entire XML document can be detected, thus

limiting the ability to define rules that trigger in response to data modification

within the stored XML documents.

The complexity of XML and RDF compared to the relational data model,

in conjunction with the relative immaturity of their supporting technologies and

standards make research on the above issues a challenging task. The specific

research problems addressed in this thesis are listed next.

1.4 Dissertation Outline

The outline of this thesis is as follows:

Chapter 2 gives a review of semi-structured data models and languages, in-

cluding a review of query and update languages that may be used to define the

different parts of ECA rules (i.e. the event, condition and action part) and a

review of existing ECA rule languages for semi-structured data.

Chapter 3 reviews a particular ECA language for XML data, called XTL,

18

including its syntax and execution semantics, investigating also the language’s

expressiveness. The chapter concludes by comparing XTL with another similar

language for XML ECA rules (Active XQuery [BBCC02]), with respect to their

syntax and semantics.

Chapter 4 describes a prototype system that supports the definition and pro-

cessing of XTL rules, in a centralised environment, including its architecture and

its major components. A performance study of the system is conducted, in-

cluding system modelling using analytical methods and experiments conducted

using both the analytical model and the system itself. An indexing structure for

XTL rules is also proposed and an analytical study of its effect on the system’s

performance is presented.

Chapter 5 describes our ECA language for RDF, called RDFTL, including

the syntax and denotational semantics of its query and update sublanguages of

RDFTL rules.

Chapter 6 describes a prototype system that supports the definition and pro-

cessing of RDFTL rules in P2P environments, including the system architecture

and its major components. We give details of rule registration and rule execu-

tion, as well as possible approaches for concurrency control and recovery in such

environments.

Chapter 7 studies the performance and scalability of our RDFTL rule pro-

cessing system. We develop a performance model based on analytical methods

and we use the experimental results from both the analytical model and system

simulations in order to investigate the system’s performance.

Finally, Chapter 8 gives our conclusions and directions of future work.

19

1.5 Thesis Contributions

We investigate how ECA rule processing systems over semistructured data can be

built, in both centralised and in P2P environments, starting from the design of the

ECA language to the design and implementation of the supporting rule processing

systems and also a study of the systems’ performance. We have designed the first

ECA rule language for RDF data and defined its denotational and execution

semantics.We have also designed and implemented the first system supporting

RDF ECA rule processing in P2P environments. This is also the first time that a

performance study over such a system has been conducted, using both analytical

and simulation methods.

20

Chapter 2

Semi-Structured Data Models

and Languages

2.1 Introduction

A data model is considered to be semi-structured if it is self-describing, in other

words, schema information is contained within the data, or if the schema places

only loose constraints on the data [Bun97]. This has a bearing on the design of

ECA rule systems over semi-structured data because there is a wider variety of

granularities of data updates than with structured data (for example, fragments

of XML documents and subgraphs of RDF graphs). This results in a wider

variety of event types and in more complex event types and more complex event

detection logic. We discuss the specific design issues in more detail in later

Chapters (Chapter 3, Section 3.2 and Chapter 5, Sections 5.1 and 5.2).

This chapter reviews ECA languages for semi-structured data. Because ECA

languages use query and update languages to define the different parts of ECA

rules, we also conduct a review of query and update languages for semi-structured

data. Since the dominant semi-structured data standards today are XML and

21

RDF we first focus on the definition of these data models. We describe the struc-

ture of each data model, followed by the supporting schema definition languages

for XML and RDF data. A review of query and update languages for XML and

RDF, including the existing standard languages or the various proposals, follows.

A discussion of proposals for ECA languages for semi-structured data concludes

the review.

The chapter is organised as follows. In Section 2.2 we present the XML and

RDF data models, including the corresponding schema definition standards for

each data model, DTD [W3C06a], XMLSchema [W3C06d] and RDFSchema [W3C04b].

In Section 2.3 we review the main query languages for semi-structured data, in-

cluding XML and RDF. Section 2.4 considers update languages for XML and

RDF data. Finally, in Section 2.5 we review languages used for defining ECA

rules both for structured and semi-structured data.

2.2 Semi-Structured Data Models

2.2.1 The XML Data Model

The eXtensible Markup Language (XML) [W3C06a] appeared as a W3C standard

recommendation in February 1998. The development of XML was motivated

by the earlier Standard Generalized Markup Language (SGML), and XML was

originally designed to meet the challenges of large-scale electronic publishing,

motivated by the inflexibility of HTML and the complexity of SGML. The ability

to impose rules regarding the vocabulary and the structure of an XML document,

using languages such as DTD or XMLSchema, as well as specifying document

elements that are mandatory and optional, is one of the advantages of the XML

standard over its HTML predecessor.

22

<?xml version="1.0" encoding="ISO-8859-1"?>

<shares>

<share name="INTL">

<day-info day="03" month="03">

<prices><price time="09:05">125.25</price>

<price time="09:00">123.55</price>

<price time="09:10">123.00</price>

</prices>

<high>123.55</high><low>123.00</low>

</day-info>

<day-info day="04" month="03">

<prices><price time="09:05">128.25</price>

<price time="09:00">124.55</price>

<price time="09:10">123.00</price>

</prices>

<high>124.55</high><low>123.00</low>

</day-info>

<month-info month="03"><high>124.55</high>

<low>123.00</low><month-info>

</share>

<share name="MDRK">

<day-info day="03" month="04">

<prices><price time="10:10">120.55</price>

<price time="11:20">123.55</price>

</prices>

<high>123.55</high><low>120.55</low>

</day-info>

<day-info day="05" month="04">

<prices><price time="10:10">123.55</price>

<price time="10:20">124.66</price>

</prices>

<high>124.55</high><low>121.55</low>

</day-info>

<month-info month="04"><high>124.55</high>

<low>121.55</low><month-info>

</share>

</shares>

Figure 2.1: Example XML document, shares.xml

23

Figure 2.1 shows an XML document that holds information regarding the

prices of shares per day. An XML document can be seen as either a tree or as

a linear document. An XML tree is required to have a root node under which

all the other nodes appear. An XML tree consists of six different types of nodes:

elements indicated by a tag name; attributes; text nodes; processing instructions;

comments; and the root node. The names of the element tags and attributes

are case sensitive and must begin with a letter, underscore or colon followed

by any number of additional letters, digits, colons, underscores, hyphens and

periods. In the linear representation of an XML tree, each opening element tag,

e.g. <tag-name>, is required to be paired with its the corresponding ending tag,

e.g. </tag-name>. A shorthand allowed for empty elements, e.g. <price/> for

<price></price>. Elements need to be correctly nested, in the sense that if a

start tag A precedes a start tag B then the end tag B must precede the end tag

A. The values of attributes need to be enclosed in quotes, either single or double

e.g. name=’INTL’. The first line in the XML document is the so-called XML

declaration and defines the XML version and, optionally, the character encoding

used in the document, e.g. <?xml version="1.0" encoding="ISO-8859-1"?>.

Tags beginning with <? and ending with ?> indicate processing instructions, while

all characters enclosed within <!-- and --!> are considered comments. Finally,

the CDATA (character data) sections are enclosed in <![CDATA[and]]> and their

contents are not interpreted during XML document parsing.

2.2.2 Schema Definition Languages for XML

DTD [W3C06a] and XML Schema [W3C06d] are the two main schema defini-

tion languages for XML. DTD (Document Type Definition) provides facilities

for defining the names and the structure of XML elements, the attributes of el-

ements, and the default values of attributes, if any. Figure 2.2 shows a DTD

24

corresponding to the structure of the XML document shown in Figure 2.1.

<!ELEMENT shares (share*) >

<!ELEMENT share (day-info*)>

<!ELEMENT day-info (prices,high,low)>

<!ELEMENT month-info (high,low)>

<!ELEMENT prices (price+)>

<!ELEMENT high (#PCDATA)>

<!ELEMENT low (#PCDATA)>

<!ELEMENT price (#PCDATA)>

<!ATTLIST share

name CDATA #REQUIRED>

<!ATTLIST day-info

day CDATA #REQUIRED

month CDATA #REQUIRED>

<!ATTLIST month-info

month CDATA #REQUIRED>

<!ATTLIST price

time CDATA #REQUIRED>

Figure 2.2: Example DTD document, shares.dtd

ELEMENT and ATTLIST are the two main syntactical components for defining

the element structure and the attributes associated with elements, respectively.

ELEMENT is followed by the name of the element and its content specification. The

content of an element is specified using a notation similar to regular expressions

and it defines the list of elements the current element may comprise. For exam-

ple, in the example DTD, the shares element comprises of zero or more share

elements, while day-info comprises of one or more prices elements followed by

high and low elements. An element may also comprise of a text element indicated

by #PCDATA, e.g. element high. Other content indicators include EMPTY, which

defines an element with empty content, and ANY indicating an element that can

contain any content. Elements with mixed content are also allowed, which may

comprise of combinations of elements and text.

25

ATTLIST specifies the attributes of an element. Each attribute definition com-

prises an attribute name e.g. time, a type e.g. CDATA and a default that can be

#IMPLIED, meaning that the attribute can omitted, #REQUIRED meaning that the

attribute must be present, #FIXED x meaning that its value must be x, or simply

x specifying the default value of the attribute. A DTD also has the ability to

declare entities. Entities are a physical unit such as a character, a string or a

file. Their declaration associates a name with an entity, e.g. <!ENTITY myname

"George Papamarkos">. We can refer to an entity within an XML document by

prefixing its name with &, e.g. &myname;.

A DTD can be specified either internally, i.e. within the XML document,

or externally, in another file. The <!DOCTYPE> construct specifies the DTD to

be used in an XML document. For example, in our example XML document in

Figure 2.1, adding <!DOCTYPE shares SYSTEM "shares.dtd"> after the <?xml

...?> instruction states that shares.dtd is the DTD to which the root element

<shares> of the document conforms.

DTDs suffer from a number of limitations, the most significant of which are:

(a) lack of support for data typing, especially for element content, (b) non-XML

syntax, (c) unable to enforce order and number of child elements of mixed content

elements, (d) the elements of a DTD are global, (e) difficulty of enforcing the

presence of child elements without also enforcing the order and (f) no easy support

for namespaces.

XMLSchema [W3C06d] overcomes these limitations. XMLSchema employs

an XML syntax and supports data types for both elements and attributes. There

are two kinds of data types: simple, that contain only text, and complex, that can

contain elements or attributes. The simple data types include string, boolean,

date, float, decimal and many more (see [FW04] for a full list). It is also

possible to define complex data types as a combination of simple data types.

26

Figure 2.3 shows an XML Schema describing the XML document of Figure 2.1.

The <shares>, <share>, <day-info> and <prices> elements are represented

by complex types containing either other nested complex types or simple type

elements or attributes, such as the <high> element under the <day-info> which

holds the highest prices of the day and is of type xsd:float.

2.2.3 The RDF Data Model

The Resource Description Framework (RDF) [W3C04e] is the language proposed

by the W3C to support the Semantic Web initiative by allowing the definition of

metadata describing web-based resources. RDF is one of the older specifications

of the W3C, with the first working draft produced in 1997. The first recommended

RDF specification, including the RDF Model and Syntax, was released in 1999

with the RDF Schema Specification following in 2000.

The basic structural unit of RDF is the triple. Each triple consists of a subject,

a predicate (also called a property) and an object. Graphically, a triple can be

represented by a node representing the subject, a node representing the object,

and a directed arc from the former to the latter corresponding to predicate. A

set of triples thus constitutes an RDF Graph. An RDF triple states that some

relationship, indicated by the predicate, holds between the entities denoted by

subject and object of the triple. The meaning of an RDF graph is the logical

conjunction of the statements corresponding to all the triples it contains. A node

may be a URI (Uniform Resource Identifier [BLCG92]) or a literal, which uniquely

identify the node, or may be blank and have no identifier. Literals are used to

identify entities such as numbers and dates by means of a lexical representation.

A literal may be the object of an RDF triple, but not the subject or the predicate.

There is no built-in concept of data types in RDF and the predefined XML

Schema data types are used for this purpose. XML Schema capabilities can also

27

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="shares" type="WholeShares"/>

<xsd:complexType name="WholeShares" >

<xsd:sequence>

<xsd:element name="share" type="ShareInfo" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ShareInfo">

<xsd:sequence>

<xsd:element name="day-info" type="DayInfo" minOccurs="0"

maxOccurs="unbounded"/>

<xsd:element name="month-info" type="MonthInfo" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="DayInfo">

<xsd:sequence>

<xsd:element name="prices" type="DayPrices"

maxOccurs="unbounded"/>

<xsd:element name="high" type="xsd:float"/>

<xsd:element name="low" type="xsd:float"/>

</xsd:sequence>

<xsd:attribute name="day" type="xsd:integer"/>

<xsd:attribute name="month" type="xsd:integer"/>

</xsd:complexType>

<xsd:complexType name="DayPrices">

<xsd:sequence>

<xsd:element name="price" type="xsd:float"

maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="time" type="xsd:time"/>

</xsd:complexType>

<xsd:complexType name="MonthInfo">

<xsd:sequence>

<xsd:element name="high" type="xsd:float"/>

<xsd:element name="low" type="xsd:float"/>

</xsd:sequence>

<xsd:attribute name="month" type="xsd:integer"/>

</xsd:complexType>

</xsd:schema>

Figure 2.3: Example XMLSchema, shares.xsd

28

be used for defining new data types for use in RDF. XML content is also a possible

value for RDF literals. Such content is indicated in an RDF graph using a literal

whose data type is the built-in data type rdf:XMLLiteral.

To illustrate, the RDF graph in Figure 2.4 describes the metadata of a learning

object. The oval nodes indicate RDF resources and the rectangles RDF literals.

The nodes are connected via arcs labelled by a property name. Each property

name consists of two parts separated by a “:”. The left part is a reference

to the namespace to which the property belongs, e.g. dc for Dublin Core (see

Section 2.2.4 below) and rdf for the core RDF namespace, and the right part is

the name of the property within the specified namespace. The properties in the

rdf namespace named 1, 2, 3 etc. indicate members of an RDF collection. An

RDF collection can either be a sequence (order of its members matters), a bag

(order-independent) or a set of alternative options. In an RDF graph, a collection

is represented by a blank node with an outgoing arc labelled rdf:type, pointing

to a resource that indicates the type of the collection, which can be rdf:Seq for

a sequence, rdf:Bag for a bag or rdf:Alt for a set of alternatives. The contents

of a collection are represented as objects of the triple having the blank node as

its subject and an arc labelled rdf: i, where i is an integer indicating the index

of the member within the collection.

In addition to the abstract RDF syntax defined by the RDF graph, RDF has

a recommended XML serialization, RDF/XML [W3C04c], which can be used to

encode RDF data for exchange of information between applications.

2.2.4 RDFSchema

RDFSchema [W3C04b] is a vocabulary description language for RDF. It provides

mechanisms for describing groups of related resources and the relationships be-

tween these resources. RDF Schema employs a class and property system similar

29

dc:details

http://www.dcs.bbk.ac.uk/LOs/BK187

Book

Data On The
 Web

Computer
 Science rdf:Bag

Abiteboul

Buneman

Suciu

From Relations to
Semistructured Data

rdf:Seq

http://www.dcs.bbk.ac.uk/books/AN1289

N. Anderson

Fantastic Book ...

2001−12−01

J. Smith

2002−10−02http://www.dcs.bbk.ac.uk/books/AN1297

dc:type

...

dc:title

dc:subject
rdf:_1

rdf:_2

rdf:_3

rdf:type

dc:annotation

dc:description

dc:creator

rdf:type

rdf:_1

rdf:_2

dc:reviewer

dc:date

dc:details

dc:reviewer

dc:date

Figure 2.4: RDF data describing a learning object.

30

to the type system of object-oriented programming languages. The language pro-

vides a set of RDF resources that can be used to describe properties of other RDF

resources and properties. The core vocabulary is defined in a namespace called

rdfs (recall that the prefix rdf is used to refer to the RDF namespace). Users

are free to create their own vocabularies, to extend the rdfs and rdf namespaces,

and to create new namespaces.

The graph illustrated in Figure 2.5 is an example RDF Schema that the RDF

data shown in Figure 2.4 conforms to. Figure 2.5 uses the Dublin Core [DC03]

RDFS vocabulary, indicated by the dc prefix and the core RDF vocabulary in-

dicated by the rdf prefix. The Dublin Core Element Set RDFS vocabulary is

designed to describe identification information for a broad range of data resources,

such as their title, author, type etc.

RDF resources may be divided into classes the members of which are termed

instances of the class. Classes are themselves resources that can be identified by

a URI. In order to state that a resource is an instance of a class, the rdf:type

property is used, with the instance resource as the subject and the class resource

as the object. The primitive RDF Schema class rdfs:Class is an instance of

itself.

RDF Schema allows class extension via subclassing. The rdfs:subClassOf

property may be used to state that one class is a subclass of another. If a class

C is a subclass of a class C’, then all instances of C will also be deemed to be

instances of C’. The following list enumerates the basic classes used in the RDF

Schema vocabulary (see [W3C04b] for the full RDF Schema vocabulary):

• rdfs:Resource: The class that all the RDF resources are instances of. It

is an instance of rdfs:Class.

• rdfs:Literal: The class of literal values such as strings and integers. It is

31

an instance of rdfs:Class and a subclass of rdfs:Resource.

• rdfs:Datatype: The class of data types. It is an instance of rdfs:Class

and a subclass of rdfs:Literal.

• rdf:XMLLiteral: The class representing XML literal values. It is an in-

stance of rdfs:Datatype and a subclass of rdfs:Literal.

• rdf:Property: The class of RDF properties. It is an instance of rdfs:Class

while rdfs:range, rdfs:domain and rdf:type are instances of rdfs:Property.

rdfs:range is used to define the class or classes the values of a property

are instances of while rdfs:domain is used to state that any resource that

has a given property is an instance of one or more classes.

In Figure 2.5, the oval nodes represent RDF classes that are subclasses of

rdfs:Resource and the rectangular nodes represent literals that are instances

of rdfs:Datatype. Although not shown in Figure 2.5, the relationship between

rdfs:Resource and an RDF class can be represented by outgoing arc, labelled

rdfs:subClassOf, from the subject class to rdfs:Resource. In a similar way,

an outgoing arc labelled rdf:type from a literal to rdfs:Datatype indicates that

a node is an instance of rdfs:Datatype. For brevity, String and Date appear-

ing in the literal nodes in the figure indicate the data type of the literal nodes

whereas the formal representation would be a triple from the literal to the appro-

priate RDF class representing the data type. Finally, consider property p with

domain d and range r. In our RDF schema representation shown in Figure 2.5,

rather than this being represented by a pair of triples (p, rdfs : domain, d) and

(p, rdfs : range, r), we instead use the single triple (d, p, r). We use this repre-

sentation for brevity, and it is similar to the representation used by RQL (see

Section 2.3.2) for performing queries.

32

LO

Author

String

StringString

String

String

String

Annotation

User

Messages

Interest

String

String

dc:annotation

dc:creator

dc:reviewer

Date

dc:details
dc:date

dc:subject

dc:title

dc:type

dc:description

sl_user:updated_LO
sl_user:newLO

sl_user:interest_description

sl_user:new_user

sl_user:interest

sl_user:interest_typename

sl_user:messages

Figure 2.5: RDF schema describing users and learning objects.

2.3 Query Languages

We now review the main query language proposals for XML and RDF data.

In the case of XML we concentrate on the two standardised query languages

XPath [W3C05a] and XQuery [W3C05b], while for RDF, due to lack of any

query language standardisation, we review the major query languages that have

been proposed for RDF to date.

2.3.1 XML Query Languages

As increasing amounts of information are stored, exchanged, and presented using

XML, the ability to query XML data sources has become increasingly important.

XPath 1.0 [W3C99a] is a declarative language for specifying paths in trees,

such as XML documents, using a path syntax similar to the one used in filesystem

33

directory and file hierarchies. It was proposed by a W3C recommendation in 1999

and was designed in order to provide a means to address XML elements from

within the XPointer language [W3C01] or to match sets of elements from within

the XSLT language [W3C99b]. XPointer is a language used for addressing the

internal structure of XML documents, providing specific references to elements,

strings and other parts of XML documents. XSLT is language that specifies rules

for transforming an XML document to another document, that can either be

another XML document, an HTML document or a document comprising some

formatting rules.

XPath treats the XML document as a tree of nodes, distinguishing six types of

nodes. The root of the tree (which is different from, and the parent of, the docu-

ment’s root element); other elements; attributes; text; comments; and processing

instructions. Each XPath expression is either an absolute or a relative expression.

An absolute expression starts with a ’/’ followed by a relative expression and is

evaluated starting at the root node. The relative expression is a sequence of lo-

cation steps. Each relative path expression is evaluated with respect to an initial

context, corresponding to a set of nodes which is defined externally by XQuery,

XSLT or XPointer language constructs. So each location step is evaluated with

respect to a context and produces a new set of nodes that provides the context

for the next location step.

XPath employs two syntax formats, the abbreviated and the full syntax. In

this thesis we mostly employ the abbreviated syntax and we refer the reader

to [W3C99a] for details of the full syntax.

In the abbreviated XPath syntax, a location step can either be empty, i.e. //,

or can specify an element name, or can specify an attribute name prefixed by @.

An empty step identifies all descendants of all nodes in the current context. An

element name identifies all child elements of each node in the context that have

34

the given name. An attribute name identifies the attribute node (if any) of each

node in the context that has the given name. Optionally, an element name and

an attribute name may be followed by a predicate, enclosed in [], to filter the

evaluated nodes. Predicates comprise boolean expressions using and, or, not,

=, numerical expressions, other path expressions, or built-in XPath functions.

For example, consider the XML document in Figure 2.1. The XPath expres-

sion /shares/share evaluates to all the share elements of the document, as

does the expression //share. The expression //share/day-info[high][low]

evaluates to all day-info nodes that have both high and low nodes as children,

while //share/@name returns all the share nodes that have have an attribute

with name name. To illustrate the use of predicates, //share[@name="INTL"]

evaluates to the shares with name equal to INTL and

//share/day-info[@month="04"][high=124.55]

evaluates to all day-info nodes that are for April and whose highest share value

of the day is 124.55.

Similar to filesystem navigation path expressions, XPath allows the use of ’.’

and ’..’ to refer to a current context node or to the parent node of a current

context node. Using ’*’ we can refer to element nodes with any name. Using

[i], where i is an integer, we can refer to the ith element of a set of nodes.

Again considering the XML document in Figure 2.1, //share[2] evaluates to

the second share node, i.e. the one with name="MDRK", while

//high[.=124.55]/..[@month="03"]/prices/* evaluates to all child nodes of

the prices node of the day-info nodes of March that have high node equal to

124.55.

XPath lacks features such as the ability to perform joins between XML docu-

ments, projections of XML data nor result set transformation operations. XQuery

is a W3C proposal for a more expressive query language for XML. Its syntax is

35

based on the earlier QUILT [RCF00] query language, while it has also borrowed

features from XQL [IKK98], SQL and OQL [OQL01] and, especially, XPath. It is

a functional language that consists of expressions, which can possibly be nested.

The path expressions of XQuery are based on the abbreviated syntax of XPath.

XQuery employs a type system based on XML Schema and shares a set of built-in

functions and operators with XPath.

The FLWR (pronounced “flower”) expressions of XQuery support iteration

and binding of variables to intermediate result sets using the for and let key-

words. This kind of expression is useful for computing joins between two or more

documents and for restructuring XML data. The for clause contains one or

more variables each associated with an expression. The value of this expression

is called the binding sequence. The for clause is used to iterate over the items in

the binding sequence, binding the variable to each item in turn. A let clause may

also contain one or more variables, each with an associated expression. Unlike

a for clause, however, a let clause binds each variable to the entire result set

of its associated expression. The optional where clause serves as a filter for the

tuples of variable bindings generated by the for and let clauses. The expression

in the where clause is evaluated once for each of these tuples and if the result is

True, then the tuple is retained and its variable bindings are used in the execution

of the return clause, or otherwise the tuple is discarded. The return clause is

evaluated once for each tuple output by the where clause and the results of these

evaluations are concatenated to form the result of the FLWR expression. The

order by clause, if any, contains one or more ordering specifications according

to which the returned results will be sorted.

For example, the following XQuery expression selects and returns the highest

price of each day for the share named INTL, in ascending order of these highest

prices:

36

for $x in document("shares.xml")/shares/share

let $day := $x/day-info

where $x/@name="INTL"

order by $day/high

return $day/high

Here the for clause instantiates the variable $x with each share element under

the shares element. The let clause holds a reference to all the day-info elements

of any share. The where clause selects only share elements with name attribute

equal to INTL. The order by clause sorts those according to the value of their

high elements. The return clause specifies the elements to be returned, in this

case the high elements. The query will return:

<high>123.55</high>

<high>124.55</high>

XQuery allows conditional expressions to be used within any of the expressions

in the for, let or where clauses. It also allows constructs that can create any

XML structure within the return clause— including elements, attributes, text,

comments and processing instruction nodes. For example, the following XQuery

expression is similar to the previous one except that it returns the high element

of each day in March within a new march element and the high element of each

day of other months within a rest-of-the-year set of element tags:

for $x in document("shares.xml")/shares/share

let $day := $x/day-info

where $x/@name="INTL"

return if ($day/@month="03")

then <march>$day/high</march>

else <rest-of-the-year>$day/high</rest-of-the-year>

37

The query will return:

<march>123.55</march>

<march>124.55</march>

2.3.2 RDF Query Languages

Unlike XML, no standard for the RDF query language has yet emerged, although

several such languages have been proposed, some inspired by the SQL and OQL

query languages and some others that have a rule-based syntax. We review here

the most notable proposals. All our example queries refer to the RDF graph

shown in Figure 2.4 and schema in Figure 2.5.

RQL [KAC+02] is a typed functional language. It combines querying of

schema and data. It is supported by in the RDFSuite system [RDFSuite] and is

also partially supported by Sesame system [Sesame]. RQL supports path expres-

sions allowing variables on both nodes and edges of the RDF graph. For example,

the following query on the RDF Schema in Figure 2.5 returns the classes that

appear as domain and range of the property dc:creator:

SELECT $C1, $C2

FROM {$C1}dc:creator{$C2}

USING NAMESPACE dc = &http://purl.org/dc/elements/1.1/

The USING NAMESPACE clause defines the namespaces used in the query. At the

RDF data level, the following RQL query on the RDF graph illustrated in Fig-

ure 2.4 returns the title of the Learning Object resource with the specified URI:

SELECT Y

FROM {X}dc:title{Y}

WHERE X = &http://www.dcs.bbk.ac.uk/LOs/BK187

USING NAMESPACE dc = &http://purl.org/dc/elements/1.1/

38

RDQL [W3C04d] was the query language supported by the Jena RDF man-

agement framework [Jena2] up to version 2.2. It has an SQL-like syntax for

selecting parts of the RDF graph, also allowing the use of namespace abbrevi-

ations. It is not able to query RDF Schema elements. The following example

query returns all the RDF resources that are of type “Book”:

SELECT ?x

WHERE (?x, dc:type, "Book")

USING dc FOR <http://purl.org/dc/elements/1.1/>

The USING ... FOR clause is used to define the necessary namespaces.

SPARQL [W3C06c] has replaced RDQL in the Jena framework since version

2.3. It too has an SQL-like select syntax for selecting RDF subgraphs, and also

allows namespace abbreviations within queries by using the PREFIX keyword. It

has been initially developed as part of the SPARQL Protocol for RDF [W3C06b].

This protocol was developed by the W3C RDF Data Access Working Group with

the aim of standardising the submission of SPARQL queries from query clients to

query processors in a distributed query environment. The SPARQL query below

selects the titles of all learning objects that are of type “Book”:

PREFIX dc : http://purl.org/dc/elements/1.1/

SELECT ?bookTitle

WHERE

{ ?y dc:type "Book" .

?y dc:title ?bookTitle .

}

Versa [Versa] has been developed as part of the 4Suite [4Suite] toolset for

XML and RDF data. The main aim of Versa is to create a language that can be

easily integrated with the existing XML processing technologies such as XSLT. As

39

part of this, Versa has been primarily motivated by XPath. A Versa expression

can consist of either a function call, a literal, a variable reference or a nested

expression. For example, the query

all()-dc:reviewer->*

applied on the RDF data shown in Figure 2.4, returns the objects of triples with

subject any existing resource and property dc:reviewer, i.e.

N. Anderson and J. Smith.

2.4 Update Languages

Update languages enable a higher level modification of data than via API calls

from within programming language code. In this section we review the main

update language proposals for XML and RDF data.

2.4.1 Update Languages for XML

In recent years, various languages for updating XML data have been proposed,

and there are two main approaches: (a) extending SQL with XML update features

and (b) XML-specific update languages.

Most commercial relational database systems, such as Oracle XML DB [OraXML],

DB2 XML Extender [DB2XML] and Microsoft SQL Server 2005 [MSSQL05],

adopt the first approach, providing their XML extensions with a proprietary API

for updating XML data using an SQL-like syntax to express the update.

One of the earliest proposals regarding updating XML data using an XML-

specific update language is presented in [TIHW01], where extensions to XQuery

are presented that support a set of update operations for XML data, along with

algorithms for implementing these update operations within XML-enabled rela-

tional databases. The update operations include: (a) deletion of an XML node,

40

(b) rename of a non-text node, (c) insertion of a new XML subtree or text node

before or after a specified position in a list of siblings, (d) replacement of an

XML node by another and (e) sub-updating that starting from a given element,

uses a pattern-matching operation over the input document, possibly filtered by

a condition, and the update operation is invoked recursively for each matching.

XUpdate [LM00] was proposed by the XML:DB working group [XML:DB] as

a language for updating XML documents. XUpdate is expressed as a well-formed

XML document, using a notation similar to XSLT, and making use of XPath to

select parts of the XML document for updating. However, the XUpdate project

seems to have ceased, since no progress has been reported since September 2000.

Another XML update language, defined as part of our own XML ECA lan-

guage, is presented in [BPW02a] and is described later, in Chapter 3 of this

thesis. It supports INSERT and DELETE actions over XML data and employs

a fragment of XPath to select the XML data to be modified and a fragment of

XQuery to construct new XML data fragments. DELETE actions use the XPath

fragment to select the XML data to be deleted. INSERT actions can use XPath

expressions to specify the insertion of an existing XML fragment under an XML

node, and can be the XQuery fragment to construct a new XML subtree to be

inserted under an existing node.

A recent working draft of the W3C [CFR05] adopts and extends the approach

of [TIHW01], aiming to extend XQuery with an update facility. This extension

supports the following operations (the examples below refer to the XML document

in Figure 2.1):

• Insertion of a node. An insert expression inserts copies of one or more

nodes into a designated position e.g. to insert a new price element under

the price list of the last day-info node of the first share from the shares

list:

41

do insert <price time="12:45">154.34</price>

after doc("shares.xml")/shares/share[1]/day-info[last()]

/prices/price[last()]

• Deletion of a node. A delete expression deletes one or more nodes, e.g. to

delete the last day-info element from the first share from the shares list:

do delete doc("shares.xml")/shares/share[1]/day-info[last()]

• Modification of a node by changing some of its properties while preserving

its identity. The modification operations include replace, to replace a node

by another and rename to rename the tag name of an element. For example,

to replace the first day-info node of the first share by a copy of its last

day-info:

do replace doc("shares.xml")/shares/share[1]/day-info[1]

with doc("shares.xml")/shares/share[1]/day-info[last()]

and to rename all high nodes as highest-price.

do rename doc("shares.xml")/shares/share/day-info/high

as "highest-price"

• Creation of a modified copy of a node with a new identity, using the

transform operation, e.g.

for $e in //share[name = "INTL"]

return

transform

copy $je := $e

42

modify do delete $je/day-info[@month="03"]

return $je

Here, the transform expression creates a copy $je of the $e variable, that

matches all shares with name INTL, and then deletes all the daily infor-

mation for March from all the shares within the $je copy before returning

the modified copy.

As implied by the last example, FLWR syntax can be extended with these update

expressions. This is also the case for conditional expressions, e.g. if the name of

the first share in the list of shares is INTL, then the high element of the first

day-info of the first share can be replaced by a copy of the high element of the

last day-info element of this first share element as follows:

if (doc("shares.xml")/shares/share[1]/@name="INTL")

then do replace value of doc("shares.xml")/shares/share[1]/day-info[1]/high

with doc("shares.xml")/shares/share[1]/day-info[last()]/high

Finally the declaration of functions that perform updates is allowed, e.g. the

following function accepts an element $e as a parameter, and deletes those of its

high child elements that have attributes with names day and month:

declare updating function remove-high($e as element())

{

if ($e/@day and $e/@month) then

do delete $e/high

}

This function can be called with a parameter that is an XQuery expression that

evaluates to a single element,

e.g. remove-high(doc("shares.xml")/shares/share[1]/day-info[last()])

would delete the high node of the last day-info node of the first share.

43

2.4.2 Update Languages for RDF

There is as yet no standardised language proposal for an RDF update language

and we review here the proposals made to date.

RUL [MSCK05] is an RDF update language language based on RQL [KAC+02]

and like RQL developed as part of the RDF Suite [RDFSuite]. The execution

of an RUL update guarantees that the resulting RDF graph does not violate the

semantics of the RDF model nor the semantics of the given RDFS schema. Three

update operations are supported, INSERT, DELETE and MODIFY, for both class and

property instances. For example, the RUL expression

INSERT LO(&http://www.dcs.bbk.ac.uk/LOs/MGZN123)

inserts a new resource with the specified URI as instance of the LO class (as given

in the RDF Schema in Figure 2.5). As another example, the RUL expression:

DELETE LO(X)

FROM {X}dc:type{Y}

WHERE Y = "Book"

USING NAMESPACE dc = &http://purl.org/dc/elements/1.1/

deletes all the resources that are instances of the LO class and whose dc:type

property has value Book.

MEL (Modification Exchange Language) proposed in [NSST02] was developed

as part of the Edutella project [NWQ+02]. MEL provides the expected primitive

modification operations, insert, delete and update. Each MEL expression consists

of a statement and an optional query constraint. For example, the MEL statement

below inserts a new RDF triple by specifying its subject, predicate and object:

<edu:Insert rdf:about="#insert_cmd1">

<edu:newStatement rdf:resource="#insert1_stmt"/>

</edu:Insert>

44

<edu:InsertedStatement rdf:about="#insert1_stmt">

<rdf:subject rdf:resource="http://www.dcs.bbk.ac.uk/LOs/MGZ423"/>

<rdf:predicate rdf:resource="&dc:title"/>

<rdf:object rdf:resource="National Geographic Traveller"/>

</edu:InsertedStatement>

The edu:Insert element defines a new insert command named insert cmd1 that

defines an RDF triple to be inserted, represented by an RDF resource named

insert1 stmt. Within insert1 stmt, we specify the subject, the predicate and

the object of the new triple. MEL is an RDF Schema agnostic language, meaning

that that it does not take RDF Schema information into account during the

update.

We too have defined an update language for RDF as part of our own ECA lan-

guage for RDF, discussed in Chapter 5 of this thesis. Our language can INSERT

or DELETE an RDF resource specified by its URI, and can INSERT, DELETE

or UPDATE a property of a resource. For example,

INSERT resource(http://www.dcs.bbk.ac.uk/LOs/BK123) AS INSTANCE OF LO

will insert a new resource identified by the specified URI as an instance of the LO

RDF class;

DELETE (http://www.dcs.bbk.ac.uk/LOs/BK187,dc:type,"Book")

will delete the property dc:type of the specified resource and its "Book" literal

value; and

UPDATE (http://www.dcs.bbk.ac.uk/LOs/BK187,dc:type,"Book" -> "Journal")

will update the object of the property dc:type of the specified resource from the

"Book" literal to the "Journal" literal.

45

2.5 Event-Condition-Action Rule Languages

Event-Condition-Action rule languages support the definition of rules that auto-

matically perform stated actions in response to the occurrence of stated events

provided that stated conditions hold. These rules are called Event-Condition-

Action (ECA) rules or triggers and have three parts: the event, the condition and

the action, specified by the general syntax ON event IF condition DO actions

The event part of an ECA rule describes the events that the rule should respond

to. When an event specified by the event part of a rule occurs then the rule is

triggered. If the condition described in its condition part holds then the rule fires.

The action part describes the actions to be performed by the rule if the specified

event has occurred and the condition has evaluated to true. Execution of these

actions may in turn cause further events to occur, which may in turn cause more

ECA rules to fire. We refer the reader to [Pat99] and [WC96] for comprehensive

discussions of the syntax and semantics of ECA rules and we give in Sections 2.5.1

and 2.5.2 brief summaries, to the level of detail necessary for this thesis.

2.5.1 Syntax

Events may be primitive or composite. Primitive events are atomic events and

may be caused by (a) a structure operation (e.g. insert a tuple into a table), (b)

a behaviour invocation where the event is raised by the execution of some user-

defined operation (e.g. a program method), (c) transaction where the event is

raised by some transaction definition command (e.g. abort, commit), (d) system

exception where the event is raised by a system or application exception, (e) clock

where the event is raised at some point in time or (f) external changes where an

incident outside the database raises an event [DBM88].

Composite events consist of a combination of primitive or other composite

46

events as specified by an event algebra expression [CM94, GJS92]. Common

operators in event algebras include: (i) disjunction: event e1 ∨ e2 occurs if either

event e1 or event e2 occurs; (ii) sequence: event e1; e2 occurs if e2 occurs having

been preceded by e1; and (iii) conjunction: event e1∧e2 occurs when both e1 and

e2 have occurred in any order. Most implementations of ECA systems, however,

do not support an event algebra as rich as this and they are able to detect an

appropriate set of primitive events, with no support for event operators. This may

limit the capabilities of reacting to a range of complex situations but it makes the

rule execution more easily implemented, optimised and analysed. In this thesis

we consider only primitive events on semi-structured data and we do not consider

composite events further. One reason for this is because the SeLeNe application,

which was the initial motivation of our work, did not require specification and

detection of composite events. For the future, we expect that previous work on

composite event detection (such as [CM94, GJS92]) would be transferrable to

ECA languages and rule processing systems for semi-structured data, and this is

an area of future work.

