
Accelerating Genetic Programming
Using Graphics Processing Units

Tony Lewis

Department of Computer Science

and Information Systems

Birkbeck, University of London

Submitted for the degree of Doctor of Philosophy

1

The work presented in this thesis is the candidate’s own.

Tony Lewis

2

Abstract

Evolution through natural selection offers the possibility of automatically generating

functionally complex solutions to a wide range of problems. Methods such as Genetic

Programming (GP) show the promise of this approach but tend to stagnate after rel-

atively few generations. To research this issue, execution speed must be substantially

improved. This thesis presents work to accelerate the execution of such methods.

The work uses the Graphics Processing Unit (GPU) to target the evaluation of indi-

viduals since this is the most time-consuming part of the run. Two models have been

emerging for this: dynamically compiling each new generation of individuals for the

GPU or using a single GPU interpreter, to which successive groups of individuals can

be sent.

Using the latter model, a GPU interpreter is constructed to implement cyclic GP, an

advanced form of GP that imposes several challenging implementation issues which

are addressed. Accelerating the evaluation using the GPU is only part of the story.

The next part of the work interleaves CPU and GPU computation to keep both chips

as busy as possible with the tasks to which they are best suited and then to recruit

multiple GPUs and CPU cores to further accelerate the run.

Using the former model, a compiling system is constructed and this is used to in-

vestigate two methods to overcome the primary difficulty with the approach: long

compilation times. That system implements Tweaking Mutation Behaviour Learning

(TMBL), a form focused on long term fitness growth and overcoming the previously

mentioned stagnation issues. Further work optimises two CPU tasks highlighted by

profiling: tournament selection and individual copying.

These techniques are highly effective and permit much shorter run-times. This

clears the way for research into stimulating long term fitness growth and hence for

tackling new, complex problems.

3

Acknowledgements

Getting a PhD thesis to the point of submission is a tricky business. In my case, the

support of my family, friends and colleagues has made it considerably less painful

than it would otherwise have been. I offer my sincere thanks to everyone that has been

a part of my life in the last few years (except the bloke that burgled our flat). I will use

this space to express special thanks to those who have made contributions of particular

note.

Thanks to my supervisor, George Magoulas. He gave me his trust by allowing me

the independence of research that I needed, yet he gave me his support by providing

help and advice whenever it was needed. He repeatedly showed a remarkable ability

to identify at great speed how a piece of work should be improved; his comments

often pinpointed an issue that I had not previously identified but which I immediately

recognised to be the nub.

Thanks to those with whom I studied an Intelligent Systems MSc several years ago.

The group’s spirit continues to frame my enquiry into getting computers to evolve

more interesting stuff.

Thanks to all those at Birkbeck’s Computer Science department and at the London

Knowledge Lab. They provided a great place in which to work. Thanks in particular

to Long Chen. More than any other, he brightened up my daily work at the London

Knowledge Lab and I shall miss our limited attempts at team-based juggling and our

discussions of culture and language.

Thanks to all those in the Orengo-group. Before beginning the PhD, I spent several

years working in Christine Orengo’s group and have continued to work there for one

afternoon a week during my research. Working there before my PhD was an excellent

preparation; working there duringmy PhDmeant that I hadmuchmore human contact

and intellectual stimulation than I would have otherwise.

Thanks in particular to Ian Sillitoe and his family, to whom I owe much gratitude

for many things. By getting me involved in his martial art, Ian ensured that I never

became too preoccupied with my research as I regularly had to devote some of my

concentration to avoiding getting punched in the head. (Thanks also to London’s Jit-

suka for providing the punches). He providedmewith a form of therapy by pretending

to be interested when I talked to him about my work. Towards the end, he made the

huge sacrifice of reading through my work in more detail than anyone else (other than

me), a truly arduous task which he performed with his trademark dedication and care.

Perhaps his martial art has made him insensitive to pain.

Thanks to my family. They are always of the utmost importance to me and in par-

ticular, I have my mam to thank for a preposterous amount. Perhaps I will get to see

my family more frequently after I have submitted. The younger of my two older sisters

has been studying for a PhD in parallel with me and she showed me how it should be

done by submitting her thesis many months earlier.

4

Thanks to the community of researchers in the GP/EC community. I have been

lucky to be working in a fantastic community of researchers working on what I believe

to be the most interesting area of research at present.

Thanks to the huge body of people that have cumulatively contributed to today’s

astonishing hardware and software, which is all too easily taken for granted. Partic-

ular thanks to those who have dedicated time and effort to open source projects and

to their user communities. The number of projects used directly and indirectly in this

work must be vast but the list of software and hardware worth a particular mention in-

cludes: C++, LATEX, nVidia (cards and CUDA), GCC (and gdb, g++ and their standard

library implementation), Valgrind (profiling, memory checking, memory profiling),

Boost, Subversion, Trac, Gnuplot, Inkscape, Eclipse (with plugins such as Subclipse,

Texclipse, CDT, Mylyn etc) and the Ubuntu distribution of Linux (from 7.04 ”Gutsy

Gibbon” to 10.10 ”Marverick Meerkat” via a Heron, an Ibex, a Jackalope, a Koala and

a Lynx).

Thanks to my wife. I am so grateful that we share our continuing adventure to-

gether. Her love and support have kept me going through this PhD. She has shared

my joy when I have been childishly pleased with my work and she has put up with me

when I have been childishly bad tempered about it (sorry love). With our flat in her

hands, I could always rely on it being warm.

To all these people and many more: thanks.

Addendum: Thanks also to the two examiners of my thesis, Professor Yaochu Jin

and Professor Qingfu Zhang. I am well aware of the huge commitment of time and

effort that is required to read a thesis in sufficient detail to examine it, to conduct the

examination and to produce all the associated reports and other paperwork. For this I

am very grateful. Furthermore, both examiners raised many excellent points about the

work and the discussion in the viva was interesting enough that I might go so far as to

say I enjoyed the examination.

