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The Modelling of Short High-

Dimensional Multivariate Time Series 
 

Abstract 
 

In bio-medical domains there are many applications involving the modelling of 

multivariate time series (MTS) data. One area that has been largely overlooked so far is 

the particular type of time series where the dataset consists of a large number of 

variables but with a small number of observations. This thesis presents a methodology 

for the modelling of this type of data and introduces a novel computational method, 

which combines evolutionary algorithms and traditional statistical methods. 

 

Two key issues in modelling short MTS are addressed in this thesis. Firstly, the curse of 

many time series modelling methods, particularly those from the traditional statistical 

approaches, is the number of parameters that must be located in order to apply the 

models. The method proposed in this thesis bypasses this parameterisation problem by 

locating the key relationships between the multivariate time series variables using a 

cross-correlation search and decomposing these variables into mutually exclusive but 

highly interrelated subsets using evolutionary algorithms. Secondly, the short length of 

these time series pose significant challenges since traditional statistical methods often 

place constraints on the minimum number of observations in the dataset. Towards this 

end, an effective way of modelling this type of data has been developed based on 

evolutionary algorithms and the Vector Autoregressive Process, which avoids these 

constraints. 

 

The work in this thesis has been extensively evaluated against both simulated and real 

world biomedical time series. Evaluation is performed from both a theoretical and 

empirical angle and the results obtained suggest the proposed methodology is highly 

effective. This thesis makes the following key contributions: the introduction of a rapid 

correlation mining method, the effective decomposition of high dimensional MTS into 

subgroups, and the novel modelling of short MTS datasets. 
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Notation 
 

The following notations are used throughout this thesis. 

 

Mathematical and Statistical 
 

y x,  A vector 

xA � ,�  Estimator for a matrix or variable 

XX  ,  Transformation of a matrix or a change of matrix notation 

0  A matrix of zeros 

A, B A matrix 

AT Transpose of a matrix A 

A-1 Inverse of a matrix A 

aij The element in the ith row and jth column of a matrix A 

Ci A Gershgorin circle 

D The union of some Gershgorin circles 

E(x) The expected value of a variable x 

I, Ia The identity matrix (of size a if specified) 

i, j Typical index variables 

MAXLAG 

POPULATION etc� 

A parameter constant 

N(µ,σ) Normal (Gaussian) distribution with mean µ and standard

deviation σ (the density function) 

N, M Length or size of an object 

Pr(x>a) The probability that a random variable x is greater than a 

Rs Spearman�s Rank Correlation Coefficient 

x ~ N(µ,σ) Random variable x is distributed by the specified Normal

distribution 

z The value of a variable distributed under the standard Normal

distribution, i.e. N(0,1), Pr(x>z) = φ(z) 
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xi, yi The ith element of a vector 

λ, λi An eigenvalue 

µ, µx Mean 

ρ, ρxy Pearson�s Correlation Coefficient 

σ, σx Standard deviation 

Σ, Σε Covariance matrix 

φ(z) The cumulative standard Normal distribution, the density

function is N(0,1) 

 

Functional 
 

[A B] Concatenation of matrices and/or vectors where the number of

rows of each object being operated on is equal. The operator

produces a single matrix formed from each column of each

object as they appear, traversing from left to right 

[a, b] A set of numbers between a and b inclusive 

(a, b) A set of numbers between a and b exclusive, equal to [a+1, b-1]

for integers 

(a, b] A set of numbers between a and b exclusive of a, equal to

[a+1, b] for integers 

[a, b) A set of integers between a and b exclusive of b, equal to

[a, b-1] for integers 

a1,...,aN An alternative notation to the interval and set notation used

above, using variables as opposed to numeric constants 

CP(z,y) 

F*(a) 

Sv(a) 

etc� 

Functions with parameters 

UI(a,b) A random uniformly distributed uniform integer between a and

b inclusive 

UR(a,b) A random uniformly distributed real number between a and b

inclusive 
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∆ Determinant of a given matrix 

|A| Alternative notation for the determinant of a matrix 

x  
Vector magnitude = ∑

=

N

i
ix

1

2  

|a| Absolute value of a scalar 

|gi| The number of elements in a set or group gi 

 

General Time Series 
 

t A time point of a time series 

T The length of a time series 

 

Univariate Time Series 
 

Lt The local level of a Holt-Winters univariate forecast at time t 

Tt The local trend of a Holt-Winters univariate forecast at time t 

X  A univariate time series 

Xt An observation of a univariate time series variable at time t 

α The Holt-Winters smoothing parameter for the local level 

γ�  The Holt-Winters smoothing parameter for the local trend 

 

Multivariate Time Series and Space-Time Series 
 

)( ),( tytx  A vector observation of a multivariate time series at time t 

)( htx +  A vector forecast of a time series h steps ahead of time t 

)(ε t  Vector noise observation in a time series at time t 

p�
�Σ  Estimated covariance matrix for a fitted model of order p�  

Ai The ith parameter matrix of a VAR process 

Mi The ith parameter matrix of a VMA process 

n The number of variables in a multivariate time series 
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nVAR(p) An n variable VAR process of order p 

nVARMA(p,q) An n variable VARMA process of order p and q 

nVMA(q) An n variable VMA process of order q 

p The order of a VAR or STAR process 

q The order of a VMA process 

xi(t) The ith variable of a multivariate time series at time t 

Γ(h) Auto-covariance function at time lag h 

Ω 
Margin of error for recording no change for a visual field

variable forecast 

iΘ  Autoregressive spatial lag at time lag i 

Aij Autoregressive parameters 

W(j) Weighting Matrix for lag j 

 

Grouping and Correlation 
 

□i The ith group partition in the PMX crossover operator 

G, Gi A grouping, consisting of a non-overlapping set of sets 

gi A group, a set of variables 

gij The jth member of group gi 

ki The size of a group gi 

m The number of groups 

Q The list of correlations that have been mined, of length R 

R The number of correlations to be mined (the size of Q) 

r The true number of correlations to be mined (the best r from Q) 

c 
The number of correlations calls an algorithm is allowed to

make 

s 
The number of possible correlations in a multivariate time

series 

β The ratio R
r  

γ The ratio s
c  
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1. Introduction 
 

In bio-medical domains there are many applications involving the modelling of 

Multivariate Time Series (MTS) data [Hannan1970]. One area, which has been largely 

overlooked, is the particular type of time series where the dataset consists of a large 

number of variables but with a small number of observations. When modelling this type 

of dataset using traditional statistical methods there are two key issues that need to be 

addressed. The first is the number of parameters which need to be located; this increases 

in relation to the dimensionality of the dataset. Secondly the small length of such time 

series can prove to be problematic. Being both high in dimensionality and short in 

length complicates these problems further. Many of these traditional statistical methods 

simply impose a restriction on the minimum length, thus effectively preventing their 

application to the problem. 

 

This work applies Evolutionary Computation [Bäck1997] techniques to the modelling 

of short MTS. Such a time series is decomposed into groups of lower dimensionality 

series, and then modelled for short term forecasting. This work shows where the 

classical techniques fail in this task, and demonstrates that Evolutionary techniques can 

be applied successfully. 

 

1.1 Motivation 
 

This research project was motivated by a common problem within bio-medical 

domains. This problem is that an extraordinary amount of data is collected on 

bio-medical experiments, medical conditions and patients, and is very rarely analysed to 

a significantly satisfactory level [Wyatt1995]. The domain that this thesis concentrates 

on is Ophthalmology, although techniques developed are applicable to a range of 

applications including the analysis of short MTS such as gene expression data in 

functional genomics [Lockhart2000]. 
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The application domain involves an eye condition called Normal Tension Glaucoma. 

This condition, if left untreated, can lead to a severe reduction in a person�s capacity to 

see and, if left untreated long enough, perhaps to blindness. The condition has no known 

cure, however drugs can be applied to slow down the progression. Unfortunately these 

drugs can have some severe side effects. Throughout the treatment process of those who 

are diagnosed with normal tension glaucoma a set of visual tests are performed at 

approximately six months intervals to record progression of the condition at key points 

on the eye. A clinician then examines the whole set of tests and decides on whether the 

rate of deterioration has changed. If rate of deterioration has increased then it might 

warrant an increase in the dosage of medication prescribed or perhaps even surgery. If 

the rate of deterioration has decreased, the clinician might prescribe a lower dosage of 

the medication because of the side effects. Automatically forecasting this deterioration 

for a given patient will help the clinician in this task, and hence improve the quality of 

treatment the patient receives. This dataset can be modelled as a Short Multivariate 

Time Series dataset. With the visual field dataset each of the points measured on the eye 

can be seen as a variable and each test as a set of observations at a time point.  

 

There are many existing techniques that are well proven with MTS data, but when the 

time series becomes short such methods start to encounter problems, e.g. bias or 

complete failure. Evolutionary computation techniques can be used to avoid these 

problems. This research project shows that a high dimensionality short MTS can be 

modelled better when it is decomposed into a set of lower dimensional series. The 

project then shows how improvements can be made in the short term forecasting of 

short multivariate time series by computing the parameters of such models using 

evolutionary computation techniques. 

 

The glaucoma data is described in detail in chapter 2, expanding on how visual field 

data is currently forecast and modelled. Essentially the data is modelled using linear 

regression [Mosteller1977] and not as an MTS. This, combined with a graphical user 

interface indicating the �goodness of fit� of the regression line has been made into a tool 

called Progressor (see chapter 2).  
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The time series model that is deemed suitable for forecasting the visual field data is the 

Vector Autoregressive (VAR) process [Lütkepohl1993]. This process has been used in a 

variety of applications, e.g. [Webb1995] and there are various different types of this 

model, for example the Bayesian Vector Autoregressive process [Dua1995]. Although 

the basic VAR process has been superseded by more advanced models [Holden1995], 

the work in this thesis initially uses this basic model to demonstrate the problems 

inherent in short multivariate time series and to show the validity of the ideas presented, 

and then details the implementation for one of these advanced models. The modelling of 

short high dimensional multivariate time series has not been addressed with the VAR 

process as well as many other statistical methods. 

 

Finally it is worth noting that many forecasting problems are now performed by neural 

networks [Ungar1995, Zirilli1997] however unlike the VAR process these models do 

not provide any readily comprehensible information about the relationships between 

variables over time [Faraway1998]. 

 

1.2 Methodology 
 

Mine Correlations
(Chapter 3)

Grouping
(Chapter 4)

Model Building
(Chapters 5 and 6)

Conclusions
(Chapter 7)

Evaluate

Evaluate

Evaluate

 

Figure 1.1 outlines the process diagram 

for the methodology for this research 

project, which consists of four steps. 

Three of the steps involve the 

development of the required MTS 

models, and the final step is an appraisal 

of the resulting models. 

 

The first step is the mining of 

correlations from the dataset. This stage 

concerns the temporal mining of 

relationships in a time series.  

 

Figure 1.1: Process Diagram for Methodology 
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The goal is to develop an algorithm that finds a good-but-not-optimal selection of 

interesting highly related time series variables in as short amount of time as possible. 

Three methods for finding the approximate correlation structure are presented and 

compared to the exhaustive search method for verification. All the methods utilise two 

procedures for calculating correlations. 

 

Very little work has been done on the temporal correlation mining problem, but some 

work has been done on grouping variables [Falkenauer1998, Venugopal1992] which is 

the second stage of the methodology. Once the correlations have been located, the next 

step is to use this information to construct a set of groups. Here the optimal arrangement 

is where there are strong relationships between variables in the same group, and weak 

relationships between variables in different groups. The decomposition of high 

dimensional MTS into a number of low dimensional MTS is a useful but challenging 

task because the number of possible dependencies between variables is likely to be 

huge. This part of the methodology contains a systematic study and application of the 

variable grouping problem in MTS. In particular, different methods of utilising the 

information regarding correlations among MTS variables are investigated. 

 

Having decomposed a high dimensional MTS into a number of lower dimensional 

MTS, the third step of the methodology presents an evolutionary computation based 

method specially tailored to modelling short MTS using the VAR process. Much 

research has been done on the modelling of MTS data in both the statistical and 

artificial intelligence communities. However, one area that has been largely overlooked 

is MTS in which the data set consists of a large number of variables but with a small 

number of observations. There are inherent difficulties in using traditional statistical 

techniques to model this type of MTS. By combining the decomposition of an MTS into 

a collection of smaller dimensionality series and the specially adapted VAR process, it 

is demonstrated that an effective and efficient methodology for the modelling of short 

and high dimensional MTS is created. 
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1.3 Contributions 
 

This thesis contributes to five key areas in data analysis, data modelling and visual field 

analysis.  

 

1. Correlation Mining. The temporal correlation mining method that proves to be the 

best in performance is based on an evolutionary programming technique, and produces 

a pre-specified number of the highest correlated variables in a MTS. This list is mined 

without having to explore the whole correlation space (which would be highly time 

consuming), and in test and real world datasets has managed to provide results that are 

~95% accurate while only exploring ~27% of the possible correlations. This has a wide 

variety of applications, particularly if such a correlation list is needed quickly or within 

a real time application. Very little work seems to have been done on this important data 

pre-processing technique. 

 

2. Grouping. The decomposition of a set of MTS variables into exclusive related 

groups with high inter-dependencies and low dependencies with variables in other 

groups is another useful data pre-processing procedure, which naturally leads on from 

the correlation mining results. The proposed method is a Genetic Algorithm based 

technique, which includes the definition of a fitness function to rate candidate solutions 

based on the results of the correlation mining stage of the methodology. Furthermore, 

this fitness function is demonstrated to have the required mathematical properties 

desirable in such a function. The proposed method is highly accurate and performs 

better than the other standard techniques it is compared with. The subsets of variables 

can be used for a variety of applications, such as model building. Because the groups 

are smaller than when they are treated as a single group, any models will be easier to 

apply and locate because of the fewer number of parameters needed to make up the 

models. Most work in this area involves data clustering methods; however these 

methods do not make use of time dependencies between variables.  

 

 

 



Chapter 1 

25 

3. VARGA. This method incorporates the use of genetic algorithms to find the order 

and parameters of a VAR process for modelling short MTS. The method avoids the 

length restriction imposed by some statistical methods, locates the parameters for the 

model and creates subset models in one step to a higher degree of accuracy than the 

standard techniques. An initial version of the VARGA paradigm is developed and 

demonstrated to be superior when tested against a univariate time series forecasting 

method and a standard statistical package. Two further improvements of the VARGA 

method are made, and each variant is extensively tested on a number of criteria. The 

final version of VARGA is shown to perform exceptionally well against standard 

statistical methods, a heuristic search method, and the other VARGA variants. 

 

4. The Process. Points 1 to 3 above, when combined, have been shown to be an 

effective procedure for modelling short, high-dimensional MTS datasets that would 

otherwise prove very difficult or impossible to model using more conventional methods. 

This procedure has a wide range of applications to many other important datasets of this 

nature.  

 

5. Visual Fields. The process described in point four above has been successfully 

applied to the modelling of normal tension glaucoma patient�s visual field tests. The 

results demonstrate that the visual field dataset can be successfully and efficiently 

modelled as an MTS with a high degree of accuracy. This is an important finding since 

many of the current methods for predicting visual field loss are based on univariate 

linear regression. Additionally the correlation mining results graphically depicts the 

spread of the condition, which corresponds to the medical literature; and the grouping 

results indicate that size of the subset MTS corresponds to how advanced the condition 

is.  

 

1.4 Summary of Thesis 
 

This thesis is organised as follows: 

 

 



Chapter 1 

26 

Chapter 2 provides a literature review of the concepts, techniques and methods that are 

used within this research project. Firstly, time series analysis, both univariate and 

multivariate is described, particularly the vector autoregressive process. Next, a 

description of the MTS datasets is outlined. Further details of the glaucoma condition 

are given, and then of the visual field data, along with associated current methods for 

predicting deterioration. Finally, the elements of evolutionary computation which have 

been utilised for this research are described. 

 

Chapter 3 examines correlation mining as a method for determining relationships 

within MTS datasets. Two correlation metrics are used and their time series extensions 

are introduced. The number of correlations that are needed for the grouping problem is 

considered and an approximate method is introduced based upon evolutionary 

programming. The results of this method are then compared with several conventional 

methods, and it is demonstrated that the evolutionary approach is better under certain 

conditions. 

 

Chapter 4 looks at decomposing an MTS into a number of smaller series. The goal is 

that such groups should have strong relationships between members of the same group 

but weak relationships between members of other groups. A number of methods are 

presented, including methods based upon genetic algorithms, a well established 

clustering method and a hill-climbing based method. An evaluation of these methods is 

then performed based on their accuracy. 

 

Chapter 5 introduces VARGA, a modified genetic algorithm which is specifically 

designed for identifying the parameters of a vector autoregressive process. This method 

is described in detail, along with several variants that offer improvements under certain 

circumstances. Each variant is tested on a real world dataset, and compared with a 

well-established conventional technique. 

 

Chapter 6 continues the work introduced in chapter 5, and produces a method which is 

tailored towards finding a vector autoregressive process where the parameter matrices 

are sparse [Zlatev1991], i.e. where many of the elements are zero. These models are 
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also known as VAR subset models [Lütkepohl1993]. Advantage is taken of this new 

representation to develop fast operators and a more efficient fitness function evaluation. 

Furthermore, the method is tested against a number of traditional statistical and artificial 

intelligence methods using additional evaluation criteria. The results are then combined 

with the work of chapters 3 and 4, demonstrating how the entire methodology can be 

applied to a real world dataset. 

 

Chapter 7 summarises the whole thesis. This chapter examines what has been 

developed within this research project and how this can be extended as further work. 
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2. Background 
 

This chapter consists of three parts. The first is an introduction to the statistical 

modelling of time series datasets, followed by the description of the datasets that these 

techniques are applied to. The final section described some artificial intelligence 

techniques that have been applied to improve the performance of the time series models. 

 

2.1 Time Series Analysis 
 

Time series data are widely available in different fields including medicine, finance, 

science and engineering. Modelling time series data effectively is important for many 

decision-making activities. Time series models can be used to forecast future values and 

to help understand the underlying relationships within the time series. 

 

2.1.1 General Time Series 
 

A time series is a series of observations, xi(t); [i=1,...,n; t=1,...,T], made sequentially 

through time. Here i indexes the different measurements made at each time point t; n is 

the number of variables being observed and T is the number of observations made. If n 

is equal to one then the time series is referred to as univariate [Chatfield1989], and if it 

is greater than one the time series is referred to as multivariate [Hannan1970]. Each 

observation, xj(t), has the same meaning as time increases, for example if x1(1) (variable 

one at time point one) is a measurement of weight then x1(2), x1(3),�, x1(T) are also 

measurements of weight. The vector notation )(tx is a shorthand way of referring to the 

whole set of observations made at time t, i.e. )(tx stands for the observations xi(t) 

where ni ≤≤1 . Each time point t has a distinct order, and dictates the time at which 

measurements were recorded, i.e. if )( 1tx and )( 2tx are two observations, and t1 is less 

than t2, then )( 1tx  was observed before )( 2tx . 
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Time series forecasting [Weigend1994] is the process of trying to estimate future values 

of )(tx based upon previous observations; for example, deriving )( hTx +  if 

)(,),1( Txx K are known, where values of h are positive whole number representing the 

number of time points in the future that the forecast is being made.  

 

Much work has been done towards determining the best method of forecasting 

[Chatfield1988a, Mahmoud1984], and work has been done in the use of artificial 

intelligence methods for forecasting [Faraway1998, Numata1998]. 

 

2.1.2 Univariate and Holt-Winters 
 

The majority of the work on time series analysis has been highly concentrated on 

univariate models, which are the simplest types to work with. Within this area, most 

work has been concentrated on the family of linear models, which includes the 

autoregressive (AR), moving average (MA) and autoregressive moving average models 

(ARMA) [Box1970]. 

 

Since much of this research is concerned with the short term forecasting of 

glaucomatous visual field deterioration, and knowing that a univariate model can 

provide a reliable and accurate short term forecast [Fildes1998], a univariate forecasting 

method will be used to evaluate the methods presented in this thesis. 

 

The Holt-Winters (HW) forecasting method [Chatfield1988b] is a simple way of 

predicting the next value in a univariate time series. The non-seasonal HW method is 

defined as follows: 

 

))(1( 11 −− +−+= tttt TLααXL  (2.1)

11 )�1()(� −− −+−= tttt TγLLγT  (2.2)

ttt TLX +=+1
�  (2.3)
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Equation 2.1 defines the series mean level Lt at time t; equation 2.2 defines the series 

trend Tt at time t, and equation 2.3 defines the forecast of the dependant variable at time 

t, given values of X from 1,..,t-1. All the variables are scalars. The method needs the 

smoothing parameters α and γ� , as well as the mean level and trend starting values L0 

and T0 to be defined, so that the subsequent values of ttt XT,L �and can be calculated. 

According to [Chatfield1988b] α and γ�  lie between zero and one. However L0 and T0 

are usually determined as a function of the observed values of X, and are often limited 

by the maximum and minimum values. To allow for some variation from this rule, they 

are assumed to lie within ±100 for the visual field application, which exceeds the limits 

of the corresponding time series. There are various ways of finding the values of these 

parameters as suggested in [Chatfield1988b]. In [Swift1999a] it has been suggested that 

a genetic algorithm (see section 2.3.1) can be used to find a near optimum set of 

parameters for a one-step ahead forecast. 

  

2.1.3 Multivariate and the Vector Autoregressive Process 
 

There are many types of MTS models to choose from. First of all there is a decision 

about linear and non-linear models [Casdagli1992], and then the specific type of model 

within these two categories. Many non-linear models have been specially designed and 

tailored for the problem area they are applied to, especially within the financial domain, 

the choice of which model to use can be very difficult. The dataset under consideration 

within this thesis will be modelled by one of the multivariate linear time series models, 

thus avoiding the difficult decisions non-linear model selection can entail; further 

justification of the choice of a linear model is detailed in section 2.2.2. The main linear 

models are the Vector AutoRegressive (VAR) process, the Vector Moving Average 

(VMA) process and the Vector AutoRegressive Moving Average (VARMA) process 

[Lütkepohl1993]. 

 

A VARMA process of order p, q written VARMA(p,q), is defined in equation 2.4. 
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where )(tx is the next data vector of size n (the number of variables in the model), Ai is a 

n×n autoregressive coefficient matrix at time lag i, Mi is an n×n moving average 

coefficient matrix at time lag i, and )(tε is a n dimensional noise vector at time t (usually 

of Gaussian distribution) with zero mean. If p=0 then the model represents a VMA 

process, and if q=0 then the model represents a VAR process. The VAR process follows 

in equation 2.5, with notation as above: 

 

)()()(
1

tεitxAtx
p

i
i +−=∑

=
 

(2.5)

 

)(tx is determined by the sum of some matrix transformations applied to previous 

observations plus some random noise. 

 

Definition 2.1. ))()(( tεtεEΣ T
ε = defines the covariance matrix for the noise vector 

and it is assumed that t s, sεtεE T ≠= where0))()(( . 

 

Definition 2.2. The notation nVAR(p) will be used to refer to a n-variable VAR process 

of order p. 

 

Definition 2.3. A nVAR(p) process has an equivalent (np)VAR(1) representation. See 

appendix B. 

 

Proposition 2.1. A nVAR(p) process has an equivalent nVMA(∞) representation, that 

is, an infinite order MA process of the same dimensionality.  

 

Proof. If )(ty  is the time series generated by the (np)VAR(1) representation of a 

nVAR(p) process then 
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which is an infinite order VMA process where the coefficients Mi=Ai. ■

 

Forecasting 

 

To use equation 2.5 for prediction purposes, the parameter matrices Ai and the order p 

must be estimated from the data.  

 

Since the noise, )(tε , within the model is assumed to have zero mean, then a forecast of 

a VAR(p) process is defined in equation 2.6, where the forecast will be equivalent to the 

conditional expectation [Lütkepohl1993], therefore if )(tx is known then .)())(( txtxE =  
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(2.6)

 

VAR Parameter Estimation 

 

As previously mentioned, in order to use a VAR process, the order and corresponding 

parameter matrices must be known. In many practical applications neither of these two 

sets of parameters are known. 

 

However if just the order is known then there are methods available to help estimate the 

parameters for a set of data. Three commonly used techniques for estimating the 

parameter matrices (given the order) are the Yule-Walker Equations, Least Squares and 
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Maximum Likelihood methods. With the Least Squares method, there can be a 

restriction on the minimum length of the time series. With the Maximum Likelihood 

method, the distribution of the )(tε must be known. Unfortunately in some applications 

this is not the case, such as the visual field data used in this thesis. This dataset�s noise 

term probably does not fall into any standard distribution. Even if it did, since the visual 

field values always lie between zero and 60 (see appendix A) a distribution would be 

difficult to identify. So for comparison purposes the Yule-Walker method will be used. 

  

Yule-Walker Equations 

 

The method described by Lütkepohl in [Lütkepohl1993] will be used.  

 

Definition 2.4. The auto-covariance function of )(tx  is defined as 

))()(()( htxtxEhΓ T −= for ,1≥h  further if 0))(( =txE then an estimator for )(hΓ can 

be computed as follows: .)()(1)(�
1

∑
+=

−
−

=
T
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T htxtx
hT

hΓ  

 

Note it can be shown that ).()( -hΓhΓ T=  

 

Given the definition of a VAR(p) process and post multiplying by )( htxT − results in: 
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Taking expectations results in 
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Applying definition 2.4 gives 
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From proposition 2.1 and definition 2.1 it follows that 
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When )(hΓ is replaced by estimator )(� hΓ the Yule-Walker equations are obtained. 

These equations can be rearranged as follows: 
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Hence by using the approximation from definition 2.4, an estimate of the parameter 

matrices can be obtained. Because the set of equations in equation 2.7 are in fact a 

Toelplitz matrix, Whittles extension to the Levinson-Durbin recursion can be used to 

solve them [Whittle1984]; this is the method used by the statistical package S-Plus � see 

chapter 5. The estimator detailed by Lütkepohl (which is almost identical to the 

corresponding least-squares estimator and the maximum likelihood estimator under 

certain circumstances), is defined in equation 2.8. 
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VAR Order Estimation 

 

The previous section has shown that under certain conditions, and assuming that the 

order of a nVAR(p) process is known, then an estimation of the underlying parameter 

matrices that derived the time series can be computed. However in practice, this still 

leaves an estimation of the order being required. 

 

One way to estimate the order of a nVAR(p) process is to use a metric. Most of these 

metrics are based upon information theory and some examples listed below. An 

estimator of p, denoted ,�p  is chosen that minimises the metric being used. Table 2.1 

details some of these metrics. The notation pΣ �
� will refer to an estimation of εΣ when 

a )�VAR( p has been fitted to a set of data. The notation ∆ will be used to represent pΣ �
� . 

Within table 2.1 T and n are the length and dimensionality of the MTS respectively. 

 

Metric Equation 

AIC [Akaike1974] 

Akaike�s Information Criterion 
( )

T
np 2�2∆ln +  

FPE [Akaike1971] 

Final Prediction Error ∆
1�
1�

⋅







−−
++

n

pnT
pnT  

HQ [Quinn1980] 

Hannan and Quinn 
( ) ( )( ) 2�ln2ln∆ln np

T
T ⋅






+  

SBC [Schwarz1978] 

Schwarz�s Bayesian Criterion 
( ) ( ) 2�ln∆ln np

T
T ⋅





+  

MSC [Neumaier] 

Modified Schwarz Criterion 
( ) ( )

( ) ( )2.5ln
1p�n-
1�2.51∆ln −⋅







+
+−− T

T
pn

n
 

 
Table 2.1: Some Order Selection Metrics 

 

AIC is known to have a significant bias when T is small (there has been work down to 

correct this bias in the univariate case [Hurvich1989]).  
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All of the metrics have differing behaviours depending upon the circumstances they are 

used in. For example, FPE and MSC require 1� +> pnT . With a MTS involving 10 

variables, to find the most appropriate order of a VAR process with a maximum order 

of five under consideration, T must be at least 52. This restriction is unacceptable for 

modelling many short time series. To demonstrate this, the five metrics listed in table 

2.1 will be applied to a 7VAR(3) process. The results are given in table 2.2. 

 

Multivariate Time Series Length Order 
Metric 

T=1000 T=500 T=100 T=50 T=25 

AIC 3 3 3 8 4 

FPE 3 3 3 (1-6):3 (1-3):3 

HQ 3 3 3 8 4 

SBC 3 3 3 8 4 

MSC 1 1 1 (1-6):1 (1-3):1 

 
Table 2.2: Order Selection Example 

 

Table 2.2 shows the length of several MTS and the corresponding results from applying 

the order selection metrics described in table 2.1. The time series vary in length and the 

metrics are evaluated for candidate orders, )�( p , from one to ten. T = 1000 for the 

7VAR(3) process and shorter MTS have been created by truncating at the required 

length; for example in the case of T=25, the shorter time series is created by taking the 

first 25 observations of the 7VAR(3) MTS. The notation (x-y):z is used to indicate that 

the metric could only consider candidate values p�  from x to y inclusive, and the best 

order for that subset is z.  

 

Table 2.2 clearly shows all metrics except MSC compute the correct order when 

.100≥T  However when ,50≤T  all of the methods encounter problems. AIC, HQ and 

SBC choose an incorrect order, and FPE and MSC can only consider a reduced set of 

orders based on the length restriction outlined above.  

 



Chapter 2 

37 

It should be noted that FPE does choose the correct order in all cases, but this is because 

the required order lies within the restricted order range. FPE would not have indicated 

the correct order if the data would have been from a 7VAR(7) process (or higher). Note 

also that MSC consistently computes the wrong order for all time series; it is suggested 

that even a length of 1000 is too short for this metric. 

 

A conclusion can be drawn that the metric based order selection methods could be 

unreliable, especially when T is small. 

 

VAR Stationality and Stability 

 

Much of the theory for both the linear univariate and multivariate time series analysis 

has been concentrated on a particular family of times series referred to as stationary 

time series. In short, a time series is stationary if its first and second moments (mean 

and variance) are time invariant. One interpretation of the Wald decomposition theorem 

[Lütkepohl1993] is that a VAR process can be used to represent a stationary MTS. With 

MTS, there is another family called stable multivariate time series, which are all 

stationary. Appendix B defines what a stable time series is. Stationary time series have 

properties that make them particularly suitable for analysis, for example in solving the 

Yule-Walker equations. 

 

Unfortunately in many applications stationality cannot be assumed. For example when 

examining some of the patient�s visual field tests, it can be seen that many of the 

measurements eventually die off to zero. Thus this dataset falls into the category of 

non-stationality. One commonly used technique to enforce stationality is a difference 

transformation to create a stationary time series [Box1970]. The data is repeatedly 

differenced until it becomes stationary, and then this resultant dataset is modelled; 

which has worked well on many univariate datasets. But if the time series is short, then 

differencing reduces the size being modelled, losing valuable data points which could 

be vital to build an accurate model. Additionally with the visual field data not all of the 

points have the same trend, so differencing might not guarantee stationality at all. 
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However, consider figures 2.1 and 2.2 which show the two variables of a 1000 length 

stable 2VAR(2) process. 
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Figure 2.1: Variable 1 of a 2VAR(2), 1000 Time Points 
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Figure 2.2: Variable 2 of a 2VAR(2), 1000 Time Points 

 

This two variable time series can be inspected visually and can be seen to be stationary. 

However if the section of the time series corresponding to time points 770-800 is 

examined as in figure 2.3: 
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Figure 2.3: Variables 1 and 2 of a 2VAR(2), 1000 Time Points, Points 770-800 

 

 



Chapter 2 

39 

It can then be seen that the time series seems to be non-stationary, in this case the 

variance of variable 1 looks like it is increasing with time. It is only when considered as 

part of the 1000 time point time series that these two sections can be identified as local 

fluctuations. This is a problem with trying to model short time series; what seems to be 

convergence to infinity or zero might be some behaviour that is part of a longer cycle; 

so a VAR process might be suitable to model such time series, even if they do not 

appear to be stationary. 

 

Other Details About VAR Processes 

 

There are many variations on a VAR process, each one designed to cater for data of a 

particular type. The following briefly describes some of the more common variants.  

 

VAR Subset Models [Lütkepohl1993] are VAR processes where one or more of the 

parameter matrices elements are set to zero. It is desirable to create such a model from a 

fully dense VAR process since relationships between variables can be visually 

inspected, a zero parameter indicating no relationship. 

 

Often in real world datasets there are missing data points or the time series is unequally 

spaced. Missing data can be imputed by using the EM Algorithm [Dempster1977] or by 

using Gibbs Sampling [Gilks1996]; note that these two methods are not specifically 

designed for dealing with VAR processes but have had a lot of success in various 

applications. In [Jones1984] a method for dealing with unequally spaced observations 

specifically for a VAR process is suggested. The VAR process has had a high degree of 

accuracy in forecasting, for example [Webb1995], but recent research has improved 

upon this basic process [Holden1995]. The Bayesian VAR process (BVAR, e.g. 

[Dua1995]) is one example. Finally, there are a variety of models for dealing with 

non-stationary VAR processes, for example the Time Varying VAR Process has the 

parameters matrices being time dependent [Lütkepohl1993]. 
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2.2 The Datasets 
 

Two types of dataset are used to validate the work in the thesis: simulated data and the 

normal tension glaucoma visual field dataset. 

 

2.2.1 Simulated Data 
 

Simulated data consists of two types of MTS models that are concatenated together to 

form a higher dimensional MTS. The first types are simulated VAR processes and the 

second are simulated Dynamic Bayesian Networks. Simulated VAR processes are 

described fully in chapter 4 where they are first used and dynamic Bayesian networks 

are described below, and how they are simulated is described again in chapter 4. 

 

A Bayesian Network (BN) [Heckerman1996] is a Graphical Model for representing the 

relationships and influences between a set of variables. Figure 2.4 gives a simple 

example of such a network, and is taken from an example in [Pearl1988]. The graphical 

part of a BN is a directed acyclic graph (DAG), a description of which can be found in 

[Whittaker1990]. Most BNs work with variables that are discrete or categorical in 

nature. 

 

Within a BN a variable is influenced by a certain number of other variables. The term 

Parents is used to refer to the set of variables that influences a given variable, and the 

term Children is used to refer to the set of variables that is influenced by a given 

variable. Within figure 2.4, Alarm Sound has Burglary as a parent and Gibbon�s 

Testimony and Watson�s Testimony as children. Parents have a probabilistic effect upon 

their children, indicated by the direction of the arrows. 
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Figure 2.4: A Simple Bayesian Network 

 

Equation 2.9 is the joint probability distribution for the set of variables X under the 

conditional independence assumption. p(xi|πi) is the local conditional probability for 

variable xi. In this equation, X is a set of variables {x1,�,xn}, which represents the fields 

of a database or the nodes in a DAG and πi is the set of parents of variable i. 
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The BN works as follows: given instantiations of some of the variables in X, and the 

relationships in equation 2.9, derivation of values for the remaining variables in X is 

possible. Algorithms for this procedure are given in [Buntine1996]. A BN can be used 

for predicting values for a partial record, and can offer explanation for why various 

instantiations have occurred. 

 

Dynamic Bayesian Networks [Friedman1998] can be used to model a MTS, and are 

very similar to the standard BN. A dynamic Bayesian network (DBN) consists of a set 

of nodes, representing variables in the domain at different time lags and directed links 

between these nodes. To each node, with a set of parents, there is an associated 

probability table and these can be used to infer probabilities about certain events in the 

system [Dagum1995]. Much of the current developments in DBNs can model MTS 

provided that the data are in discrete states. 
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2.2.2 Glaucoma Visual Field Data 
 

As detailed in the introduction of this thesis, the dataset that is the main subject for 

analysis is a set of Normal Tension Glaucoma Visual Field data. Glaucoma 

[Hitchings2000] is a condition that affects the human eye. The visual field data consists 

of 76 points recorded approximately every six months for each patient. This falls into 

the category of MTS data (the VF dataset can also be considered to be a Spatial Time 

Series, for example [Pfeifer1980a, Pfeifer1980b], however this will be addressed later). 

 

Anatomy of the Eye 

 

Figure 2.5 shows a schematic of the human eye, which is essentially the same for both 

males and females. 

 

See Figure 2.6Optic Nerve

Retina

Cupping Occurs
Here

Aqueous Humor

 
Figure 2.5: Schematic of the Human Eye 

 

The eye acts rather like a video camera. The front part of the eye, the dotted section in 

figure 2.5 and expanded in figure 2.6, focuses light onto a set of light sensitive cells 

which is converted into an electrical signal and sent to brain; the Retina is this light 

sensitive section. The label �cupping occurs here� is pertinent to the glaucoma 

condition, which will be explained in the next section. Aqueous Humor is a liquid that 
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helps to maintain the eyes shape and rigidity, which is essential for the eye to focus light 

correctly (a camera that changes shape continuously would produce photographs that 

varied in focus). The Optic Nerve is a bundle of nerves that transmits what is focused by 

the front of the retina to the brain. Like a camera this image is upside down when 

focussed and transmitted; the brain performs a pre-processing action and corrects this. 

 

Glaucoma 

 

Glaucoma is the name given to a family of eye conditions. The common trait of these 

conditions is a functional abnormality in the optic nerve, leading to loss of visual field. 

This vision loss is usually only part of the visual field, however untreated glaucoma can 

lead to blindness. 

 

Even though this condition was identified many years ago, for example [Graefe1857], 

little is known about its cause. It is thought that a build up of eye pressure in the eye, 

(this pressure is known as Intra-Ocular Pressure � IOP), causes damage to the retina, 

by pushing the optic nerve head inwards causing cupping. Figure 2.6 shows the front 

part of the eye, which is relevant to understanding the cause of this damage. For a more 

detailed description of the eye, see [Hollwich1985]. The Cornea is the optical window 

to the eye; the Iris is a muscle that expands or contracts, thus altering the perceived size 

of the pupil (the gap), thus focusing light correctly through the lens onto the retina. The 

Anterior Chamber contains fluid to keep the front of the eye rigid, which is called 

Vitreous Humor. The Conjunctiva is the transparent mucous membrane lining the inside 

of the eyelids and the white of the eyeball (which is called the Sclera and is very tough). 