Event occurrences can have associated with them parameters which provide

information about the event occurrence, such as the time at which the event oc-

curred, which transaction caused it to occur, and the changes, if any, the event

made to the database. These parameters are known as deltas and may be refer-

enced by the condition and action parts of the ECA rule.

In the context of database systems, ECA systems may support either syntactic

or semantic triggering. Syntactic triggering means that instances of the event

specified in a rule’s event part are regarded as having occurred even if they have

not modified the database. Semantic triggering means that instances of the event

specified in a rule’s event part are regarded as having occurred only if they have

made changes to the database.

47

The condition part of an ECA rule determines if the database is in a par-

ticular state. It is a query over the database and its environment and has the

same semantics as that of the query language used, e.g. SQL or XQuery. The

condition may also refer to the state before the execution of the event and the

state created after the execution, by making use of the deltas. The condition part

can be a single conditional expression expressed in some query language or it can

consist of one or more conditional expressions forming a boolean expression with

conjunctions, disjunctions and negations.

The action part of a rule describes the logic to be performed if the condi-

tion evaluates to true. A rule’s actions may change a database state via update

operations, invoke an external procedure, generate user notifications or abort a

transaction.

ECA rules can facilitate the implementation of various types of reactive func-

tionality. In database systems, they can be used to support integrity constraint

specification and enforcement, materialised views, different transaction models,

coordination of distributed computations, and version management. ECA rules

can also be used to move within a database system functionality that would

otherwise have to be provided by the application, for example monitoring and

reading stock price changes, propagating load calculations in an architectural de-

sign, or recording students’ assessment progression in an e-Learning system. ECA

rules can also be used in conjunction with external monitoring devices in order

to record and respond to events occurring externally to the database. For ex-

ample, in medical applications they can be used to monitor a patient’s condition

and react to changes, or in air-traffic control applications to detect potentially

dangerous situations and inform the controller.

48

2.5.2 ECA Rule Execution Model

The execution model of an ECA rule system specifies how the rules are used by

the system at run time. In particular it specifies:

• when the various components of the rule are executed with respect to one

another

• what happens when multiple rules are triggered simultaneously

The first aspect is handled by the use of coupling modes. A coupling mode

specifies the timing of one part of an ECA rule with respect to another. Possible

coupling modes for the condition part with respect to the event part are:

• Immediate: The condition is evaluated immediately after the event is de-

tected as having occurred within the current transaction.

• Deferred: The condition is evaluated within the same transaction, but af-

ter the last operation in the transaction and just before the transaction

commits.

• Decoupled or Detached: The condition is evaluated within a separate trans-

action.

Possible coupling modes for the actions part with respect to the condition part

are similar:

• Immediate: The action is executed immediately after the condition has

been evaluated (if the condition is found to be True).

• Deferred: The action is performed within the same transaction, but after the

last operation in the transaction and just before the transaction commits.

49

• Decoupled or Detached: The action is performed within a separate trans-

action.

Different types of coupling modes may be more or less suitable for certain

categories of rules. For example, decoupled execution can help response time

since the length of transactions does not grow too large due to rule execution

and hence potentially more concurrency is available. Decoupled execution can

be useful is situations where the parent transaction aborts, but rule execution

is still desired in the child transaction, e.g. updating an access log regardless of

whether or not access is granted. Maintaining views can be done immediately for

freshness, and either Deferred or Immediate coupling can be used for checking

integrity constraints (Immediate for constraints that should never be violated,

and Deferred for constraints that need only be satisfied when the database is in

a stable state).

The second aspect of the rule execution model is the policy employed for

determining which rule to execute next, given that several rules have been pre-

viously triggered and are awaiting execution. For rules which were triggered at

precisely the same time by the same event occurrence, further information such

as priorities can be used: each rule is assigned a unique priority and rules with

higher priority are executed earlier that rules with lower priority.

Another important aspect of rule execution is that of rule granularity. Usually

two types of granularity are supported: instance-oriented and set-oriented (or

statement-oriented)1. When a set-oriented rule is triggered by some event and

is then scheduled for execution, one copy of its action part is placed on the list

of pending rules. When an instance-oriented rule is triggered by some event,

one copy of its actions part is placed on the pending list for each member of

1Sometimes these are also referred to as instance-level and statement-level. In this thesis we
use these terms interchangeably.

50

affected data set for which the rule’s condition evaluates to True. Hence, a single

event can give rise to zero, one, or many copies of a triggered rule’s actions for

instance-oriented rules.

2.5.3 ECA Rules on Structured Data

Before the standardisation in SQL3 of a triggering language over relational data

[KMC99], numerous research and commercial systems supported the definition

of ECA rules over relational data and object-oriented data and we briefly review

some of these here.

The POSTGRES Rules Manager [SHP88] is implemented in the POSTGRES

relational DBMS [SR86] provided users with the ability to define rules in the

DBMS. Two types of rules were supported, depending one whether their event

part is a retrieve command (a selection) or an update command. Two alternative

ways to implement the rule system were proposed. The Tuple Level System

(TLS) performs rule processing on a tuple basis using rule locks. Rule locks are

special markers, that include the name of the corresponding rule and the type of

lock (tuple or relation level), and are placed on the tuples that satisfy the rule

condition at the time a rule is defined. When an appropriate event occurs on a

tuple that has the appropriate rule locks, then the corresponding rules’ actions are

executed. The second implementation approach was the Query Rewrite System

(QRS) used for rules with retrieve events, which rewrites the rules’ queries when

an appropriate event occurs, generating a new set of queries that retrieve the

appropriate results from the database.

The Starburst Rule System [Wid96, Wid92] is the active database extension of

the Starburst [Starburst] relational database system developed by IBM. Its rule

execution semantics differ from most other active database systems since rule

51

triggering is based on database state transitions rather than tuple or statement-

level changes. Each rule is processed at the end of each transaction causing a

transition rather than in response to a single data manipulation operation. Rules

may also be processed within a transaction if some predefined user commands

are issued.

The Ariel system [Han96] is a relational DBMS with a rule system based on

the OPS5 [BFKM85] production rules system. The Ariel Rule Language is a

production rule language that supports semantic triggering and conditions that

check for database state transitions. The Ariel Rule System places emphasis on

efficient evaluation of rule conditions by using discrimination networks.

Due to the richness of the object-oriented data model, ECA rules for object-

oriented databases often contain additional features compared with ECA rules

for relational databases. The principal difference is the availability of a richer set

of primitive event types, for example events which are triggered on the invocation

of methods or on the creation of objects.

Chimera [CGMR95] is an active database language based on the object-

oriented data model. It supports a wide set of events referring to object ma-

nipulation (query, creation, update and deletion), object migration (generalisa-

tion and specilisation) as well as events caused as a result of system exceptions.

Queries, updates and invocations of system or external methods can be a part of

rule actions. The rule granularity is set-oriented.

HiPAC [DBB+88] is also an active object-oriented database management sys-

tem. One of its novelties is that rules are treated as objects that are instances

of the rule class. Relationships between rules can then be captured, using prop-

erties such as generalisation and specialisation between rule classes. The event,

condition and action parts of a rule are defined by three corresponding methods

of the rule class.

52

SAMOS [GD92] also integrates active and object-oriented features into one

system. It provides a rule language supporting primitive and composite event

definition. Primitive events can be method invocations, time events, data modifi-

cation operations or transaction events. Composite events are constructed using

conjunctions, disjunctions, negations, sequencing of primitive events or reduc-

tions. Reductions allow the signalling of the repeated occurrence of an event only

once, e.g. signal an event after every n occurrences of it. Detection of composite

events is the main focus of SAMOS and is achieved using Petri-nets [GD94] that

describe how a number of event occurrences lead to the signaling of a composite

event that can, in turn, lead to the triggering of a rule.

EXACT [DJ97] is an active database system built over the ADAM object-

oriented DBMS [Pat89]. Its distinctive characteristic is that it allows the user to

choose the rule execution model that best fits the semantics of the application it

will be used for. Rule control information (e.g. prioritisation) is shared among

those rules that support the same aspect of the application logic (e.g. integrity

constraint enforcement) and thus share the same execution model. Different

subsets of ECA rules can have different execution models.

REACH [BDZH95] is built over OpenOODB [WBT92] and provides a rich

set of rule coupling modes and events, including method invocation; flow control

events such as begin, end, commit and abort of a transactions; and various time

events.

RAP (RAP: The ROCK & ROLL Active Programming System) [DPW99] is

an active rule system that extends the ROCK & ROLL deductive object-oriented

database system [BPF+94, BPF+95]. ROCK is an imperative programming lan-

guage used to implement programs and user methods while ROLL is a logic

language used to query the database. Since ROLL and ROCK are languages that

can be used to express the condition and the action part of the rules respectively,

53

the main focus of RAP is the event language. RAP supports a wide range of

primitive events such as insertion, deletion and update of an object, user and sys-

tem method invocations, attribute fetching, and transaction start, commit and

abort. RAP also employs an event algebra that enables the support of compos-

ite events. The execution model provided by RAP allows alternative execution

characteristics to be encoded in a variety of combinations.

Finally, [RPS95] describes how ECA rules can be added to a functional database

programming language. To achieve syntactic integration with ECA rules, the PFL

functional DBMS [PS91] is extended to support transactions which are sequences

of expressions ei of the form e1; ...; en. An ECA rule comprises three components:

an events expression, a condition expression and a sequence of action expres-

sions a1; ...; an. During rule execution, the evaluation of an events expression

yields a list of values evs that correspond to event occurrences; the removal of

the elements of evs that do not satisfy the condition gives a new list of values

evs′ that form, together with the action expressions, a transaction of the form

a1 evs′; ...; an evs′ that is then scheduled for evaluation. Transactions and ECA

rules are not first class objects in PFL, i.e. they cannot be passed as function pa-

rameters nor returned as results by them. When processing a transaction e1; ...; en

each element ei is evaluated in turn and the ECA rules fired by each ei are eval-

uated only after the termination of ei thus ensuring the confluence of expression

evaluation. PFL’s event, condition and action expressions are expressed in the

computationally complete PFL language and are therefore amenable to the same

optimisation techniques as any other PFL expression. Also, since PFL’s active

subsystem is specified in PFL, it is also amenable to formal analysis techniques

developed for functional languages such as abstract interpretation and partial

evaluation [BPC01].

54

2.5.4 The SQL3 Standard

One of the most significant extensions introduced by the SQL3 standard was the

provision of active functionality over relational data by means of triggers [KMC99].

To avoid ambiguity in terminology, in this thesis we generally term SQL3 triggers

ECA rules or just rules.

Rule event parts in SQL3 may be triggered by update, insert or delete oper-

ations on the database and triggering is syntactic (not semantic). Rules are of

two kinds: BEFORE and AFTER. The former conceptually execute their condi-

tion and action before the triggering event is executed. The latter execute their

condition and action after the triggering event is executed, using an Immediate

coupling mode between both event and condition, and between condition and

action.

Conditions are evaluated on the database state that the action is executed on,

and multiply triggered rules are handled using a last-in-first-out list. Each rule

is assigned a unique priority. A rule’s action part consists of an SQL statement

block that is executed when the rule fires. This, in turn, may cause the triggering

of further rules.

The general SQL3 ECA rule syntax is as follows:

CREATE TRIGGER <trigger name>

(BEFORE | AFTER)

(INSERT | DELETE | UPDATE [OF <col names>]) ON <subject table>

[REFERENCING {OLD old_name | NEW new_name}]

([FOR EACH (ROW | STATEMENT))

[WHEN <condition>]

<actions>

Here the subject table is the table whose modification causes the rule to trigger.

55

The triggering operation is the table modification operation whose execution will

cause the rule to trigger and it may be an INSERT, a DELETE or an UPDATE

statement on a subject table.

The condition is optional and if omitted it defaults to True. If a rule is

activated, the rule actions are executed in the specified order.

The number of times a rule is executed is determined by the rule’s granularity.

In SQL3 this may be row-level (i.e. instance-level) or statement-level, indicated

by the keywords FOR EACH ROW and FOR EACH STATEMENT, respectively. When

neither of these is specified the granularity defaults to statement-level.

During rule execution, both the condition and the action part of the rule have

access to the current database state and to also the old and the new state of the

subject table. Two transition tables are provided for this purpose. One keeps the

old values of the affected rows of the subject table, i.e. rows deleted or row values

before they were updated, and one keeps the new values of the affected rows,

i.e. rows inserted or row values after they were updated. In case of a row-level

trigger, two transition pseudo-variables are available, NEW and OLD, to refer to the

transition tables. Variables can be assigned to the NEW and OLD pseudo-variables

within the REFERENCING clause and these variables can then be used within the

rule condition and actions.

The SQL3 standard allows the definition of multiple rules that are triggered

by the same triggering operation on the same subject table and with the same ex-

ecution time, BEFORE or AFTER, implying the need for a strategy for ordering

the execution of such rules. The SQL3 standard does not define such a strategy,

leaving the decision to the system developer. Current relational database vendors,

such as Oracle, IBM DB2 and Microsoft SQLServer, apply a rule prioritisation

system based on rule definition time, where a rule r1 defined at time t1 will be

processed before a rule r2 defined at time t2 if t1 < t2.

56

In SQL3, BEFORE triggers are not permitted to themselves change the

database state. This is because a BEFORE trigger altering the database may

result in a chain of updates, which since they are not visible to the invocations

of other triggers may result in a state where no decision can be made on what

persists in the database when BEFORE triggers and any subsequent update com-

plete.

2.5.5 ECA Rules on Semi-structured Data

Event-Condition-Action rule languages for XML can be divided into two cate-

gories depending on the syntactic approach to defining the rules: those following

an SQL3-like approach and those not. SQL3-like languages have the advantage

that most users are already familiar with the syntax of SQL3 triggers. Languages

that do not follow the SQL3 syntax approach use a markup language syntax to

define the rules. This may be more complex for the user to learn and encode rules

with, but provides the advantage of being easier to parse using standard markup

language processing technologies (i.e. DOM, SAX) and also more easily embed-

dable in other documents or programs defined in another markup language. As

will be seen in Chapter 3 onwards, in our XML and RDF ECA languages, we

follow the SQL3-like syntax approach, not the markup language approach.

In the first category, there are two languages: Active XQuery described

in [BBCC02] and our own XML ECA language described in Chapter 3. Active

XQuery uses XPath expressions to define events and XQuery for expressing rule

conditions. For the action part, a syntax is used similar to the update extensions

proposed for XQuery in [BBFV05]. A review of Active XQuery and comparison

with our XML ECA language is presented in Chapter 3.

In the second category there are languages such as ARML (Active Rule

Markup Language) [CPHK02] which provides an XML-based rule language for

57

rule sharing among different heterogeneous ECA rule processing systems. The

event part of a rule defines the action or the combination of actions, in the form

of conjunctions and disjunctions, that will trigger the rule. Due to the primary

requirement for rule sharing between various systems, both conditions and ac-

tions of rules are abstractly defined as XML-RPC service calls [XMLRPC] which,

after rule distribution, are matched to system-specific methods.

Also in the second category is GRML [Wag02], a multi-purpose rule markup

language for defining integrity constraints and ECA rules. GRML uses an ab-

stract syntax based on RuleML [RuleML], leaving the mapping to a concrete

language for each underlying system implementation. GRML aims to provide

mappings for various rule syntaxes in order to allow interoperation between het-

erogeneous rule systems. GRML also provides constructs for specifying parts of

the rules that are to be retrieved from remote data sources or from external data

sources such as web services.

Finally, in relational DBMS it is possible to decompose XML documents into

a set of relational tables, potentially allowing developers to exploit existing re-

lational triggering functionality in order to define fine-grain triggers over XML

data. This is, though, not yet supported by any major relational DBMS.

Turning to ECA rules on RDF data, to our knowledge our RDFTL language

is the only such language proposed to date. It employs a path expression syntax

developed specifically for the RDF data model to locate different parts of the RDF

graph within rule event, condition and action parts. Constructs are available for

defining namespaces and for binding variables to the results of path expressions.

A set of keywords allows the user to also exploit RDF schema information in

path expressions. RDFTL is capable of detecting simple events regarding RDF

resource insertion and deletion as well as insertion, deletion and update of RDF

properties. In a similar fashion, the action part of RDFTL rules can perform a

58

sequence of actions over RDF data, including insertions and deletions of RDF

resources and insertions, deletions and updates of RDF properties. A detailed

description of the language is given in Chapter 5.

2.6 Summary

In the present chapter we have reviewed the dominant semi-structured data mod-

els, XML and RDF, along with their supporting schema definition languages,

DTD, XMLSchema and RDF Schema. The XPath and XQuery query languages

for XML, as well as the various RDF query language proposals, were reviewed

next, followed by a number of XML and RDF update language proposals. We

gave an overview of the characteristics of Event-Condition-Action rule systems

and the SQL3 standard. We concluded with a discussion of ECA languages for

semi-structured data, both XML and RDF.

The discussion in this chapter has presented the current state-of-the-art in

the technologies and standards involved in the definition of ECA languages and

has revealed the lack of standard update languages for both XML and RDF as

well as the absence of extensive research or standardisation regarding ECA rule

languages for semi-structured data with the exception of Active XQuery.

In the next chapter, we review our particular ECA language for XML data,

giving its syntax and execution semantics, followed by a study of its expressive-

ness.

59

Chapter 3

XTL: an XML ECA Language

3.1 Introduction

XML has became the dominant standard for information exchange in distributed

Web-based applications. The increasing support of XML storage and retrieval

by the major relational database vendors, such as Oracle, Microsoft SQL Server

and DB2, combined with the emergence of native XML repositories, such as eX-

ist [eXist], Xindice [Xindice] and dbXML [dbXML], has increased the need for

more advanced features relating to XML data management, similar to those pro-

vided for relational data. Given the dynamic nature of many of the applications

requiring XML data management [BCP00, BEPR06], reactive functionality over

XML data is one of the emerging requirements and ECA rules are one of the

candidate technologies for this.

The use of an ECA language for providing reactive functionality over XML

data provides an opportunity for new application areas involving XML. The sup-

port of actions such as XML data updates, function calls and web service invo-

cations can facilitate a wide variety of reactive behaviours. For example, ECA

rules can be used to update the XML data in response to occurrences of events,

60

to notify users of events of interest to them, to perform XML repository mainte-

nance tasks, to collect statistics of user activity over the XML data, to monitor

configuration and log file changes, to automatically update a Web Service’s defi-

nition on UDDI [UDDI] servers in response to a change in a Web Service’s WSDL

specification [CCMW01], to change the behaviour of an XML script defined with

Apache Jelly [Jelly], and so on.

The use of XML for data warehousing necessitates mechanisms to automat-

ically perform incremental maintenance of materialised XML views, to validate,

clean and filter the input data streams and to maintain audit trails of the data.

By analogy to their use in conventional data warehouses, ECA rules can be used

to support this kind of functionality, and this is one of the potential application

domains of our XML ECA language (described in Section 3.3).

This chapter is organised as follows. Section 3.2 discusses the major issues,

choices and tradeoffs involved in designing an ECA language for semistructured

data. Section 3.3 reviews a specific ECA language for XML including its syntax

and execution semantics. Section 3.4 conducts for the first time a study of this

language’s expressiveness in order to determine the class of database transforma-

tions that it is able to express. Finally, Section 3.5 compares the language with

other similar approaches with respect to its syntax and semantics.

3.2 Designing Event-Condition-Action Languages

for Semistructured Data

When designing any ECA language, a set of requirements needs to be considered.

A first step concerns the choice of the sublanguages for the event, condition

and action parts of rules. The language designer needs to decide whether the

61

event language will support composite or only simple events. This choice has

its tradeoffs: simple events are easier to analyse and implement but they offer a

relatively limited set of incidents that a rule can react to; composite events can

offer a rich set of incidents for triggering rules but may prove hard to analyse

and implement. If only simple events will be supported then it is important

that the event sublanguage is able to detect the set of atomic events that the

target applications can generate and on which reactive functionality is required.

If composite events will be supported then, in addition, the event algebra that

will be required in order to specify the necessary composite events needs to be

designed. Event algebras include a range of operators to define combinations of

events that are of relevance to an application, such as conjunction, disjunction,

sequencing and negation operators. Implementing and analysing event algebras

that support such operators can be complex and so knowing the type of composite

events that need to be detected and careful choice of the operators is of crucial

importance.

Concerning the condition part sublanguage, this too needs to support the

appropriate constructs for expressing conditions according to the requirements

of the target applications. This may imply, for instance, support of boolean

operators and relational operators.

Finally, the action sublanguage needs to be able to perform the set of oper-

ations that the target applications require and that are detectable by the event

sublanguage. The relationship between the event and the action part of ECA

rules allows the encoding of complex application logic through rules that activate

each other as a result of cascading triggers. There may also be actions that are

not required to be detectable by the event sublanguage. Into this category may

fall actions that perform calls to API functions or Web Services which do not

affect data within the database.

62

The expressiveness and complexity of the ECA rule language is another cri-

terion of significant importance. Design choices such as the computational power

of the action sublanguage and the coupling mode, affect the expressiveness of the

ECA language and its complexity [PV97]. Balancing between expressiveness and

simplicity of an ECA language is a challenging task for the language designer. A

language that syntactically and semantically simple is easier to implement, anal-

yse and encode rules with, but it may lack some expressiveness, making it harder

or even impossible to encode more complex reactive functionality.

The application domains where the ECA language and its processing system

are to be deployed plays a crucial role in the above design decisions. By making

use of knowledge of the application requirements, the designer can focus on those

language and system features which have most significance in the application do-

mains. For example, the design of XTL was motivated by XML data warehousing

and that of RDFTL was motivated by P2P e-Learning applications, even though

we expect both languages to be more generally applicable.

Turning specifically to XML data, the design of an ECA language for XML

clearly needs to take into account the XML data model. The semi-structured

nature of XML data gives rise to new issues affecting the use of ECA rules:

• Event Granularity: In the relational model, the granularity of data manipu-

lation events is straightforward, since insert, delete, or update events occur

when a relation is inserted into, deleted from, or updated, respectively.

With XML, specifying the granularity of where data has been inserted,

deleted or updated within an XML document becomes more complex and

path expressions that identify locations within the document now become

necessary.

63

• Action Granularity: Again in the relational model, the effect of data ma-

nipulation actions is straightforward, since an insert, delete or update ac-

tion can only affect tuples in a single relation. With XML, actions now

manipulate entire sub-documents, and the insertion or deletion of sub-

documents can trigger multiple insert or delete events. For example, us-

ing the shares.xml document in Figure 2.1, an action that deletes all the

prices elements in the path shares/share/day-info/prices will trigger

rules with event parts specifying deletions of shares/share/day-info/prices

elements and rules with event parts specifying deletions of

shares/share/day-info/prices/price elements. Also, the choice of an

appropriate action language for XML is not obvious, since there is as yet

no standard for an XML update language.

Compared to rules for relational databases, ECA rules for XML data are more

difficult to analyse, due to the richer types of events and actions. However, rules

for XML appear less complex to analyse than rules for object-oriented data which

allow arbitrary method calls to trigger events.

The choice of the language to express queries over the XML data in rule event

and condition parts is influenced by the emerging standard languages for querying

XML data, namely, XPath [W3C99a] and XQuery [W3C05b]. Using XPath as

the language for rule event and condition parts has the advantage of simplicity

combined with enough expressiveness to select any part of the XML tree. The

use of XQuery, on the other hand, adds extra features such as iteration over the

nodes of a result set, specification of joins and the use of functions that allow more

compact and readable query expressions. The lack, so far, of a standard language

for updating XML data requires the design of custom languages to fulfill the data

modification requirements of the action part of rules. Extensions of XQuery have

been adopted in the ECA languages reported in [BBCC02, BPW02a] in order to

64

express updates in the action parts of the rules and it is likely that the emerging

XQuery Update standard [CFR05] will drive XML update language choices in

the future.

We note that, triggers on XML data are supported by all the major DBMS

vendors and also by some native XML repository vendors [eXist, Xindice, dbXML].

However, these are confined to document-level triggering, and only events con-

cerning insertion, deletion or update of an entire XML document can be detected,

thus limiting the ability to define rules that trigger in response to data modifica-

tion within the stored XML documents.

3.3 XTL: an Event-Condition-Action language

for XML

In the present section we give an overview of the ECA language for XML proposed

by Bailey, Poulovassilis, Wood in [BPW02a]. This is the language supported by

our XML ECA rule processing system described in Chapter 4. In this thesis, we

name this language XTL (XML Triggering Language) although it was not named

in [BPW02a].

The design of XTL predated the SeLeNe project and was motivated primar-

ily by the observation that XML can potentially become a useful tool in data

warehousing applications. One of the design goals was to keep the language as

simple as possible, making it easy to analyse. As a result, fragments of XPath

and XQuery were chosen to define the query and update sublanguages for XTL

rules. The expressiveness of XTL is examined for the first time in Section 3.4.

65

3.3.1 Syntax

The syntax of XTL rules follows the SQL3 syntactic approach, consisting of an

event, condition and action part. The general format of an XTL rule is:

on event if condition do actions

Fragments of XPath and XQuery are used to specify the event, condition

and actions parts of rules. XPath is used for selecting and matching fragments

of XML documents within the event and condition parts while XQuery is used

within insertion actions, where there is a need to be able to construct new XML

fragments.

The event part of an XTL rule is an expression of the form

INSERT e

or

DELETE e

where e is a simple XPath expression (see below) which evaluates to a set of

nodes. The rule is triggered if this set of nodes includes any node in a new XML

fragment, in the case of an insertion, or in a deleted fragment, in the case of a

deletion.

The system-defined variable $delta is available for use within the condition

and actions parts of the rule, and its set of instantiations is the set of new or

deleted nodes returned by e.

The condition part of a rule is either the constant TRUE, or one or more simple

XPath expressions connected by the boolean connectives and, or, not.

The actions part of a rule is a sequence of one or more actions:

action1; . . . ; actionn

where each actioni is an expression of one of the following three forms:

INSERT r BELOW e BEFORE q

INSERT r BELOW e AFTER q

66

DELETE e

Here, r is a simple XQuery expression (see below), e is a simple XPath expression

and q is either the constant TRUE or an XPath qualifier (see below).

In an INSERT action, the expression e specifies the set of nodes, N , imme-

diately below which new XML fragment(s) will be inserted. These fragments

are specified by the expression r. If e or r references the $delta variable, then

one XML fragment is constructed for each instantiation of $delta for which the

rule’s condition evaluates to True. If neither e nor r references $delta, then a

single fragment is constructed. The expression q is an XPath qualifier which is

evaluated on each child of each node n ∈ N . For insertions of the form AFTER q,

the new fragment(s) are inserted after the last sibling for which q is True, while

for insertions of the form BEFORE q, the new fragment(s) are inserted before the

first sibling for which q is True. The order in which new fragments are inserted

is non-deterministic.

In a DELETE action, the expression e specifies the set of nodes which will

be deleted (together with their descendant nodes). Again, e may reference the

$delta variable.

Example Consider an XML repository containing the XML document shares.xml

given in Figure 2.1 that contains information about share prices on a Stock Ex-

change.

Suppose that this document is updated in response to external events received

from a share price information service. In particular, an insertion event will arrive

periodically with the current price for share INTL. For example, such an insertion

event, Ev, might be the following update, which inserts the new share price of

123.75 after the last share price currently recorded:

INSERT <price time="09:15">123.75</price>

67

BELOW document(’shares.xml’)/shares/share[@name="INTL"]/

day-info[@day="03"][@month="03"]/prices

AFTER TRUE

The following ECA rule, r1, checks whether the daily high needs to be updated

in response to a new price insertion in some share:

on INSERT document(’shares.xml’)/shares/share/day-info/prices/price

if $delta > $delta/../../high

do DELETE $delta/../../high;

INSERT <high>$delta/text()</high>

BELOW $delta/../.. AFTER prices

Here, the system-defined $delta variable is bound to the newly inserted price

node detected by the event part of the rule. The rule’s condition checks that the

value of this price node is greater than the value of the high node under the

same day-info node. The action then deletes the existing high node and inserts

a high node whose value is that of the newly inserted price.

The insertion event Ev above would trigger this rule r1, which would then

update the daily high of share INTL to 123.75.

The following ECA rule, r2, similarly checks whether the monthly high price

for a share needs to be updated in response to an insertion of a new daily high

price:

on INSERT document(’shares.xml’)/shares/share/day-info/high

if $delta > $delta/../../month-info[@month=$delta/../@month]high

do DELETE $delta/../../month-info/high;

INSERT $delta

BELOW $delta/../../month-info[@month=$delta/../@month]

BEFORE TRUE

68

In the INSERT action of this rule, a copy of the high node whose insertion triggered

the rule is inserted as the first child of the corresponding month-info node.

The event Ev above would trigger rule r1, and the second action of r1 would

in turn trigger rule r2. However, the condition of r2 would then evaluate to False

and so its action would not be executed.

The XPath and XQuery expressions appearing in our ECA rules are restric-

tions of the full XPath and XQuery languages, to what are termed simple XPath

and XQuery expressions in [BPW02a]. This simplicity combined with reasonable

expressiveness makes these fragments easier to analyse than the full XPath and

XQuery languages, as discussed in [BPW02a, BPW02b].

The XPath fragment used disallows a number of features of the full XPath

language, in particular the use of any axis other than the child, parent, self or

descendant-or-self axes and of all functions other than document() and text().

Thus, the syntax of a simple XPath expression e is given by the following gram-

mar, where s denotes a string and n denotes an element or attribute name:

e ::= ‘document(’ s ‘)’ ((‘/’ | ‘//’) p) |

‘$delta’ (‘[’ q ‘]’)* ((‘/’ | ‘//’) p)?

p ::= p ‘/’ p | p ‘//’ p | p ‘[’ q ‘]’ | n | ‘*’ |

‘@’n | ‘@*’ | ‘.’ | ‘..’ | ‘text()’

q ::= q ‘and’ q | q ‘or’ q | e | p | (p | e | s) o (p | e | s)

o ::= ‘=’ | ‘!=’ | ‘<=’ | ‘<’ | ‘>=’ | ‘>’

Expressions enclosed in ‘[’ and ‘]’ in an XPath expression (generated by q in

the grammar above) are called qualifiers. So a simple XPath expression starts

by establishing a context, either by a call to the document function followed by

a path expression p, or by a reference to the variable $delta (the only variable

allowed) followed by optional qualifiers q and an optional path expression p. Note

that a qualifier q can comprise a simple XPath expression e.

69

The XQuery fragment adopted disallows the use of full FLWR expressions,

essentially permitting only the return part of such an expression. The syntax of

a simple XQuery expression r is given by the following grammar:

r ::= e | c

c ::= ‘<’ n a (‘/>’ | (‘>’ t∗ ‘</’ n ‘>’))

a ::= (n ‘= "’ (s | e′) ‘"’ a)?

t ::= s | c | e′

e′ ::= ‘{’ e ‘}’

Thus, an XQuery expression r is either a simple XPath expression e (as defined

above) or an element constructor c. An element constructor is either an empty

element or an element with a sequence of element contents t. In each case, the

element can have a list of attributes a. An attribute list a can be empty or is a

name equated to an attribute value followed by an attribute list. An attribute

value is either a string s or an enclosed expression e′. Element contents t is one of a

string, an element constructor or an enclosed expression. An enclosed expression

e′ is a simple XPath expression e enclosed in braces. The braces indicate that e

should be evaluated and the result inserted at the position of e in the element

constructor or attribute value.

3.3.2 Rule Execution Model

We now describe the rule execution model of XTL, as defined in [BPPW04]. The

input to the execution is a schedule s and an XML repository db. The schedule

consists of a list of pairs (actioni,j , deltai), where actioni,j is the jth action within

the actions part of rule ri and deltai is a set of instantiations for the $delta

variable of rule ri for which ri’s condition evaluated to True.

Rules whose event parts reference the same XML document can potentially be

triggered by the same update event on that document. To disambiguate the effect

70

of such rules, all rules whose event parts are insertions on the same document

need to be totally ordered, as do all rules whose event parts are deletions on the

same document. The relative priorities of such rules are specified by the user when

defining a new rule. This is almost a global priority model, as all rules whose event

parts refer to insertions on the same document are totally ordered, as are all rules

whose event parts refer to deletions on the same document. This priority model

is simpler to specify, implement and enforce than a finer-granularity ordering of

sets of rules would have been.

The schedule which initiates rule execution consists of an action and a set of

instantiations for the $delta variable upon which this action is to be applied,

i.e. the initial schedule is a singleton list of the form [(action,delta)]. The

following pseudocode expresses how this update request is handled:

while s != [] do {

(a,delta) := head (s);

s := tail (s);

(changes,db) := updateDB (db,a,delta);

for each rule r_i in order of increasing priority do {

if changes[i] != {} then {

(value,delta) := evalCondition(i,changes[i],db);

if value = True then

for j := noOfActions[i] downto 1 do

s := (action[i,j],delta):s

}

}

}

In the above pseudocode, the function head returns the first element of a list

71

and the function tail returns a list minus its first element.

The function updateDB executes the action a that was at the head of the

schedule. If a does not reference the $delta variable, this update is performed just

once on the repository db. If a does reference the $delta variable, a set of updates

is generated by substituting occurrences of $delta within a by each member of

delta. Thus if n is the cardinality of delta, n updates will be generated1. These

updates are then performed in an arbitrary order on the repository.

updateDB returns a pair (changes,db), where db is the new repository re-

sulting from the update and changes is an array such that changes[i] is the set

of newly inserted or newly deleted nodes corresponding to the event part of rule

r i. In particular, if a is an insertion then for each r i which may be triggered

by a, the event part of r i is evaluated on the repository after a is executed, and

changes[i] is the intersection of this result and the new nodes inserted by a. If

a is a deletion then for each r i which may be triggered by a, the event part of

r i is evaluated on the repository before a is executed, and changes[i] is the

intersection of this result and the nodes that are subsequently deleted by a.

The function evalCondition evaluates rule r i’s condition and there are two

possible cases:

(i) If the $delta variable occurs in the condition, then the condition is evalu-

ated once for each member of changes[i], and the subset of changes[i]

for which it evaluates to True is determined. The variable delta is set to

this subset. If delta is non-empty, then the variable value is set to True;

otherwise it is set to False.

(ii) If the $delta variable does not occur in the condition, then the condition is

1n is guaranteed to be finite due to the syntax of the update language, which does not allow
infinite new XML fragments to be created, and the fact that there are a finite number of ECA
rules.

72

evaluated just once and the variable value is set to the result. The variable

delta is set to changes[i].

noOfActions[i] is the number of actions in the actions part of rule r i, and

actions[i,j] is the jth action of rule r i. The loop for j:=noOfActions[i]

downto 1 do ... ensures that the actions of a given rule are placed in the

right order onto the schedule. Each such action action[i,j] is paired with

that rule’s delta and prefixed to the current schedule, by the statement s :=

(action[i,j],delta):s.

Rules are considered in increasing order of their priority in the outer for loop.

Thus, the actions of higher-priority rules that have fired will be placed onto the

schedule in front of the actions of lower-priority rules.

The execution proceeds in this manner until the schedule becomes empty.

Non-termination of rule execution is a possibility and thus development of static

rule analysis techniques is important to aid the design of ‘well-behaved’ rules.

Such techniques are discussed in [BPPW04] and we do not consider them further

in this thesis.

There are a number of observations made in [BPPW04] regarding the above

rule execution model:

• Triggering is semantic, not syntactic, since a rule r i is triggered only if

changes[i] is not empty2.

• The event/condition coupling mode and the condition/action coupling modes

are both Immediate, since conditions are evaluated immediately after an

event becomes true, and the actions of rules that have fired as a result of

the current set of updates are placed at the head of the schedule.

2We recall from Section 2.5.1 that syntactic triggering implies that instances of the event
specified in a rule’s event part are regarded as having occurred even if they have not modified
the database. Semantic triggering means that instances of the event specified in a rule’s event
part are regarded as having occurred only if they have made changes to the database.

73

• Rule conditions are evaluated against the repository state in which the rule

was triggered, unlike in SQL3 where conditions are evaluated against the

database state that the action(s) will be executed on.

It is possible to simulate the behaviour of SQL3 using XTL rules by adding

the conditions as additional qualifiers to the XPath expression e that is part

of INSERT and DELETE actions, and setting the condition part of the rule

to TRUE. For example the rule r1 given in Section 3.3.1 above, would be

rewritten as follows to simulate the behaviour of SQL3:

on INSERT document(’s.xml’)/shares/share/day-info/prices/price

if TRUE

do DELETE $delta[. > ./../../high]/../../high;

INSERT <high>$delta/text()</high>

BELOW $delta[. > ./../../high]/../.. AFTER prices

• Both document-level and instance-level triggering are supported in XTL,

depending on the occurrence of $delta in the condition and action parts of

a rule, by analogy to statement and row-level triggers in SQL3:

– If there is no occurrence of $delta in the condition or the action, the

action is executed once if the condition is True — this is document-

level triggering.

– If $delta occurs in the action (and possibly in the condition), the

action is executed once for each possible instantiation of $delta for

which the condition is True — this is instance-level triggering.

– $delta is an instance-level variable, as implied by the definition of

the fragment of XPath that XTL employs (see Section 3.3.1), and it

cannot denote a collection of instances. This choice was made for XTL

74

path expressions in the interests of keeping the language as simple

as possible, in order to facilitate rule analysis while still retaining a

reasonable level of expressiveness.

3.4 Expressiveness of XTL

Due to the lack of any theoretical analysis to date of the expressiveness of XML

query and update languages, in this section we exploit the ability of XTL to

express transformations over relational data as an indication of its expressiveness.

For this, we explore theoretical studies regarding the expressiveness of database

languages over relational data. We give below a relational to XML data conversion

algorithm which provides the necessary mapping between relational and XML

data model constructs in order to make the appropriate transformations of the

expressiveness criteria from relational data to XML data.