5

Contents

Abstract 3

Acknowledgements 4

Contents 6

List of Figures 10

List of Tables 14

1 Introduction 16

1.1 Problem Definition . 16

1.2 Overview of Genetic Programming (GP) 17

1.3 An Overview of Using the Graphics Processing Unit (GPU) 19

1.4 Aims and Objectives . 20

1.5 The Validity, Scope and Assessment of the Research 21

1.6 Approach . 23

1.7 The Structure of the Thesis . 25

2 Literature Review 27

2.1 Acceleration . 27

2.1.1 Algorithm Design Approaches . 28

2.1.2 Sub-Machine-Code Genetic Programming Approaches (SMCGP) 30

2.1.3 Grid Computing Approaches . 31

2.1.4 Field Programmable Gate Array (FPGA) Approaches 33

2.1.5 Graphics Processing Unit (GPU) Approaches 33

2.1.6 Uses of the GPU for EC Other than GP 35

2.1.7 Uses of the GPU for GP: Data-Parallel 36

2.1.8 Uses of the GPU for GP: Population-Parallel 38

2.1.9 Distributed Use of GPUs for GP 41

2.1.10 The Use of Demes . 43

2.1.11 Uses of Related Technologies . 48

2.1.12 Applications . 48

2.1.13 Possible Future Directions . 50

2.2 Assembly and Machine Code . 51

2.3 Tournament Selection . 52

2.3.1 Measures of Strength of Selection Pressure 54

2.3.2 Tournament Selection With or Without Replacement 55

6

3 Methods 57

3.1 Genetic Programming (GP) Representation 57

3.1.1 Nodes and Instructions . 57

3.1.2 Cartesian Genetic Programming (CGP) 60

3.1.3 Cyclic Genetic Programming . 61

3.2 Tweaking Mutation Behaviour Learning (TMBL) 61

3.2.1 An Analysis of the Problem . 63

3.2.2 A TMBL Form to Avoid Limitations 65

3.2.3 Choosing whether to use nodes . 66

3.2.4 Choosing the structure of memory 67

3.2.5 Choosing the type of flow control 68

3.2.6 Choosing the type of instructions 68

3.2.7 A Summary of TMBL’s Standard Form 68

3.3 Compute Unified Device Architecture (CUDA) 70

3.3.1 PTX . 70

3.4 Conventions Used in the Thesis . 71

4 A Population-Parallel Implementation of Cyclic GP 72

4.1 Introduction . 72

4.1.1 Motivation for Using Graphics Processing Unit (GPU) Approaches 72

4.2 Cyclic Cartesian Genetic Programming 73

4.3 Overall CUDA Architecture . 75

4.3.1 Decisions and Constraints . 77

4.3.2 Kernel Details . 78

4.3.3 Textures . 79

4.4 Implementation Details . 79

4.4.1 Minimising Divergent Warps and Optimising Memory Access

With Testcase-Groups . 79

4.4.2 Limits on Registers Constrain the Number of Threads 81

4.4.3 Shared Memory Limits . 82

4.4.4 ThreadPolicy and ThreadPlan . 84

4.4.5 Time Recording and Timeline Generation 89

4.5 Assessment of Performance . 90

4.5.1 Performance Measurement Issues 90

4.5.2 Experimental Setup and Results 91

4.6 Summary and Contribution . 94

5 Improving GPU Usage 98

5.1 Introduction . 98

5.2 Step One: Parallel GPU Execution, CPU Execution and Memory Transfer 99

5.2.1 Description of the Step . 99

7

5.2.2 Implementation . 102

5.2.3 Experiments and Results . 105

5.3 Step Two: Using Two GPUs . 107

5.3.1 Description of the Step . 107

5.3.2 Implementation . 107

5.3.3 Experiments and Results . 112

5.4 Step Three: Deme Transfers . 114

5.4.1 Description of the Step . 114

5.4.2 Implementation . 114

5.4.3 Topologies . 117

5.4.4 Experiments and Results . 119

5.5 Summary and Contribution . 120

6 Data-Parallel Optimisations 127

6.1 Introduction . 127

6.2 A Brief Synopsis of TMBL . 130

6.3 Technique 1: Compiling from the Lower-Level Language PTX 131

6.3.1 Data-Parallel with CUDA C Code 131

6.3.2 Data-Parallel with PTX Code . 133

6.3.3 Experimental Assessment . 136

6.3.4 Results of Experiments . 137

6.3.5 Comments on Compiling from the Lower-Level Language PTX . 148

6.4 Technique 2: Reducing Repeated Code through Alignment 148

6.4.1 Alignment . 150

6.4.2 The Needleman and Wunsch Algorithm 151

6.4.3 The Need for a New Alignment Algorithm 151

6.4.4 A Rough Alignment Algorithm . 153

6.4.5 A Rough Multiple Alignment Algorithm 153

6.4.6 Experimental Assessment . 158

6.4.7 Results of Experiments . 159

6.4.8 Comments on Reducing Repeated Code through Alignment . . . 166

6.5 Combining Both Techniques on 1000-Instruction Individuals 167

6.6 Summary and Contribution . 168

7 Further CPU Optimisations 171

7.1 Introduction . 171

7.2 Optimising the Tournament Selection . 172

7.2.1 Common Selection Schemes . 173

7.2.2 Tournament Selection Mathematics 178

7.2.3 Fast Tournament Selection . 183

7.2.4 The Effect of Tournament Size on Selection Pressure 192

8

7.2.5 Extending Tournament Selection Mathematics Beyond Integers . 194

7.2.6 Showing the Continuous Extensions are Well Behaved 195

7.2.7 A New Measure of Selection Pressure: Many-From-Few 200

7.2.8 CalculatingMany-From-FewValues and Studying Selection Pres-

sure . 203

7.3 Enhancing the Individual Copying Strategy 211

7.3.1 The Problem of Updating the Individuals 211

7.3.2 Picturing the Problem . 213

7.3.3 A Heuristic to Tackle the Problem 215

7.3.4 Assessment of the Heuristic . 217

7.4 Summary and Contribution . 220

8 Conclusions and Future Work 225

8.1 Conclusions . 225

8.2 Future Work . 227

References 230

9

List of Figures

1 Pseudo-code for EC . 18

2 Representations commonly used in GP . 19

3 The multiple ways in which GP may be divided 32

4 A deceptive fitness function with dead-end branches 44

5 The tree representation naturally suggests methods for evaluation, mu-

tation and crossover . 57

6 Steps to attempt improving the standard classification of GP representa-

tions . 58

7 Two functionally equivalent individuals with representations that are

classified separately because they are depicted differently 59

8 An example Cartesian Genetic Programming individual 61

9 Pseudo-code for CGP . 62

10 Comparison of a tower of blocks and an inverted GP tree 64

11 An example illustrating the iterated evaluation of a cyclic CGP individual 74

12 Pseudo-code for CGP . 75

13 The division of a thread block into node-sets and testcase-groups 81

14 Illustration that cyclic GP requires more memory 83

15 The division of work in a block of 256 CUDA threads 85

16 An example packing of 20 programs . 88

17 An example of the sort of timeline that can be automatically generated

from runs . 90

18 Total run duration for the CPU implementation over varying number of

testcases and number of iterations . 95

19 Operation rate for the CPU implementation over varying number of test-

cases and number of iterations . 95

20 Total run duration for the GPU implementation over varying number of

testcases and number of iterations . 96

21 Operation rate for the GPU implementation over varying number of test-

cases and number of iterations . 96

22 Timelines showing parallel use of CPU and GPU can reduce run times

even further . 100

23 Illustration of CUDA’s imperfect handling of streams 101

24 UML depiction of CudaResourceSet and its handling of resources 103

25 The potential effects of using two different memory reallocation strategies 104

26 Total run duration for the parallel CPU-GPU implementation over vary-

ing number of testcases and number of iterations 106

27 Operation rate for the parallel CPU-GPU implementation over varying

number of testcases and number of iterations 108

10

28 Timelines showing run time reductionwithmultiple CPU cores andmul-

tiple GPUs . 108

29 UML depiction of CudaResourceSet with CudaTextureSetIndex 109

30 UML depiction of the resources held by the CudaResourceSet class . . . 110

31 UML depiction of how AccessHandlemanages CUDA resources 111

32 Total run duration for the multiple GPU/CPU core implementation . . . 113

33 Operation rate for the multiple GPU/CPU core implementation 113

34 UML depiction of the DemeTransferManager class hierarchy 114

35 Timelines showing smart deme transfers avoid stopping all evaluation . 116

36 Timelines of smart deme transfers improving more for fast GPU tasks . 117

37 Examples of the strip, loop and torus topologies for twelve demes 118

38 The effect of using smart deme transfers when using a loop topology . . 121

39 The effect of using smart deme transfers when using a toroidal topology 122

40 The effect of using smart deme transfers when using a toroidal topology

and twelve demes split over two CPU threads 123

41 Total run duration over varying layouts and over smart or naive deme

transfers . 124

42 Schematic comparison of data-parallel and population-parallel approaches128

43 Example TMBL code . 131

44 The steps required to compile and load CUDA source code into a callable

GPU module . 132

45 The linearity of combining pairs of steps over varying numbers of indi-

viduals per kernel for CUDA C and PTX source. This purpose of this is

for checking the validity of assumptions as discussed in the text. 139

46 The cubin load time per individual over varying numbers of individu-

als per kernel for CUDA C and PTX source. This purpose of this is for

checking the validity of assumptions as discussed in the text. 140

47 The effect on evaluation speed of varying the number of individuals per

kernel for CUDA C and PTX source . 141

48 The effect on compilation time per individual of varying the number of

individuals per kernel for CUDA C and PTX source 142

49 The effect on evaluation speed of varying population sizes for CUDA C

and PTX source . 143

50 The effect on compilation time per individual of varying population

sizes for CUDA C and PTX source . 144

51 The effect on evaluation speed of varying numbers of TMBL instructions

per individual for CUDA C and PTX source 145

52 The effect on compilation time per individual of varying numbers of

TMBL instructions per individual for CUDA C and PTX source 146

53 Using multiple threads for compilation 147

11

54 Differences between aligning proteins and TMBL programs 152

55 A summary of the first stage of the alignment algorithm. 154

56 Order of the alignment algorithm’s sweep for the next match 154

57 Examples of issues involved in aligning 155

58 The effect of the second stage of alignment 156

59 A summary of the second stage of the alignment algorithm. 157

60 The time per individual to align and generate source over varying num-

bers of TMBL instructions with and without alignment 160

61 The time per individual to compile from CUDA C to cubin over varying

numbers of TMBL instructions with and without alignment 161

62 The evaluation speed over varying numbers of TMBL instructions with

and without alignment . 162

63 The time per individual to align and generate source over varying num-

bers of individuals per kernel with and without alignment 163

64 The time per individual to compile from CUDA C to cubin over varying

numbers of individuals per kernel with and without alignment 164

65 The evaluation speed over varying numbers of individuals per kernel

with and without alignment . 165

66 Illustrations of the RWS and SUS selection schemes 173

67 An example of tournament selection . 175

68 An example of tournament selection after sorting 177

69 An example of tournament selection involving inviduals in joint place . 178

70 The probabilities of each individual in a population of 20 being selected

by one tournament of size four . 181

71 Graphs illustrating no selection pressure and maximal selection pressure 182

72 An efficient implementation of random selections 183

73 Time to fill a population from without-replacement tournament selec-

tions using the standard algorithm and random sample() 185

74 Time to fill a population from without-replacement tournament selec-

tions using the standard algorithm and a new sampling subroutine . . . 186

75 Time to fill a population from without-replacement tournament selec-

tions using the new algorithm . 186

76 Time to fill a population from with-replacement tournament selections . 187

77 Configurations for which the new algorithm is faster 193

78 The probabilities shown in Figure 70 may be extended to smooth contin-

uous functions . 201

79 Details of Subfigures 78(a) and 78(a) with additional highlighting 203

80 Continuous cumulative probability distributions for two very different

without-replacement tournament selection configurations 204

12

81 Contours of constant selection pressure exerted by tournament selection

with replacement . 206

82 Contours of constant selection pressure exerted by tournament selection

without replacement . 207

83 Four attempts at building a new population 212

84 An example of playing the copying game 214

85 The problem and solution from Figure 84 compressed into one diagram 215

86 A solution to a more realistically sized problem than in Figure 85 217

87 The average number of copies required by the algorithm compared to

the 2N copies required for the naive algorithm and the lower bound . . 221

88 The average percentage reduction towards zero and towards the lower

bound from the 2N copies required for the naive algorithm 222

89 The average absolute number of copies above the lower bound 223

13

List of Tables

1 A history of CUDA toolkit releases with highlights of each release’s new

features . 35

2 A summary of some of the major studies into accelerating GP with the

GPU . 37

3 A summary of selection pressure measures from the literature. 55

4 A key to the timeline figures . 90

5 A table summarising the technical details of the system used for the ex-

periments. 92

6 A table summarising the parameters of the symbolic regression GP runs. 93

7 The results for the CPU implementation over varying number of test-

cases and number of iterations . 95

8 The results for the GPU implementation over varying number of test-

cases and number of iterations . 96

9 The results for the CPU-GPU parallel implementation 106

10 The results of the multiple GPU and multiple CPU core implementation 112

11 Property summary of instances of three deme layouts 119

12 Total run duration over varying layouts, numbers of threads, numbers

of demes per thread and smart or naive deme transfers 123

13 A comparison of the CUDA C and PTX code used to perform various tasks134

14 The linearity of combining pairs of steps over varying numbers of indi-

viduals per kernel for CUDA C and PTX source 139

15 The cubin load time per individual over varying numbers of individuals

per kernel for CUDA C and PTX . 140

16 The effect on evaluation speed of varying the number of individuals per

kernel for CUDA C and PTX source . 141

17 The effect on compilation time per individual of varying the number of

individuals per kernel for CUDA C and PTX source 142

18 The effect on evaluation speed of varying population sizes for CUDA C

and PTX source . 143

19 The effect on compilation time per individual of varying population

sizes for CUDA C and PTX source . 144

20 The effect on evaluation speed of varying numbers of TMBL instructions

per individual for CUDA C and PTX source 145

21 The effect on compilation time per individual of varying numbers of

TMBL instructions per individual for CUDA C and PTX source 146

22 Using multiple threads for compilation 147

23 Example illustrating reducing work for the compiler through alignment 149

24 Details of the system . 158

25 Default parameters for the runs . 159

14

26 The time per individual to align and generate source over varying num-

bers of TMBL instructions with and without alignment 160

27 The time per individual to compile from CUDA C to cubin over varying

numbers of TMBL instructions with and without alignment 161

28 The evaluation speed over varying numbers of TMBL instructions with

and without alignment . 162

29 The time per individual to align and generate source over varying num-

bers of individuals per kernel with and without alignment 163

30 The time per individual to compile from CUDA C to cubin over varying

numbers of individuals per kernel with and without alignment 164

31 The evaluation speed over varying numbers of individuals per kernel

with and without alignment . 165

32 The effect on evaluation speed of varying whether kernel code is aligned

and the language in which it is written . 168

33 The compilation time per thousand-instruction individual for aligned

and unaligned code and for CUDA C and PTX source 168

34 Time to fill a population from without-replacement tournament selec-

tions using the standard algorithm and using random sample() 188

35 Time to fill a population from without-replacement tournament selec-

tions using the standard algorithm and a new subroutine 189

36 Time to fill a population from without-replacement tournament selec-

tions using the new algorithm . 190

37 The effect on old style tournament selection duration (in seconds) of

varying total population size, tournament size fraction. 191

38 Themany-from-few selection pressure exerted bywith-replacement tour-

nament selection for various tournament sizes 205

39 The many-from-few selection pressure exerted by without-replacement

tournament selection for various tournament sizes and populations sizes 208

40 The tournament size required to achieve various selection pressures us-

ing with-replacement tournament selection. 208

41 The tournament size required to achieve various selection pressures for

various population sizes using without-replacement tournament selection.209

42 Translating between constraints of the problem and equivalent rules of

a game to be played on diagrams like that in Figure 84(a). 213

43 Lower bound, copies for the naive algorithm and copies for the new al-

gorithm over varying population sizes and selection pressures. 218

15

1 Introduction

1.1 Problem Definition

Natural selection is a remarkable algorithm, simple yet powerful. If we study nature

closely, we find not just astonishing intricacy but also breathtaking functional complex-

ity that appears designed for a purpose. Other processes direct biological evolution but

natural selection alone explains this functional complexity, this illusion of design.

We implement the natural selection algorithm in our computers in an attempt to

harness some of its creative power and we call this field Evolutionary Computation

(EC). Various forms of EC have been proposed for tackling different sorts of problems.