The fluid in this part of the eye is continually refreshed, flowing out of the Cilary 

Epithelium around the iris and drained off through the Trabeculum (a network of 

meshing). 

 

The pressure within the eye can be increased in a variety of ways. In particular the 

trabeculum may become blocked in some manner, thus the influx of vitreous humor is 

not drained away at the rate it is increasing. If flakes of pigment from the iris block the 

trabeculum, the condition is called Pigmentry Glaucoma. If the Angle within the 
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diagram, (measured between the iris and the cornea wall), becomes small for some 

reason, thus again reducing the rate of drainage, it is referred to as Closed Angle 

Glaucoma. Primary Open Angle Glaucoma refers to similar conditions where the angle 

has not been closed, the trabeculum appears unblocked, and IOP is above normal. 
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Angle

Sclera

Anterior
Chamber

Lens

Pupil

Key
Trabeculum - Drainage

Ciliary Epithelium -
Secretion

Fluid Flow

Vitreous Humor

 
Figure 2.6: Schematic of the Front of a Human Eye 

 

IOP has not been proven to be a cause of glaucoma, but it has been shown to be a factor. 

Figure 2.7 shows a rough relationship. The normal IOP for a person is between 12 and 

20 mmHg. If a person�s IOP is above 20 mmHg then they are referred to as suffering 

from ocular hypertension. 

 

In order to reduce IOP, drugs can be issued to reduce the flow of fluid and hence, in 

theory, the IOP. However these drugs can have some serious side effects. Surgery can 

sometimes help in clearing the trabeculum if it is blocked, or widening it in order to 

improve drainage. However eye surgery is seldom desirable. 
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Figure 2.7: IOP vs. Risk Factor 

 

The dataset for this thesis is a section of normal tension glaucoma visual field data 

[Haley1987]. Normal tension glaucoma is different to types mentioned above, and 

occurs when the IOP is within the expected bounds, i.e. 12 to 20 mmHg. This is one of 

the more difficult types of glaucoma to deal with since pressure seems to be less of a 

cause.  

 

Visual Field Analysis 

 

Visual fields tests are crucial to the diagnosis and management of all types of glaucoma. 

To conduct visual field analysis the retina is divided into a set of points, the level of 

sensitivity of the eyesight of a patient is tested at each point and is assigned a value 

between 0 (no perception) and 60 (perfect perception). A specialised machine is used to 

conduct these tests, which can take several hours for all the points of both eyes. A 

patient once diagnosed with glaucoma or is a glaucoma suspect, for example ocular 

hypertension, will undergo these tests approximately every six months.  

 

The rate of change of the patient�s sensitivity in parts of the eye, and as a whole, can be 

a useful guide for clinicians who are treating these patients. For normal tension 

glaucoma the Central Threshold 30-2 test is usually used which tests 76 points. This can 

be seen in figure 2.8. 
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Figure 2.8 shows these points as co-ordinates measured from the centre of the retina for 

the right eye. The squares in black designate the position of the blind spot. The retina is 

connected to bundles of nerves that transmit the image to the brain. The mapping of 

these nerve fibre bundles to the 76 points of the 30-2 test are shown in figure 2.9. The 

diagrams for the left eye are a mirror image of figures 2.8 and 2.9 
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Figure 2.8: The 76 Points of the Central Threshold 30-2 Test 

 

In figure 2.9 the blind spot is marked with a B and each nerve fibre bundle is assigned a 

different number between 1 and 15. The different shading is simply to make each group 

more distinct. Current theory [Crabb1996/97, Heijl1988/89a] states that deterioration of 

the visual field can be highly correlated if two points lie on the same nerve fibre bundle.  

 

The prediction of visual field deterioration in patients who are suffering from glaucoma 

plays an important role in the management, treatment and control of the diseases 

progress. For example, if the rate of deterioration is decreasing it might be appropriate 

to reduce the medication; or if the rate of deterioration is increasing, more medication 

might be needed or even surgery might be necessary. 
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Figure 2.9: The 76 Points of the Central Threshold 30-2 Test By Nerve Fibre Bundle

 

The Dataset 

 

Appendix A details the database used to store the data for the patient�s visual fields that 

were the subjects of this research. For many of the methods applied to this data it is 

convenient to map the coordinates of each point to a unique natural number between 1 

and 76. For example when storing the visual field tests as vectors of time series 

observations, each point needs to correspond the same row in each vector. This mapping 

is shown in figure 2.10. 
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Figure 2.10: The 76 Points of the Central Threshold 30-2 Test By Mapping 
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For the purpose of this research the dataset will be considered to be a MTS and will be 

modelled using the VAR process. The justification for this and any assumptions that 

have been made to use such a model are as follows: 

 

i) The medical literature shows that there are relationships between points, and 

current theory states that deterioration of the visual field can be highly 

correlated if two points lie on the same nerve fibre bundle 

[Crabb1996/97, Heijl1988/89a]. 

 

ii) Any noise within the model can be explained by experimental noise, patient 

fatigue etc. 

 

iii) It is also logical to assume that an effect from one point to another must take 

some time, i.e. a cause cannot be instantaneous. 

 

The visual field data appears to be non-stationary. This is compatible with the nature of 

the condition, i.e. a gradual degradation to blindness in part or all of the field of vision. 

However this short MTS could be modelled by considering a much longer stationary 

series that does not exhibit this behaviour, rather like with variable one in figure 2.3. 

The VAR process therefore is suitable for modelling the visual field data, however it 

will be a challenging task to identify the parameters and order of such a model. 

 

Existing Visual Field Modelling Methods 

 

Much work has been done to try and predict, interpret and analyse visual field test data. 

The literature for visual field analysis can be divided into three groups: prediction and 

classification detailed in table 2.3; clustering detailed in table 2.4; and the detection and 

management of outliers detailed in table 2.5. Additionally a useful survey into some of 

the applications of computer technology within the domain of visual field analysis can 

be found in [Åsman1992]. 
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Method Reference(s) Description 

Progressor [Fitzke1996] 

[Mcnaught1995] 

[Mcnaught1996] 

[Viswanathan1997] 

 

The use of linear regression and the 

corresponding significance level, 

combined with a user interface, to 

model progression. Aimed as a 

computerised tool for clinicians 

Linear Regression [Wild1997] 

[Birch1995] 

The use of univariate pointwise linear 

regression to classify and forecast 

progression 

Topographical and 

Longitudinal 

Modelling 

[Wild1993] The use of a mixed topographical and 

longitudinal model to forecast 

progression 

Multivariate 

Regression 

[Nouri-Mahdavi1997] Multivariate Regression is applied to 

the visual field data and then 

compared with clinicians, and linear 

methods in order to examine the level 

of agreement 

Neural Networks [Brigatti1996] 

[Brigatti1997] 

[Goldbaum1994] 

[Spenceley1994] 

A variety of Neural Network 

configurations have been used to 

classify patients visual fields into a 

variety of categories and groups, for 

example distinguishing between 

normal and glaucomatous visual 

fields 

 
Table 2.3: Visual Field Prediction and Classification 

 

Linear Regression based methods [Mosteller1977] assume that the data is univariate, 

and fit the best straight line through the data. Progressor (see table 2.3 for references) is 

a system based on linear regression that gives the user a rate of change parameter and 

associated significance level for each point in a set of visual field tests. Linear 

regression will not be evaluated against the methods presented in this dissertation. The 
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justification for this is that the visual field data has been found to be inherently 

multivariant (see chapter 5), and that Progressor does not provide forecasts for all of the 

visual field points, only those that are found to have a statistically significant fit after 

linear regression has been modelled. Topographical Modelling tries to handle the spatial 

dependencies between test points, and Longitudinal Modelling looks at the previous 

tests from a longitudinal data analysis point of view, for example [Diggle1994]. The 

combination of these two techniques is considered in [Wild1993]. Time series analysis 

is a more suitable way of treating the visual field data (see section 2.1). Spatial 

modelling of the visual fields becomes complex because the inter-point dependencies 

change over time due to the progression of the condition. However these changing 

spatial dependencies should not be disregarded. Consideration of this is made in section 

7.3.3. Multivariate Regression is more suited to non-time series data, and a VAR is 

effectively a multivariate regression model over time. A variety of classification 

methods have been used to distinguish glaucomatous fields from other conditions, a 

review of which can be found in [Hand2001]. 

  

Method Reference(s) Description 

Hierarchical 

Clustering 

[Mandava1993] The use of a Hierarchical Clustering 

technique on the visual field points to see if 

they can be grouped together 

K-SOM [Spenceley1996] Kohonen Self-Organising Maps have been 

used to spatially cluster visual field loss 

Non-Hierarchical 

Clustering 

[Åsman1993] 

[Chauhan1988] 

[Heijl1988/89b] 

The use of a clustering techniques other 

than Hierarchical Clustering 

 
Table 2.4: Visual Field Clustering 

 

Various clustering techniques have been applied to visual fields data to try and group 

together points that have similar behaviour or features (see table 2.4 for details). 

Hierarchical Clustering yields a dendrogram (binary tree) representing the nested 

clusters of patterns and similarity levels at which clusters change. The dendrograms can 
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be broken at different levels to yield different clusterings of the data. Kohonen�s Self 

Organising Map (K-SOM) is a form of neural network for transforming an incoming 

signal pattern of high dimension into a one or two dimensional discrete map 

[Kohonen1989]. This mapping can then be examined visually to see if any patterns 

between the data emerge. Many other clustering techniques have been applied to the 

visual field data; a good review of clustering can be found in [Jain1999]. 

  

Method Reference(s) Description 

Filters [Fitzke1995] Spatial Filters have been applied to 

try and improve the accuracy of 

Progressor 

K-SOM [Cheng1996] 

[Henson1997] 

[Liu1994] 

Kohonen Self-Organising Maps 

have been used to classify noise in 

visual field tests 

 
Table 2.5: Visual Field Outlier Management 

 

Spatial Filters have been applied to the visual field data to try and remove the influence 

of any outliers [Barnett1994]. The process involves modifying each point by a linear 

combination of its spatial neighbours, which has the effect of �blurring� the data. A 

small increase in forecast accuracy has been noted if this pre-processing step is applied 

before the application of Progressor. Kohonen�s Self Organising Map has been used in 

various forms to classify and explain potential outliers within the visual field data. For 

example in [Liu1994] binary visual field data is collected using a portable visual field 

test and then K-SOM is then applied to compress the data onto a two dimensional map 

that allows the identification of outliers and the understanding of test behaviour. 

 

2.3 Evolutionary Computation 
 

Evolutionary Computation [Bäck1997] is the name given to the procedure of simulating 

evolution [Darwin1998] on a computer. An Evolutionary Algorithm is an algorithm that 

performs evolutionary computation. The field of evolutionary computation is relatively 
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new and is considered to contain the sub-fields of Genetic Algorithms, Evolutionary 

Programming and Genetic Programming. These three techniques are described in the 

following sections.  

 

2.3.1 Genetic Algorithms 
 

A Genetic Algorithm (GA) [Holland1975] represents a solution to a problem as a binary 

string, called a Chromosome. Each bit of a chromosome is called a gene. A population 

of chromosomes is maintained, which represents a subset of the space of all possible 

solutions. Through subsequent generations (iterations) the suitability of the population 

is improved through a process of breeding, mutation, and survival of the fittest (to 

maintain a constant size population), analogous to the real-world equivalents. The 

problem solution is the fittest individual of the last population. 

 

Breeding within a genetic algorithm is referred to as crossover or recombination. This 

procedure is used to create children by recombining sections (portions) from one or 

more parents. Mutation changes a number of the population, and is usually applied to 

children resulting from the crossover stage. Survival of the fittest selects a number of 

the parents and children to be carried over to the next generation. The suitability of a 

chromosome to solve a particular problem is usually referred to as the chromosome�s 

fitness.  

 

Genetic algorithms are suitable for solving optimisation type problems 

[Michalewicz1995]; search type problems [Hackworth1999] and permutation and 

ordering type problems [Blanton1993].  Any genetic algorithm must define the concepts 

of representation, fitness, crossover, mutation and survival. The genetic algorithm 

follows algorithm 2.1. 

 

The parameters POPULATIONSIZE, GENERATIONS and NBITS are implementation 

and application dependent. Validity will be described in the next section. Crossover, 

mutation and survival are referred to as genetic operators. In Holland�s original genetic 

algorithm, survival is performed before crossover. However the difference between this 



Chapter 2 

53 

and algorithm 2.1 is whether a single survival is applied at the start (Holland) or at the 

end (algorithm 2.1) after the sequence of operators has been applied for all generations. 

 
Algorithm 2.1: The Genetic Algorithm 

  

1) Input: Fitness function for a Chromosome 

 POPULATIONSIZE � the number of chromosomes in each population 

 NBITS � the number of bits making up each chromosome 

 GENERATIONS � How many iterations to run the genetic algorithm for 

 CROSSOVERRATE � The chance of a chromosome becoming a Parent 

 MUTATIONRATE � the chance each chromosomes gene has of Mutating 

2) Generate POPULATIONSIZE Valid chromosomes of size NBITS bits 

3) For loop = 1 to GENERATIONS 

4)  Crossover the Population to Create Children 

5)  Mutate the Population 

6)  Remove Invalid chromosomes 

7)  Apply Survival of the Fittest to the Population 

8) End For 

9) Output: The fittest individual of the last population 

 

Representation 

 

Genetic algorithms were initially designed to work on a problem whose solution could 

be represented by a binary string. The particular solution a chromosome represents is 

called the phenotype, and the corresponding binary representation is called the 

genotype. There is no hard or fast rule in determining the representation of a solution as 

a binary string, but the general rule is to keep the representation as close to a one to one 

mapping as possible, i.e. each phenotype has only one genotype and vice-versa. A 

chromosome is considered valid if there is a mapping from its genotype to a phenotype. 

The conversion from the genotype to the phenotype is usually through a mathematical 

formulae, algorithm or look-up table. Each position of each bit therefore should have 

some function or part in building up the phenotype. If part of chromosome does not play 

any part of constructing the phenotype then it is referred to as redundant. A gene�s (bit) 

position is referred to as its locus. In order for a genetic algorithm to function correctly 
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then the interpretation of a locus should not change, i.e. if it corresponds to red when set 

to one in the phenotype in a chromosome then it should correspond to red when set to 

one in any other chromosome. The values a particular locus can take are called alleles; 

in the case of a binary chromosome, all loci have alleles of zero or one. The genetic 

algorithm proposed by Holland works on fixed length chromosomes. The choice of a 

suitable representation is one of the most important stages in the development of a 

genetic algorithm. 

 

For example, consider the use of a genetic algorithm in a two variable optimisation 

problem. This example problem could consist of the variables X and Y, which lie in the 

integer range [0,100] and [0,20] respectively. To represent this as a binary string, 0 to 

100 can be represented in seven bits and 0 to 20 can be represented in five bits. This 

gives a total of twelve bits to represent every possible solution in the problem space, see 

figure 2.11. Note that bits 0 to 6 (counting left to right) construct X and bits 7 to 11 

construct Y, using a base 2 encoding. Seven bits can represent numbers in the range 

[0,127] and five bits can represent numbers in the range [0,31], which means that 

approximately 48.2% of random chromosomes will be invalid. This means that the 

representation is fairly poor since almost half of any children created will be thrown 

away. 
 

X

0-100
0000000-1111111

Y

0-20
00000-11111

0000000.00000-1111111.11111
 

Figure 2.11: Example Representation for a Chromosome 

 

If the chromosome contained ten bits so that X could take values between [0,63] and Y 

values between [0,15] then there would be no invalid chromosomes. However not all of 

the phenotypes would have a corresponding genotype thus the genetic algorithm will 

never reach the best solution to the problem if it lies outside the values the genotype can 

represent. 
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Note that many implementations use real or integer number for genes [Goldberg1990] 

instead of binary digits. A genetic algorithm has been shown to converge to good 

solutions in the binary case (see the Schema Theorem below), but proofs are more 

difficult for the real or integer cases. With non-binary genes crossover essentially 

remains the same, but mutation must be modified. 

 

Fitness 

 

The fitness function for a genetic algorithm is usually a mapping from a chromosome�s 

phenotype to a real number. The fitness function is used to rate how well a chromosome 

solves the problem in question. This fitness is traditionally maximised, but a genetic 

algorithm can function equally well on fitness minimisation problems. The mapping 

between phenotype and fitness should be one to one, but a mapping of many to one will 

still work. However if a phenotype has many fitness�s then the genetic algorithm will 

function poorly if not at all. The choice of a suitable fitness function is as important as 

choosing a suitable representation. The term population fitness is usually defined as 

either the sum or the average of the fitness of all of the chromosomes in a given 

population. 

 

Crossover 

 

Crossover is the procedure of recombining parts of chromosomes to create new 

individuals with the aim of improving the population�s fitness. The two most common 

types of crossover are one-point crossover [Holland1975] and uniform crossover 

[Syswerda1989]. Both types of crossover require two parents. The method of choice of 

the parents can vary, but usually each member of the current population is given a 

chance of breeding (CrossoverRate). If the number of chromosomes in the breeding 

subset is odd, then there is a 50% chance that a random one is either added from the 

remaining population or is removed. Each chromosome in the breeding subset is 

randomly allocated a partner giving a number of parent pairs. The resultant 

chromosomes of each parent pair are referred to as the parent�s children, and both 

methods of crossover described in this section produce two children.  
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One-point Crossover. A uniform random whole number, i, is generated in the interval 

[2,NBITS). Child one is created by copying genes 1..i of parent one and then appending 

genes (i+1)..NBITS of parent two to the end. Similarly, Child two is created by copying 

genes 1..i of parent two and then appending genes (i+1)..NBITS of parent one. 

 

Uniform Crossover. Child one is created by copying parent one, and child two is created 

by copying parent two. For each gene indexed 1�NBITS, left from right within the 

chromosome, a uniformly distributed random whole number is generated in the interval 

[1,2]. For each case where this number is one, the two corresponding genes of child one 

and child two are swapped. 

 

Figure 2.12 graphically depicts these two forms of crossover. Within this figure, the 

cells labelled P1 and P2 correspond to genes from parent one and parent two 

respectively. In the one-point crossover example, the crossover point is i=6. For the 

uniform crossover example, swaps are made for genes 1, 2, 4 and 9. 
 

One-Point Uniform

P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2

Parent 1Parent 1 Parent 2Parent 2

P1 P1 P1 P1 P1 P1

P1 P1 P1 P1P2 P2 P2 P2 P2 P2

P2 P2 P2 P2 Child 1Child 1

Child 2Child 2

P1

P2

P1 P1 P1

P1 P1 P1

P1

P1

P2 P2 P2

P2

P2

P2

P1

P2 P2 P2
 

Figure 2.12: One-Point and Uniform Crossover Operators 

 

Mutation 

 

Mutation is a technique that randomly changes the values of zero or more genes of a 

chromosome. Algorithm 2.2 describes mutation in the binary case. 
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Definition 2.5. The function UR(MIN,MAX) is a uniformly distributed random number 

generator that returns a real number in the interval [MIN,MAX]. 

 

Definition 2.6. The binary operator mod is the modulo arithmetic operator. That is, it 

returns the remainder from integer division (div), e.g. 17 mod 5 = 2 since 17 div 5 = 3 

remainder 2. 

 
Algorithm 2.2: The Mutation Operator 

  

1) Input: The Population of Chromosome to under go mutation 

 MUTATIONRATE � the chance each Chromosomes gene has of Mutating 

 NBITS � the number of bits making up each Chromosome 

2) For Each Chromosome CHROME that is to Mutate 

3)  For i = 1 to NBITS 

4)   If UR(0.0,1.0) < MutationRate then 

5)    Set gi = ith gene of CHROME  

6)    Set ith gene of CHROME = (gi + 1) mod 2 

7)   End If 

8)  End For 

9) End For 

10) Output: The mutated population 

 

MutationRate is a user defined parameter. The expected number of mutations is defined 

in equation 2.10. 

 

( ) NBITS  E ×= teMutationRaMutationsNumber of  (2.10)

 

The general rule of thumb for the mutation rate is to set the expected value equal to one; 

hence MutationRate is defined as the reciprocal of NBITS. For a real valued genetic 

algorithm, mutation must be amended. Typically the gene is replaced with a uniformly 

distributed random number between the limits the gene can take. Other forms of 

mutation involve perturbing the genes value according to a random Gaussian 

distribution (this is sometimes called Creep Mutation [Goldberg1990]). 
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Survival 

 

Survival of the Fittest is defined by Charles Darwin [Darwin1998] as follows: 

 

�This preservation of favourable individual differences and variations, and 

the destruction of those which are injurious, I have called Natural Selection, 

[in later editions:] or the Survival of the Fittest.� 

 

In short, this is the process where creatures well adapted to the environment have more 

chance of living, and hence breeding, than those less suitably adapted. In genetic 

algorithms (and most other evolutionary algorithms) the process is applied to a 

population of chromosomes (parents and children) in order to reduce the population size 

to that of the starting population; making sure those chromosomes with higher fitness 

are more likely to be retained than those with lower fitness. Without the survival 

operator, the population size would increase exponentially each generation. An initial 

population of ten would increase to approximately 10,000 after 10 generations, and to 

approximately 107 after 20 generations; thus the a genetic algorithm would use all of the 

resources of a computer long before it found a good solution. The survival of the fittest 

stage is often referred to as selection.  

 

The aim of the survival stage is to allow individuals to pass on to the next generation 

with a probability that is a function of its fitness. The most common method is called 

the roulette wheel (or proportional selection), which was the original method utilised by 

Holland. When survival is applied to a population it is assumed that the current 

population size is larger than the target population size (which is usually equal to the 

initial population size). The roulette wheel selection method works by giving each 

chromosome a chance of surviving until the next generation based upon its fitness as a 

proportion to the fitness of the whole population. Formally, given a population 

(numbering Psize) of chromosomes ,,...,1 sizePCC the probability that a chromosome 

survives Pr(Ci) is defined in equation 2.11. 
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where Fitness is the function that returns the fitness of a given chromosome. Note that a 

chromosome can be chosen zero or more times. The method is called the roulette wheel 

since the required number of chromosomes are chosen in a similar manner to having a 

biased roulette wheel, where the size of a pocket is proportional to the chromosomes 

fitness.  

 

To implement this, the current population is sorted according to fitness, and then the 

probabilities computed for each individual according to equation 2.12. A random 

uniformly distributed real number between zero and one is generated to select each 

chromosome to go forward to the new population. The individual (Ci) is selected that 

satisfies equations 2.13 to 2.14. 
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)1()0.1,0.0()( +≤< iCPURiCP  (2.13)

)()( 1+≥ ii CFitnessCFitness  (2.14)

 

CP(i) is the cumulative probabilities from chromosome number one to i. Equation 2.14 

simply reasserts that the chromosomes are in order of fitness with chromosome number 

one having the highest fitness. 

 

Other survival methods have been developed, such as Tournament Selection and 

Elitism. Tournament selection [Bäck1993a] is where each individual is compared with a 

number of random other individuals in the population. Each time the individual betters 

its random competitor it gets a point. After every individual in the current population 

has been scored, the required number of individual to survive is chosen by selecting 

those with the highest score. Elitism [Dejong1975] is where a number of the best 

(fittest) individuals of the current population is allowed to survive (unchanged) 
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automatically, thus ensuring the best fitness never decreases over subsequent 

generations. Elitism is often combined with other survival operators. A description and 

comparison of several survival methods can be found in [Goldberg1991]. 

 

The Schema Theorem 

 

The fact that a genetic algorithm converges to a solution is very complex, and hence 

only a brief outline will be explained. This result is called the Schema Theorem 

[Holland1975, Goldberg1989], and the form of this theorem outlined below only applies 

to binary encoded genetic algorithms. First of all some necessary definitions will be 

outlined, and then the theorem will be described. This section is taken from 

[Michalewicz1996]. 

 

A Schema is a template that describes similarities among chromosomes. A schema 

incorporates the idea of a wild card character �*�, this is treated as a �don�t care� 

symbol, for example the 4 bit schema 1*00 matches the 4 bit chromosomes 1100 and 

1000. The value of a schema is the average of all the chromosomes in a population 

containing that schema (or matched by a schema). The order of a schema is its length, 

which is the number of bits between the first and last non-wild card characters. For 

example the 4 bit schema above is of length four; the 6 bits schema *11*0* is also of 

length four. It can be shown that the Holland genetic algorithm outlined above will 

result in populations favouring above average schemas as time (generation number) 

increases. 

 

The Schema Theorem:  

 

�Short, low order, above average Schemata receive increasing occurrences 

in subsequent generations of a Genetic Algorithm.� 

 

Definition 2.7. Epistatsis is the measure of how important two loci are for determining 

the fitness of a chromosome, relative to their physical distance apart in the 

representation. For example the requirement that all good solutions must have a �1� at 
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both the end and rear of a chromosome. In biological systems, a gene is epistatic if its 

presence suppresses the effect of another gene in another locus. 

 

These short low order schemas will have �medium� epistasis. The theorem states that 

such schema will occur more and more frequently as the number of generations 

increase. These schemas will be unknown, but will start to emerge (if such an analysis 

was undertaken) dependent on the representation used (and the problem). 

 

The Building Block Hypothesis states how these schemas work together in a genetic 

algorithm: 

 

�A Genetic Algorithm seeks near optimal performance through the 

juxtaposition of short, low order, above average Schema. These are called 

building blocks.� 

 

To summarise the schema theorem: 

 

i) The random initial population creates some random schema 

ii) Crossover and mutation aid the creation of new schema 

iii) Survival of the fittest gets rid of low scoring schema 

iv) Hence the populations average score tends to increase as the generation 

number increases 

 

2.3.2 Evolutionary Programming 
 

Evolutionary Programming (EP) is based on a similar paradigm to genetic algorithms. 

However, the emphasis is on mutation and it does not use any recombination.  The basic 

algorithm is outlined in algorithm 2.3 [Bäck1993b, Fogel1995]. 

 

The best out of the final population will be the best solution to the problem. 

Traditionally, EP algorithms use tournament selection during the survival of the fittest 

stage. The representation is usually not binary, and the mutation operator can be quite 
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complex. All the other parts of an evolutionary program are the same as with a genetic 

algorithm. Evolutionary programming will be further covered in chapter 3. 

 
Algorithm 2.3: Evolutionary Programming 

  

1) Input: Fitness function for a Chromosome 

 POPULATIONSIZE � the number of Chromosomes in each population 

 NGENES � the number of genes making up each Chromosome 

 GENERATIONS � How many iterations to run the Evolutionary Program for 

2) Generate POPULATIONSIZE Chromosomes of size NGENES 

3) For i = 1 to GENERATIONS 

4)  Duplicate the Population to Children 

5)  Mutate all of the Children 

6)  Add the Children back to the Population 

7)  Apply Survival of the Fittest to the Population 

8) End For 

9) Output: The fittest individual of the last population 

 

2.3.3 Genetic Programming 
 

Genetic Programs [Koza1992] are used to solve a problem that can be modelled as a 

grammar, for example BNF, see [Aho1986]. In this thesis, the technique that is of 

interest is Symbolic Regression, which is a type of Genetic Programming. With 

symbolic regression, a mathematical expression is represented as a tree structure. 

Terminal nodes within this tree are usually variables, and non-terminals are operators 

(for example +,-,/,×) or functions (for example � logarithm). The fitness of such a tree is 

a function of the observed data versus the calculated data resulting from evaluating the 

expression the tree represents. A commonly used example is the least squares error as in 

linear regression [Mosteller1977]. Crossover and mutation are redesigned to handle tree 

structures. The genetic programming algorithm is the same as the genetic algorithm in 

all other respects and is detailed in algorithm 2.4. 
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Algorithm 2.4: Genetic Programming 

  

1) Input: Fitness function for a Chromosome 

 POPULATIONSIZE � the number of Chromosomes in each population 

 GENERATIONS � How many iterations to run the Genetic Program for 

 Implementation dependent parameters 

2) Generate POPULATIONSIZE Chromosomes of size NGENES 

3) For i = 1 to GENERATIONS 

4)  CROSSOVER the Population to Children 

5)  MUTATE all of the Children 

6)  Add the Children back to the Population 

7)  Apply Survival of the Fittest to the Population 

8) End For 

9) Output: The fittest individual of the last population 

 

Typical operators [Banzhaf1998] are described in table 2.6 below. 

 

Operator Description 

Sub-tree Exchange Crossover Two sub-trees are swapped between parents 

Self Crossover Sub-trees are exchanged within an individual parent 

Point Mutation A node in the tree is changed to a different symbol 

Permutation Mutation Two terminal symbols from the same sub-tree are 

swapped 

Hoist Mutation A sub-tree creates a new individual 

Expansion Mutation A sub-tree is added to the base of a tree 

Prune Mutation A sub-tree is removed 

Sub-tree Mutation A sub-tree is replaced for a random sub-tree 

 
Table 2.6: Some Genetic Programming Operators 

 

Genetic Programming will be further covered in chapter 4. 
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3. Correlation Analysis 
 

The work presented in this chapter presents the first stage of the three-stage procedure 

for the modelling of high dimensional short multivariate time series. This stage 

concerns the mining of relationships in a time series. The goal is to develop an 

algorithm that finds a good-but-not-optimal selection of interesting highly related 

variables in as short amount of time as possible. 

 

One way to find the structure in a dataset is correlation analysis. In this chapter three 

methods for finding the approximate correlation structure are presented and compared 

to the exhaustive search method for verification. Two methods for calculating 

correlations are utilised which are described in the next section. The methods for 

performing fast, approximate search include a version of an evolutionary programming 

algorithm and a genetic algorithm. The results are presented on the visual field dataset 

using the different algorithms and correlation coefficients. Finally the results are 

discussed and future work considered.  

 

Once it has been demonstrated that the methods for discovering an approximate set of 

relationships are effective and efficient, this information is then used in the grouping 

problem described in chapter 4. This chapter is an extended version of work presented 

in [Swift1999b]. 

 

3.1 Correlations in Time Series 
 

Correlation [Snedicor1967] is a measure of the relationship between two sets of 

observations or variables. Correlation between points at different times lags can play a 

useful role in the monitoring of the disease progression; since many mathematical 

methods for time-series forecasting need the correlations between variables to develop 

the models. It would be useful to be able to do this during a patient�s regular 

consultation so that any decisions could be made while they wait, hence in as short a 

time as possible. Correlation analysis is a way to measure how �coupled� two or more 
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variables are. Although this is not a reliable method with which to infer causality 

amongst variables, it can be useful in determining the underlying structure of a dataset 

or set of observations. Most correlation coefficients take values between �1 and +1 

where �1 shows a strong negative correlation and +1 shows a strong positive 

correlation.  

 

3.1.1 Correlation Metrics 
 

There exist various methods for calculating the correlation between two variables. The 

most common is Pearson�s Correlation Coefficient. 

 

Pearson�s Correlation Coefficient (PCC) [Pearson1896] measures the linear 

relationship between two numerical variables x and y as in equations 3.1 and 3.2. 
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where ρxy is the value of PCC between x and y, N is the number of x,y pairs, σx σy are 

the standard deviations for x and y respectively, xi and yi are the ith instances of the 

variables x and y, and µx and µy are the expectations of the variables x and y. The 

computation time of PCC is proportional to N. Note that .11 ≤≤− xyρ  

 

Spearman�s Rank Correlation (SRC) [Spearman1904] measures linear and/or non-

linear relationships between two variables, either discrete or continuous, by assigning a 

rank to each observation. It then calculates the sums of the squares of the differences in 

paired ranks di
2 according to equation 3.3. 
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where Rs is the value of SRC between the two variables, N is the number of pairs and 

each di is calculated by taking the difference between the ranks of each variable pair xi 

and yi. This means the computation time of SRC is proportional to Nlog2(N) since 

sorting must be used on data that is not already ranked. 

 

If the data to be analysed is a time series then two types of correlation functions can be 

defined. 

 

Definition 3.1. The Cross-Correlation Function (CCF) is a standard correlation 

function applied to two time series variables where the data pairs are constructed by 

time shifting one of the variables. For example if the two series are x(1),...,x(10) and  

y(1),...,y(10) then the CCF between series x and y with a time lag of one is the 

correlation between x(1),...,x(9) and y(2),...,y(10). The general form is written as 

CCF(x,y,lag) which is calculated between pairs of variable, x(t) and y(t+lag). 

 

Definition 3.2. The Auto-Correlation Function (ACF) measures how closely correlated 

a variable is with itself over varying time lags. Therefore ACF(x,lag) = CCF(x,x,lag). 

 

These functions will give an indication of the variation of correlation over different time 

lags between time series variables. The CCF also indicates the direction of influence 

since CCF(x,y,lag) is different to CCF(y,x,lag). For time-series in which the lags are 

large, many different coefficients must be calculated. If n is the number of variables and 

lag is the time lag that is under consideration, then the number of possible correlations 

is lag×n 2. There may be various real world applications where the number of possible 

correlations may pose a problem, for example, where the structure of a dataset would be 

required in real time as the data is produced, or where a dataset is so huge that it would 

take an unreasonable amount of time to process.  

 

The CCF for SRC between two variables over differing time lags is calculated by 

shifting one variable in time is given in equation 3.4. 
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where T is the length of the MTS and rank(xi(t)) is calculated from ordering and ranking 

every observation of the variable xi on its value and recording the rank of the value at 

position t. A similar form exists for PCC. 

 

3.1.2 Combining Correlations 
 

Given a set of correlations from a number of samples from two variables, it is useful to 

combine these correlations into a single correlation. The procedure to do this is more 

complex than simply taking the average since the correlation coefficients may have 

come from differing sized samples. A correlation combining procedure is outlined as 

follows: 

 

Fisher�s z-Transformation. Fisher [Fisher1921] suggested that in order to place 

confidence intervals on Pearson�s correlation coefficient (see section 3.1.1), a 

transformation is needed. This transformation is called the Fisher�s z-transformation, 

but a slightly different notation will be used to avoid confusion with the standard 

normal distribution variable notation. The transformation is defined in equation 3.5. 

 

)(Tanh
1
1ln

2
1)( 1 ρ

ρ
ρρ −=







−
+=zF  

(3.5)

3
1
−

=
nzFσ  

(3.6)

)(Tanh
1
1

2

2

zF

F

F
e
e

z

z

=
+
−=ρ  

(3.7)

 

The variable )(ρzF  is approximately normally distributed with standard error of 

equation 3.6. Here n is the number of pairs of observations of the variables. Confidence 
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intervals can be computed for this transformed variable in the normal way. The inverse 

transformation is shown in equation 3.7. Fisher also suggested a way of combining 

correlations based on Fisher�s z-transformation [Fisher1921]; a successful 

implementation was made by Lush [Lush1931]. The procedure is outlined below: 

 

1) },...,{ 1 ρ
ρρ N  is a list of correlations to be combined.  

2) For each ρi a corresponding F(z)i is computed according to equation 3.5. 

3) A weighted transformed variable W(z)i is then computed for each F(z)i. This is 

computed as follows: W(z)i = (ni-3)F(z)i where ni is the number of pairs of 

observations of the variables used to calculate ρi. NWz is the sum of the weights, 
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Theory, e.g. [Snedecor1967], states that the same transformation can be used for 

Spearman�s rank correlation coefficient. 

 

3.2 Methods 
 

Given an MTS the objective of correlation mining is to search for a list of correlations 

Q which contains the top R (referred to as the RankSize) correlated variables over all 

possible positive integer time lags up to some maximum, MaxLag. Q will consist of 

triples made up of two variables and a time lag. For example, the triple (x1,x2,5) 

represents a correlation between x1 and x2 with a time lag of 5. Essentially the triples in 

Q represent the pairs of variables that are significantly correlated for some time lag. 

Therefore, it is important to estimate what R should be with a high degree of accuracy. 

This is discussed further in chapter 4.  
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Note that at time lag zero, the correlations represented by the triples (xi,xj,0) and (xj,xi,0) 

are effectively the same so duplicates are considered invalid. The triples (xi,xi,lag) are 

all autocorrelations and hence these are considered invalid too, since they give no 

information about relationships between variables.  

 

Proposition 3.1. The maximum number of valid correlations for an n dimensional MTS 

considering a time lag up to and including MaxLag is ).2
1)(1( +− MaxLagnn  

 

Proof. Ignoring validity, the maximum number of correlations would be one for each 

variable pairing for lags between [0,MaxLag] which is n2(MaxLag+1). The number of 

duplicate correlations at time lag zero is equal half of the possible correlations which 

equals ).1(
2
1 −nn  The number of autocorrelations is equal to the number of variables 

for all of the time lags which is n(MaxLag+1). Therefore the total number of valid 

correlations, denoted s, is as follows: 
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Note that the triple (xi,xj,lag) and (xj,xi,lag) where lag is greater than zero are not 

equivalent. A correlation is considered valid if it represents a pair of variables that is not 

already in Q, i.e. there is no other triple of the form (xi,xj,lag) and (xj,xi,lag). This 

ensures that a pair of variables that are highly correlated do not dominate Q for a variety 

of lags, e.g. (x1,x2,5), (x1,x2,4), (x2,x1,3) etc. and hence only appear once. To make sure 

that the best lag and variable order is maintained, a side effect of validity is that the 

stronger correlated triple stays in Q, hence there is a possibility that an existing triple 

would have to be removed. The method of validity checking and removal is 

implemented in all of the methods. 
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The following sections describe the methods employed to find subsets of highly 

correlated points through time. All of these methods use the absolute value of the 

correlation coefficients, in order to rank a relationship between zero and one inclusive, 

(the objective was to locate dependencies but not their nature).  