Given this mapping between relational and XML data, we aim to show that

XTL is at least as powerful as the whilenew language, which is known to be query

complete over relational data [AVH96]. To show this we emulate the constructs

of whilenew using XTL rules.

We first review expressiveness of languages over the relational data model.

These results are then used in order to draw conclusions regarding the expres-

siveness of XTL. Most of the information presented in Section 3.4.1 has been

drawn from [AVH96].

3.4.1 Review of Relational Language Expressiveness

A query is a mapping from instances of a fixed input schema to instances of a

fixed answer schema that is computable and generic, meaning that it is “imple-

mentable” by a Turing Machine and that it depends only on information provided

75

by the input instance, respectively [AVH96]. The while query language incorpo-

rates while statements as well as destructive assignment statements of the form

R := E, where E is relational algebra expression and R a relational variable of

the same type as the result of E. The semantics of such an assignment statement

is that the value of R becomes the result of evaluating the expression E on the

current database state. while statements have the form:

while change do

begin

(loop body)

end

A while statement repeats as long as execution of the body causes some change

to some relation. The body can contain a sequence of assignment statements and

other nested while statements.

The while language is bounded by polynomial space, and it is complete in

PSPACE, although there are queries in PSPACE, such as even (which deter-

mines if a relation has an even number of tuples), that it cannot express.

while cannot go beyond the PSPACE because (1) throughout the computa-

tion it uses only values from the input, and (2) it uses relations with fixed arity.

One of the ways to go beyond this space complexity barrier is by relaxing one of

(1) or (2). We refer the reader to [AVH96] for a language that relaxes (2). Re-

laxing (1) allows the creation of new values that are not present in the input. An

extension of while that allows the creation of new values during the computation

is the whilenew language. The modifications of while to obtain whilenew are as

follows:

(i) There is a new instruction R := new(S), where R and S are relations and

arity(R) = arity(S) + 1;

76

(ii) There is a looping construct of the form while R do s, with R being a

relational variable and s being a sequence of assignment statements or loops.

The loop terminates when R is empty.

The new instruction extends each tuple of S with a new distinct value from

the value domain of the database. The new value must not occur in the input,

the current database or the program itself. So, assuming that we have a relation

scheme S[a1, a2, ...an], where ai, i ∈ [1, n] are its attributes, a relation with scheme

R[a1, a2, ...an, an+1], where an+1 is a new attribute name not appearing in a1, ..., an

set, is obtained by extending each tuple of S by a distinct new value.

whilenew programs may give several possible outcomes depending on the

choice of new values, something that does not conform with the requirement that

a query should be deterministic. Therefore only well-behaved whilenew programs,

i.e. those whose answers do not contain newly created values, are considered.

Note that although well-behaved whilenew programs are deterministic as far as

their final answer is concerned, they are not deterministic as far as their inter-

mediate results are concerned since they may contain new values. As shown

in [AVH96], whilenew can express all queries over relational data.

3.4.2 Relational to XML Conversion

Let us assume a relational database schema R containing a set of relation schemes

R1, R2, ...Rn with Ri having attributes attri1...attriji
, and ri being a relation over

Ri, for 1 ≤ i ≤ n.

Given a relational database D = {r1, r2, ...rn}, an algorithm, similar to the

one presented in [ABS00], converts D to an XML tree d starts by creating the

root element named db. For each relation ri in D it creates an XML element node

with the same name as Ri as a child of the root node. For each tuple t in ri it

77

creates an XML element node named row as a child of the node corresponding

to Ri. For each attribute attrik of Ri a new element named attrik is added as a

child of each row element. For each 1 ≤ k ≤ ji, the value of attrik in tuple t is

represented by a text child node of the node corresponding to attrik.

Figure 3.1 gives an example that illustrates this relational to XML data con-

version.

Research & Development

Department Employee

1 R&D

id name description

2 HR Human Resources

name descriptionid

George P. 90000 1

2 Jane K. 80000 2

salary department_idname

salary department_idid name

id

db

row

2 Jane K. 80000 2
1 George P. 90000 1

id name salary department_id

Employee

1 R&D Research & Development
2 HR Human Resources

id name description

Department

row

row

row

1

Figure 3.1: Example data conversion

3.4.3 Expressiveness of our Language

As stated in Section 3.4.1 above, the while language incorporates two constructs:

a destructive assignment R := E, where R is a relation and E a relational algebra

expression and a while loop. As part of the while loop body it allows a sequence

of assignments or while statements.

To emulate assignment statements, we have to show that using XTL rules we

can express the relational algebra operations: (a) union (R1 ∪R2), (b) difference

(R1−R2), (c) project (πa1,...,aN
R1), (d) select (σCR1) and (e) cross product (R1×

78

R2). The conversion algorithm presented in Section 3.4.2 gives the correspondence

between relational and XML data.

For the purposes of the emulation we assume that there exists a temporary

XML file named temp.xml into which we perform insertions and deletions of

XML nodes that act as flags. These flags are used to emulate conditionals, as

triggering events for our rules, and to control sequences of statements. It is

assumed that the flag names conform to a reserved naming scheme depending

on the language constructs that are emulated. So, for example, when emulating

the union operation the flag names are of the form union flag i where i is an

integer. When a new flag needs to be used, the integer i is given the smallest

unused value. We also assume that the XML data is stored in the file db.xml.

The set of rules that follow show how each of the five basic relational algebra

operations can be emulated using XTL3:

• Union (R := R1 ∪R2): Given two relations R1 and R2 represented in XML

as shown Figure 3.1, the following rules perform a destructive assignment

to R of the result of the union of R1 and R2. In the rules below, the first

two rules check if the element R (corresponding to relation R) exists or not.

If it does, its contents are deleted, to emulate the destructive assignment;

if it does not exist, it is created. The contents of both R1 and R2 are then

copied to R by the third rule, checking that no data duplication occurs.

r1:

ON INSERT document(’temp.xml’)/flags/union_flag_i

IF not document(’db.xml’)/db/R

DO INSERT <R/> BELOW document(’db.xml’)/db AFTER TRUE;

INSERT <union_flag_i+1/>

3For reference purposes, we prefix each rule with ri to indicate the ith rule in the overall
rule set

79

BELOW document(’temp.xml’)/flags AFTER TRUE;

DELETE document(’temp.xml’)/flags/union_flag_i;

r2:

ON INSERT document(’temp.xml’)/flags/union_flag_i

IF document(’db.xml’)/db/R

DO INSERT <union_flag_i+1/>

BELOW document(’temp.xml’)/flags AFTER TRUE;

DELETE document(’db.xml’)/db/R/*;

DELETE document(’temp.xml’)/flags/union_flag_i;

r3:

ON INSERT document(’temp.xml’)/flags/union_flag_i+1

IF TRUE

DO INSERT document(’db.xml’)/db/R1/row

BELOW document(’db.xml’)/db/R AFTER TRUE;

INSERT

document(’db.xml’)/db/R2/row

[not (.=document(’db.xml’)/db/R1/row)]

BELOW document(’db.xml’)/db/R AFTER TRUE;

DELETE document(’temp.xml’)/flags/union_flag_i+1;

Here, ‘=’ is a value-based equality operator. Thus, the expression

.=document(’db.xml’)/db/R1/row in the second insert action of r3, com-

pares the string that results from the concatenation of the text nodes, in

document order, in the result set of the left expression to the string that

results from the concatenation of the text nodes in the right expression,

80

following the same concatenation order.

• Project (R := π<a1,...,aN>R1): Similarly to union, two rules ensure that R

exists and is empty. These rules are exactly the same as above, except

the name of the flag is now project flag i, and thus they are omitted

below. The contents of R1 are deleted by rule r1 below, before the selected

attributes are projected to R and the contents of R1 are restored by rule r2.

r1:

ON INSERT document(’temp.xml’)/flags/project_flag_i+1

IF TRUE

DO INSERT <project_flag_i+2/>

BELOW document(’temp.xml’)/flags AFTER TRUE;

DELETE document(’db.xml’)/db/R1/row;

DELETE document(’temp.xml’)/flags/project_flag_i+1;

r2:

ON DELETE document(’db.xml’)/db/R1/row

IF document(’temp.xml’)/flags/project_flag_i+2

DO INSERT <row>

$delta/a1

...

$delta/aN

</row>

BELOW document(’db.xml’)/db/R[not (./row = $delta)]

AFTER TRUE ;

INSERT $delta BELOW document(’db.xml’)/db/R1 AFTER TRUE ;

DELETE document(’temp.xml’)/flags/project_flag_i+2;

81

• Select (R := σCR1): Two rules again ensure that R exists and is empty.

These are the same as for union except that the name of the flag is now

select flag i, and they are omitted. The condition C is a boolean ex-

pression with conjunctions, disjunctions and negations of comparison ex-

pressions containing the operators =, 6=, >=, >, <=, <. These are covered

by our language syntax described in Section 3.3.1. The rule below applies

the condition to the contents of R1 and inserts the results under R.

r1:

ON INSERT document(’temp.xml’)/flags/select_flag_i+1

IF TRUE

DO INSERT <select_flag_i+2/>

BELOW document(’temp.xml’)/flags AFTER TRUE;

INSERT document(’db.xml’)/db/R1/row[C]

BELOW document(’db.xml’)/db/R AFTER TRUE ;

DELETE document(’temp.xml’)/flags/select_flag_i+1;

• Difference (R := R1 − R2): Two rules again ensure that R exists and is

empty. Rule r1, below, copies the contents of R1 to the empty R. Rule r2

then checks each of the rows just inserted into R and, if found equal to any

row of R2, the row is deleted from R.

r1:

ON INSERT document(’temp.xml’)/flags/difference_flag_i+1

IF TRUE

DO INSERT <difference_flag_i+2/>

BELOW document(’temp.xml’)/flags AFTER TRUE;

INSERT document(’db.xml’)/db/R1/row

82

BELOW document(’db.xml’)/db/R AFTER TRUE ;

DELETE document(’temp.xml’)/flags/difference_flag_i+1;

r2:

ON INSERT document(’db.xml’)/db/R/row

IF ($delta = document(’db.xml’)/db/R2/row) and

(document(’temp.xml’)/flags/difference_flag_i+2)

DO DELETE $delta;

DELETE document(’temp.xml’)/flags/difference_flag_i+2;;

• Product (R := R1×R2): Again, two rules ensure that R exists and is empty.

To emulate the cross product of R1 and R2 we use the following sequence of

rules r1 to r7. In order to illustrate the results of each processing step, we

use as an example the trees R1 and R2 shown in Figure 3.2. Rule r1 deletes

the contents of R1 and R2 if both are non-empty:

v1 v2

a1 a2 a1 a1

v1’ v2’

rowrow

b1 b2 b3

row

v3 v4 v5

R2

b1 b2 b3

row

 v3’ v4’ v5’

R1

Figure 3.2: Relations R1 and R2

r1:

ON INSERT document(’temp.xml’)/flags/product_flag_i+1

83

IF (document(’db.xml’)/db/R1/row) and

(document(’db.xml’)/db/R2/row)

DO INSERT <product_flag_i+2/>

BELOW document(’temp.xml’)/flags AFTER TRUE;

DELETE document(’db.xml’)/db/R1/row ;

DELETE document(’db.xml’)/db/R2/row ;

DELETE document(’temp.xml’)/flags/product_flag_i+1;

Rule r2 copies the deleted rows from R1 under R and also back under R1.

Rule r3 does the same for the deleted rows of R2 but copies them now under

every R/row element as well as under R2:

r2:

ON DELETE document(’db.xml’)/db/R1/row

IF (document(’temp.xml’)/flags/product_flag_i+2)

DO INSERT <product_flag_i+3/>

BELOW document(’temp.xml’)/flags AFTER TRUE;

INSERT $delta BELOW document(’db.xml’)/db/R AFTER TRUE;

INSERT $delta BELOW document(’db.xml’)/db/R1 AFTER TRUE;

DELETE document(’temp.xml’)/flags/product_flag_i+2;

r3:

ON DELETE document(’db.xml’)/db/R2/row

IF (document(’temp.xml’)/flags/product_flag_i+3)

DO INSERT <product_flag_i+4/>

BELOW document(’temp.xml’)/flags AFTER TRUE;

INSERT $delta BELOW document(’db.xml’)/db/R/row AFTER TRUE;

INSERT $delta BELOW document(’db.xml’)/db/R2 AFTER TRUE;

84

DELETE document(’temp.xml’)/flags/product_flag_i+3;

v1 v2

a1 a2 a1 a1

v1’ v2’

b1 b2 b3

row

v3 v4 v5

b1 b2 b3

row

 v3’ v4’ v5’

b1 b2 b3

row

v3 v4 v5

b1 b2 b3

row

 v3’ v4’ v5’

rowrow

R

Figure 3.3: R after the execution of r3

After the execution of r2 and r3, R is as shown in Figure 3.3. The insertion

of data by r3 under R/row triggers r4 which deletes all the elements under

R/row, an action that triggers r5. r5 puts every element that was deleted

by r4 under each row below the R/row from which the current element was

deleted.

r4:

ON INSERT document(’db.xml’)/db/R/row/*

IF document(’temp.xml’)/flags/product_flag_i+4

DO INSERT <product_flag_i+5/>

BELOW document(’temp.xml’)/flags AFTER TRUE;

DELETE document(’db.xml’)/db/R/row/*;

DELETE document(’temp.xml’)/flags/product_flag_i+4;

r5:

ON DELETE document(’db.xml’)/db/R/row/*

85

IF document(’temp.xml’)/flags/product_flag_i+5

DO INSERT <product_flag_i+6/>

BELOW document(’temp.xml’)/flags AFTER TRUE;

INSERT $delta

BELOW document(’db.xml’)/db/R/row/row[..=$delta/..]

AFTER TRUE;

DELETE document(’temp.xml’)/flags/product_flag_i+5;

After the execution of r4 and r5, R is as shown in Figure 3.4. r6 now

deletes the third level of nested row elements (see Figure 3.5), an action

that triggers r7. r7 creates an auxiliary element node R’ to temporarily

store the second level of nested row contents of R, before they are placed

back into R, after the deletion of the first level row element nodes of R:

r6:

ON INSERT document(’db.xml’)/db/R/row/row/*

IF document(’temp.xml’)/flags/product_flag_i+6

DO INSERT <product_flag_i+7/>

BELOW document(’temp.xml’)/flags AFTER TRUE;

DELETE document(’db.xml’)/db/R/row/row/row;

DELETE document(’temp.xml’)/flags/product_flag_i+6;

r7:

ON DELETE document(’db.xml’)/db/R/row/row/row

IF document(’temp.xml’)/flags/product_flag_i+7

DO INSERT <R’/> BELOW document(’db.xml’)/db;

INSERT document(’db.xml’)/db/R/row/row

BELOW document(’db.xml’)/db/R’ AFTER TRUE;

86

v1

a1

v2

a2

b1 b2 b3

row

v3 v4 v5

b1 b2 b3

row

 v3’ v4’ v5’

b1 b2 b3

row

 v3’ v4’ v5’

row

b1 b2 b3

row

v3 v4 v5

b1 b2 b3

row

 v3’ v4’ v5’

v3 v4 v5

b1 b2 b3

row

v2

a2

v1

a1

v1

a1

v2

a2 a1 a2

b1 b2 b3

row

v3 v4 v5

b1 b2 b3

row

 v3’ v4’ v5’

b1 b2 b3

row

 v3’ v4’ v5’

row

b1 b2 b3

row

v3 v4 v5

b1 b2 b3

row

 v3’ v4’ v5’

v3 v4 v5

b1 b2 b3

row

a1 a2

v2’

a2a1

v1’v2’v1’

v2’v1’

R

F
igu

re
3.4:

R
after

th
e

ex
ecu

tion
of

r
5

87

DELETE document(’db.xml’)/db/R/row ;

INSERT document(’db.xml’)/db/R’/row

BELOW document(’db.xml’)/db/R AFTER TRUE ;

DELETE document(’db.xml’)/db/R’;

DELETE document(’temp.xml’)/flags/product_flag_i+7;

Figure 3.6 shows the final form R after the execution of r7.

In conclusion, the above set of rules show that XTL can support destructive

assignment statements of the form R := E, where E is a relational algebra

expression.

To emulate a statement sequence s1; s2 we create a “link” rule that is achieved

in response to the deletion of the flag in the last action of the last rule emulating

the statement s1. Upon activation, this link rule inserts the appropriate flag

to trigger the first rule emulating statement s2. For example for the sequence

R := R1 ∪ R2; R
′ := R − R1, a link rule would be created that is triggered

in response to the deletion of the union flag i+1 from the first statement, and

upon activation inserts a flag difference flag j in order to trigger the rule that

emulates the second statement:

ON DELETE document(’temp.xml’)/flags/union_flag_i+1

IF TRUE

DO INSERT document(’temp.xml’)/flags/difference_flag_j

For emulating a while loop over a relational variable, three ECA rules can

be used, r1, r2 and r3 below. The first two rules are both triggered in response

to the insertion of an XML element flag while i into the auxiliary temp.xml

file, but their conditions express two opposite situations; one evaluates to true if

the relation R has at least one row, while the other holds when R has no rows.

88

v3 v4 v5

b1 b2 b3

row

v1

a1

v2

a2

v2

a2

v1

a1

v1

a1

v2

a2

b1 b2 b3

row

 v3’ v4’ v5’

row

R

v3 v4 v5

b1 b2 b3

row

v2’

a2a1

v1’

a1 a2

v2’v1’

b1 b2 b3

row

 v3’ v4’ v5’

a1 a2

v2’v1’

row

F
igu

re
3.5:

R
after

th
e

ex
ecu

tion
of

r
6

89

v3 v4 v5

b1 b2 b3

row

v2

a2

v1

a1

v1

a1

v2

a2 b1 b2 b3

row

 v3’ v4’ v5’ v3 v4 v5

b1 b2 b3

row

a1 a2

v2’v1’ v2’

a2a1

v1’

b1 b2 b3

row

 v3’ v4’ v5’

R

Figure 3.6: R after the execution of r7

This corresponds to the condition of the while loop that checks if the relation R

contains any rows or not. If R has rows, rule r1 fires leading to the triggering of

rule r3 that results in the execution of the loop body, indicated by s below. s

starts by inserting the appropriate flag to initiate the first statement of the loop

body. For example, if the first statement of the loop body is R := R1 ∪ R2 then

s will consist of the following action:

INSERT <union flag i/> document(’temp.xml’)/flags

The re-insertion of the flag while i at the end of the action part of r1 leads

to the repetition of the loop. If R has no rows, the action part of r2 deletes

flag while i flag and the execution terminates:

r1:

ON INSERT document(’temp.xml’)/flags/while_flag_i

IF document(’db.xml’)/db/R/row

DO DELETE document(’temp.xml’)/flags/flag_while_i;

INSERT <while_flag_i+1/> document(’temp.xml’)/flags;

INSERT <while_flag_i/> document(’temp.xml’)/flags

r2:

ON INSERT document(’temp.xml’)/while_flag_i

90

IF not document(’db.xml’)/db/R/row

DO DELETE document(’temp.xml’)/while_flag_i

r3:

ON INSERT document(’temp.xml’)/while_flag_i+1

IF TRUE

DO s;

DELETE document(’temp.xml’)/while_flag_i+1;

Up to this point, we have shown that XTL is able to emulate any while

program and thus is at least as expressive as the while language over relational

data. In the following paragraphs we describe the extensions that are necessary

for XTL to also emulate whilenew programs and so become relationally query

complete.

Emulating the instruction R := new(S) of whilenew corresponds to the cre-

ation of a new XML element node R that has the same set of child elements under

each row node as S, plus an extra child as the last sibling of the elements under

each row node, representing the new relational attribute generated and holding

the unique value generated by new.

To achieve this, XTL needs to be equipped with two functions named

newElement() and newValue(). newElement() generates a new XML element

node with a new arbitrary tag name, while newValue() generates a new value

that is unique in the whole XML document. Furthermore, XTL needs to be

equipped with the ability to define variables using LET expressions in the action

part of rules. This is necessary so as to be able to keep a reference to a value

or to the results of an expression that should be evaluated only once during the

processing of the whole action part of a rule.

91

Rules r1-r3 below show a possible way to emulate the R := new(S) instruc-

tion using these proposed extensions of XTL. Similarly to the other rule sequences

above, two more rules ensure that R exists and is empty, and they are omitted.

The insertion of a new flag i+1 element into temp.xml triggers rule r1 that on

activation deletes all the row nodes under the S node. This deletion triggers rule

r2 that captures the deleted row nodes in the $delta variable and upon activa-

tion re-inserts the row node instances both under the new R node and under S.

Rule r3 emulates the expansion of R with a new attribute and unique values.

It is triggered by the insertion of the row instances performed by rule r2. Once

activated, it calls the newElement() function to create a new tag name and binds

the result to the $r variable. Then it inserts the element $r under each row of

R. After each new element $r has been inserted, it also places under $r a new

value as resulting from a call to newValue(). The insertion of intermediate flags

new flag i+2 and new flag i+3 by rules r1 and r2 and the check for their ex-

istence in the condition parts of rules r2 and r3, guarantees that the rules will

be activated in the correct order and that no other deletion or insertion of row

elements under S or R will activate them:

r1:

ON INSERT document(’temp.xml’)/flags/new_flag_i+1

IF TRUE

DO INSERT <new_flag_i+2/> BELOW document(‘‘temp.xml’’)/flags

AFTER TRUE ;

DELETE document(’db.xml’)/db/S/row;

DELETE document(’temp.xml’)/flags/new_flag_i+1;

r2:

ON DELETE document(’db.xml’)/db/S/row

92

IF document(’temp.xml’)/flags/new_flag_i+2

DO INSERT <new_flag_i+3/> BELOW document(’temp.xml’)/flags

AFTER TRUE ;

INSERT $delta BELOW document(’db.xml’)/db/R AFTER TRUE ;

INSERT $delta BELOW document(’db.xml’)/db/S AFTER TRUE ;

DELETE document(’temp.xml’)/flags/new_flag_i+2;

r3:

ON INSERT document(’db.xml’)/db/R/row

IF document(’temp.xml’)/flags/new_flag_i+3

DO LET $r = newElement() IN

INSERT $r BELOW $delta AFTER TRUE ;

INSERT newValue() BELOW $delta/$r AFTER TRUE;

DELETE document(’temp.xml’)/flags/new_flag_i+3;

3.5 Active XQuery

Active XQuery [BBCC02] is another XML ECA language developed approxi-

mately at the same time as the XTL language described above.

3.5.1 Syntactic Comparison with XTL

Similar to XTL, Active XQuery adopts the SQL3 trigger syntactic paradigm,

with rules consisting of an event, condition and action part. Both languages use

XPath for expressing rule event parts, although Active XQuery uses full XPath

instead of the simple XPath expressions supported by XTL. For rule condition

parts, Active XQuery uses full XQuery instead of the simple XPath expressions of

XTL. Simple XPath is easier to encode and analyse while, as we have seen in the

93

previous section, it does not prevent XTL from expressing complex application

logic.

For rule action parts, Active XQuery uses the extension of XQuery with the

update features described in [TIHW01]. The use of full XQuery (or full XPath)

is an advantage when document order matters since, via the use of the position

operations of XQuery, an XML fragment can be placed precisely in any part of

the XML document, e.g. as second child of a specified node. This is not possible

with XTL due to the limitations of simple XPath and simple XQuery expressions.

Concerning the types of actions that are supported, Active XQuery allows

the replacement of an XML fragment by another in a single update statement,

instead of requiring a deletion followed by an insertion as in XTL. Active XQuery

also supports the renaming of XML node names as a single update statement.

Extending XTL to support both of these features would be straightforward.

Active XQuery supports both BEFORE and AFTER triggers. XTL sup-

ports only AFTER triggers but it could easily be extended to support BEFORE

triggers too. Active XQuery supports set- and instance-oriented rules, via the

FOR EACH NODE and FOR EACH STATEMENT keywords, while in XTL this

is implicitly indicated via the use of the $delta variable: the presence of $delta

in a condition or action part implies an instance-oriented rule, otherwise the rule

is set-oriented.

The definition of variables that store the results of an XQuery expression

evaluation is supported in Active XQuery using LET expressions whose scope

covers both the condition and the action part of the rule. Again, although this

feature is missing from XTL, it does not add any extra expressiveness to Active

XQuery and could easily be added to XTL.

94

3.5.2 Semantic Comparison with XTL

Active XQuery supports syntactic triggering, unlike XTL which supports seman-

tic triggering. Although Active XQuery theoretically supports both immediate

and deferred coupling modes, only immediate has been implemented.

A distinct characteristic of Active XQuery is the way that update statements

are handled. One of the design requirements of Active XQuery rule execution was

that it should be as close as possible to the semantics of SQL3 triggers [BBCC02].

However, given the hierarchical structure of XML documents and the “bulk”

nature of updates in XML, such semantics cannot be replicated directly. For

example, an insert action on XML may involve the insertion of a large XML

fragment while a deletion may drop a whole branch of the XML document tree.

To overcome this problem, Active XQuery proposes two different strategies that

decompose the original bulk update into a set of atomic updates.

The first update decomposition strategy, called loosely binding semantics

(LBS), decomposes the bulk XML update into a sequence of smaller granularity

atomic updates, such that each XML element that is affected by the original up-

date is addressed by one update in the generated sequence. A second approach,

called tightly binding semantics (TBS), transforms a bulk update statement to a

single expanded statement that redefines the initial bulk update as a set of nested

updates to be performed in a specified order. The LBS approach is supported by

the Active XQuery system implementation.

During the processing of the update sequence generated by LBS, triggering

events are computed for each individual update in the sequence, and the resulting

rule triggering occurs immediately after the execution of the individual update.

This produces a sequence of interleaved updates and rule executions. In contrast,

in XTL, update statements are treated as atomic operations and rules are trig-

gered only after completion of the entire update. This difference means that the

95

two systems may produce different results over the same XML data for the same

top-level update.

For example, consider the example XML tree in Figure 3.7, where circles

represent XML elements and boxes text nodes. Suppose we have two ECA rules

r 1 and r 2 defined in XTL and in Active XQuery4:

r_1:

ON INSERT document(’doc.xml’)/a/b/c/f

IF $delta/../d/e

DO DELETE $delta/../d/e ;

INSERT <e>$delta/text()</e> BELOW $delta/../d AFTER TRUE ;

r_2:

ON INSERT document(’doc.xml’)/a/b/c/d/e

IF $delta/../../g

DO DELETE $delta/../../g

The first rule r 1 in response to an insertion of an f node, and given that there

is at least one e node under d in the current branch under c, sets the text values

of all the e nodes equal to that of the f node. The second rule r 2 in response to

the insertion of an e node deletes the node g, if it exists. We assume the r 1 has

a higher priority than r 2. Suppose now that a top-level update inserts a whole

new c subtree, such as the subtree rooted at the leftmost c in Figure 3.7, under

b. Let us see how this top-level update is treated by both of the ECA processing

systems.

In XTL, the new XML fragment will be inserted under b in a single atomic

update. After that, the triggered rules will be determined. Assuming the rules

4For brevity they are given here in XTL, but they can also be expressed similarly in Active
XQuery.

96

described above are the only ones that are triggered, they will be processed one

after the other according to their priorities, resulting in equal text values for all

e nodes and in the deletion of g.

In Active XQuery the top-level update has different results. Before the update

is processed, it is decomposed using the LBS algorithm into three smaller atomic

updates, as illustrated by fragments 1 to 3 in Figure 3.7. After the execution

of each of these three updates, the triggered rules are checked and processed as

appropriate. So after the end of statement 2, it is found that the rule r 1 is

triggered due to the insertion of a new f node, but checking its condition it is

found that no e node exists under d and so the rule’s action part is not executed.

The following execution of statement 3, will just delete the g node.

Thus, after the end of processing the same top-level update with the same set

of triggered rules, different results are obtained by the two systems.

The update decomposition approach of Active XQuery does not seem to pro-

vide more expressive power than the XTL execution model because we can ob-

tain the same result by explicitly using a sequence of finer-granularity actions.

In contrast, the path expression duplication required to express all the individual

updates in Active XQuery may impose a performance penalty that may require

extra techniques, such as caching, to be applied in order to improve the overall

system performance. A comparison of the relative performance trade-offs of XTL

and Active XQuery was beyond the scope of this thesis but is an interesting area

of possible future work.

3.6 Summary

In this chapter we have discussed the design of ECA languages in general and the

specific issues concerning the design of such languages for XML. We reviewed a

97

2

 a

b

cc

d

e e e

b

c c

f

1

3

g

Figure 3.7: Example XML tree

specific XML ECA language, XTL, presenting its syntax and execution semantics.

We then presented an analysis of the relational expressiveness of XTL and this is

one of the key contributions of this chapter. It is also relatively straightforward to

show that XTL can capture updates on relational data for an ordered database,

following the results presented in [AV91]. For the future we plan a more detailed

study that will investigate the expressiveness of XTL over relational data, as well

as the precise update extensions that may be required for it to become update

complete for relational data. We concluded the chapter with a comparison of

XTL and Active XQuery, from both syntactic and semantic viewpoints.

In the following chapter we present the architecture and implementation of

98

a prototype system that we have developed which supports the definition and

execution of XTL rules.

99

Chapter 4

An XML ECA Rule Processing

System

4.1 Introduction

Following the description of the syntax and execution semantics of the XTL

language described in Chapter 3, we present in this chapter a prototype system we

have developed that implements the XTL language and its execution semantics.

The motivation for this implementation was to provide a proof of concept of the

practical feasibility of the XTL language and its execution semantics.

The present chapter is organised as follows: in Section 4.2 we give a description

of the system including its architecture and the components it comprises, followed

by a discussion in Section 4.3 of the rule registration task. A performance study of

the system is presented in Section 4.4. This study includes system modelling using

analytical methods, and experimental results using both the analytical model and

results from a set of experiments conducted on the actual system. In Section 4.5

an indexing structure for XML ECA rules is proposed in order to improve the

time required to find rules that may be triggered by an event occurrence, and a

100

study of the system performance using this indexing scheme with the analytical

model is presented.

4.2 System Architecture

PARSER for ECA
Language

EXECUTION ENGINE

Rule Base

R
u

le
 B

a
s

e

In
te

rf
a

c
e

Action Scheduler Condition Evaluator Event Dispatcher

WRAPPER

 Query & Update
 Manager

XML Documents

User Interface

Schedule Manager
Execution Schedule

XML translated rules

Prefix actions to
schedule

Send condition for eval’n
Receive Results

Send event query for eval’n
Receive changes set

Pop an action from the
head of the schedule

Rule Input

Connection
Driver

Establish connection.
Send updates and queries.

Receive Results.

Send action for
execution

Read from Rule Base

Registration
Unit

Figure 4.1: XML ECA Rule Processing System Architecture

The architecture of our system is illustrated in Figure 4.1.

The Parser parses and checks the syntactic validity of a new rule. For the

construction of the parser, we have used the JavaCC [JavaCC05] lexer-parser

generator. Valid rules are translated into an XML form and are added by the

Registration Unit to the Rule Base (which is an XML file). Details about each

101

rule are stored here, including its name, priority, and event, condition and action

parts.

The Execution Engine encapsulates the rule processing functionality. In par-

ticular, the Event Dispatcher, Condition Evaluator and Action Scheduler imple-

ment these aspects of the rule processing, as we describe in more detail below.

All of these components interface with the Wrapper in order to send and receive

data to and from the underlying XML files. Due to the immaturity of the ex-

isting XML repository products in supporting a sufficiently expressive update

language at the time that this first prototype was implemented (2002), we have

used flat files and have exploited the functionality provided by DOM [W3CDOM]

for interacting with them.

The Execution Schedule contains a sequence of updates — these have the same

form as rule actions except that they do not contain any $delta expressions within

them and in their place contain a function call whose argument is a linked list

containing a set of node references for the $delta variable. By “$delta expression”

we mean an XPath expression that contains a reference to the $delta variable.

The Wrapper interfaces with the XML files on disk. All update and query

requests from the upper levels of the system pass through this component, which

coordinates them. It undertakes to open files, submit queries and updates, and

receive back results from them through the Query & Update Manager. All queries

are performed directly by using XPath. For deletions, the set of nodes that will

be deleted are identified by evaluating the XPath expression within the DELETE

part of the request, and then all the subdocuments rooted at the nodes identified

are deleted. For insertions, the set of nodes that will be affected are identified by

evaluating the XPath expression within the BELOW part of the request, and then

the fragment specified within the INSERT part is added as a new child of each

of the nodes identified, placed relative to the existing children according to the

102

AFTER or BEFORE qualifier.

As well as performing queries and updates over XML data sources, the Query

& Update Manager also has the task of notifying the ECA Rules Processing Engine

of the occurrence of update events.

Rule execution begins with a request from the Schedule Manager to the Query

& Update Manager to execute the update currently at the head of the schedule.

In the case of an insertion, the Query & Update Manager executes the update

and annotates the newly inserted nodes as “new”, while in the case of a deletion

it annotates the nodes to be deleted as “to be deleted” without executing the

deletion yet. Here we note that the annotation does not affect the physical

representation of the file itself as its in-memory DOM encoding is used to perform

the annotation. Annotations are removed before the file is serialised back to disk.

Following the execution of the update the Query & Update Manager notifies

the Execution Engine of the event and details of the event including its type

and the XML file it affects. Control then passes to the Event Dispatcher. This

queries the Rule Base to obtain the rules that may be triggered by the event

and then requests the Query & Update Manager to evaluate the XPath query of

the event part of each rule that may be triggered by the update that was just

executed. For each rule whose event query result set contains annotated nodes

(either newly inserted or about-to-be deleted), the Event Dispatcher creates a

changes set containing these annotated nodes, and the rule is triggered.

Control then passes to the Condition Evaluator which requests the Query &

Update Manager to evaluate the condition part of each triggered rule on the

affected document. Since a condition is generally a boolean expression with con-

junctions, disjunctions and negations, each conditional is evaluated separately to

determine if it is True or False, before a value for the whole boolean expression is

determined by the Condition Evaluator. As the evaluation context is used either

103

the root node, if there are no occurrences of $delta within a query, or otherwise

each instance of the changes set. The rule’s delta set is thus created, consisting

of those members of its changes set for which the condition evaluates to true.

If the delta set is non-empty, the rule fires and control is passed to the Action

Scheduler to further process the rule. Otherwise, processing of this rule ends.

The Action Scheduler reformulates a given rule’s action(s) in order to eliminate

any instances of $delta expressions within them. The reformulation algorithm

performs the following steps for each node within the rule’s delta set: replaces

the $delta variable in each of the $delta expressions by the current node of

the delta set; evaluates each of the modified $delta expressions with respect

to the updated document; and replaces each $delta expression within the rule’s

action(s) by the corresponding result of the previous step. The outcome of this

reformulation is that one instance of the rule’s action(s) is created for each node

in the rule’s delta set. These updates are now prefixed, in an arbitrary order,

to the front of the schedule, since we employ immediate scheduling. If multiple

rules have fired as a result of the last update executed, then the updates that

result from their actions are prefixed the schedule in order of the rules’ specified

priorities. If the last update executed by the Query & Update Manager was a

DELETE, then the actual deletion of the annotated nodes is now performed. If the

last update was an INSERT then the new data are now deannotated. Control

then passes once more to the Schedule Manager and the cycle repeats.

Our system architecture is modular. Each component is designed to be as

independent from the other components as possible. This adds flexibility to

the system, simplifying future improvements, extensions and modifications. For

example, the implementation of a component could be replaced by a new improved

one, or be moved onto another machine by being replaced by a Web Service call.

The latter could be useful in the case that a distributed version of the system is

104

required by an application.

4.3 Rule Registration

Rule registration begins with a user submitting a rule to the Registration Unit

component (see Figure 4.1). The Registration Unit initialises the Parser to check

the syntactic validity of the submitted rule and build its corresponding syntax

tree. If the rule is syntactically correct, the syntax tree is passed back to the

Registration Unit. For each part of the rule described in the syntax tree the

Registration Unit creates its XML representation and then appends the rule to

the Rule Base.

The Rule Base is represented by an XML file with document element RuleBase.

Each rule is represented by a Rule element that is a child of RuleBase. The

three rule parts are represented as child elements of Rule named EventPart,

ConditionPart and ActionPart, respectively. The contents of each rule part are

also encoded as child elements of the corresponding part element, e.g. EventType

and Expression, containing the actual contents in a Text or CDATA section. For

example, consider the rule r2 given in Section 3.3, that upon insertion of a new

price node checks if its value is greater than the current day’s high and if so

replaces it. The form of this rule as registered in the Rule Base is as follows:

<RuleBase>

...

<Rule name="ReplaceHigh" priority="1148927618000">

<EventPart>

<Event>

<EventType>INSERT</EventType>

<FileName>shares.xml</FileName>

105

<Expression>

<![CDATA[shares/share/day-info/high]]>

</Expression>

</Event>

</EventPart>

<ConditionPart>

<ConditionsExpression>

<condition>

<FileName>shares.xml</FileName>

<Expression>

<![CDATA[$delta >

$delta/../../month-info

[@month=$delta/../@month]/high]]>

</Expression>

</condition>

</ConditionsExpression>

</ConditionPart>

<ActionPart>

<action>

<ActionType>DELETE</ActionType>

<what>

<filename>shares.xml</filename>

<Expression>

<![CDATA[

$delta/../../month-info/high]

]>

</Expression>

106

</what>

</action>

<action>

<ActionType>INSERT</ActionType>

<what>

<Expression><!CDATA[$delta]]></Expression>

</what>

<below>

<filename>shares.xml</filename>

<Expression>

<![CDATA[$delta/../../

month-info[@month=$delta/../@month]]

]>

</Expression>

</below>

<before>TRUE</before>

</action>

</ActionPart>

</Rule>

...