For example, a Genetic Algorithm (GA) entails evolving a string of characters.

For other application areas it may be unclear what structure of solution is required

or it may be obvious that an algorithm or behaviour must be evolved. These problems

may be better suited to Genetic Programming (GP) which entails evolving programs.

If we could master the use of natural selection’s creative power to generate complex

functional behaviours automatically, this would give us a remarkable tool with which

we could work on all manner of problems.

Although GP is often highly effective during the initial stages, it typically stagnates

quickly. If a population of programs evolved not for a few hundred generations but

for a few hundred thousand or more, could it generate more interesting behaviours

and tackle more complex problems? Evolutionary biology vividly demonstrates the

astounding amount of functional complexity that a cumulative process can build using

nothing but small, unguided improvements and plenty of time.

Despite the ever faster computation being delivered by processor technology, GP

remains unsuitable for problems that can only be solved through a long series of im-

provements. This suggests that computational power is not the main limit to the useful

complexity that GP can evolve. If we could understand that limit, we might be able to

alleviate it and hence attack new sorts of problems. This requires a form of EC that is

similar to GP but that focuses on sustaining improvements in the long-term.

Unfortunately researching this limit on long term improvement is currently made

practically difficult because of the amount of computation it requires. Although current

Central Processing Unit (CPU) technology is powerful enough to show us that it is no

longer the main obstacle, it is not yet powerful enough to fuel the many repetitions

required to identify what is.

GP is typically quite slow because evaluating the individuals tends to be much

more computationally expensive than is the case for other forms of EC. For this rea-

son, GP researchers are typically eager for any possibility of speeding up their runs.

The importance of speed is even greater when researching ways to stimulate long-term

improvements in GP. There are several reasons for this. First, it requires long runs. Sec-

ond, it requiresmany runs to investigate the effects of different properties overmultiple

16

repetitions. Third, the data-set must typically be large for it to delineate a problem that

can only be solved though a long series of gradual improvements. Fourth, the pro-

grams being evolved must be large to contain the complexity that the right technique

should build up over many generations. Combined, these factors upgrade run-speed

acceleration from an urgent issue to a sine qua non.

Problem A standard implementation of program evolution (GP) is too slow on standard hard-

ware. In particular, it will have to be a good deal faster if it is to be used for research

into stimulating long term improvement so that more complex behaviours may be

evolved.

This thesis describes research into developing a range of techniques to accelerate GP

with a focus on exploiting the power of the Graphics Processing Unit (GPU). Though

the motivation for the research was to open up the possibility of research into long term

improvements, the applicability of these GP-accelerating techniques is very wide. To

explain further, it is necessary to give a brief overview of GP and its implementation

on the GPU.

1.2 Overview of Genetic Programming (GP)

Evolutionary computation takes the basic notion of natural selection and uses it to con-

struct an algorithm. There are many varieties of EC, but the basic recipe involves up-

dating a population of candidate solutions through multiple iterations of three steps:

generate, assess and select (as illustrated with pseudo-code in Figure 1).

• The first step involves generating new individuals. The first iteration’s individu-

als are typically created randomly (although they may be seeded using successful

results from previous experiments). Later individuals derive from the individu-

als selected in the previous iteration. The child of a selected individual may be

modified by mutations (by analogy to biological mutation) and may also draw

from one or more other parents (by analogy to sexual reproduction).

• The second step involves assessing the individuals according to some criterion.

This typically involves measuring the individual’s success in tackling the prob-

lem in question. The result of an individual’s assessment can often be reduced

to a single numerical value, called its fitness. Typically the fitness is calculated by

evaluating the sum of the individual’s performances over a set of examples of the

problem, or testcases.

• The third step involves using the fitnesses of individuals to select those individu-

als that will be permitted to reproduce (i.e. that will be used in the next generating

step).

17

sub evolutionary_computation() {

generation_ctr = 1;

do {

if (generation_ctr == 1) {

population = initialise();

}

else {

population = create_new_population(population, seln_indices);

population = mutate_new_population(population);

}

fitnesses = assess(population, testcases);

seln_indices = select(population, fitness);

generation_ctr++;

} until (termination_condition(population, generation_ctr));

return population;

}

Figure 1: Pseudo-code illustrating the basic EC algorithm

The analogy between this process and biological evolution allows EC to draw from

biological vocabulary quite naturally. For instance the individual’s inherited structure

may be referred to as its genotype, its behaviour resulting from this structure may be

called its phenotype and sections of its genotype that have no (apparent) effect on its

phenotype may be described as introns.

There are several types of EC and one of the key distinguishing features is the struc-

ture being evolved, the representation. The most commonly used is the GA, in which

individuals are represented as strings of a finite alphabet of characters. This form is

inspired by the sequences that make up biological genomes. Two less popular forms of

EC are Evolutionary Programming (EP) and Evolution Strategies (ES), which typically

evolve the parameters of fixed-structure programs and vectors of floating point num-

bers respectively. In all these cases, it is necessary for the implementer to choose some

way in which individuals are to be interpreted as candidate solutions for the problem

in question.

GP is the fourth major form of EC and is the focus of this thesis. This form of EC

aims to evolve not just static individuals such as strings of characters or numbers but

dynamic behaviours, i.e. programs. The standard representation of a GP program is

a tree as depicted in Figure 2(a). More generally, most GP representations use either a

node-based representation (such as the tree depicted in Figure 2(a)) or an instruction-

based representation (such as the example depicted in Figure 2(b)). In either case, the

individual is built out of instructions that take inputs and produce outputs. The num-

ber of inputs an instruction requires is known as its arity. Representation is discussed

in more detail in Section 3.1.1.

18

+y

%

y 1

+

x

(a) Tree-based representation

 ...

#label_23:

 r3 = r1 + r2;

 if (r3 > 0) goto #label_24;

 r8 = r9 - r4;

 ...

#label_24:

 r5 = r7 * r2;

 r5 = r1 + r2;

 goto #label_23;

 ...

(b) Linear representation

Figure 2: Individuals providing examples of representations commonly used in GP. Subfig-
ure 2(a) shows an example of a tree that evaluates to (y/(y+ 1)) + x. Subfigure 2(b)
shows an example of a linear individual, which uses the form of a programming lan-
guage.

The tree depicted in Figure 2(a) can be evaluated in a single, depth-first sweep

through the nodes and its results do not vary over any further sweeps. By contrast

cyclic GP (in which node-based structures are permitted to contain cycles) does not nat-

urally suggest an order in which the nodes should be evaluated and different orders

may give different results. This may be resolved by using an iterated flip-flop evalu-

ation. Cyclic GP is a superset of non-cyclic GP since non-cyclic individuals (such as

a tree) are valid cyclic individuals and give the same results under cyclic evaluation

(with sufficient iterations). Cyclic GP is discussed in more detail in Section 3.1.3.

The selection step of an EC algorithm usually employs one of several standard se-

lection schemes, which choose individuals with varying degrees of determinism and

elitism. The selection scheme used in this work is tournament selection, which involves

repeatedly choosing a random subset of the individuals and then selecting its member

of highest fitness. This selection scheme is analysed and optimised in Chapter 7.

1.3 An Overview of Using the Graphics Processing Unit (GPU)

The GPU is at the heart of this work. The reasons for using this technology are out-

lined in Section 4.1.1. Some of the developments in the GPU’s impact on EC and GP

are discussed in Section 2.1 and the reason for its use in this research are outlined in

Section 4.1.1.

The basic principle involved in using the GPU is to write a function to be run on the

GPU, called a kernel. The kernel is then compiled, uploaded to the GPU and executed

via calls from the CPU. As discussed in Section 2.1, this has been used in two ways

for GP evaluation. In data-parallel approaches, each new batch of individuals is used to

construct a new batch of kernels. This allows the compiler to produce highly optimised

19

code, which runs on the GPU at very high speed but considerable time is spent on the

compilation for every new batch of code. In population-parallel approaches, a single

interpreter kernel is constructed to process new batches of individuals as data. This

interpreter only need be compiled and uploaded once, however it tends to run slower

than the data-parallel equivalent.

1.4 Aims and Objectives

As described in Section 1.1, the motivation for the acceleration work described in this

thesis was to enable research into stimulating long-term fitness growth in evolving be-

haviours. Hence the aim of this work was defined by the requirements of the long-term

fitness growth research. Such research would need to investigate a range of problems

and a range of forms of GP so the accelerationmust allow for that. Such research would

need to be performed without vast financial resources so the acceleration should focus

on getting the most out of a single, reasonably-priced machine. Such research must

allow comparison with standard GP so the core algorithm should be distorted as lit-

tle as possible. By condensing these points, the aim of this acceleration work may be

expressed as follows:

Aim Accelerate program evolution (GP) as much as possible on a single, reasonably-priced

machine with as little distortion of the algorithm as possible. This should be done flexibly

to allow for a wide range of forms and problems.

The requirement for a wide range of problems suggests that there may be differing

data-set sizes, which in turn suggest that both population-parallel and data-parallel

techniques should be deployed. The requirement for a wide range of forms suggests

that both node-based and instruction-based GP should be implemented. Further, the

node-based form should be cyclic because it is a superset of other non-cyclic, node-

based forms as discussed in Section 1.2 and its structural complexity might be useful to

stimulate long term improvement. For the work described in this thesis, a population-

parallel approach is used to implement a cyclic node-based form and a data-parallel

approach is used to implement an instruction-based form. Implementing all possible

combinations of GP representations and GPU implementations is beyond the scope of

this thesis. The other combinations are discussed as possible avenues for future work

in Section 8.2.

Cyclic GP imposes additional constraints to make the population-parallel imple-

mentation more challenging. The challenge for the data-parallel implementation is to

reduce compilation times so that the best evaluation speeds can be brought to bear on

more moderately sized data-sets.

Accelerating the evaluation stage only tackles part of the problem because the other

parts of the GP run also take non-trivial amounts of time. As will be seen in Section 2.1,

much previous work on using the GPU to accelerate GP focuses on the evaluation only,

20

or else neglects to use the CPU at all during the run. Since the overall run speed is

the ultimate aim, it is important to consider ways in which this can be reduced further

once fast GPU evaluation is achieved. It is also important to ensure that time spent on

CPU tasks is kept to a minimum through optimisation so that these tasks do not ruin

the other achievements. These considerations allow the aim to be broken down into

the following objectives:

Objective 1 Use a population-parallel implementation to evaluate cyclic, node-based GP as

fast as possible.

Objective 2 Take this further on one machine by improving the interaction between the CPU

and the GPU and by using a second GPU.

Objective 3 Find ways to reduce compilation times of a data-parallel implementation of a form

of EC with linear programs so that the best evaluation speeds can be brought to

bear on more moderately sized data-sets.

Objective 4 Identify the worst and most avoidable bottlenecks within the CPU code and tackle

them.

1.5 The Validity, Scope and Assessment of the Research

As discussed in Section 1.4, the research in this thesis is concerned with objectives to

speed up various forms of GP. This research was primarily motivated by the need to

enable research into improving the long term fitness growth of GP. Once enabled, that

research might still fail to deliver any interesting results, thus rendering this particu-

lar motivation fruitless. Nevertheless, the case for this work remains strong for two

reasons: because the enabled research may well repay the investment and because the

need for acceleration in the GP community is already strong enough to merit this be-

ing an independent research area. It is worth spending two paragraphs expanding on

these two reasons.