 

Four methods are implemented: these are Random Bag (RB), Genetic Algorithm (GA) 

(see section 2.3.1), Evolutionary Programming (EP) (see section 2.3.2) and an 

EXhaustive search (EX). It has proved hard to find any existing methods that do not 

rely on the data being categorical, for example [Steeg1998]. Note that the standard 

statistical solution would be to explore the whole search space, sample the time-series, 

or restrict the search space through the use of expert knowledge; all of which are 

inappropriate for the application which the methods are evaluated on. 

 

3.2.1 The Exhaustive Search 
 

Algorithm 3.1: The Exhaustive Search 

  

1) Input: X � a T×n MTS 

 MAXLAG � the maximum lag with which to time shift the MTS by 

 R � the required number of correlations 

2) Set Q = Empty List 

3) For i = 0 to n-1 

4)  For j= 0 to n-1 

5)   For lag = 0 to MAXLAG 

6)   If the triple (xi, xj,lag) is valid then 

7)    Insert a new triple (xi,xj,lag) into Q 

8)    Sort Q in descending order of correlation calculated from X 

9)    If size of Q = R+1 then remove a triple from the tail of Q  

10)    End If 

11)   End For 

12)  End For 

13) End For 

14) Output: Q of length R 
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This method was performed on the visual field dataset using Pearson�s and Spearman�s 

rank coefficients, detailed in section 3.1.1. Although in practice datasets could be of 

sufficiently large dimensionality and time-series length to preclude such a search, this 

method was implemented regardless of overheads so that the results could be used as a 

benchmark for the other methods. The exhaustive search consisted of simply exploring 

all of the variables, at each time lag and is described formally in algorithm 3.1. 

 

3.2.2 The Random Bag 
 

This is a heuristic approach whereby a random selection of triples is placed in a bag 

containing RankSize triples. With each iteration a new random triple is added to the bag. 

When the bag overflows, the worst correlations fall out. This is repeated for a 

predefined number of iterations. The procedure is described in algorithm 3.2. 

 

Definition 3.3. The function UI(MIN,MAX) is a uniformly distributed random number 

generator that returns an integer number in the interval [MIN,MAX]. 

 

Algorithm 3.2: The Random Bag 

  

1) Input: X � a T×n MTS 

 MAXLAG � the maximum lag with which to time shift the MTS by 

 R � the required number of correlations 

 c � the number of calls to the correlation function 

2) Set Q = Empty List 

3) Repeat c times Do  

4)  Set i = UI(0,n-1), Set j = UI(0,n-1), Set lag = UI(0,MaxLag) where (xi,xj,lag)

 is valid 

5)  Set a = new triple (xi,xj,lag) 

6)  If a∉ Q then insert a into Q  

7)          Sort Q in descending order of correlation calculated from X 

8)          If size of Q = R+1 then remove a triple from the tail of Q  

9) End Loop 

10) Output: Q of length R 
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The RB method is essentially the selection of the best R triples from a non-overlapping 

random sample of size c from the s possible correlations. Note that c is the maximum 

number of allowed calls to the correlation function. Note also that a triple is valid if it 

does not warrant removal. The final contents of the Bag represent the solution, i.e. the 

required RankSize correlations. 

 

3.2.3 Genetic Algorithm 
 

Recall that a genetic algorithm is a method for search based on the mechanics of natural 

selection and genetics. A population of chromosomes that represent possible solutions is 

used to explore the search space. This is achieved by updating the population with the 

creation of new chromosomes, formed through the recombination (using an operator 

called crossover) of others and a small perturbation analogous to mutation and the 

destruction of less fit chromosomes.  

 

For the correlation problem, a chromosome was considered to consist of a number of 

genes corresponding to the required correlation RankSize. Each gene consisted of a 

correlation triple. Uniform crossover was used and was not allowed to split any gene, 

whereas mutation could affect part of a triple. The GA specific parameters were selected 

through experimentation for optimal performance. These are listed in table 3.1. Within 

this table #Genes is the chromosome length, i.e. the number of genes. 

 

Parameter Value 

MutationRate (%) 0.5 

CrossoverRate (%) 100 

Population 10 

Generations ~21 

#Genes 100 (=Ranksize =R) 

Survival The roulette wheel 

 
Table 3.1 GA Parameters 
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Algorithm 3.3: The Correlation Genetic Algorithm 

  

1) Input: Fitness function for a chromosome 

 POPULATIONSIZE � the number of chromosomes in each population 

 #GENES � the number of genes making up each chromosome 

 GENERATIONS � How many iterations to run the Genetic Algorithm for 

 CROSSOVERRATE � The chance of a chromosome becoming a Parent 

 MUTATIONRATE � the chance each chromosomes gene has of Mutating 

2) Generate POPULATIONSIZE Valid chromosomes of size #GENES bits 

3) For loop = 1 to GENERATIONS 

4)  Crossover the Population to Create Children 

5)  Mutate the Population 

6)  Remove Invalid chromosomes 

7)  Apply Survival to the Population 

8) End For 

9) Output: The fittest individual of the last population 

 

Algorithm 3.3 describes the correlation genetic algorithm. Each chromosome is 

represented as a string of integer numbers, the length being equal to three times the 

RankSize. This corresponds to a correlation being represented as a triple, i.e. (x,y,lag). 

Since the size (range) of the lag is usually different to the size of the variables x and y 

(size is the number of variables n), uniform crossover was restricted to be in multiples 

of three. 

 

Mutation is defined according to equation 3.8. 

 


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where Genei is the ith Gene (where 1≤i≤3(#Genes)) of the chromosome. 
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3.2.4 Evolutionary Programming 
 

Evolutionary Programming is based on a similar paradigm to genetic algorithms. 

However, the emphasis is on mutation and it does not use any recombination.  The basic 

procedure is outlined in algorithm 3.4, and is discussed in section 2.3.2. 

 
Algorithm 3.4: The Correlation Evolutionary Program 

  

1) Input: X � a T×n MTS 

 R � the required number of correlations 

 MAXLAG � the maximum lag with which to time shift the MTS by 

 c � the number of calls to the correlation function 

2) Set Q = Empty List 

3) Generate R random triples and insert into Q 

4) Set CallCount = R 

5) While CallCount < c 

6)  Set Children to Q 

7)         Apply Mutate operator to Children  

8)  Insert valid Children into Q 

9)  Update CallCount by the number of valid Children 

10)          Apply Survival operator to Q 

11) End While 

12) Output: Q of length R 

 

A child will be considered invalid if it is already in Q or fails the validity rules 

described earlier in this section. The best out of the final population will be the best 

solution to the problem. Traditionally, EP algorithms use tournament selection (see 

section 2.3.1) during the survival of the fittest stage. However, it was decided that the 

entire population would be the solution for the EP method as in the RB method. That is, 

each individual chromosome would represent a single correlation (a triple) while the 

population would represent the set of correlations found (PopulationSize=R). Hence the 

survival operator consisted of keeping the best R individuals. This therefore required a 

check for any duplicates after mutation, and for any invalid chromosomes. Any children 

that fell into this category were repeatedly mutated until they became valid. Although 
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the entire population would represent the solution, it must be noted that the fitness of 

each individual would still be independent of the rest of the population. Each individual 

would try to maximise the correlation coefficient that it represents. This in turn would 

maximise the population's fitness by improving the set of correlations represented by 

the population. 

 

Algorithm 3.4 used uses the idea of Self-Adapting Parameters [Bäck1996] as part of the 

mutation phase of the method. Here each gene (xi) in each chromosome is given a 

parameter, σi. Mutation is defined as follows (equations 3.9 to 3.12): 

 

),0( iii Nxx σ+=′  (3.9)

ieii
ψψσσ +=′  (3.10)

)
2
1,0(~
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Nψ  

(3.11)
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1,0(~
c

i
N

Nψ  (3.12)

 

Note that ψ is constant for each gene in each chromosome but different between 

chromosomes, and ψi is different for all genes. Both parameters are generated each time 

mutation occurs. Initial examination of the performance of the RB method found that 

the performance was better than the GA. Similarities were drawn between this basic 

method and the RB algorithm. The major difference was, rather than adding a new 

random chromosome to the population, an existing member of the population is copied 

and mutated in a controlled manner. Each chromosome consisted of three genes and 

their corresponding σ values. The value of Nc is the size (number of genes) of each 

chromosome, i.e. three.  

 

Each gene within a chromosome is mutated according to the normal distribution with 

mean zero and standard deviation equal to the gene's corresponding σ value (equation 

3.9). The σ values, themselves, are mutated according to equation 3.10. Initials values 

for these standard deviations are shown in table 3.2. 
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σi Starting Value 

Variable 1 3.5 

Variable 2 3.5 

Lag 1.0 

 
Table 3.2: σi Starting Value 

 

3.3 Results 
 

The dataset used for evaluation is the visual field dataset as described in section 2.2.2. 

Within this dataset, for each patient's visual field data, correlations will be calculated 

using the 76 visual field points at a time lag of up to five, approximately 30 months. 

This would result in a total of 31,350 correlations. All of the 82 available patients are 

used in this chapter to create a dataset that is of significant complexity (a total of 

2,570,700 possible correlations). The combined correlations for all of the patients were 

�averaged� (this averaging is described in section 3.1.2) to get a single value for two 

visual field points at a given time lag. This is so that the general dependencies over a 

representative population can be compared with the medical literature [Crabb1996/97] 

and [Heijl1988/89a] for verification.  

 

For the visual field dataset, each of the different methods was run until the number of 

calls to the correlation function equalled that of the exhaustive search. With the GA, RB 

and EP methods, this meant setting an artificially high number of generations. In 

practice this would be pointless. A RankSize of 100 was chosen for each of these 

experiments since it is large enough to show if the relationships between the 76 points 

correspond to the same nerve fibre bundles (see chapter 2.2.2).  

 

Figures 3.1 to 3.4 show the results from these experiments. Figures 3.1 is for Pearson�s 

correlation coefficient, and figure 3.2 displays the first third of the search space (a third 

of the number of calls) to demonstrate the area of interest. Figures 3.3 and 3.4 show the 

same information but for Spearman�s rank correlation coefficient. 
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Figure 3.1: Pearson's Correlation Coefficient for the VF Data (100%) 
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Figure 3.2: Pearson's Correlation Coefficient for the VF Data (30%) 
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Figure 3.3: Spearman�s Correlation Coefficient for the VF Data (100%) 
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Figure 3.4: Spearman�s Correlation Coefficient for the VF Data (30%) 

 

Within figure 3.1 and figure 3.3 it can be seen that the EP method converges nearer to 

this maximum during the first 500,000 function calls before slowing. However, it can be 

seen, in both sets of results, that the EP method performs consistently better than the 

other methods. The RB method does the next best, converging at a slower rate than the 

EP method; this is highlighted in figures 3.2 and 3.4. However the GA method performs 

very poorly and still seems to be slowly converging. Again, the result for the GA was 

the best produced from a number of experiments using differing parameter values. The 

Pearson and Spearman results are quite similar showing the performance of the method 

is independent of the correlation metrics. 

 

Next, an analysis was made of each method after approximately five percent of the total 

number of correlations was called. Table 3.3 shows the analysis of the best correlations 

found. Within this table, PCC refers to results generated by using Pearson�s correlation 

coefficient; SRC to results generated using Spearman�s rank correlation coefficient; EX 

is the exhaustive search results; TOP100 is the best 100 correlations from the exhaustive 

search results; RB is the Random Bag results; EP is the evolutionary programming 

results; GA is the genetic algorithm results; #Calls is the number of calls to the relevant 

correlation coefficient; %Calls is the number of calls as a percentage of the total number 

of possible correlations (i.e. the whole search space); Max. is the maximum correlation; 

Min. is the minimum correlation; Mean is the arithmetic average; Median is the median 

value and StDev. is the standard deviation for the correlations. 
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The exhaustive method shows the overall best and worst correlation in the entire 

possible 2,570,700 as would be expected. The number of calls for methods not based 

around the exhaustive method is approximately five percent of the whole search space. 

The EP method has the best average for both Pearson's and Spearman's correlation 

coefficient, and also a better median. The standard deviations are all of a similar 

magnitude, indicating that the distributions of the found correlations are similar in 

variability. 

 

Method # Calls % Calls Min. Max. Mean Median StDev. 

PCC        

EX 2,570,700 100.000 0.000 0.873 0.069 0.039 0.000 

TOP100 2,570,700 100.000 0.636 0.873 0.702 0.682 0.064 

EP 136,566 5.312 0.412 0.810 0.516 0.505 0.090 

RB 136,242 5.300 0.296 0.731 0.418 0.374 0.114 

GA 244,215 4.750 0.000 0.535 0.110 0.052 0.135 

SRC        

EX 2,570,700 100.000 0.000 0.883 0.071 0.043 0.000 

TOP100 2,570,700 100.000 0.625 0.883 0.702 0.685 0.069 

EP 136,161 5.297 0.505 0.869 0.607 0.580 0.090 

RB 135,837 5.284 0.315 0.799 0.447 0.425 0.119 

GA 244,782 4.761 0.001 0.517 0.100 0.047 0.131 

 
Table 3.3: Summary Statistics for All Methods for Both Correlation Coefficients 

 

Figures 3.5 and 3.6 show two histograms, one for each correlation coefficient for the 

whole exhaustive search. In these histograms, the number of correlations that falls into a 

given interval is given. In both cases it can be seen that there are many low value 

correlations, and as the value of the correlation increases, the corresponding frequency 

decreases, as would be expected. 
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Figure 3.5: PCC Correlation Range Histogram 
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Figure 3.6: SRC Correlation Range Histogram 

 

To summarise the results, the EP method behaved better than the RB method and the 

GA in both datasets, using both correlation coefficients; but only for cases where the 

number of calls is less than half the search space. It seemed that there was a larger 

difference in performance between EP and the others in the VF data. This is probably 

due to the fact that the numerical encoding of the variables map mathematically to 

spatial points upon the eye�s retina, as described in section 2.2.2. A mutation would 

result in a form of rotation or translation of co-ordinates. The self-adapting standard 

deviations would adjust to a level where certain transformations would result in many 

useful and high correlations, perhaps within the same nerve fibre bundle.  

 

The GA performed the worst, particularly when the number of generations was small, 

because the crossover operator merely mixes correlation genes around. The crossover 

operator is additionally designed to carry forward good schema, which cannot exist 

within this context (i.e. all genes are independent and hence exhibit low epistasis). 
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The GA could have been designed as in 

the EP method, with an individual 

representing a single correlation and the 

population representing the solution. 

However, unless a binary representation 

was used, the chromosome size would 

have been too small to fully exploit 

crossover. The binary representation would 

have been approximately 15 bits in the 

case of the VF data. This is still very small, 

and some elementary experimentation has 

verified this. 

 

3.5 Discussion 
 

Figure 3.7 displays three graphs of the 76 

points of the visual field data. Each graph 

includes the correlation results from 

running the EP method for 5% of the 

whole search space, corresponding to the 

experiments displayed in table 3.3. 

 

The first diagram in figure 3.7 displays the 

best 34 correlations found, the second 

graph, the next 33, and the last graph: the 

remaining 33. 

 

A line is used to represent a correlation 

between two variables, and its colour is an 

indication of strength: the darker the line 

is, the higher the correlation. 
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Figure 3.7: Correlation Results 
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It can be seen that the majority of the correlations correspond well with the medical 

literature, which indicates that deterioration often originates �out of the blind spot� 

[Hollwich1985] and then affects the periphery of the eye, moving counter clockwise. 

Many of the relationships are between points that lie on the same nerve fibre bundle, or 

with points that lie on adjacent bundles, again corresponding with what an ophthalmic 

clinician would expect. 

 

One correlation that is quite strong suggests a relationship between point 3 (within the 

blind spot) and point 67. This can be explained since not all of the retina covered by 

points 3 and 22 correspond to the blind spot, and any visual field reading involving 

these points are likely to be noisy, thus this relationship could be pure coincidence. 

 

3.6 Concluding Remarks 
 

Within this chapter several methods for quickly learning the correlation structure of a 

large dataset have been explored. These methods have been applied to an important real 

world dataset that exhibit properties where this type of analysis is useful. That is, it is a 

large multivariate time-series where the fast identification of the approximate 

correlation structure is needed. The results show that the EP method is by far the 

quickest to converge to a high average correlation. The self-adapting parameters appear 

ideally suited to finding meaningful clusters of correlations; however it still remains to 

be investigated where this method is appropriate, and where it falls down. It is 

suggested that the EP method will perform no better than that of the RB method if there 

are no patterns within the underlying correlations of the dataset being explored, e.g. the 

spatial arrangement of the nerve fibre bundles within the visual field data. 

 

These correlations will be shown to be highly useful in chapter 4 where they will be 

used as the basis for a variable grouping strategy that decomposes a high dimensional 

time series into a number of smaller dimensional series. Finally, consideration could be 

made of using them as seeds to a genetic algorithm based method that produces 

statistical time series models suited for short term forecasting.  
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4. Decomposing High Dimensional MTS 
 

There are many practical applications involving the partition of a set of objects into a 

number of mutually exclusive subsets. The objective is to optimise a metric defined 

over the set of all valid partitions. The term grouping will be used to refer to this type of 

problem [Falkenauer1998].  

 

Examples of grouping applications include bin packing, workshop layout design, and 

graph colouring. Much research has been done on the grouping problem in different 

fields. It has been established that many, if not all grouping problems, are NP-hard 

[Garey1979]. Therefore a heuristic or approximate procedure is normally required to 

cope with most of the real world problems.  

 

A variety of techniques have been proposed to develop this procedure, including 

traditional clustering algorithms, hill-climbing and evolutionary algorithms. These 

techniques utilise a metric that takes relationships or dependencies between objects into 

account, and partition them into a number of mutually exclusive subsets. 

  

When it comes to the problem of decomposing a high-dimensional multivariate time 

series (MTS) into a number of low dimensional MTS, the number of possible 

dependencies between time series variables becomes very large because one variable 

could affect another after a certain time lag. Therefore effectively utilising these 

dependencies becomes an important issue: using all the possible dependencies in a 

variable grouping algorithm will be computationally impractical for many, especially 

real-time, applications. 
 

This chapter is about a systematic study and application of the variable grouping 

problem in MTS. In particular, different methods of utilising the information regarding 

correlations among MTS variables are investigated, this information being provided by 

the methods presented in chapter 3. Five grouping methods to be introduced in this 

chapter and three correlations methods will be applied to six datasets where there are 

identifiable mixed groupings of MTS variables. This chapter describes the general 
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methodology, reports extensive experimental results and concludes with useful insights 

on the strengths and weaknesses of this type of grouping method. This chapter is based 

upon work outlined in [Swift2001] and [Tucker2001b]. 

 

4.1 Grouping Problems and Multivariate Time Series 
 

When dealing with an n dimensional MTS, it is desirable to model the data as a group 

of smaller MTS models as opposed to a single one. Firstly, not all of the variables may 

be related, and secondly the number of parameters to be located in such a model would 

be very high. For example in forecasting, there are many statistical MTS modelling 

methods such as the Vector AutoRegressive (VAR), Vector AutoRegressive Moving 

Average, and other non-linear and Bayesian systems [Lütkepohl1993]. Take the 

VAR(p) process as an example. There would be at least n × n × p parameters to locate 

where p is the order of the VAR process and n is the number of variables in the dataset. 

In explaining MTS, suppose the aim is to learn Dynamic Bayesian Network (DBN) 

models [Friedman1998] from a MTS which has very high dimensionality, n, and large 

possible time lags, then the number of possible candidate networks will be 
2

2 nMaxLag ⋅ where MaxLag is the maximum time lag [Tucker2001a].  

 

The decomposition of the MTS into smaller dimensional MTS that are independent to 

some degree significantly reduces the search space, thereby allowing the speedier 

production of MTS models. Therefore the aim is to decompose a high-dimensional 

MTS into groups of smaller MTS, where the dependency between variables within the 

same group is high, but very low with variables in another group. This type of method 

does not appear to have been studied before. In [Mandava1993] visual field variables 

are clustered but time delays are ignored. In [Oates1996] categorical data is segmented 

along the time axis and these segments are clustered. In [Goutte1999] real valued MTS 

are clustered but expert knowledge is used to reduce the search space. Note that this is 

different from what the dimensionality reduction techniques such as principal 

component analysis or factor analysis try to achieve by making some sort of 

multivariate transformation of the data [Pena1987].  
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In the previous chapter, the result of the correlation pre-processing resulted in a list of 

correlations, denoted Q. Here each element of Q consists of a correlation triple 

(xi,xj,lag). In this chapter the grouping algorithms will be applied to Q where a 

specifically designed metric is used to group the variables in the original MTS based on 

the pairs of variables found in Q. Note that the lag portion of the triple is no longer used 

once the grouping algorithm is applied, but is maintained for use later on. This is 

because the purpose at this stage is to group highly correlated variables together, 

irrespective of the time lag between them; the lag helps in determining the strength of 

the relationship, which is no longer needed once identified.  

 

This chapter is arranged as follows. After outlining the basic notation a grouping metric 

is then defined and its properties are studied. This is followed by the presentation of five 

different grouping search algorithms based on conventional clustering methods, 

hill-climbing or evolutionary methods. Finally the results of applying correlation search 

and grouping are presented and considered. 

 

4.1.1 Preliminaries 
 

Given a multivariate time series with n variables of length T, the objective is to partition 

the list of variables },..,{ 1 nxx  into m groups. The size of the ith group will be denoted 

by ki. This will be achieved by generating a list of strong correlations, Q, which will be 

of length R. Q will be calculated by using different searches through the number of 

possible correlations, s, where the number of calls to the correlation coefficient will be 

denoted by c. The aim of this search is to find the true underlying dependencies that 

generated the data. The number of true dependencies will be denoted by r. 

 

4.1.2 The Grouping Metric 
 

The Grouping Metric is used to score a group. It assigns higher scores to groups that 

contain variables which appear in a triple in Q. Let G be a list of groups },..,{ 1 mgg that 

partitions the variables },..,{ 1 nxx , where ii kg = . That is ∑
=

=
m

i
i nk

1

, 
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jigg ji ≠∀=∩ ,φ and U
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= where ki ≥1. The notation gij refers to the jth 

element of the ith list of G. It is clear to see that in all cases m ≤ n. 

 

The grouping metric f(G) for any fixed list of groups is defined as in equations 4.1 to 

4.3, where corr(xi, xj) returns true if there exists in Q a triple of the form (xi, xj, lag) or 

(xj, xi, lag) for any valid lag. Hence corr(xi,xj)=corr(xj,xi). The set Q contains only 

unique correlations.  
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The metric has the following characteristics, the proofs of which can be found in 

appendix F: 

 

i) If there are no correlations (Q=φ), the maximum value is obtained when all 

variables are in separate groups. 
 

ii) If a correlation exists for each pairing of variables (the whole search space, i.e. 

)1(
2
1|| −= nnQ ), then the maximum fitness is obtained when all of the variables 

are in one group. 
 

iii) If the data generating the correlations came from a mixed set of multivariate 

time series observations, then the metric will be maximised when the variables 

within the same group have as many correlations within the set Q as possible 

and variables within differing groups contain as few correlations as possible. 
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A suitable correlation function has been chosen that is a well-established correlation 

coefficient: Spearman's Rank Correlation, see section 3.1.1. It should be noted that the 

methods are in no way restricted to using this particular coefficient and others such as 

Pearson's could have easily been used. Spearman�s Rank was chosen, as it is well 

recognised and not restricted to finding linear dependencies. 

 

4.2 The Grouping Search 
 

This section describes the methods employed to group the results of the correlation 

searching routines according to the metric outlined above. Three genetic algorithm 

based methods are presented, along with a Hill-Climbing and heuristic clustering 

method. 

 

4.2.1 The Genetic Algorithms 
 

The general algorithm for generating a list of groups, G, from a set of correlations, Q, is 

given in algorithm 4.1.  

 

Algorithm 4.1: The Genetic Algorithm 

  

1) Input: Q � The Correlation list 

 Fitness function for a chromosome � the Grouping Metric applied to Q 

 POPULATION � the number of chromosomes per population 

 GENERATIONS � the number of genetic iterations 

 CROSSOVERRATE � the percentage of chromosomes allowed to breed 

 MUTATIONRATE � the chance a gene of a chromosome has of mutating 

2) Generate POPULATIONSIZE chromosomes 

3) For loop = 1 to GENERATIONS 

4)  Crossover the Population to Create Children 

5)  Mutate the Population 

6)  Apply Survival of the Fittest to the Population 

7) End For 

8) Output: G, groups constructed from the fittest individual from the final population 
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Three different representations of a partition are used, each having their own specialised 

crossover and mutation operator. For the scope of this thesis, the fitness function for the 

methods will be the grouping metric defined in equation 4.1. 

 

Gene Per Variable (GPV). This representation consists of a chromosome with each 

gene representing the index of a variable in the domain. The value of the gene 

determines which group the variable is a member of. For example the partition 

{ }},{},,,,,{},,,{ 9651472830 xxxxxxxxxx  would be represented as follows: 

 

2 0 1 2 1 1 0 1 1 0   
9 6 :2 Group

5 1 4 7 2 :1 Group
8 3 0 :0 Group

⇒






 

 

The crossover operator used for this representation is Holland's standard one point 

crossover and the mutation operator involves randomly mutating genes within the 

chromosome according to the mutation rate. Each gene has mutation rate probability of 

being mutated to a value from a uniform distribution UI(0,n-1). 

 

Goldberg's Partially Mapped Crossover (PMX). This form of crossover applies to a 

new representation of the grouping problem where the chromosome consists of 

variables interspersed with group dividers. For example, let a group divider be 

represented by the symbol □i where the subscript is unique and each of 10 variables 

within a domain be represented by a unique integer. 

 

Therefore the chromosome: 0 3 8 □1 2 7 4 1 5 □2 6 9 would represent the groupings in 

the previous example. In other words, variable indices between two □s or a □ and the 

beginning or end of a chromosome belong to the same group. 

 

This representation requires a new crossover operator in order to ensure that invalid 

children are not produced. It can be seen that standard crossover as used in the GPV 

representation would produce many invalid children, as it would be highly likely to 

result in children with variables appearing in more than one group. Goldberg introduced 
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the PMX operator [Goldberg1985], which prevented this and developed an o-schema 

theory (closely linked to Holland's original schema theory). It ensures all children are 

valid (i.e. it is a closed operator) and works as follows: 

 

i) Select two crossing points for both parents 

ii) Swap all elements between the crossing points 

iii) For all repeating elements in the old part of the chromosome, replace with 

the value found on the corresponding position on the other chromosome. 

 

For example, Parent 1: 4 □3 0 □1 1 6 5 2 □2 3 and Parent 2: 5 4 □2 2 3 □3 0 1 □1 6   
 

i) Crossing points = 3 and 5 

ii) Swap elements 

iii) �□1 1 6� with �2 3 □3�  

iv) Giving 4 □3 0 2 3 □3 5 2 □2 3 and 5 4 □2 □1 1 6 0 1 □1 6 

v) Replace repeated values; 2 with □1, 3 with 1 and □3 with 6 

vi) Giving 4 6 0 2 3 □3 5 □1 □2 1 and 5 4 □2 □1 1 6 0 3 2 □3 

 

Mutation involves randomly mutating genes within the chromosome according to the 

mutation rate. Each gene has mutation rate probability of being swapped with another 

random gene. 

 

Falkenauer's Grouping Genetic Algorithm (GGA). This representation is similar to 

the GPV except that it also has an extra part on the chromosome. For the GGA, the 

representation of a chromosome consists of two parts. In the first part, each gene 

represents a variable in the domain. The value of the gene determines which group the 

variable is a member of. In the second part, each gene represents the actual groups 

without any information about their contents. Hence, the chromosome is of variable 

length since the number of groups can vary. For example, 8 variables to be placed into 

the following 3 groups:  
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Group 0: 0 3 4 Group 1: 1 2 6 Group 2: 5 7 

 

This would be represented by the following chromosome: 01100212:012. It is the 

second part of the chromosome (after the colon) that crossover is applied to. Crossover 

works as follows: 

 

i) Select two random crossing sites, delimiting the crossing sites in each of the 

two parents, denoted as: [Parent start position, Parent end position]. 

ii) Inject the contents of the crossing section of the first parent at the first 

crossing site of the second parent. 

iii) Remove any elements that conflict with the groups that were members of 

the first parent. 

iv) Remove any empty groups and reinsert any unassigned variables to existing 

groups. 

v) Repeat (i) to (iv) to produce the second child by reversing the roles of the 

first and second parent. 

 

Example for first child:  Parent 1: 0 1 1 0 0 2 1 2 : 0 1 2  

Parent 2: 4 5 3 4 5 6 3 6 : 3 4 5 6  

 

i) The crossing sites for Parent 1 = [0,1] and for Parent 2 = [1,3] 

ii) Inject group 0 into position 1:    0 ? ? 0 0 ? ? ?  : 3 0 4 5 6 

iii) Remove group 4 and 5 due to conflicts:  0 ? 3 0 0 6 3 6 : 3 0 6 

iv) Reinsert variable 1 into random group (6): 0 6 3 0 0 6 3 6 : 3 0 6 

 

A �?� denotes an unallocated variable. 

 

4.2.2 Hill-Climbing 
 

Hill-climbing [Michalewicz1998, Russell1995] is essentially an iterative search where 

the value of the solution can only increase or stay the same at each step. The version of 

hill-climb within this chapter involves using the GPV representation, making simple 
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changes to the current groupings at each iteration; a random variable index is either 

moved into another existing group or into a new group. If this change improves the 

score of the partition, it is retained. The hill-climbing algorithm is described in 

algorithm 4.2. 

 
 

 

Algorithm 4.2: The Hill-Climb 

  

1) Input: Q � the Correlation list 

 Score � the Grouping Metric applied to Q given a chromosome 

 Iterations � the number of times the Hill-Climb is iterated 

2) Generate a random selection of groupings G (i.e. a single chromosome using the GPV

representation) 

3) Set Score according to the Grouping Metric applied to Q given the grouping 

4) For i = 1 to Iterations do 

5)  Make a random change to G (move a variable to an existing or new group) 

6)  Set New_Score according to the Grouping Metric applied to Q given G 

7)  If New_Score < Score Then undo changes 

8) Next i 

9) Output: G (a list of groups) 

 

4.2.3 Separate and Conquer 
 

This method is based on the clustering technique of Separate and Conquer 

[Mirkin1999]. The algorithm has been amended so that it clusters on the relationships 

between variables rather than on the value of variables. The procedure is described in 

algorithm 4.3 and uses equation 4.2 to calculate )(gih . To summarise, a new group is 

created containing the two variables that have the highest correlation between them. The 

next step is to take each variable in turn, and iterate through each group that exists, 

seeing if adding the variable to that group increases the groups� score. If this is the case, 

then the variable is added to that group. If there are no more groups to test a given 

variable with, then it is placed into a new group on its own. 
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Algorithm 4.3: Separate and Conquer 

  

1) Input:  Q � the Correlation list 

2) Let G be a list of Groups (empty), Let X be a list of variables {1,..,n}, Let m=1 

3) Create a group g1 containing the best correlation pair in Q and add g1 to G 

4) For i = 1 to n 

5)  Set skip=false and Set j = 1 

6)  While j < m+1 and skip=false 

7)   If xi ∉ gj then 

8)    Set }{ ijj xgg ∪=′  

9)    If )g( j′h  > )(g jh  then Set }{ ijj xgg ∪=  and Set skip=true 

10)    End If 

11)   End if 

12)   j= j+1 

13)  End While 

14)  If skip =false then  

15)   Set }{* ixg =  and Set *gGG ∪=  

16)   Set m=m+1 

17)  End If 

18) Next i 

19) Output: G (a list of groups) 

 

4.3 Parameter Estimation 
 

In order to retrieve groupings that correspond closely to the correlations that represent 

actual dependencies, the ideal set of parameters for the correlation mining algorithm 

will have to be determined. The most important of these is R, the size of Q. This will 

determine the cut off point for significant correlations, it will affect the overall 

algorithm a great deal. For example, if R is too large there will be too few significant 

correlations resulting in smaller groups; if R is too small there will be too many 

significant correlations and so groups will be combined into larger ones due to the 

inclusion of low correlated variables in the list. It was decided to try and determine the 

parameters through simulations of the Random Bag method described in chapter 3. 

Random Bag was chosen since it is the simplest to model. It is the weakest of the three 
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methods for correlation mining and so by coming up with confidence intervals for 

selecting all the true correlations for this method should mean a worst case scenario for 

the chosen parameters; namely 95% confidence on Random Bag should mean at least 

95% confidence on EP. This has been shown to be true in the previous work that this 

chapter builds on [Swift1999b], and through the experiments within this chapter. 

Simulations were used to generate probability distributions of selecting correlations that 

represent actual dependencies. These distributions could in turn be used to determine 

confidence limits for the correlation list size and the number of calls to the correlation 

function. 

  

4.3.1 Simulation of Random Bag 
 

Simulations were carried out in order to mimic the way in which the Random Bag 

searches for good correlations. These consisted of setting the size of Q (R), the size of 

the total search space (s) and the number of calls to the correlation function (c) to 

particular plausible instantiations, then simulating the act of randomly selecting a 

correlation from the search space, and finally recording whether it was a pre-defined 

true dependency. This process can be compared to repeatedly picking a selection of c 

random cards from a pack without replacement and recording the number of Aces 

found.  

 

Therefore for this case R = 4 (the number of Aces) and s = 52 (the number of cards in a 

pack). Therefore, approximations of the distributions associated with the probability of 

picking a true dependency can be generated. The number of these true dependencies 

will be referred to as r, which is always less than or equal to R. These distributions were 

then tested for normality using the Lilliefors� test (see section 4.3.2). The mean and 

standard deviation were then calculated for each distribution so that a method for 

symbolic regression could be used to learn a function to determine the mean and 

standard deviation given R, s and c.  

 

Algorithm 4.4 describes this procedure. The probability distribution for selecting a true 

dependency is found by dividing each element in the distribution array by 
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SimulationSize. SimulationSize is a variable that dictates the number of times the 

process is repeated to ensure that a good approximation to the Random Bag process is 

reached. This was repeated for Nsims different values of R, s and c. 

 

Algorithm 4.4: Simulation of the Random Bag 

  

1) Input: R, r, s, c and SimulationSize 

2) Set dependencies = r randomly selected correlations, Let Distribution be a zero array of

length R 

3) For i = 1 to SimulationSize 

4)  Set count = 0 

5)  For j = 1 to c 

6)   For k = 1 to R 

7)    Set q to a random correlation 

8)    If q is in dependencies Then count = count + 1 

10)   Next k 

11)  Next j 

12)  Set Distributioncount = Distributioncount + 1 

13) Next i 

14) Output: Distribution 

 

4.3.2 Lilliefors' Test 
 

Lilliefors� test [Lilliefors1967] is a simple test for normality that can be performed on a 

known distribution function. The simulations performed in section 4.3.1 can easily be 

transformed into the required format for this method and the test can be performed to 

see if the Random Bag method can be approximated by a normal distribution. The test 

is as follows: given v observations, a metric Dmax is computed by equation 4.4. 

 

)()(* 1max rSrFMAXD R+−=  (4.4)

 

where SR+1(r) is the sample cumulative distribution function, F*(r) is the cumulative 

normal distribution with µ equal to the sample mean, σ2 equal to the sample variance. 

Within the simulations, these two summary statistics can be computed directly from the 
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data. If the value of Dmax exceeds a critical value supplied by Lilliefors in his paper, one 

rejects the hypothesis that the observations closely follow the normal distribution.  

 

For the purposes within this chapter the 99% confidence limit is selected, which 

requires Dmax is less than or equal to 
1

031.1
+R

.  

 

A sample of tests on the 150 simulations can be found in appendix G. From the results 

of these tests it can be assumed that the Random Bag can be approximated by a normal 

distribution with a 99% certainty. In fact all of the 150 simulations passed the test for 

normality at this level. 
 

4.3.3 Finding µ and σ 
 

Once it has been ascertained that the distribution of the Random Bag process can be 

approximated as Normal, a value for the means and standard deviation is needed in 

order to place confidence limits on the number of function calls needed to find the 

required R, the size of Q. Since the process itself does not have a very easy 

representation for the probability distribution, the algebraic representation for the mean 

and standard deviation is likely to be difficult to derive. Since many simulations have 

been performed, tabulating R, c, s and the associated µ and σ, these can be used to 

evaluate the relationship between µ and σ. It will be assumed that µ is a function of R, c 

and s, and that σ is another function of R, s and c. The Genetic Programming technique 

of Symbolic Regression will be used for this [Koza1992]. 

 

The functions which determine µ and σ, are denoted µ(R,c,s) and σ(R,c,s) respectively. 

These functions are assumed to be constructed in terms of the operators +,-,×,/, the 

terminal symbols R, c, s, along with the integers zero to nine. The exact form of µ(R,c,s) 

and σ(R,c,s) is unknown. A binary tree will be used to represent a regular expression in 

terms of these symbols, with the terminal nodes being a variable or constant and the 

non-terminals being an operator. The fitness of a given tree will be the difference 

between the observed values of µ and/or σ and the value calculated from the simulation 
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data; (using the equation formed from the tree and all of the available data). The fitness 

function is defined in equations 4.5 and 4.6. 

 

( )∑
=

−⋅−=
simsN

i
iiii scRscRNodesscR

1

2),,()),,((),,(for  Fitness µµµµ  
(4.5)

( )∑
=

−⋅−=
simsN

i
iiii scRscRNodesscR

1

2),,()),,((),,(for  Fitness σσσσ  
(4.6)

 

where Nodes(●) represents the number of nodes in the binary tree corresponding to the 

function in question, and i indexes a variable from the table of simulated examples 

(where there are a total of Nsims examples). As with a GA, the initial population will be a 

certain number of random binary trees of the form described above. This population 

will be improved (better fitness) over subsequent generations through the use of the 

standard genetic programming operators of Mutation and Crossover. By maximising the 

fitness functions, the genetic program is encouraged to look for smaller trees. 