</RuleBase>

We see from the above that the name and the priority of the rule are added as

attributes in the Rule element. The EventPart element consists of one Event

element that in turn contains the contents of the event part of the rule: the

event type under the EventType element; the name of the file on which the

event occurs under the FileName element; and the XPath expression in a CDATA

section under an Expression element. The ConditionPart element holds under

107

the ConditionsExpression element a condition child element that contains the

XPath expression of the condition and the XML file this is to be applied on. The

ActionPart element has as children a set of action elements that correspond

to the sequence of actions, in the order that they appear in the action part of

the rule. Each action element contains the type of the action in an ActionType

element. If the type is DELETE the what element contains the filename and the

XPath expression specifying the data to be deleted. If the type is INSERT, the

what element contains the data to be inserted, while its siblings named below

and before or after correspond respectively to the BELOW and BEFORE or AFTER

parts of the INSERT action.

Finally, we have implemented time-based rule priority in the sense that the

earlier a rule registered the higher its priority is. So each rule that is submitted for

registration is assigned a unique priority number that corresponds to the system’s

time (in milliseconds) when the registration process began.

4.4 Performance Study

In this research we have focused on update response time as the main perfor-

mance criterion of the XML ECA system described above, defined as the mean

time taken to complete all rule execution resulting from a single update submit-

ted by a top-level transaction. Other choices of performance criteria could have

been various types of system resource consumption, and this is an area of future

research.

In the present section, we conduct a performance study of our system using

analytical methods and also the system itself. In order to simplify the system

108

model, we make a series of assumptions in Section 4.4.1. The main system mod-

elling components are then presented in Section 4.4.2 before we proceed in Sec-

tion 4.4.3 to the description of our analytical model for update response time. In

Section 4.4.4 we present experimental results from both the analytical model and

the system itself.

Previous work on modelling and performance evaluation of active rule process-

ing systems has concentrated mostly on benchmarking and simulation techniques

rather than on analytical methods. For example, the BEAST benchmark is em-

ployed in [GGD95] in order to evaluate the performance of event detection, rule

management and rule execution in SAMOS [GD92]. Tests are defined for each

component focusing on the time required to complete a processing step, detect

events of various types, retrieve the correct rule from the rule base and execute

rules in various coupling modes.

A set of simulation experiments are performed in [BB97] in order to evaluate

the performance trade-offs for different rule execution semantics. The average

transaction response time, defined as the average time elapsed from the trans-

action’s arrival at the execution queue to its successful completion, is used as

the main performance measure. A time similar to this, is the main performance

measure in our study here.

4.4.1 Rule Triggering Assumptions for the Analytical Model

In our experience, the level of ECA rule triggering in database applications tends

to be shallow, in that the probability of having k levels of triggering in response to

some top-level update decreases substantially as k increases. We regard level 0 as

the top-level update. Updates occurring at level i + 1 result from rules that have

been fired by updates occurring at level i. pfire(i) denotes the probability that

an update occurring at level i of rule execution causes a given rule to fire. This

109

probability depends on the probability pmt that a given rule may be triggered

by an update, the probability pt(i) that a rule that may be triggered is actually

triggered at level i, and the probability pf that a rule that has been triggered

actually fires. pfire(i) is given by the following equation:

pfire(i) = pmt · pt(i) · pf (4.1)

We assume that the triggered probability pt(i) follows a geometric distribution

with a constant reduction factor of preduct at each level, while pmt and pf remain

constant regardless of the triggering level1. So pt(i) is given by the following

equation:

pt(i) = pt · p
i
reduct (4.2)

where pt denotes the probability that a rule is actually triggered as a result of an

update.

As a consequence of equations 7.1 and 7.2:

pfire(i) = pmt · pt · pf · p
i
reduct (4.3)

implying that pfire also reduces geometrically with the level i.

Given that we currently support two types of events (INSERT and DELETE),

we assume that the event parts of the rules in the Rule Base refer equally to these

event types, so that half the rules may be triggered by an INSERT and the other

half by a DELETE. So since in our current system implementation half of the

rules “may-be-triggered”, we set pmt equal to 0.5 in the analytical model. Thus,

at each level i, the number of rules that may be triggered by a given update is

1Investigation of the effects of different probability distributions would be an interesting area
of future work, as well as empirical experimentation with real sets of ECA rules.

110

given by

rmt = pmt · nrules (4.4)

where nrules represents the number of rules in the Rule Base. rmt is a significant

factor in the analytical model as the number of the rules that may be triggered

corresponds to the number of event path expressions that need to be evaluated on

the XML data in order to determine the rules that will actually trigger; this is a

factor that, as shown below, has a major effect on the overall system performance.

As a consequence, the number of rules that are actually triggered at level i

by an update in level i− 1 is given by the following equation:

rt(i) = pt(i) · rmt = pmt · pt · p
i
reduct · nrules (4.5)

Similarly, the number of rules rfire(i) that fire for each event that occurs at

level i is given by

rfire(i) = pfire(i) · nrules

= pmt · pt(i) · pf · nrules = rt(i) · pf (4.6)

4.4.2 Rule Execution Modelling

Transactions consisting of queries and updates are submitted by applications to

the system. Updates can cause rules to fire that may, in turn, cause the firing

of further rules, increasing the system load. Queries submitted by a top-level

transaction, although they do not cause any rule firing, can also increase the

system load. Queries submitted during rule processing, for event or condition

evaluation, add an extra factor, further increasing the system load.

In our analytical modelling of rule execution we assume two kinds of queues:

111

a transaction queue that accepts queries or updates arising from rule execution or

from top-level transactions, and an action scheduler queue that queues updates

resulting from rule firing which are then dispatched for execution to the trans-

action queue. For the transaction queue we assume a FCFS (First Come First

Served) service discipline, while for the action scheduler queue, due to XTL’s

immediate rule coupling mode, we assume a LCFS (Last Come First Served)

service discipline. Referring to the system architecture diagram in Figure 4.1,

the action scheduler queue corresponds to the Execution Schedule in the Wrapper

component, while the transaction queue is the query and update execution queue

managed by the Query & Update Manager.

The query/update arrival rate at both queues is modelled as a Poisson pro-

cess, which means that the arrival of a new item does not depend on any previous

item (the process is memoryless) and the inter-arrival time is exponentially dis-

tributed. The exponential distribution of inter-arrival time leads to the service

time also following an exponential distribution. By service time we mean the

time for a query to be evaluated or an update to be executed over the XML data.

An empirical justification of the service time’s exponential distribution is given

in [NJ00] and is as follows: The time required for a query/update depends on

the number of data items accessed. Queries/updates that access a small num-

ber of data items are more frequent than those accessing a large number of data

items. This leads to a geometrically distributed number of data items accessed

per query/update. So the service time can be assumed exponential, which is the

continuous version of geometrical.

Using Kendall’s notation [Jai91], the transaction queues and the action sched-

uler queues are queues of the form M/M/1, where M indicates exponential dis-

tribution for both the process arrival rate and the service time, and 1 specifies

that the system provides a single service point.

112

4.4.3 Modelling Update Response Time

The update response time is the mean time taken to complete all rule execution

resulting from a single top-level update submitted to the system. This update

response time, Rupdate, can be decomposed as follows:

Rupdate = Revent + Rcond + Raction (4.7)

where Revent is the mean time taken for all event processing, Rcond the mean

time taken for all condition processing and Raction the mean time taken for all

action processing during the rule execution following a top-level update. We now

consider each of these three components in turn.

Event Response Time (Revent)

For each level of triggering i, the mean time taken to process the event part of a

single rule at level i is denoted by R
rule

event(i). This time is the mean time required

to evaluate the event path expression of any rule in the Rule Base that has the

same event type (INSERT or DELETE) and refers to the same XML file. For

simplicity, henceforth we assume that the XML data are stored in one single XML

file. The mean event processing time of a single rule at level i is given by the

following equation:

R
rule

event(i) = tquery
total (i) (4.8)

where ttotal
query(i) represents the mean time needed to perform an XPath query on

the XML data. This time is equal to the sum of the mean time tq spent on

evaluating the actual query plus the mean time W tq(i) spent on waiting in the

transaction queue:

tquery
total (i) = tq + W tq(i) (4.9)

113

The mean waiting time in the transaction queue, which follows the M/M/1

queue model, is [Jai91]:

W tq(i) =
λtotal(i) · t

2
q

1− λtotal(i) · tq
(4.10)

Here λtotal(i) represents the total query or update request arrival rate in the trans-

action queue which equals the sum of the arrival rate of query requests, λquery
total (i),

and the arrival rate of update requests, λupd
total(i), both at level i of triggering:

λtotal(i) = λquery
total (i) + λupd

total(i) (4.11)

Here, λupd
total(i) is given by:

λupd
total(i) = λupd

ext + λupd
int (i) (4.12)

where λupd
ext is the arrival rate of top-level updates that are submitted from outside

the rule processing system, and λupd
int (i) is the arrival rate of updates that are

generated as a result of rule firing at level i.

Each of the externally arriving top-level updates will cause a first level of

triggering. Each of the updates contained within the transactions generated as a

result of this rule triggering may cause further rules to fire, causing more trans-

action traffic to be generated, and so on. So the total arrival rate of updates at

114

level i of triggering can be expressed as:

λupd
total(i) = λupd

ext + λupd
ext · rfire(1) ·Naction

+ (λupd
ext · rfire(1)) · rfire(2) ·N2

action

+ . . .

+ (λupd
ext · rfire(1)... · rfire(i− 1)) · rfire(i) ·N

i
action

= λupd
ext · [1 +

i
∑

j=1

N j
action ·

j
∏

l=1

rfire(l)] (4.13)

where rfire(l) is the number of rules that fire at triggering level l, and Naction is

the total number of individual updates each of the rfire(l) rules generates.

According to equations 4.1, 4.3, 4.6 and 4.13, the update arrival rate at level

i is

λupd
total(i) = λupd

ext · (1 + nrules · pmt · pt · pf ·
i

∑

j=1

N j
action ·

j
∏

l=1

pl
reduct)

In 4.11, λquery
total (i) equals the sum of λquery

ext plus λquery
int (i), where λquery

ext is the

arrival rate of queries that are submitted from outside the rule processing system

and λquery
int (i) is the arrival rate of queries that are generated as a result of rule

processing at level i, i.e. event and condition expression evaluation:

λquery
total (i) = λquery

ext + λquery
int (i) (4.14)

115

So the total query arrival rate at level i of triggering can be expressed as:

λquery
int (i) = λquery

ext + λupd
total(0) · (rmt + rt(1) ·Ncond)

+ λupd
total(1) · (rmt + rt(2) ·Ncond)

+ ...

+ λupd
total(i− 1) · (rmt + rt(i) ·Ncond)

= λquery
ext +

i
∑

j=1

λupd
total(j − 1) · (rmt + rt(j) ·Ncond) (4.15)

The factor rt(j) · Ncond gives the number of condition expressions evaluated per

triggering level as rt(j) gives the number of rules triggered at triggering level j

and Ncond the mean number of condition expressions each of the triggered rules

contributes (see below).

Assuming that the action part of each rule contributes Naction updates to an

action schedule (see below), then substituting equation 4.9 into equation 4.8, and

summing over all k triggering levels, we obtain the mean time taken to process

all event queries over all k triggering levels during the rule execution following a

top-level update as:

Revent =

k
∑

i=1

{rfire(i− 1) ·Naction · rmt · R
rule

event(i)} (4.16)

where the factor rfire(i − 1) · Naction represents the total number of individual

updates caused by the previous level of triggering and rmt represents the number

of rules that have event part with the same event type as the event that occurred.

116

Condition Response Time (Rcond)

Only a portion of the rules stored in the Rule Base will actually be triggered.

According to the assumptions made in Section 4.4.1, for triggering level i this is

equal to rt(i) = rmt(i) · pt, where pt is the probability that a may-be-triggered

rule is actually triggered. The time needed the condition part of a triggered rule

to be evaluated is given by the following equation:

R
rule

cond(i) = ttotal
query(i) ·Ncond (4.17)

where Ncond represents the total number of expression evaluations required to

evaluate the condition part of a rule, assuming that a rule has an average ℓcond
inst

condition part instances (due to $delta) and each of them contains ζ path ex-

pressions, Ncond = ℓcond
inst · ζ .

So, the mean time taken to process all condition queries over all k triggering

levels during the rule execution following a top-level update is as follows, recalling

that rt(i) rules are triggered at the ith triggering level:

Rcond =
k

∑

i=0

(

rt(i) ·R
rule

cond(i)
)

(4.18)

Action Response Time (Raction)

The number rfire(i) of the rules that fire at the ith level of triggering, is expressed

as the product of the probability pf that a triggered rule fires and the number

rt(i) of rules that were triggered at level i, rfire(i) = rt(i) · pf . The mean time

needed for the execution of the action part of each of the rules that fire is given

below:

117

R
rule

action(i) = ttotal
action(i) ·Naction (4.19)

where Naction is the average number of updates placed by a rule to the action

scheduler queue and ttotal
action is the mean time taken for an update to be executed

in the system. We assume that there are an average of ℓinst instances contributed

by an action, and that each rule’s action part contains on average sizeap indi-

vidual actions. So the number of updates, Naction, placed by a rule to the action

scheduling queue is:

Naction = ℓinst · sizeap

After an instance of the action part is placed on the action scheduling queue at

level i, each update within it waits for a time of W upd(i) before being sent to the

transaction queue, where it will also wait for W tq(i) time before being executed

over the XML data, in time tsrv. Thus, the mean time spent on the execution of

an update within an instance of an action part is:

ttotal
action(i) = tsrv + W upd(i) + W tq(i) (4.20)

where the tsrv is assumed to be equal to the time needed for a query to be

evaluated tq and W tq(i) is the mean waiting time in the transaction queue.

The mean waiting time in the M/M/1 action scheduling queue at level i of

triggering is given by the following equation [Jai91]:

W upd(i) =
λupd

total(i) · t
2
srv

1− λupd
total(i) · tsrv

(4.21)

From the fact that rfire(i) rules fire at level i, and that there are k triggering

118

levels, we obtain the time taken for all rule action processing as

Raction =

k
∑

i=1

rfire(i) ·
(

R
rule

action(i)
)

into which the right-hand sides of equations 4.19 and 4.6 can be substituted.

4.4.4 Experimental Results

As well as developing the analytical performance model described above, we have

conducted a series of experiments on our actual system implementation. We

present the experimental results from both the analytical performance model

and the system measurements.

The actual system implementation was used to measure and calibrate the

parameter tq, as shown in Table 4.1. In the absence of information about real-

world XML ECA rule sets we have also fixed the remaining parameters to the

values shown in Table 4.1. For the experiments with the analytical model, we

have assumed that no external transaction arrival occurs (i.e. λquery
ext = 0 and

λupd
ext = 0) except from the top-level update. The reason for this assumption was

in order for the analytical model study to be as close as possible to the conditions

under which the experiments on the real system were conducted, since in the

latter case the only external transaction on the system is the top-level update

that initiates the rule triggering.

Analytical Study Results

We examine the general performance trends of processing XTL rules using a

system such as the one described in the previous sections. We consider the general

trends as the primary result of our study rather than the actual values obtained.

119

Parameter Base setting
tq 0.0008 sec
k 30
Ncond 4
Naction 8
sizeap 4
preduct 0.2
pt 0.3
pf 0.5
pmt 0.5

Table 4.1: Parameter Base Values

Altering values of the parameters in Table 4.1 affects the absolute values but not

the general performance trends.

0

2

4

6

8

10

12

10 20 30 40 50 60 70 80 90 100

U
p
d
at

e
R

es
p
on

se
T

im
e

(s
ec

)

Number of rules in Rule Base

Response Time

3 3 3 3 3
3

3
3

3
3

3
3

3

3

3

3

3

3

3

3
3

Figure 4.2: Analytical Performance Results

Figure 4.2 shows how the update response time varies as the number of rules

in the rule base, nrules, increases. From the shape of the curve it is clear that the

system does not scale well. As nrules increases, the update response time tends to

120

rise quite rapidly towards high values. Although we obtain relatively low times

for few rules in the rule base, the rate of increase is non-linear and the response

time soon reaches high values that would make the system unusable in a real

application environment.

As nrules increases, the number of rules that will potentially be triggered and

activated increases, as does the number of query and update requests placed in

the transaction queue. Furthermore, the higher nrules is the greater the effects of

triggering cascades become, resulting in even more query and update requests in

the transaction queue.

The response time increases non-linearly for as long as the system is stable,

i.e. so long as the arrival rate in the transaction queue is less than the rate at

which requests that can be served. After the arrival rate exceeds the service rate,

the system become unstable, which can be interpreted as the transaction queue

growing uncontrollably large, so that it soon floods the memory of the system

causing at first the system to slow down dramatically and then, potentially, the

application to crash.

The reasons for this behaviour seem to be the following:

• All the query and update requests are served by a single transaction queue.

As the transaction service time, tq, remains constant while the number of

query and update requests increases as greater number of rules need to be

processed, the waiting time in the transaction queue increases dramatically

until the arrival rate overwhelms the rate at which the requests can be

served.

• The number of query evaluations needed to find the rules that are actually

triggered. Each time that an event occurs we have to check all the rules

that have the same event type in their event parts (INSERT or DELETE)

121

regardless of the fragment of data affected by the update.

Altering the values of the performance variables in Table 4.1 simply shifts this

in stability point (i.e. the point where the arrival rate equals the service rate)

to a smaller or larger number of rules in the rule base, but without affecting the

performance trends that are observed in all cases.

System Experiment Results

For the experiments with the actual system, we have used a fragment of the

DBLP [DBLP06] XML database. Rules are generated randomly according to the

value of parameters such as the proportion of instance and set oriented rules,

the proportion of INSERT and DELETE events and actions, and the number of

actions in the action part of a rule. Three different rule sets of 50 rules each were

randomly generated and three separate experiments for each of these three sets

of rules were performed.

In order to examine system scalability, the size of the rule base, nrules was

increased by successively accumulating a replica of the initially generated 50 rules

in the existing rule base. That is, the rule base was initially the original set of 50

rules, and then increased linearly to 100, 150, 200 etc. rules. Thus the amount of

first-level rule triggering and activation also increased linearly. For all three rule

sets, the same top-level update initialised the rule execution. Each experiment

was performed four times for each different value of nrules and the average time

taken. Due to limitations imposed by the current DOM-based implementation

of our system, the maximum triggering level was set to 6. The experiments were

conducted on a PC running Linux Fedora Core 4 featuring an AMD Athlon 64bit

Dual Core processor and 2 Gb of RAM.

Figure 4.3 shows the results of the experiments for the three rule sets. The

number of rules triggered per level for each of the three rule sets when the Rule

122

Base contains 50 rules is shown in Table 4.2.

Rule Set Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

RuleSet1 4 3 2 2 2 2
RuleSet2 3 3 2 2 2 1
RuleSet3 3 2 2 2 1 1

Table 4.2: Rules triggered per triggering level (for 50 rules in Rule Base)

From the graphs in Figure 4.3 we observe that the update response time for

Rule Set 1 increases in a non-linear fashion as nrules increases while for Rule Set

2 and 3 an almost linear behaviour is observed as nrules increases. Although the

observation about Rule Set 1 agrees with the predictions made by the analytical

model, Rule Set 2 and 3 tend to diverge from this. An explanation for this

might be the fact that for each rule set a different number of rules is triggered

per triggering level (see Table 4.2). Due to the way the rule base increases, the

number of rules triggered per level also increases by successively accumulating

those that triggered when then size of the rule base was 50. So for example,

when the size of rule base is 100, Rule Set 1 has 8-6-4-4-4-4 rules triggered at

the six levels, and so on. As the size of the rule base increases, the total amount

of rules that need to be processed increases significantly. Since Rule Set 2 and 3

have fewer rules to be processed per level, they give lower update response times

and a behaviour closer to linear as nrules increases.

The different absolute update response times observed for different rules sets

is due to the different number of rules triggered per rule level.

A comparison of Figure 4.3 with Figure 4.2 reveals a noticeable difference in

the absolute values of the update response time. This is due to implementation

choices made for the system and the assumptions made in the analytical model.

In particular, our use of a DOM-based approach for querying and updating XML

123

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450

U
p
d
at

e
R

es
p
on

se
T

im
e

(s
ec

)

Number of rules in the Rule Base

Rule Set 1

3

3

3

3

3

3

3

33

Rule Set 2

+
+

+
+

+
+

+

+

+
Rule Set 3

2
2

2
2

2

2

2

2

2

Figure 4.3: Experimental Results

documents in the system implementation requires that each time a query or

update needs to be performed over an XML document, the document be encoded

in DOM format and loaded as a whole into memory. This approach is extremely

slow since both the rule base and the data are in XML format, and performing

experiments for nrules higher than about 400 is infeasible. Also, the query time

for both the data and the rule base depends heavily on the size of the XML

document. The future use of an XML repository that directly supports query

and update techniques would remove those limitations from our implementation.

4.5 Indexing XTL Rules

From equation 4.8 in the analytical model we recall that each time that an IN-

SERT or DELETE occurs, the subset of rules in the rule base that refer to an

INSERT or DELETE event needs to be checked to see if they are actually trig-

gered.

124

In order to reduce the size of this may-be-triggered rule set and thus reduce

the detection time for triggered rules, we now propose an indexing scheme for the

event parts of rules and examine its impact on update response time.

The event part of each rule can be split into the type of the event, the XML

document that is affected and the XPath expression specifying the part of the

XML document that, if changed, will trigger the rule. We create an indexing

scheme that exploits these characteristics to find the set of rules that are can-

didates for triggering. The index has the form of graph G representing a non-

deterministic finite automaton G. The edges of G are labelled by the names of

the files affected by the event part of the rules, the types of the events (INSERT

or DELETE), that can be applied per file, and each step of an XPath expression

appearing in the event part of a rule. For simplification purposes, in the current

version of the indexing scheme we propose, the qualifiers are stripped out of the

expressions. See Figure 4.5 for an example.

Starting from the initial state of G, the first two levels of edges in the au-

tomaton are labelled with the filenames and the event types. The rest of the

automaton is built from the steps on the event path expression following the

approach introduced in [GGM+04]:

• Each step in the expression is represented by an edge on the graph labelled

with the step’s name (i.e. element tag name or attribute name). In case

of a ‘*’ element or a ’@*’ attribute, a ‘*’ or a ’@*’ is used as the edge

label.

• The descendant axis is represented by an empty transition (labelled with ǫ)

to a state with a loop edge labelled with ∗.

Each state stores the set of the rules that have the node corresponding to this

state as the output node of their event query and thus may be triggered, ordered

125

by their relative priority.

When a new rule is submitted for registration to the system, it is indexed as

follows:

I. Check the XML file in the event part. If there is an edge labelled with the

current filename then follow it and proceed to the next step; if there is not,

then create a new state and an edge, labelled with the filename, connecting

the initial state and the newly created state; and then proceed to step II.

II. In a similar way for the event type, if the edge labelled by the event type of

the rule exists, follow it and proceed to the next step, or otherwise create a

new state and edge labelled with the event type and then proceed to step

III.

III. If the expression contains any parent (‘..’) step within the path, then

transform it to the equivalent expression without parent steps using the

technique described in [OMFB02]. [OMFB02] defines a set of XPath expres-

sion equivalences that are used to define an algorithm called rare (reverse

axis removal) for rewriting XPath expressions eliminating any reverse axes.

For example, using the rare algorithm the path expression a//b/../d is

transformed to a//.[b]/d that contains no parent (‘..’) steps. Since

the technique described in [OMFB02] generates qualifiers during the trans-

formation of the parent step, we strip these qualifiers out of the XPath

expression, so that the expression a//.[b]/d becomes a//./d which is

equivalent to a//d.

IV. Starting from the first step of the path expression, check if the same path

exists already in the index, following one by one the path expression steps

and the graph edges. If an edge labelled with the same name as the current

126

step exists, then continue traversing the automaton. If no such an edge

exist, then create a new edge labelled with the name of the step and a new

state to connect it with. In case that between two steps in the expression a

descendant axis appears then check if an ǫ transition edge and a ∗-labelled

loop edge, exists already or otherwise create them before proceed to the next

step. If the current step is the result node of the event XPath expression,

then add the rule’s name to the rule set of the state and terminate the

traversal; otherwise we leave the set unchanged.

The insertion of a new rule has to check the file the event is referring to, the

type of the event (INSERT or DELETE), and where each of the nsteps number of

steps of the event XPath expression will be placed within the n nodes of the index

subtree. This results in a worst case complexity of O(n+nsteps+2) = O(n+nsteps).

The occurrence of a top-level update u0 notifies the system to start searching

the index. Depending on u0, removing parent (‘..’) steps and stripping out

any qualifiers may be required. Furthermore, in the case of an insertion of a new

XML fragment that is constructed via an XQuery expression, we may have to

check the index for each of the paths created by the insertion. For example, in

the following update expression:

INSERT <day-info day="01" month="05">

<high>123.43</high>

<low>112.53</low>

</day-info>

BELOW doc(’shares.xml’)/shares/share AFTER TRUE

we have to check the index for the existence of the shares/share/day-info/high,

shares/share/day-info/low and shares/share/day-info paths in shares.xml.

Similarly to events, an update can be split into its type, the file it operates

127

on and its path expression. From the update expression(s), we again form an

automaton (or automata), following the same approach with the index, that will

matched against the index. For example, for the update above, the following

three automata will be generated and matched against the index:

}shares.xml- mINSERT- mshares - mshare - mday-info- mhigh - mj

}shares.xml- mINSERT- mshares - mshare - mday-info- mlow - mj

}shares.xml- mINSERT- mshares - mshare - mday-info- mj

In the automata above a black node corresponds to the initial state and a

double-circled node to a final state.

The SEARCH INDEX function shown in Figure 4.4 is used for matching path

expressions corresponding to updates to those represented in the index. The

function takes as arguments the current state v in the index automaton and the

current state s in the update automaton. The function is initially called with

the initial state of each automaton. The rules : State → RuleSet function

returns the rule set contained in the specified state. The rules contained in

the matched states are accumulated in the RS variable which, by the end of

the algorithm execution, contains the rules that may be triggered by the given

update. F is the set of finite states in the update automaton. The function

δupd : State → Label → StateSet returns the set of states that result from all

the transitions from the given state in the update automaton via an edge with

a given label. The function δix : State → Label → StateSet performs the same

operation but over the index automaton.

Example: Consider the XML ECA rules r1 and r2 defined in Section 3.3.1.

Consider also an XML ECA rule r3 with the following event part:

128

1. SEARCH INDEX (v, s)
2. begin
3. if s ∈ F then RS ← RS ∪ {(rules(v))}
4. for each t ∈ δupd(s, ǫ) do SEARCH INDEX(v, t)
5. for each w ∈ δix(v, ǫ) do SEARCH INDEX(w, s)
6. for each w ∈ δix(v, a) s.t. a 6= ǫ do
7. if a = ‘*’ then
8. for each t ∈ δupd(s, b) s.t. b 6= ǫ do SEARCH INDEX(w, t)
9. else
10. for each t ∈ (δupd(s, a) ∪ δupd(s, ∗)) s.t. a 6= ǫ do SEARCH INDEX(w, t)

11. end

Figure 4.4: Index Searching Algorithm

ON INSERT document(’shares.xml’)/shares/share/day-info/@*

that triggers when a new attribute is inserted in the day-info element and an-

other rule r4 with event part:

ON INSERT document(’shares.xml’)/shares/share//price

Figure 4.5 illustrates how these four rules are indexed using the indexing scheme

described above.

Now consider a top-level update u0 that performs the following action which

inserts a new price after the last price of any share.

INSERT <price time="10:32">143.3</price>

BELOW document(’shares.xml’)/shares//prices

AFTER TRUE

In order to find out which rules may be triggered by u0, we consult the index

structure shown in Figure 4.5.

We start applying the search algorithm of Figure 4.4 using v and s as indicated

in Figure 4.5. Searching up to the states v′ and s′ is straightforward, as the

129

Update

v’

v’’

v1’’’ v2’’’

shares

share

[r4]

price

[]

[]

[]

day−info

high

price

[r1]

[r2] [r3]

[]

[]

prices

 *

shares

price

prices

 *

ε

ε

INSERT DELETE

shares.xml s2.xml

INSERT

shares.xml

u0

 @*

s

v

s’’

s’’’

s’

v_f_1

v_f_2

Figure 4.5: Example XTL rule index

same transition edges exist in both u0 and the index. The next recursive call of

SEARCH INDEX with parameters (v′, s′) executes line 4, due to the ǫ transition

edge in u0, causing another recursive call with parameters (v′, s′′). In turn, the

execution of the search with parameters (v′, s′′) executes line 10 of the algorithm,

where the (v′, v′′) (i.e. share) edge matches with the loop ’*’ edge on s′, leading

to another recursive call of SEARCH INDEX with parameters v′′ and s′′. In the

following step, we have a transition from v′′ to v1′′′, that matches again with the

’*’ loop on s′′, calling in turn SEARCH INDEX with v1′′′ and s′′ (line 10) that

results in the final node of u0 matching node v f 1. Hence, rule r1 is added to

130

the set RS.

The algorithm now drawbacks to the execution of the function with parame-

ters v′′ and s′′. The ǫ transition from v′′ to v2′′′ causes line 5 to execute calling

again SEARCH INDEX with parameters v2′′′ and s′′. The transitions from v2′′′

are the price edge, that clearly does not lead to a match, and the * loop edge

that brings the execution to line 8 of the algorithm and another recursive call of

SEARCH INDEX with parameters v2′′′ and s′′′, which results in matching the final

state of u0 with the state v f 2.

So, from the accumulation in RS of the rule sets stored in v f 1 and v f 2,

we have that the rules r1 and r4 may-be-triggered in response to u0.

4.5.1 Analytical Performance Model Using Index

If we employ the Rule Base indexing scheme described in Section 4.5 to find the

rules in the Rule Base that may be triggered, the number of rule event parts that

have to be evaluated on the XML data is decreased. Assuming an average time

tix is required to access the index, then the equation 4.16 becomes:

Revent =
k

∑

i=1

{rfire(i− 1) ·Naction · (tix + rmt · R
rule

event(i))} (4.22)

since for each update at level i we spend tix time to query the index plus the time

needed to process the resulting rules. From equation 4.4, where rmt = pmt · nrules

the probability pmt that one of the nrules “may-be-triggered” is now pmt << 0.5

since the index filters out a much larger portion of the nrules rules. pmt is a

measure of the quality of the index as it specifies how “selective” this is.

The graphs shown in Figures 4.6, 4.7, 4.8, and 4.9 illustrate the system per-

formance trends according to the analytical model if an indexing structure like

the one described in Section 4.5 is used and for various values of pmt. The system

131

parameters, apart from pmt, have been kept the same as in Table 4.1 and the

average index access time tix has been fixed at 0.01 seconds.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

50 100 150 200 250 300 350 400 450 500

U
p
d
at

e
R

es
p
on

se
T

im
e

(s
ec

)

Number of rules in Rule Base

Response Time

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3

33

Figure 4.6: Analytical Performance Results — With Index (pmt = 0.01)

Experimenting with a range of values for pmt starting from 0.01 to 0.4 we

observe that with low pmt values (highly selective index) the system shows good

scalability characteristics and the update response time increases linearly with the

number of rules in the rule base, nrules. This is because the mean time needed for

the event part of a rule to be processed has been decreased compared to the case of

no indexing, since only a portion of rules equal to rmt(i) = pmt(0)·pi
reduct·nrules <<

nrules needs to be checked. This means fewer queries are placed for execution on

the transaction queue, an effect that becomes more significant in cascaded rule

triggering. As the value of pmt increases (less selective index) the benefits of

the index start to disappear and the system shows a non-linear behaviour that

becomes progressively more marked as the value of pmt approaches 0.5, where in

effect the system performs as if no index exists.

These results point to the use of a rule index as an effective way to significantly

132

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

20 40 60 80 100 120 140

U
p
d
at

e
R

es
p
on

se
T

im
e

(s
ec

)

Number of rules in Rule Base

Response Time

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3

3

3

3

3

33

Figure 4.7: Analytical Performance Results — With Index (pmt = 0.1)

improve system performance. Due to lack of time, no indexing scheme has been

implemented so far in our current system, and thus no experiments using indexes

with the actual system were possible. We leave as future work the development

of a rule indexing mechanism for our system.

4.5.2 Comparison with a hard-coded approach

In the study above, we have presented the performance characteristics of our XTL

ECA rule processing system. As we discussed in Chapter 1 of the thesis (Section

1.1), an alternative to using ECA rules for providing reactive functionality in an

application would be to ‘hard code’ the reactive functionality into the application.

In the hard-coded case, each particular event that needs to be handled would

be implemented directly in the application code. For example, referring to the

XML file of Figure 2.1, a possible way to implement the requirement that the

daily high price of a share should be updated in response to a new price insertion,

133

0

1

2

3

4

5

6

20 40 60 80 100 120 140

U
p
d
at

e
R

es
p
on

se
T

im
e

(s
ec

)

Number of rules in Rule Base

Response Time

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3

3

3

3

3

3

3

Figure 4.8: Analytical Performance Results — With Index (pmt = 0.2)

would be to modify the application code that handles the insertion of a new XML

element so that each time a new “price” is inserted the current high price for

the day is retrieved and, if the new price is higher than this, the current day

high is replaced with the new price. The code snippet that would implement this

functionality within the application code is described by the following pseudocode:

insertElement(element);

if (element.getType() == ’price’) then

dayInfo := element.getAncestorDayInfo();

high := dayInfo.getDayHigh();

if (high.getValue() < element.getValue()) then

high.deleteTextValue();

high.insertTextValue(element.getTextValue());

end if;

end if;

134

0

2

4

6

8

10

12

14

16

18

20 40 60 80 100 120 140

U
p
d
at

e
R

es
p
on

se
T

im
e

(s
ec

)

Number of rules in Rule Base

Response Time

3 3 3
3

3
3

3
3

3
3

3
3

3

3

3

3

3

3

3

33

Figure 4.9: Analytical Performance Results — With Index (pmt = 0.4)

The corresponding XTL rule is rule r1 given in Section 3.3.1 which checks

whether the daily high needs to be updated in response to a new price insertion

in some share:

on INSERT document(’shares.xml’)/shares/share/day-info/prices/price

if $delta > $delta/../../high

do DELETE $delta/../../high;

INSERT <high>$delta/text()</high>

BELOW $delta/../.. AFTER prices

We observe from the above that there is no event detection cost with the hard-

coded approach. The cost of condition evaluation is the same in both approaches

as they both embed the same condition logic. Similarly, they both execute the

same actions and so this cost is also the same in both approaches.

To investigate the update response time for the hard-coded approach, we

can therefore modify our analytical model to remove the cost of event detection

135

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

20 40 60 80 100 120 140

U
p
d
at

e
R

es
p
on

se
T

im
e

(s
ec

)

Number of rules in Rule Base

Response Time

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
33

Figure 4.10: Analytical Performance Results — Hard-Coded Case

by setting R
rule

event(i) in equation 4.8 to zero. Figure 4.10 shows how the update

response time varies having made this change. We see that the system performs

faster and also scales better compared to the ECA rules approach with no rule

indexing. Comparing, however, the hard-coded approach with the ECA rules

approach when an effective rule index is used (e.g. Figure 4.6) we see that these

have similar scalability characteristics.

These performance characteristics of the hard-coded approach make it attrac-

tive for applications that require fast response times and have relatively limited

or relatively stable reactive functionality. However, for dynamic applications that

make extensive use of reactive functionality and require a broad variety of reactive

functionalities to be supported, the hard-coded approach may not be attractive.

This is because of the higher maintenance cost of changing the code, the possibil-

ity of introducing errors in such changes, and the need to redeploy the amended

executable. In contrast, with the ECA rules approach, rules can be dynamically

added and deleted while the application is running. Furthermore, as shown in

136

Section 3.5.1, the use of an appropriate rule index can reduce the performance

advantages that the hard-coded approach may have over the ECA rules approach.

4.6 Summary

In this chapter we have presented a system that implements XTL rules in a

centralised environment. We described the system architecture, including the

components it comprises, and how XTL rule registration and XTL rule execution

are performed. Other key contributions of this chapter include the development of

an analytical model for the system, and the presentation of experimental results

from an analytical study and from a set of experiments that were conducted on

the actual system. An indexing structure for XTL rules was proposed in order

to improve the time required to find rules that may be triggered by an event

occurrence, and a study of the system performance using this indexing scheme

with the analytical model was presented, and these are also contributions of this

chapter.

137

Chapter 5

RDFTL: An

Event-Condition-Action

Language for RDF

5.1 Introduction

As discussed in Chapter 1, our involvement in the SeLeNe project [SeLeNe] was

the initial motivation to start research on ECA rules for RDF data. ECA rules

for RDF could be written on the RDF/XML [Bec04] representation of the RDF

data describing learning objects and users, using an ECA language for XML such

as XTL described in Chapter 3. Alternatively, rules could be written on the

graph representation of the RDF data using a language specifically designed for

this data model. We have adopted the second approach since it has a number of

advantages compared to the RDF/XML approach:

• It provides a more natural way to handle the RDF graph characteristics —

nodes and directed arcs — in their native form, rather than trying to work

138

with a tree-based representation of them.

• The use of an RDF-specific query sublanguage within rules allows us to

easily write queries to retrieve parts of the graph, such as arcs, that would

be harder to encode in an XML query language on the RDF/XML repre-

sentation.

• The use of an RDF-specific update sublanguage enables the modification of

an RDF graph with respect to the RDF data model and an RDFS schema

— e.g. remove an arc or change the classification of an existing resource —

that would be harder to express in an XML update language.

• We can exploit the RDF Schema features to give the user a richer set of

features for defining rules that conform to RDF Schema restrictions.

• The use of an XML ECA language on the RDF/XML representation would

have a performance penalty since the RDF graph would only be traversable

in the serialised document order.

This chapter is organised as follows. Section 5.2 gives a description of our

ECA language for RDF, called RDFTL, including the syntax and denotational

semantics of its query and update sublanguages and the overall syntax of RDFTL

rules. Section 5.3 summarises the main points and contributions of the chapter.