Sometimes a potentially interesting area of research cannot be tackled until difficult

preparatory work provides the necessary tools. This preparation must be conducted

with the awareness that its motivation might prove hollow. Of course, one should

not conclude from this that research should only be conducted if the benefits of the

motivations can be confirmed in advance; such thinking would have prevented many

of our most valuable scientific advances.

Further, although the particular ambition that happened to motivate this work may

eventually prove fruitless, this is of little concern because the acceleration of EC, and

particularly of GP, is of sufficient direct value to the research community that it has

become an established research topic. This is clear from the wealth of high-quality

research literature on the topic as discussed in Chapter 2. Although accelerating GP is

only of real value if it can directly or indirectly improve the effectiveness of GP to solve

21

real problems, the research community has clearly indicated that they believe this is

so.

The work in this thesis is concerned with accelerating EC, not with changing it.

This conforms to the correct scientific approach of isolating a group of variables that

are highly independent from the others so as to study them as clearly as possible. If

acceleration had not been an established research question in its own right or if it had

offered insufficient material to occupy a PhD, it would have been necessary for this re-

search to muddle the highly independent questions of how to accelerate GP with how

best to modify it to improve its results. Fortunately, the volume of literature on acceler-

ation clearly demonstrates that this is not the case and so this thesis takes standard GP

runs and finds ways to perform identical runs as fast as possible. It is very important to

check code correctness by checking runs behave identically after acceleration; beyond

that the run’s results are of no interest and all that matters is the speed of the run.

Actually, outside of the acceleration research covered in the main chapters, the the-

sis does briefly touch on research conducted as part of the PhD to tackle GP’s stagna-

tion. Section 3.2 and Section 6.2 outline work that proposed Tweaking Mutation Be-

haviour Learning (TMBL, pronounced “tumble”), a new form of EC and a sister to GP.

TMBL is described because it is the form that is accelerated in Chapter 6 and because

it illustrates the sort of research that might follow on from this thesis. However this

inclusion of TMBL should not detract from the central point that the core of the thesis

is concerned with accelerating GP runs and not with the behaviour within them.

Similarly, the problems that are tackled in this research are not of interest. This

thesis names the test problems used in this research and Chapter 2 mentions some of

those used in the cited literature. However these are not discussed in great detail be-

cause the acceleration is typically independent of the problem being tackled. In this

thesis, regression problems were often used but this choice is unimportant and largely

arbitrary. For the purposes of assessing acceleration, it would have been equally good

to test each individual on randomly generated testcases, discard the results of their

evaluations and then randomly assign fitnesses to determine selection. The difficulty

of the problem being tackled typically does not influence the difficulty of the accelera-

tion; the magnitude of acceleration typically does not influence the quality of solution

(except in that faster computation permits longer runs).

There are two ways in which this independence may be imperfect and it is worth

discussing them here to demonstrate that they may reasonably be ignored in this the-

sis.

First, some problems involve large amounts of computation (and hence time) be-

yond what is required to evaluate the successive generations on the problems’ test-

cases. These steps will still require large amounts of computation (and hence time)

once the evaluation and other steps tackled in this thesis have been heavily acceler-

ated. However this observation essentially amounts to the obviously true statement

22

that if a problem involves unavoidable, problem-specific time costs, then they will be

unavoidable and it will not be possible to tackle them with general methods. It would

not enhance experimental assessment of acceleration to consider such problems be-

cause this would just entail adding some constant amount of time to the evolutionary

run both before and after acceleration. For this reason, the problems chosen for use in

this thesis do not require much extra computation after the testcase evaluations.

Second, it is just possible that different problems may bias the distribution of in-

structions in the population and this may have some effect on the relative speed im-

provement of a GPU implementation over a CPU implementation. For example, one

particular problem may tend to lead to a population that is very heavy on division

instructions and it may be that the GPU’s speed improvement over the CPU may be

slightly greater for division than for other instructions. There is no particular reason

to think that this effect is particularly likely or pronounced, especially compared to the

many other issues that might affect the assessment.

1.6 Approach

Chapter 4 describes work to tackle Objective 1. This involves the design and construc-

tion of a population-parallel evaluator. As discussed in Chapter 2, other researchers

had published work describing population-parallel implementations of GP before this

research was conducted (and described in a 2009 paper [49]). However the work de-

scribed in Chapter 4 makes a novel contribution by tackling cyclic GP. Since cyclic GP

typically requires more memory for evaluation, this induces several challenging con-

straints on the architecture. The lowmemory requirements of tree evaluationmean that

a single GPU thread is able to evaluate the entirety of a reasonably sized program (on

a single testcase). The much greater memory requirements of cyclic evaluation mean

that the evaluation of a single program (on a single testcase) must be split over multiple

GPU threads. This adds considerable difficulty to the task. To get the best results, care

must be taken to schedule the evaluation of multiple programs of differing sizes over

groups of threads. Chapter 4 is implementation focused and describes several of the

technical issues that underlie the chapters that follow it.

Chapter 5 describes work to tackle Objective 2. This involves three steps to improve

the architecture’s use of a GPU evaluator. Although these steps are discussed in the

context of the population-parallel evaluator described in Chapter 4, they are equally

applicable to other evaluators such as the one described in Chapter 6.

The first step of Chapter 5 involves interleaving the work of the GPU and the CPU

so that both may perform their respective tasks simultaneously. This is achieved by

splitting the population into sub-populations or demes. This technique of splitting the

population is quite common in EC and is often found to be beneficial, even ignoring the

additional speed benefits it confers in this context. Section 2.1.10 discusses the literature

relating to this issue. By using demes, the CPU can asynchronously submit one deme

23

to the GPU and then return to preparing the next deme. This way, both processors can

be kept busy simultaneously, meaning that the overall run can be completed sooner.

The second step of Chapter 5 involves recruiting a second GPU within a single

machine to make the run faster still. At the time of the work (and of a 2009 paper de-

scribing the work), Compute Unified Device Architecture (CUDA) required that each

GPU was accessed by a separate thread. Hence the second step requires effort to make

the code manage the evolutionary run over multiple interacting threads. In May 2011,

nVidia released CUDA v4.0, which permits a single thread to access all of a system’s

GPUs. Nevertheless, the work was still worthwhile because it makes runs faster by

recruiting an additional CPU core.

The third step of Chapter 5 addressed a potential issue raised by the techniques

used in the first two steps: that the introduction of demes might slow the run down

through the need for transfers between demes. A deme transfer system is added that

may be configured using a class that specifies where and when transfers are conducted

and another class that specifies how. This system is enhanced with a “smart mode”

that attempts to allow each step of the evolutionary run to be performed as soon as

possible. This is made possible by splitting the deme transfers into separate donating

and receiving tasks. This enables a deme to complete its deme transfer and return to

normal processing even if its neighbours have not yet taken receipt of its donations.

Experimental investigation shows that the time cost of deme transfers is small and that

it can be mitigated through the use of the novel, smarter approach.

Chapter 6 describes work to tackle Objective 3. The linear representation used is

TMBL. In this case, the basic data-parallel system is similar to those described in work

by other researchers so the chapter does not dwell on describing this. Instead, the fo-

cus is on the major problem of data-parallel approaches: the time overhead required to

compile code for the GPU. Chapter 6 describes two approaches to try to reduce these

compilation times. The first approach involves writing the individuals in a lower level

language (called Parallel Thread EXecution (PTX)) rather than C/C++. The CUDA

compiler processes any C/C++ by first compiling it into PTX and then compiling this

PTX code into GPU-ready binary code. Writing the individuals directly in PTX saves

the compiler from having to undertake the first stage and it also allows a greater degree

of control over the final binary file. The second approach involves pre-aligning indi-

viduals to reduce duplicated common code. Since the individuals being compiled are

typically highly similar to each other, the compiler is often duplicating a great deal of

the work. By pre-processing the individuals to identify and remove duplications, the

load on the compiler can be reduced.

Chapter 7 describes work to tackle Objective 4. Profiling was used to identify those

bottlenecks that were needlessly wasting CPU time. The two areas identified were

tournament selection and the copying of individuals to construct new generations. In

the case of tournament selection, investigation indicated that much of the time was

24

spent on generating random numbers. This is addressed with the help of a mathemat-

ical analysis of without-replacement tournament selection, which is used to construct

a functionally equivalent algorithm that requires fewer random numbers. The mathe-

matical analysis is also used to investigate the selection pressure of various tournament

configurations. This is taken further by using an extension of the mathematical anal-

ysis that leads to a new measure of selection pressure. The new measure is then used

to provide a selection pressure contour map of different tournament configurations for

both with-replacement and without-replacement tournament selection.

The second optimisation of Chapter 7 tackles the time spent copying individuals to

construct new generations. After consideration of the problem, it is clear that a major

obstacle to its solution is the difficulty in understanding it clearly. To this end, a new

way is proposed to depict the problem. This enables the proposal of a new heuristic to

attempt to reduce the number of copies.

1.7 The Structure of the Thesis

Chapter 2 places the thesis in its context within the relevant literature on accelerating

EC and more specifically GP. Section 2.1 occupies most of the chapter and describes

previous approaches to this problem, with particular emphasis on GPU-based tech-

niques. The use of assembly and machine code is discussed in Section 2.2 and the

chapter closes with a discussion of tournament selection in Section 2.3.

Chapter 3 describes methods involved in the research. Section 3.1 discusses GP

(including Cartesian Genetic Programming (CGP) and cyclic GP) in more detail. Sec-

tion 3.2 describes a novel method, TMBL, which is used in some of the thesis. Sec-

tion 3.3 describes CUDA. Section 3.4 outlines some conventions used in the thesis.

Chapter 4 describes work to construct an efficient population-parallel GPU evalu-

ator that is capable of handling cyclic GP. The work is introduced in Section 4.1 and

the issues pertaining to cyclic GP are reiterated in Section 4.2. Section 4.3 describes the

relevant problems and the solutions adopted. Section 4.4 explores the system’s novel

features in more detail. Section 4.5 discusses issues relating to measuring GPU per-

formance in Section 4.5.1 and describes the experiments and presenting the results in

Section 4.5.2. Section 4.6 summarises the chapter and its contribution.

Chapter 5 describes work to improve run time further. Section 5.1 introduces the

chapter. In Section 5.2, demes are used to allow the GPU and CPU to simultaneously

operate on separate tasks to reduce run time. In Section 5.3, a second GPU is recruited

in the same machine to further reduce run time. In Section 5.4, the transfers between

demes are found to not unduly slow the system and then a refined system reduces this

small cost further. The chapter and its contribution are summarised in Section 5.5.

Chapter 6 describes work on data-parallel acceleration. The chapter begins with an

introduction in Section 6.1 and a reminder of TMBL in Section 6.2. Section 6.3 describes

work to use the lower-level PTX language to reduce compilation times and Section 6.4

25

describes work to pre-align batches of similar code before compilation to identify sim-

ilar code and reduce redundancy. The two techniques are combined on large TMBL

individuals of 1000 instructions in Section 6.5. Section 6.6 summarises the chapter and

outlines its contribution.

Chapter 7 describes work to reduce time wasted by the CPU by optimising two

tasks, which were selected based on profiling results. The work is introduced in Sec-

tion 7.1. Section 7.2 describes work to optimise tournament selection. Section 7.3 de-

scribes the second target for optimisation: the copying of individuals to construct new

generations. A summary of the work is presented in Section 7.4 along with a descrip-

tion of the contribution that it makes.