 

4.4 Experimental Methods 
 

Section 4.4.1 describes the synthetic dataset. The results of parameter estimation are 

described in section 4.4.2. A Weighted-Kappa metric for evaluating the discovered 

groupings is introduced in section 4.4.3, followed in section 4.4.4 by the parameters 

used in the GA based experiments. There are three correlation search methods and five 

grouping strategies to test making a total of 15 different combinations of methods. 

These 15 strategies are applied to six synthetic datasets in which there are identifiable 

mixed groupings of MTS variables. For each experiment the following is recorded: 

 

i) The grouping metric of the best solution after a varying number of calls to 

the fitness function for various datasets. This is a measure of how well the 

groupings represent the correlations that were discovered during the 

correlation search. 
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ii) The score as calculated by the Weighted-Kappa metric described in 

appendix J, which is independent of the correlation search results. This can 

be considered as a measure of accuracy of the resulting groupings. It is 

essentially a measure of distance between the groups that were used to 

generate the data and the resultant groups found using each method. 

 

iii) The average number of function calls to find the solution; this can be 

thought of as a measure of efficiency. 

 

All stochastic grouping algorithms (all methods except Separate and Conquer) were 

repeated ten times and the average recorded in order to remove any sampling bias. The 

correlation mining methods produce R correlations whilst r are needed. Q is therefore 

truncated from size R to size r so that the best r out of Q are retained. Note that the 

invalidity rule described in chapter 3 ensures there are no duplicates, i.e. correlations 

containing the same variables but at differing or same time lag.  

 

4.4.1 Dataset Organisation 
 

Simulated datasets are used to verify the validity of the grouping procedure at this stage. 

Two sets of simulated data were generated. The first was a selection of VAR processes 

as described in section 2.1.3, and the second was a selection of hand coded DBN 

networks as described in section 2.2.1. Five datasets from both sets of simulated data 

with varying dimensionality and order were generated. These are described below and 

in appendix H. VAR process creation is described in appendix E, and the genetic 

algorithm generation method was chosen so that the choice of process would not be 

restricted. DBN generation has been omitted but can be found in [Tucker2001b]. Table 

4.1 describes the MTS datasets that were generated. 
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 DBN VAR 

MTS a b c d e f g h i j 

Order 10 20 5 30 60 2 3 4 5 2 

Dimensionality 3 5 5 10 10 10 7 6 3 2 
 

Table 4.1: The different MTS descriptions 

 

These 10 multivariate time-series were grouped into different combinations to produce 

6 datasets. The first consisted of all 61 variables, the second consisted of only DBN 

generated data, and the third only VAR generated data and the remaining three 

consisted of various mixtures. All datasets except the first consisted of 28 variables so 

as to keep the search space identical. Table 4.2 shows the breakdown of each dataset. 

 

Dataset MTS 

1 a b c d e f g h i j 

2 a b d e 

3 f g h i j 

4 a e f i j 

5 a b c g h j 

6 d g h i j 
 

Table 4.2: The Breakdown of Each Dataset 

 

4.4.2 Parameter Estimation Results 
 

Parameters and result statistics of the parameter estimation experiments can be found in 

appendix I. The resulting functions for µ and σ are according to equations 4.7 and 4.8: 
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cs
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Once values for the mean and standard deviation have been found, confidence limits on 

the probability of the Random Bag finding a number of correlations that lie between r 

and R can be placed, where R is the size of the Random Bag and r is the number of 

correlations being searched for. This is the cumulative normal distribution where the 

probability that the number of correlations found is greater than r. For the purpose of 

this chapter, the ratio of R to r has been chosen as 5 and the confidence limit as 95%. 

The aim of this exercise is to recommend a value for c based on the known parameters 

R, r and s. Given that the pr(number of correlations ≥ r) = 0.95, the standard normal 

distribution tables with z = (r-µ) /σ can be used to find what the corresponding value of 

c should be. For the 95% level, the value of z should be �1.645. Since µ and σ are 

known, an equation can be formed in terms of z, r, R, c and s where only c is unknown. 

The starting point is given in equations 4.9 and 4.10. 
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(4.9)

(4.10)

 

Unfortunately this requires a lot of algebra to solve the above equation for c. The final 

solution is a quadratic equation, and when some reasonable approximations are made, is 

according to equation 4.11. 

 

( ) 







−+−+−≈ )63(

63
883.12)23.1(

22
2 rRzrRRrsc  

(4.11)
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The parameter c determines how long the procedure is going to execute for, in terms of 

how many correlation function evaluations are made. For example if c is greater or 

equal to the number of calls made by the exhaustive search (s), then it is pointless to use 

the Random Bag to locate the required number of correlations. As a reasonable 

guideline a 95% confidence of finding the required number of correlations is aimed for. 

If the parameter estimation analysis is applied to datasets 1-6, the results listed in table 

4.3 are obtained.  

 

The equation for s represents the total possible number of correlations at varying time 

lags, once invalid correlations are removed (see chapter 3). µ and σ are defined in 

equations 4.7 and 4.8 respectively, z is the standard normal variable, and c is defined by 

equation 4.11. Two new parameters are introduced: γ and β. γ is the ratio of c to s and 

gives an indication of how efficient the procedure is going to be. As a guideline, it is 

suggested that for the Random Bag to be effective, this value should be less than 1/3. 

However, the parameter β needs defining. This represents the ratio r/R. A value of 0.2 

was found through experimentation to provide a good trade off between the number of 

calls to the correlation function, c, and how many correlations needed to be stored in 

memory. As can be seen, the use of the approximation in equation 4.11 has resulted in 

the confidence limit not being exactly 95%, but rather 94.4% (on average). 

 

Figure 4.1 shows an example where s = 1,000,000, β = 0.2, γ is allowed to vary between 

0.22 and 0.32, and three values of R are displayed. The values of R corresponds to 

2.5%, 0.25% and 0.025% respectively of s. It can be immediately seen from the graph 

that R=250 requires more correlation function calls for any level of confidence than for 

the other two values of R. However there is not much difference between R=25,000 and 

R=2,500. Other similar experiments have shown that the optimal value for R/s is 

approximately 0.25%. 

 

 

 

 



Chapter 4 

101 

Parameter Dataset 1 Dataset 2-6 

MaxLag 75 75

n (number of variables) 61 28

r 150  64

R 750 320

c 72201 15585

)5.0)(1( +−= MaxLagnns 276330 57078

cs
cR
+

=
2
2µ  

173.321 76.879

s
cR 11

63
+=σ  

14.779 8.083

σ
µ−= rz  

-1.578 -1.593

s
c=γ  0.273 0.261

R
r=β  0.200 0.200

Confidence 0.943 0.945

Table 4.3: Parameters for Datasets 1-6 
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Figure 4.1: Confidence against γ with varying R 
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To conclude this section, it has been shown that c should be calculated from equation 

4.11 once a confidence limit has been assigned (e.g. 95%, giving a value for z: -1.645); 

here it is recommended that the value for R/s to be about 0.25%. Finally, having the 

ratio of r to R being 0.2 proves to be efficient. However a more systematic study should 

be conducted on how these parameters relate to each other. 

 

4.4.3 Genetic Algorithm Parameters 
 

Table 4.4 displays the genetic algorithm parameters for the relevant grouping methods, 

i.e. those that are genetic algorithm based. 

 

GPV PMX Falkenauer 
GA Parameter Dataset 

1 

Dataset  

2-6 

Dataset 

1 

Dataset 

2-6 

Dataset 

1 

Dataset 

2-6 

Population 150 100 150 100 150 100 

Generations 1500 1000 150 100 150 100 

Crossover Rate 0.80 0.80 0.80 0.80 0.90 0.90 

Mutation Rate 0.05 0.10 0.008 0.018 0.90 0.90 
 

Table 4.4: Genetic Algorithm Parameters 

 

4.4.4 The Weighted-Kappa Metric 
 

A metric is needed to show how similar or dissimilar two groups are. This is based on 

the Weighted-Kappa metric (see appendix J) and is calculated by pairing all of the 

variables up and incrementing the score each time that the pair appears in the correct 

group within the two groups or when the pair appears in different groups. The metric is 

scaled so that it returns a value between minus one and one inclusive, where minus one 

represents very dissimilar groups and one represents very similar groups. The 

Weighted-Kappa metric is used to measure how accurately a grouping method has 

reconstructed the original groupings, hence the two sets of groups the metric is applied 

to consist of a grouping methods result and the corresponding known grouping. 
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4.5 Experimental Results 
 

In this section the results from the 15 different combinations of correlation search and 

grouping strategy are examined to see how they performed when averaged over the 6 

datasets. Marginal statistics are then presented to see how the correlation searches and 

the grouping strategies performed irrespective of each other. The effect the different 

datasets had on the outcome is considered by looking at their marginal statistics. Finally 

the grouping results are discussed using three examples. 

 

In tables 4.5 to 4.7, the abbreviations Falk stands for Falkenauer, HC stands for 

hill-climbing and S&C for Separate and Conquer, and Ex for the Exhaustive Search. 
 

Measurement GPV PMX Falk HC S&C 

Grouping Metric 52.717 56.283 59.733 57.250 54.667 

Weighted-Kappa Metric 0.639 0.658 0.700 0.670 0.620 

Function Calls 232327.650 63442.750 31762.233 11666.667 427.667 
 

Table 4.5: The 5 Grouping Strategies applied to the Random Bag Q 
 

Measurement GPV PMX Falk HC S&C 

Grouping Metric 55.300 57.333 62.667 60.917 56.833 

Weighted-Kappa Metric 0.670 0.698 0.734 0.719 0.655 

Function Calls 232292.517 63445.100 31770.500 11666.667 400.667 

 
Table 4.6: The 5 Grouping Strategies applied to the Evolutionary Program Q 

 

Measurement GPV PMX Falk HC S&C 

Grouping Metric 58.900 61.017 65.500 63.433 61.333 

Weighted-Kappa Metric 0.698 0.712 0.773 0.736 0.714 

Function Calls 232237.367 63421.600 31755.000 11666.667 411.667 

 
Table 4.7: The 5 Grouping Strategies applied to the Exhaustive Search Q 
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It can be seen from the results of the 15 different methods that whilst there is a lot of 

variation in the number of calls to the grouping function, the metrics (and in particular 

the Weighted-Kappa metric) do not vary a great deal. This implies that the initial 

process of searching for Q does not have to be exhaustive to get good results. This 

property would be very useful for those applications where the partitioning of a MTS 

must occur on a real time basis. By far the fastest to converge is the Separate and 

Conquer method taking little more than 400 function calls. However, it must be noted 

that this method is deterministic and is not guaranteed to find the best groupings. The 

most important statistic is the Weighted-Kappa metric: the method that seems to 

perform best over all the datasets is the Falkenauer method, although the hill-climb 

method finds almost as good a solution, it takes fewer function calls. However, as the 

marginal statistics will show, the Falkenauer method performs significantly better when 

averaged over the entire correlation search strategies. Therefore, it appears that if the 

exhaustive search cannot be carried out then a combination of Random Bag or 

Evolutionary Program with Falkenauer is the best option. 

 

4.5.1 A Note Regarding RB and EP 
 

Table 4.8 displays the average of the top r correlations for each method of correlation 

mining, and displays the average over all of the datasets. 
 

Dataset r 
Exhaustive 

Search 

Random 

Bag 

Evolutionary 

Programming 

Dataset 1 150 0.592 0.547 0.527 

Dataset 2 64 0.536 0.402 0.488 

Dataset 3 64 0.694 0.659 0.629 

Dataset 4 64 0.641 0.569 0.575 

Dataset 5 64 0.548 0.497 0.509 

Dataset 6 64 0.625 0.558 0.568 

Average N/A 0.606 0.539 0.549 
 

Table 4.8: The Top r Correlations for Three Search Methods 
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As expected, the exhaustive search performs the best, followed by the evolutionary 

program and then Random Bag. It should be noted that these results only apply to the 

situation where there are a large number of correlation calls made (c is large). It has 

been shown in [Swift1999b] and chapter 3 that the EP method significantly outperforms 

the RB method for smaller values of c. Based on the extensive analysis and experiments 

performed so far it is recommended that if c is more than 30% of s then the exhaustive 

search method should be used. If this is not the case then the EP method should be used. 

 

4.5.2 Marginal Statistics 
 

In order to explore more fully the effect of the different correlation searches, grouping 

strategies and datasets, various marginal statistics were calculated. Essentially this 

involved averaging over the correlation searches, the grouping strategies and the 

datasets to see how each of these methods compared. These results can be found in 

tables 4.9 to 4.11 below and each table is discussed in the next section. 

 

Measurement Average Ex Average EP Average RB 

Grouping Metric 62.191 59.000 56.451 

Weighted-Kappa Metric 0.729 0.704 0.665 

Function Calls 82712.634 82735.329 82741.967 
 

Table 4.9: Averaging over Correlation Search 

 

The correlation summary statistics support the conclusion that the method used for 

generating a good set of correlations does not have a very significant effect on the final 

groupings. In other words, the Weighted-Kappa metric which measures the distance 

between the original groupings and the discovered groupings are very similar for all 

correlation search methods (approximately 0.7). Therefore, it would make more sense to 

perform a fast approximate correlation search on datasets where the search space is so 

large that the exhaustive search is infeasible. 
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Averages 
Measurement 

GPV PMX Falk HC S&C 

Grouping Metric 55.639 58.211 62.633 60.533 57.611 

Weighted-Kappa Metric 0.669 0.689 0.736 0.708 0.663 

Function Calls 232285.844 63436.483 31762.578 11666.667 413.333 
 

Table 4.10: Averaging over Grouping Strategy 

 

The best grouping strategies, as shown by the grouping summary statistics, are the 

hill-climb method and Falkenauer's GGA. This is probably due to the economical use of 

function calls made by hill-climb (unlike the GA methods which require evaluating 

populations) and the effective crossover developed by Falkenauer. The other GA 

methods used less effective crossovers and the Separate and Conquer method is 

deterministic and therefore can never be guaranteed to find the global solution. It is, 

however, very fast at finding a good set of groupings after a very small number of 

function calls.  

 

Measurement 

Dataset 
Grouping Metric 

Weighted-Kappa 

Metric 
Function Calls 

1 109.268 0.729 151560.350 

2 35.439 0.488 68981.024 

3 53.691 0.795 68968.073 

4 51.268 0.691 68948.707 

5 50.333 0.740 68984.780 

6 55.285 0.755 68936.927 

 
Table 4.11: Averaging over Datasets 

 

Looking at the dataset statistics, it appears that dataset 3 (the purely VAR data) 

produced the highest Weighted-Kappa metric rest and also produced better results than 
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dataset 2 (the purely DBN data).  A reason for this could be that the VAR data generator 

produced variables with higher correlations between true dependencies. These may then 

have dominated any spurious correlations. It is encouraging to note that the largest 

dataset, dataset 1, with a mixture of DBN and VAR data produced such good results. 

Datasets 4 to 6 which contain a mixture of VAR and DBN exhibit the most variations in 

the Weighted-Kappa metric. This is most likely down to the strength of correlations that 

were reflected in the generated data as well as the existence of spurious correlations. 

 

4.5.3 Sample of Groupings 
 

Table 4.12 shows a selection of groupings learnt from the 3 datasets using the 

Falkenauer algorithm with differing correlation searches. It can be seen that the majority 

of variables have been grouped correctly in the all three experiments.  

 

In fact, 15 out of the 21 groups have been perfectly recreated. Some of the variables 

have been placed in a group on their own implying that they are independent when in 

actual fact there should be some correlation between them and other variables. This 

could be due to spurious correlations that have prevented the true correlations from 

being included on the correlation list. 

 

This effect is also evident in the summary tables where the independent metric (which 

simply measures the distance between the discovered groupings and the original) is 

higher for some experiments than others but the fitness (which relies on the correlations 

between variables) is lower. The opposite is also evident in the results. Once again, this 

is most likely due to spurious correlations between variables in different groups. An 

interesting result that was found in the DBN data groups was that if a group of variables 

was incorrectly split into 2 or more groups, then the divide(s) made topological sense 

when compared to the structure of the DBNs that generated the data. For example, DBN 

structure 3 in appendix H contains 10 variables and these consist of variables 13-22 in 

dataset 1.  
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Grouping Method Original MTS Groupings Discovered Groupings  

EP / 

Falkenauer 

 

Dataset 1 

0 1 2 

 

 

3 4 5 6 7 

 

8 9 10 11 12 

 

13 14 15 16 17 18 19 20 21 22 
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56 57 58 
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Rand Bag / 

Falkenauer 

 

Dataset 3 
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Table 4.12: Some Falkenauer Grouping Results along with the Original Groupings 
 

However if how the EP/ Falkenauer algorithm grouped these variables is examined, it 

can be seen that variables 16-19 have been placed in their own group. In some respect it 
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has split the network into relatively independent structures such as the chain of nodes 

consisting of variables 16-19. 

 

4.6 Visual Field Data Experiment 
 

A further set of experiments was carried out using the EP/Falkenauer combination on 

the visual field dataset. The algorithms were applied to each patient's time series and the 

resulting groupings for each patient are analysed. The groups are compared between 

patients, using the Weighted-Kappa metric. The intention is to ascertain if there are any 

similarities between groups based upon a similar level of severity of the condition. The 

aim is to group the visual field variables in order to analyse similarities between groups 

using the Weighted-Kappa metric.  

 

Table 4.13 displays the EP and Falkenauer parameters. Within this table, the first four 

GA parameters have been described in section 2.3.1. As described in chapter 3, Search 

Space is how many possible correlations exist within each patient dataset, c is the 

maximum number of correlation calls permitted (a fraction of Search Space), r is the 

number of true dependencies being looked for (out of R) and R is the number of 

correlations being search for (the length of Q).  

 

Method Parameter Value 

Population 150 

Generations 150 

Crossover Rate 1.0 
EP 

Mutation Rate 0.1 

Search Space 31350 

c 8664 

r 200 
Falkenauer 

R 1000 

 
Table 4.13: EP and Falkenauer Parameters for the Visual Field Dataset 
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The patients are reordered according to average sensitivity; this being a rough measure 

of how far the condition has progressed for a patient. The new patient 1 corresponds to 

the lowest average sensitivity and the new patient 82 the highest. Figure 4.2 shows the 

results of the Weighted-Kappa metric applied to all patient pairings. In figure 4.2, there 

are ten scales, white to black. White corresponds to the highest metric results and black 

to the lowest. The remaining eight grey scales correspond to metric scores somewhere 

in between, i.e. lighter means a higher metric score. The white diagonal is where a 

patient�s grouping is compared with itself, the figure is symmetric about this diagonal, 

i.e. patient a and b are compared above the line, whilst below it is patient b with a. The 

graph goes from light in the bottom right hand corner to a darker shade in the top left 

hand corner.  

 

This indicates that those patients with high sensitivity have similar groups; and it was 

observed that these groups tend to be smaller in size. Those with lower sensitivity tend 

not to have any similar groupings to any other patient; and it was observed that their 

groups tend to be quite large. 

 

 
Figure 4.2 Comparison of Patient Groupings using the Metric 
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This can be explained by those with good sensitivity and hence good vision being more 

consistent during the visual field tests, which would result in similar grouping between 

those points that are related. With the low sensitivity (and low vision) patients, the 

results of the visual field test tend to be more variable. This is due to each field point 

corresponding to a large section of the retina; hence any glaucoma damage may only 

affect part of a point. The visual field test does not consistently test the same spot, but 

somewhere in the same vicinity, i.e. the visual field test light source does not fill the test 

point exactly, and hence may be testing different collections of cells on each test. 

Additionally, the deterioration does not follow exactly the same path for each patient: 

two patients may have the condition with the same severity but have totally differing 

parts of the eye affected, and hence different groupings. 

 

In short, the visual field data generates groups that make good sense: the groups are low 

in size and similar for patients with good vision, and large in size and varied for those 

with low vision. 

 

4.7 Concluding Remarks 
 

In this chapter a framework for decomposing high dimension MTS into lower 

dimension MTS based on the correlation between the variables has been outlined. This 

can be very useful in problems where the high dimensionality of a MTS prevents certain 

algorithms from being applied, for example the modelling of VAR processes. These 

results have shown that whilst the initial search for good correlations to generate the 

groupings does not have to be exhaustive to produce equally good results, the best 

method of grouping search appears to be either a hill-climb strategy or Falkenauer's 

Grouping Genetic Algorithm.  

 

The results have been very promising on both VAR data and DBN data and, in most 

cases, the metric used to find the groupings proved robust enough to avoid mistaken 

groups due to spurious correlations. Concrete practical recommendations on the 

parameter estimation for the correlation search step of the methodology have also been 

provided.  
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For the visual field data, the groups obtained make an ideal starting point for modelling 

the visual field deterioration through statistical models such as the Vector 

Autoregressive Process. Such a model has a large number of parameters, which is 

proportional to the square of the number of variables being modelled. Decomposing the 

visual field data into several smaller and highly related subsets of variables will make 

this model easier to deal with. 
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5. The VARGA Method 
 

Chapter 3 presented several methods for locating relationships over time between 

variables within a high dimensional MTS, and showed that an evolutionary 

programming method performed the best. Chapter 4 presented a number of methods for 

using these correlations to group the variables into mutually exclusive lower 

dimensional MTS, and showed that a genetic algorithm based method was the best 

choice. The next step is the short term forecasting for each of these MTS subsets, which 

is the subject of this chapter, and is based upon work outlined in [Swift1999a] and 

[Swift2002]. 

 

5.1 Statistical Multivariate Time Series Modelling 
 

Much research has been done on the analysis of MTS data in both the statistical and 

artificial intelligence communities. Statistical MTS modelling methods include the 

Vector Autoregressive process, the Vector Autoregressive Moving Average process, 

and other non-linear and Bayesian approaches [Casdagli1992], while various Artificial 

Intelligence (AI) methods have been developed for different purposes including 

dependence detection in MTS of categorical data [Oates1999], knowledge-based 

temporal abstraction [Shahar1996, Shahar1997], and forecasting 

[Baldi1999, Weigend1994]. 

 

However, one area that has been largely overlooked is MTS in which the data set 

consists of a large number of variables but with a small number of observations. There 

are inherent difficulties in using traditional statistical techniques to model this type of 

MTS. The normal tension glaucoma visual field dataset is one such MTS. As previously 

stated in chapter 2, a Vector Autoregressive Process has been deemed suitable for the 

modelling and forecasting of this dataset. The standard statistical methods for fitting a 

VAR process to a set of data often consist of two steps: order selection (determining a 

suitable p) and parameter estimation (calculating the matrices Ai from the data) as 

described in section 2.1.  



Chapter 5 

114 

The process of parameter estimation and order determination is difficult with short high 

dimensional MTS as discussed in section 2.1.3. This chapter presents a method that 

attempts to address these problems. 

 

5.2 Genetic Algorithms and Time Series 
 

One possible way of locating the order and parameters of a VAR process suitable for 

modelling short MTS datasets is through the use of a suitably adapted genetic 

algorithm. Within the field of time series modelling, GAs have been used with various 

levels of success. For example, in [Bearse1998] a binary genetic algorithm is used to 

find VAR subset models, however it is assumed the basic VAR process has been 

located through some other means; in [Rolf1997] a GA is used to find the parameters of 

a univariate ARMA model and in [Shi1997] a GA is used to find the parameters of a 

univariate exponential AR process. Very little work has been done with the VAR 

process using GAs, and where GAs have been applied, concentration has been on 

univariate and non-linear modelling. In chapter 6 other possible ways for parameter 

estimation and order selection are considered; however in the rest of this chapter the GA 

based approach will be introduced. 

 

5.3 VARGA-v1 
 

The VARGA (Vector AutoRegressive Genetic Algorithm) paradigm is essentially where 

an nVAR(p) process for a given set of data is represented by a selection of p possible 

n×n candidate matrices; a genetic algorithm based method is applied to a population of 

candidate solutions over subsequent generations to improve their suitability to fit the 

data being modelled. Such a genetic algorithm can be used to find the parameters and 

order of a VAR process without making any of the assumptions outlined in 

section 2.1.3. In addition, VARGA reduces the length restriction to T>p, which makes it 

possible to model many short multivariate time series. Note that this is the theoretical 

minimum length an MTS could be, given some constant order p. VARGA-v1, presented 

in [Swift1999a], is the first attempt at this idea. 
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Algorithm 5.1 describes the VARGA-v1 algorithm. Details of the genetic operators will 

be described in the following sections. 

 
Algorithm 5.1: The VARGA-v1 Algorithm 

 

1) Input: The VARGA-v1 parameters from table 5.2 

 The fitness function from equation 5.2 

2) Create POPULATION random chromosomes of order UI(1,MAXP) 

3) Sort population ascending according to fitness 

4) For g = 1 to GENERATIONS do 

5)  Crossover population 

6)  Mutate population's genes 

7)  Mutate population's order 

8)  Sort population in ascending order according to fitness 

9)  Select the new population 

10) Next g 

11) Output: The best VAR process is the chromosome from the final population with the

 smallest fitness score 

 

The VARGA algorithm is essentially the same as the standard Holland genetic 

algorithm. However, crossover is different and there are two mutation operators. 

  

5.3.1 Representation 
 

The chromosome representation is a list of (n×n) matrices, whose elements are integers 

ranging between [0,GENESIZE), where GENESIZE is an implementation constant. A 

simple scaling is done to map each value between the predefined parameter limits. Each 

matrix's order in the list corresponds to the equivalent coefficient matrix for the VAR 

process being represented. This chromosome representation is shown in Figure 5.1. The 

range of permissible orders (candidate values for p) for each VAR process is restricted 

to the range [1,MAXORDER], where MAXORDER is the maximum order (the value p 

can take) of the VAR process being searched for. 
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C hrom osom e
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a p11 … …
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Figure 5.1: Chromosome Representation for VARGA method 

 

5.3.2 Fitness 
 

As with a normal GA, VARGA-v1 needs a suitable fitness function to evaluate 

candidate solutions to the problem. This fitness will rate a potential solution against a 

given dataset using some evaluation criteria. A VAR process that is optimised to 

forecast for a specific dataset will be searched for. One step ahead forecasting will be 

concentrated on, although any number of steps ahead could be used. The level of 

accuracy for VARGA (the fitness function) is defined in equations 5.1 and 5.2. 

 

The fitness of a chromosome, the valueε within equation 5.2, is determined by the sum 

of the magnitudes of the noise vectors computed by performing a series of one-step 

ahead forecasts from t=T0,..,T. 
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where )(� tε is the estimation of the noise vector, iA� is the estimation of the ith parameter 

matrix,ε is a scalar that represents the level of noise, and T0 is defined as 

MAXORDER+1. 
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Absolute value error rather than mean squared error is used because mean squared error 

can exaggerate the effects of outliers, especially when the time series is short 

[Armstrong1992, Chatfield1992]. The model with the smallestε value is deemed the 

most suitable model for forecasting since it is assumed that the best estimation for any 

unobserved noise vector is the zero vector. 

 

With a GA it is traditional to maximise the fitness, hence the negative forecast error was 

used for the fitness function, i.e. ε− . The value of ε is computed for all possible one 

step ahead forecasts for a given set of data, starting at the T0
th recorded set of 

observations. If the order of the VAR process in question was used, then there would be 

a total of T-p forecasts available for a pth order VAR process. Hence with a length 20 

MTS, a VAR(1) process would be evaluated on 19 forecasts, and a VAR(5) process on 

15 forecasts. It can be clearly seen that even if these two VAR processes had equal error 

at all forecast points, then the VAR(1) process would have 19/15 (1.267) times the 

forecast error of the VAR(5) process. Hence the fitness function would be biased for 

larger order models. It would be a simple step to scale the fitness error by the number of 

forecasts used to construct it, but this would still mean that smaller order models were 

evaluated on data that larger order models could not be. By setting the first point that 

forecast accuracy is evaluated on to be the T0
th observation in the MTS, all order VAR 

processes are evaluated on the same number of forecasts and the same set of data. Table 

5.1 demonstrates this for a length 20 VAR(3) process with MAXORDER=5. The 

forecast difference (the absolute value of the observed minus the predicted) is summed 

over all of the 15 forecasts and used for the fitness (fitness = negative forecast error). 
 

Data Start Data End Forecast 

(MAXORDER+1-p) 3 (MAXORDER+0) 5 (MAXORDER+1) 6 

(MAXORDER+2-p) 4 (MAXORDER+1) 6 (MAXORDER+2) 7 

� � � 

(MAXORDER+14-p) 16 (MAXORDER+13) 18 (MAXORDER+14) 19 

(MAXORDER+15-p) 17 (MAXORDER+14) 19 (MAXORDER+15) 20 

 
Table 5.1: Example Fitness Function 
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5.3.3 Initial Population 
 

The initial population (step 2 in algorithm 5.1) is generated according to algorithm 5.2. 

 
Algorithm 5.2: VARGA-v1 Initial Population 

 

1) Input: The VARGA-v1 parameters from table 5.2 

 Population � an empty list of chromosomes 

 n � the number of variables in the MTS 

2) For i = 1 to POPULATION 

3)  Set ORDER = UI(1,MAXORDER) 

4)  Create a new chromosome C of order ORDER 

5)  For j= 1 to n 

6)   For k = 1 to n 

7)    For p = 1 to ORDER 

8)     Set C[apjk] = UR(MINGENE,MAXGENE) 

9)    Next p 

10)   Next k 

11)  Next j 

12)  Add C to the Population 

13) Next i 

14) Output: Population � containing POPULATION random chromosomes 

 

Here, x[aijk] refers to the jth,kth element of the ith parameter matrix of chromosome x 

(see figure 5.1) and MINGENE and MAXGENE are the lower and upper limits this 

value can take respectively. The population is created by constructing POPULATION 

random chromosomes; where the order is randomly generated and the corresponding 

parameter matrix elements are randomly generated.  

 

5.3.4 Crossover 
 

The Crossover operator is described in algorithm 5.3. Each chromosome has a chance, 

say CROSSOVERRATE, of being selected to produce offspring. Once the parents have 

been selected, the number in the breeding stock is forced to be even. If the number is 
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odd then there is a 50% chance that either a random chromosome is added into the 

stock, or one selected for breeding is removed. The next step is to pair up randomly 

each potential parent. For each pair of parents, a random parameter matrix, a random 

row index and a random column index is chosen. Parameters above this row and column 

are exchanged between the two selected matrices of each parent creating two new 

children. 

 
Algorithm 5.3: VARGA-v1 Crossover Operator 

 

1) Input: The VARGA-v1 parameters from table 5.2 

 Population � an empty list of chromosomes 

 n � the number of variables in the MTS 

2) Randomly select CROSSOVERRATE proportion of the population for breeding 

3) Randomly pair up the breeding stock 

4) For each parent pair c, d do 

5)  Set x = c, Set y = d 

6)  Set i = UI(1,order of x), Set j = UI(1,order of y) 

7)  Set ROW = UI(1,n), Set COL = UI(1,n) 

8)  For r = 1 to n 

9)   for c = 1 to n 

10)    If r < ROW and c < COL Then 

11)     Set x[airs] = d[ajrs] 

12)     Set y[ajrs] = c[airs] 

13)    End If 

14)   Next c 

15)  Next r 

16)  Add x, y back to Population 

17) Continue 

18) Output: Population � increased in size through breeding 

 

5.3.5 Mutation 
 

There are two forms of mutation in VARGA-v1, namely gene mutation and order 

mutation. Gene mutation is defined in algorithm 5.4 and order mutation in figure 5.2. 
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Algorithm 5.4: VARGA-v1 Gene Mutation 

 

1) Input: The VARGA-v1 parameters from table 5.2 

 Population � an empty list of chromosomes 

 n � the number of variables in the MTS 

2) Each gene of every chromosome has a GENEMUTATIONRATE chance of mutating 

3) For each gene that mutates do 

4)  Set v = [(gene value + UI(1,GENESIZE)) modulo GENESIZE] 

5)  Set Gene value to v 

6) Continue 

7) Output: Population � increased in size through gene mutation 

 

Each gene (matrix element) of each chromosome is given a chance 

(GENEMUTATIONRATE) to mutate. If a gene mutates then it is incremented by a 

random value between 1 and its maximum value (GENESIZE). The modulo part of step 

4 in algorithm 5.4 ensures that this new value does not exceed the permissible gene 

limits. 

 

W=UI(1,2) Order=MAXORDER?

Order=1?

W=1?
Chromosome

+

Yes

Yes

No

No

Yes

No

(Add) (Delete)

Chromosome

 
Figure 5.2: VARGA-v1 Order Mutation 

 

Order mutation is detailed in figure 5.2 and works by giving each chromosome in the 

population a chance of having its order mutate. If its order does mutate then there is a 

50% chance that it either increases or decreases. The order is not allowed to be below 
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one or above some preset limit (MAXORDER). If the order increases then a new 

random parameter matrix is added as the new highest order matrix. If the order is to 

decrease then the highest order parameter matrix is deleted. 

 

5.3.6 Selection 
 

Selection of the new population is exactly the same as the roulette wheel method 

[Holland1975], however the reciprocal of the fitness score (equation 5.2) of each 

chromosome is used. This is because the score represents the residual noise; the lower 

the score, the better the model being represented.  

 

Parameter Meaning Value 

n MTS dimensionality, nerve fibre bundle 12 9 

POPULATION Population size, constant 10 

GENERATIONS 

 

Number of generations; crossover will not be 

so effective: only a portion of each 

chromosome is crossed over 

5000 

Selection The roulette wheel and elitism 1 

ORDERMUTATIONRATE Order mutation rate; if order = 1 then add a 

matrix, if order = MAXORDER then delete 

5% 

GENEMUTATIONRATE Gene mutation rate, after crossover, including 

the parents; the population best is not mutated 

0.5% 

CROSSOVERRATE Crossover Rate, percentage of population 

allowed to breed, uniform and one point 

100% 

Chromosome Size Order×n×n Order×81 

GENESIZE Gene limits, mapped onto the [-1.25,1.25] 

interval, the range for each aijk 

[0,20000] 

(Integer)

MAXORDER Maximum order; as MaxLag in chapter 3 5 

Fitness Negative, nearest to zero the better.  Real 

 
Table 5.2: Genetic Algorithm Parameters for VARGA-v1 
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5.3.7 Parameters 
 

For the VARGA-v1 method, the parameters for the GA are listed in Table 5.2. 

 

5.3.8 Evaluation 
 

For the purpose of this method, nine of the 76 points of the visual field data, 

corresponding to nerve fibre bundle twelve (see section 2.2.2), are considered. Bundle 

twelve has been chosen for two reasons. The first is that the nine points are one of the 

largest in number for any of the nerve fibre bundles (equal in size to nerve fibre bundle 

five). The second is that glaucoma damage tends to originate from the blind spot, and 

then move through these points to the visual periphery, thus usually affecting nerve 

fibre bundle twelve. To show that a multivariate model is appropriate, it is necessary to 

show that the variables being modelled have a strong interdependency. The correlations 

between all points, with a time lag of up to five time units, have been calculated by 

using the visual field records of the patients. An average was taken to give a single 

correlation value (this averaging is described in section 3.1.2). Table 5.3 shows these for 

all of the points, and then for nerve fibre bundle twelve (NFB 12). Both Pearson's and 

Spearman�s Correlation Coefficients are used for this comparison. Clearly it can be seen 

from the table that on average the points within bundle twelve have a higher correlation 

with each other than with other points. 

 

Pearson Spearman 
Statistic 

All NFB 12 All NFB 12 

Minimum 0.015 0.049 0.016 0.056 

Maximum 0.874 0.661 0.898 0.714 

Mean 0.204 0.306 0.205 0.294 

Variance 0.024 0.027 0.022 0.024 

 
Table 5.3: Correlation Coefficient Comparison 
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For this dataset, there is no missing data. It is assumed that each test is spaced evenly in 

time, i.e. the time gap between subsequent tests is a constant. The data itself is a 

continuous variable. The dataset contains information on 82 patients� right eyes tested 

approximately every six months for between five and 22 years. Therefore, the length of 

time series corresponding to some of the patients' visual field tests can be rather short. 

All patients had been diagnosed and are undergoing treatment for Normal Tension 

Glaucoma, and were representative of the population. 

 

In this section the models found using the VARGA-v1 method are compared with those 

produced by a conventional way of finding a VAR process, in this case the solution of 

the Yule-Walker equations using S-Plus. To provide more insight into the accuracy of 

the VARGA-v1 method, it is further compared with the results from two other 

techniques: Holt-Winters forecasting and the Noise Model. 

 

The VAR Process in S-Plus 

 

S-Plus [Mathsoft1997] has an easy-to-use function for finding the best-fit VAR(p) 

process for a given dataset. Each patient's visual field results give a model that is rated 

according to equation 5.2. Since S-Plus uses �Whittles Recursion� [Whittle1984], a 

limit on the minimum length T of a time series with n variables is constrained by 

inequality 5.3.  