5.2 The RDFTL Language

RDFTL stands for RDF Trigger Language. An early version of it was first de-

scribed in [PPW03b]. RDFTL is the language supported by our peer-to-peer

RDF ECA rule processing system, which we will describe in Chapter 6.

139

Similarly to XTL, RDFTL also follows SQL3 syntactic approach. RDFTL

operates over RDF graphs and complies with the current RDF standards of syn-

tax, semantics and data types [W3C04a, W3C04b, W3C04c]. RDFTL assumes

that RDF graphs conform to one or more RDFS schemas. This was mandated

by the SeLeNe application domain where every network peer hosts a fragment of

a global RDFS schema and each peer’s RDF data must conform to this schema.

This is in contrast to the XML data warehousing application domain of XTL,

which did not have any similar requirement. Another reason for following this

approach is because conformance of the RDF data to an RDFS schema has the

added advantage of improving the efficiency of searching and indexing the RDF

data. An RDF graph conforms to an RDFS schema if the following hold:

(a) every resource in the RDF graph belongs to an RDFS class (in addition to

belonging to the default rdfs:Resource class);

(b) every property in the RDF graph is declared in the RDFS schema, along

with domain and range constraints;

(c) the subject and object of every property in the RDF graph are of the de-

clared subject and object type of the property in the RDFS schema.

When defining an ECA rule in RDFTL, it is necessary to specify the portion

of RDF data that each part of the rule concerns: for example, the RDF nodes

that will be affected by an event, or the value of an RDF literal used to evaluate

a condition. RDFTL uses a path-based query sublanguage for defining queries

over the RDF graph, which we discuss next.

140

5.2.1 RDFTL Query Sublanguage

The abstract syntax of the path-based sublanguage is as follows, where e is a

query, c is a class name, p is a path expression, q is a qualifier, uri is a URI, a

wildcard or empty string, var is a variable, str is a string, arc name is a predicate

name and s is an RDF literal:

e ::= ”resource(”uri”)” (”/”p)?[”AS INSTANCE OF” c]| var

p ::= p”/”p | p”[”q”]” | ”target(”arc name”)” | ”source(”arc name”)”

q ::= q ”and”q | q ”or” q | ”not” q | e | e ” = ” s | p” 6= ” s| e “ =′′ e | e “ 6=′′ e

var ::= ”$” str

uri ::= ” ∗ ”| URI | ǫ

The above syntax is similar to that of XPath [W3C99a], except that:

resource(uri) matches the resource given by uri in the RDF graph being queried;

if uri is an empty string then it matches all the blank resources (with no URI),

while if uri is the ’*’ wildcard then it matches all resources regardless of their

URI; the optional AS INSTANCE OF clause limits the matchings to those that

are instances of the specified class; target(arc name) returns the set of object

nodes related by the predicate arc name to the set of subject nodes given by

the context; source(arc name) returns the set of subject nodes related by the

predicate arc name to the set of object nodes given by the context. The path

expressions of RDFTL also resemble those of RDFPath [RDFPath] except that

the graph navigation functions in RDFPath are child and parent instead of

target and source.

For example, the query

141

resource(http://www.dcs.bbk.ac.uk/LOs/BK187)/target(dc:type) expressed

in our path sublanguge, applied on the RDF graph shown in Figure 2.4, returns

the RDF object obtained by following the arc labelled dc:type from the resource

with URI http://www.dcs.bbk.ac.uk/LOs/BK187.

As another example, the query

resource()/source(dc:title)[target(dc:type)=’Book’] AS INSTANCE OF LO

returns all instances of the LO class that have a title and are Books.

We give below the denotational semantics of RDFTL’s path expressions. We

write S JpK to indicate the set of nodes selected by path expression p and S JpK x

to indicate the set of nodes selected by path expression p with the node x as

context node. We write Q JqK x to denote whether the qualifier q is satisfied

when the context node is x1. In the denotational specification below, the value

function returns the value of its argument in the form of a string. The targets

function takes an RDF predicate p and an RDF subject x as arguments and

returns the set O of RDF objects such that, for each y ∈ O, (x, p, y) is a triple

in the RDF graph. The argument p may be the wildcard symbol in which case

targets(, x) returns the set of RDF objects y such that (x, p, y) is a triple in the

RDF graph for any p. Similarly, the sources function takes an RDF predicate

p and an RDF object x as arguments and returns the set U of RDF subjects

such that, for each y ∈ U , (y, p, x) is a triple in the RDF graph. The argument

p may be the wildcard symbol in which case sources(, x) returns the set of

RDF subjects y such that (y, p, x) is a triple in the RDF graph for any p. After

the keyword ON, IF and DO in each part of the rule there may, optionally, be a

sequence of let-expressions of the form:

let var := e

1By convention, when specifying the denotational semantics of a language, arguments of
semantic functions which are expressions in the language are delimited by J and K.

142

which associate a variable name with a path expression e. At run-time, the ex-

pression e is evaluated when the processing of the part of the rule in which the

let expression is defined starts. We assume in the specification of S, S1, Q below,

that all variables have been substituted by their corresponding path expression.

S : Expression→ Set(Node)

S1 : Expression→ Node→ Set(Node)

S Jresource(uri)K = {y | value(y) = uri}

S Jp1/p2K = {z | y ∈ S Jp1K, z ∈ S1 Jp2K y}

S Jp[q]K = {y | y ∈ S JpK, Q JqK y }

S1 Jp1/p2K x = {z | y ∈ S1 Jp1K x, z ∈ S1 Jp2K y}

S1 Jp[q]K x = {y | y ∈ S1 JpK x, Q JqK y}

S1 Jtarget(arc name)K x = {y | y ∈ targets(arc name, x)}

S1 Jsource(arc name)K x = {y | y ∈ sources(arc name, x)}

S Je AS INSTANCE OF cK = {x | x ∈ SJeK ∧

c ∈ targets(rdf:type, x)K}

Q : Qualifier → Node→ Boolean

Q Jq1 and q2K x = Q Jq1K x ∧Q Jq2K x

Q Jq1 or q2K x = Q Jq1K x ∨QJq2K x

Q Jnot qK x = ¬(Q JqK x)

Q JpK x = S1 JpK x 6= ∅

Q Jp = sK x = {y | y ∈ S1 JpK x, value(y) = s} 6= ∅

Q Jp 6= sK x = {y | y ∈ S1 JpK x, value(y) 6= s} 6= ∅

The widespread use of path-based query languages, such as XPath, was one

reason we chose to adopt a path-based approach for our query sublanguage. In

143

addition, paths seem to be a natural way to navigate graph structures such as

RDF and many RDF query languages (RQL, RDQL, SPARQL etc.) support some

notion of paths. Furthermore, the ability of the language to retain reasonable

expressiveness (and in particular satisfy the SeLeNe requirements) while keeping

a simple syntax was an extra motivating factor.

Other RDF query languages might be suitable to express RDF queries in place

of our query sublanguage although some further design work might have to be

undertaken in order to integrate such languages into our ECA rule syntax. This

is because most other RDF query languages are not constrained to just return

sets of resources but are also capable of constructing more complex result sets.

5.2.2 RDFTL Rule Syntax

Having described the path expressions that RDFTL uses for querying RDF data,

we now describe the RDFTL ECA language as a whole, considering in turn the

event part, condition part and action part of a rule.

There is an optional preamble to each rule. This preamble may contain one

or more clauses of the form USING NAMESPACE name uri which associate a name

with a namespace URI.

Apart from path expressions e, described above, the language also employs a

syntactic construct for expressing RDF triples. We can have triples expressions

occurring in the event and the action part of a rule, that are used to indicate

modifications to the predicate of a triple, via an insertion, deletion or update.

The abstract syntax of triples expressions is as follows, where: triple is a triple

representation; source node is an expression representing the subject of an RDF

triple; target node, old target node and new target node are expressions repre-

senting the object of an RDF triple; arc name is the predicate name of an RDF

triple; s is an RDF literal; e is an RDFTL path expression as described above;

144

class is a string representing an RDFS class name; var is a variable; and str is a

string:

triples ::= triple | upd triple

triple ::= ”(” source node ”, ” arc name ”, ” target node ”)”

upd triple ::= ”(” source node ”, ” arc name ”, ”

old target node”→ ”new target node ”)”

source node ::= e|(” ” [” AS INSTANCE OF” class])

arc name ::= str | ” ”

target node ::= e|(” ” [” AS INSTANCE OF” class]) | s | var

old target node ::= e|(” ” [” AS INSTANCE OF” class]) | s | var

new target node ::= e|(” ” [” AS INSTANCE OF” class]) | s | var

var ::= ”$”str

The underscore symbol () is a wildcard evaluating to all the available subjects,

predicates or objects, depending on the place in the triple it is used. Each triple

expression evaluates to a set of arcs that have as their subject one of the set of

resource nodes that the source node expression evaluates to, as their predicate

one of the set of predicates that arc name evaluates to, and as their object one

of the set of nodes that the target node expression evaluates to. Similarly an

upd triple expression evaluates to a set of arcs that have as their subject one of

the set of resource nodes that source node evaluates to, as their predicate one of

the set of predicates that arc name evaluates to, as their object before they are

updated one of the set of nodes that old target node evaluates to and after they

are updated one of the set of nodes that new target node evaluates to (see below

for a discussion of updates of arcs).

145

The event part of a rule is an expression of one of the following three forms:

1. [let-expressions IN] (INSERT | DELETE) e

This detects insertions or deletions of resources specified by the path ex-

pression e, which evaluates to a set of nodes.

The rule is triggered if the set of nodes returned by e includes any new node

(in the case of an insertion) or any deleted node (in the case of a deletion)

that is an instance of class, if this is specified2. The system-defined variable

$delta is available for use within the condition and actions parts of the

rule, and its set of instantiations is the set of URIs of the new or deleted

nodes that have triggered the rule.

2. [let-expressions IN] (INSERT | DELETE) triple

This detects insertions or deletions of arcs specified by triple. The rule is

triggered if an arc labelled arc name from source node to target node is in-

serted/deleted. The variable $delta has as its set of instantiations the arcs

which have triggered the rule. The individual components of one these arcs

can be identified by $delta.source, $delta.arc name or $delta.target,

containing, respectively, the URI of the resource, the name of the property

and the resource URI or the literal value.

3. [let-expressions IN] UPDATE upd triple

This detects updates of arcs specified by upd triple, which has the form

(source node, arc name, old target node → new target node). Here,

old target node is where the arc labelled arc name from source node used to

point before the update, and new target node is where this arc points after

the update.

2Note that, like XTL, RDFTL supports semantic rather than syntactic triggering: rule
triggering occurs if instances of an event occur and make changes to the RDF graph.

146

The rule is triggered if an arc labelled arc name from some node source node

changes its target from old target node to new target node. The variable

$delta has as its set of instantiations the arcs which have triggered the

rule. The individual components of one these arcs can be obtained by

$delta.source, $delta.arc name, $delta.old target or

$delta.new target.

The condition part of a rule may contain an optional let-expressions IN

clause followed by a boolean-valued expression. The boolean-valued expression

may consist of conjunctions, disjunctions and negations of path expressions,

and comparison operators (=, ! =, <=, <, >, >=) between path expressions and

strings. The condition part of the rule may reference the $delta variable.

The actions part of a rule is a sequence of one or more actions. Actions can

INSERT or DELETE a resource — specified by its URI — or INSERT, DELETE or

UPDATE an arc. Their syntax is as follows for each one of these cases:

1. [let-expressions IN]

INSERT ‘‘resource(’’ URI ‘‘)’’ AS INSTANCE OF class

[let-expressions IN] DELETE e

for expressing insertion or deletion of a resource. There is also the syntax:

var := INSERT ‘‘resource()’’ AS INSTANCE OF class

for creating a new blank resource node as an instance of the specified class

and assigning this to the specified variable for future reference within the

scope of the rule’s action part.

2. [let-expressions IN] (INSERT | DELETE) triple (’,’ triple)*

for expressing insertion or deletion of the arcs(s) specified.

147

3. [let-expressions IN] UPDATE upd triple (’,’ upd triple)*

for updating arc(s) by changing their target node(s).

For insertions, the AS INSTANCE OF keyword classifies the new resource to be

inserted and is obligatory.

The triples in the case of arc manipulation have the same form as in the

event sublanguage. However, the wildcard ’ ’ is constrained to appear inside

triples in actions as follows. In the case of a new arc insertion, ’ ’ is allowed in

the place of the source node and has the effect of inserting the new arc for all

stored resources. In the case of arc deletion, if ’ ’ replaces the arc name then all

the arcs from source node pointing to target node will be deleted; if ’ ’ replaces

the source node, the action deletes all the arcs labelled arc name; replacing the

target node by ’ ’ deletes the arc arc name from the source node regardless of

where it points to. In case of an arc update, ’ ’ can be used in place of the

source node or the old target node; in the first case, it indicates replacement of

the target node for all arcs labelled arc name; in the second case, use of ’ ’

indicates update of the target node regardless of its previous value. The use of

combinations of the above wildcards in a triple is also allowed, in order to express

more complex update semantics that combine those given above.

We now give two examples of RDFTL rules referring to the RDF Schema in

Figure 2.5 showing a fragment of Learning Object metadata and User metadata,

as created for the SeLeNe project [SeLeNe].

Example Suppose a Learning Object (LO) is inserted whose subject is the

same as one of user 128’s areas of interest. Then, the following rule r1 adds a

new arc linking the newly inserted LO to user 128’s personal messages:

USING NAMESPACE dc http://purl.org/dc/elements/1.1/

148

USING NAMESPACE sl_user http://www.dcs.bbk.ac.uk/~gpapa05/user

ON INSERT resource() AS INSTANCE OF LO

IF $delta/target(dc:subject)

= resource(http://www.dcs.bbk.ac.uk/users/128)

/target(sl_user:interest)/target(sl_user:interest_typename)

DO LET $msgs := resource(http://www.dcs.bbk.ac.uk/users/128)

/target(sl_user:messages) IN

INSERT ($msgs,sl_user:newLO,$delta);;

Here, the event part checks if a new resource belonging to the LO class has been

inserted. The condition part checks if the inserted LO has a subject which is the

same as of one user 128’s areas of interest. The LET clause defines the variable

$msgs to be user 128’s messages. Finally, the INSERT clause inserts a new arc

from $msgs to the newly inserted LO.

Example As another example, if the description of a LO whose subject is the

same as one of user 128’s areas of interest changes, the following rule r2 inserts a

new arc from user 128’s Messages to the modified LO:

USING NAMESPACE dc http://purl.org/dc/elements/1.1/

USING NAMESPACE sl_user http://www.dcs.bbk.ac.uk/~gpapa05/user

ON UPDATE (resource(),dc:description,_->_)

IF $delta.source/target(dc:subject)

= resource(http://www.dcs.bbk.ac.uk/users/128)

/target(sl_user:interest)/target(sl_user:interest_typename)

DO LET $msgs := resource(http://www.dcs.bbk.ac.uk/users/128)

/target(sl_user:messages) IN

INSERT ($msgs,sl_user:updated_LO,$delta.source);;

149

5.2.3 RDFTL Update Sublanguage

We now specify the denotational semantics of RDFTL’s update sublanguage us-

ing three functions named INSERT, DELETE and UPDATE. These accept as

input the current database db and the update expression (a path expression or

a triple), and return the new database that results from the execution of the

update. Thus, their type is Update Expr → Database → Database. We write:

INSERT JexprKdb, DELETE JexprKdb, or UPDATE JexprKdb, to indicate an

insertion, a deletion or an update according to the expression expr with respect

to the database db. These functions encompass the constraints that need to be

checked and the low level actions that take place during the execution of a specific

update. Since the RDF database can be seen as a set of triples, these functions

treat all updates as triple insertions, deletions and updates with respect to the

input database db. In the specification of the functions below, we assume that

all variables have been substituted by their corresponding path expression.

For the purposes of the denotational specification below, we use a

createResource(uri) function that creates and returns a new resource node with

the given uri, if specified, and otherwise creates a blank node. In the specifi-

cations below INSERT J(se, p, te)Kdb and DELETEJ(se, p, te)Kdb correspond to

INSERT triple and DELETE triple actions respectively, where se is the expres-

sion defining the source of the triple, p is the arc and te is the expression defining

the target of the triple. Note that INSERT and DELETE each apply to one

triple expression only: in case that more than one triple expression is specified

in the action syntax, the INSERT or DELETE function is applied to each of

them in turn. INSERT J(resource(uri), c)Kdb and INSERT J(resource(), c)Kdb

correspond to

INSERT ‘‘resource(’’ URI ‘‘)’’ AS INSTANCE OF class and

INSERT ‘‘resource(’’ ‘‘)’’ AS INSTANCE OF class

150

actions respectively, where uri is the URI of the inserted resource and c is the

RDFS class the resource belongs to3. DELETEJeKdb and DELETEJ(e, c)Kdb

correspond to DELETE e and DELETE e AS INSTANCE OF class respectively, where

e is the path expression that evaluates to the set of the resources to be deleted

and c is the RDFS class to which the resources to be deleted should belong.

Finally, UPDATEJ(se, pe, te, te′)Kdb corresponds to the UPDATE upd triple ac-

tion, where again se is the expression defining the source of the triple, pe is the

arc, te is the expression defining the old target of the triple and te′ the expression

defining the new target of the triple. Similarly to triple INSERT and DELETE,

the UPDATE function applies to one triple expression only; if more than one

triple expression is specified in the action syntax, the UPDATE function is ap-

plied to each of them.

INSERT J(se, p, te)Kdb = db ∪ {(s, p, t) |

(if (se 6=′ ′) then s ∈ SJseK

else s ∈ SJresource(∗)K) ∧

t ∈ SJteK ∧
(

∃ x s.t. (p, rdfs:domain, x) ∈ db ∧

(s, rdf:type, x) ∈ db
)

∧
(

∃ y s.t. (p, rdfs:range, y) ∈ db ∧

(t, rdf:type, y) ∈ db
)

}

3The INSERT function does not capture the transient variable assignment associated with
the second of these

151

DELETEJ(se, p, te)Kdb = db− {(s, p, t) |

(if (se 6=′ ′) then s ∈ SJseK

else s ∈ SJresource(∗)K) ∧

(if (te 6=′ ′) then t ∈ SJteK

else t ∈ SJresource(∗)K)

}

INSERT J(resource(uri), c)Kdb = if
(

6 ∃ (y, rdf:type, z) ∈ db s.t.

value(y) = uri ∧

(z, rdfs:subClassOf, rdfs:Resource)
)

then db ∪ {(createResource(uri), rdf:type, c)}

else db

INSERT J(resource(), c)Kdb = db ∪ {(createResource(), rdf:type, c)}

DELETEJeKdb = DELETEJ(e, ,)K(DELETEJ(, , e)Kdb)

DELETEJ(e, c)Kdb = DELETEJe AS INSTANCE OF cKdb

UPDATEJ(se, p, te, te′)Kdb = INSERT J(te, p, te′)K(DELETEJse, p, teKdb)

5.3 Discussion

To our knowledge, RDFTL is the first ECA language that has been proposed

specifically for RDF. This has involved studying the SeLeNe requirements regard-

ing reactive functionality, studying the RDF and RDFS data model, designing

the path and update sublanguages to meet the SeLeNe requirements and finally

combining them all to form the whole ECA language syntax. In this chapter

we have presented the syntax of the language, and the denotational semantics

of its query and update sublanguages. In the next chapter we propose an ar-

chitecture and a prototype implementation to support the processing of RDFTL

rules in P2P environments. We also describe the rule execution semantics in the

152

proposed P2P architecture, considering aspects of rule execution such as rule cou-

pling mode, rule prioritisation, set- and instance-oriented rules, and distributed

rule execution.

For the future we plan a detailed study that will investigate the query and

update expressiveness of RDFTL over relational data, as well as the precise ex-

tensions that may be required for it to become query and update complete for

relational data.

In particular, a study similar to that for XTL that was presented in Chap-

ter 3, can be conducted for investigating the query capabilities of RDFTL. Given

a mapping between relational and RDF schema constructs we will have to show

that RDFTL is at least as powerful as the whilenew language. This requires show-

ing that RDFTL can emulate the constructs of the while language, and then that

it can also emulate the extensions to while forming the whilenew language. Re-

garding the update capabilities of RDFTL, we can again use the results presented

in [AV91] regarding update languages over relational data, to identify the set of

updates that RDFTL can express and investigate the potential set of language

extensions that will make it update complete over relational data.

Continuing our discussion of ECA rules over RDF data, in the next chap-

ter we propose an architecture and a prototype implementation to support the

processing of RDFTL rules in P2P environments.

153

Chapter 6

RDFTL Rules in P2P

Environments

6.1 Introduction

Following the description of the syntax and execution semantics of the RDFTL

language described in Chapter 5, as a proof of concept we have developed a

prototype system that implements RDFTL rules in a P2P environment and we

present this system in this chapter. The motivation for this work was the SeLeNe

project [SeLeNe], and our RDFTL prototype system was envisaged to provide

the reactive functionality of SeLeNe in a P2P environment over RDF data.

The chapter is organised as follows: In Section 6.2 we give an overview of

P2P systems, for the purpose of providing general background information for

the reader, as well as introducing some key aspects of relevance to RDFTL. In

Section 6.3 we describe the architecture of our system and its various components.

In Section 6.3.1 we describe how RDFTL rules are registered in our system. Sec-

tion 6.3.2 discusses rule execution in this P2P environment and illustrates this by

an extended example. Section 6.3.3 gives further details of our system’s service

154

based architecture, including the services provided by peers and superpeers, the

way these services interact with each other, and a discussion of possible concur-

rency control and recovery mechanisms for our system. Finally, Section 6.3.4

discusses how RDFTL address SeLeNe’s requirements regarding reactive func-

tionality.

6.2 Overview of P2P Systems

In this section, we give an overview of P2P systems, for the purpose of providing

general background for the reader, as well as introducing some key concepts of rel-

evance to RDFTL, namely, structured and schema-based P2P networks, routing

indexing techniques that resemble our indexing approach, and key P2P network

topologies, some of which are used in our analytical model and simulations in

Chapter 7.

Depending on how the peers are linked to each other, P2P networks are clas-

sified as unstructured or structured [CCR04]. An unstructured P2P network is

formed when the links between the participating peers are established arbitrarily.

Such networks can easily be constructed as a new peer that wants to join the

network can copy the existing connection links of another peer and then form its

own links over time. In an unstructured P2P network, if a peer wants to find a

piece of data in the network, the query has to be flooded through the network in

order to find as many peers as possible that share the data. The main disadvan-

tage of this approach is that there is no guarantee that the queries will always

be resolved while flooding causes a high amount of traffic in the network, thus

resulting is a poor search performance. Most of the popular P2P networks such

as Gnutella [Gnutella] and Kazaa [Kazaa] are unstructured.

155

Structured P2P networks follow a discipline in the way the peers are con-

nected with each other which imposes a network topology or a pattern of peer

organisation that can then be exploited for message routing. Examples of struc-

tured P2P networks are Chord [SMK+01], Pastry [RD01] and CAN [RFH+01].

If the data that are exchanged between the peers conform to a schema then the

P2P network is termed a schema-based one. Edutella [NWQ+02], ICS FORTH

SQPeer [KC04] and Piazza [TIM+03] are examples of schema-based P2P systems.

A peer organisation approach that some schema-based P2P system use is to group

the peers into peergroups each of which is supervised by a special peer called a

super-peer. Generally, superpeers have higher computational power compared to

simple peers. Each peer is member of at least one peergroup and communication

between peergroups is via their superpeers.

Efficient data retrieval is of fundamental concern in P2P networks and data

indexing techniques aim to provide this. Data indexing in P2P systems has much

in common with indexing in distributed databases. In distributed databases,

indexing is provided within the local databases, with a global catalog record-

ing metadata about the fragmentation and allocation of data (the global catalog

is typically distributed over the network, rather than centralised or fully repli-

cated [OV99]). Distributed database architectures make two assumptions that are

not generally the case in P2P systems: (i) the nodes are stable and connected in

a reliable way with the network; and (ii) the number of nodes participating in the

system is small and known in advance. These features make the task of indexing

in P2P systems more complex and several approaches have been proposed:

Napster uses a centralised index that is fully replicated on a number of servers,

while Gnutella uses no indexes at all, instead flooding the network with queries up

to a maximum number of nodes called the horizon. Freenet [Freenet] creates fully

distributed indexes on each peer of the network, employing key-based routing in

156

which a unique key is associated with each file. Indexing schemes based on Dis-

tributed Hash Tables (DHT) have also been proposed and are supported by some

research P2P systems such as CAN [RFH+01], Chord [SMK+01], Pastry [RD01]

and Tapestry [ZHS+04].

Distributed Hash Tables (DHT) [SMK+01] are a distributed version of the

hash table data structure. In a file-sharing P2P network, a DHT partitions a set of

keys, corresponding to the files, among the participating peers in order to be able

to efficiently route messages to the unique owner of each key. Each participating

peer is analogous to an array slot in a hash table. The main disadvantage of

DHTs is that they support only exact-match search.

In [KP03] two multi-level versions of Bloom filters [Blo70] are proposed for

filtering path queries on XML documents stored in the nodes of a P2P system.

Each node maintains two types of filters, a local filter containing a summary

of locally stored documents, and a merged filter summarising the documents of

the nodes directly connected with this node. Both types of filters are updated as

appropriate in response to XML data updates. Content-based clustering of nodes

is also used in order to further improve query routing over the P2P system.

In [GWJD03] a catalogue framework for locating data in P2P systems is pro-

posed, based on DHTs. It uses the Chord P2P protocol for the management of

the messages exchanged between peers. In the case of XML documents, element

tags and attribute names are used as the keys of the DHTs. To each of the keys

there corresponds a data summary of the nodes containing unique paths to this

key (element or attribute). Each new node joining the network creates a local

catalogue and contacts any other node of the system in order to populate its

own data catalogue. When a node leaves the system, it hands over its catalogue

information to its connecting nodes.

The concept of a Routing Index (RI) is introduced in [CGM02]. Routing

157

indexes give a “direction” in which to find the document requested rather than

its actual location as would be provided by traditional indexes. This use of routes

means that the routing indexes depend on the number of neighbours of each node,

and thus on the employed network topology. The objective of a routing index

is to allow a node to select the “best” neighbours to send a query to. The

notion of goodness may vary depending on the application but it should reflect

the number of relevant documents in each peer. A routing index assumes that

peers maintain a local index of their documents so as to be able to find quickly

a requested document. A Compound RI (CRI) also records at each peer the

number of documents stored at each of its neighbours on each topic of interest.

Topics of interests are an application-dependent categorisation of the documents

according to their contents. Given such a CRI, what needs to be computed is

the “goodness” of each peer for a given query. What is used as a measurement

of goodness is the possible number of relevant documents stored at or reachable

from the neighbour peers, estimated using some application-dependent algorithm.

The main limitation of CRI is that it does not take into account the number of

“hops” necessary to reach a document in the network. To tackle this limitation,

a hop-count routing index is introduced in [CGM02], and an exponential routing

index is proposed as a way to minimise the storage and message transmission

needs of the hop-count routing index.

Schema-based routing indexes have been proposed for the indexing of RDF

data in the Edutella system [NWS+03]. Edutella uses two kinds of routing in-

dexes: Super-Peer/Peer Routing Indexes (SP/P RI) and Super-Peer/Super-Peer

Routing Indexes (SP/SP RI). An SP/P RI stores information about the data

usage in each peer of its peer group. This includes information such as the

schemas (e.g. dc or lom that are namespace prefixes of Dublin Core [DC03] and

IEEE LOM [IEEE-LOM] metadat schemas, respectively) and properties (e.g.

158

dc:subject) used, as well as possibly conventional indexes on property values.

When a peer registers with a superpeer, it provides the superpeer with its data

usage, a process called advertisement. The peer undertakes to keep this informa-

tion up-to-date by informing its superpeer each time that a change affecting the

advertised data takes place. At each super-peer, query fragments are matched

against the SP/P RIs in order to determine peers that are relevant to this query

(although this gives no guarantee that the returned result set from a peer will

not be empty). A similar approach is used in SP/SP RIs which are essentially a

summary of all the local SP/P indexes. SP/SP indexes contain the same kind of

information as SP/P indexes but they associate it with the neighbour superpeers

in order to assist routing. Queries are forwarded to neighbour superpeers based

on SP/SP indexes and from there to the connected peers based on the SP/P in-

dexes. When a peer registers with a superpeer it sends all its schema information

to the superpeer. The superpeer matches this information against its existing

SP/P index to check if new elements have to be added in order to include the

new peer into the SP/P index. If so, the new elements are added to the index

and a message is broadcast to the rest of the superpeers for them to update their

SP/SP indexes accordingly.

Data indexing is an effective way to improve query performance in P2P net-

works, but there are also other factors affecting the performance of P2P systems.

Since any routing protocol is dependent on the P2P network’s topology, clearly

this can significantly affect the query performance of a P2P system. Most of

the proposed network topologies are based on optimising graph structures, im-

posing also some constraints on the link density and link distribution between

the peers in order to ensure a minimum level of network robustness. Optimising

the topology graph involves minimising the time and the space costs of message

159

transmission. Minimising the time requires a short graph diameter 1, which can be

achieved by adding links between the network nodes, while minimising the space

consumption requires reducing the number of messages sent, which generally re-

quires removing links between the nodes of the network. A network topology also

needs to provide some redundancy in order to allow tolerance to node failures.

Proposed topologies include the classic centralised topology in which peers are

connected to a central node that manages all the communication between them;

the completely decentralised topology proposed by Gnutella in which peers are

randomly connected with each other; the ring topology, where the peers are ar-

ranged in a ring [SMK+01]; the hierarchical topology, where the nodes are struc-

tured in a tree-like hierarchy, e.g. DNS servers; the hypercube topology [SSDN02],

where nodes are organised in n-dimensional cubes; and combinations of these.

HyperCuP [SSDN02, NWS+03] can be considered as a hybrid of the hyper-

cube and centralised topologies as superpeers are connected with each other in a

hypercube fashion and the rest of the peers are directly connected to superpeers

in a client-server fashion. A HyperCup network has a diameter log2N where N

is the number of nodes; it guarantees that upon a message being broadcast each

node receives the message exactly once and that exactly N − 1 hops are required

to reach all nodes in the network. Furthermore, it ensures high tolerance in node

failures.

6.3 RDFTL P2P System Architecture

We have implemented a system for processing RDFTL rules in P2P environments.

The rule processing functionality in our system is provided by a set of services

that constitute the RDFTL ECA Engine. This set of services acts as an ‘active’

1The diameter of a graph is the greatest distance between any two of its vertices.

160

wrapper over a distributed set of ‘passive’ RDF/S repositories, exploiting their

query, storage and update functionality.

Our system is an example of a schema-based P2P system, and it has an

architecture similar to the superpeer-based architecture of Edutella. Similar to

Edutella, our system allows hybrid schema and data fragmentation with possible

replication between peers. SQPeer [KC04], for example, also does not impose any

particular data fragmentation or replication policy; each superpeer integrates a

set of peers that support the same schema, although a peer may belong to more

than one peergroup if it supports more than one schema; this is in contrast to our

approach where each peer is connected to one superpeer only and all peers support

the same RDF schema. Piazza [TIM+03] focuses on the semantic integration and

global querying of heterogenous data distributed over a P2P network, where each

peer supports its own schema.

The architecture of our system is illustrated in Figure 6.1. Each superpeer

shown in the figure supervises a group of peers, its peergroup, as well as itself

hosting a fragment of the global RDF/S data stored in the network. At each

superpeer there is an ECA Engine installed. Each peer or superpeer hosts a

fragment of an overall global RDFS schema, and each superpeer’s RDFS schema

is a superset of its peergroup’s individual RDFS schemas. In general, superpeers,

and indeed peers, may hold heterogeneous RDFS schemas, and there is a need for

an RDFS schema mapping service. The techniques discussed in [CKK+03, MP03]

could be used as the basis for such a service. This is beyond the scope of this

thesis and an interesting area of future extension of our system.

The fragment of the global RDFS schema stored at a peer may change as

a result of changes in the peers’ RDF/S data. Peers notify their supervising

superpeer of any updates to their local RDF/S repository. Peers may dynamically

join or leave the network at any time.

161

Primergy

Primergy

Primergy

Peer

ECA Engine

ECA Engine
ECA Engine

Peer

Peer

Peer

SuperPeer

SuperPeer
SuperPeer

Peer

Peer

RDF

Repository

RDF

Repository

RDF

Repository

RDF

Repository

RDF

Repository

RDF

Repository
RDFTL

Rule

Base

RDFTL

Rule

Base

RDFTL

Rule

Base

RDF

Repository

RDF

Repository RDF

Repository

Figure 6.1: RDFTL P2P System Architecture

162

Each superpeer defines access privileges to other superpeers over the classes

and properties in its RDFS schema. These privileges may be read-only, read-write

or private, describing the corresponding access level to the instances of each class

and property. More fine-grained access privileges are also allowed on specific RDF

resources and properties.

In the dynamic applications that we envisage, such as SeLeNe, ECA rules

are likely not to be hand-crafted but automatically generated by higher-level

presentation and application services. An ECA rule generated at one site of the

network might be triggered, evaluated, and executed at different sites. Within

the event, condition and action parts of ECA rules there might or might not be

references to specific RDF resources, i.e. ECA rules may be resource-specific or

generic.

Whenever a new ECA rule r is generated at a peer P, it will be sent to P’s

superpeer for storage. From there, r will also be forwarded to all other superpeers,

and a replica of it will be stored at those superpeers where an event may occur

that may trigger r’s event part, i.e. those superpeers that are e-relevant to r

(see below). A rule r has a globally unique identifier of the form SPi.j, where

SPi is the originating superpeer identifier and j a locally unique identifier for the

rule in SPi’s rule base.

We assume that at run-time rules are triggered by updates occurring within

a single peer’s local RDF repository, i.e. there is no need for distributed event

detection. We also assume that each particular copy of a rule’s action part exe-

cutes within a single peer’s RDF repository, i.e. there is no need for distributed

update execution. If there is a need to distribute a sequence of updates across a

number of peers in reaction to some event, then rather than specifying one rule

of the form

on e if c do a1, . . . , an

163

n rules r1, . . . , rn can be specified, where each ri is of the form on e if c do ai

and where r1 prec r2 prec . . . prec rn. Note that it is also possible to relax

the total ordering of r1, . . . , rn into a partial ordering, or no ordering at all.

However, there is still the limitation that at runtime a copy of each ai will only

execute on one peer. This event detection and update execution functionality

is sufficient for SeLeNe, though generalising our techniques and architecture to

support distributed event detection and distributed update execution are areas

of possible future work.

Given an RDF schema S and an RDFTL rule r, we now define what it means

for r to be relevant to S. There are three types of relevance:

• r is e-relevant to S if each of the path expressions that either appear in

the event part of r or are used by the event part through variable references,

can be evaluated on S. e-relevance is used in our system for determining

which rules should be replicated in the rule bases of which superpeers, and

this depends on the data stored in that peergroup. If r is e-relevant to the

schema, S, of a superpeer, it will be stored in the superpeer’s rule base. We

require that each of the path expressions in the event part of r exists in S

because we assume that there is no distributed event detection.

• r is c-relevant to S if some step in one of the path expressions referenced by

the condition part of r can be evaluated on S. c-relevance is an indication of

which peers and superpeers may participate in the evaluation of a condition

(we assume that conditions may be evaluated at multiple sites).

• r is a-relevant to S if all actions in the action part of r are a-relevant

to S. a-relevance is used in our system for determining at which peers

instances of the rule action part will be executed (we assume that there is

no distributed update execution).

164

An individual action is a-relevant to S if it satisfies one of the following:

– If it is a deletion or insertion of resources that uses AS INSTANCE OF

class, then class must be in S.

– If it is a deletion of resources that does not use AS INSTANCE OF

class, then we determine the most specific class of resources that

the path expression in the deletion would return. This class must be

in S.

– If it is an action over triples that uses a property p, then p must be

in S. If it is a deletion of triples that uses the wildcard ‘ ’ instead

of a property (the only action allowed to do this), then the classes

of resources returned by the path expressions involved in the deletion

must exist in S. Note that use of the wildcard ‘ ’ instead of the source

or target node of a triple would return all resources.

Example: Consider the following RDFTL rule:

USING NAMESPACE dc http://purl.org/dc/elements/1.1/

ON INSERT resource() AS INSTANCE OF LO

IF $delta/target(dc:subject)

DO INSERT resource(http://www.dcs.bbk.ac.uk/users/129) AS INSTANCE OF User;

INSERT ($delta,dc:subject,_);

DELETE ($delta,dc:reader,_);

and the RDF schema given in Figure 2.5. According to the above definitions,

the rule is e-relevant to the schema as the class LO exists in the schema. The

condition part is c-relevant, as both steps ($delta and target(dc:subject))

of its path expression can be evaluated on the schema. On the other hand, the

165

action part of the rule is not a-relevant to the schema as the second action of

the rule is not a-relevant to the schema because the dc:reader property is not a

part of the schema.

We say that a peer or superpeer is e-relevant, c-relevant or a-relevant to a rule

r if r is e-, c- or a-relevant, respectively, to the peer or superpeer’s RDFS schema.

6.3.1 RDFTL Rule Registration

As already mentioned, whenever a new ECA rule r is registered at a peer P, it is

sent to P’s supervising superpeer for syntax validation, translation into the local

repository’s query and update language, and storage. From there, r will also be

sent to all other superpeers, and a replica of it will be stored at those superpeers

that are e-relevant to r.

Determining the e-, c- and a-relevance of a particular ECA rule to a superpeer

involves comparing the path expression(s) used by that part of the rule against

the superpeer’s RDFS schema. In order to aid this comparison, an index can be

kept at each superpeer which we discuss further in Section 6.3.3.