The thesis closes in Chapter 8 with a discussion of the work and the potential av-

enues for future research that it suggests.

26

2 Literature Review

It is important to understand the position of this thesis within the body of relevant

literature. Since the central aim of the thesis is to accelerate a form of Evolutionary

Computation (EC), it relates to literature that describes other likewise attempts. Sec-

tion 2.1 steps through differing approaches to this challenge, paying special attention

to this thesis’s choice of technology: the Graphics Processing Unit (GPU). Section 2.1

covers a good deal of the literature relevant to this thesis but leaves two gaps that are

filled by Sections 2.2 and 2.3. Section 2.2 covers with literature relevant to to Chap-

ter 6 on the use of assembly and machine code. Section 2.3 covers literature relevant to

Chapter 7 on tournament selection and ways of measuring selection pressure.

This chapter mentions some of the application areas on which the described sys-

tems have been tested. However, as discussed in Section 1.5, these are not discussed

in great detail because the acceleration is typically independent of the problem being

tackled. In particular, the difficulty of the problem being tackled typically does not

influence the difficulty of the acceleration and the magnitude of acceleration typically

does not influence the quality of solution (except in that faster computation permits

longer runs).

2.1 Acceleration

Much of this work is concerned with accelerating EC and in particular, forms of EC like

Genetic Programming (GP). The GPU is used as the main approach. To understand this

work, it is important to place it in its context within the literature on approaches to ac-

celerating EC. Various approaches have been researched [73]. The following sections

provide brief synopses of themajor approaches. There are two broad categories of tech-

nique: techniques that adjust the algorithm so it works more quickly and techniques

which leave the algorithm alone but implement it on some sort of parallel hardware.

In practice, this distinction is not clear-cut since techniques in the latter category may

adapt the algorithm to fit the parallel hardware.

The work on refining the algorithm involves either reducing the number of evalua-

tions or making each evaluation do more. This reflects the dominance of evaluation in

total run time, particularly for GP.

Presently, the work on using parallel hardware mostly fits into two categories: us-

ing some sort of network of machines or using some sort of parallel hardware device

on one machine. The former tends to involve less technical difficulty and more scal-

ability whereas using one parallel machine is often better with regards to dedicated

access, volatility of processors, homogeneity of processors and potential memory shar-

ing. El-Ghazali Talbi has discussed issues relating to these properties in his book on

metaheuristics [85]. One of the pieces of work discussed in Section 2.1.9 fits into both

27

categories as it combines both types of parallelisation by using a network of machines

equipped with GPUs [33].

2.1.1 Algorithm Design Approaches

The first area to be considered as a target for acceleration is the design of the algorithm

itself. In some cases it is possible to reduce the GP run time by redesigning the algo-

rithm to reduce the number of evaluations. The aim is to achieve this reduction with

minimal impact on the algorithm’s behaviour. There are two clear sources of evalua-

tions which can be skipped without effect:

• Skipping evaluations that do not affect the selection. It is often possible to opti-

mise away some of the testcase evaluations if they are not required to differentiate

the fitter of two solutions. In general, these evaluations are often difficult to iden-

tify in advance. However it is helpful to observe that after testing a population on

a large number of testcases, further changes to the fitness ranking of the individ-

uals may be unlikely or even impossible. If the ranking is the only information

needed by the selection scheme (the method of choosing the number of offspring

for each individual), then the final testcases may be of little or no value. In this

case, the evaluations over these testcases are good candidates for being skipped.

It may be possible to use information from previous generations to estimate in

advance a sensible number of testcases over which to evaluate.

Gathercole et al proposed three different methods for selecting testcase subsets

and compared the effects of each of them [22]. Dynamic Subset Selection (DSS)

uses the information within a run to focus on those testcases which either haven’t

been used for a while or which are difficult (frequently misclassified); Historical

Subset Selection (HSS) is less dynamic and focuses on those testcases which have

been found difficult (frequently misclassified) in previous runs, padded out with

a few easier testcases; Random Subset Selection (RSS) randomly selects a new

subset of testcases at the start of each generation. The investigation using Thyroid

problem data found that DSS allows GP to find better, more general results in less

time and also found that neither HSS nor even RSSmake GPmuchworse, despite

reductions in run time.

This work was extended three years later [24] with an investigation of another

heuristic called Limited Error Fitness (LEF). In the LEF method, an error limit is

applied to the testcases, which means that each individual is tested on succes-

sive testcases until it has misclassified that number of testcases. Once an indi-

vidual has misclassified the error limit number of testcases, all further testcases

are counted as failures. As the run proceeds, the error limit and the ordering of

the testcases are updated according the performance of the Best Of Generation

Individual (BOGI). This sort of approach might be more difficult to implement

28

for problems for which answers to each testcase cannot be so easily divided into

right and wrong. The method was tested on the Boolean Even N Parity problem

and the authors found that using LEF allowed GP to solve problem instances that

it could not solve otherwise.

In another work, the same authors compared LEF against DSS and against stan-

dard GP on the TicTacToe problem and, again, the Thyroid problem [23]. They

found that GP with DSS gets better answers with fewer evaluations. Intriguingly,

they also found that smaller populations over fewer generations consistently pro-

duced a better answer using fewer tree evaluations. They suggested that “it is

certainly worth an exploratory run or three with a small population size before

assuming that a large population size is necessary.”

Teller proposed another approach called the Rational Allocation of Trials (RAT)

[87]. This approach is more theoretical and involves performing evaluations and

then, based on the results, allocating more testcase evaluations to individuals ac-

cording to the expected utility of those evaluations. Sample statistics are used

to predict the chance that another testcase evaluation might make a given indi-

vidual win some tournament it is currently losing or lose some tournament it is

currently winning. “The key idea is that if an individual has no chance of winning

a tournament, or if an individual is virtually guaranteed to win a tournament, no

further fitness cases need to be evaluated” [87].

As EC is an inherently stochastic algorithm, it may be overkill to attempt to find

the perfect fitness ranking of individuals. Provided that enough selection pres-

sure is maintained in the correct direction, it may be reasonable to use a subset of

the complete testcases for each evaluation and to set the size of that subset at the

start of the run (in essence, the strategy called RSS by Gathercole et al [22]). In a

vivid illustration of this point, Langdon has used a subset of 211 = 2048 testcases

to solve the 20-mux problem which has 220 = 1048576 testcases and a subset of

213 = 8192 to solve the 37-mux which has 237 = 137438953472 testcases [44].

• Skipping evaluations that have already been performed. The approach to reap

the benefits of these evaluations is to cache the previous results and then reuse

them. For example, if a GP individual survives to the next generation unaltered

and is to be tested on the same test set as before, it may be possible to reuse the

previous results rather than recalculating them. Tree representations are partic-

ularly amenable to sophisticated caching techniques. This is because their sub-

structures evaluate to the same result for a given testcase regardless of the con-

text in the individual (as long as nodes with side effects are not being used). This

makes it possible to cache results for sub-trees which may be of great benefit

where there are sub-trees which are present in many individuals throughout a

population. Unfortunately, this technique will not work for those representations

29

in which all parts of an individual may potentially interact.

Many frameworks use some mechanism to perform this sort of fitness caching,

for instance the Evolutionary Computation in Java (ECJ) framework (http://

cs.gmu.edu/~eclab/projects/ecj/) allows a fitness evaluation method to set

an “evaluated” flag on an individual so that it need not be evaluated again until

it is modified.

This technique is more difficult if the data-set changes between generations, per-

haps because different generations are tested on different subsets of the full data-

set or because the evolution is occurring in a dynamic environment.

More broadly, where fitness evaluations take an unreasonable amount of time it

may be appropriate to use fitness approximation or surrogate assisted EC. These methods

involve finding some faster model with which to approximate the full fitness evalu-

ation. For instance, when attempting to evaluate the performance of a turbine blade,

wind tunnel experiments can be approximated by computational fluid dynamics simu-

lations and the full simulation usingNavier-Stokes equations can bemade even quicker

by neglecting various aspects, leading to a simpler form of equations. This example is

drawn from Jin’s summary of the field [37]. More recent publications include work by

Lim et al to develop a “generalization of surrogate assisted evolutionary frameworks”

to deploy these techniques without the need to hand-craft a model for each problem

[52].

2.1.2 Sub-Machine-Code Genetic Programming Approaches (SMCGP)

The alternative to reducing evaluations is to make each evaluation do more. When

evolving GP individuals which operate on a native Boolean type and which only use

the standard Boolean operators, several testcases may be calculated simultaneously

using a standard Central Processing Unit (CPU) [70]. Poli achieved this by using the

inherent parallelism available in the CPU which calculates Boolean operations on mul-

tiple bits at once. The 64 bit architecture CPU is now widely available and can be used

to perform 64 Boolean operations at once. For application areas that require decimals

or integers, Poli also showed in the same work how larger subsets of bits can be used.

For instance, he used a 64 bit number to represent 8 numbers, each containing 8 bits.

Decimal numbers were implemented by using a fixed point (rather than floating point)

implementation although this requires some sophistication in the handling of some of

the operations.

This method presents a trade-off: an increase in speed comes at the cost of a de-

crease in the range and resolution of the types on which it operates. Even at the limit

when using Boolean types, the method can only ever deliver a speedup equal to the

native number of bits for the CPU, which seems unlikely to be greater than 64 for some

time.

30

2.1.3 Grid Computing Approaches

Once the algorithm has been fixed, the other clear way to improve the speed of EC is

to provide more computing power. The GP community is fortunate to work on an al-

gorithm that is “embarrassingly parallel” [1] which means that it can easily be divided

into parallel tasks with few if any inter-dependencies. Figure 3 illustrates the many

ways in which a GP run might be divided. The consequence of this is that GP tends to

be an effective exploiter of parallel computing resources.

One way to approach this is to use a single many-processor machine: a supercom-

puter. In 1996, Turton et al used a Cray T3D 512 processor supercomputer at Edinburgh

University to perform GP [90]. The focus of the research was on the GP results and the

supercomputer’s speedup was not reported. This approach is impressive but unfortu-

nately, few people have access to a supercomputer.

A more prosaic approach is to use a network of normal machines. In 1998, Andre

et al described their work using a network of 66 transputers and one Pentium com-

puter to accelerate GP [1]. The transputer was a microprocessor architecture designed

specifically for parallel computing. The authors’ system of transputers displayed a

near-linear speedup in executing a fixed amount of code.

It is now quite common in many scientific computing fields to use open source

operating systems and scheduling software to divide jobs over many computers and

this has been used in some GP implementations. In 1999, Bennett et al described their

system using 10 nodes, each running Linux on a 533 MHz Alpha processor [8]. They

stated the total bill was $18, 134 and by connecting their computers in a “Beowolf-

style” cluster, they were able to achieve about 0.5 ∗ 1015 floating point operations per

day (i.e. 5.787 ∗ 109 FLoating point OPerations per Second (FLOPS)). The disadvantage

of this approach is that it requires large financial resources to obtain enough computers

to achieve significant acceleration results. Furthermore, maintaining many machines

and administrating computation over those machines typically requires a lot of human

time.