 

1)( +≥ pnT   (5.3)

 

Holt-Winters Forecasting Method 

 

Despite the fact that the dataset is multivariate, it is worth treating it as univariate to see 

if the assumptions about point clustering (by nerve fibre bundles) are accurate. The 

Holt-Winters (HW) forecasting method is a simple way of predicting the next value in a 

univariate time-series. For the visual field dataset, it is assumed that there is no seasonal 

effect, and that only one step ahead forecasts are needed. The HW Method is described 

in section 2.1.2. 
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Parameter Meaning Value 

POPULATION Constant 50 

GENERATIONS 

 

Crossover will not be so effective since the 

chromosome size is quite small  

1000 

Selection As VARGA-v1 5 

MUTATIONRATE After Crossover, including parents; if a gene 

mutates, add UI(0,99) then modulo by 100, this 

is detailed within the section on VARGA-v1 

0.5% 

CROSSOVERRATE Percentage of population allowed to breed, 

uniform and one point 

80% 

Chromosome Size Three genes for each HW parameter 12 

GENESIZE Each HW parameter is created from three 

consecutive genes 

[0,100] 

(Integer) 

Fitness Nearest to zero the better, calculated in a similar 

manner to that in equation 5.2 

-ve, Real 

 
Table 5.4: Genetic Algorithm Parameters for the HW method 

 

There are various ways of finding the values of the required parameters, (α, γ� , L0 and 

T0), as suggested in [Chatfield1988b], but for simplicity sake, a genetic algorithm will 

be used to estimate them. This approach has been done in successfully in [Agapie1996] 

and [Agapie1997], however a binary GA was used. In this thesis, a standard Holland 

GA was implemented, with the modifications and parameter values listed in table 5.4; 

the notable difference is that the genes are not binary. The fitness for the HW method is 

rated in a similar way to a VAR process, but the residuals from a one step ahead 

forecast are summed for each point. A visual field case is treated as nine univariate 

forecasts, one for each point within nerve fibre bundle twelve. Each chromosome 

consists of twelve genes which are integers ranging between zero and 99. Three genes 

represent each parameter. The values of the three genes are then scaled accordingly, i.e. 

for parameters α, γ� , between zero and one, and for L0, T0 between ±100. 
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The Noise Model 

 

The Noise Model is defined in equation 5.4, and will refer to an nVAR(0) process, i.e. 

one generated by noise. Note that equation 5.4 is equivalent to equation 5.1 with p=0, 

i.e. a VAR(0) process. A forecast for the noise model is defined in equation 5.5. This 

model is very easy to construct and simulate, and will be used as a simple benchmark 

with which to rate other VAR processes against. A VAR process that is designed to 

model a particular MTS is expected to perform much better than the corresponding 

noise model, since the noise model simply assumes that any time series observations 

were totally randomly generated, with no structure and reliance on previous 

observations. 

 

)()( ttx ε=  (5.4)

0)( =tx  (5.5)

 

5.3.9 Experimental Results 
 

This section describes the results of the experiments of applying the four methods to 

nerve fibre bundle twelve of the visual field data. 

 

S-Plus rejected (could not provide a result for) several of the time series due to matrix 

inversion problems and numerical instability. Further more, the restriction described in 

inequality 5.3 meant that the dataset for the experiments had to be reduced significantly. 

If an order of at least one is under consideration (p>0) and since there are nine variables 

(n=9), the time series length must be at least 18 (T≥18). This restriction reduced the 

dataset further; and as a result, only 34 patients� visual field records were usable. 

VARGA-v1 was run once on each of the patients, and figures 5.3 to 5.6 display the 

results for four methods over the 34 patients' visual field tests. 
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Figure 5.3: VARGA-v1 Results for Patients 0-8 
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Figure 5.4: VARGA-v1 Results for Patients 9-17 

 

Table 5.5 summarises these results, and lists the order of the best models. Note that the 

lower the fitness, the better. From this table the following can be observed. Firstly, 

VARGA has the best performance, followed by S-Plus, Holt-Winters, and the noise 

process. Secondly, VARGA has a more consistent set of results for the order than the 

VAR process in S-Plus. Thirdly, VARGA located models of only order one and two 

whilst the order ranged between zero and three with S-Plus. 
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Figure 5.5: VARGA-v1 Results for Patients 18-25 
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Figure 5.6: VARGA-v1 Results for Patients 26-33 

 

Method Order (number of order) Average Fitness 

VARGA v1 31 of 1, 3 of 2 367.060 

S-Plus 15 of 0, 16 of 1, 2 of 2, 1 of 3 401.183 

HW N/A 454.420 

Noise 34 of 0 502.364 

 
Table 5.5: VARGA-v1 Results Summary 

 

It could be argued that the VARGA method is biased towards finding a low order 

model, since the search space increases each time the order of the model increases. 

However tests have been run where the VARGA method is forced to search for a 

VAR(3) process (thus behaving like a conventional GA) where the number of 
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generations is increased to compensate for the number of variables being found. The 

results here still showed that a VAR(1) or VAR(2) still fit the data better. From this 

finding, further work could be done to more accurately fit a VAR(1) or VAR(2) 

process, reducing the need to search for the model order. 

 

It is curious that S-Plus found VAR(0) processes where it could have found higher order 

processes in some cases. These can be seen in Figures 5.3 to 5.6 where the score of 

S-Plus is the same as the noise model, e.g. patient IDs 15 and 53. This suggests that the 

order selection method is flawed and/or unreliable. 

 

With the HW method, the results show that a multivariate method (VARGA-v1 or 

S-Plus) is more accurate than a series of univariate models (the HW method applied on 

each of the nine points) for the visual field dataset. To give this method more credence, 

a full search for the parameters (this takes a very long time) has shown that the GA 

based method locates them very accurately (within 1% of their actual values to four 

decimal places). Thus the methods poor performance is not due to the GA being unable 

to locate a good set of parameters but more likely due to the data being multivariate. 

  

It is worth noting that for the patient case where the difference between the errors for 

the VAR process found by VARGA-v1 and the noise process is the most different 

(patient ID 30); the error (one step forecast errors) is reduced by only 34.9%. This could 

indicate that the visual field data has a very large noise term. This is confirmed when 

the actual data is viewed. The visual field history for patient ID 30 is given in Figures 

5.7 to 5.9. As would be expected, visual field sensitivity deteriorates down to zero. 

However the graph seems to show that some of the points get better, which is 

impossible with the disease glaucoma. This can be explained by the fact that each visual 

field point corresponds to an area on the retina, and that the exact retina cells being 

tested for damage are not always the same when the point undergoes another test. This 

is due to there being a limit on the accuracy of the test machine. Hence the data seems 

to contain a large element of noise. These could be treated as outliers, but how these 

could be dealt with is a difficult problem, especially with time series data. 
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Figure 5.7: Points 29, 48 and 49 for a Patient 
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Figure 5.8: Points 50, 51 and 52 for a Patient 
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Figure 5.9: Points 53, 54 and 56 for a Patient 
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5.4 The VARGA-v2 Method 
 

Section 5.3 presented the first version of VARGA. This method performs well versus 

the VAR process in S-Plus. However VARGA suffers from the following drawbacks: 

 

i) There is a slight bias towards low order models, for example when a 

parameter matrix is added (through order mutation); there is a better chance 

of the fitness becoming worse than improving. (This fact was confirmed 

through experimentation). 

 

ii) The representation limits the accuracy of the parameter matrix elements, i.e. 

the natural number mapping leads to a fixed level of decimal places. 

 

iii) The Crossover operator only acts on part of a chromosome. 

 

iv) The survival operator uses the inverse of the fitness function to 

proportionally select individuals to the next generation. Section 5.4.6 looks 

at the implications of this method and suggests an alternative. 

 

v) A random individual is often worse than the corresponding noise model. 

 

The following sections describe VARGA-v2, which is the next generation of the 

VARGA method. The changes made in this method are aimed at reducing the problems 

listed above and additionally the VARGA methodology is tested more rigorously. This 

section is a summary of work presented in [Swift2002].  

 

The VARGA-v2 algorithm is also a standard genetic algorithm, but has refinements to 

deal with matrices, variable length chromosomes, and length variation as with 

VARGA-v1. Algorithm 5.5 details the VARGA-v2 method. Note that in this 

implementation of VARGA, only the children are mutated and there is an additional 

crossover operator.  
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Algorithm 5.5: The VARGA-v2 Algorithm 

 

1) Input: The VARGA-v2 parameters from table 5.7 

 The fitness function from equation 5.2 

2) Create POPULATION chromosomes of size random UI(1,MAXORDER), (the order p) 

3) Sort the population descending according to fitness 

4) For g = 1 to GENERATIONS do 

5)  CROSSOVER the populations genes and add to list X1 

6)  CROSSOVER the populations size (order) and to list X2 

7)  MUTATE X1s genes and MUTATE X2s genes 

8)  MUTATE X1s size (order) and add back to the population 

9)  MUTATE X2s size (order) and add back to the population 

10)  Sort the population in ascending order according to fitness 

11)  SELECT the new population (size = POPULATION) 

12) Next g 

13) Output: The best VAR process is the chromosome from the final population with the 

 smallest fitness score 

 

Details of the initial population of candidate solutions and the genetic operators are 

described in the following sections. 

 

5.4.1 Representation 
 

The representation is similar to that of VARGA-v1, however with a slight change, here 

each matrix element is a bound real number. The elements are limited between some 

fixed bounds, denoted as [MINGENE,MAXGENE]. The intension here is to address 

drawback (ii) as described previously in this section. 

 

5.4.2 Fitness 
 

This is identical to the fitness function of VARGA-v1 (see section 5.3.2). 
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5.4.3 Initial Population 
 

With a GA, the initial population is usually generated randomly. With VARGA-v2 the 

initial population is seeded with the noise model. Seeding [Michalewicz1996, 

Sharif1998] is where the initial population for a genetic algorithm has some or all of its 

chromosomes set to some predefined representation, as opposed to an entirely random 

selection. Usually these seeds come from expert knowledge or some other fast 

approximate search method, for example hill-climbing.  

 

A set of random order (within the limits) individuals whose genes are all zero matrices 

comprise of half of the initial population. The other half is randomly generated within 

the specified constraints (section 5.4.7 contains the details of all of the VARGA-v2 

parameters). The justification for this is that experimentation has found that a random 

VAR(p) process is likely to have a worse fitness when compared with the noise model 

for a given MTS. This is due to the accumulation of forecast errors through there being 

specified relationships where there should be none. Hence starting the search from the 

noise model saves VARGA-v2 from trying to improve from a very poor starting point, 

thus addressing drawback (v) as described previously in this section. 

 

Having the initial population 50% noise model and 50% random VAR(p) processes 

allows some random genes to get mixed with the zeros of the noise model, otherwise 

the only change from a 100% noise model population would be through gene mutation. 

Crossover would simply swap zeros between matrices during the initial generations. 

 

5.4.4 Crossover 
 

Two crossover methods are used; Order Crossover, which acts on whole matrices, and 

Gene Crossover, which acts on the matrix elements. Both methods are designed to be 

applied to as much of a chromosome as possible, in order to make this stage more 

efficient hence addressing drawback (iii) as described previously in this section. 

 

 



Chapter 5 

133 

Order Crossover is where matrices from two parents are copied to form children, in a 

manner similar to uniform crossover (see section 2.3.1). Each member of the current 

population has a chance of being selected for breeding (ORDERCROSSOVERRATE). 

The breeding subset of the population is paired up randomly (parents), and two children 

are produced from each set of parents. The following steps construct these children, 

formally defined in algorithm 5.6 and figure 5.10: 

 

i) The children are initialised by making a copy of each parent. 

 

ii) For all of the matrices in both children, there is a 50% chance that the two 

children swap a matrix for a particular order. 

 

iii) If the two children are of different sizes (differing order), then this is only 

performed for the matrices that have a corresponding order.  

 
Algorithm 5.6: VARGA-v2 Order Crossover 

 

1) Input: Two Parents P1 and P2 

2) Set MINORDER = Min(Order(P1),Order(P2)) 

3) Child1 = P1, Child2 = P2 

4) For i = 1 to MINORDER 

5)  If UI(0,1) = 1 then Swap Matrix i of Child1 and Matrix i of Child2 

6) Next i 

7) Output: Two children, Child1 and Child2 
 

Parent 2

Parent 1 Child 1

Child 2

4Two Random Parents are Selected, P1 and P2
4Child 1 = P1 and Child 2 = p2
4There is a 50% chance that (a,d) are swapped,

(b,e) are swapped and (c,f) are swapped
between Child 1 and Child 2

4In this case only (b,e) are Swapped

No chance
of being

Swapped

a b c

d e f h i

a e c

d b f h i

Figure 5.10: VARGA-v2 Order Crossover 
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Min(x,y) returns the smaller number of x and y. Order(z) returns the order of the VAR 

process represented by chromosome z, i.e. the number of matrices in z. 

 

Gene Crossover is very similar to order crossover. However matrix elements are 

swapped, and not whole matrices. If one of the parents is longer than the other then 

there is a 50% chance that this crossover will be offset by the difference in size. For 

example if parent one is of order three and parent two of order five, either elements 

from matrices 1, 2 and 3 would be uniformly crossed over from both parents, or 1, 

2 and 3 of parent one with 3, 4 and 5 of parent two. The rational behind this is to ensure 

that only matrices that correspond to the same lag are crossed over. The procedure is 

described in algorithm 5.7 and shown in figure 5.11. 

 

Algorithm 5.7: VARGA-v2 Gene Crossover 

 

1) Input: Two Parents P1 and P2 

 n � the dimensionality of the MTS 

2) If Order(P1) > Order(P2) then 

3)  Set Child2 = P1, Set Child1 = P2 

4) Else 

5)  Set Child2 = P2, Set Child2 = P1 

6) End if 

7) Set MINORDER = Order(Child1) 

8) Set Offset = (Order(Child2) � MINORDER) × UI(0,1) 

9) For i = 1 to MINORDER 

10)  For j = 1 to n 

11)   For k = 1 to n 

12)    If UI(0,1) = 1 then 

13)     Set Temp = Child1(i,j,k) 

14)     Set Child1(i,j,k) = Child2(i+Offset,j,k) 

15)     Set Child2(i+offset,j,k) = Temp 

16)    End if 

17)   Next k 

18)  Next j 

19) Next i 

20) Output: Two children, Child1 and Child2 
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where Childx(i,j,k) is the matrix element aijk of child number x and the rest of the terms 

are defined above. Again each parent has a chance of producing offspring in this way 

where the chance of a member of the population being chosen for gene crossover is 

GENECROSSOVERRATE. 

 

Parent 1 Child 1

Child 2

4Two Random Parents
are Selected, P1 and P2

4Child 1 = P1, Child 2 = p2
450% Chance that either

the Front 3 or Last 3 
Matrices of Child 2
are Crossed Over with 
Child 1

4In This Case it is the 
Front Matrices

4Crossover is Uniform
Parent 2

Not Swapped
This Time  

Figure 5.11: VARGA-v2 Gene Crossover 

 

5.4.5 Mutation 
 

Two mutation operators are used, gene mutation and order mutation. Gene mutation 

changes the elements of a matrix and order mutation either deletes or adds a new 

parameter matrix. These are similar procedures to the ones used in VARGA-v1. 

 

Gene Mutation. When an individual is deemed to gene mutate (step 7 in the 

VARGA-v2 algorithm), each element of each matrix (denoted aijk) is given a chance to 

mutate (GENEMUTATIONRATE). If a matrix element mutates, then it is changed 

according to a random Gaussian distribution. Algorithm 5.8 defines this more formally. 

In this algorithm, a check is made for each possible matrix element that UR(0.0,1.0) is 

less than the gene mutation rate parameter (GENEMUTATIONRATE). The two 

conditions (steps 6 and 7 of algorithm 5.8) check that the mutation has not allowed an 

element to deviate from the limits. 
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Algorithm 5.8: VARGA-v2 Gene Mutation 

 

1) Input: The VARGA-v2 parameters from table 5.7 

 Population � an empty list of chromosomes 

 n � the number of variables in the MTS 

2) Each gene of every chromosome has a GENEMUTATIONRATE chance of mutating 

3) For each gene that mutates do 

4)  Set v = gene value 

5)  Set New_Value = N(v,σ) 

6)  If New_Value < MINGENE then Set New_Value = MINGENE 

7)  If New_Value > MAXGENE then Set New_Value = MAXGENE 

8) Continue 

9) Output: Population � increased in size through gene mutation 

 

MINGENE and MAXGENE are application dependent, and are the minimum and 

maximum values a gene can take; the sum of these two parameters is usually zero. The 

standard deviation, σ, is chosen so that a mutated value is likely still to be within in the 

gene boundaries, i.e. [MINGENE,MAXGENE]. 

 

Order Mutation is responsible for altering the size of a chromosome and is similar to 

the version used in VARGA-v1. In steps 8 and 9 of algorithm 5.5 each chromosome has 

a chance of undergoing order mutation (ORDERMUTATIONRATE). If it does, then 

there is a 50% chance that either it increases in size, or decreases in size. Additions and 

deletions are always performed on the highest order matrix. Any new matrix that is 

added consists of zeros, thus ensuring that the fitness of an individual does not change 

when its order increases. The rational behind this is that if a random matrix was added, 

the order increase is more likely to reduce the fitness of the chromosome, rather than 

improve it. Hence a considerable part of the search space would be unlikely to be 

explored by VARGA-v2. The order of an individual is not allowed to exceed the 

specified limits. This procedure is very similar to the one detailed in figure 5.2. This 

new form of order mutation addresses drawback (i) as described previously in this 

section. 
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5.4.6 Selection 
 

The selection operator is the ranked survival described in [Baker1985]. This is the same 

as the roulette wheel technique, but the chromosome�s rank is used, rather than its 

fitness. This is because the task of finding a suitable VAR process is a minimisation 

problem; hence the roulette wheel would favour the worst in a population rather than the 

best as can be seen in the example in table 5.6, the column RW(Fitness). VARGA-v1 

uses the reciprocal of fitness, the column RW(1/Fitness), see drawback (iv) as described 

previously in this section. From table 5.6 it can be seen that using the reciprocal of 

fitness results in an overly large bias towards better chromosomes.  

 

Fitness RW(Fitness) RW(1/Fitness) Rank 

-10 0.018 0.341 0.182 

-20 0.036 0.171 0.164 

-30 0.055 0.114 0.145 

-40 0.073 0.085 0.127 

-50 0.091 0.068 0.109 

-60 0.109 0.057 0.091 

-70 0.127 0.049 0.073 

-80 0.145 0.043 0.055 

-90 0.164 0.038 0.036 

-100 0.182 0.034 0.018 

 
Table 5.6: VARGA Survival Comparison 

 

Whatever the fitness, the Rank method produces a more gradual set of probabilities. 

Tests with fitness other than the example in table 5.6 have shown that the Rank method 

produces slightly better results. With ranked survival, equal ranking is not dealt with, 

since it will be very unlikely due to the fitness being real. Elitism (see section 2.3.1) is 

also used, which is the process of selecting a predefined number of the best 

chromosomes for survival, before the rest of the next population is selected.  
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5.4.7 Parameters 
 

Table 5.7 details the parameters for the implementation of VARGA-v2.  

 

Parameter Meaning Value

POPULATION The size of the population 100 

GENERATIONS The number of generations the algorithm is run 

for 

1000 

ELITISM The number of the fittest individuals 

guaranteed survival 

1 

ORDERCROSSOVERRATE The chance of a chromosome being chosen for 

Order Crossover 

0.500 

GENECROSSOVERRATE The chance of a chromosome being chosen for 

Gene Crossover 

1.000 

ORDERMUTATIONRATE The chance of a chromosome having its order 

mutate 

0.050 

GENEMUTATIONRATE The chance of a chromosomes gene mutating 0.005 

MINGENE The minimum value a gene can take -1.250

MAXGENE The maximum value a gene can take 1.250 

MAXORDER The maximum possible order of a VAR 

process 

5 

σ  The standard deviation for equation 4 0.700 

 
Table 5.7: Genetic Algorithm Parameters for VARGA-v2 

 

5.4.8 Population Dynamics 
 

The population grows through the application of genetic operators as in figure 5.12. In 

this figure, the node at the top of the tree (Population) represents the starting size of the 

population. Two sets of children are produced through the application of order 

crossover and gene crossover. The mutation operators are then applied, order and then 
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gene, to these children, where order mutation is applied after gene mutation. The 

population will increase by approximately: 

 

ORDERCROSSOVERRATE + GENECROSSOVERRATE 

 

The two mutation rates will not affect the increase in the population, since they are only 

applied to the children. Note that the selection operator reduces the population back to 

the size it was before any of the operators were applied. 

 

Order
Mutation

Order
Crossover

Gene
Mutation

Order
Mutation

Gene
Crossover

Gene
Mutation

Population

Figure 5.12: VARGA-v2 Population Growth though Operators 

 

5.4.9 Evaluation 
 

The proposed algorithm is evaluated against the Yule-Walker equations as implemented 

by S-Plus (version 2000) and the noise model. However the univariate method: the 

Holt-Winters Forecasting  method will not be used (as was the case in [Swift1999a) 

since this was found to perform poorly. This is hardly surprising since the visual field 

has been clearly demonstrated to be multivariate. 

 

The evaluation will consist of three criteria. The first is the one step ahead forecast 

accuracy of the methods, where the same fitness function is used to evaluate all of the 

methods. The second evaluates the methods based on the Weighted-Kappa metric 

indicating a level of agreement between observed and predicted values within an 

experiment where the level of agreement is in terms of a positive change, negative 

change or no change in deterioration. For example, a forecast error of, say, 1.0 might be 

considered reasonably accurate, but if each forecast were in the opposite direction, e.g. 

indicating an increase when a decrease actually happened, then the associated model 
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would be of limited use. The last evaluation is on the operators that make up 

VARGA-v2 itself. The intention is to demonstrate the effectiveness of these operators. 

Nerve fibre bundle twelve is used again. 

 

Forecast Accuracy 

 

As was the problem described in section 5.3.9, only 34 patient�s records were used in 

the evaluation. VARGA-v2, the noise model and the Yule-Walker equations were then 

run on each of the 34 patients. With the VARGA-v2 results, these were performed ten 

times, and then the average is taken, since genetic algorithms are stochastic and could 

produce an extreme result. This was added to test the new version of VARGA more 

thoroughly. The forecast accuracy of the Yule-Walker equations and the noise model 

was evaluated in the same way as with VARGA-v1. Patients are identified by a number 

between 0 and 81, even though only 34 patients are used in the experiments. 

 

The experimental results are split into two groups, which are described below. Average 

forecast error (within figures 5.13 and 5.15) is the value obtained by dividing the 

forecast error by the number of forecast points. This is defined in equation 5.6. 

 

)MAXORDER(
Error Forecast Average

−
=

Tn
ε  

(5.6)

 

where ε  is the total forecast errors defined in equation 5.2, n is the number of variables 

in the MTS, i.e. 9, and T is the length of an MTS for a patient. Note that the lower the 

average forecast error, the better and that the errors are for a one step ahead forecast. 

 

Cases where the S-Plus Order is Zero. Figure 5.13 shows the results where the order 

of S-Plus and the noise model are equal, i.e. where S-Plus thought that the most likely 

model to fit the data was a zero order VAR Process. The total number of patients for 

which this is the case is 15 out of the 34. Here VARGA-v2 clearly does much better 

than the noise model in all cases, ranging from 170% to 600% better, with an average 

improvement of 327%. For all of these 15 patients, if inequality 5.3 is applied, the 
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maximum order can only be 1. However S-Plus decided that a VAR(0) process was 

suitable, even though it had the option of choosing a VAR(1) process. This 

inappropriate choice of order is down to the AIC metric (used for order selection by 

S-Plus) failing to work adequately on a short MTS. 
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Figure 5.13: Forecast Error � S-Plus and Noise Equal 

 

Figure 5.14 shows the order VARGA-v2 selected for the same patients. Note that the 

order is fractional in some cases as it has been averaged over the ten runs. Here the 

order is between three and five, with the average being about four.  
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Figure 5.14: VARGA-v2 Order � S-Plus and Noise Equal 

 

Cases where the S-Plus Order is Greater than Zero. Figure 5.15 summarises the 

results for those patients where S-Plus produced models with an order greater than zero 

(p>0). Here VARGA-v2 does better than S-Plus in 18 out of 19 cases, improving on 

forecasting accuracy between 200% and 450%.  In the single case that S-Plus is better 

than VARGA-v2 (patient number 29), S-Plus produces an average forecast error about 

70% of the VARGA-v2 method. 
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Figure 5.15: Forecast Error � S-Plus and Noise not Equal 

 

Method Number of Order 

Noise 19 of 0 

S-Plus 16 of 1, 2 of 2, 1 of 3 

VARGA 1 of 3.8, 1 of 4, 1 of 4.2, 2 of 4.3, 2 of 4.4, 3 of 4.5, 2 of 4.6, 3 of 4.8, 4 of 5 

 
Table 5.8: Order for Cases where S-Plus Order ≠ 0 

 

The order results are summarised in table 5.8. The order found by VARGA-v2 seems to 

be on average between 3.5 and 5, suggesting that an order of four would be most 

suitable for the data. S-Plus, however, chooses lower orders because of size restrictions 

and problems applying the AIC metric on short time series. 

 

All Cases Together. Table 5.9 summarises the forecast accuracy for all three methods 

on all of the 34 patients, including VARGA-v1; this shows that VARGA-v2 performs 

much better than the other three methods. The average sensitivity at each point in the 

visual field over all of the test results from the 34 patients is 16.907. In table 5.9 the 

average forecast error per point (By Point Value) is given for the three the methods. 

Clearly VARGA-v2 is several times better than the other methods. By Point Percentage 

distributes the error by the average sensitivity and then lists the results as a percentage. 
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Measure Noise S-Plus VARGA-v1 VARGA-v2 

By Point Value 

(BPV) 

3.048 2.475 2.209 1.144 

By Point Percentage 

(BPV / 16.907)×100% 

18.028% 14.639% 13.066% 6.766% 

 
Table 5.9: Average Forecast Error by Point 

 

Weighted-Kappa Results 

 

Tables 5.11 and 5.12 show the results of the evaluation of the Weighted-Kappa metric 

run on the 34 patients for S-Plus and VARGA-v2. Table 5.10 shows how the 34 sets of 

results per method can be divided into strength categories according to appendix J.  

 

Weighted-Kappa Count Agreement 

Strength S-Plus VARGA-v2 

Poor 19 (4) 0 

Fair 6 (6) 1 

Moderate 8 (8) 7 

Good 1 (1) 18 

Very Good 0 8 

 
Table 5.10: Weighted-Kappa Strength Count Results by Category 

 

Table 5.10 shows clearly that the majority of the VARGA-v2 results strongly agree with 

the deterioration trends within the data, a total of 26 out of 34, i.e. about 76%. With the 

S-Plus, the values in parentheses are those results with an order greater than zero. Hence 

it can be clearly seen that there is very poor agreement when S-Plus chooses the noise 

model. However, even when comparing non-noise model results, VARGA-v2 performs 

better. 
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Table 5.11 shows summary statistics over all of the runs. S-Plus is listed twice, once for 

when the selected order was zero, and then again for results where the corresponding 

order was not zero (i.e. not the noise model). 

 

Weighted-Kappa Count Summary 

Statistic S-Plus (Order=0) S-Plus (Order>0) VARGA 

Mean 0.201 0.359 0.684 

Standard Deviation 0.222 0.173 0.153 

Median 0.091 0.380 0.741 

Minimum 0.000 0.026 0.219 

Maximum 0.616 0.616 0.857 

 
Table 5.11: Weighted-Kappa Strength Count Results by Value 

 

Note that the VARGA results were averaged over the ten runs, and then summary 

statistics taken from these patient averages. Table 5.11 shows clearly that the 

VARGA-v2 one step ahead forecasts on average give a good level of agreement with 

the observed visual fields. The S-Plus results (order=0) are very poor, suggesting very 

little agreement with the original data�s trends. However the S-Plus results (excluding 

the results where the order is zero) are much better, again showing that the noise model 

is the poorer choice given a selection of orders. On the other hand, the results for 

VARGA-v2 have a higher average for the Weighted-Kappa metric (almost twice as 

good as the average results for S-Plus), and have a lower standard deviation, indicating 

a more stable set of results. VARGA-v2 would therefore be the better choice based on 

this metric because its forecasts agree strongly with the trends in the original data. 

 

Operator Experiments 

 

The final experiment was to see how effective the various operators are. There are four 

operators defined in VARGA-v2, and it would be useful to see if some of them can be 

replaced by combinations of the others. An experiment was designed, executed and 

analysed towards this end. It was performed on a total of eight patients for a total 
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number of 100,000 fitness function calls. Setting a limit on the fitness function calls is a 

fairer way of ensuring all of the experiments are fairly matched since each combination 

of operators result in a different number of offspring being generated. Fixing the 

number of generations would bias the experiments towards the ones that use the most 

number of operators. Only eight patients were chosen since each experiment is repeated 

ten times; hence it would take a very long time to complete on all of the patients. Eight 

patients were selected, which is roughly 10% of the total number of available patients, 

because fifteen operator experiments are run ten times on each patient, which would be 

a very time consuming exercise. 

 

VARGA-v2 was executed a total of ten times with each different combination of 

operators. With the four operators, there are a total of sixteen possible combinations. 

However the case where all of the operators are zero is ignored, because VARGA 

would simply just run selection on each population, and not add or change any 

individuals, thus not increasing the number of times the fitness function was called. For 

the operator experiments, the VARGA-v2 parameters listed in table 5.7 are used, except 

for GENERATIONS, GENEMUTATIONRATE, ORDERMUTATIONRATE, 

GENECROSSOVERRATE and ORDERCROSSOVERRATE. GENERATIONS is 

determined by the number of fitness function calls (100,000) and the particular operator 

experiment in question. The rate parameters are defined in table 5.12. Within this table, 

each of the 15 experiments is given an identifier, called Run in column one. The binary 

digits (in column one) are used to indicate whether an operator has a chance of being 

applied. Where a 0 is indicated there is no chance, and where a 1 is indicated there is a 

chance according to the rates in table 5.12.  

 

For example, in experiment number 5 (the shaded row in table 5.12) the operator mask 

is 0101. This means that the first operator and the third operator (according to the left to 

right ordering in table 5.12) have no chance of being applied. The remaining two 

operators have a chance of being applied as indicated in the respective columns of the 

table.  
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Experiment

(Run) 

Gene 

Mutation Rate 

Order 

Mutation Rate 

Gene 

Crossover Rate 

Order 

Crossover Rate 

0001 (1) 0.0% 0.0% 0.0% 50.0% 

0010 (2) 0.0% 0.0% 100.0% 0.0% 

0011 (3) 0.0% 0.0% 100.0% 50.0% 

0100 (4) 0.0% 5.0% 0.0% 0.0% 

0101 (5) 0.0% 5.0% 0.0% 50.0% 

0110 (6) 0.0% 5.0% 100.0% 0.0% 

0111 (7) 0.0% 5.0% 100.0% 50.0% 

1000 (8) 0.5% 0.0% 0.0% 0.0% 

1001 (9) 0.5% 0.0% 0.0% 50.0% 

1010 (10) 0.5% 0.0% 100.0% 0.0% 

1011 (11) 0.5% 0.0% 100.0% 50.0% 

1100 (12) 0.5% 5.0% 0.0% 0.0% 

1101 (13) 0.5% 5.0% 0.0% 50.0% 

1110 (14) 0.5% 5.0% 100.0% 0.0% 

1111 (15) 0.5% 5.0% 100.0% 50.0% 

 
Table 5.12: Operator Application Rates by Experiment 

 

There are a total of 12001 experiments for 100,000 fitness function calls. Each 

experiment is averaged over the combinations of operators.  This is quite a normal step 

when evaluating a genetic algorithm, since it is a stochastic algorithm, and any 

particular result could be unrepresentative of its overall performance. The results for 

these experiments have been summarised in table 5.13. The generations average has 

been listed as an indication of their typical values under the different operator 

combinations. The algorithm is terminated when the number of fitness function 

evaluations exceeds 100,000 calls. In this table 5.13 Gen. refers to the number of 

generations that correspond to 100,000 function evaluations; the figures displayed are 

averages over the 1200 experiments.  

                                                 
115 sets of operator experiments by 8 patients by 10 repeats per patient = 15×8×10 = 1200 



Chapter 5 

147 

Operators Fitness Order Weighted-

Kappa 

Run Gen. Mean SD Mean SD Mean SD 
0001 (1) 1979 -350.236 164.591 3.1 1.343 0.004 0.010 

0010 (2) 999 -348.178 163.949 3.1 1.478 0.004 0.020 

0011 (3) 665 -348.112 163.570 3.1 1.322 0.011 0.045 

0100 (4) 19982 -350.236 164.591 2.8 1.303 0.004 0.010 

0101 (5) 1978 -350.236 164.591 3.2 1.420 0.004 0.010 

0110 (6) 999 -346.198 162.427 2.9 1.389 0.008 0.021 

0111 (7) 664 -348.304 163.638 3.2 1.406 0.006 0.016 

1000 (8) 1322 -194.298 181.108 4.0 0.981 0.517 0.221 

1001 (9) 1979 -183.067 179.185 3.6 0.919 0.565 0.241 

1010 (10) 999 -181.923 184.869 3.2 0.906 0.560 0.246 

1011 (11) 664 -173.251 179.076 3.7 0.941 0.589 0.259 

1100 (12) 1066 -193.859 179.828 5.0 0.112 0.510 0.219 

1101 (13) 1978 -169.234 174.577 5.0 0.191 0.595 0.242 

1110 (14) 999 -169.746 174.301 4.0 0.787 0.609 0.245 

1111 (15) 664 -166.865 174.621 4.5 0.693 0.613 0.244 

 
Table 5.13: Operator Experiment Results 

 

Note that for the first seven (Run=1..7) of these experiments the fitness is very similar 

(in fact almost equal to the average of the corresponding noise models). This is because 

the initial populations were set to a selection of random order VAR processes where 

each matrix element was either zero (the noise model) or a random value within the 

gene element limits (50% chance of one or the other). This demonstrates that a random 

individual is nearly always worse than the noise model, since the final best individual is 

the noise model or very similar to it. The fitness is unlikely to increase beyond this point 

because selection ensures a zero element population before the operators (that are 

applied) can make any useful changes. Once this zero-element-individual state is 

achieved (or very close to it), a change is impossible in most cases. Order mutation may 
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remove a matrix, which in these cases would not change fitness. If it adds a matrix then 

it is a zeroed matrix: again resulting in no fitness change. The crossover operators 

merely rearrange genes around, and do not alter their values. 

 

If the first seven sets of results are ignored, then it can be clearly seen that all of the 

operators acting together are more effective than any other combination. It is worth 

noting that the best case (Run=15) and the worst (non-noise model) case (Run=8) differ 

by about 16.4%, the Weighted-Kappa values differ by about 18.4%. These are the two 

cases where either all of the operators are used, or just the gene mutation operator is 

used. These two figures show there is a significant improvement in results, when more 

genetic operators are utilised. The standard deviations for both the fitness and the 

Weighted-Kappa metric reduce slightly when more operators are used, indicating a 

slightly more consistent set of results. 

 

The order column demonstrates a level of agreement between those experiments that 

have a low forecast error, being between 3 and 5. The standard deviation for the order 

reduces very significantly, by about 41.6%, between experiment 8 and experiment 15, 

which indicates that a more consistent order selection can be achieved when more of the 

genetic operators are used together. Finally, it would be fair to conclude from the 

observations about the runs 1..7 and from the runs 8..15 that the gene mutation operator 

is the most powerful operator, but works better when combined with the other operators. 

 

5.5 Discussion 
 

The previous two sections have presented methods for learning a VAR process from a 

given set of multivariate time series. This is achieved through new representations and 

associated crossover and mutation operators for a genetic algorithm. The results clearly 

show that the VARGA-v1 and VARGA-v2 models provide better methods for fitting a 

VAR process than the conventional statistical methods. 

 

As demonstrated with the visual field data, the VARGA models can be applied to 

multivariate time series datasets where there are a small number of observations. This 
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gives the method a wider range of applications than the standard statistical methods 

(e.g. than with the Yule-Walker equations). VARGA has been found to be a promising 

method for modelling multivariate time series data. The following summarises the 

observations and conclusions draw from the experiments regarding VARGA-v2 (the 

better of the two VARGA methods). 

 

i) For short multivariate time series, conventional methods for order 

determination can be limited, e.g. the AIC metric. Parameter estimation 

methods can also fall down, i.e. matrix inversion errors and numerical 

instability, especially when modelling a short MTS. 

 

ii) Although the performance of the Yule-Walker equations is better when the 

time series is long; VARGA-v2 still gives a better set of results for 33 cases 

out of 34. Further, for those applications involving a short MTS such as the 

glaucoma visual field data, the Yule-Walker equations (implemented in 

S-Plus) either cannot model them to a sufficiently high degree of accuracy 

or cannot model them at all. 

 

iii) VARGA-v2�s superior performance might be explained in part by the fact 

that approximately 60% of the resulting parameter matrices are zero. 

VARGA-v2 assumes that any relationships between variables are zero until 

proved otherwise, i.e. when a zero changes through mutation and the 

corresponding fitness improves. The standard statistical methods assume 

that there is some degree of relationship between all variables at all time 

lags, which appears to be counter-intuitive. 

 

5.6 Concluding Remarks 
 

In this chapter, VARGA, a method for learning a Vector Autoregressive process from a 

short and high dimensional MTS has been presented. This is achieved through a real 

valued matrix based representation and appropriate crossover and mutation operators for 

a genetic algorithm. The results clearly show that the VARGA models provide a better 
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method for fitting a VAR process to a short MTS than the conventional statistical 

methods. However there are still a number of shortfalls with the proposed new methods, 

which shall be addressed by the further development of the VARGA paradigm in 

chapter 6. 
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6. Sparse-VARGA 
 

In the previous chapters the difficulties in modelling short high dimensional MTS have 

been identified and these difficulties were addressed in the context of predicting visual 

deterioration in glaucoma patients using a genetic algorithm approach. The idea behind 

VARGA is that an nVAR(p) process could be represented as a chromosome of p n×n 

matrices. Suitably modified genetic operators are then applied over subsequent 

generations improving the population�s fitness and thus finding the required parameters. 