Each superpeer matches each part of the new rule against its indexes, and

annotates the event, condition and action parts of the rule with the IDs of local

peers which may be affected by each part of the rule. Using the Routing Service

(see Section 6.3.3), a new rule is propagated to all superpeers of the network and

it is stored at those superpeers that are e-relevant to it.

Each superpeer is responsible for specifying the precedence relationship be-

tween rules generated by itself or its local peergroup. As rules are propagated

from superpeer to superpeer, local decisions are made at each superpeer regard-

ing the precedence of the rules originating from other superpeers compared with

its own rules, and a local precedence scheme is applied, e.g. timestamp order,

assigning higher priority to local rules, assigning higher priority to more specific

166

rules, or combinations thereof (in our current implementation we use timestamp

order).

Changes in a superpeer’s index (caused by changes in its peergroup’s or its

own RDF/S metadata) require the annotations of each part of each rule in its

rule base to be updated. Any rules that are no longer e-relevant to the superpeer

can be deactivated. Conversely, if the RDFS schema of a superpeer SP changes

from having no metadata associated with a particular schema node to now having

such metadata, this change is notified to SP’s neighbouring superpeers. If any

of these neighbours have ECA rules which may have been made e-relevant by

the new change, they send these ECA rules to SP. These superpeers also request

from their neighbours (other than SP) their current set of ECA rules which are

potentially e-relevant to the change, and they forward these rules on to SP. This

process repeats until all the potentially e-relevant ECA rules throughout the

network have been sent to SP.

6.3.2 P2P Rule Execution

In our P2P environment, the RDF graph is partitioned amongst the peers and

each superpeer manages its own local execution schedule. Each execution schedule

at a superpeer is a sequence of updates constituting fragments of global transac-

tions which are to be executed on the fragment of the global RDF graph which

is stored at the superpeer or its local peergroup. Each superpeer coordinates the

execution of transactions that are initiated by that superpeer, or by any peer in

its local peergroup.

Whenever an update u is executed at a peer P, P will notify its supervising

superpeer SP and in particular the Event Handler service. SP will consult its rule

index through the Rule Base Indexer to determine all rules that may be triggered

by the u. We discuss rule indexes further in Section 6.3.3. The rules that may

167

be triggered according to the index, are then checked to see if their event part is

annotated with P’s ID. If a rule r may have been triggered and its event part is

annotated with P’s ID, then SP will send r’s event query to P to evaluate.

If rule r has indeed been triggered, its condition will need to be evaluated,

after generating an instantiation of it for each value of the $delta variable if

this is present in the condition. The distributed evaluation of the condition is

coordinated by SP’s Condition Evaluator service. Our current implementation

assumes that all conditions can be evaluated within the local peergroup and does

not support distributed query processing across a number of superpeers. Sub-

queries of the condition part of a triggered rule are dispatched to the appropriate

peers in the peergroup for evaluation by their Query Managers. A superpeer can

use the annotations on a rule’s condition part to determine to which local peers

subqueries of the condition should be dispatched for evaluation. If the $delta

variable is present in the condition, it will have been instantiated and the super-

peers’ indexes can be consulted for more precise information about which local

peers are relevant to subqueries of the instantiated condition.

If a condition evaluates to true, then the control is passed to the Action Sched-

uler service in SP to proceed to the action part processing. The Action Scheduler

generates from the action parts of rules that have fired a list of updates to be

considered for execution. The Action Scheduler maintains the local execution

schedule and sends each instance of a rule’s action part (there will be only one

instance if the rule is a set-oriented rule, and one or more instances if the rule

is an instance-oriented rule) to its local peers, according to the annotations on

the rule’s action part made during the rule’s registration. The instances of the

rule’s actions part will also be sent, via the Routing Service, to all neighbouring

superpeers and from there in turn to all other superpeers of the network. All su-

perpeers that are a-relevant to the rule will consult the access privileges to their

168

data in order to decide whether the updates they have received can be scheduled

and executed on their local peergroup.

In practice, to detect possibly non-terminating rule executions, a maximum

number of recursive rule firings is allowed. In the current version of the system, no

transaction management has been implemented. So each time the Action Sched-

uler dispatches an update for execution somewhere in the network, we assume

that this execution is successful. It is planned that future versions of the system

will support transaction management as discussed in Section 6.3.5 below.

We now specify the execution model of RDFTL rules in a P2P environment, in

the form of pseudocode that shows how rules are processed at one superpeer, sp i.

As mentioned above, each superpeer sp i maintains its own execution schedule

s i, and each peer and superpeer manages its own RDF data repository. The

schedule at a superpeer consists of a list of pairs (apl, deltal), where apl is the

whole action part of some rule rl and deltal is a set of instantiations for the

$delta variable. The schedule s i which initiates rule execution at a superpeer

sp i consists of a single rule action part and set of instantiations for the $delta

variable.

The event/condition coupling mode is Immediate (as in XTL) but the con-

dition/action coupling mode is Detached coupling (compared to Immediate in

XTL). The reason that we have chosen Detached condition/action coupling for

RDFTL is because detached transactions have fewer management requirements,

simplifying transaction monitoring in the P2P environments which are the focus

of the RDFTL language and its implementation2.

The pseudocode expressing rule execution at a superpeer sp i is as follows,

2Using Detached coupling mode may make transaction management in a distributed envi-
ronment an easier task, but the loose relationship between the parent and the child transactions
compared to the other coupling modes may make it harder to enforce stricter transaction control
rules that may be necessary in some applications. This is an area of further investigation.

169

and we explain below its main aspects:

while s_i != [] do {

(ap,delta) := head(s_i);

s_i := tail(s_i) ;

ap_peers := getActionPartAnnotations(ap);

ap_instances := createInstances(ap,delta);

for each instance a_k in ap_instances do {

for each peer p_j in ap_peers do {

db_j := getRepository(p_j);

for each action a in a_k do {

(changes_j,db_j) := updateDB(db_j,a);

for each rule r_l in the rule base of sp_i do {

if changes_j[l] != {} then {

cpeers := getConditionPartAnnotations(r_l);

(value,delta) := evalCondition(l,changes_j[l],cpeers);

if value = True then {

s_i := s_i ++ [(actionPart[l],delta)];

dispatchActionToOtherSPs((actionPart[l],delta));

}

}

}

}

}

}

}

In the above pseudocode, the function head returns the first element of a list

170

and the function tail returns the rest of the list.

The function getActionPartAnnotations returns the set of peer IDs the

action part is annotated with. The function createInstances generates the

instances of an action part given a delta: if the action part does not reference

the $delta variable, one instance is generated, otherwise the set of instances is

generated by substituting occurences of $delta within the action part by each

member of delta (so if n is the cardinality of delta, n instances of the action

part will be generated).

The getRepository function returns the RDF data repository of a peer. The

function updateDB executes an action a on a repository db j returning a pair

(changes j,db j), where db j is the updated RDF data repository at peer j

after the execution of action a, and changes j is an array such that changes j[l]

is the set of newly inserted or newly deleted nodes corresponding to the event

part of each rule r l in the rule base of the current superpeer, sp i.

In particular, if a is an insertion then for each r l which may be triggered

by a, the event part of r l is evaluated on db j after the execution of a and

changes j[l] is the intersection of this result and the set of new items inserted

by a; if a is a deletion then for each r l which may be triggered by a, the event

part of r l is evaluated on db j before the execution of a and changes j[l] is

the intersection of this result and the set of items that are subsequently deleted

by a.

Note that in the actual system implementation, the updateDB function exe-

cutes asynchronously on peer p j. Here though, for the purposes of brevity and

simplicity, we assume a sequential execution of all the functions, omitting the

intermediate network access and message passing processes described earlier.

The function getConditionPartAnnotations returns the set of peer IDs,

cpeers, that the condition part of a rule r l is annotated with. The function

171

evalCondition then coordinates the, possibly distributed, evaluation of the rule

r l’s condition part on the repositories of cpeers. If the $delta variable does

not occur in the condition, then the condition is evaluated just once, the variable

value is set to the result and the variable delta is set to changes j[l]. If the

$delta variable occurs in the condition, then the condition is evaluated once for

each member of changes j[l], the subset of changes j[l] for which it evaluates

to True is determined, the variable delta is set to this subset, and the variable

value is set to True if delta is non-empty and otherwise is set to False. If

value is True, then the action part of rule r l, actionPart[l], and the delta

set are suffixed onto the current schedule s i, as well as being dispatched to all

other superpeers. We now give an example that illustrates both rule registration

and rule execution in our system.

Example Consider the P2P network shown in Figure 6.2 and assume the peer

and superpeer repositories store fragments of the RDF/S schema of Figure 2.5.

P12

SP1

SP3

SP2
P23

P22
P21

P11

P13

P31

P32

Figure 6.2: Example P2P network

Suppose the rule r1 below is submitted for registration at peer P21 of the

peergroup of superpeer SP2:

172

USING NAMESPACE dc http://purl.org/dc/elements/1.1/

USING NAMESPACE sl_user http://www.dcs.bbk.ac.uk/~gpapa05/user

ON INSERT resource() AS INSTANCE OF LO

IF $delta/target(dc:subject) =

resource(http://www.dcs.bbk.ac.uk/users/128)

/target(sl_user:interest)/target(sl_user:interest_typename)

DO LET $msgs := resource(http://www.dcs.bbk.ac.uk/users/128)

/target(sl_user:messages) IN

INSERT ($msgs,sl_user:newLO,$delta);;

This rule will be sent by P21 to its supervising superpeer SP2 for registration.

There, the e-, c- and a-relevance of r1 with the respect to the schemas of

SP2 and its peergroup will be determined. Let us assume that, as a result, the

event part and condition part of r1 are annotated with the ID of peer P21, and

its action part with the ID of peer P22. The rule is also checked for its syntactic

validity and is then translated into the corresponding query expressions of the

underlying RDF repository (for the event and condition part) and the appropriate

update-API function calls (for the action part) and is stored in SP2’s rule base.

The rule r1 is also propagated to all the other superpeers where the same

process is repeated. Let us assume this results in the replication of r1 at SP1,

with its event part being annotated with P11 and P12, its condition part annotated

with P12 and P13 and its action part is annotated with P13.

Consider a second rule, r2 below, also submitted for registration at peer P21

and assume that this rule is stored in the rule base of SP2, annotated with P21

on its event part and condition part and with P23 on its action part, and is also

replicated in the rule base of SP3, annotated with P31 and P32 on its event part

and condition part and with P32 on its action part.

173

USING NAMESPACE dc http://purl.org/dc/elements/1.1/

USING NAMESPACE sl_user http://www.dcs.bbk.ac.uk/~gpapa05/user

ON INSERT (resource() AS INSTANCE OF LO,dc:description,_)

IF $delta.source/target(dc:subject) =

resource(http://www.dcs.bbk.ac.uk/users/128)

/target(sl_user:interest)/target(sl_user:interest_typename)

DO LET $msgs := resource(http://www.dcs.bbk.ac.uk/users/128)

/target(sl_user:messages) IN

INSERT ($msgs,sl_user:updated_LO,$delta.source);;

Finally, a third rule r3 below is submitted for registration at peer P12 and is

stored in the rule base only of SP1, annotated with P12 on its event part and

condition part and with P13 on its action part.

USING NAMESPACE dc http://purl.org/dc/elements/1.1/

USING NAMESPACE sl_user http://www.dcs.bbk.ac.uk/~gpapa05/user

ON INSERT resource() AS INSTANCE OF LO

IF $delta/target(dc:type) = ’Book’

DO INSERT ($delta,dc:description,’Computer Science Book’);;

The contents of the three rule bases at SP1, SP2, SP3 after these three rules

have been registered are as shown in Figure 6.3.

Now consider an update that inserts the metadata shown in Figure 6.4 at

peer P12. P12 notifies SP1 of the insertion events that have occurred. For each

insertion, SP1 consults its Rule Base Indexer to determine the rules that may

be triggered by the event. This results in the rules r1 and r3 being identified

as possibly having been triggered. These both have their event part annotated

with P12, so SP1 sends P12 their event queries to evaluate. In both cases, the

174

P12

SP1

SP3

SP2
P23

P22
P21

P11

P13

P31

P32

{r1,r2}

{r1,r3}

{r2}

Figure 6.3: Example P2P network with the rules at each superpeer

resulting delta set will contain the newly inserted LO and both rules will indeed

be triggered.

The Condition Evaluator of SP1 will evaluate the condition part of both of the

rules, using the annotations on the condition parts to coordinate their evaluation

over its peergroup (P12 and P13 in the case of r1 and P12 in the case of r3). As

can be seen from Figure 6.4 and Figure 2.4, the condition of r1 will evaluate to

False while that of r3 will evaluate to True for the single LO instance contained

in the delta set.

The Action Scheduler of SP1 then undertakes the execution of the action part

of r3 by placing it on its own execution schedule and also dispatching it to the

other superpeers. This will result in the execution of the action part of r3 at the

local peer P13, and suppose it also results in its execution at the remote peers

P21, P31 and P32 (because that action part is determined to be a-relevant to those

peers). Each one of these peers will inform its supervising superpeer, i.e. SP1,

SP2 and SP3, respectively, of the insertion event that has occurred there. SP1

will find no rules that may be triggered by this event and so rule processing ends

175

Nikolai Gogol

Book

rdf:Seq

http://www.dcs.bbk.ac.uk/books/AN1289

dc:type

Fiction

One of Gogol’s
masterpieces

A masterpiece...

F. Dostoevsky

1861−03

http://www.dcs.bbk.ac.uk/LOs/BK1861

dc:title

dc:subject
rdf:_1

rdf:type

dc:annotation

dc:description

dc:creator

rdf:type

rdf:_1

dc:reviewer

dc:date

dc:details

Diary of a Madman

rdf:Bag

Figure 6.4: Inserted Learning Object

there. SP2 and SP3 will both find that rule r2 may be triggered, and so rule

processing will carry on there (with this small set of example rules, no further

rules will be triggered).

We assume that instance-oriented rules are well-defined implying that if dif-

ferent instances of an instance-oriented rule’s action part are executed by different

superpeers, then the orders of execution of these different instances is immaterial

and the coordinating superpeer does not have to enforce any particular ordering.

Moreover, the resulting subtransactions do not have to be executed in isolation

from each other. If instance-oriented rules are not well-defined, then different

RDF graphs may result from different orders of execution of a set of instances of

a rule’s action part, violating the determinism of rule execution.

Similarly, we assume that the rules that have the same precedence commute

meaning that the coordinating superpeer does not have to enforce any particular

order of execution of such rules and the resulting subtransactions do not have to

176

be executed in isolation from each other. If rules with the same precedence do not

commute, different order of execution of such rules may result in different RDF

graphs, again violating the determinism of rule execution. [PPW06] discusses

both of the above assumptions and gives conservative tests for verifying these

properties for RDFTL rules.

6.3.3 Service-based Architecture

Each peer of our P2P network implements a set of core services that provide the

basic functionality necessary to participate in the system: local RDF/S event

detection, local RDF/S indexing, RDF repository connectivity, and messaging.

In order for a host to become a member of the network, it has to support this

set of core services. Superpeers in addition support RDFTL rule registration and

rule processing, superpeer RDF/S indexing, and manage connectivity with the

peers in their peergroup as well as with their neighbouring superpeers.

Our implementation of these services is flexible, allowing a peer to dynamically

extend its set of services and become a superpeer, or a superpeer to dynamically

shed its extra services and become a simple peer. Below we describe the major

services, and their role in the overall operation of the system. Figure 6.5 gives an

overview of how these services are distributed in peers and superpeers.

Core Services

Event Detection Service. This is responsible for detecting data modification

events at a peer. It notifies the Event Handler service at its superpeer (see below)

of each event occurrence, including the type of the event, the data affected and

the time the event occurred. It also notifies its own Peer Indexing service to

update its indexes according to the changes, if necessary.

177

Extra Services

Messaging
Service

Peer Indexing Service

Database Connection
Manager

Event Detection
Service

Core Services

SuperPeer Services

Peer Services

ICS FORTH RSSDB

Core Services

Repository Connection
Service

Service
Repository Connection

Messaging
Service

Peer Indexing Service

Event Detection
Service

RSSDB Connection Adapter

Query
Manager

Update
Manager

Connection
Manager

Routing Service SuperPeer Indexing
Service

Services
RuleBase ManagementRDFTL Rule Processing

Services Event Handler
Service

Condition Evaluator
Service

Action Scheduler
Service

Rule Base Indexer

Rule Base Registration
Service

RDF
Metadata

Rule
Base

Figure 6.5: Service Distribution in Peers and Superpeers

Peer Indexing Service. This maintains indexes on the RDF data stored at

the peer and provides a simple query interface over these indexes. After notifica-

tion of a data change by the Event Detection service, the Peer Indexing service

updates, if necessary, the local peer indexes. If necessary, it also sends a notifi-

cation to the Superpeer Indexing Service (see below) at its supervising superpeer

in order for it to update its superpeer indexes.

In more detail, as the RDF data stored at a peer P changes over time, P

maintains a list of the RDFS schema classes that have instances in the RDF data

stored at P. We call this list the class index. This information is also propagated

to P’s supervising superpeer SP, which maintains a combined version of this

information in a table so that each tuple of which contains the name of a class

and the set of peers in this peergroup that have data that are instances of this

class (a set of peer IDs). Over time, the data stored at P may change so that a

class ceases to have any instances in the peer or an RDF resource is inserted that

is currently not in P’s class index. Such changes are reflected in P’s class index

178

and are also propagated to SP.

As well as this class index, each peer also keeps for each of the classes in this

list a list of the RDF resources of this type that its RDF data references — we

call these lists of RDF resources the resource index. Each peer also keeps a list of

the properties that its RDF data references — which we call the property index.

Each superpeer keeps a consolidated resource index and consolidated property

index for its entire peergroup.

Our indexing approach is similar to that proposed in [NWS+03] but since

we want to maintain more precise information about where various fragments of

metadata reside in the network and, as far as possible, do not want unnecessary

routing of queries and updates to peers and superpeers that are not relevant, we

have adopted the approach of maintaining, apart from the schema, also informa-

tion about the actual resources stored at each peer.

Repository Connection Service. This manages the connection with the

underlying RDF repository. It consists of three subcomponents: the Connec-

tion Manager that provides connection pooling, the Update Manager that

interprets and passes RDF data update requests to the repository, and the Query

Manager that establishes communication with the query engine of the reposi-

tory and retrieves query results. In the current version of our system we are using

ICS-FORTH RSSDB [RDFSuite] as the RDF repository. For the future we plan

also to support Jena2 [Jena2].

Messaging Service. This is responsible for all message exchange between a

peer and its supervising superpeer. It undertakes to wrap or unwrap the outgoing

or incoming messages, respectively, and pass them to the appropriate service.

Superpeer Services

RDFTL Rule Processing Services. This set of services includes the Event

179

Handler, Condition Evaluator and Action Scheduler services already men-

tioned earlier. The Event Handler receives notification regarding event occur-

rences in the supervised peers, and it undertakes to send the event part expres-

sions of the rules that may be triggered to the appropriate peers and then pass

those that will actually be triggered to the Condition Evaluator. The Condition

Evaluator evaluates the condition part of the triggered rules before it passes those

that evaluate to True to the Action Scheduler for the execution of their action

part expressions.

Rule Base Management Services. This set of services is dedicated to

maintaining the local rule base, including indexing of its contents and providing

simple query and update functionality over it.

The Rule Registration Service receives a new RDFTL rule and under-

takes to register it in the rule base. An RDFTL Language Interpreter is first

invoked to translate RDFTL path expressions to the corresponding query expres-

sions of the underlying RDF repository, and RDFTL rule actions to update-API

function calls. The Superpeer Indexing service is then contacted in order to

construct the list of peers that are affected by each part of the rule, using the

indexes at the superpeer. Each part of the rule is annotated with the list of

relevant peers and then the annotated rule is stored in the rule base.

The translated, but not yet annotated rule, is also sent to the neighbouring

superpeers, using the Routing Service, and from there to all superpeers in the

network. It will be stored in the rule base of all superpeers that are e-relevant to

it, after it has been appropriately annotated.

The Rule Base Indexer creates and maintains an index on the contents of

a rule base, aiming to speed up the discovery of rules that may be triggered by

an event. Whenever the rule base is updated (i.e. a rule is added or deactivated)

this service undertakes to perform the appropriate updates to the rule indexes.

180

Our rule index operates as follows:

The event part of an RDFTL rule can be split into the event type and the

part of the RDF graph that is affected by the event, i.e. resource or arc.

An index entry is created for each rule registered at the superpeer. The index

entry is a tuple that has different contents depending on whether the rule refers

to a resource-based or an arc-based event. The contents of the tuple in the case

of a resource-based event are:

• the name of the rule;

• the type of the event (INSERT or DELETE); and

• the class that the resource is an instance of; if no class is specified, the

default is rdfs:Resource.

while the contents of the tuple in the case of an arc-based event are:

• the name of the rule;

• the type of the event (INSERT, DELETE or UPDATE);

• the name of the arc modified, or a ‘*’ if a wildcard is specified;

• if specified in the rules

– the class that the source node of the arc is an instance of;

– the class that the target node of the arc is an instance of; and

– the class that the new target node of the arc is an instance of, if the

type of the event is UPDATE.

• Again if no class is specified in any of the above, then the default is

rdfs:Resource.

181

Due to the tuple-based form of the index, the two types of tuples can be seen

as two relational tables and can be indexed and queried as such. This approach

becomes even more convenient due to the fact that most RDF repositories and

programming frameworks, including Jena2 and RDFSuite, are based on relational

database systems to store and query the RDF data, thus eliminating the need

to set up a separate database to use for our rule index. For the resource-based

index there is a hash index on the type of event and class attributes, while for

the arc-based index there is a hash index on the type of event, the arc name and

all the class attributes.

When the superpeer receives a notification of an update u, the update is

examined to determine: (a) if it modifies an RDF resource or an arc, (b) the type

of the event and (c) the class of the resource affected, or the name of the arc and

the class names of its source and the target nodes3. A query is then submitted

to the appropriate index table in order to obtain the rules that may be triggered

by u.

Example As an example consider the rules r1 and r2 given in Section 5.2.2.

The event part of r1 considers the insertions of a resource that is an instance

of class LO. So the resource-based index tuple for r1 will be: (r 1, INSERT,

LO). The event part of r2 has an arc-based event that detects the update of the

dc:description property. So the arc-based index tuple will be: (r 2, UPDATE,

dc:description, rdfs:Resource, rdfs:Resource, rdfs:Resource).

Now, assume that the following update occurs:

INSERT resource(’http://www.dcs.bbk.ac.uk/LO/421’)

AS INSTANCE OF LO

The following query is submitted to the resource-based rule index, represented

3In order to find the class of an RDF resource with URI we issue a query to the RDF/S
data of the form resource(uri)/target(rdf:type)

182

by the resource based ix relational table, and will return the set of rules that

may be triggered by the update:

SELECT rule_name

FROM resource_based_ix

WHERE action_type = ’INSERT’ AND resource_class = ’LO’;

Routing Service. This keeps a list of the neighbouring peers and superpeers

in order to maintain the message transmission paths in the network. This service

is called each time that another service of a superpeer needs to transmit a message

to one or more of its neighbouring peers or superpeers.

Superpeer Indexing Service. This is responsible for the creation and main-

tenance of the consolidated indexes operating at the peergroup level, including

the class, the resource and the property indexes. Each time a change occurs to a

peer’s RDF data, this service is notified, if necessary, by the corresponding Peer

Indexing service in order to update these peergroup-level indexes.

6.3.4 RDFTL Support for SeLeNe Requirements

P2P was one of the deployment alternatives for a Self e-Learning Network pro-

posed in the SeLeNe project [SC04], the others being ‘centralised’ and ‘mediation-

based’. The architecture of our prototype RDFTL rule processing system is con-

sistent with the requirements for SeLeNe’s P2P deployment scenario: our system

has superpeers and peers organised into peergroups supervised by superpeers;

each peer and superpeer hosts a fragment of the overall RDF/S descriptions, and

may dynamically join or leave the network. We believe that our system could

readily be modified to support the other two deployment alternatives proposed in

[SC04]: in the ‘centralised’ case, a fixed set of central servers would each host the

superpeer services while a fixed set of clients would each host the peer services;

183

in the ‘mediation-based’ case, a set of fixed servers (‘authority sites’) would again

each host the superpeer services while a dynamic set of ’providers’ would each

host the peer services.

We listed in Section 1.2 of Chapter 1 the aspects of the SeLeNe user require-

ments that were to be provided by SeLeNe’s reactive functionality. Referring

to the RDF data and schema shown in Figures 2.4 and 2.5, we illustrate below

how RDFTL rules can be used to achieve the four types of reactive functionality

requirements listed in Section 1.2:

(i) automatic notification to users of the registration of new LOs of interest to

them

According to the SeLeNe Use Case definitions [SC04], when a user submits

a request for this kind of notification, the system generates an appropriate

ECA rule based on the user’s input. Each time the rule fires, its actions part

will add the necessary new information within the “notifications” area of the

user’s profile: referring to Figure 2.5, this is represented by the Messages

class and its properties. SeLeNe’s Presentation Service will check this part

of the user profile when a user logs on to the system, and also periodically

while they are logged on. Users will be able to view their notification

information and to choose whether or not to delete it from their profile.

The first example RDFTL rule given in Section 5.2.2 illustrates the ECA

rule aspect of this functionality:

USING NAMESPACE dc http://purl.org/dc/elements/1.1/

USING NAMESPACE sl_user http://www.dcs.bbk.ac.uk/~gpapa05/user

ON INSERT resource() AS INSTANCE OF LO

IF $delta/target(dc:subject)

= resource(http://www.dcs.bbk.ac.uk/users/128)

184

/target(sl_user:interest)/target(sl_user:interest_typename)

DO LET $msgs := resource(http://www.dcs.bbk.ac.uk/users/128)

/target(sl_user:messages) IN

INSERT ($msgs,sl_user:newLO,$delta);;

Here, the event part checks if a new resource that is a Learning Object

(i.e. belongs to the LO class) has been inserted. The condition part checks

if the inserted LO has a subject which is the same as one of user 128’s

areas of interest. The LET clause defines the variable $msgs to be user 128’s

messages. Finally, the INSERT clause inserts an arc labelled newLO from

$msgs to the newly inserted LO.

(ii) automatic notification to users of the registration of new users who have

interests in common with them in their personal profile

This functionality is achieved similarly to (i) and its ECA rule aspect is

illustrated by the following rule, which places information about the regis-

tration of new users into user 128’s collection of messages:

USING NAMESPACE dc http://purl.org/dc/elements/1.1/

USING NAMESPACE sl_user http://www.dcs.bbk.ac.uk/~gpapa05/user

ON INSERT resource() AS INSTANCE OF User

IF $delta/target(sl_user:interest)/target(sl_user:interest_typename)

= resource(http://www.dcs.bbk.ac.uk/users/128)

/target(sl_user:interest)/target(sl_user:interest_typename)

DO LET $msgs := resource(http://www.dcs.bbk.ac.uk/users/128)/

target(sl_user:messages) IN

INSERT ($msgs,sl_user:new_users,$delta);;

Here, the event part checks if a new user has been inserted. The condition

185

part checks if the new user has an interest that is the same as one of user

128’s interests. The LET clause defines the variable $msgs to be user 128’s

messages. Finally, the INSERT clause inserts an arc labelled new_users from

$msgs to the newly inserted user’s URI.

(iii) automatic notification to users of changes in the description of resources of

interest to them

This functionality is achieved similarly, and its ECA rule aspect is illus-

trated by rule r2 given in Section 5.2.2, which places information into user

128’s collection of messages about learning objects whose descriptions have

been updated and whose subject is the same as one of user 128’s interests:

USING NAMESPACE dc http://purl.org/dc/elements/1.1/

USING NAMESPACE sl_user http://www.dcs.bbk.ac.uk/~gpapa05/user

ON UPDATE (resource(),dc:description,_->_)

IF $delta.source/target(dc:subject)

= resource(http://www.dcs.bbk.ac.uk/users/128)

/target(sl_user:interest)/target(sl_user:interest_typename)

DO LET $msgs := resource(http://www.dcs.bbk.ac.uk/users/128)

/target(sl_user:messages) IN

INSERT ($msgs,sl_user:updated_LO,$delta.source);;

(iv) automatic propagation of changes in the description of one resource to the

descriptions of other, related resources, e.g. propagating changes in the

description of a LO to the description of any composite LOs defined in

terms of it

Deliverable 4.1 of SeLeNe [RS03] specified an algorithm for inferring the

186

metadata description of a composite LO from the description of its con-

stituent LOs. The algorithm relies on the availability of a taxonomy of

terms assumed to be common throughout the SeLeNe system, together

with a subsumption relation contains between pairs of terms. Users an-

notate their new LOs with a selection of terms from the taxonomy — by

definition, such a set of terms is reduced i.e. it does not contain any pair of

terms t, t′ such that t contains t′. When a composite LO is registered with

the system, its description is automatically created from the descriptions of

its immediate consituent objects by the algorithm given in [RS03] and the

resulting description also has the reduced property. Figure 6.6 illustrates a

composite LO with URL O, its constituent LOs with URLs O1, O2, ... On

and the descriptions of each of these LOs, represented by a property term

linking the LO to a term of the SeLeNe LO taxonomy.

O1 O2

subobject

term

subobject subobject

. . .

term termtermtermterm

termterm

. . .

Java C++ MergeSortQuickSort MySQLOracle

OOLanguageRDBMS

O

On

Figure 6.6: Example of Learning Object Descriptions

Part of the reactive functionality envisaged for SeLeNe was to be able to

automatically update the description, T (O), of a composite LO, O, if a

change occurs in the description of one of its constituent LOs, O1, . . . , On.

It is possible to incrementally update the description T (O) if a new term t

187

is added to some T (Oi) and retain the reduced property:

(a) t should be added to T (O) if it is not related by contains to any other

member of T (O);

(b) if there is a t′ in T (O) such that t′ contains t, then T (O) should not

be altered;

(c) if there is a t′ in T (O) such that t contains t′, then t′ should be deleted

from T (O), t should be added to T (O), and any other t′′ in T (O) such

that t contains t′′ should also be deleted from T (O).

This is achieved by the two RDFTL rules below which respectively imple-

ment (a) and (c) (there is no rule needed to cover case (b)). The rules

assume that the taxonomy is “complete”, i.e. all containment relationships

are included explicitly in it as arcs labelled contains:

ON INSERT (_ AS INSTANCE OF LO, term , _ AS INSTANCE OF Term)

IF not ($delta.target,contains,$delta.source

/source(subobject)/target(term))

and not ($delta.source/source(subobject)

/target(term),contains,$delta.target)

DO INSERT ($delta.source/source(subobject), term, $delta.target);;

ON INSERT (_ AS INSTANCE OF LO, term , _ AS INSTANCE OF Term)

IF ($delta.target,contains,$delta.source

/source(subobject)/target(term))

DO LET $old_term =

$delta.source/source(subobject)

/target(term)[source(contains)=$delta.target] IN

188

DELETE ($delta.source/source(subobject), term, $old_term);

INSERT ($delta.source/source(subobject),term,$delta.target);;

Conversely, if a term t is deleted from T (Oi) then t should be deleted from

T (O), if present, provided there is no t′ in the description of any of the

sub-objects of O such that t contains t′. This is achieved by this RDFTL

rule:

ON DELETE (_ AS INSTANCE OF LO, term , _ AS INSTANCE OF Term)

IF ($delta.source/source(subobject),term,$delta.target)

and not ($delta.target, contains,

$delta.source/source(subobject)

/target(subobject)/target(term))

DO DELETE ($delta.source/source(subobject),term,$delta.target);

where LO is an RDFS class representing the learning objects and Term is a class

representing the terms within the terms taxonomy.

These rules for incrementally updating the descriptions of composite learning

objects would recursively fire each other, all the way up from “base” LOs, i.e.

ones that have no constituent LOs, up to “root” LOs, i.e. ones that are not

constituent LOs of any other LO. The termination of this rule execution is guar-

anteed provided that there are no cyclic sub-object relationships, an assumption

that was also made in [RS03].

6.3.5 Concurrency Control and Recovery

Our current implementation does not yet support any concurrency control or

recovery mechanisms, but we briefly discuss here possible implementations of

such mechanisms.

189

In theory, any distributed concurrency control protocol could be adapted to

a P2P environment. For example, the AMOR system adopts optimistic con-

currency control [HSS03]. The serialisation graph is distributed amongst those

peers responsible for transaction coordination, which are analogous to our su-

perpeers. The AMOR system assumes that conflicts are only possible between

those transactions that are accessing a particular ‘region’ of resources (analogous

to our peers) and thus subgraphs of the global serialisation graph are stored and

replicated amongst those coordinators which service a particular region. How-

ever, the regions are not static and these subgraphs are dynamically merged and

replicated as transactions execute and regions evolve. We could use similar tech-

niques to merge and replicate subgraphs of the global serialisation graph between

our superpeers.

In the classical approach to distributed transactions, global transactions hold

on to the resources necessary to achieve their ACID (Atomicity, Consistency, Iso-

lation and Durability) properties until such time as the whole transaction commits

or aborts. In a P2P environment this may not be feasible: the resources avail-

able at peers may be limited, peers may not wish to cooperate in the execution

of global transactions, and peers may disconnect at any time from the network,

including during the execution of a global transaction in which they are partici-

pating4. It is therefore necessary to relax the Atomicity and Isolation properties

of transactions.

In particular, child transactions executing at different peers may be allowed to

commit or abort independently of their parent transaction committing or abort-

ing, and parent transactions may be able to commit even if some of their child

transactions have failed. Child transactions that have committed ahead of their

4The cascaded triggering and execution of ECA rules could cause longer-running transactions
which may further exacerbate these problems, which is why we have adopted Detached coupling
mode for RDFTL.

190

parent transaction committing can be reversed, if necessary, by executing com-

pensating transactions [GMS87, KLS90]. These are generated as transactions

execute and they reverse the effects of a transaction by compensating each of the

transaction’s updates in reverse order of their execution. Generating compensat-

ing updates is straight-forward for RDFTL updates: the insertion of a resource

or triple is reversed by deletion of the resource or triple, the deletion of a resource

or triple by an insertion, and an update by the restoration of the original value.

If transactions have read from committed transactions which are subsequently

reversed, then a cascade of compensations will result.

Suppose that, as the default, a parent transaction and its immediate child

transactions are able to commit independently of each other. An explicit abort

dependency now needs to be specified for each rule. Using the categorisation

given in [RPS95], the possible abort dependencies are as follows, with To being

the parent transaction and Tr the child child transaction:

• ParentChild: If To aborts then Tr is to abort.

• ChildParent: If Tr aborts then To is to abort.

• Mutual: If either To or Tr aborts then so must the other.

• Independent: There is no abort dependency between To and Tr.

For coordinating the execution of compensating transactions, an abort graph

can be maintained that describes the abort dependencies between parent and

child transactions.

The abort graph will be distributed amongst the superpeers that participate

in the execution of a top-level transaction. The graph will be constructed dy-

namically as each new child transaction is initiated. In particular, each time a

191

transaction Tn at a superpeer SPi initiates a new child transaction Tm to be ex-

ecuted at a superpeer SPj (where it may be that i = j) then depending on the

abort dependency between Tn and Tm, the following actions are taken:

1. ParentChild: The identifier of Tm and the superpeer SPj that it will

execute on are transmitted to SPi and recorded there, together with an arc

Tn → Tm in the local abort graph at SPi.

2. ChildParent: The identifier of Tn and the superpeer SPi that it is exe-

cuting on are transmitted to SPj and recorded there, together with an arc

Tm → Tn in the local abort graph at SPj.

3. Mutual: A combination of the actions for ParentChild and ChildParent

above is taken.

4. Independent: No local abort graph is updated.

Using the above, in case of a transaction failure all the necessary information is

available in order to initiate a compensating transaction, at any level of nesting

of the transaction execution tree.

Figure 6.7 gives an example of a distributed abort graph. In this figure, a

failure in transaction T7 at SP3 leads to compensation of T7 at SP3, while a failure

in transaction T6 at SP5 initiates a compensating transaction for T6 at SP5, a

compensating transaction for T1 at SP2 (due to the Mutual abort dependency

between T6 and T1), and a compensating transaction for T5 at SP2 (due to the

ParentChild dependency between T1 and T5).

192

T1−>{SP2} T2−>{SP1} T3−>{SP3}

T0 −> {SP1}

T4−>{SP4}

T5−>{SP2} T6−>{SP5} T7−>{SP3} T8−>{SP4} T9−>{SP2}

Tparent : ParentChild

: ChildParent

: Mutual

: Independent

Tchild

Tparent

Tparent

Tchild

Tchild

Tparent Tchild

Level 3

Level 2

Level 1

where:

Tn−>{SPn} : (Sub)transaction Tn initiated in SPn

Abort Dependencies

Figure 6.7: Example Abort Graph

6.4 Summary

In this chapter we have presented a system that implements RDFTL rules in

a P2P environment. We described the system architecture, including the com-

ponents and the set of services it comprises as well as details of how RDFTL

rule registration and RDFTL rule execution are performed in the system. We

proposed a scheme for indexing the RDF data stored in repositories of the peers

and superpeers, and a scheme for indexing the RDFTL rules stored within the

rule base at each superpeer. We examined expressiveness of RDFTL according

to how it meets the SeLeNe requirements regarding reactive functionality. Fi-

nally, we discussed possible concurrency control and recovery mechanisms for our

system.

In the next chapter we conduct a performance study of the system presented

here, using analytical and simulation methods, and we present and analyse ex-

perimental results aiming to identify the set of factors that the performance of

such a system depends on, and obtain insight into the system’s scalability.