In 1999, Chong described a GP system using Java Servlets to distribute GP over the

Internet. This allowed the system to be executed “across the world over the Internet

on heterogeneous platforms without any central coordination”. In 2002, Groß et al [26]

described their distributed system for learning chess. They started with an algorithm

that could play chess and then used GP and Evolution Strategies (ES) to improve it.

They constructed a distributed environment, called qoopy, and used this to perform

their computation across the Internet. If the general public can be persuaded to donate

some of their computational resources to such systems, they could prove to be very

cost-effective . In cases for which the public’s computation can not (or should not) be

recruited, such schemes do not cheapen the computation, they merely distribute it.

31

runs

genera t ions d e m e s tes t cases

i tera t ions individuals

nodes

(a) Relationships between GP components

(b) Computational cuboids suggest how GP may be parallelised

Figure 3: How embarrassingly parallel is GP? Let me count the ways: runs, demes (i.e. sub-
populations), individuals, nodes, testcases, generations and iterations. Subfigure 3(a)
shows a rough relationship diagram in which each arrow means “contains one or
more”. This structure applies to Subfigure 3(b), which shows two independent runs,
using three demes of six individuals with five nodes, evaluated over eight testcases
for seven generations of four iterations. The big arrows indicate the passage of time
through the runs. There are several constraints on possible parallelisation. For a given
testcase, all nodes in an individual must be complete before any node in the next it-
eration may be evaluated. All computation within a deme must be complete before
moving on to the next generation. Deme transfers may require demes to complete cer-
tain generations before other demes can start other generations. Some representations
may apply further dependencies between an individuals nodes within an iteration.
This figure draws from ideas presented in a simpler version [46].

32

2.1.4 Field Programmable Gate Array (FPGA) Approaches

A Field Programmable Gate Array (FPGA) is a semi-conductor device which allows

some of its logic to be programmed dynamically. The FPGA is then able to use the new

configuration to process many entries using its highly parallel architecture. In 2000,

Heywood et al investigated the use of the FPGA device to accelerate GP and to reduce

the amount of source code it requires [35]. They concluded that the work they had com-

pleted was still “in the initial stages”. In 2003, Eklund described a massively parallel

linear GP model using VHSIC Hardware Description Language (VHDL), a language

that could be implemented on devices such an FPGA [18]. VHSIC stands for “very-

high-speed integrated circuits”. In 2008, Vasicek implemented Cartesian Genetic Pro-

gramming (CGP) on an FPGA and achieved a speedup of “30-40 times” [91].

2.1.5 Graphics Processing Unit (GPU) Approaches

Of the parallel processors that are currently widely available, perhaps the most inter-

esting for EC researchers is the GPU. The GPU was developed for generating realistic

three dimensional images at high speed, primarily for the games industry. The de-

mands and vast financial resources of this industry led to a chip containing simple

processors that are highly effective at floating point computation and at performing

the same operations on multiple independent data.

As the GPU’s rate of performing floating point calculations left that of the CPU

trailing ever further behind, interest grew in the idea of exploiting the chips to tackle

other parallel problems. During the same period, the processor manufacturers moved

the hardware to a more generic model that could be adapted to new applications. In

recent years there has been a rapid growth in interest in General-Purpose computing on

Graphics Processing Units (GPGPU) techniques (note: GPGPU should not be confused

with using GPUs for GP; GP is just one possible application of GPGPU). The GPU to

be found on current graphics cards has remarkable potential computing power and the

power of the technology appears to have been improving more quickly than for the

standard CPU [15].

EC techniques such as GP are well suited to GPU computation because the task of

evaluation is often easily broken up into independent evaluations for different indi-

viduals, testcases, population subgroups (or demes) and runs. As mentioned in Sec-

tion 2.1.3, tasks which can be divided so easily are often referred to as “embarrassingly

parallel” [1].

The most important framework in the context of this thesis is nVidia’s Compute

Unified Device Architecture (CUDA), which was used in this research and in many

of the more recent papers implementing GP on the GPU (as summarised in Table 2

in Section 2.1.7). CUDA is a freely-available, proprietary framework for exploiting

the compute capabilities of the nVidia GPU, and is available for Windows, Linux and

33

Mac OS. nVidia support CUDA users through substantial documentation and Internet

discussion fora (http://forums.nvidia.com/index.php?showforum=62).

CUDA is based on the C programming language, although many C++ constructs

are being added in newer releases. To use the CUDA framework, a user must write a

function, called a kernel, to be run on the GPU. The kernel is compiled by the CUDA

compiler and then uploaded to the GPU. It is then available for calls from CPU code.

CPU code may dynamically upload new kernels to the GPU. Where this ability is not

needed, the upload can be done behind the scenes instead by code generated automat-

ically by the CUDA compiler.

To use a kernel, the CPU code performs a kernel launch, which means launching

very many GPU threads to execute the kernel. Once the kernel is launched, the CPU

code may perform other tasks whilst the kernel is executing. The GPU threads are ca-

pable of performing different computations from each other because the kernel’s code

can access the identity of the thread under which it is executing and use this to guide

the computation. For example, a kernel may use the thread’s identity to index the loca-

tion of input data to the computation and then to index the location to which the results

should be written. This way, kernel code has a high degree of flexibility in the way it

divides up the work between threads.

CUDA GPU threads are grouped into thread blocks. A kernel launch specifies a grid

of threads by specifying the number of threads per block and the number of blocks in

the grid. A GPU thread may communicate with other threads in the same block via

on-chip shared memory and may synchronise with them via a call to the CUDA function

syncthreads(). Kernel code should make no assumptions about the ordering and

parallelisation of the execution of different thread blocks.

CUDA’s functionality improves through releases of new hardware and new soft-

ware. An nVidia card’s compute capability denotes the functionality that it provides.

Typically, a card provides all the functionality of cards with lower compute capabili-

ties. The cards used in this work were of compute capability 1.3. Cards of compute

capability 2.0 or higher offer several significant improvements to functionality as dis-

cussed in Sections 4.3, 4.3.3, 4.4.2, 4.4.3, 4.5.2 and 5.2.1. CUDA also improves through

new releases of the software involved in the CUDA framework. At the time of writing,

the latest stable release is v4.0, which was released in May 2011. Table 1 outlines the

release history of this CUDA toolkit.

Current GPU architecture is essentially Single Instruction, Multiple Data (SIMD),

which means that it involves many threads executing the same instructions on differ-

ent data. nVidia describe their CUDA framework as Single Program, Multiple Data

(SPMD) rather than SIMD. This means that all the threads in a given kernel launch

must execute on the same program but do not necessarily have to follow the same ex-

ecution paths through the code (and so do not have to all execute a single instruction

simultaneously).

34

Month and year of release CUDA version Release highlights

May 2011 4.0 Share GPUs across multiple threads, use all GPUs in the
system concurrently from a single host thread, no-copy pin-
ning of system memory, C++ new/delete and support for
virtual functions, support for inline PTX assembly

November 2010 3.2 Improved libraries
June 2010 3.1 Runtime/Driver interoperability, support for function

pointers and recursion
March 2010 3.0 C++ class inheritance and template inheritance support,

Driver/Runtime buffer interoperability

June 2009 2.3 Improved support for double-precision, improved han-
dling of SLI GPUs, several Visual Profiler enhancements

May 2009 2.2 CUDA Visual Profiler reports memory transactions, im-
proved OpenGL interoperability performance, new zero-
copy feature allows kernel functions to read and write di-
rectly from pinned system memory

January 2009 2.1 Debugger support using gdb for CUDA, C++ templates are
now supported in CUDA kernels

August 2008 2.0 Double precision support, improved device to array mem-
cpy performance

December 2007 1.1 CUDA integrated into display driver, asynchronous API for
memory copies and kernel launches, event API for query-
ing status of CUDA calls

June 2007 1.0 Initial release

Table 1: A history of CUDA toolkit releases with highlights of each re-
lease’s new features. This information was extracted from
http://developer.nvidia.com/cuda-toolkit-archive and linked pages. Most
releases also improve the supporting libraries and add support for new cards and new
operating systems. Many releases are preceded by one or more release candidates
which have been omitted from this table.

At present, tackling problems using the GPU requires dividing the problem appro-

priately and writing a suitable GPU program or “kernel” that can tackle each of these

sub-problems. In practice this can be an intricate process. However the rewards are

significant, with some applications having seen speed improvements of two or more

orders of magnitude [28].

GP is particularly well suited to a GPU implementation because it often uses float-

ing point numbers as the basic type in its evaluations and GPUs are particularly ef-

fective at floating point computation. Tackling GP with GPU technologies has been

referred to as General Purpose Genetic Programming on Graphics Processing Units

(GPGPGPU) and a website (http://www.gpgpgpu.com) is maintained by Simon Hard-

ing.

2.1.6 Uses of the GPU for EC Other than GP

Papers describing some of the earliest attempts to utilise the GPU for EC were pub-

lished in 2005. Wong et al implemented the fitness evaluation, mutation and repro-

duction of an Evolutionary Programming (EP) algorithm on the GPU [104] [20]. The

competition and selection were performed by the CPU. Their EP was tested on a set of

benchmark optimisation problems using an nVidia 6800Ultra. They observed speedups

ranging from “about 1.25 to about 5.02”.

35

Yu et al implemented a fine-grained genetic algorithm on the GPU [107]. They im-

plemented both the evaluation function and the genetic operators on the GPU (along

with a random number generator). They used the Cg framework with an nVidia 6800

GT and tested their system on the Colville minimisation problem. They observed an

overall best speedup of “about 15 times” compared to a CPU implementation. They

concluded by mentioning two key limitations: the “bottleneck of transferring data be-

tween system memory and video memory in each GA loop” and that they found the

“commonly used binary encoding scheme of GAs seems hard to be implemented on

the GPU because there is no bit-operator supported in current GPUs”.

In 2007, Li et al implemented all steps of a fine-grained parallel Genetic Algorithm

(GA) on the GPU [51]. The system was tested using three fitness formulae. Using an

nVidia 6800 LE, they observed speedups of up to 73.6.

Wong attempted to combine these techniques with a Multi-Objective Evolutionary

Algorithm (MOEA) in 2009 [103]. He had found that in addition to evaluation, “the

non-dominance checking and the non-dominated selection procedures are also very

time consuming” and so used a CUDA implementation to tackle this problem. He

tested the system using an nVidia 9600 GT on a range of two-objective and three objec-

tive benchmark problems and observed speedups ranging from 5.62 to 10.75.

Munawar et al tackled the MAXimum Satisfiability (MAX-SAT problem) using the

CUDA framework. [63]. They tested their system on an nVidia Tesla C1060 and ob-

served speedups of up to 25 times.

2.1.7 Uses of the GPU for GP: Data-Parallel

Work on using the GPU to accelerate GP is of particular relevance to this thesis. The

key publications in this area are summarised in Table 2.

Given the SIMD architecture of the GPU, perhaps the most intuitive approach is

the “data-parallel” (or “fitness case parallel”) approach. This uses the GPU’s parallel

threads to evaluate the different testcases. A separate GPU kernel is compiled for each

individual and this is then used to evaluate the complete data set. For very large data

sets, the time taken to compile the kernels is a small fraction of the total evaluation time

and remarkable reductions in evaluation time have been observed as described below.