However this representation can be inefficient in terms of algorithm speed. In this 

chapter this work is extended in three key areas: improving algorithm efficiency, 

ensuring accurate order selection and conducting an extensive evaluation. 

 

6.1 The Sparse-VARGA Method 
 

VAR subset models [Lütkepohl1993] have been used for short term forecasting. A VAR 

subset model is a VAR process that has one or more of its parameters set to zero, 

however deciding which parameters to set to zero is a difficult task. In [Bearse1998] a 

binary GA is used towards these ends, where the binary chromosome represents which 

of the parameters are set to zero, i.e. the chromosome consists of n2p genes where each 

�1� means that the corresponding element in a parameter matrix is set to zero, and a �0� 

means it is left unchanged. However this method still relies upon the initial parameters 

and order being determined by some other method. It is proposed that all of these steps 

can be performed as one whole process, i.e. order determination, parameter computation 

and VAR subset selection. VAR processes that are highly sparse (lots of zeros for 

parameters) are a lot easier to work with than a densely populated VAR process. 

 

Sparse Matrix Theory [Zlatev1991] suggests that if most of a matrix contains zeros, 

then one should only store the values that are not zero as opposed to all of the elements, 

i.e. assume that all elements are zero unless indicated otherwise. It would be more 

efficient to store the parameter matrices using a sparse representation; this is the idea 

behind Sparse-VARGA. This idea was also motivated from a similar representation 
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introduced in [Ghozeil1996, Tucker1999, Swift1999b]. Sparse-VARGA stores the 

non-zero elements of each parameter matrix of a MAXORDER VAR process as a 

variable length unordered list, where MAXORDER is the maximum lag (number of 

parameter matrices) any VAR process under consideration can have. The 

Sparse-VARGA algorithm is similar to a standard genetic algorithm but has 

enhancements to deal with variable length chromosomes. The algorithm for 

Sparse-VARGA is given in algorithm 6.1 below. 

 

Algorithm 6.1: Sparse-VARGA 

  

1) Input: The Sparse-VARGA Parameters from table 6.2 

 The fitness function from equation 5.2 

2) Create POPULATION chromosomes 

3) Sort the population in descending order according to fitness 

4) For g = 1 to GENERATIONS 

5)  SHUFFLE population to create Children 

6)  Clone the population 

7)  MUTATE the Clones and add back to the population 

8)  Add the Children back to the population 

9)  Sort the population in descending order according to fitness 

10)  SELECT the new population 

11) Next g 

12) Output: The best VAR process; which is the chromosome from the final population with

 the largest fitness score 

 

All of the operators described above are similar to those of a standard genetic algorithm 

(see chapter 2), where the SHUFFLE operator is analogous to crossover. The rest of this 

section explains each part of this algorithm. 

  

6.1.1 Representation 
 

A chromosome is an unordered variable length list of genes; each chromosome will 

range in size from one gene to some upper limit (say MAXSIZE). A gene is a tuple 

(lag,row,col,value), where lag is the particular parameter matrix (assuming there are 
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1,..,MAXORDER parameter matrices), row is the row of a parameter matrix, col is the 

column of the same matrix and value is the value the particular coefficient defined by 

(lag,row,col) takes; hence a(lag)(row)(col)=value. GENESIZE (≤MAXSIZE) will be defined 

as the number of genes in a given chromosome. In order to reconstruct the parameter 

matrices, the genes of the chromosome are used to fill a set of matrices. It is assumed 

that all of the possible parameter matrices have zero for each element unless there is a 

gene that indicates otherwise. Each gene element is bounded as in table 6.1. 

 

Element Type Minimum Maximum 

Lag Integer 1 MAXORDER 

Row Integer 1 n 

Col Integer 1 n 

Value Real -1.25 1.25 
 

Table 6.1: Gene Part Types and Limits 

 

Figure 6.1 shows the representation for Sparse-VARGA. 
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Figure 6.1: Sparse-VARGA Representation 
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Duplicates gene handling is described in the later sections. A duplicate is where two 

genes have the same value for the lag, row and col and parts of the gene. This could 

occur during the SHUFFLE and/or MUTATION part of the algorithm or even during the 

creation of the initial population.  

 

6.1.2 Fitness 
 

As with a normal GA, Sparse-VARGA needs a suitable fitness function to evaluate 

candidate solutions to the problem. This fitness will rate a potential solution against a 

given dataset using some evaluation criteria. The fitness for Sparse-VARGA is the same 

as the fitness for VARGA-v1 and VARGA-v2, defined in equation 5.2. 

 

6.1.3 Initial Population 
 

If the Yule-Walker equations can be solved for a given order for a given time series, 

then the results could be a good starting point for a VAR process specialised for short 

term forecasting. The Noise Process is added for good measure, and is included because 

this proved to be a good benchmark to compare with any other model from the 

experiments in chapter 5. Therefore Sparse-VARGA will be seeded with a selection of 

chromosomes that are known to represent a solution that is likely to be better than a 

randomly generated chromosome.  

 

As mentioned above, there are two choices for selecting the seeds. The first represents 

the noise model, and the second are the results of the Yule-Walker equations run for 

order 1,...,MAXORDER. Note that for the Yule-Walker seeds it is assumed that the 

value for MAXORDER is less than the intended population size. Another choice must 

be made, and that is whether to pad out the seeds with zeros, i.e. genes where the value 

part is set to zero.  This would enable gene mutation to affect parts of the solution that 

would not normally be available to it. Three sets of initial populations are generated as 

detailed below. 
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Seeded Sparse-VARGA (SSV). Chromosomes are created by solving the Yule-Walker 

Equations for an order ranging from one to MAXORDER and then using the results as a 

seed. Each of these seeds is padded out with zero genes where elements are not 

indicated, creating MAXORDER number of 100% dense matrices. The rest of the 

population consists of 50% chance of a noise or random individual. Each noise seed has 

a 50% chance of being padded out with zeros as above. 

 

Sparse-VARGA-Padding (SVP). Each individual has a 50% chance of being a noise 

seed or a randomly generated individual. Each chromosome has a 50% chance of being 

padded out with zero genes as above. 

   

Sparse-VARGA-No-Padding (SVNP). Each individual has a 50% chance of being a 

noise seed or a randomly generated individual. No individual is padded out with zeros. 

 

These are the three variants on seeding that have been found to produce good results 

(from many test experiments), and will be further evaluated for effectiveness. The 

algorithms for creating these seeds are described in Appendix L.  

 

When creating the initial population, special provision is made to ensure that there are 

no duplicates genes within a chromosome. For example, with a randomly created 

individual, a gene is only added if it is not already in the chromosome. Duplicate 

handling for the initial population is also described in Appendix L. 

 

6.1.4 Shuffle 
 

Shuffle is an operator similar to the Uniform Crossover operator described in 

[Syswerda1989]. Here all of the genes of both parents are placed into a single 

collection, which is then randomly shuffled. The first and the second gene element from 

this collection are then removed to create two single gene chromosomes, the starting 

point for two new children. The remaining genes in the collection are then divided 

between these two new children by deciding randomly where each one goes (50% 

chance for each child). Figure 6.2 demonstrates this. 
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Lag Row

Col Val.

Child 1

Child 2

Both Parents Genes Shuffled

Gene from Parent 1

Gene from Parent 2
KeyKey

Figure 6.2: Sparse-VARGA Shuffle Operator 

 

The representation would seem not to adhere to the Schema Theorem [Goldberg1989, 

Holland1975] since it has no sense of ordering. For example, given two chromosomes x 

and y where y is simply x in a different order, each would effectively be the same VAR 

process; this is the reason why the original version of Uniform Crossover (or any other 

standard crossover operator) will not work. However, this operator will effectively 

randomly divide the genes of two chromosomes between two new children, and when 

combined with the survival operator, will result in children being produced that contain 

useful genes from both parents. 

 

As previously mentioned, this operator could result in duplicate genes. This could occur 

if the two parents have the same gene, i.e. one where the lag, row, and col part are the 

same. Note that each parent is assumed to have a unique set of genes before the operator 

is applied. During the Shuffle operation, before a gene is added to a child, a check is 

made to see if it is already contained in that child. If this is the case, the gene that came 

from the fittest parent is retained only, i.e. the value part of the gene is set to the 

corresponding value from the gene from the best parent. 

 

6.1.5 Mutation 
 

Mutation in the Sparse-VARGA algorithm is a two-stage process, i.e. Gene Mutation 

and Size Mutation. However there is a slight variation. A chromosome can only undergo 

either gene mutation or size mutation with a 50% chance of either occurring. Note that 

only the parents mutate, and they will always mutate to create a new individual.  
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Size Mutation causes a chromosome to increase or decrease in size by the addition or 

deletion of a number of genes. A chromosome has a 50% chance of losing some genes 

(effectively setting specified parameters to zero), or gaining new genes (effectively 

setting zeros to values). Note that if a gene is removed then it is randomly selected from 

all of the genes within the chromosome. The size of a chromosome is restricted between 

one and some predefined upper limit, say MAXSIZE. Figure 6.3 shows this process (for 

each addition or deletion). 
 

W=UI(1,2) Size=MAXSIZE?

Order=1?

W=1?

Yes

Yes

No

No

Yes

No

(Add) (Delete)

Chromosome

+

Chromosome

 
Figure 6.3: Sparse-VARGA Size Mutation 

 

The number of additions or deletions is computed according to equation 6.3. 
 

NSIZEMU
GENESIZE=µ  (6.1)

NSIZESTD
GENESIZE=σ  (6.2)

( )1),( += σµNCeilNMute  (6.3)

 

Here GENESIZE is the number of genes in the chromosome, NSIZEMU and 

NSIZESTD are application dependent parameters, Ceil is a function that returns the 

nearest integer that is greater than the specified parameter, and NMute is the number of 

size mutations. Deleting a gene from a chromosome will not result in any duplicates, 

but the addition of a random gene could do. To prevent this occurring, a random gene is 

repeatedly generated until it can be added to a chromosome without duplication. 
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Gene Mutation mutates a single gene of an individual. The mutation only happens to 

the value part of the gene. Algorithm 6.2 describes this procedure. 

 
Algorithm 6.2: Gene Element Mutation 

  

1) Input: CHROME � a Chromosome 

 GENESIZE � the size of a Chromosome 

 MAXGENE, MINGENE � Gene limits 

2) Set i = UI(1,GENESIZE), Set a = Gene i of CHROME 

3) Set New_Value = N(a,σ) 

4) If New_Value > MAXGENE then Set New_Value = MAXGENE 

5) If New_Value < MINGENE then Set New_Value = MINGENE 

6) Set Gene i of CHROME to New_Value 

7) Output: CHROME, the mutated Chromosome 

 

where σ is an application dependent parameter that is a standard deviation for the 

Normally distributed Creep Mutation [Goldberg1990], and MINGENE and MAXGENE 

are the bounds an element of a VAR parameter matrix can take. Gene mutation will not 

result in any duplicate genes since it only changes the value part of a gene. This 

mutation is similar to that of VARGA-v2 as discussed in section 5.4.5. 

 

6.1.6 Population Dynamics 

Shuffle

Children

Gene Mutation

Mutation

Size Mutation

Gene
Mutants

Size
Mutants

New
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Genetic
Operator

Chromosomes

Control Flow
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Initialise
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Stop?
No

End
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Decision
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The population grows through the

application of genetic operators as in

figure 6.4. One set of children is

produced through the application of

the shuffle operator. The mutation

operators are applied, size and gene, to

the old population consisting of the

parents. Each parent has a chance of

breeding (ShuffleRate).  
Figure 6.4: Sparse-VARGA Population Growth 
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The population will increase by a factor equal to 1+ShuffleRate. Note that the selection 

operator reduces the population back to the size it was before the shuffle and mutation 

operators were applied. 

 

6.1.7 Selection 
 

The selection operator is the ranked survival described in section 5.4.6, and used for the 

same reasons. Elitism [Dejong1975] is also used, which is the process of selecting a 

predefined number of the best chromosomes for survival, before the rest of the next 

population is selected. 

 

6.1.8 Parameters 
 

Parameter Meaning Value 

POPULATION The size of the population 10 

GENERATIONS The number of generations the algorithm is run 

for 

~600 

ELITISM The number of the fittest individuals guaranteed 

survival 

2 

ShuffleRate The chance of a chromosome becoming a parent 0.650 

MINGENE The minimum value a gene (value) can take -1.250 

MAXGENE The maximum value a gene (value) can take 1.250 

MAXORDER The maximum possible order of a VAR process 5 

MAXSIZE The maximum number of genes a chromosome 

can have 

n2×MAXORDER

NSIZEMU The mean scaling constant in equation 6.1 20 

NSIZESTD The standard deviation scaling constant in 

equation 6.2 

20 

σ  The standard deviation for algorithm 6.2 0.400 
 

Table 6.2: Sparse-VARGA Parameters 
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Table 6.2 details the parameters of Sparse-VARGA. Note that GENERATIONS is an 

approximate figure, since all of the experiments were executed for a fixed number of 

fitness function evaluations. 

 

6.2 Evaluation 
 

The models found using the three Sparse-VARGA methods are compared with those 

produced by a conventional way of finding a VAR process, i.e. the solution of the 

Yule-Walker equations and a hill-climbing based method. All of the methods will be 

evaluated on three separate criteria. These are Forecast Error, Weighted-Kappa and 

Complexity.  

 

Forecast error is used since it is a direct way of indicating what the accuracy of each 

method is, i.e. how closely each one matches the original time series. Weighted-Kappa 

provides a measure of whether the predicted sequence follows the direction of change 

of the original sequence. The Weighted-Kappa metric is described in appendix J. 

Finally, an indication of complexity will put each model into perspective, for example if 

one method is 0.1% more accurate than another but one thousand times slower in 

executing, then the less accurate but faster model is probably the better choice in many 

real world applications. The evaluation will be further spilt up into two distinct sections. 

The forecast error and the Weighted-Kappa metric are application dependent whilst the 

discussion of the performance of the Yule-Walker equations and Complexity are 

application independent. 

 

6.2.1 Methods to be Contrasted 
 

In chapter 5 S-Plus was used to solve the Yule-Walker equations. However, as noted 

above, there can be some problems with locating the order, and there can be some 

matrix inversion problems. To tackle these problems, a modified version of the 

Yule-Walker equations has been implemented external to S-Plus and order selection 

will be ignored. The Yule-Walker equations will be applied to the test data for all 

possible lags, and then the model with the lowest forecast error will be chosen. As with 



Chapter 6 

161 

previous work, the noise model will also be implemented to put any results into context. 

Additionally a hill-climbing based search will be used to locate the parameters for a 

VAR(MAXORDER) process.  

 

The Yule-Walker Equations 

 

The method described by Lütkepohl in [Lütkepohl1993] will be used. Essentially, a 

relationship between the parameter matrices and the auto-covariance function of a VAR 

process exists under certain circumstances. This relationship can be exploited and 

rearranged to produce a set of linear matrix equations called the Yule-Walker equations. 

These equations are defined in chapter 2, along with a more detailed explanation of how 

they are derived.  

 

Hill-Climbing 

 

As described in chapter 4, the hill-climbing algorithm is a local search based method 

that iteratively improves a solution by making a single step from one point in the search 

space to an improved point. Usually, the starting point is randomly chosen, and then a 

sequence of one-step (usually random) changes is made. After each change, if the new 

point is better than the previous one, then the old one is forgotten, and any further 

changes are made to this new solution. Algorithm 6.3 describes the hill-climb procedure 

for learning the VAR process.  

 

Definition 6.1. Columns(X) returns the number of columns the matrix X has. 

 

Definition 6.2. Rows(X) returns the number of rows matrix X has. 

 

Definition 6.3. A(i,j) refers to the ith,jth element of matrix A. 
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Algorithm 6.3: The Seeded Hill-Climbing Algorithm 

  

1) Input: MTS of length (rows) T by n (columns), MAXCALLS � the number of algorithm

 iterations 

 MINGENE, MAXGENE � The limits for a parameter matrix element 

2) Set BEST = -∞ 

3) For P = 0 to MAXORDER 

4)  Solve the Yule-Walker equations for CASE of Order P, 

 returning A(1) to A(P) VAR parameter matrices if solvable 

5)  If Solvable then 

6)   Compute the fitness according to equation 5.2 on A(1)..A(P) (FITNESS)

7)   If FITNESS > BEST then 

8)    Set BEST = FITNESS 

9)    Set B = [A(1)..A(P)] 

10)   End if 

11)  End if 

12) Next P 

13) Set b = n by 1 vector of zeros 

14) While Columns(B) < n 

15)  Set B = [B b] 

16) End While 

17) Let A = B, a = BEST 

18) For i = 1 to MAXCALLS 

19)  Set B = A 

20)  Set ROW = UI(1,n) 

21)  Set COL = UI(1,n×MAXORDER) 

22)  Set VALUE = UR(MINGENE,MAXGENE) 

23)  Set B(ROW,COL) = VALUE 

23)  Separate B into A(1)..A(MAXORDER) 

25)  Compute the fitness (FITNESS) according to equation 5.2 on

 A(1)..A(MAXORDER) 

26)  If (FITNESS > a) then 

27)   Set A = B, Set a = FITNESS 

28)  End if 

29) Next i 

30) Output: A=[A(1)..A(MAXORDER)] � the best VAR process for CASE based on equation

 6.2 (as far as Hill-Climbing can compute) and a � the forecast error for A 
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Definition 6.4. The notation C = [A B] will be referred to as matrix concatenation and is 

the construction of a matrix C that is Rows(A) by (Columns(A)+Columns(B)) in size,  

where C(i,j)=A(i,j) if i≤Columns(A) otherwise C(i,j) = B(i,j-Columns(A)); for all valid i 

and j. Note that the number of rows in both matrices must be equal. If the operation is 

applied to more than two matrices, e.g. [A B C] or [A1...Ap] then all of the columns of all 

of the matrices are concatenated in a similar manner to the two matrix case. 

 

Lines 2-12 set up the starting point to be the best (fittest) VAR process with an order 

between 0 (the noise model) and MAXORDER. Lines 13-16 make sure that the 

resultant parameter matrices (once combined) are padded out with zeros until it is 

n×(n×MAXORDER) in size. Lines 17-30 are the Hill-Climbing loop. 

 

In the context of finding the parameters for a VAR process that best fits an MTS, the 

point in the search space will be represented by an n×(n×MAXORDER) matrix, which 

represents the VAR parameters matrices [A1..AMAXORDER]. Each step will consist of 

randomly changing one element within this matrix to a uniformly distributed real 

number between the specified bounds. The worth of a matrix will be the same as the 

Sparse-VARGA fitness function. To place the method on an even footing with the 

seeded versions of Sparse-VARGA, the hill-climbs starting point is chosen from the 

best out of the Yule-Walker equations and the noise model. If a VAR process of lower 

than MAXORDER is deemed the best, then the additional matrices will contain 

elements that are all zero. 

 

6.2.2 Test Data 
 

The set of Normal Tension Glaucoma Visual Field data will be used to evaluate the 

Sparse-VARGA method, particularly in the aspects of forecast accuracy and direction 

of change. In chapter 5, the visual field data were clearly demonstrated to be 

multivariate. The value of each of the 76 field points ranges exclusively between 0 and 

60, and the length of this MTS is rather short. In this chapter all of the 16 groups (points 

within a nerve fibre bundle) will be considered to be a separate MTS for each patient; 

the number of variables in each MTS will be the number of points in each group. 
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Additionally each patient�s visual field will be modelled as a single 76 variable MTS. 

 

6.2.3 Application Dependent Results 
 

In this section the results of running the following seven experiments are examined: 

  

1) The Yule-Walker (YW76) equations on the 76 points for each patient 

 

2) The Yule-Walker (YW16) equations for each nerve fibre bundle of each 

patient 

 

3) The noise model (NOISE) for each nerve fibre bundle of each patient 

 

4) Seeded Sparse-VARGA (SSV) for each nerve fibre bundle of each patient 

 

5) Sparse-VARGA-Padding (SVP) for each nerve fibre bundle of each patient 

 

6) Sparse-VARGA-No Padding (SVNP) for each nerve fibre bundle of each 

patient 

 

7) Hill-climb (HC) for each nerve fibre bundle of each patient 

 

Experiments 4-7 are stochastic, hence each will be run ten times, and then the results 

averaged. This gives seven lots of 1312 (82 patients by 16 nerve fibre bundles) sets of 

results (experiments 2-7) and one set of 82 results (experiment 1).  

 

These will be presented as follows: 

 

i) General comments about the results 

 

ii) Results for experiments involving all methods over all groups and patients 

(1312 comparisons) 
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iii) Results for methods 2-7 by group (16 comparisons). Note that the YW76 

methods results cannot be considered by group since there is only one MTS 

 

iv) Results for all methods by patient (82 comparisons) 

 

Within the results section, the Mean will refer to the sample mean, the Median value 

will be the middle value when the result in question is sorted, StDev. is the sample 

standard deviation, Min. is the minimum value and Max. is the maximum value. 

 

General Comments 

 

It is worth noting the following details regarding the experiments and the presentation 

of the results. 

 

i) With the YW16 results, 145 out of 1312 experiments were not solvable 

(11.05%), i.e. there were no solvable equations for all lags over a nerve fibre 

bundle for a patient. However 729 out of the 6560 YW16 runs (1312 × 5 

lags) were not solvable (11.11%), which resulted in 33 out 82 patients series 

containing a non-solvable set of YW16 equations for some order. 

 

ii) With the YW76 results, 165 out of 410 experiments were not solvable 

(40.24%), i.e. there were no solvable equations for all lags over all points 

for a patient. This is equivalent to 33 patients out of 82, which are exactly 

the same patients as those mentioned above; this will be discussed in section 

6.2.4. 

 

iii) The noise model is an nVAR(0) process hence the forecast error (fitness) is 

the sum of the absolute values of each point from MAXORDER+1 to T. 

 

iv) For both the forecast error (fitness) and Weighted-Kappa, standard summary 

statistics will be displayed. For methods 4-6, the size (number of genes) will 

be presented as an indication of the model�s sparseness. 
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v) The fitness will be scaled according to equation 6.4 for each set of results, 

so that the results are not biased against those cases with a longer time series 

or with a higher dimensionality. 

 

)MAXORDER( −
=

Tn
FitnessFitnessScaled  

(6.4)

 

vi) For methods 4-7 the experiments were terminated after the evaluation of 

10,000 fitness calls was exceeded. This figure was chosen as it allows for a 

reasonable chance of convergence (to a good solutions) and is not too large 

as to make the total number of experiments impractical to carry out. 

 

By Experiment 

 

Tables 6.3 to 6.6 show the results of all the experiments considered together. Table 6.3 

provides summary statistics for the forecast error (fitness) for each experiment and table 

6.4 displays the Weighted-Kappa metric. Table 6.5 shows the number of times each 

method performed the best with regards to forecast error, whilst table 6.6 displays the 

same for the Weighted-Kappa metric. 

 

Fitness/Forecast Error 
Method 

Mean Median StDev. Min. Max. 

YW76 3.212 4.592 1.713 0.915 9.789 

YW16 0.849 0.738 0.806 0.000 5.641 

NOISE 2.940 2.513 1.734 0.000 10.833 

SSV 0.556 0.334 0.646 0.000 4.207 

SVP 1.653 1.208 1.588 0.000 10.688 

SVNP 1.406 1.163 1.032 0.000 6.022 

HC 0.562 0.341 0.644 0.000 4.223 
 

Table 6.3: Summary Statistics for the Seven Methods by Fitness 
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In table 6.3 the shaded cells represents the best performance for a given method using a 

given summary statistic. It can be clearly seen that the Seeded Sparse-VARGA (SSV) 

method is slightly better than the hill-climbing method: about 1.07% better in mean, and 

2.05% better in median. The next best method is the Yule-Walker Equations by nerve-

fibre bundle (YW16). Here the mean and median error is about 50% more than with the 

HC method. The non-padded and then the padded versions of Sparse-VARGA (SVNP 

and SVP) are next in performance, followed next by the noise model and then the Yule-

Walker equations on all 76 points (YW76). The standard deviations are smallest for the 

SSV and HC method (about 35% smaller than the next best � SVNP) indicating that 

these two methods produce a more stable (consistent) set of forecasts. It is surprising 

that the YW76 method performs worse than the NOISE method. This perhaps suggests 

that modelling the visual fields as one large dimensional MTS is the wrong thing to do, 

and that splitting the variable up into sub-groups (maybe by nerve-fibre bundles or by 

the method suggested in chapter 4) will provide much better forecasts. In most cases 

(not YW76) the mean is larger than the median value, and the maximum value is very 

much larger than the mean (and the median). This would suggest that there are many 

small forecast errors, and a few very large ones. Figure 6.5 shows a histogram for the 

forecast error for the SSV method. This diagram clearly shows that many of the errors 

are less than 0.4. 
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Figure 6.5: Distribution of Forecast Error for SSV Model 
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Table 6.4 contains the same information as table 6.3, but uses the Weighted-Kappa 

metric instead of forecast error (fitness). Note that the closer the Weighted-Kappa value 

is to one, the better (see appendix J). In table 6.4 the shaded cells represents the best 

performance for a given method using a given summary statistic. It can be clearly seen 

that the Seeded Sparse-VARGA (SSV) methods is better than the hill-climbing method: 

about 8.99% better in mean, and 10.34% better in median. 

 

Weighted-Kappa 
Method 

Mean Median StDev. Min. Max. 

YW76 0.267 0.320 0.256 -0.028 0.748 

YW16 0.686 0.781 0.313 -0.032 1.000 

NOISE 0.021 0.000 0.142 0.000 1.000 

SSV 0.800 0.886 0.229 -0.093 1.000 

SSP 0.561 0.557 0.218 -0.222 1.000 

SSNP 0.561 0.562 0.217 -0.200 1.000 

HC 0.734 0.803 0.209 -0.089 1.000 
 

Table 6.4: Summary Statistics for the Seven Methods by Weighted-Kappa 

 

Figure 6.6 shows a histogram for the results for the SSV method. It can be clearly seen 

that the majority of the values are greater than 0.7. 
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Figure 6.6: Distribution of Weighted-Kappa Metric for SSV Model 
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The next best performing method in terms of the Weighted-Kappa metric is the 

Yule-Walker Equations by nerve-fibre bundle (YW16). Here the mean and median error 

is about 7% and 3% respectively more than with the HC method. The non-padded and 

then the padded versions of Sparse-VARGA (SVNP and SVP) are next in performance, 

followed next by the Yule-Walker equations on all 76 points (YW76) and then the noise 

model (NOISE). Here the NOISE method does the worst since every single point 

forecast made by this model is the same, i.e. no change. Note that the standard deviation 

for the NOISE method is the lowest (all of the others are roughly the same) since it 

consistently gets a very low value for this metric due to its poor forecasts. Tables 6.5 

and 6.6 look at all of the methods except YW76 and display the frequencies of how 

many times each method had the best performance out of the 1312 experiments. Table 

6.5 is with respect to the forecast error of each method and table 6.6 is regarding the 

Weighted-Kappa metric. 

 

Method Ranking by Fitness Count Percentage 

HC=YW16 1 0.076 

HC=SSV=YW16 1 0.076 

HC=SSV 2 0.152 

SSV=YW16 7 0.534 

HC=SSV=SVNP=SVP=NOISE 17 1.296 

SVNP 24 1.829 

YW16 43 3.277 

SVP 88 6.707 

HC 263 20.046 

SSV 866 66.006 
 

Table 6.5: Method Ranking by Fitness 

 

Almost two thirds of all of the experiments resulted in the Seeded Sparse-VARGA 

performing the best. The next best was the hill-climbing method, with a total number of 

better performances of about 20%. Surprisingly, the non-padded version of 

Sparse-VARGA (SVNP) was next in the rankings, with about 6.7% of the total number 
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of experiments. The 17 cases where five of the methods drew correspond to 17 sets of 

MTS where all the visual field values are zero. With such a time series, the 

Yule-Walker equations will fail � see section 6.2.4 for a detailed discussion. 

 

The Weighted-Kappa results as indicated in table 6.6 again show that the SSV method 

comes out on top, with about 57% of the highest values. It also comes equal second 

with the YW16 method, with a total of about 15%. This means that the SSV method is 

either the best or equal best in about 72% of the cases. 

 

Method Ranking by  

Weighted-Kappa 
Count Percentage 

SSV=SVNP 1 0.076 

HC=SSV=SVP 1 0.076 

SSV=SVNP=SVP=YW16 1 0.076 

SSV=SVP=YW16 1 0.076 

SSV=SVNP=SVP 2 0.152 

SSV=SVNP=SVP=NOISE=YW16 4 0.305 

SSV=SVNP=SVP=NOISE 4 0.305 

HC=SSV=SVNP=SVP=NOISE=YW16 5 0.381 

NOISE 7 0.534 

NOISE=YW16 8 0.610 

HC=SSV=SVNP=SVP=NOISE 17 1.296 

SVNP 36 2.744 

SVP 39 2.973 

HC 72 5.488 

YW16 158 12.043 

SSV=YW16 200 15.244 

SSV 756 57.622 

 
Table 6.6: Method Ranking by Weighted-Kappa 
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It is easy to see how the YW16 method may better the HC, SVP and SVNP methods 

with respect to the Weighted-Kappa metric, even though it is a seed to some of these 

methods. This is due to a low forecast error not necessarily meaning that the change is 

in the right direction. Forecast error is computed as a deviation from the observed, with 

no consideration of sign, see equation 5.2. However in table 6.5 it can be clearly seen 

that the YW16 method has the best fitness (forecast error) in 43 cases (~3.2%). This 

should be impossible since the YW16 method should always be equal or worse than the 

SSV, SVNP, SSP and HC methods because of seeding and elitism. Note that the HC 

method uses a form of elitism: there is a population of one, no crossover and a one-gene 

mutation producing one offspring. When these 43 cases are examined it can be seen that 

the difference in method fitness is 10-10 or lower; i.e. the Yule-Walker equations 

provided an almost perfect fit. With the four stochastic methods (that should have 

performed at least as well as the YW16 method), each is averaged over 10 runs. This 

combined with scaling the error as in equation 6.4 above, results in some cases having a 

small rounding error. In fact the results from these methods are all the same as expected, 

when they are compared to a very large number of decimal places. 

 

By Group 

 

In this section, the forecast error and Weighted-Kappa results will be examined by nerve 

fibre bundle. However, only the mean will be used as a summary statistic, because since 

there are 16 MTS groups, tables 6.3 to 6.6 and figures 6.5 and 6.6 would have to be 

repeated 16 times. In tables 6.7, 6.8 and 6.9, the shaded row represents the method with 

the best performance for the metric in question. 

 

In table 6.7 it can be clearly seen that the SSV method produces the lowest forecast 

error. However the SSV method is followed very closely by the HC method, which is 

better than SSV in 2 out of 16 groups. However the difference in forecast error in these 

two cases is very small. Table 6.8 splits the results in table 6.7 into groups and then 

displays the frequency that a method performed best or equal best. It can then be seen 

that the method that comes top for all of the groups is the SSV method followed by HC. 

However the HC method only performs the best in under a third of the cases. 
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Method 
Group 

HC SSV SVNP SVP NOISE YW16 

0 1.333 1.317 1.614 1.851 3.207 1.885 

1 0.431 0.422 1.250 1.413 2.708 0.578 

2 0.411 0.399 1.213 1.445 2.727 0.623 

3 0.761 0.752 1.306 1.557 2.718 0.904 

4 0.458 0.453 1.332 1.563 2.885 0.751 

5 0.402 0.410 1.597 1.837 3.095 0.948 

6 0.428 0.422 1.631 1.873 3.395 0.963 

7 0.567 0.561 1.546 1.849 3.442 0.832 

8 0.667 0.655 1.391 1.650 3.030 0.872 

9 0.731 0.721 1.517 1.765 3.058 0.909 

10 0.384 0.371 1.372 1.655 2.933 0.627 

11 0.314 0.307 1.409 1.673 2.851 0.670 

12 0.418 0.430 1.473 1.734 2.809 0.881 

13 0.435 0.428 1.328 1.595 2.904 0.677 

14 0.744 0.738 1.329 1.577 2.741 0.910 

15 0.512 0.510 1.187 1.417 2.530 0.666 

 

Table 6.7: Mean Forecast Error by Group 

 

Groups (Nerve-fibre Bundles) 
Methods 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Totals 

HC 16 17 10 21 17 24 17 12 16 15 12 14 31 10 16 15 263 

HC=SSV 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

HC=SSV=SVNOPAD 

=SVPAD=NOISE 
2 0 4 0 0 4 3 2 1 0 0 0 0 0 0 1 17 

HC=SSV=YW16 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

HC=YW16 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

SSV 44 58 50 46 52 48 56 58 57 64 65 63 43 61 52 49 866 

SSV=YW16 0 0 1 0 1 0 0 0 0 0 0 1 0 0 2 2 7 

SVNOPAD 7 0 2 5 1 0 1 0 0 2 0 0 0 1 2 3 24 

SVPAD 13 4 8 6 7 4 5 5 3 0 3 2 5 8 7 8 88 

YW16 0 2 5 4 4 2 0 5 5 0 2 2 3 2 3 4 43 

 1312 

Table 6.8: Method Forecast Error (Fitness) Rank by Group (Nerve-Fibre Bundle) 
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Groups (Nerve-fibre Bundles) 
Methods 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Totals 

HC 2 2 3 5 5 13 8 3 1 1 0 3 17 4 4 1 72 

HC=SSV=SVNOPAD 

=SVPAD=NOISE 
2 0 4 0 0 4 3 2 1 0 0 0 0 0 0 1 17 

HC=SSV=SVNOPAD 

=SVPAD=NOISE=YW16 
0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 1 5 

HC=SSV=SVPAD 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

NOISE 2 0 1 1 2 1 0 0 0 0 0 0 0 0 0 0 7 

NOISE=YW16 3 0 1 1 0 2 0 0 1 0 0 0 0 0 0 0 8 

SSV 32 47 43 41 51 49 58 49 37 38 57 62 51 53 39 49 756 

SSV=SVNOPAD 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 

SSV=SVNOPAD=SVPAD 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 

SSV=SVNOPAD 

=SVPAD=NOISE 
0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 4 

SSV=SVNOPAD 

=SVPAD=NOISE=YW16 
0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 4 

SSV=SVNOPAD 

=SVPAD=YW16 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

SSV=SVPAD=YW16 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

SSV=YW16 3 16 12 17 11 6 5 14 20 24 12 11 7 10 18 14 200 

SVNOPAD 13 2 2 5 3 0 1 0 0 2 0 0 1 2 2 3 36 

SVPAD 10 1 5 2 1 2 2 2 3 1 0 0 0 2 6 2 39 

YW16 13 14 9 7 6 4 5 12 18 15 11 5 6 10 12 11 158 

 1312 

 

Table 6.9: Method Weighted-Kappa Rank by Group (Nerve-Fibre Bundle) 

 

Table 6.9 is the same format as table 6.8, but the frequencies are given for the 

Weighted-Kappa metric. Within table 6.9 it can be seen that in all of the cases (groups), 

the SSV method performs the best (or equal best), i.e. for each group, it has the best 

Weighted-Kappa value out of the 82 patients. None of the other methods come near to 

its performance. 

 

Table 6.10 shows the average chromosome size for the methods. In this table the 

chromosome sizes for the SV, SVP, SVNP and YW16 methods are listed. Group is the 

nerve fibre bundle that the size pertains to, Max. is the maximum possible chromosome 

size, Best is the size of the fittest chromosome, averaged over all of the experiment for a 
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particular group, and Average corresponds to the average of the populations average 

size over each generation. Note that the maximum chromosome size (Max.) is the size 

of the HC method. For the YW16 method, the size is computed by multiplying the 

average lag by the number of variables in the MTS squared, n2. Note that the noise 

model has a size of zero. It can be seen that the best size for the Sparse-VARGA methods 

is usually smaller than the average size. The models in descending order of size are as 

follows: HC, YW16, SSV, SVP and SVNP. Note that technically the noise model is the 

smallest. The implications of the size will be discussed in section 6.2.4. 

 

Group SSV SVP SVP 

ID n 
Max. 

Best Average Best Average Best Average 
YW16 

0 2 20 15.3 15.0 11.4 9.8 11.2 9.4 19.1 

1 4 80 74.0 74.2 25.5 19.4 24.9 18.6 63.4 

2 4 80 67.2 67.2 23.0 18.1 22.5 17.2 62.6 

3 3 45 37.0 36.9 18.6 14.7 18.3 14.2 41.8 

4 5 125 98.3 98.3 26.2 19.8 25.7 19.1 81.9 

5 9 405 330.2 330.4 43.2 33.1 39.9 29.3 155.9 

6 7 245 204.7 204.8 34.4 26.2 33.1 24.5 128.7 

7 4 80 73.7 74.0 25.6 19.8 25.1 19.1 61.5 

8 3 45 42.9 42.9 21.7 16.9 21.3 16.3 41.6 

9 3 45 43.3 43.3 20.8 16.1 20.7 15.8 41.1 

10 4 80 77.2 77.6 26.0 19.6 25.7 19.1 64.2 

11 7 245 236.5 237.2 35.3 25.7 34.8 25.0 119.4 

12 9 405 360.9 360.2 38.2 27.3 37.9 26.7 163.1 

13 5 125 104.7 105.1 28.0 20.9 27.4 20.1 83.2 

14 3 45 39.1 39.1 19.8 15.5 19.6 15.1 41.0 

15 4 80 71.9 72.1 24.5 18.8 24.1 18.2 64.2 

Average:  100.0% 87.8% 87.8% 30.3% 23.6% 29.7% 22.8% 73.1%
 

Table 6.10: Method Model Size 
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By Patient 

 

The final analysis of the results is from a patient perspective. Here the results are 

averaged by patient, giving 82 sets of results. Appendix M lists both the forecast error 

and Weighted-Kappa metric averaged over each patient. The column Best refers to 

which method provided the best average for a given patient. Any Yule-Walker equation 

estimate that could not be computed is given a penalising forecast error of 100.00 or a 

Weighted-Kappa of zero. Table 6.11 summarises these results, showing the number of 

times each method performs the best for each metric. Full details can be found in 

Appendix M. 