193

Chapter 7

RDFTL System Performance

7.1 Introduction

In this chapter we study the performance and scalability aspects of processing

RDFTL rules on RDF data in P2P environments, with a view to determining the

practical usefulness of RDFTL for real P2P applications. We develop an analyt-

ical model for the system presented in Chapter 6, taking as main performance

criterion the average time needed to complete all rule execution resulting from a

single update submitted to the system by an application. We present experimen-

tal results of an analytical study which examines how this average time varies

with the network topology, the number of peers and the degree of RDF data

replication between peers. A simulation of the system has also been developed

and this is then described, as are the results of similar experiments conducted

with this simulation.

The chapter is organised as follows: Section 7.2 develops an analytical model

for the system presented in Chapter 6. Section 7.3 presents the experimental re-

sults from our analytical study. Section 7.3.4 describes a simulation of the system

and presents analogous experimental results obtained using this simulation.

194

7.2 Analytical Model

To our knowledge, ours is the first analytical model for a P2P ECA rule pro-

cessing system. A performance study of distributed and replicated databases,

based on analytical methods, is presented in [NJ00]. A set of alternatives for

modelling network communication, data replication and query processing is pro-

posed, and the various interdependencies between the components of the model

are discussed. The distributed data model with random data replication resem-

bles the distributed P2P environment we are concerned with in this thesis with the

difference that in distributed database systems the nodes are constant and their

number is fixed and known, something that is not the case in P2P environments

where the number of the peers and the connections between them change dy-

namically. A description of replication strategies that improve the performance

of requests in unstructured P2P networks is presented in [CS02], along with a

set of experimental results this is contrast to our structured, schema-based P2P

network.

Similar to the XTL rule processing system performance evaluation study,

we have chosen update response time as the main performance criterion of our

RDFTL rule processing system. Other choices could have been system resource

consumption (such as CPU usage, memory consumption, number of I/O opera-

tions) and network usage, and a detailed examination of these is an area of future

work. Other aspects of the system could also be potentially evaluated, such as the

cost of updating the data indexes throughout the system and the cost of keeping

the rule bases up-to-date.

We define update response time to be the mean time taken to complete all

rule execution resulting from a single update submitted by a top-level transaction.

Transactions consisting of queries and updates are submitted by applications to

195

peers or superpeers. Updates may cause rules to fire, which may in turn cause

the firing of further rules, increasing the network traffic as well as the load on

peers and superpeers. Queries submitted by a top-level transaction cannot cause

rule firing and can only increase the load on peers and superpeers.

In designing the analytical model of the RDTFL processing system, we have

made a number of simplifying assumptions as detailed below.

7.2.1 Homogeneity Assumption

In common with other performance studies of distributed and replicated databases

(e.g. [NJ00]), we make a homogeneity assumption separately for the peers and

superpeers of the network. For both these two sets of servers, this assumption

asserts identical workloads, the same service capacity and the same amount of

data per site. For the superpeers, it also implies the same number of rules per

rule base.

For network communication, the homogeneity assumption implies symmetri-

cal communication between superpeers, and between peers and superpeers i.e.

the average number of messages from a site A to a site B equals the average

number of messages from site B to site A. The size of the messages exchanged is

considered to be fixed.

We also assume a balanced peer distribution amongst superpeers, with each

peergroup having the same number of peers.

7.2.2 Rule triggering assumptions

The set assumptions considering the triggering of RDFTL rules is identical to

those employed for XTL rules and described in Section 4.4.1. The triggering

probabilities and their describing equations remain the same.

196

pfire(i) denotes, again, the probability that an update occurring at level i of

rule execution causes a given rule to fire. This probability depends on the prob-

ability pmt that a given rule may be triggered by a given update, the probability

pt(i) that a rule that may be triggered is actually triggered at level i, and the

probability pf that a rule that has been triggered actually fires.

pfire(i) is given by the equation:

pfire(i) = pmt · pt(i) · pf (7.1)

pt(i) is given by the equation:

pt(i) = pt · p
i
reduct (7.2)

where pt denotes the probability that a rule, that may be triggered, is actually

triggered as a result of an update.

As a consequence of equations 7.1 and 7.2:

pfire(i) = pmt · pt · pf · p
i
reduct (7.3)

implying that pfire also reduces geometrically with the level i.

The number of rules that may be triggered by an update (at any level i) is

given by

rmt = pmt · nrules (7.4)

where pmt is the probability that a given rule to may be triggered by a given

update and nrules is the number of rules in the rule base. The number of rules

that are actually triggered at level i is thus given by the following equation:

rt(i) = pt(i) · rmt = pmt · pt · p
i
reduct · nrules (7.5)

197

Similarly, the number of rules rfire(i) that fire for each event that occurs at

level i is given by

rfire(i) = pfire(i) · nrules

= pmt · pt(i) · pf · nrules = pmt · pt · p
i
reduct · pf · nrules (7.6)

7.2.3 System Modelling

Two kinds of queues are, again, assumed in our model. A transaction queue at

each peer that accepts queries or updates arising from rule execution, and an

action scheduler queue at each superpeer that queues transactions resulting from

rule firing which are then dispatched for execution to the appropriate transaction

queues of peers in the peergroup. For each queue we assume a FCFS (First Come

First Served) service discipline. New queries/updates that arrive at a peer are

placed at the tail of the peer’s transaction queue for execution, and the same

happens at the action scheduler queue in superpeers. The choice of FCFS for

the action scheduler queue is due to the Detached coupling mode adopted for the

RDFTL rule processing system (rather than the Immediate rule coupling mode

in the XTL rule processing system).

The query/update arrival rate is modelled as a Poisson process, meaning that

the arrival of a new item does not depend on any previous item and the inter-

arrival time is exponentially distributed. The exponential distribution of inter-

arrival time leads to the service time, for a query to be evaluated or an update

to be executed also follow an exponential distribution.

The transaction queues and the action scheduler queues are queues of the type

M/M/1, where M indicates exponential distribution for both the process arrival

rate and the service time, and 1 specifies that each peer or superpeer provides

198

one single service point.

Regarding the network communication within the system, we assume that the

communication channel between superpeers, and between superpeers and peers,

can be modelled as a server with an infinite number of service points, introducing

a delay to all messages passed depending on their size and the network bandwidth.

The queue model description of this is M/D/∞, where D indicates deterministic

service time and ∞ an unlimited capacity network1.

We assume that the size of messages is fixed at sizem (in bytes), and that the

communication bandwidth between superpeers is twenty times greater than the

bandwidth between peers and superpeers. So the network communication delay

introduced for messages between a peer and a superpeer, tP−SP
delay , is given by the

following (where multiplying by 8 converts the message size sizem from bytes to

bits and bps represents the network communication bandwidth in bits per second

between a peer and superpeer):

tP−SP
delay =

8 · sizem

bps
(7.7)

and for messages transmitted between two superpeers the delay, tSP−SP
delay , is given

by:

tSP−SP
delay =

tP−SP
delay

20
(7.8)

7.2.4 Modelling Update Response Time

We recall that the update response time is the mean time taken to complete

all rule execution resulting from a top-level update submitted to a peer or a

1A more accurate but more complex way to model the inter-superpeer communication and
the communication between superpeers and peers would be to assume that each communication
channel is a queuing network of N M/M/1 queues. In this way, we could define that there are
Nsp channels for the inter-superpeer communication case and Np channels for the superpeer-
peer communication case.

199

superpeer. This update response time, Rupdate, can be decomposed as follows:

Rupdate = Revent + Rcond + Raction (7.9)

where Revent is the mean time taken for all event processing, Rcond the mean

time taken for all condition processing and Raction the mean time taken for all

action processing during the rule execution following a top-level update. We now

consider each of these three components in turn.

Event Response Time (Revent)

For each level of triggering i, the mean time taken to process the event part of

all the rules at this level i, denoted by Revent(i), is the sum of the mean time

spent in peer database processing at level i and the mean time spent in network

transmission at level i. The time spent in accessing the Rule Base index is

considered negligible compared to the rest and is thus omitted:

Revent(i) = rfire(i− 1) ·Naction · (T
db

event + T
net

event) (7.10)

Here, the factor rfire(i − 1) · Naction represents the total number of individual

updates caused by the previous level of triggering, assuming that the action part

of each rule contributes Naction updates to an action schedule (see below). T
net

event

is the mean time spent in network processing for processing the event queries

following an event occurrence at some peer. T
db

event is the mean time spent in

database processing for processing the event queries following an event occurrence

at some peer.

When an event occurs at a peer P, details such as the type of the event, the

data items that were affected (i.e. the sets of resources inserted or deleted, or

the sets of triples that have been inserted, deleted or updated), and the time the

200

event occurred, are wrapped into a message and transmitted to the coordinating

superpeer SP. This determines the set of rules in its rule base that may be trig-

gered by the event. The event part of each of the rmt = pmt ·nrules rules that may

be triggered is sent to P for evaluation. The evaluation results for each event

part are transmitted back to SP where they are matched against the set of data

items affected by the event. If the intersection of the two sets is non-empty, then

the rule is actually triggered.

These processing steps involve contacting the network services three times,

the repository services at peer P rmt times, plus matching of the affected data

items against the evaluation results of the event part of each of the rmt rules. The

network processing time needed for the event part is therefore

T
net

event = tP−SP
delay ·

m− 1

m

+ 2 · tP−SP
delay ·

m− 1

m
· rmt (7.11)

where the factor tP−SP
delay ·

m−1

m
represents the time taken for the transmission of

the event notification message from a peer P to its supervising SP. tP−SP
delay is the

constant network delay caused by each message sent, m is the number of peers

in a peergroup (including the superpeer itself) and rmt the number of rules that

may be triggered. The factor m−1

m
represents the probability the event has not

occurred on the superpeer, assuming events are equally likely to occur at any

peer in the peergroup. If the event does occur on the superpeer, then no network

transmission will be necessary.

The total time required, following an event occurrence at P, for processing the

event queries at P is:

T
db

event = rmt · tpeer total + rmt · tq (7.12)

201

Here, tpeer total is the sum of the time W peer spent on waiting in P transaction

queue plus the mean time tq needed for a rule’s event query to be evaluated on

P repository, so:

tpeer total = tq + W peer

= tq +
λpeer · t

2
q

1− λpeer · tq
(7.13)

where λpeer represents the transaction arrival rate in peers and is fixed to an

average throughout this model.

We have also used the quantity tq for the time needed at P’s superpeer for

evaluating the intersection of the results of an event query with the set of data

items affected by the event, and again there are rmt such intersections to be

evaluated.

Substituting equations 7.11 and 7.12 into equation 7.10, and summing over

all k triggering levels, we obtain the mean time taken to process all event queries

over all k triggering levels during the rule execution following a top-level update

as:

Revent =
k

∑

i=1

{

rfire(i− 1) ·Naction ·
[

tP−SP
delay ·

m− 1

m

+ rmt · (2 · t
P−SP
delay ·

m− 1

m
+ tpeer total + tq)

]}

Condition Response Time (Rcond)

From the set of may-be-triggered rules, only a subset may actually be triggered.

The number of rules rt(i) that are actually triggered at level i is given in equa-

tion 7.5. For each of these rt(i) rules, the time needed for its condition part to

202

be evaluated is given by the following equation:

R
rule

cond(i) = T
db

cond(i) + T
net

cond(i) (7.14)

where T
db

cond(i) is the time spent on database processing and T
net

cond(i) the time

spent on network transmission.

The condition part of each of the rules triggered needs to be evaluated in a

distributed manner, in order to determine the subset of rules that will finally fire.

This involves generating the appropriate number of instances of the condition

part (one or more in the case of an instance-oriented rule, one in the case of a

set-oriented rule), determining to which of the peers in the peergroup subqueries

of the condition should be dispatched, transmission of the sub-queries to the ap-

propriate peers, evaluation of the subquery at each peer, and finally transmission

of the evaluation results back to the superpeer.

We note here that the current RDFTL implementation assumes that rule

conditions are evaluated locally within a peergroup. Global rule condition evalu-

ation across multiple superpeers would need to use global P2P query processing

techniques, which would generally increase the update response time of ECA rule

processing. Its effect on the observed trends of our experimental results presented

in Section 7.3 would clearly depend on the complexity and scalability of the query

processing algorithms employed. For example, [ST04] discusses query routing in

P2P networks that use the HyperCup topology and shows that schema-based

clustering of peers at the superpeers improves the network performance signifi-

cantly. In order not to confuse the performance of global P2P query processing

with the additional ECA rule processing functionality that is the focus of this

thesis, we retain in our analytical model the assumption that rule conditions are

evaluated locally within a peergroup.

203

We assume that each condition part generates on average Ncond instances.

Each of these Ncond instances has an average number of nsteps steps within its

constituent queries. The probability pannotcond
that a condition instance is relevant

to one of the m peers of the peergroup is expressed by the probability that at

least one of the steps within its constituent queries can be evaluated at the peer.

Each query “step” is either a specific resource URI or the name of a property.

The indexes maintained at each superpeer state which resources are present in the

RDF repository of each peer of its peergroup, and also which RDFS properties

appear within triples in each of the peers’ RDF repositories; we assume here that

the cost of index look-up is negligible compared with the other system costs.

Thus, pannotcond
is given by:

pannotcond
= 1− (1− ps)

nsteps

where ps is the probability that a query step can be evaluated at the given peer.

We note that the probability ps also captures the amount of schema and

data replication between peers in the overall network. A higher ps value implies

greater replication and a lower value implies less replication. A value of ps = 1

corresponds to full schema and data replication at all peers in the network.

From the above, the mean time needed for a rule’s condition part to be eval-

uated is:

T
db

cond(i) = tpeer total ·Ncond · nsteps · pannotcond
·m (7.15)

where the time taken to evaluate one step of a query within a rule’s condition

part in a peer is tpeer total.

The mean time spent on network transmission for the evaluation of a rule’s

204

condition part is given by

T
net

cond(i) = 2 · tP−SP
delay ·Ncond · nsteps

·pannotcond
· (m− 1) (7.16)

with the factor m−1 representing the number of peers that each message is sent.

From equations 7.14, 7.15 and 7.16 we obtain the mean time needed for the

evaluation of the condition part of a single rule as:

R
rule

cond(i) = Ncond · nsteps · pannotcond
· [tpeer total ·m + 2 · tP−SP

delay · (m− 1)] (7.17)

So, the mean time taken to process all condition queries over all k triggering

levels during the rule execution following a top-level update is as follows, recalling

that rt(i) = pt(i) · rmt rules are triggered at the ith triggering level:

Rcond =

k
∑

i=0

(

rt(i) ·R
rule

cond(i)
)

= rmt ·Ncond · nsteps · pannotcond

· [tpeer total ·m + 2 · tP−SP
delay · (m− 1)] · pt ·

k
∑

i=0

pi
reduct

= rmt ·Ncond · nsteps · pannotcond

· [tpeer total ·m + 2 · tP−SP
delay · (m− 1)] · pt ·

1− pk+1

reduct

1− preduct

(7.18)

Action Response Time (Raction)

The number rfire(i) of rules that fire at the ith level of triggering is expressed by

equation 7.6. The mean time needed for the execution of the action part of each

205

of the rules that fire is again expressed as the sum of the time spent on network

transmission and the time consumed on path expression evaluation and update

execution at the peers’ RDF repositories:

R
rule

action(i) = T
db

action(i) + T
net

action(i) (7.19)

Each instance of the action part of each rule that fires (one instance in the

case of a set-oriented rule, one or more instances in the case of instance-oriented

rules) is sent to the peers of the local peergroup according to the annotations on

the rule’s action part and, after consulting the superpeer resource indexes, also

according to the presence of specific URIs at peers. Each instance of the action

part of each rule is also sent to all other superpeers of the network. Depending

on the data access rights on the schema and resources present at each remote

superpeer, the rule’s action part instances may be scheduled and executed there.

The time spent in network transmission, according to the above process, is

given by the following:

T
net

action(i) =
[

tP−SP
delay · pannotaction

· (m− 1)

+
(

tSP−SP
delay · nhops + tP−SP

delay · (n− 1) · pallow ·

pannotaction
· (m− 1)

)]

·Naction (7.20)

Here nhops expresses the average number of hops, i.e. message transmission

steps, required for an instance of a rule’s action part to be transmitted to all of

the superpeers of the network. This number depends on the network topology

and the routing strategy followed. At each of the n − 1 remote superpeers, the

instance of the action part will be scheduled for execution depending on the

probability pallow that the superpeer has within its peergroup the schema and

206

data the resources necessary to execute the instance, and that its data access

privileges allow access to these resources. If the execution is possible, the updates

comprising the instance of the action part will be sent to pannotaction
·(m−1) peers

of the peergroup, excluding the superpeer itself. Here pannotaction
expresses the

probability that all the steps within the path expressions of the instance of the

action part can be executed at a given peer, and is given by

pannotaction
= pnsteps

s (7.21)

where, as with rule conditions, ps expresses the probability that a step can be

evaluated at the peer and we assume the same number of steps, nsteps, in a rule’s

action part as in its condition part.

As mentioned earlier, instances of rules’ action parts are placed on superpeers’

action scheduling queues. Recall that a number of instances of an action may be

generated if the action contains the $delta variable and precisely one instance

otherwise. We assume that there are an average of ℓinst instances contributed by

an action, and that each rule’s action part contains on average sizeap individ-

ual actions. So the number of updates, Naction, placed by a rule to the action

scheduling queue is:

Naction = ℓinst · sizeap

After an instance of the action part is placed on an action scheduling queue at

level i, each update within it waits for a time of W (i) before being dispatched, as

part of the whole instance, to the appropriate peers of the local peergroup, where

it receives a service time of tsrv. Thus, the mean time spent on the execution of

an update within an instance of an action part within a peergroup is:

Tupdate exec(i) = tsrv + W (i) (7.22)

207

where tsrv is given by

tsrv = pannotaction
·m · tq

since an update will be executed, as part of the instance, on pannotaction
·m peers

of the peergroup and we assume that the time needed for the execution of an

update is tq.

The mean waiting time in the M/M/1 action scheduling queue at level i of

triggering is given by the following equation [Jai91]:

W (i) =
λtotal(i) · t

2
srv

1− λtotal(i) · tsrv

(7.23)

Here, λtotal(i) is the total arrival rate of updates at a peergroup at level i of

triggering, given by

λtotal(i) = λext + λint(i) (7.24)

where λext is the arrival rate of top-level updates that are submitted from outside

the rule processing system, and λint(i) is the arrival rate of updates that are

generated as a result of rule firing at level i.

Each of the externally arriving top-level updates will cause a first level of

triggering. Each of the updates contained within the transactions generated as a

result of this rule triggering may cause further rules to fire, causing more trans-

action traffic to be generated and so on. So the total arrival rate of updates at a

208

peergroup at level i of triggering can be expressed as:

λtotal(i) = λext + λext · rfire(1) ·Naction

+ (λext · rfire(1)) · rfire(2) ·N2

action

+ . . .

+ (λext · rfire(1)... · rfire(i− 1)) · rfire(i) ·N
i
action

= λext · [1 +
i

∑

j=1

N j
action ·

j
∏

l=1

rfire(l)] (7.25)

where rfire(l) is the number of rules that fire at triggering level l, and Naction =

ℓinst · sizeap is the total number of individual updates each of the rfire(i) rules

generates.

According to equations 7.6 and 7.25, the transaction arrival rate at level i is

therefore

λtotal(i) = λext · (1 +

nrules · pmt · pt · pf ·
i

∑

j=1

N j
action ·

j
∏

l=1

pl
reduct)

The execution time for all the updates within instances of the action part of

a rule at level i is Taction exec(i) = Naction · Tupdate exec(i).

The time needed for all the ℓinst instances of a rule’s action part to be exe-

cuted with probability pallow on the rest of the n − 1 remote peergroups is also

Taction exec(i), and so the total time needed for the execution of the action part of

a rule at level i is:

T
db

action(i) = Taction exec(i) · [1 + (n− 1) · pallow] (7.26)

209

Using equation 7.19, the fact that rfire(i) rules fire at level i, and that there

are k triggering levels, we obtain the time taken for all rule action processing as

Raction =

k
∑

i=1

rfire(i) ·
(

R
rule

action(i)
)

=

k
∑

i=1

rfire(i) · (T
db

action(i) + T
net

action(i)) (7.27)

into which the right-hand sides of equations 7.20 and 7.26 can be substituted.

7.3 Experimental Results

As well as developing the analytical performance model described in the previous

section, we have also developed a simulator of the RDFTL system in order to

increase the accuracy of the performance study and validate the predictions of

the analytical model. We have conducted experiments with the analytical model

and with the simulator for two different network topologies, random flooding and

HyperCup. We have examined the update response time on each, varying the

n, nrules, ps and preduct parameters. We note here that the network topology

relates to the communication between superpeers, as each (non-superpeer) peer

has only one active network connection with its supervising superpeer. The results

of our experiments are discussed in Section 7.3.1 for the analytical model and

Section 7.3.4 for the simulator.

For the purposes of these experiments, we have used the actual RDFTL imple-

mentation in order to measure sizem and tq, by running a set of sample queries and

updates, and the values obtained for these are shown in Table 1. In the absence

of information about real RDFTL rule sets for real applications, we have fixed

the values of the ECA-rule related parameters k, Ncond, Naction, sizeap, preduct,

210

pallow, pt, pf , pmt, λext, bps and nsteps as shown in Table 1. For the e-learning

applications originally envisaged for RDFTL, we believe that these values are

representative of the likely rule sets that will arise. The value of Naction is rela-

tively low as RDFTL rules operate on metadata and so “bulk” updates are likely

to be infrequent. The value of k is of the same order of magnitude as adopted

in commercial active DBMS as an upper limit for the number of recursive rule

firings allowed. The number of peers in each peergroup is fixed at m = 20.

In our performance study below, we consider the general trends of the per-

formance graphs as the primary result rather than the absolute values obtained.

We will see that varying the values of the n, nrules and ps parameters affects the

absolute performance values but not their general trend.

Parameter Base setting
λext 20 trans/s
λpeer 5 trans/s
sizem 10 kbytes
bps 512 kbits/s
tq 1 s
k 30
Ncond 4
Naction 8
sizeap 4
preduct 0.2
pallow 0.9
pt 0.5
pf 0.5
pmt 0.2
nsteps 4
m 20

Table 7.1: Parameter Base Values

211

7.3.1 Analytical Study Results

In our analysis, we examine for each of the two network topologies the update

response time with respect to varying numbers of peergroups in the network (n),

varying numbers of rules per rule base (nrules) and varying data replication (ps).

In the first topology, the superpeers are connected at random and any message

between them is broadcast from the originating superpeer to all its neighbouring

superpeers, and from there to all their neighbours, and so forth, flooding the net-

work until the message reaches all the superpeers. This simple topology does not

place any guaranteed upper bound on the number of hops that will be necessary

for a message to reach all superpeers. It also does not prevent a message being

received more than once by the same superpeer.

Figure 7.1 shows how the update response time varies with this random topol-

ogy as the number of peergroups n increases, with ps = 0.1 corresponding to data

replication of 10% and the number of rules per rule base nrules set to 100, 500

and 1000. From the shape of these curves it is clear that the system does not

scale well.

As the number of peergroups increases, the update response time rapidly rises

towards very high values. For a relatively small number of rules per rule base (100)

and for up to 10 peergroups we obtain acceptable update response times, due to

the relatively low number of available communication paths between superpeers.

As the number of peergroups n increases, and with that the number of possible

communication paths between superpeers, the rapidly rising values of the update

response time make the system unstable and unusable. Similar behaviour is

observed with larger values of nrules except that the system becomes unstable at

lower values of n. Similar sets of experiments conducted for higher values of ps

result in graphs with similar upwards trends, except that the absolute values of

the update response time are larger and the system becomes unstable at lower

212

0
50

100
150
200
250
300
350
400
450
500

1 2 3 4 5 6 7 8 9 10U
p
d
at

e
R

es
p
on

se
T

im
e

(s
ec

)

Number of peergroups

nrules= 100

33333333333333333333

3
nrules = 500

+++++++++++++++++
+

+
+

+
nrules = 1000

222222222222
2

2
2

2

2

2

2

2

2

Figure 7.1: Model, Replication 10%, Full Net

values of n. This is to be expected as the presence of data in more peergroups

increases the number of peers that a rule which has fired can be executed on,

thus increasing the network traffic and repository load, and the number of further

recursive rule firings.

Using the HyperCup topology in our system guarantees that each superpeer

receives a message only once; if the number of superpeers is n, a total of n − 1

hops are required to reach all superpeers; and the most distant superpeers are

reached after log2 n hops.

Figure 7.2 shows,using the HyperCup topology, how the update response time

varies as the number of peergroups n increases, with the data replication ps being

set to 0.1 and the number of rules per rule base, nrules, set to 100, 500 and 1000.

We see that the system now shows good scalability, and the update response time

increases linearly with n.

Compared with the random topology, the system remains stable and the up-

date response time within reasonable boundaries even for large networks and num-

bers of rules — given that in popular P2P systems, such as Kazaa and Gnutella,

213

0
50

100
150
200
250
300
350
400
450
500

10 20 30 40 50 60 70 80 90 100

U
p
d
at

e
R

es
p
on

se
T

im
e

(s
ec

)

Number of peergroups

nrules= 100

33333333333333333333

3
nrules = 500

++++++++++++++++++++

+
nrules = 1000

22222222222222222222

2

Figure 7.2: Model, Replication 10%, HyperCup

it sometimes takes minutes for a search request to complete. As with the ran-

dom topology, increasing the data replication, ps, increases the average update

response time. However, in the case of HyperCup, the system still remains stable

and the update response time still increases linearly even for high values of ps.

For example Figure 7.3 illustrates the case of ps = 0.5 and Figure 7.4 illustrates

the case of ps = 0.9.

Figure 7.5 shows how the update response time varies with the HyperCup

topology as the number of rules per rule base, nrules increases, with the data

replication ps being set to 10% and the number of peergroups set to 10, 50 and 100.

We see that the system again shows good scalability, with the update response

time increasing linearly with nrules.

For the analytical model, we have used values up to n = 10, 000 and nrules =

10, 000, with varying ps, and the same linear trends are observed.

Similar sets of experiments with different settings of the fixed parameters have

also been conducted and this affects only the absolute performance values, and

not the performance trends, with one exception: Varying preduct (the reduction

214

0

200

400

600

800

1000

1200

1400

10 20 30 40 50 60 70 80 90 100

U
p
d
at

e
R

es
p
on

se
T

im
e

(s
ec

)

Number of peergroups

nrules= 100

33333333333333333333

3
nrules = 500

++++++++++++++++++++

+
nrules = 1000

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2

Figure 7.3: Model, Replication 50%, HyperCup

factor at each triggering level of the ‘may-be-triggered’ probability) between 0 and

approximately 0.5 does not affect the performance trends of the system. However,

for values above that, it gives similar performance trends only for values of ps

(the level of data replication) of up to about 0.4. For higher values of ps, the

update response time becomes non-linear as the value of nrules or n increases.

This is because the high data replication results in more rules being triggered,

more instances of rule actions being transmitted over the network and hence an

increase in network transmission times. Moreover, the arrival rate of updates

at the queues becomes higher than the rate that they can be served, causing

significant increases of the queue waiting times. Varying pmt (the probability

that a rule may be triggered, is also a measure of the selectivity of the index)

between 0.1 and 0.9, we observe that with pmt values up to 0.3 the system shows

good scalability characteristics and the update response time increases linearly.

As the value of pmt increases above that (less selective index), the benefits of

the index start to disappear and the system shows a non-linear behaviour that

becomes progressively more severe.

215

0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70 80 90 100

U
p
d
at

e
R

es
p
on

se
T

im
e

(s
ec

)

Number of peergroups

nrules= 100

33333333333333333333

3
nrules = 500

++++++++++++++++++++

+
nrules = 1000

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2

Figure 7.4: Model, Replication 90%, HyperCup

7.3.2 Comparison with a hard-coded approach

As already discussed in the context of XML in Section 4.5.2, an alternative to the

ECA rule approach for providing reactive functionality in an application would

be to hard-code the reactive functionality into the application. For example,

referring back to Figure 2.4, a possible way to implement the requirement that

users need to be notified of the registration of new LOs which satisfy a set of

criteria that each user has specified, is to maintain a database, db, of users’

‘subscriptions’ to LOs.

The application code which handles the registration of new LOs would need to

be modified so that it performs a look-up into this db and notifies each matching

user of the new LO. As with the ECA rules approach, users would be able to

change their set of subscription criteria: with the ECA approach, there would

be a set of ECA rules per user and rules could be added to or deleted from this

set, while with the hard-coded approach the subscriptions database db would be

updated.

216

0
50

100
150
200
250
300
350
400
450
500

0 100 200 300 400 500600 700 800 9001000

U
p
d
at

e
R

es
p
on

se
T

im
e

(s
ec

)

Number of Rules per Rule Base

n= 10

3
333

3333
333

333
333

333

3

n = 50

++++++++++++++++++++

+
n = 100

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2

Figure 7.5: Varying Rules; Model, Replication 10% , HyperCup

Consider, for example, the RDFTL rule r1 of Section 5.2.1 which notifies user

128, by updating their newLO metadata, of the insertion of a new LO whose

subject is the same as one of user 128’s areas of interest:

USING NAMESPACE dc http://purl.org/dc/elements/1.1/

USING NAMESPACE sl_user http://www.dcs.bbk.ac.uk/~gpapa05/user

ON INSERT resource() AS INSTANCE OF LO

IF $delta/target(dc:subject)

= resource(http://www.dcs.bbk.ac.uk/users/128)

/target(sl_user:interest)/target(sl_user:interest_typename)

DO LET $msgs := resource(http://www.dcs.bbk.ac.uk/users/128)

/target(sl_user:messages) IN

INSERT ($msgs,sl_user:newLO,$delta);;

The corresponding hard-coded solution would implement this functionality in

the application code, and the code snippet that would handle the registration of

a new LO is described by the following pseudocode:

217

insertNewLO(newLO);

users[] := getSubscribedUsers(db);

foreach user in users[] do

foreach interest in user.getInterests() do

if (newLO.getSubject() == interest)

updateUserProfile(user,newLO);

end foreach;

end foreach;

Our analytical study above of the RDFTL rule processing system shows good

performance and scalability characteristics when the HyperCup network topology

is employed.

In the case of hard-coded reactive functionality, as in Section 4.5.2 for the

XML case, we see that the cost of evaluating the condition and the action part

of the rules is the same as in the ECA rule approach but there is again no event

detection cost (which, in a P2P scenario, includes the time consuming messages

between peers and their supervising superpeer).

We therefore modify our analytical model to remove the cost of event detection

by setting Revent(i) shown in equation 7.10 to zero. The update response time

for the hard-coded approach in a random topology with 10% data replication is

shown in Figure 7.6. Comparing this with the corresponding graph for the ECA

rules approach in Figure 7.1, we observe that, again, the system does not scale

well. As the number of peergroups increases, the update response time rapidly

rises towards very high values, but it shows lower update response time values

for the same number of peergroups than the ECA approach.

Performing the same experiments for the hard-coded approach in a Hyper-

Cup topology — see Figures 7.7, 7.8, 7.9, 7.10 — we observe that, as for the

ECA approach, the update response time increases linearly with the number of

218

50
100
150
200
250
300
350
400
450
500

2 4 6 8 10 12 14

U
p
d
at

e
R

es
p
on

se
T

im
e

(s
ec

)

Number of peergroups

nrules= 100

33333333333
3

3
3

3
nrules = 500

++++++++++
+

+
+

+

+

+
+

nrules = 1000

22222222
2

2
2

2

2

2

2
2

Figure 7.6: Model, Replication 10%, Full Net — Hard-Coded Case

peergroups, n. Lower update response time values are observed for the same n

compared with the ECA rules approach, and this can be explained by the lack of

event detection overhead.

Although the performance behaviour of the two approaches shows similar

performance trends, the lower update response time of the hard-coded approach

would be an attractive feature for performance-critical applications that do not

have a large variety of rules to encode and maintain. In cases, however, that an

application is not performance-critical and makes extensive use of a broad variety

of reactive functionalities, the ECA rules approach would be more attractive:

rules could be dynamically added or deleted while the application is still running,

and the system would be likely to be more robust to programmer errors.

7.3.3 The Simulator

As well as developing the performance model discussed above, we have also devel-

oped a simulator of the RDFTL system in order to validate the predictions of the

219

0

1

2

3

4

5

6

7

8

9

2 4 6 8 10 12 14

U
p
d
at

e
R

es
p
on

se
T

im
e

(s
ec

)

Number of peergroups

nrules= 100

33333333333333333333

3
nrules = 500

++++++++++++++++++++

+
nrules = 1000

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2

Figure 7.7: Model, Replication 10%, HyperCup — Hard-Coded Case

10
20
30
40
50
60
70
80
90

100

2 4 6 8 10 12 14

U
p
d
at

e
R

es
p
on

se
T

im
e

(s
ec

)

Number of peergroups

nrules= 100

3333333333333333

3
nrules = 500

++++++++++++++++++++

+
nrules = 1000

22222222222222222222

2

Figure 7.8: Model, Replication 50%, HyperCup — Hard-Coded Case

220

10
20
30
40
50
60
70
80
90

100

2 4 6 8 10 12 14

U
p
d
at

e
R

es
p
on

se
T

im
e

(s
ec

)

Number of peergroups

nrules= 100

3333333333333333333

3
nrules = 500

++++++++++++++++++++

+
nrules = 1000

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2

Figure 7.9: Model, Replication 90%, HyperCup — Hard-Coded Case

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 9001000

U
p
d
at

e
R

es
p
on

se
T

im
e

(s
ec

)

Number of Rules per Rule Base

n= 10

33333333333333333333

3

n = 50

++++++++++++++++++++

+
n = 100

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2

Figure 7.10: Varying Rules; Model, Replication 10% , HyperCup — Hard-Coded
Case

221

analytical model. This simulator was built using the Java implementation of the

SSF (Scalable Simulation Framework) API [SSF], called Raceway SSF [R-SSF].

Raceway SSF provides a unified interface for discrete-event simulation, consisting

of a set of classes for modeling the system entities, simulation events, commu-

nication channels and processes according to the discrete-event paradigm. The

peers, superpeers, rule bases and rules are the main entities of our simulator.

Peers and superpeers exchange messages representing events that can potentially

affect the system state. For example, a message sent from a peer to a superpeer

notifying the superpeer of the occurrence of an update at the peer may cause rule

triggering that may result in more updates being executed, and so forth.

Each component of the actual system implementation is represented by a cor-

responding class in the simulator. Some of these components, particularly those

implementing the rule processing logic, have been used directly in the simula-

tor, while others have been replaced by simulated functionality. In particular,

the Event Handler, Condition Evaluator and Action Scheduler components have

remained intact, although some wrapping code was necessary to interface them

with the simulated components. The rest of the components and services shown

in Figure 6.5, have been replaced by simulated functionality. Other system enti-

ties, such as the peers and superpeers, network connections and topology, and the

Rule Base have also been replaced and are simulated by program classes. When

the simulator initialises, it creates a pre-specified number of SuperPeer objects

and “connects” to each of them a number of Peer objects that are recorded in

the SuperPeer object. Which other SuperPeer objects each SuperPeer is con-

nected with depends on the specified network topology and this information is

also recorded in the SuperPeer object.

222

For the simulated components, their behaviour is simulated by a set of func-

tions each of which represents an action taken or a service provided by the com-

ponent. Fixed parameters such as the network delay, number of rules in a rule

base, or number of actions per rule, are represented by variables in the class cor-

responding to the relevant component. A set of statistical distributions is used to

simulate the behaviour of the other system parameters and to obtain their values

according to the distributions. For example, query service time and transaction

interarrival time are exponentially distributed, while the rule triggering probabil-

ity is normally distributed. Each time that a value of one of these parameters is

needed, a random number generator undertakes to generate a new random value

according to the given distribution.

The services in the Core Services group of Figure 6.5 are each simulated

by a function in the Peer or SuperPeer class, as follows: The Peer Indexing

Service is simulated by a random number generator function that returns 0 or

1 – representing the probability that the index contains the requested data –

distributed around a mean value. The Database Connection Service is simulated

by two functions, one for updates and one for queries. Calling each of these

functions adds a random time delay — corresponding to the database processing

time — that is derived by calling a random number generator producing numbers

about a mean value. The Messaging Service is simulated by a function that (i)

adds a time delay, corresponding to network transmission time, produced by a

random number generator around a chosen mean; and (ii) calls the SuperPeer

object’s Event Handler (see below). The Event Detection service is simulated by

a set of functions and classes that simulate the event detection functionality in

the Peer and SuperPeer classes. Each time that a call to the data update function

in a Peer or SuperPeer class takes place, a notificaction is produced calling the

function corresponding to the messaging service.

223

The services in the RuleBase Management Services group of Figure 6.5 are also

simulated by functions in the SuperPeer class, while the Rule Base is simulated

by a class of its own. The Rule Base Indexer Service is simulated by a function

that returns a number of rules, which ranges from 0 to the number of rules

recorded in the Rule Base class, exponentially distributed. The Rule Base class

has as its main parameter the number of rules in this superpeer’s rule base, and

contains methods for setting and retrieving the number of rules. The Rule Base

Registration Service is omitted in the simulator as this component is not involved

in rule execution.

The SuperPeer Indexing Service is simulated in the same way as the Peer

Indexing Service. Finally, the Routing Service at each superpeer is simulated by

a look-up into the SuperPeer’s list of connections to other SuperPeer and Peer

objects it is connected with.

An internal clock, initilised and managed by the simulation application, is used

for recording the number of time units elapsed for executing each function of the

simulation application. The simulation starts when external update transactions

arrive, at times that are exponentially distributed, at Peer and Superpeer objects,

and ends after the end of the execution of all the actions caused by the arrival

of the last external update transaction. A specified number of such external

transactions is executed per simulation run, randomly submitted to the Peer and

Superpeer obects.