This approach was used by Chitty in one of the early pieces of work to accelerate

GP with a GPU [15]. He used C for Graphics (Cg)—a language developed by nVidia—

and an nVidia 6400 GO. This approach requires creating and compiling a fragment

program for each individual and then evaluating it over the complete data set. The

problems used to test the system were symbolic regression, the Fisher Iris classification

data set and the 11-way multiplexer. The best acceleration compared to the CPU im-

plementation was found for the 11-way multiplexer at around 29.98 times faster. The

graphs in the paper indicate that for small data sets, the GPU implementation can be

slower but that as the data set increases, the GPU implementation becomes relatively

36

Primary author Year Parallelism Form GPU Framework Problems

Chitty [15] 2007 Data Tree 6400 GO Cg Symbolic regression, Fisher
Iris data set, 11-way multi-
plexer

Harding [28] 2007 Data CGP 7300 GO Accelerator Floating point, binary, regres-
sion, two spirals, protein clas-
sification

Harding [32] 2007 Data CGP 7300 GO Accelerator Regression, two spirals, pro-
tein classification, cellular au-
tomata pattern

Harding [27] 2008 Data CGP 7300 Accelerator Image Filtering
Harding [29] 2008 Data CGP 8800 GTX Accelerator Image Filtering
Langdon [45] 2008 Population Tree 8800 GTX RapidMind Mackey-Glass time series pre-

diction
Langdon [46] 2008 Population Tree 8800 GTX RapidMind Bioinformatics: breast cancer

with GeneChips
Robilliard [76] 2008 Population Tree 8800 GTX CUDA Regression, Multiplexer, inter-

twined spirals
Wilson [98] 2008 Population LGP 8800 GTX XNA UCI Ecoli classification, sym-

bolic regression (sextic)
Harding [33] 2009 Data CGP 8200 × many CUDA Intrusion detection, image fil-

tering
Lewis [49] 2009 Population CCGP 8800 GT × 2 CUDA Symbolic Regression
Robilliard [77] 2009 Population Tree 8800 GTX CUDA Regression, Multiplexer, inter-

twined spirals
Wilson [101] 2009 Population LGP 8800 GTX XNA Symbolic regression (sextic)
Langdon [44] 2010 Population Tree 295 GTX CUDA Multiplexer (27-mux and 37-

mux)

Maitre [55] 2010 Population Tree 295 GTX × 1
2 CUDA Regression

Wilson [99] 2010 Population LGP 8800 GTX XNA Symbolic regression (sextic)

Table 2: A summary of some of the major studies into accelerating GP with the GPU. The entry
in italics is a 2009 paper describing some of the work in this thesis. Here, CCGP refers
to Cyclic Cartesian Genetic Programming.

better. Rough readings from the paper’s graph of times on the regression problem in-

dicate the GPU implementation is around twice as slow for 100 testcases but around 10

times as fast for 1600 testcases.

Around the same time, Harding et al also used a data-parallel approach [28]. Their

work used the Accelerator package which is a .Net assembly, available only on Win-

dows. Accelerator allows client code to use the GPU at a high level through apply-

ing mathematical operations to special arrays. The evaluation is performed “lazily”,

meaning that until the result is requested, Accelerator just stores the operations to be

performed. When a result is requested, the necessary compilation of the instructions

is performed, the code is executed on the GPU and the results returned. From the de-

veloper’s point of view, this makes GPU access relatively simple. Indeed the authors

report that “the total time required to reimplement an existing parser tree based GP

parser was less than two hours [. . .]”. The implementation used CGP and was tested

on a trivial floating point problem and trivial binary problem as well as a symbolic re-

gression problem, the two spirals problem and a protein classification problem. Again,

the results indicated the GPU implementation was slower than the CPU implemen-

tation on small data-sets and short expressions but was faster as these grew. In one

case, the GPU implementation was 7351.06 times faster when evaluating expressions

37

of length 10000 over 65536 testcases.

In a related paper, the authors extended this work to cover artificial developmental

systems [32]. On testing a cellular automata system, the authors again found that the

GPU implementation was slower than the CPU implementation for few cells and short

expressions but much faster as these quantities increased.

This evidence suggests that for large data sets, data-parallel approaches are ex-

tremely effective but that for smaller data sets, they are less effective and can even be

slower than a standard CPU implementation. This is because a data-parallel approach

has a large overhead of compiling new individuals and transmitting them to the GPU

to be evaluated. This time consuming overhead is worthwhile if and only if there are

enough testcases to be evaluated. What does this mean for data-parallel methods? In

the first two of these data-parallel papers, the authors stated the following:

“Many typical GP problems do not have large sets of fitness cases for two

reasons: First, evaluation has always been considered computationally ex-

pensive. Second we currently find it very difficult to evolve solutions to

harder problems. With the ability to tackle larger problems in reasonable

timewe have to also find innovative approaches that let us solve these prob-

lems. [. . .] This leads to a gap between what we can realistically evaluate,

and what we can evolve. The authors of this paper advocate developmen-

tal encodings, and use the evaluation approach introduced here we will be

able to test this position.” [28]

The authors included similar sentences in the conclusion of their paper covering

developmental systems [32]. On the one hand, this statement can be seen as an encour-

aging call for the community to use the GPU to go further: to investigate if there are

problems with vast data sets which allow GP to achieve new things or to develop new

techniques to make use of such huge data sets. On the other hand, the statement can

be seen as identifying a weakness of the data-parallel approach and it has been quoted

in that light [76] [77].

2.1.8 Uses of the GPU for GP: Population-Parallel

For problems with smaller data sets, which are not as well disposed to data-parallel

approaches, “population-parallel” approaches have been used [45] [76].

These involve using the GPU’s parallel threads to evaluate the different individuals

in the population (and potentially the different testcases too). The trick to achieve this is

to write a single GPU interpreter kernel that treats programs as data. The advantage of

these methods is that they do not require a new kernel to be compiled and launched for

each new individual and so avoid the associated overhead. The difficulty is that each

individual may have different behaviour. This is solved by using a GPU interpreter

38

kernel that handles the different individuals. This makes population-parallel methods

more complicated to implement and slower at evaluating.

The names “data-parallel” and “population-parallel” reflect the idea that the for-

mer’s kernels parallelise over the data set whereas latter’s kernels also parallelise over

the population. In practice, things are not that simple because data-parallel kernels

may actually contain the code for several individuals and so may also parallelise over

both the population and the data set.

The first papers on population-parallel approaches were published in 2008. Lang-

don et al used the RapidMind framework to “evaluate an entire population of a quar-

ter of a million individual programs on a non-trivial problem in 4 seconds” [45]. They

achieved this by constructing a population-parallel system to accept both the programs

and the testcases as data. To allow GP trees to be evaluated efficiently, the trees were

represented using linearised Reverse Polish Notation (RPN). This allows the GPU to

interpret the tree as a list of instructions which use a stack. Rather than converting

to linearised RPN for each evaluation, the system kept the individuals in this form

throughout and used crossover and mutation operators that act on linearised RPN di-

rectly.

This paper described the GPU’s rate of evaluation, not just by comparison to that of

the CPU, but also by describing the absolute rate of performing GP operations (mea-

sured in million GP operations per second). Section 4.5.1 outlines several issues that

warn against drawing hasty conclusions from direct comparisons of such rates. Nev-

ertheless, such absolute rates of GP evaluation are the only way to make any such

comparisons at all (and many of them will not be prone to the highlighted issues) so it

was a big contribution to begin the trend of stating them.

Henceforth, the abbreviation Mgpop/s will be used to indicate “mega GP opera-

tions per second”, where mega is used to mean 106 not 220 (at least for the values gen-

erated in this work). The “gp” in these abbreviations highlights that the measurement

only records the GP operations, which may be a small fraction of the total number of

instructions, particularly in the case of a GP interpreter running on a GPU. In tables and

figures, the term Mgpop/s may be shortened to Mo/s for brevity but this still refers to

GP operations.

Langdon et al tested this on the problem of trying to predict the next value in the

Mackey-Glass chaotic time-series using the previous 128. The system ran at 895 Mg-

pop/s for programs of size 11 and at 1056 Mgpop/s for programs of size 13. A com-

parison with a CPU implementation on the Mackey-Glass problem found that the CPU

implementation took seven times longer. The system was also used to tackle the prob-

lem of classifying the sub-cellular location of proteins from their amino acid composi-

tion and to tackle a pair of problems that were labelled “Lasera” and “Laserb” in the

results table. Larger programs were used for these problems. The authors noted that

increased stack depth harmed the performance.

39

The system generated the correct behaviour for each instruction using a five way

conditional statement. To investigate the effect of this, they compared a normal exe-

cution with one that had been altered to execute every possible condition (and discard

none of the results). They found this only made the execution 2.89 times slower (rather

than five times slower as might have been expected). They proposed a hypothesis that

this was due to the time required by the terminals to load the data from global memory.

The paper does not give a precise description of the layout of work over the GPU

threads. It may be that the RapidMind platform does not give the user control over

this.

Another population-parallel paper was published in the same year (2008) detailing

the work of Robilliard et al [76]. They built a population-parallel systemwithin the ECJ

library using the CUDA framework. The CPU translated the individuals to linearised

RPN for each evaluation. Within each CUDA thread block, the threads are arranged in

groups of consecutive threads called warps. At the time of writing, all CUDA devices

use 32 threads per warp. The importance of this is that a warp’s threads always execute

in parallel. Divergence between threads within a warp (“warp divergence”) costs time

since it involves the whole warp following every branch taken by the warp’s threads.

Minimising warp divergence is one of the top priorities to maximise speed. Heeding

this, the authors took care in how their system distributed work across threads. Their

design ensured each warp evaluated the same GP program on different testcases. This

approach reduces the difference in behaviour between threads in a warp and hence

reduces warp divergence.

They tested their system on an nVidia 8800 GTX using a regression problem, two

multiplexer problems and an intertwined spirals problem. Their best full-run speedups

for these problems were around 50, 5 and 5 respectively. The paper identified that after

acceleration, the CPU tasks had become the bottleneck in the system.

Connecting with standard EC frameworks—in this case ECJ—may be a useful way

for the power of the GPU to be exposed to the typical EC user. This is discussed further

in Section 2.1.13. In the same spirit, the authors made sample code available via the

Internet.

In a later publication, the same authors extended their work with their ECJ system

[77]. They investigated the effect of the layout of work across threads, the effect of

using on-chip, shared memory and the effect of using a linearised RPN form on the

CPU to avoid the costs of translation.

The first investigation compared the layout of work across threads as used in the

previouswork (now labelled “BlockGP”)with a simpler approach, labelled “ThreadGP”.

The ThreadGP scheme evaluates each individual with its own thread over all testcases.

The authors suggested that this sort of layout might be generated when using high-

level kits that do not give access to thread management. It is not clear that this is

correct. The move from BlockGP to ThreadGP involves changing from each thread

40

evaluating some of the testcases to each thread evaluating all of the testcases. By con-

trast, previous data-parallel approaches have divided work over the testcases so that

no thread evaluates more than one testcase.

The experiments were again performed using an nVidia 8800 GTX on regression,

multiplexer and spiral problems. The BlockGP arrangement was up to 12.94 times

faster than ThreadGP and was faster in all tests performed.

The second investigation compared the system from the previous paper to one in

which the individuals were kept in linearised RPN form throughout, saving the CPU

the task of conversion. The authors acknowledged the assistance of W B Langdon in

helping them achieve this. Experiments showed that this made the full run up to 10.193

times faster and that it made an improvement in all tests performed.