 

It can be clearly seen that the SSV method performs best. However it is interesting to 

note that the YW76 method performs third best. This will be considered further in 

section 6.2.4. 

 
 

Count of 1st Rank 
Method 

Forecast Weighted-Kappa

HC 11 (13.5%) 1 (1.2%) 

NOISE 0 (0.0%) 0 (0.0%) 

SSV 69 (84.1%) 80 (97.6%) 

SVNP 0 (0.0%) 0 (0.0%) 

SVP 0 (0.0%) 0 (0.0%) 

YW16 0 (0.0%) 0 (0.0%) 

YW76 2 (2.4%) 1 (1.2%) 
 

Table 6.11: Summary of Method Ranking by Patient 

 

Discussion 

 

Forecast Error (Fitness) Results. When looking at the forecast error results as a whole 

(table 6.3) it initially looks like there is little difference between the HC and SSV 

methods. However it is only when these results are considered by looking at the 
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frequencies of which performs best from a nerve-fibre bundle (tables 6.7, 6.8 and 6.9) 

and a patient perspective (table 6.11), that it can be seen that the SSV method clearly 

performs better. This suggests that there are many low forecast error results, but a few 

very large error results for this method. 

 

One unexpected result is that the YW76 method performs the best (when considered by 

patient with the other method) for 2 out of 82 patients (table 6.11). If all of the patients 

where the YW76 method could not provide an answer are ignored and the remaining 

patient�s average point sensitivity is correlated with the point forecast error for the 

YW76 method using Spearman�s Rank Correlation Coefficient, a value of �0.417 is 

obtained. This is significant to the 1% level, suggesting there is evidence to support that 

as the average point sensitivity increases, the YW76 point forecast error decreases. For 

the two cases where the YW76 method performs the best, the patients are ranked 13 and 

23 out of the 82 in terms of average point sensitivity.  

 

This could be due to relationships existing between points in patients with better 

sensitivity that lie outside the nerve fibre bundle arrangements. The YW76 method 

could model these relationships whilst all of the other methods are restricted to 

modelling the visual field points according to the layout of each nerve fibre bundle. 

 

Weighted-Kappa Results. The results for the SSV method are much better when 

comparing the directional agreement between observed and predicted deterioration 

using the Weighted-Kappa metric (tables 6.4 and 6.6). It is worth noting that this 

agreement is as important as forecast error, since the consequences of altering 

medication or performing surgery is quite severe. Most glaucoma clinicians make 

decisions based upon whether the visual fields are seen to be improving, deteriorating or 

remaining stable. Forecast error can give an indication of how accurate the forecasts are, 

but not if they were in the right direction of change.  
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6.2.4 Application Independent Results 
 

In this section the results from performing complexity analysis of the methods and the 

performance issues arising from using the Yule-Walker equations are examined. 

 

Complexity 

 

No attempt to perform a formal analysis of algorithm efficiency will be made, but 

instead the focus will be on the most expensive part of all of the methods: the forecast 

error evaluation. The evaluation of the forecast error (fitness function) has a 

computation complexity in terms of arithmetic operations documented in table 6.12. 

 

Method Complexity Equation 

YW16, YW76 ( ))(O)(O)MAXORDER( 2lagnnT +×−  (6.5)

SSV, SVP, SVNP ( ))(O)(O)MAXORDER( GeneSizenT +×−  (6.6)

HC ( ))MAXORDER(O)(O)MAXORDER( 2nnT +×−  (6.7)

NOISE )(O)MAXORDER( nT ×−  (6.8)

 

Table 6.12: Forecast Error Computation Complexity by Method 

 

In table 6.12, T is the length of the time series in question, MAXORDER is the 

maximum permissible order for a VAR process modelling the time series, O(·) is a 

function indicating the complexity of an operation, n is the number of variables in the 

time series, lag is the order of the VAR process being represented by a method and 

GENESIZE is the number of genes within a chromosome of Sparse-VARGA. The term 

(T-MAXORDER) represents the number of sets of forecast error that is evaluated, O(n) 

represents the computations involved in taking the difference between observed and 

predicted error, and the terms concerning O(n2�) involve the application of equation 

5.2, i.e. computing the forecast.  
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Note that the Sparse-VARGA methods can have their fitness calculated in a lower 

computation time than the other methods because of the nature of their representation, 

i.e. sparse matrices (see algorithm K.1 in Appendix K). 

 

Table 6.12 puts all of the methods in perspective. Since the Yule-Walker equations 

(YW16 and YW76) and the noise model are used as seeds for the Sparse-VARGA based 

methods and the hill-climbing method, further analysis will only be done on the SSV, 

SVP, SVNP and HC methods. These four latter methods also iterate many times, 

whereas the three previous methods are deterministic. The relative complexity of the 

three Sparse-VARGA based methods will be compared with the hill-climb based 

search. Since the term (T-MAXORDER) is common to all of the methods it can be 

ignored; also the term O(n) is less than any term involving O(n2) and hence can also be 

ignored. This leaves only the term O(n2MAXORDER) for the hill-climb and the term 

O(GENESIZE) for the Sparse-VARGA based methods. If the average size figure from 

table 6.10 is used for GENESIZE then a graph can be drawn for the four methods for 

each nerve fibre bundle. Note that 1≤GENESIZE≤n2MAXORDER is always true. The 

Sparse-VARGA algorithm ensures there is at least one gene in a chromosome (but this 

may be zero valued) and that the lag part of any gene cannot exceed MAXORDER, 

therefore for an n-dimensional MTS, n2MAXORDER is the maximum number of genes, 

i.e. a gene for each parameter of all the n×n parameter matrices. 

 

Although the Sparse-VARGA family of applications appears to be less complex than 

the HC method, it would be interesting to see how they compare in practice. If the 

average chromosome length from table 6.10 is used for the value of GENESIZE, an 

indication of the relative complexity of the Sparse-VARGA and HC methods can be 

seen as in figure 6.7. In this figure, the HC method�s size corresponds to the maximum 

size at all times, hence the relative complexity being equal to n2MAXORDER, where n 

is dependent upon the dimensionality of each  nerve fibre bundle. It is quite clear that 

the SVP and SVNP methods have a tendency to create small (sparse) models, and hence 

have a very fast and efficient forecast evaluation (less than 20% of the maximum). 

However the SSV method seems to have an average of about 87.8% the maximum.  
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Note that the non-padded version of Sparse-VARGA (SVNP) produces slightly smaller 

models than the padded version (SVP), and also performs moderately worse (in terms of 

forecast error and Weighted-Kappa). 
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Figure 6.7: Relative Method Complexity 

 

Finally, it is worth noting that the YW16 and YW76 methods produce models that are 

100% populated, but the order is less than the maximum specified order. The SSV, SVP 

and SVNP methods produce models that are of the maximum order (they do not have 

to, but do so in most of the cases). Densely populated matrices mean that the 

Yule-Walker results are difficult to interpret, since there are too many parameters to 

visually inspect. This is not the case with the SVP and SVNP methods, since the 

parameter matrices (especially in higher dimensionality models) are highly sparse, thus 

relationships are easier to identify (this is true to some extent with the SSV method 

results). This could explain why the YW method can be improved upon by creating 

VAR subset models. These are models where some of the parameters of a VAR model 

are set to zero to improve the accuracy of the model. It has been acknowledged that the 

results of the statistical time series methods might not always return the desired results 

because techniques such as correlation (used in the Γ(h) function), and matrix inversion 

can be subject to inherent inaccuracies and biases, especially when the time series is 

short. 
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Performance of the Yule-Walker Equations 

 

For short length MTS the Yule-Walker equations are often not solvable, for example in 

about 11% of the visual field cases (145 cases), i.e. the YW method could not find a 

solution for 145 multivariate time series over all permissible lags. 

 

For a matrix B to be invertible (a requirement for the Yule-Walker equations to be 

solvable): 

 

i) The columns and rows of B are linearly independent. 

 

ii) For a given vector bx B,b = has a unique solution. 

 

Note that other conditions not pertinent to this method are omitted; see [Stewart1998] 

for a full list. Therefore the Yule-Walker equations produce either a set of equations that 

do not have a unique solution, or a matrix being inverted has two or more rows or 

columns that are linearly dependent. Note that with the visual field data, 17 out of the 

145 cases are where all of the values in the time series are zero, hence it is not the case 

that the YW method�s failures are due to the time series being completely zero, i.e. total 

lack of vision on part of the eye (a whole group). More investigation is needed to see 

why this is the case, but it is suggested that this is likely to happen when the time series 

is short and high dimensional.  

 

For example, with the visual field dataset, there are a large number of variables in nerve 

fibre bundle 5, which is where glaucoma usually originates. Hence there is a good 

chance that one or more of the variables will be mostly zero as the condition progresses 

(a blind spot developing). Hence a column of the matrices in equation 2.8 could easily 

be zero. This will mean that condition (ii) above will be violated, since there will not be 

a unique solution (possibly none at all). The patients that the Yule-Walker equations fail 

on are those that have a lower average sensitivity. This is in cases where the condition is 

terminal, i.e. certain visual field points have a sensitivity of zero, indicating total 

blindness in part of the eye. The YW76 method fails whenever there is a failure with 
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any associated YW16 method because a column of zeros in a nerve fibre bundle will be 

a column of zeros in the corresponding 76 variable MTS. 

 

6.3 Testing the Methodology 
 

This section combines all of the work presented in the previous three chapters and this 

chapter. Within chapter 3, correlation mining was introduced and then tested with 

promising results. Within chapter 4, the problem of grouping MTS was described, a 

solution suggested and it was further shown that when combined with the correlation 

mining procedure, very good results could be achieved on simulated data. Within 

chapter 5, the problems of modelling short and high-dimensional MTS is addressed, 

using the VAR process to short term forecast the visual field dataset. Once this 

technique had been shown to work well, further improvements were made to extend the 

method into modelling VAR subset models, again with very good results. This section 

bridges the techniques from the correlation mining and grouping chapters with the 

modelling work, showing that the combined methodology works well the visual field 

data. The choice of methods is simply the techniques that provided the best results in 

the previous work, a more thorough analysis using all of the methods presented would 

be too time consuming to be practical. The best temporal correlation mining method, 

grouping method and forecasting method were selected for evaluation. This was the 

evolutionary programming method from chapter 3, Falkenauer�s grouping genetic 

algorithm from chapter 4 and Seeded Sparse-VARGA from this chapter. 

 

The dataset used for the experiments is a subset of visual field data from ten patients 

who all have 20 tests. Each set is split up into an 18 length time series for training, and 

the remaining two tests are for testing purposes. This set of patients has been chosen 

since it is the largest number of patients who have the greatest number of tests (see 

appendix A). The number of correlations to be searched for needs to be specified, and as 

in chapter 3, this was set at 200 for the parameter r. The reason for choosing this value 

is to allow for enough correlations to potentially reconstruct the nerve fibre bundles, i.e. 

the layout is used as a guideline for possible grouping arrangements. The evolutionary 

programming method was applied using Spearman�s rank correlation coefficient, which 
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proved to produce slightly better results than using Pearson�s. The evolutionary 

programming correlation mining method was executed once on each patient and the 

resultant set of 200 correlations passed to the grouping genetic algorithm as the input 

matrix Q. Once the groups had been determined for a patient, the univariate groups 

(those groups containing a single member) were stripped out. Seeded Sparse-VARGA 

was then run on each group using the parameters from table 6.2. For each patient the 

whole procedure was performed ten time and the results averaged. 

 

Table 6.13 below is a short summary of the results of short-term forecasting after 

applying the whole methodology to both test and training datasets. The columns Mean, 

Median and StDev. have their usual meaning and apply to the forecast error, and WK is 

the Weighted-Kappa metric applied to the directional accuracy of each point forecast. 

 

Training Data Test Data Patient 

ID Mean Median StDev. WK Mean Median StDev. WK 

0 1.094 0.429 1.897 0.524 1.271 0.738 1.577 0.246 

6 1.587 1.057 1.863 0.105 1.300 0.998 1.151 0.374 

9 3.730 1.581 6.906 0.026 1.257 1.003 0.936 0.000 

13 0.745 0.365 0.920 0.698 1.673 1.283 1.293 -0.035

15 1.252 0.852 1.443 0.361 1.205 0.628 1.191 0.071 

22 1.232 0.370 2.138 0.484 1.332 0.969 1.445 0.021 

25 1.129 0.170 2.124 0.481 1.031 0.366 1.136 0.333 

32 1.288 0.702 1.583 0.659 1.399 1.155 1.187 0.167 

60 1.644 1.266 1.419 0.160 1.740 1.684 1.148 0.081 

68 1.423 0.814 1.737 0.492 1.626 1.184 1.227 0.122 

Average: 1.512 0.761 2.203 0.400 1.383 1.001 1.229 0.138 

 
Table 6.13: Methodology Results for Ten Patient Subset 
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From table 6.13 it can be seen that for 9 out of the 10 patients the mean forecast error 

lies in the range of [0.7,1.7] for the training data, and for 10 out 10 patients the mean 

error was in the [1.0,1.8] range for the test data. It is interesting to note that patient ID 9 

has a very large mean forecast error for the training data, but a low forecast error for the 

test data. If patient ID 9�s training error is ignored then the average across the remaining 

9 patients mean forecast error is reduced from 1.512 to 1.266, which is lower (by 8.5%) 

than the corresponding error in the testing samples. This mean error seems consistent 

across both the training and test datasets. It can also be seen that the median error 

increases although the standard deviation of the errors decrease from training to test 

datasets. However the average Weighted-Kappa rating is Moderate in the training 

dataset but drops two categories to Poor within the test dataset. 

 

6.4 Concluding Remarks  
 

A method called Sparse-VARGA has been presented which improves upon the 

Yule-Walker method and works where this method cannot. It has been shown that by 

integrating the order selection process into the whole procedure, better short-term 

forecasts can be produced, and the resultant parameter matrices are a better aid to 

explaining relationships between variables. Lastly the method has been demonstrated to 

be a good model for forecasting Normal Tension Glaucoma deterioration. 

 

Sparse-VARGA is a novel method in that it views a VAR(P) process not as a series of 

densely populated matrices, but as a collection of parameters that are spread over a 

series of zero matrices from order p=1 to some maximum order, p=MAXORDER. The 

advantage of this approach is that there is scope for handling much more complicated 

types of the VAR process family. For example, Sparse-VARGA can identify VAR 

subset models and models where some of the parameter matrices are zero, e.g. a 

VAR(3) process where only the first and third parameter matrices are populated. 

Additionally Sparse-VARGA introduces some new operators that exploit this 

representation. This approach has advantages over simply storing a VAR process as a 

series of matrices, as in chapter 5. That representation had the problem of having to 

store a vast number of parameters as the dimensionality of the time series increases, 
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along with the previously mentioned order bias problems. The sparse matrix 

representation of Sparse-VARGA has the additional advantage of having a fitness 

function where the computational complexity is proportional to the number of genes in 

the chromosome.  

 

The extensive results show that Sparse-VARGA performs better than the comparative 

methods with regards to forecasting accuracy and direction of change. In addition, the 

method has better computational complexity than the hill-climbing method. Clearly 

Sparse-VARGA is an appropriate method for modelling short length high dimensional 

multivariate time series, with very promising results on the visual field dataset. The 

results of the visual field dataset has also been shown to have a low forecast error which 

is consistent across both training and test datasets for a subset of the patients. However 

there are many other datasets that are both short in length and high in dimensionality to 

which this approach could be applied. For example work could be carried out to see 

how the methods presented in this chapter can be applied to the analysis of virus gene 

expression data [Jenner2001]. 

 

Finally, the method can be improved in the following areas. Firstly, seeding techniques 

and strategies will be studied to try to produce models with a smaller number of 

parameters. Secondly, a variety of fitness functions could be investigated to learn 

models that can forecast for several steps ahead, rather than just one; and lastly attempts 

will be made to extending this work by developing spatio-temporal models 

[Pfeifer1980a, Pfeifer1980b]. These will be discussed further in the next chapter. 
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7. Conclusions 
 

Model selection is arguably the most important and most difficult aspect of model 

building, and yet is the one where there is least help [Chatfield1995, Hand1994]. This 

situation is even worse for modelling short multivariate time series data. Such datasets 

are common in many fields such as medicine, finance and science, and any advance in 

modelling this kind of data would be beneficial. There is little work in this important 

area. This thesis presented some of the important first steps. Novel algorithms for 

decomposing high-dimensional MTS have been developed. New methods have been 

provided for modelling such MTS data which traditional statistical methods have found 

difficult to deal with. This has led to a three-step computational framework for 

modelling this type of data. In addition to visual field deterioration prediction, the 

methods have found successful applications in several areas, including bioinformatics  

(gene expression data) [Kellam2001] and industry (user allocation to email servers) 

[Counsell2001].  

 

This thesis has presented a methodology which is orientated towards the modelling and 

forecasting of high dimensional, short length time series datasets, and has demonstrated 

its worth on an appropriate and important real-world medical application along with a 

variety of synthetic datasets. Chapter 3 presented a fast approximate way of locating 

relationships in an MTS through a novel use of evolutionary programming and 

correlations. This correlation list was then used in chapter 4 to decompose the MTS into 

a subset of smaller dimensionality MTS that have strong relationships between 

members and weak relationships between non-members. Finally the sub-MTS found in 

using the best method from chapter 4 are used as the basis of a suitably modified 

genetic algorithm which found the order and parameters of a VAR process in a single 

step as presented in chapter 5. In chapter 6 an advanced method for finding an 

evolutionary computation based VAR process is presented, and all of the parts 

presented in the previous chapters were combined into a single methodology. It was 

demonstrated that all of the elements work efficiently together producing excellent 

results when combined. 
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This chapter is organised as follows. Firstly, the main results presented in this thesis are 

summarised. Then the main contributions and limitations of the work are described. 

Finally an in-depth look at the possibilities for further research and the possible 

improvement of the methods are presented. 

 

7.1 Contributions 
 

This section is an overview of the main results presented in this thesis. 

 

7.1.1 Correlation Mining 
 

The main goal of the correlation mining procedure was to locate a specified number of 

correlations from an MTS in as short a time as possible but as accurately as possible. 

Several methods were extensively evaluated and it was concluded that an evolutionary 

computation based method was the best choice of algorithm for this type of problem. 

The basis of the method was to maintain a population of candidate best correlations 

over the specified time lags and to improve them using evolutionary programming with 

self-adapting parameters. This method converged to a higher average at a faster rate of 

convergence than two search based methods; and compared favourably to the 

exhaustive search method. The evolutionary programming method reached an average 

that approached that of the exhaustive search in a fraction of the time. 

 

Another main result from this technique is a selection of correlations depicting 

relationships between visual field variables as shown in figure 3.7. The correlations 

correspond to relationships that would be expected to exist as a result of previous work 

in ophthalmology. The results in chapter 3 correspond to using the Fisher 

z-transformation to combine correlations to get a view of the relationships for the 

condition as opposed to those for an individual patient. 
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The correlation mining method provides a quick and approximate way of locating a 

predefined number of correlations from an MTS, over a specified maximum time lag. 

The method is particularly appropriate to applications where the speed of retrieving 

these correlations is essential.  

 

7.1.2 Variable Grouping 
 

The grouping genetic algorithm provides a method for partitioning a number of 

variables in mutually exclusive and highly related subsets. This approach is novel in 

that it uses a grouping specific crossover, combined with a metric that is based upon 

cross-correlations, thus providing a fast and efficient way of solving such a variable 

grouping problem. Within chapter 4, five grouping methods are proposed and these are 

combined with three of the correlation mining techniques from chapter 3. This 

combination of 15 methods was applied to six synthetic datasets that have a known 

structure, and the results were extensively analysed to determine the best combination 

of methods. The best grouping method used Falkenauer�s grouping genetic algorithm to 

decompose the MTS. 

 

Detailed analysis was also performed on the correlation mining procedure and how the 

method parameters affect the performance of the grouping algorithms. The analysis 

links the confidence of getting the number of correlations sought for with respect to 

how long the algorithm is allowed to execute for. This provides a useful guideline to 

how many correlations should be located based upon the expected group size.  

 

The grouping part of the methodology, when applied to the six pre-determined groups, 

(a mixture of VAR processes and DBN�s) produced very promising results. All of the 

proposed search based methods for MTS grouping performed well, demonstrating that 

the strategy of using an approximate correlation search was sound. The only 

discrepancies seemed to be the odd variable being assigned to a group on its own and a 

DBN being split into two sub-models. However, with the latter problem, the split was at 

a logical point (see section 4.5 and appendix H). 
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When the grouping method is applied to the visual field dataset promising results were 

obtained in that the points within the found groups tend to be those that would be 

expected. The comparison between the groups generated for each patient again showed 

promising results, those with good sensitivity and hence good vision are more consistent 

during the visual field tests, resulting in similar grouping between those points which 

are related. With the low sensitivity (and low vision) patients the results of the visual 

field test tend to be more variable and hence there are dissimilar groupings.  

 

7.1.3 VAR Model Fitting 
 

With VARGA-v1 it was demonstrated that the visual field data was clearly multivariate 

and that a VAR process is a suitable model for forecasting the next test results for each 

patient. Because of the order and parameter fitting problems which the traditional 

statistical methods of VAR model fitting have with short high-dimensional multivariate 

time series, it was shown that a modified genetic algorithm can be used to locate both 

the order and parameters in a single step and that the forecast accuracy results are very 

promising. 

 

VARGA-v2 developed this idea further, with more accurate results. Another evaluation 

criteria was added at this stage in the development of the methodology: the 

Weighted-Kappa metric. This metric measured whether a forecast was in the correct 

direction, e.g. forecasting a decrease when one was observed. VARGA-v2 provided 

highly accurate results both for forecast accuracy and directional accuracy. 

 

The final version of VARGA, Seeded Sparse-VARGA performed better than all of the 

rival methods it was compared against, including the previous two versions of VARGA. 

In addition to the forecast accuracy and Weighted-Kappa metric, Seeded 

Sparse-VARGA was also evaluated on algorithm complexity. The results were once 

again promising; Seeded Sparse-VARGA performed better on all accounts. 

 

Seeded Sparse-VARGA is a unique and interesting way of defining a VAR subset 

model using sparse matrices. This method does not find all of the parameters of a VAR 
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process (which can be a very large number) but assumes they are all zero unless 

information is available to show otherwise. The method can be tailored to find VAR 

process which meet pre-defined criteria. The method introduces a new representation 

along with associated crossover and mutation operators. The method has the advantage 

of being able to find a suitable VAR process regardless of whether the seeding is 

successful or not, i.e. whether the Yule-Walker equations can be evaluated or not. 

Seeded Sparse-VARGA has proved to be a fast and accurate way of finding VAR 

processes (or VAR subset models) to suit a particular purpose in a fast and accurate 

manner. Order determination does not prove to be the problem as can be the case when 

applying the standard statistical methods to short and high-dimensional time series. 

 

7.1.4 Summary 
 

Much of the work in decomposing MTS variables has been restricted to the use of 

distance matrices to cluster similar variables. This type of approach does not explicitly 

take temporal relationships between variables into consideration. The proposed 

grouping methodology has presented a principal way of utilising information regarding 

variable dependencies over time and allowed a variety of heuristic search methods such 

as evolutionary computation methods to be investigated. It is believed that the 

methodology should find successful applications beyond those implemented within this 

thesis. 

 

VARGA and Sparse-VARGA are probably the first methods capable of modelling short 

MTS. Both improve upon the traditional Yule-Walker method and work where this 

method cannot. It has been shown that by integrating the order selection process into the 

whole procedure, better short term forecasts can be produced and the resultant 

parameter matrices are a better aid to explaining relationships between variables. The 

sparse matrix representation of Sparse-VARGA has the additional advantage of having 

a fitness function where the computational complexity is proportional to the number of 

genes in the chromosome. 
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7.2 Limitations 
 

As with all new ideas, there may be �teething� problems. The methods in this thesis are 

no exception. The limitations of the methods are listed below. 

 

Correlation Mining � Search Space. The procedure is of limited use if the number of 

calls to the correlation function is near to the number when the whole search space is 

explored, i.e. c is almost as large as s. However, the purpose of the method is to explore 

only a fraction of the search space. The implications are that if R and r are large when 

compared to s and the level of confidence required is also high, then the method may 

not be appropriate. 

 

Grouping � RankSize. The value for the RankSize is a user defined parameter which 

needs to be specified in order to perform grouping. Chapter 4 provided insight into how 

this parameter relates to the correlation mining algorithms results, and suggests values 

for R
r

s
R  and . However these guidelines affect the algorithms efficiency rather than 

accuracy. However chapter 3 and chapter 6 demonstrate that good results can be gained 

by using these parameter heuristics. It is worth noting that this parameter can play a role 

in indirectly influencing the resulting number of groups, and in the visual field 

application, the number of groups appears related to patient�s average sensitivity 

(chapter 4).  It is therefore thought that a relationship exists where RankSize can be 

expressed as a simple function of patient�s average sensitivity. This could be 

investigated perhaps as a future research opportunity with an aim of determining this 

parameter on an individual patient level, hopefully resulting in even better forecast 

results than those shown in chapter 6. 

 

Seeded Sparse-VARGA � Dimensionality. The performance of Seeded 

Sparse-VARGA is directly related to the dimensionality of the MTS that it is modelling. 

If the number of variables is large, say 100 plus, then the method may take a long time 

to complete, especially if the best selection of models are very dense.  
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The Methodology � Univariates. Apart from the RankSize problems mentioned above, 

there is the consideration of what to do with the univariate variables. As described in 

previous chapters the grouping method, through working on correlations, may not group 

all of the variables. This may occur when there are no significant correlations relating to 

one or more variables. If expert knowledge is available then, e.g. nerve fibre bundle 

layout or gene function classifications, then a simple regrouping procedure could be 

applied to place a variable into the most likely group. The Holt-Winters method with 

perhaps variable time step consideration [Wright1986] could be applied to the 

modelling stage for single variables. 

 

7.3 Further Work 
 

This section looks at the possible extensions to the work presented in this thesis. 

 

7.3.1 Correlation Mining 
 

One of the main possibilities for expanding the temporal correlation mining is the 

extension of the method to handle spatial-temporal datasets. Here, instead of relating 

variables based on cross-correlation, space-time correlations could be used instead. 

Variables could not only be correlated in time, but also correlated by their spatial 

dependencies on other variables. With the visual field dataset, currently each visual field 

variable is simply enumerated, thus some of the spatial information about how the 

variables are positioned together is lost. It is thought that because the glaucoma 

condition spreads through the retina in a definable way (out of the blind spot to 

periphery points � rather like an oil slick), this way of relating inter-point dependencies 

might prove more accurate. 

 

7.3.2 Variable Grouping 
 

There are four further research opportunities that could be explored in order to improve 

the variable grouping procedure.  
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i) One important addition to the representation of the grouping genetic 

algorithm would be to look at placing limits on group sizes, for example, if 

a minimum group size of two was specified, then the univariate problem 

mentioned in section 7.2 would not arise.  

 

ii) The specification of maximum group sizes, perhaps through expert 

knowledge, would limit the search space significantly. To tackle this 

problem, either a change of representation would be needed or the operators 

would have to be redesigned to ensure the size constraints were adhered to.  

 

iii) As previously mentioned, determining the parameter RankSize within the 

grouping problem is an essential task. Similar to the work carried out in 

chapter 4, simulations on datasets of a given length, dimensionality and time 

lag could be carried out to see if there is a way to model the correlation 

distribution against these parameters. As used in chapter 3, the Fisher 

z-transformation can be used to model the correlation sample distribution of 

a bivariate set of data of known length. It might be possible to extend this to 

the multivariate case.  

 

iv) Another improvement to the grouping genetic algorithm would be to look at 

seeding (see chapters 5 and 6 where seeding was used successfully within 

the variants of VARGA). Possible seeds could be the results of the Separate 

and Conquer (S&C) algorithm as described in chapter 4 or any domain 

knowledge, such as the nerve fibre bundle arrangements as described in 

chapter 2.  

 

7.3.3 VAR Model Fitting 
 

The VARGA idea can be extended in a number of ways. 

 

As mentioned in previous chapters, Space-Time series models [Pfeifer1980a, 

Pfeifer1980b] might be more applicable to the visual field dataset since the visual field 
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points have a spatial arrangement. Once such process is the Space-Time version of the 

VAR process, the STAR process as shown in equation 7.1. 
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(7.1)

 

where )(tx  Visual Field Data Vector at time t 

 p Autoregressive factor 

 
iΘ  Autoregressive spatial lag at time lag i 

 Aij Autoregressive parameters 

 W(j) Weighting Matrix for lag j 

 )(tε  Noise Vector at time t 

 

With the STAR model, there are more parameters than with a VAR process, and not 

only does the time lag need to be identified, but also the spatial lags at each time lag. 

Additionally a weighting matrix needs to be constructed which models the spatial 

dependencies within the data. It is thought that a spatial version of VARGA could be 

developed to handle all of these parameters in one procedure. Additionally a sparse 

version could also be developed to reduce the number of parameters. 

 

In order to improve the effectiveness of VARGA�s crossover and shuffle operators the 

new operator could be adapted to mimic the Blend Crossover (BLX) operators� way of 

dealing with real numbers [Eshelman1993]. This new operator would work like uniform 

crossover but, instead of swapping two genes, with values say a and b where a < b, a 

single child is created where the resultant gene is a random number in the 

interval [ ]21, δδ +− ba where 21  ,δδ  are functions of a, b and the parents� fitness. BLX 

has been demonstrated to allow the formation of real valued versions of schema called 

Interval Schema. It is thought that this version of crossover could improve the 

convergence rate of all of the VARGA methods. Other techniques to improve 

performance such as Niche Methods [Mahfoud1995] could also be looked into. 
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A best candidate solution with the VARGA methods is one that has the lowest one step 

ahead forecast errors. However, there are other criteria that could be used to rate a good 

model. Some examples are the Weighted-Kappa metric on directional accuracy, the 

number of parameters in the model and larger step ahead forecasts. Multi-objective 

genetic algorithms [Deb2001] are a form of GA which can cope with comparing 

candidate solutions on more than one fitness function; hence the techniques in this field 

could be applied to the VARGA methods. The intention would be that models located 

using multiple objectives would be better generalised to a problem than one specifically 

tuned for one step ahead forecasts. 

 

Finally, as detailed in appendix D, there might be a way to reconstruct a VAR process 

from its eigenvalues. An nVAR(p) process has n2p parameters but only np eigenvalues. 

Hence by adapting VARGA to search for a set of eigenvalues rather than parameters, 

the search space would be reduced by a factor of n. However the development of such a 

method may need to address some challenging issues. Since each eigenvalue is a 

complex number therefore representations and operators would have to be adapted to 

deal with this property. More insight into this problem could be gained from examining 

the literature on the inverse eigenvalue problem [Chu1998]. 
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Appendix A � Visual Field Data Tables 
 

This appendix describes the normal tension glaucoma visual field dataset used in this 

thesis. 

 

A.1 Entity Relationship Diagram 
 

Figure A.1 shows the entity relationship diagram for the normal tension glaucoma 

visual field dataset. 

  

Patient

Patient
Details

Visual Field
Test

Points
 

Figure A.1: Entity Relationship Diagram for the VF Dataset 

 

A.2 Entity Attributes 
 

Tables A.1 to A.4 described the attributes of each entity. 

 

Patient 

Field Name Type Specification Description 

Patient ID Integer Unique, ≥0 A unique identifier for each 

patient 

Number of Tests Integer ≥1 How many visual field tests a 

patient has had 

 
Table A.1: Patient Table Attributes 
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Patient Details 

Field Name Type Specification Description 

Patient ID Integer Unique, ≥0 A unique identifier for each 

patient 

Age at 1st Test Integer ≥0 What age the patient was 

when their first Visual Field 

was carried out; in years 

 
Table A.2: Patient Details Table Attributes 

 

Visual Field Test 

Field Name Type Specification Description 

Patient ID Integer Unique, ≥0 A unique identifier for each patient

VF Test ID Integer Unique, ≥0 A unique identifier for each Visual 

Field Test 

Test Date Date DD-MM-YYYY The date that the test was carried 

out on; in day, month, year format 

Test Time Time HH:MM:SS The time the test was carried out; 

in hour, minute, second format 

 
Table A.3: Visual Field Test Table Attributes 

 

Point 

Field Name Type Specification Description 

VF Test ID Integer Unique, ≥0 A unique identifier for each 

Visual Field Test 

Point Location Integer [1,76] A particular test location point 

Test Point Value Real [0,60] The sensitivity at the 

corresponding test location 

 
Table A.4: Point Table Attributes 
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A.3 Dataset Comments 
 

The database tables are not in fully 3rd normal form in order to speed up data access and 

query construction. For each entry in the Patient table there is one corresponding record 

in the Patient Details table and one or more records in the Visual Field Test table (the 

exact number is equal to the relevant entry for the field Number of Tests in the Patient 

table). For each record in the Visual Field Test table there are 76 corresponding records 

in the Point table, i.e. one for each test location of the Central Threshold 30-2 test. 

 

A total of 280 patient records were originally available, but the 82 patients used in this 

thesis correspond had taken ten or more tests. Figure A.2 shows a histogram of how 

many patients have had how many tests, where Count is the number of tests and 

Frequency is how many patients undertook the corresponding number of tests. 
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Figure A.2: Frequency of Patient Time Series Length 
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Appendix B � VAR Process Stationality and Stability 
 

In section 2.1 stationary and non-stationary VAR processes were introduced. A VAR 

process is stationary if the mean and variance is independent of time. In practice, this 

means that the value of the variables tends to approach a limit (or limits) as time tends 

to infinity. The assumption of stationality for a VAR process is essential in this work 

since the intention is to verify the short term forecasting accuracy of certain VAR 

processes, applied to a dataset, the stationality condition would be essential, since the 

consequences of a non-stationary process becoming zero or infinity would prevent any 

forecast comparison. Another family of VAR processes is stable and non-stable. Stable 

processes are easier to generate than stationary processes and all stable processes are 

stationary. For any VAR(1) process with parameter matrix A1=A  to be stable then all of 

the eigenvalues of the matrix A must be strictly less than one in modulus. The proof and 

further details of this property can be found in [Lütkepohl1993].  

 

Figure B.1 shows the VAR(1) representation of any VAR(p) process. 
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Figure B.1: VAR(1) representation of a VAR(p) Process 
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It is easier to ensure Stability than Stationality, since there is a well defined and strict 

mathematical property associated with all stable processes as described above. Hence it 

is possible to generate VAR test data that are stable. Since stability is only defined for 

VAR(1) processes it may be necessary to convert any higher order process to the 

VAR(1) representation as in figure B.1 to test for stability. 
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Appendix C � Gershgorin Circle Theorem 
 

The following is an extract from [Gourlay1973] which describes the Gershgorin Circle 

method of placing bounds on eigenvalues. 

 

Theorem C.1. Let A be an n×n matrix. Let aij be the element from the ith row and jth 

column of the matrix A, where .1 ni,j ≤≤ Let Ci be discs in the complex plane with 

centres aii and radii .1 
1
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So the eigenvalue λr lies in the disc Cr. Since λr is arbitrary then all of the eigenvalues 

of A must lie in the union of all such discs, i.e. D. ■  

 

For example, if 
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then figure C.1 shows the Gerschgorin discs , and the eigenvalues are listed. 
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Figure C.1: Gerschgorin Discs Example   
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Appendix D � Algebraically Building a Stable VAR Process 
 

The VAR(1) representation of an nVAR(p) process is as follows, (see appendix B): 
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The eigenvalues of A must all be strictly less than one in modulus for the process to be 

stable. Let npλλ ,...,1  be the eigenvalues of A and npxx ,...,1 be the corresponding 

eigenvectors, then: 
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If it assumed that npλλ ,...,1 and npxx ,...,1 are known, then there are n2p unknown 

parameters (each aijk) and np lots of n equations (by taking each row of equation D.2 as 

a separate equation). This forms a set of linear equations that can be solved using any of 

the standard techniques. 

 

The values for npλλ ,...,1  can be simply set to a unique real random number in the 

interval (-1,1) (excluding values close to zero). However care must be taken in choosing 

npxx ,...,1 since as shown above, the elements are highly inter-dependent. Since 

)1(1
,...,

−pii
yy depend on the value of ,

ip
y  these vectors can be set to random real vectors, 

and then the rest computed according to equation D.1. Note further that only real values 

for the eigenvalues and eigenvectors are allowed to ensure that the elements of A1,..,Ap 

are real. 
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Appendix E � VAR Process Data Generation 
 

This appendix discusses the various ways in which test VAR processes can be 

constructed. 

 

In order to verify the methods introduced in this thesis, it is necessary to generate some 

synthetic datasets, rather than just working on the visual field data. This is because the 

underlying process that generated the data will be known, and hence assessment of 

method accuracy will be easier. Stable VAR processes are used for data generation 

since all stable VAR processes are stationary. A non-stationary process�s mean would 

rapidly approach infinity, and thus be of no use as a test dataset. 

 

E.1 Data Generation 
 

A nVAR(p) has n2p parameters, and its corresponding VAR(1) process has np 

eigenvalues. When generating some test data it is assumed that the number of variables 

and the order are known. 

 

The task in hand is to choose the set of parameters (n2p) such that the np corresponding 

eigenvalues (of the VAR(1) representation) are less than one in modulus. Two methods 

are presented for this purpose, method one involves a genetic algorithm, and method 

two involves enforcing stability by mathematically working through from a predefined 

set of eigenvalues that lie in the specified range. 