7.3.4 Simulation Results

The same set of experiments performed on the analytical model were performed

with the simulator. In these experiments, the same values for bps, k and preduct

were used as for the analytical model experiments, as shown in Table 1. The

remaining system parameters of Table 1 were replaced by stochastic values in

224

order to provide a more realistic description of the system. In particular, the

number of peers per peergroup, m, is randomly distributed with a mean value of

20; the probabilities pallow, pt and pf are normally distributed, with mean values

as in Table 1; and the remaining parameters are exponentially distributed, with

mean values as in Table 1. Similarly, in the experiments, the number of rules per

rule base, nrules, and the degree of replication, ps are not fixed but are normally

distributed about a chosen mean.

The distributions of the various parameters may vary for different applica-

tions and data sets, resulting in potentially different absolute performance values,

though we conjecture that it will not affect the performance trends of the system.

This is an area of further investigation.

Each of the data points in the graphs below was obtained by running the

simulator for 2000 top-level updates and taking the average update response time.

The experiments were again conducted with the random and with the HyperCup

network topologies.

Figure 7.11 shows how the update response time varies with the random topol-

ogy as the number of peergroups, n, increases, with the data replication ps dis-

tributed about a mean value of 0.1 and the number of rules per rule base, nrules,

distributed about mean values of 100, 500 and 1000. We see that the trend of

these graphs is similar to Figure 7.1 from the analytical study, and it indicates

that the system does not scale well with increasing n. Similar sets of experiments

conducted for higher average values of ps (up to 0.9) result in graphs with similar

upwards trends, except that the absolute values of the update response time are

now larger and the system becomes unstable at lower values of n.

Results from the same set of experiments using the simulator and assuming

a HyperCup topology are shown in Figures 7.12 , 7.13 and 7.14. We see that

225

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

R
es

p
on

se
T

im
e

(s
ec

)

Number of peergroups

nrules = 100

3 3 3
3

3

3
nrules = 500

+ +
+

+

+

+
nrules = 1000

2 2

2

2

2

2

Figure 7.11: Simulation, Replication 10%, Full Net

the system now shows good scalability, with the update response time increas-

ing approximately linearly with n. With data replication at 10%, the update

response time is within reasonable boundaries even for relatively large networks

and numbers of rules. The system appears to scale well even for higher levels of

data replication as illustrated in Figure 7.14 for data replication at 90%.

Finally, Figure 7.15 shows how the update response time varies with the Hy-

perCup topology as the average number of rules per rule base, nrules increases,

with the data replication ps being set to an average of 10% and the number of

peergroups set to 10, 50 and 100. We see that the system again shows good

scalability, with the update response time increasing linearly with nrules.

The difference in the absolute values of the update response time between

the analytical model and the simulations can be explained by the fact that in

the analytical model we have used fixed values for the system parameters of

Table 7.3 while in the simulations the values of these parameters vary following

some distribution. The results from the simulations are thus likely to be closer to

the real system applications, but their trends shown good agreement with those

226

0

20

40

60

80

100

120

140

160

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

R
es

p
on

se
T

im
e

(s
ec

)

Number of peergroups

nrules = 100

3 3
3 3

3
3

3
nrules = 500

+
+

+
+ +

+

+
nrules = 1000

2

2

2

2

2

2

2

Figure 7.12: Simulation, Replication 10%, HyperCup

of the analytical model.

7.4 Summary

This chapter has studied the performance and scalability aspects of processing

RDFTL rules on RDF metadata in P2P environments, as implemented in the

system presented in Chapter 6. We have developed and described an analytical

model for this system and we have presented the experimental results of an an-

alytical study to examine how system performance is affected by factors such as

the network topology, the number of peers, and the degree of RDF data replica-

tion between peers. We have also developed and described a simulation of the

system, and have conducted similar performance experiments with the simulator.

The two sets of experimental results show good agreement, which is an indication

of the validity of the analytical performance model. To our knowledge, this is

the first time that a P2P ECA rule processing system has been studied from a

performance perspective, and moreover we have employed both analytical and

227

0

50

100

150

200

250

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

R
es

p
on

se
T

im
e

(s
ec

)

Number of peergroups

nrules = 100

3 3 3 3 3 3

3
nrules = 500

+
+

+
+

+
+

+
nrules = 1000

2
2

2

2

2

2

2

Figure 7.13: Simulation, Replication 50%, HyperCup

simulation methods.

228

0

100

200

300

400

500

600

700

800

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

R
es

p
on

se
T

im
e

(s
ec

)

Number of peergroups

nrules = 100

3 3
3 3 3

3

3
nrules = 500

+ +
+

+
+

+

+
nrules = 1000

2
2

2

2

2

2

2

Figure 7.14: Simulation, Replication 90%, HyperCup

0

20

40

60

80

100

120

140

160

180

100 200 300 400 500 600 700 800 9001000

A
ve

ra
ge

R
es

p
on

se
T

im
e

(s
ec

)

Number of rules in rule base

n = 10

3
3

3

3

3

3

3

n = 50

+
+

+

+

+
+

+
n = 100

2

2

2

2

2

2

2

Figure 7.15: Varying Rules; Simulation, Replication 10%, HyperCup

229

Chapter 8

Conclusions and Future Work

A combination of formal and empirical approaches have been used as the method-

ology for the research reported in this thesis. This thesis has discussed the use of

ECA rules for providing reactive functionality over XML and RDF data in both

centralised and distributed environments. We have reviewed an existing ECA

rule language for XML data called XTL and have proposed a new ECA rule lan-

guage for RDF data called RDFTL. We have studied the expressiveness of XTL.

We have described the architecture and the implementation of two prototype

systems for processing XTL and RDFTL rules in centralised and distributed en-

vironments, respectively. We have developed analytical performance models for

both systems and have compared these with the performance of the actual sys-

tem in the case of XTL and of a system simulation, in the case of RDFTL. We

have also discussed the extent to which RDFTL meets the SeLeNe requirements

regarding reactive functionality.

During our research we have considered the following four research problems:

what should be the constructs and features of ECA languages in order to support

the definition and processing of ECA rules over XML and RDF data; what are

the architectural requirements of systems supporting ECA rule processing over

230

XML and RDF data in centralised and P2P environments; what are the factors

that affect the performance of such ECA rule processing systems; and what are

the performance trends and the scalability characteristics of such systems.

In Chapter 2, we gave an overview of ECA rule languages for semi-structured

data including a review of the query and update languages that may be used in

the different parts of ECA rules.

In Chapter 3, we reviewed the XTL ECA rule language for XML data. We

conducted a study of the expressiveness of XTL and showed that it is able to

express programs at least as complex as while programs over relational data.

We also showed that the extension of the language to support let expressions in

the action part of rules and functions for creating new unique values makes the

language query complete over relational data.

In Chapter 4, we described a prototype system that supports the definition

and processing of XTL rules in a centralised environment. We presented its

architecture, its major components and the interaction between them. We also

conducted a performance study of the system using both analytical methods and

experiments on the system itself. The study showed the system performance

trends and we discussed possible reasons for performance penalties. We showed

that the provision of an indexing scheme for XTL rules could lead to a significant

improvement in system performance.

In Chapter 5, we presented the RDFTL ECA rule language for RDF data,

including its syntax, the denotational semantics of its query and update sublan-

guages, and the syntax of RDFTL rules.

In Chapter 6, we described a prototype system that supports the definition and

processing of RDFTL rules in P2P environments. We presented its architecture,

its major components and the interaction between them. We described how rules

are registered and executed in such a P2P environment, and we discussed possible

231

approaches to concurrency control and recovery in such environments. We also

showed the extent to which RDFTL meets the SeLeNe requirements regarding

reactive functionality.

Although our RDFTL rule processing system has been developed for a P2P

environment, it can be easily modified to operate in any distributed architecture,

or in a centralised environment similar to our XTL rule processing system. Con-

versely, the P2P infrastructure that we developed to support RDFTL rules can

be easily extended so as to be used by other ECA rule processing systems, for

example our XTL rule processing engine, and this is an area of ongoing work.

In Chapter 7, we conducted a study of the performance and scalability of

our RDFTL rule processing system. We developed a performance model based

on analytical methods and we investigated the system’s performance using ex-

perimental results from both the analytical model and system simulations. We

showed that the performance of the system depends on the number of messages

that are exchanged during rule processing. This number is highly dependent on

the network topology employed, and we showed that if a HyperCuP topology is

used for interconnecting the superpeers then our system shows good scalability.

This points to the practical usefulness of our RDFTL rule processing system for

real P2P applications.

Some of the results presented in this thesis have been published in [BPPW04,

PPW03b, PPW04, PPW06]. The XTL rule processing system of Chapter 4

was described in [BPPW04]. An early version of the RDFTL language was de-

scribed in [PPW03b] and its final version as presented in Chapter 5 was described

in [PPW04]. The RDFTL rule processing system of Chapter 6 was described

in [PPW06].

There are several directions of future research that build on the results of this

thesis:

232

1. Extend the XTL language and system implementation

Extending the XTL action sublanguage to support a richer set of update

expressions will improve the language’s update capabilities over XML data,

for example, to support ordering in XPath expressions and to adopt the

emerging XQuery Update Facility proposal [CFR06]. The XTL system im-

plementation can be extended to enable support for XML repositories and

to implement our XTL rule indexing scheme. As discussed in Chapter 4,

we expect that these extensions will significantly improve the system’s per-

formance.

2. Extend and improve the RDFTL system implementation

Possible next steps regarding the RDFTL system would be to add support

for the Jena2 RDF management framework and its accompanying query

language, SPARQL [W3C06c]. The current communication layer can be

replaced with a more standard communication protocol, such as SOAP,

in order to make the system more compatible with existing and emerging

distributed service-based architectures and systems. This will enable fu-

ture extensions of system with third-party components such as distributed

query and transaction management components that will in turn enable the

support of distributed event detection and update execution.

3. Extend the performance study of the XTL and RDFTL rule processing

systems

The performance study for both the XTL and RDFTL systems can be ex-

tended in order to explore additional performance parameters, such as CPU

load, memory consumption, number of I/O operations and network usage.

This will give a broader view of our systems’ performance and scalability

characteristics.

233

4. Conduct large-scale experiments with the RDFTL system itself, possibly

using the PlanetLab [PlanetLab] infrastructure. As well as giving insight

into the actual system behaviour in a real P2P environment, this will allow

measurements on actual system workloads and rule sets, which can then be

fed into the analytical performance model and the simulator to allow more

accurate predictions from these.

5. Further study of XTL’s and RDFTL’s expressiveness.

Further study into RDFTL’s query expressiveness is required, and further

study into the update expressiveness of both languages. Regarding the lat-

ter, making the language relationally update complete requires extending

them with the ability to create new values. However, this ability can lead to

unsafe1 conditions, thus requiring more investigation regarding the charac-

teristics of the language that will enable update completeness but will also

ensure safety.

6. Analysis and Optimisation of XTL and RDFTL rules

In [BPW02c] techniques are proposed for analysing the behaviour of XTL

rules and optimising such rules is also proposed. Similar techniques need to

be developed for RDFTL. Extending the XTL and RDFTL rule processing

systems with rule optimisation techniques is an open research issue, which

is related to further study of the XML and RDF data models and the

optimisation of query and update languages for these models.

7. Application of XTL and RDFTL in the e-Learning domain

Our XTL and RDFTL rule processing systems can be deployed as part

of e-learning applications, allowing further experimentation with real data

1Unsafe queries are queries that have an infinite number of answers. Unsafety is caused by
variables occurring in the output of a query which are not bounded by the input to the query.

234

and rule sets. This will enable the collection of information regarding the

systems’ behaviour in real conditions that may improve the accuracy of our

analytical models and lead to research in further optimisation techniques

in order to improve system behaviour.

235

Bibliography

[4Suite] 4Suite Consortium. 4Suite XML Tools. http://4suite.org/.

[ABEYH00] A. Adi, B. Botzer, O. Etzion, and T. Yatzkar-Haham. Push Technol-

ogy Personalisation through Event Correlation. In Proceedings of the

26th Conference on Very Large Databases (VLDB), pages 643–645,

2000.

[ABS00] S. Abiteboul, Peter Buneman, and Dan Siciu. Data on the Web.

Morgan Kaufmann, 2000.

[AV91] Serge Abiteboul and Victor Vianu. Datalog Extensions for Database

Queries and Updates. Journal of Computer Systems Science,

43(1):62–124, 1991.

[AVFY98] Serge Abiteboul, Victor Vianu, Brad Fordham, and Yelena Yesha.

Relational transducers for electronic commerce. In Proceedings of the

7th ACM SIGACT-SIGMOD-SIGART Symposium on Principles Of

Database Systems (PODS), pages 179–187, 1998.

[AVH96] Serge Abiteboul, Victor Vianu, and Richard Hull. Foundations of

Databases. Addison Wesley, 1996.

236

[BB97] Elena Baralis and Andrea Bianco. Performance Evaluation of Rule

Semantics in Active Databases. In Proceedings of the 13th Inter-

national Conference on Data Engineering (ICDE), pages 365–374,

1997.

[BBCC02] Angela Bonifati, Daniele Braga, Alessandro Campi, and Stefano

Ceri. Active XQuery. In Proceedings of the 18th International Con-

ference on Data Engineering (ICDE), pages 403–413, 2002.

[BBFV05] Michael Benedikt, Angela Bonifati, Sergio Flesca, and Avinash

Vyas. Adding Updates to XQuery: Semantics, Optimisation and

Static Analysis. In Proceedings of the 2nd International Workshop

on XQuery Implementation, Experience and Perspectives (XIME-

P), 2005.

[BCP00] Angela Bonifati, Stefano Ceri, and Stefano Paraboschi. Active rules

for xml: A new paradigm for e-services. In Proceeding of the Work-

shop on Technologies for E-Services (TES 2000), pages 77–94, 2000.

[BCP01a] A. Bonifati, S. Ceri, and S. Paraboschi. Active Rules for XML: A

new paradigm for e-Services. VLDB Journal, 10(10):39–47, 2001.

[BCP01b] A. Bonifati, S. Ceri, and S. Paraboschi. Pushing reactive services

to XML repositories using active rules. In Proceedings of the 10th

World Wide Web Conference, pages 633–641, 2001.

[BDZH95] A. P. Buchmann, A. Deutsch, J. Zimmermann, and M. Higa. The

REACH active OODBMS. In Proceedings of the 1995 ACM SIG-

MOD International Conference on Management of data, page 476,

1995.

237

[Bec04] Dave Beckett. RDF/XML Syntax Specification.

http://www.w3.org/TR/rdf-syntax-grammar/, February 2004.

[BEPR06] Francois Bry, Michael Eckert, Paula-Lavinia Patranjan, and Inna

Romanenko. Realizing Business Processes with ECA Rules: Bene-

fits, Challenges, Limits. In Proceedings of 4th Workshop on Prin-

ciples and Practice of Semantic Web Reasoning (PPSWR 2006),

2006.

[BFKM85] Lee Brownston, Robert Farrell, Elaine Kant, and Nancy Martin.

Programming expert systems in OPS5: an introduction to rule-based

programming. Addison-Wesley Longman Publishing Co., Inc., 1985.

[BLCG92] Tim Berners-Lee, Robert Cailliau, and Jean-François Groff. The

World-Wide Web. Computer Networks and ISDN Systems, 25(4-

5):454–459, 1992.

[Blo70] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with

Allowable Errors. Commununications ACM, 13(7):422–426, 1970.

[BPC01] James Bailey, Alexandra Poulovassilis, and Simon Courtenage. Op-

timising Active Database Rules by Partial Evaluation and Abstract

Interpretation. In Proceedings of the 8th International Workshop of

Database Programming Languages (DBPL), pages 300–317, 2001.

[BPF+94] M.L. Barja, N.W. Paton, A.A.A. Fernandes, M.H. Williams,

and A. Dinn. An Effective Deductive Object-Oriented Database

Through Language Integration. In Proceedings of the 20th Interna-

tional Conference of Very Large Databases (VLDB), pages 463–474,

1994.

238

[BPF+95] M.L. Barja, N.W. Paton, A.A.A. Fernandes, M.H. Williams, and

A. Dinn. ROCK & ROLL: A Deductive Object-Oriented Database

System. Information Systems, 20:185–211, 1995.

[BPPW04] James Bailey, George Papamarkos, Alexandra Poulovassilis, and Pe-

ter T. Wood. An Event-Condition-Action Rule Language for XML.

In Web Dynamics, pages 223–248. Springer-Verlag, 2004.

[BPW02a] James Bailey, Alexandra Poulovassilis, and Peter T. Wood. An

Event-Condition-Action language for XML. In Proceedings of the

11th World Wide Web Conference, pages 486–495, 2002.

[BPW02b] James Bailey, Alexandra Poulovassilis, and Peter T. Wood. Anal-

ysis and Optimisation of Event-Condition-Action Rules on XML.

Computer Networks, 39:239–259, 2002.

[BPW02c] James Bailey, Alexandra Poulovassilis, and Peter T. Wood. Analysis

and optimisation of Event-Condition-Action rules on XML. Com-

puter Networks, 39(3):239–259, 2002.

[Bun97] Peter Buneman Semistructured Data. In Proceedings of the 16th

ACM Symposium of Principles of Database Systems (PODS), pages

117–121, 1997.

[CCMW01] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva

Weerawarana. Web Services Description Language (WSDL) 1.1.

http://www.w3.org/TR/wsdl, March 2001.

[CCR04] Miguel Castro, Manuel Costa, and Antony Rowston. Peer-to-Peer

overlays: structured, unstructured, or both? Technical Report

MSR-TR-2004-73, Microsoft Research, 2004.

239

[CFP99] S. Ceri, P. Fraternali, and S. Paraboschi. Data-driven one-to-one

web site generation for data intensive applications. In Proceedings

of the 25th International Conference on Very Large Databases, pages

615–626, 1999.

[CFR06] Don Chamberlin, Daniela Florescu, and Jonathan Robie. XQuery

Update Facility. http://www.w3.org/TR/xqupdate/.

[CFR05] Don Chamberlin, Daniela Florescu, and Jonathan

Robie. XQuery Update Facility Requirements.

http://www.w3.org/TR/xquery-update-requirements/, June

2005.

[CGM02] Arturo Crespo and Hector Garcia-Molina. Routing Indices for Peer-

to-Peer Systems. In Proceeding of the 22nd International Conference

on Distributed Computing Systems (ICDCS), pages 23–34, 2002.

[CGMR95] S. Castangia, Giovanna Guerrini, Danilo Montesi, and G. Ro-

driguez. Design and Implementation for the Active Rule Language

of Chimera. In Proceedings of the 6th International Conference on

Database and Expert Systems Applications (DEXA), pages 45–54,

1995.

[CKK+03] V. Christophides, G. Karvounarakis, I. Koffina, G. Kokkinidis,

A. Magkanaraki, D. Plexousakis, G. Serfiotis, and V. Tannen. The

ICS-FORTH SWIM: A Powerful Semantic Web Integration Middle-

ware. In Proceedings of the 1st International Workshop on Semantic

Web and Databases (SWDB), pages 381–393, 2003.

240

[CM94] Sharma Chakravarthy and D. Mishra. Snoop: An Expressive Event

Specification Language for Active Databases. Data Knowledge En-

gineering, 14(1):1–26, 1994.

[CPHK02] Eunsuk Cho, Insuk Park, Soon J. Hyun, and Myungchul Kim.

ARML: an active rule mark-up language for heterogeneous active

information systems. In Proceedings of the International Workshop

on Rule Markup Languages for Business Rules on the Semantic Web,

2002.

[CS02] Edith Cohen and Scott Shenker. Replication Strategies in Unstruc-

tured Peer-to-Peer Networks. SIGCOMM Computer Communica-

tion Review, 32(4):177–190, 2002.

[DB2XML] IBM. DB2 XML Extender.

http://www-306.ibm.com/software/data/db2/extenders/xmlext/,

2002.

[DBB+88] U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu,

R. Ledin, D. McCarthy, A. Rosenthal, S. Sarin, M. J. Carey,

M. Livny, and R. Jauhari. The HiPAC project: combining active

databases and timing constraints. SIGMOD Record, 17(1):51–70,

1988.

[DBLP06] Universitat Trier. DBLP Bibliography.

www.informatik.uni-trier.de/ ley/db/.

[DBM88] U. Dayal, A.P. Buchmann, and D.R. McCarthy. Rules Are Ob-

jects Too: A Knowledge Model for an Active Object Oriented

Database System. In Proceedings of the 2nd International Work-

shop on OODBMS, pages 129–143, 1988.

241

[dbXML] dbXML: Native XML Database. http://www.dbxmlgroup.com/.

[DC03] Dublic Core Consortium. Dublic Core RDF Vocabulary.

http://purl.org/dc/elements/1.1/, 2003.

[DJ97] Oscar Dı́az and Arturo Jaime. EXACT: An Extensible Approach

to Active Object-Oriented Databases. In Proceedings of the 23rd

International Conference of Very Large Databases (VLDB), pages

282–295, 1997.

[DPW99] Andrew Dinn, Norman W. Paton, and M. Howard Williams. RAP:

The ROCK & ROLL Active Programming System. In Active Rules

in Database Systems, pages 323–336. Springer-Verlag, 1999.

[eXist] eXist: Open Source Native XML Database.

http://exist.sourceforge.net/.

[Freenet] Freenet. See. http://www.freenet.sourceforge.com.

[FW04] David C. Fallside and Priscilla Walmsley W3C. XML Schema Part

0: Primer Second Edition. http://www.w3.org/TR/xmlschema-0/,

October 2004.

[GD92] Stella Gatziu and Klaus R. Dittrich. SAMOS: an Active Object-

Oriented Database System. IEEE Data Engineering Bulletin, 15(1-

4):23–26, 1992.

[GD94] Stella Gatziu and K.R. Dittrich. Detecting Composite Events in

Active Database Systems Using Petri Nets. In Proceedings of the

4th International Workshop on Research Issues in Data Engineering:

Active Database Systems (RIDE-ADS), pages 2–9, 1994.

242

[GGD95] A. Geppert, S. Gatziu, and K. R. Dittrich. A Designer’s Bench-

mark for Active Database Management Systems: 007 Meets the

BEAST. In Proceedings of the 2nd International Workshop on Rules

in Database Systems, pages 309–326, 1995.

[GGM+04] Todd J. Green, Ashish Gupta, Gerome Miklau, Makoto Onizuka,

and Dan Siciu. Processing XML Streams With Deterministic Au-

tomata and Stream Indexes. ACM Transactions on Database Sys-

tem, 29(4):752788, 2004.

[GJS92] N. Gehani, H. V. Jagadish, and O. Shmueli. Composite event speci-

fication in active databases: Model and implementation. In Proceed-

ings of the 18th International Conference of Very Large Databases

(VLDB), pages 327–338, 1992.

[GMS87] Hector Garcia-Molina and Kenneth Salem. Sagas. In Proceedings of

the 1987 ACM SIGMOD International Conference on Management

of Data, pages 249–259, 1987.

[Gnutella] Gnutella. See. http://www.gnutella.wego.com.

[GWJD03] Leonidas Galanis, Yuan Wang, Shawn R. Jeffery, and David J. De-

Witt. Locating data sources in large distributed systems. In Pro-

ceeding of the 29th International Conference of Very Large Databases

(VLDB), pages 874–885, 2003.

[Han96] E. N. Hanson. The Design and Implementation of the Ariel Active

Database Rule System. IEEE Transactions on Knowledge and Data

Engineering, 8(1):157–172, 1996.

243

[HSS03] K. Haller, H. Schuldt, and H.J. Schek. Transactional peer-to-peer

information processing: The AMOR approach. In Proceedings of the

4th International Conference on Mobile Data Management, pages

356–362. Springer, 2003.

[IEEE-LOM] IEEE Learning Technology Standards Committee. IEEE Learning

Object Metadata (LOM). http://ltsc.ieee.org/wg12/.

[IKK98] H. Ishikawa, K. Kubota, and Y. Kanemasa. XQL: A Query Language

for XML Data. In Proceedings of the W3C Workshop on Query

Language, 1998.

[IO01] H. Ishikawa and M. Ohta. An active web-based distributed database

system for e-commerce. In Proceedings of the 1st International

Workshop on Web Dynamics, 2001.

[Jai91] Raj Jain. The Art of Computer Systems Performance Analysis.

Wiley, 1991.

[JavaCC05] Java.net. Java Compiler Compiler (JavaCC) - The Java Parser Gen-

erator. https://javacc.dev.java.net/.

[Jelly] Apache Foundation. Jelly : Executable XML.

http://jakarta.apache.org/commons/jelly/.

[Jena2] Hewlett-Packard Labs. Jena Semantic Web Framework.

http://jena.sourceforge.net/.

[KAC+02] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis,

and M. Scholl. RQL: a declarative query language for RDF. In

Proceedings of the 11th International World Wide Web Conference,

pages 592–603, 2002.

244

[Kazaa] Kazaa. See. http://www.kazaa.com.

[KC04] Giorgos Kokkinidis and Vassilis Christophides. Semantic Query

Routing and Processing in P2P Database Systems: The ICS-

FORTH SQPeer Middleware. In Proceeding of the 9th International

Conference on Extending Database Technology (EDBT), pages 486–

495, 2004.

[KLS90] Henry F. Korth, Eliezer Levy, and Abraham Silberschatz. A formal

approach to recovery by compensating transactions. In Proceed-

ings of the 16th International Conference on Very Large Data Bases

(VLDB), pages 95–106, 1990.

[KMC99] Krishna G. Kulkarni, Nelson Mendonça Mattos, and Roberta

Cochrane. Active Database Features in SQL3. In Active Rules in

Database Systems, pages 197–219. 1999.

[KP03] G. Koloniari and E. Pitoura. Content-Based Routing of Path

Queries in Peer-to-Peer Systems. In Proceedings of the 8th Interna-

tional Conference on Extending Database Technology (EDBT), pages

29–47, 2003.

[KPPL03] K. Keenoy, G. Papamarkos, A. Poulovassilis, M. Levene, D. Pe-

terson, P.T. Wood, and G. Loizou. WP2 Deliverable 2.2: Self

E-Learning Networks – Functionality, User Requirements and Ex-

ploitation Scanarios Technical report, School of Computer Science

and Information Systems, Birkbeck, University of London, 2003.

[LM00] Andreas Laux and Lars Martin.

XML:DB — XUpdate Working Draft.

245

http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html,

September 2000.

[MP03] P. McBrien and A. Poulovassilis. Defining Peer-to-Peer integration

using Both-As-View rules. In Proceedings of the 1st International

Conference on Databases, Information Systems and Peer-to-Peer

Computing (DBISP2P), pages 91–107, 2003.

[MSCK05] M. Magiridou, S. Sahtouris, Vassilis Christophides, and Manolis

Koubarakis. RUL: A declarative update language for RDF. In Pro-

ceedings of the 4th International Semantic Web Conference, pages

506–521, 2005.

[MSSQL05] Microsoft Corporation. SQL Server 2005.

http://www.microsoft.com/sql/default.mspx, 2005.

[NJ00] Matthias Nicola and Matthias Jarke. Performance Modeling of Dis-

tributed and Replicated Databases. IEEE Transactions on Knowl-

edge and Data Engineering, 12(4):645–672, 2000.

[NSST02] Wolfgang Nejdl, Wolf Siberski, Bernd Simon, and Julien Tane.

Towards a Modification Exchange Language for Distributed RDF

Repositories. In Proceedings of the 1st International Semantic Web

Conference, pages 236–249, 2002.

[NWQ+02] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael

Sintek, Ambjorn Naeve, Mikael Nilsson, Matthias Palmer, and Tore

Risch. EDUTELLA: A P2P Networking Infrastructure Based on

RDF. In Proceedings of the 11th International World Wide Web

Conference, pages 604–615, 2002.

246

[NWS+03] Wolfgang Nejdl, Martin Wolpers, Wolf Siberski, Christoph Schmitz,

Mario T. Schlosser, Ingo Brunkhorst, and Alexander Löser. Super-

peer-based routing and clustering strategies for RDF-based peer-to-

peer networks. In Proceedings of the 12th International World Wide

Web Conference, pages 536–543, 2003.

[OQL01] Object Data Management Group. Object Query Language (OQL).

http://www.odmg.org/.

[OMFB02] Dan Olteanu, Holger Meuss, Tim Furche, and François Bry. XPath:

Looking Forward. In Proceedings of the Workshop on XML Data

Management (XMLDM), pages 109–127, 2002.

[OraXML] Oracle. Oracle XML DB 10g.

http://www.oracle.com/technology/tech/xml/xmldb/index.html.

[Pat89] Norman W. Paton. ADAM: An Object-Oriented Database System

Implemented in Prolog. In Proceedings of the 7th British National

Conference on Databases, pages 147–161, 1989.

[Pat99] Norman W. Paton. Active Rules In Database Systems. Springer,

1999.

[PlanetLab] PlanetLab. http://www/.planet-lab.org.

[PPW03a] G. Papamarkos, A. Poulovassilis, and P. T. Wood. WP4 Deliverable

4.4 — ECA Rules Languages for Active Self e-Learning Networks.

Technical report, School of Computer Science and Information Sys-

tems, Birkbeck, University of London, 2003.

[PPW03b] George Papamarkos, Alexandra Poulovassilis, and Peter T. Wood.

Event-Condition-Action Rule Languages for the Semantic Web. In

247

Proceedings of the 1st International Workshop on Semantic Web and

Databases, pages 309–327, September 2003.

[PPW04] George Papamarkos, Alexandra Poulovassilis, and Peter T. Wood.

RDFTL: An Event-Condition-Action Language for RDF. In Pro-

ceedings 3rd Web Dynamics Workshop at WWW’2004, pages 223–

248, 2004.

[PPW06] George Papamarkos, Alex Poulovassilis, and Peter T. Wood. Event-

Condition-Action Rules on RDF Metadata in P2P Environments.

Computer Networks, 50(10):1513–1532, 2006.

[PS91] Alexandra Poulovassilis and Carol Small. A functional program-

ming approach to deductive databases. In Proceedings of the 17th

International Conference on Very Large Databases (VLDB), pages

491–500, 1991.

[PV97] Philippe Picouet and Victor Vianu. Expressiveness and Complexity

of Active Databases. In Proceedings of the 6th International Con-

ference on Database Theory, pages 155–172, 1997.

[R-SSF] Raceway SSF. https://gradus.renesys.com/exe/Raceway.

[RCF00] Jonathan Robie, Don Chamberlin, and Daniela

Florescu. QUILT: an XML Query Language.

http://www.almaden.ibm.com/cs/people/chamberlin/quilt euro.html,

March 2000.

[RD01] Antony Rowstron and Peter Druschel. Pastry: Scalable, Decen-

tralized Object Location, and Routing for Large-Scale Peer-to-Peer

Systems. pages 329–350, 2001.

248

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.

A scalable content-addressable network. In Proceedings of the 2001

ACM SIGCOMM Conference, pages 161–172, 2001.

[RDFPath] RDFPath Query Language. http://logicerror.com/RDFPath.

[RDFSuite] ICS FORTH. Institute of Computer Science of the

Foundation for Research and Technology , RDFSuite.

http://139.91.183.30:9090/RDF/.

[RPS95] Swarup Reddi, Alexandra Poulovassilis, and Carol Small. Extending

a Functional DBPL with ECA-rules. In Proceedings of the 2nd In-

ternational Workshop on Rules in Database Systems (RIDS), pages

101–118, 1995.

[RS03] Philippe Rigaux, and Nicolas Spyratos. Generation and Syndica-

tion of Learning Object Metadata. Laboratoire de Recherche en

Informatique, Universite Paris-Sud Orsay, France, 2004.

[RuleML] The Rule Markup Initiative. http://www.ruleml.org/.

[SeLeNe] SeLeNe : Self e-Learning Networks.

http://www.dcs.bbk.ac.uk/selene/.

[Sesame] openRDF Consortium. Sesame: RDF Schema Querying and Stor-

age. http://www.openrdf.org/.

[SC04] The SeLeNe Consortium. An Architectural Framework and Deploy-

ment Choices of SeLeNe. Technical report, School of Computer

Science and Information Systems, Birkbeck, University of London,

2004.

249

[SHP88] Michael Stonebraker, Eric N. Hanson, and Spyros Potamianos. The

postgres rule manager. IEEE Transactions on Software Engineering,

14(7):897–907, 1988.

[SMK+01] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari

Balakrishnan. Chord: A scalable Peer-To-Peer lookup service for

internet applications. In Proceedings of the 2001 ACM SIGMOD

International Conference on Management of Data, pages 149–160,

2001.

[SR86] Michael Stonebraker and Lawrence A. Rowe. The design of postgres.

In Proceedings of the 1986 ACM SIGMOD International Conference

on Management of Data, pages 340–355, 1986.

[SSDN02] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. HyperCuP –

hypercubes, ontologies and efficient search on P2P networks. In

Proceedings of the 1st International Workshop on Agents and P2P

Computing, pages 112–124, 2002.

[SSF] SSF Scalable Simulation Framework.

http://www.ssfnet.org/homePage.html.

[Starburst] IBM Research Labs. Starburst.

http://www.almaden.ibm.com/cs/starwinds/starburst.html,

1992.

[ST04] Wolf Siberski and Uwe Thaden. A Simulation Framework for

Schema-Based Query Routing in P2P Networks. In Proceedings of

the 1st Workshop on Peer-to-Peer Computing and Databases , pages

436–445, 2004.

250

[TIHW01] Igor Tatarinov, Zachary G. Ives, Alon Y. Halevy, and Daniel S.

Weld. Updating XML. In Proceedings of the 2001 ACM SIGMOD

International Conference on Management of Data, pages 413–424,

May 2001.

[TIM+03] Igor Tatarinov, Zachary Ives, Jayant Madhavan, Alon Halevy, Dan

Suciu, Nilesh Dalvi, Xin Dong, Yana Kadiyska, Gerome Miklau, and

Peter Mork. The Piazza Peer Data Management Project. SIGMOD

Record, 32(3):47–52, 2003.

[TJO01] Berners-Lee T., Handler J., and Lassila O. The Semantic Web.

Scientific American, May, 2001.

[OV99] M. Tamer Ozsu, Patrick Valduriez Principles of Distributed

Database Systems. Prentice Hall, 1999.

[UDDI] UDDI Organization. UDDI. http://www.uddi.org/.

[Versa] Uche Ogbuj. Versa RDF Query Language.

http://uche.ogbuji.net/tech/rdf/versa/.

[W3CDOM] W3C. Document Object Model (DOM). http://www.w3.org/DOM/.

[W3C99a] W3C. XML Path Language (XPath) Version 1.0.

http://www.w3.org/TR/2005/CR-xpath20-20051103/, November

1999.

[W3C99b] W3C. XSL Transformations (XSLT) Version 1.0.

http://www.w3.org/TR/xslt, November 1999.

[W3C01] W3C. XML Pointer Language (XPointer) Version 1.0.

http://www.w3.org/TR/WD-xptr, January 2001.

251

[W3C04a] W3C. RDF Semantics, W3C Recommendation 10 February 2004,

2004.

[W3C04b] W3C. RDF Vocabulary Description Language 1.0: RDF Schema,

W3C Recommendation 10 February 2004, 2004.

[W3C04c] W3C. RDF/XML Syntax Specification, W3C Recommendation 10

February 2004, 2004.

[W3C04d] W3C. RDQL - A Query Language for RDF.

http://www.w3.org/Submission/RDQL/, January 2004.

[W3C04e] W3C. Resource Description Framework (RDF): Concepts and Ab-

stract Syntax. http://www.w3.org/TR/rdf-concepts/, February

2004.

[W3C05a] W3C. XML Path Language (XPath) Version 2.0.

http://www.w3.org/TR/2005/CR-xpath20-20051103/, November

2005.

[W3C05b] W3C. XQuery 1.0: An XML Query Language.

http://www.w3.org/TR/xquery/, November 2005.

[W3C06a] W3C. Extensible Markup Language (XML) 1.0 (Fourth Edition).

http://www.w3.org/TR/REC-xml/, August 2006.

[W3C06b] W3C. SPARQL Protocol for RDF.

http://www.w3.org/TR/rdf-sparql-protocol/, January 2006.

[W3C06c] W3C. SPARQL Query Language for RDF.

http://www.w3.org/TR/rdf-sparql-query/, February 2006.

252

[W3C06d] W3C. XML Schema 1.1. http://www.w3.org/TR/xmlschema11-1/,

March 2006.

[Wag02] Gerd Wagner. How to Design a General Rule Markup Language?

In Invited talk at the Workshop XML Technologien für das Semantic

Web (XSW 2002), Berlin, pages 19–37, June 2002.

[WBT92] D.L. Wells, J.A. Blakeley, and C.W Thompson. Architecture of

an Open Object-Oriented Database Management System. IEEE

Computer, 25(10):74–82, 1992.

[WC96] Jennifer Widom and Stefano Ceri. Active Database Systems — Trig-

gers and Rules For Advanced Database Processing. Morgan Kauf-

mann, 1996.

[Wid92] Jennifer Widom. The Starburst Rule System: Language Design,

Implementation, and Applications. In IEEE Data Engineering Bul-

letin, volume 15, pages 15–18. 1992.

[Wid96] Jennifer Widom. The Starburst Rule System. In Active Database

Systems: Triggers and Rules For Advanced Database Processing,

pages 87–109. Morgan Kaufmann, 1996.

[Xindice] Apache Foundation. Xindice XML Repository.

http://xml.apache.org/xindice/.

[XML:DB] XML:DB Initiative for XML Databases.

http://xmldb-org.sourceforge.net/.

[XMLRPC] XML-RPC.com. XML-RPC : Remote Procedure Calling protocol.

http://www.xmlrpc.com/.

253

[YGM01] Beverly Yang and Hector Garcia-Molina. Comparing Hybrid Peer-

to-Peer Systems. In Proceedings of the 27th International Conference

of Very Large Databases (VLDB), pages 561–570, 2001.

[ZHS+04] Ben Y Zhao, Ling Huang, Jeremy Stribling, Sean C Rhea, An-

thony D Joseph, and John Kubiatowicz. Tapestry: A Resilient

Global-scale Overlay for Service Deployment. IEEE Journal on Se-

lected Areas in Communications, 22(1):41–53, 2004.

254