 

VAR Process Generation through a Genetic Algorithm 

 

One way of locating a stable VAR process would be to generate a population of random 

VAR processes of a specified dimensionality and order, convert each to its VAR(1) 

representation, solve the eigenvalues for each VAR(1), score on how close to zero in 

modulus they are (the eigenvalues), and then iterate through a series of generations 

using a genetic algorithm. Figure E.1 is a schematic diagram of this method. 
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Figure E.1: Sketch Algorithm for VAR Process Generation 

 

However there are certain problems with this method. Namely, the evaluation of the 

eigenvalues of a matrix is no easy task, especially if the matrix is non-symmetric. It is 

possible that the eigenvalues will be complex, which significantly increases the 

difficulty of the problem. An alternative would be to find an approximate or upper limit 

on the eigenvalues. 

 

For a stable VAR(1) process, all the eigenvalues have modulus less than one. Therefore 

over all of the possible Gerschgorin Circles (see appendix C), the distance to the point 

furthest away from the origin should be as small as possible. This is defined in equation 

E.1. 

 

( )iiii

n

1iλ RC,RCMAXM −+=
=

 
(E.1)

 

Here λM is the distance to the point furthest away from the origin that lies in or on one 

of the disks. A genetic algorithm can use this value for a fitness function, using the 

representation for VARGA-v2 (see chapter 5). Crossover is also the same, as is gene 

mutation. However there is no need for the size mutation operator since the order is 

fixed. 
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VAR Process Generation through Algebra 

 

If the VAR(1) representation of a matrix is examined and certain assumptions are made, 

it is possible to reverse the process and to specify a set of eigenvalues (plus some 

additional parameters), and then build the VAR(1) process representation. Appendix D 

details this procedure. 

 

From appendix D all that is needed are np lots of n elements for the eigenvectors, the 

remaining values being calculated from equation D.1. These are just required for a 

solution and are not as important as the eigenvalues. So a solution would be to choose 

random values for the eigenvectors, and then assuming that all of the eigenvalues are 

less than one in modulus, the corresponding VAR(1) representation can be 

reconstructed. 

 

E.2 Comparing Both Methods 
 

Method one, involving a genetic algorithm, is not exact. All of the eigenvalues for a 

given VAR(1) representation could be less than one in modulus, but the limit specified 

by equation D.1 could be above one. This means that there is no way of knowing 

exactly when to terminate the genetic algorithm. From experience, if the genetic 

algorithm is terminated when the fitness is less than one, the eigenvalues are all very 

small in modulus, which in turn makes all of the parameters in the VAR(1) process very 

small as well. Experience showed that terminating the genetic algorithm before the 

fitness was below one would result sometimes in the desired set of eigenvalues. 

 

If this was not the case but the maximum eigenvalue modulus was nearing one, then the 

genetic algorithm generations were increased slightly to compensate. This interactive 

way of using the method provided the set of parameter matrices, and usually resulted in 

the maximum modulus eigenvalue being just under one. Between 5 and 10 iterations 

were needed depending on the dimensionality and order of the VAR(p) process, i.e. the 

size of the VAR(1) representation. 
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The algebra method would automatically produce a VAR(1) process that was stable, 

once the restrictions on the eigenvectors were applied. This could be achieved through 

generating the np eigenvalues and then the n2p associated eigenvector elements, 

according to the constraints. However, to ensure that the VAR process parameters are 

real, the eigenvectors and eigenvalues are also restricted to being real. A complex VAR 

process is likely to produce a complex time series, which would complicate many of the 

methods applied to such a time series, for example when calculating correlation 

coefficients. 

 

To summarise, the GA method produces VAR(1) processes that could cover the entire 

range of stable VAR processes, however the procedure is interactive and not exact. The 

algebraic method produces automatically a random VAR(1) process or a VAR(1) 

process with specified eigenvalues if required, but can only produce a specific type of 

stable VAR(1) process. 

 

E.3 Random Data Generation From a Specified VAR(p) Process 
 

Assuming that the order, the dimensionality and the corresponding parameters of a 

VAR(p) process are available, along with the specified length of the time series, both 

procedures will generate a set of random VAR(p) data. This data will then be centred 

around a zero mean. 
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Appendix F � Proofs for the Grouping Metric 
 

Proposition F.1. When there are no correlations, then φ=Q . 

 

Proof. Therefore max(f(G)) is 0, because there will never be any cases where L is 1. 

This therefore requires that the size of any of the groups in G will be 1. This is by 

definition of the functions L and h.  ■  

 

Proposition F.2. If a correlation exists for each pairing of variables, then the maximum 

size for Q will be 
2

)1( −nn , because of the duplicate restriction.  

 

Proof. It therefore follows that the value for h(gi) will be 
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This process can be repeated until there is only one value k1 remaining where k1=n, and 

f attains its maximum value. Hence when Q is at a maximum size (as above), the 

arrangement with the maximum fitness will be all variables in a single group.  ■  
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Proposition F.3. If the data generating the correlations came from a mixed set of MTS 

observations, then f(G) is maximised when the groups match the partitioning of the 

MTS. 

 

Proof. For a given grouping arrangement G and correlation set Q 
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This will be a maximum when all instances of the function L are 1. If Q contains an 

additional spurious correlation or is missing a correlation, then this value will be 

reduced by 1, by definition of L and proof 2. Hence the maximum value of the fitness 

for a given G will be when Q contains the all of the correlations that can exist for each 

grouping. ■  
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Appendix G � The Lilliefors� Test Results 
 

Table G.1 displays the results of applying Lilliefors' test on a small sample of 

simulations as described in section 4.3. 
 

R c s µ  σ  µ  σ  Dmax v
031.1  

Dmax<

v
031.1  

50 657 4600 6.590 2.393 6.665 2.365 0.106 0.144 True 

60 780 3900 10.823 2.939 10.909 3.152 0.079 0.132 True 

70 357 3570 6.665 2.407 6.667 2.211 0.097 0.122 True 

80 1062 7440 10.687 3.052 10.659 2.840 0.086 0.115 True 

90 918 4590 16.293 3.639 16.364 3.629 0.069 0.108 True 

100 1583 9500 15.400 3.589 15.382 3.420 0.070 0.103 True 

110 1452 14520 10.418 3.058 10.476 2.846 0.082 0.098 True 

120 1851 12960 15.972 3.743 15.997 3.476 0.067 0.094 True 

130 1841 11050 19.95 4.138 19.993 3.896 0.060 0.090 True 

140 2963 17780 21.539 4.222 21.536 4.055 0.059 0.087 True 

150 3930 19650 27.127 4.767 27.273 4.581 0.052 0.084 True 

160 2272 22720 15.222 3.708 15.238 3.640 0.071 0.081 True 

170 4386 21930 30.896 5.007 30.909 4.898 0.053 0.079 True 

180 1854 18540 17.158 3.878 17.143 3.957 0.065 0.077 True 

190 988 9880 18.063 4.106 18.095 4.116 0.065 0.075 True 

 
Table G.1: Lilliefors' Test Results 

 

Within this table, σ and µ σ, µ, are listed as examples for the section on Genetic 

Programming. 
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Appendix H � MTS Dataset Generation 
 

Below is a selection of DBN structures that were used to generate the DBN datasets. 

Numbers associated with nodes represent variables and numbers associated with links 

represent time lags. 

 

 
DBN 1 DBN 2 

  
DBN 3 DBN 4 

 

Below is a selection of VAR process parameters that were used to generate the VAR 

datasets. 

2 Variable VAR(2) 
 P=1 (A1) P=2 (A2) 

 1 2 1 2 

1 -0.52 0.02 0.23 -0.22 

2 0.28 -0.17 -0.41 -0.11 
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3 Variable VAR(5) 
 P=1 (A1) P=2 (A2) P=3 (A3) P=4 (A4) P=5 (A5) 

 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

1 0.10 0.02 -0.20 0.15 -0.04 0.24 0.06 -0.08 0.31 -0.07 0.03 -0.04 -0.05 0.19 0.15 

2 -0.16 -0.02 -0.02 0.01 -0.40 0.10 -0.28 0.02 -0.24 -0.08 -0.01 -0.04 0.12 0.06 0.19 

3 0.03 0.55 -0.18 0.08 -0.02 0.04 -0.09 0.00 0.19 0.05 0.26 0.01 -0.12 -0.02 -0.23

 

7 Variable VAR(3) 
 P=1 (A1) P=2 (A2) P=3 (A3) 

 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

1 0.13 -0.32 -0.21 0.02 -0.22 -0.06 0.00 -0.29 0.11 0.30 -0.09 0.02 -0.04 -0.33 -0.05 0.17 -0.03 0.22 0.04 0.02 -0.25

2 -0.40 -0.63 0.02 -0.10 0.01 0.02 -0.22 0.05 0.16 0.58 0.05 -0.02 0.10 -0.24 -0.02 0.00 0.08 0.22 0.00 0.16 -0.01

3 0.11 -0.08 -0.10 0.03 -0.09 0.06 0.12 -0.12 -0.21 0.29 -0.17 0.08 -0.17 -0.26 0.09 -0.28 0.02 0.02 -0.03 -0.69 0.09

4 -0.11 -0.18 -0.42 -0.22 0.02 -0.13 0.12 -0.05 0.38 0.06 -0.14 -0.07 0.08 0.11 0.02 -0.27 -0.01 -0.08 0.32 0.02 0.06

5 -0.07 -0.01 0.09 0.31 0.08 -0.07 0.00 0.07 -0.61 -0.02 0.04 -0.29 0.01 -0.16 0.07 0.30 -0.41 -0.13 0.06 -0.15 0.06

6 0.06 0.27 -0.07 -0.19 0.16 -0.20 0.01 0.21 0.02 0.04 0.19 0.18 0.44 -0.04 0.06 0.18 -0.34 0.19 -0.05 -0.04 0.06

7 0.08 0.21 -0.32 0.07 -0.11 0.03 -0.41 -0.03 -0.33 -0.12 0.09 0.00 0.55 0.19 0.14 -0.02 0.02 0.16 0.04 -0.15 0.04
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Appendix I � Genetic Programming Details 
 

Table I.1 displays the genetic programming (symbolic regression) parameters used in 

the experiments described in section 4.3.3. 

 

Operator Description Value 

Population Constant Population 100 

Generations Number of iterations µ =1,000 

σ =50,000 

Crossover Percentage of population allowed to 

breed 

0.75 

Prune Mutation Rate  Cut down a sub-tree to a random 

terminal node 

0.25 

Add Sub-tree Mutation Rate Replace a sub-tree for a new random 

sub-tree (size varies) 

0.25 

Change Node Mutation Rate Change an operator to a new random 

operator or a terminal symbol to a new 

random terminal symbol 

0.25 

Survival Simply select the top �Population� 

after new individuals have been added 

through Crossover and Mutation 

Deterministic 

and Extinctive 

 
Table I.1: Genetic Programming Parameters 

 

I.1 µ and σ Results 
 

The test dataset of parameters for the problems consisted of the same 150 records 

generated by the simulation experiments. This was divided into two halves, one for the 

training set and the other for the verification set. The records were numbered from 1 to 

150; µ was trained on the even records and σ on the odd records. The magnitude of the 

values for R, s and c increased as the record identifier (ID) increased. 
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The results are listed in table I.2. 

 

Result µ σ 

Value for function (1) 
)4(2

2 2

++ RcRs
cR  s

cR 11
63

8 ++  

Approximation to be used (2) 
cs

cR
+2

2  
s
cR 11

63
+  

 (1) (2) (1) (2) 

Fitness for Training Set (Excluding Nodes) -0.104 -0.240 -0.791 -2.096 

Sum of Absolute Error for Training Set 2.220 3.194 6.088 11.351 

Average % Error for Training Set 0.203 0.251 2.391 4.479 

Fitness for Testing Set (Excluding Nodes) -1.038 -0.249 -0.842 -2.114 

Sum of Absolute Error for Testing Set 2.236 3.200 6.263 11.401 

Average % Error for Testing Set 0.815 1.112 2.460 4.518 

 
Table I.2: µ and σ Results 
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Appendix J � The Weighted-Kappa Metric 
 

The Weighted-Kappa metric [Altman1997] is used to rate agreement between the 

classification decisions made by two or more observers. The decisions are classified 

into a number of classes {class1,...,classN} where the classes are ordered, i.e. a 

classification by the two observers of class1 and class2 is a better agreement than class1 

and class4 etc. 

 

J.1 Calculating Weighted-Kappa 
 

An N×N table of counts is constructed according to figure J.1 for a set of classifications. 

Rows are indexed according to one observer�s classification and columns by the other 

observer�s classification. Row(i) and Col(i) are row and column totals respectively, and 

Countij is the count for a particular combination of classifications. The sum of all of the 

cells ∑∑∑∑
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Figure J.1: The Construction of the Weighted-Kappa Count Table 
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The weighted-kappa metric, Kw, is calculated as follows: 
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N
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The two parameters within this calculation, po(w) and pe(w), represent the observed 

weighted proportional agreement and the expected weighted proportional agreement. 

The expected weighted proportional agreement is an indication of what totals would be 

expected by chance. Table J.1 is the suggested interpretation of Kappa values to 

indicate the strength of agreement between two observers [Altman1997], which can be 

used as an approximate interpretation for Weighted-Kappa. Although the 

Weighted-Kappa values are normally higher than those of Kappa, it is only going to be 

used in the assessment of the agreement strength between two methods according to 

their respective categories. 

 

Kappa (K) Agreement Strength 

01 ≤≤− K  Very Poor 

2.00 ≤< K  Poor 

4.02.0 ≤< K  Fair 

6.04.0 ≤< K  Moderate 

8.06.0 ≤< K  Good 

0.18.0 ≤< K  Very Good 

 
Table J.1: The Kappa Guideline 
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J.2 Visual Field Test Results 
 

In the case where the two observers are the recorded visual field test results and the 

predicted results from a VAR process the classification decisions from each observer for 

each point )(txi  can be divided into three states as in table J.2. Within this table, 

direction of change refers to the shorthand description for whether the change is 

worsening the condition (-), not altering at all (0) or improving (+). This classification 

is based on the change between a point measured at two successive tests, i.e. the 

direction of change. 

 

Direction of Change (Class) Definition 

Deterioration (-) Ω−<−− )1()( txtx ii  

No change (0) Ω≤−− )1()( txtx ii  

Improvement (+) Ω>−− )1()( txtx ii  

 
Table J.2: Visual Field Change Classification 

 

The constant Ω  gives a margin of error for defining equality, since the visual fields are 

treated as real numbers (they are integers ranging between 0 and 60). This makes it very 

unlikely that any pair of observed and predicted points will be equal. In this thesis 

5.0=Ω has been chosen. The Weighted-Kappa metric can then be calculated as above, 

where a category of � has an index of 1, a category of 0 has an index of 2 and a category 

of + has an index of 3. 

 

The same number of one step ahead forecasts are performed as with the VARGA fitness 

function (see chapter 5), but the differences between forecasts are considered, i.e. the 

direction of change, giving a total of ∑∑
= =

=−
2

0

2

0

)1-MAXORDER(
i j

ijCountTn possible 

classifications (Nk).  
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J.3 Comparisons of Grouping 
 

The weighted-kappa metric can be used to compare the similarities between two 

grouping arrangements. It is assumed that the grouping arrangements being compared 

are between groupings containing the same number of variables. 

 

If n variables are being grouped then a set V is defined as being the set of all possible 

variable indices, V = {1,...,n}. A grouping arrangement G = {g1,...,gm} where 

.1 ,and ;
1

mjiφg gVg Vg
m

i
jiii ≤<≤==⊆

=
U I  Let the function ),( iGπ return the group 

index of which group, gj, variable index i is located, where ni ≤≤1 and .1 mj ≤≤  

 

Given two grouping arrangements, G1 and G2, then the weighted-kappa metric between 

these two groups is computed according to algorithm J.1. 

 

Algorithm J.1: WK(G1,G2) 

  

1) Input: G1, G2 � two grouping arrangements 

 n � the number of variables in the two groupings 

2) Set Count = a 2 by 2 initially zero matrix 

3) For i = 1 to n-1 
4)  For j = i+1 to n  

5)   If j),π(Gi),π(G 11 =  then a = 0 else a = 1 

6)   If j),π(Gi),π(G 22 = then b = 0 else b = 1 

7)   Set Countab = Countab + 1 

8)  Next j 

9) Next i 

10) Output: The Weighted-Kappa metric computed using Count 

 

Essentially algorithm J.1 works by considering all unique pairing of variables as a 

classification decision, where there are two classes; that the pair of variables are in the 

same group or the pair of variables are in different groups. 
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Appendix K � Algorithm for Sparse-VARGA Fitness 

Calculation 
 

Algorithm K.1 is the algorithm for computing the Sparse-VARGA fitness function. It 

works by computing the forecast error using sparse matrix arithmetic, i.e. only 

performing matrix multiplication for the known elements, all the others are assumed to 

be zero. 

 

Algorithm K.1: ComputeFitness(CHROME,CASE) 

  

1) Input: Chromosome CHROME of size GENESIZE 

 Visual Field CASE of size NTESTS (T) by NPOINTS (n)  

 (n � size of a nerve fibre bundle group) 

 Maximum VAR Process Order MAXORDER 

2) Set FITNESS = 0 

3) Set ERROR = a zero vector of length NPOINTS 

4) For t = MAXORDER to NTESTS 

5)  For i = 1 to NPOINTS 

6)   let ERROR(i) = CASE(t,i) 

7)  next i 

8)  For i = 1 to GENESIZE 

9)   Set GENE = ith gene of CHROME 

10)   Set ROW = GENE.row 

11)   Set COL = GENE.col 

12)   Set LAG = GENE.lag 

13)   Set VALUE = GENE.value 

14)   ERROR(ROW) = ERROR(ROW) � VALUE×CASE(t-LAG,COL) 

15)  Next i 

16)  For i=1 to NPOINTS 

17)   FITNESS = FITNESS - |ERROR(i)| 

18)  Next i 

19) Next t 

20) Output: FITNESS � the fitness of chromosome CHROME 
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Appendix L � Algorithms for the Seeding of Sparse-VARGA 
 

This Appendix details five algorithms that are used in the seeding of Sparse-VARGA. 

These are summarised in table L.1. A listing of each algorithm is then given. 

 

Algorithm Description 

CreateYuleWalkerSeed Creates a chromosome that represents a VAR process 

of a given order for a given dataset 

CreateNoiseSeed Creates a chromosome that represents the Noise 

Model for a given dataset 

CreateRandomChromosome Creates a chromosome that represents a random 

nVAR(p) process 

PadAChromosomeWithZeros Fills a chromosome up with zero genes 

ConvertToChromosome Converts an n by n×p matrix to a chromosome 
 

Table L.1: Sparse-VARGA Seeding Algorithms 

 
Algorithm L.1: CreateYuleWalkerSeed(P,CASE) 

  

1) Input: P � Order of required VAR process 

 Visual Field CASE of size NTESTS (T) by NPOINTS (n)  

 (n � size of a nerve fibre bundle group) 

2) Solve the Yule-Walker equations for CASE of Order P, returning A(1) to A(P) VAR 

parameter matrices if solvable A(i,j,k) is the jth,kth element of A(i) 

3) Set CHROME to an empty Chromosome (i.e. no genes) 

4) If Solvable then 

5)  Set B = [A(1)..A(P)], a NPOINTS by NPOINTS×MAXORDER matrix 

6)  Set CHROME = ConvertToChromosome(B) (see Appendix C.5) 

7) End if 

8) Output: CHROME � A Yule-Walker seeded Chromosome for CASE of Order P if the 

 equations were solvable. An empty Chromosome, otherwise; i.e. no genes 
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Algorithm L.2: CreateNoiseSeed(NPOINTS,MAXORDER) 

  

1) Input: NPOINTS � Size of a parameter matrix 

 MAXORDER � Maximum size of the respective VAR process 

2) Set CHROME to an empty Chromosome (i.e. no genes) 

3) Let GENE be a gene 

4) Set GENE.row = UI(1,NPOINTS) 

5) Set GENE.col = UI(1,NPOINTS) 

6) Set GENE.lag = UI(1,MAXORDER) 

7) Set GENE.value = 0.0 

8) Insert GENE into CHROME 

9) Output: CHROME � A Noise Model seeded Chromosome for CASE 

 

Algorithm L.3: CreateRandomChromosome(P,CASE) 

  

1) Input: NPOINTS (n) � Size of a parameter matrix 

 MAXORDER � Maximum size of the VAR process 

 MINGENE, MAXGENE � The limits for a parameter matrix element 

 MAXSIZE � The maximum size of a chromosome 

2) Set CHROME to an empty Chromosome (i.e. no genes), Let SIZE = UI(1,MAXSIZE) 

3) For i = 1 to SIZE 

4)  Let GENE be a gene 

5)  Set GENE.row = UI(1,NPOINTS) 

6)  Set GENE.col = UI(1,NPOINTS) 

7)  Set GENE.lag = UI(1,MAXORDER) 

8)  Set GENE.value = UR(MINGENE,MAXGENE) 

9)  Insert GENE into CHROME 

10) Next i 

11) Output: CHROME � A random Chromosome representing a NPOINTS dimensional VAR 

 process of Order between 1 and MAXORDER inclusive 
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Algorithm L.4: PadAChromosomeWithZeros(CHROME) 

  

1) Input: CHROME � A Chromosome representing an NPOINTS (n) dimensional VAR 

 process of maximum Order MAXORDER, minimum Order 1, and number of 

 genes GENESIZE. It is assumed that the genes in CHROME are unique 

2) Set B = An NPOINTS by (NPOINTS×MAXORDER) matrix with all elements zero 

B(i,j) is the ith, jth element of B 

3) For i = 1 to GENESIZE 

4)  Set GENE be the ith gene of CHROME 

5)  Set ROW = GENE.row, Set COL = GENE.col, Set LAG = GENE.lag 

6)  Set VALUE = GENE.value 

7)  Set B(ROW,NPOINTS×(LAG-1)+COL) = VALUE 

8) Next i 

9) Set CHROME = ConvertToChromosome(B) (see algorithm L.5) 

10) Output: CHROME � A random Chromosome representing a NPOINTS dimensional VAR 

 process of Order between 1 and MAXORDER inclusive 

 
Algorithm L.5: ConvertToChromosome(MATRIX) 

  

1) Input: MATRIX � An NPOINTS by NPOINTS×P real values matrix 

 MATRIX(i,j) is the ith,jth element of MATRIX 

2) Set CHROME to an empty Chromosome (i.e. no genes) 

3) For i = 1 to P 

4)  For j = 1 to NPOINTS 

5)   For k = 1 to NPOINTS 

6)    Set GENE to a new gene 

7)    Set GENE.row = j 

8)    Set GENE.col = k 

9)    Set GENE.lag = i 

10)    Set GENE.value = MATRIX(j,(i-1)×NPOINTS+k) 

11)    Insert GENE into CHROME 

12)   Next k 

13)  Next j 

14) Next i 

15) Output: CHROME � A Chromosome representing the matrix MATRIX 
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Appendix M � Method Error by Patient 
 

This Appendix displays the two ways of rating the error of each method, i.e. forecast 

error and Weighted-Kappa, averaged for each patient. 
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M.1 Forecast Error 
 

Patient HC NOISE SSV SVNP SVP YW16 YW76 Best 

0 0.921 4.473 0.909 2.266 2.635 1.352 3.960 SSV 

1 1.160 4.404 1.138 2.190 3.498 1.452 4.133 SSV 

2 0.752 2.826 0.744 1.587 2.131 0.917 2.380 SSV 

3 1.317 6.114 1.306 3.846 2.738 2.362 4.869 SSV 

4 0.235 1.358 0.233 0.750 0.933 0.294 1.305 SSV 

5 1.543 3.445 1.532 2.911 5.265 1.671 1.289 YW76

6 0.556 1.712 0.555 1.039 1.229 44.284 100.000 SSV 

7 0.616 1.995 0.608 1.203 1.804 0.771 2.469 SSV 

8 0.305 3.173 0.303 0.942 0.505 19.372 100.000 SSV 

9 1.117 4.387 1.100 3.555 4.219 1.452 0.946 YW76

10 0.361 3.738 0.349 1.652 1.416 0.791 3.677 SSV 

11 0.854 2.399 0.842 1.815 2.580 1.024 3.880 SSV 

12 1.081 3.104 1.069 1.920 2.910 1.352 2.347 SSV 

13 0.452 1.829 0.445 1.021 1.207 0.619 0.915 SSV 

14 0.133 2.437 0.128 0.637 0.408 0.431 3.356 SSV 

15 0.671 3.193 0.657 1.651 1.940 0.971 4.292 SSV 

16 0.717 3.688 0.699 1.964 2.159 0.979 2.883 SSV 

17 0.803 4.958 0.840 2.566 2.240 13.359 100.000 HC 

18 0.880 2.878 0.898 1.553 2.312 50.586 100.000 HC 

19 0.192 2.685 0.170 0.597 0.349 0.526 1.873 SSV 

20 0.594 2.644 0.587 1.522 2.168 0.738 1.719 SSV 

21 0.464 3.039 0.457 1.539 1.934 6.757 100.000 SSV 

22 0.738 2.644 0.736 1.290 1.509 25.607 100.000 SSV 

23 0.078 2.709 0.074 0.417 0.161 0.625 2.069 SSV 

24 0.188 2.080 0.182 0.857 0.743 0.361 5.441 SSV 

25 0.708 2.647 0.704 1.447 1.755 38.064 100.000 SSV 

26 0.244 1.525 0.236 0.696 0.716 0.355 1.227 SSV 

27 0.238 2.195 0.229 0.825 0.713 0.457 4.022 SSV 

28 0.522 2.008 0.518 1.209 1.615 37.982 100.000 SSV 

29 1.681 4.468 1.667 2.440 7.436 1.819 3.478 SSV 

30 0.850 2.346 0.848 1.366 2.178 13.447 100.000 SSV 

31 0.554 2.780 0.536 1.472 1.625 0.801 2.989 SSV 

32 0.845 3.802 0.839 2.233 2.628 1.127 2.542 SSV 

33 0.139 2.358 0.135 0.373 0.170 6.764 100.000 SSV 

34 1.144 2.992 1.158 1.692 2.551 26.058 100.000 HC 

35 1.581 3.302 1.572 2.535 5.183 1.706 3.702 SSV 

36 1.088 2.848 1.083 1.696 2.680 50.936 100.000 SSV 

37 0.374 2.229 0.371 0.978 0.757 56.736 100.000 SSV 

38 0.352 2.031 0.345 0.785 0.618 0.669 6.066 SSV 

39 0.872 2.470 0.870 1.483 2.453 25.798 100.000 SSV 

40 0.459 1.275 0.475 0.666 0.942 81.425 100.000 HC 

 

Table M.1: Forecast Error (Fitness) by Patient (#0-40) 

 

 
 



Appendices 

225 

Patient HC NOISE SSV SVNP SVP YW16 YW76 Best 

41 0.986 3.369 0.976 2.090 3.628 7.338 100.000 SSV 

42 0.521 4.139 0.516 1.941 1.700 19.385 100.000 SSV 

43 1.130 8.122 1.109 4.521 5.012 1.349 2.111 SSV 

44 0.208 2.343 0.199 0.630 0.356 13.124 100.000 SSV 

45 0.171 1.925 0.171 0.627 0.455 0.457 1.702 HC 

46 1.205 4.250 1.191 3.113 4.445 1.430 3.810 SSV 

47 0.559 2.778 0.552 1.530 2.072 0.697 4.828 SSV 

48 0.075 1.555 0.075 0.499 0.311 0.257 2.006 HC 

49 0.765 2.268 0.763 1.362 2.166 13.404 100.000 SSV 

50 0.535 2.955 0.521 1.522 1.562 6.891 100.000 SSV 

51 0.104 3.063 0.099 0.417 0.157 0.615 4.172 SSV 

52 0.141 1.681 0.132 0.597 0.473 0.325 1.543 SSV 

53 1.034 3.618 1.024 2.032 3.003 1.304 6.208 SSV 

54 0.450 2.449 0.446 1.102 1.131 0.712 3.600 SSV 

55 0.448 3.797 0.434 1.355 0.965 1.177 6.109 SSV 

56 0.344 3.222 0.331 1.288 1.132 0.707 9.789 SSV 

57 0.848 3.297 0.836 1.816 2.575 13.421 100.000 SSV 

58 0.392 2.761 0.384 1.340 1.256 0.640 2.784 SSV 

59 0.332 1.633 0.316 0.618 0.469 44.178 100.000 SSV 

60 0.380 2.470 0.369 1.318 1.576 0.604 4.590 SSV 

61 0.432 1.766 0.460 0.700 0.549 68.875 100.000 HC 

62 0.529 3.825 0.547 1.140 0.639 32.054 100.000 HC 

63 0.450 3.370 0.438 1.132 0.803 6.957 100.000 SSV 

64 0.374 3.043 0.373 1.369 1.294 25.334 100.000 SSV 

65 0.445 4.439 0.442 2.068 1.962 0.766 4.595 SSV 

66 0.264 3.789 0.255 1.572 0.997 6.747 100.000 SSV 

67 0.528 2.923 0.518 1.479 1.549 0.819 3.060 SSV 

68 0.677 3.568 0.659 1.847 2.184 0.987 4.006 SSV 

69 0.414 3.265 0.388 1.177 0.866 7.106 100.000 SSV 

70 0.108 3.166 0.101 0.479 0.185 31.671 100.000 SSV 

71 0.275 2.126 0.266 0.935 0.821 25.303 100.000 SSV 

72 0.097 1.949 0.089 0.584 0.366 0.311 3.397 SSV 

73 0.202 1.839 0.195 0.709 0.573 0.331 2.845 SSV 

74 0.290 3.158 0.281 1.314 1.228 0.471 2.809 SSV 

75 0.419 3.614 0.420 1.331 0.967 13.113 100.000 HC 

76 0.665 2.536 0.700 1.344 1.174 62.750 100.000 HC 

77 0.280 2.829 0.264 0.880 0.483 0.756 1.432 SSV 

78 0.379 3.508 0.389 1.260 0.904 31.749 100.000 HC 

79 0.095 1.886 0.061 0.190 0.073 0.614 2.075 SSV 

80 0.114 1.877 0.104 0.586 0.366 0.291 0.959 SSV 

81 0.066 1.688 0.061 0.292 0.135 0.355 1.137 SSV 

 

Table M.2: Forecast Error (Fitness) by Patient (#41-81) 
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M.2 Weighted-Kappa 
 

Patient HC NOISE SSV SVNP SVP YW16 YW76 Best 

0 0.722 0.000 0.798 0.451 0.449 0.746 0.446 SSV 

1 0.562 0.000 0.617 0.317 0.309 0.550 0.336 SSV 

2 0.734 0.000 0.788 0.485 0.481 0.758 0.518 SSV 

3 0.544 0.000 0.609 0.475 0.469 0.458 0.417 SSV 

4 0.797 0.000 0.878 0.552 0.556 0.861 0.436 SSV 

5 0.551 0.000 0.614 0.259 0.259 0.586 0.700 YW76

6 0.552 0.000 0.571 0.406 0.402 0.371 0.000 SSV 

7 0.726 0.000 0.777 0.494 0.493 0.745 0.446 SSV 

8 0.742 0.000 0.827 0.615 0.608 0.577 0.000 SSV 

9 0.667 0.000 0.760 0.407 0.407 0.696 0.691 SSV 

10 0.803 0.000 0.890 0.561 0.549 0.817 0.422 SSV 

11 0.678 0.000 0.749 0.357 0.358 0.699 0.368 SSV 

12 0.617 0.000 0.662 0.383 0.368 0.598 0.474 SSV 

13 0.756 0.000 0.835 0.574 0.578 0.785 0.748 SSV 

14 0.879 0.000 0.971 0.819 0.814 0.911 0.164 SSV 

15 0.710 0.000 0.790 0.451 0.445 0.732 0.372 SSV 

16 0.776 0.000 0.848 0.531 0.536 0.812 0.601 SSV 

17 0.702 0.000 0.780 0.550 0.545 0.678 0.000 SSV 

18 0.563 0.063 0.579 0.416 0.423 0.376 0.000 SSV 

19 0.824 0.000 0.925 0.756 0.752 0.795 0.506 SSV 

20 0.750 0.000 0.803 0.486 0.483 0.770 0.582 SSV 

21 0.785 0.000 0.863 0.516 0.511 0.811 0.000 SSV 

22 0.671 0.000 0.716 0.501 0.498 0.537 0.000 SSV 

23 0.906 0.000 0.994 0.898 0.902 0.867 0.539 SSV 

24 0.792 0.000 0.885 0.564 0.570 0.828 0.158 SSV 

25 0.639 0.063 0.685 0.514 0.521 0.465 0.000 SSV 

26 0.792 0.000 0.853 0.515 0.513 0.795 0.470 SSV 

27 0.866 0.000 0.950 0.701 0.700 0.873 0.315 SSV 

28 0.568 0.063 0.614 0.406 0.408 0.476 0.000 SSV 

29 0.308 0.000 0.320 0.025 0.025 0.312 -0.028 SSV 

30 0.334 0.250 0.357 0.222 0.222 0.303 0.000 SSV 

31 0.806 0.000 0.868 0.548 0.542 0.817 0.424 SSV 

32 0.722 0.000 0.794 0.423 0.433 0.751 0.548 SSV 

33 0.915 0.000 0.986 0.909 0.912 0.805 0.000 SSV 

34 0.566 0.000 0.595 0.446 0.445 0.483 0.000 SSV 

35 0.579 0.000 0.616 0.294 0.301 0.593 0.407 SSV 

36 0.604 0.188 0.629 0.501 0.506 0.295 0.000 SSV 

37 0.727 0.313 0.726 0.560 0.579 0.330 0.000 HC 

38 0.828 0.000 0.915 0.741 0.752 0.803 0.388 SSV 

39 0.575 0.000 0.597 0.386 0.389 0.506 0.000 SSV 

40 0.606 0.188 0.620 0.550 0.560 0.138 0.000 SSV 

 

Table M.3: Weighted-Kappa by Patient (#0-40) 
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Patient HC NOISE SSV SVNP SVP YW16 YW76 Best 

41 0.577 0.000 0.614 0.374 0.378 0.545 0.000 SSV 

42 0.776 0.000 0.863 0.652 0.652 0.730 0.000 SSV 

43 0.717 0.000 0.790 0.429 0.423 0.766 0.697 SSV 

44 0.845 0.063 0.909 0.796 0.806 0.645 0.000 SSV 

45 0.900 0.000 0.982 0.756 0.747 0.906 0.504 SSV 

46 0.642 0.000 0.718 0.375 0.375 0.684 0.570 SSV 

47 0.756 0.000 0.827 0.545 0.542 0.804 0.365 SSV 

48 0.899 0.000 0.977 0.755 0.750 0.919 0.494 SSV 

49 0.626 0.000 0.670 0.454 0.448 0.565 0.000 SSV 

50 0.803 0.000 0.870 0.612 0.606 0.792 0.000 SSV 

51 0.890 0.000 0.983 0.907 0.921 0.889 0.466 SSV 

52 0.871 0.000 0.952 0.705 0.699 0.880 0.491 SSV 

53 0.672 0.000 0.720 0.451 0.454 0.682 0.285 SSV 

54 0.810 0.000 0.881 0.582 0.578 0.834 0.380 SSV 

55 0.838 0.000 0.903 0.676 0.677 0.803 0.450 SSV 

56 0.807 0.000 0.900 0.643 0.645 0.823 0.215 SSV 

57 0.690 0.000 0.732 0.453 0.459 0.652 0.000 SSV 

58 0.816 0.000 0.909 0.576 0.563 0.853 0.571 SSV 

59 0.661 0.063 0.677 0.555 0.549 0.466 0.000 SSV 

60 0.786 0.000 0.861 0.489 0.484 0.783 0.192 SSV 

61 0.707 0.125 0.714 0.680 0.673 0.297 0.000 SSV 

62 0.700 0.000 0.753 0.558 0.560 0.515 0.000 SSV 

63 0.760 0.000 0.838 0.631 0.629 0.734 0.000 SSV 

64 0.796 0.000 0.856 0.585 0.584 0.677 0.000 SSV 

65 0.810 0.000 0.902 0.590 0.584 0.841 0.487 SSV 

66 0.798 0.000 0.887 0.562 0.555 0.831 0.000 SSV 

67 0.786 0.000 0.865 0.563 0.556 0.805 0.505 SSV 

68 0.772 0.000 0.840 0.542 0.541 0.802 0.468 SSV 

69 0.802 0.000 0.881 0.641 0.646 0.749 0.000 SSV 

70 0.731 0.063 0.799 0.710 0.718 0.599 0.000 SSV 

71 0.739 0.000 0.824 0.548 0.553 0.605 0.000 SSV 

72 0.871 0.000 0.979 0.783 0.792 0.934 0.368 SSV 

73 0.867 0.000 0.951 0.748 0.747 0.897 0.038 SSV 

74 0.859 0.000 0.933 0.637 0.640 0.893 0.525 SSV 

75 0.836 0.000 0.893 0.664 0.657 0.779 0.000 SSV 

76 0.680 0.250 0.735 0.593 0.580 0.322 0.000 SSV 

77 0.853 0.000 0.941 0.765 0.752 0.826 0.733 SSV 

78 0.619 0.000 0.675 0.416 0.428 0.465 0.000 SSV 

79 0.856 0.000 0.974 0.897 0.893 0.708 0.324 SSV 

80 0.867 0.000 0.974 0.707 0.710 0.906 0.696 SSV 

81 0.879 0.000 0.984 0.871 0.877 0.896 0.644 SSV 

 

Table M.4: Weighted-Kappa by Patient (#41-81) 
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