The third investigation looked into the effects of loading the programs into shared

memory so that they do not need to be reloaded when evaluating successive testcases.

This was found to reduce the run time considerably in most cases.

A later population-parallel based work combined the approach with Sub-Machine-

Code Genetic Programming (SMCGP) techniques to tackle a vast Boolean problem [44].

This system allows the GPU to process 32 (or even 64) Boolean testcases in parallel. Fur-

thermore, it uses four simple Boolean operators (and, or, nand, nor) that can typically

be evaluated much faster than floating point operations such as division. Again, the

individuals were represented in linearised RPN throughout. The system was tested

using an nVidia 295 GTX, a graphics card containing two GPUs.

The problems tackled were the 20-way multiplexer and the 37-way multiplexer.

These problems are vast, with 1, 048, 576 and 137, 438, 953, 472 testcases respectively.

The system’s fitness function used a random sample of 2048 and 8192 testcases re-

spectively. When a candidate was found that produced the correct answer on the full

sample of testcases, it was tested on the full set. The author stated that the 20-mux

problem had “never been solved by a tree GP before” and that the 37-mux had “never

been attempted before” but had been solved by this system “in under a day”.

The author reported a “sustain peak performance of 665 billion GP operations per

second”. Averaged over the whole run, the author found a rate of 254, 000 Mgpop/s.

Even taking into account the SMCGP trick of performing 32 operations in one and the

use of two GPUs, this is an impressive result for a population-parallel system.

2.1.9 Distributed Use of GPUs for GP

To achieve even more computational power, the data-parallel technique has been taken

further through the use of a network of machines [33]. In this system, one machine

acts as a root node, which sends work to additional client machines which are each

equipped with a suitable GPU, a CUDA kernel compiler (nvcc) or both. At the be-

ginning of a run, the root machine divides the testcases between the GPU equipped

machines. For each evaluation, the root’s first stage is to divide the population up and

41

send a group of individuals to each of the nvcc equipped clients to be compiled into

CUDA kernels. The second stage is to send all of the compiled kernels to each of the

GPU equipped clients to be executed on their testcases.

This setup allows the authors to harness spare computational power of a decent

number of low power graphics cards available in a student laboratory. The cards used

were nVidia GeForce 8200 and the total system used “between 14 and 16 computers”.

It is not stated which of the machines were equipped with a GPU, which with nvcc and

which with both.

The problems on which the system was tested use a linear fitness measure. This

means each client can compute a partial fitness over its subset of the testcases and

return this to the root machine to be combined with the others. This avoids the need to

transmit the full set of evaluation results back to the root in each generation.

The system was tested on an intrusion detection problem and an image filter prob-

lem that the authors had investigated in previous research [29]. These two problems

have huge data sets: 4, 898, 431 testcases and 10, 023, 300 testcases respectively. The

form of GP used in the experiments was CGP.

The authors give figures for “overall total performance” and “peak performance”

in terms of the evaluation rate. Presumably the former is averaged over clients and

the latter takes the results from the most efficient client but these measures’ meanings

are not explicitly described. In particular, it is not clear whether each is measured over

the full run or over the evaluation stage only. For the network intrusion problem, the

system achieved an average rate of 2250 Mgpop/s and a peak of 3440 Mgpop/s, both

for a population size of 2048 and a CGP graph length of 2048. For the image filter

problem, the system achieved an average rate of 7060 Mgpop/s and a peak of 10560

Mgpop/s, again both for a population size of 2048 and a CGP graph length of 2048.

The paper highlights interpreter divergence as a weakness of population-parallel

approaches, stating “If there are 4 functions in the function set, we can expect that on

average at least 3/4 of the shader processors are ‘idle’. If the function set is larger, then

more shaders will be ‘idle’ ”. This may be an unduly pessimistic view of population-

parallel methods since the system described in Chapter 4 (and in a 2009 paper [49] as

discussed in Section 2.1.8) and the system designed by Robilliard et al (and described

in a 2008 paper [76] and a 2009 paper [77]) both organise the work to ensure that each

thread in a CUDA warp works simultaneously on the same program. There may be

functions that require different behaviour depending on its inputs but this is nowhere

near as inefficient as suggested.

This system performs the evolution in a single population and each stage of each

generation is completed before any part of the next stage is begun. This is a trade-

off: it allows the system to perform a pure single-population GP run but limits each

stage to be as slow as the slowest client and prevents the system from simultaneously

compiling kernels on some machines and GPU evaluating kernels on others.

42

2.1.10 The Use of Demes

The system described in this work (in particular as described in Chapter 5) uses the

technique of dividing the population into subgroups and then implementing occa-

sional transfers between the groups. These subgroups are known as demes (or some-

times the approach is called the island model and the demes are called islands). A single

population which is not divided in this way is known as panmictic.

Section 5.4 examines the effect of deme transfers on run-time and investigates ways

to mitigate their additional computational costs. However it is also important to con-

sider the effect that splitting the population up has on the effectiveness of the EC al-

gorithm. Fortunately, several EC researchers have already investigated demes, some

inspired by an analogy with the effects of geographical dispersal of evolving species

in the natural world and some motivated by a practical requirement to exploit a par-

allel processing architecture. Although the benefits and drawbacks are not experimen-

tally investigated here, it is possible to find illumination from several empirical studies

available in the literature.

Fernandez et al found some evidence to suggest that in some situations, it might be

beneficial to the rate of fitness improvement to split the population into demes even in

the absence of interactions between them [19]. In that case, the demes can be viewed

as implementing entirely separate EC runs. Hence this finding suggests that it is, at

least sometimes, better to deploy computational resources to perform several runs with

smaller populations rather than one run with a big population.

The authors discovered this result by performing experiments comparing the be-

haviour of a fixed number of individuals under different population structures such as

a single deme of 2500 or 10 demes of 250. In each case, the selection used was tourna-

ment selection where the tournament size is 10% of the deme size.

As discussed in Section 7.2.4, keeping the tournament size a constant fraction of

population size does not guarantee a constant selection pressure as the population size

is varied. The analysis performed in Section 7.2.2 shows that on tournament sizes of

10%, a single tournament selection from a deme of 250 is 95.0878% likely to come from

the best 10.8% whereas a single tournament selection from a deme of 2500 is 95.3748%

likely to come from the best 1.16% of individuals. This shows that 10% tournament

selection provides very much stronger selection pressure in a deme of 2500 than in a

deme of 250.

These differences in selection pressure may account for the observed differences in

performance so caution is advisable in accepting the conclusion that split populations

are better even without transfers.

Further experiments in the same study found that there is much more benefit to

be had by also using transfers between the demes. This is perhaps what is typically

thought of as a deme-based system and other work for GAs and GP have found similar

results.

43

Punch had previously reported findings that multiple populations did not help in

the artificial ant problem [75]. Fernandez et al performed more repetitions of the same

experiment and found that Punch’s result was not representative and that the evidence

suggests a statistically significant advantage for the distributed case instead [19].

This evidence suggests it is reasonable to split the population up into demes, espe-

cially if it can be used to provide greater computational efficiency as is the case here.

The evidence also suggests that deme transfers are necessary to be certain of the best

results.

A more recent study on the use of demes performed a theoretical analysis of their

effect on the time required to solve a particular problem [48]. The authors devised a

fitness function called “LOLZ” which awards points to a genome of binary digits ac-

cording to the number of leading zeroes or ones in each sub-block of a given length.

The function is devised such that there is a maximum number of leading zeroes per

block that can earn points and points are only awarded for a block if all previous blocks

are complete (i.e. all ones). This means that the blocks must be solved consecutively

and that solving a block means building up leading ones, even though building up

leading zeroes will initially appear to improve fitness as effectively. Thus the function

maps out a fitness tree with steady, easy-to-find fitness increases but also with several

deceptive, dead-end branches. This is depicted in Figure 4. Given enough deceptive

branches, a panmictic population is very likely to get stuck after taking one of the de-

ceptive branches. In contrast, a deme-based population with the right configuration is

highly likely to make it past deceptive branches by maintaining genomes representing

both choices for long enough. By theoretical analysis, the authors derive the results

that a deme-based population is capable of finding the “global optimum in polynomial

time, while panmictic populations as well as island models without migration need

exponential time, with very high probability.”

Figure 4: The fitness function described in the work by Lassig et al [48] provides easy improve-
ments of fitness and several dead-end branches. The dead end branches initially re-
ward fitness as much as the main path. Panmictic populations are likely to get stuck
down one of the branches whereas deme-based populations (with the right param-
eters) are likely to sustain both choices long enough to make it past each dead-end
branch.

It should be noted that this problem is engineered to possess exactly those proper-

ties with which we would intuitively expect a panmictic population to struggle relative

to a deme-based population. The value of the work is that it demonstrates that this in-

tuition is correct: deme-based populations can indeed do much better than panmictic

populations on this showcase problem. However it remains unclear how widely these

44

properties exist in the sorts of problems to which we might wish to apply EC in prac-

tice.

There are several ways in which the use of demes can be mapped onto the GPU. An

early use of demes on the GPUwas performed by Garnica et al [21] in 2008. Their work

implemented a GA on an nVidia FX 5950. Their system divided the population into two

large demes and evolved one on the CPU and the other on the GPU. That approach in-

volves making the CPU and GPU perform an identical set of tasks on their respective

demes. An advantage of this approach is that the consistent behaviour on the two pro-

cessors may well encourage rigorous testing that the two are both performing correctly.

However this approach does not seem to be using the CPU-GPU architecture most ef-

fectively. The GPU and the CPU have different strengths and weaknesses so it seems

more appropriate to divide up tasks accordingly. The GPU is good at performing par-

allel tasks very fast so it seems sensible to assign all of the time-consuming evaluation

to the GPU rather than giving some to the CPU. On the other hand, writing and main-

taining code for the GPU is laborious and intricate so it seems sensible to implement

the less intensive tasks (selection, crossover and mutation) on the CPU only.

As the GPU performs work significantly quicker than the CPU, the authors allowed

the GPU to continue performing more generations than the CPU until the GPU re-

quested a transfer. This is a shame since it involves modifying the algorithm being

implemented and the asynchronous approach will likely make reproducibility hard.

An advantage of such an approach is that it facilitates keeping both the CPU and GPU

well utilised. The best speedup achieved was 6.54 times faster than a CPU implemen-

tation.

A paper describing some of the work of this thesis was published in 2009 [49]. The

paper covered the work described in Section 5.2 to exploit the parallelism between the

two chips by having the GPU evaluate one deme whilst the CPU prepares another. It

also covered the work described in Section 5.3 to use demes to keep multiple GPUs and

multiple CPU cores busy. Since then, other researchers have also investigated the use

of demes on GPU systems.

Pospichal et al implemented a GA with demes on the GPU using CUDA [74]. They

implemented almost all of the algorithm on the GPU, with the CPU just initialising the

individuals at the start of the run. They used one thread per individual and one block

per deme. Transfers occurred between the demes asynchronously. They compared

results from an nVidia 8800 GTX, an nVidia GTX 260 SP216 and an nVidia GTX 280.

For low settings, they find all are about as fast as each other but all are faster than the

CPU; for high settings, they find the best is around two times faster than the worst at

around 7437 times as fast as the CPU (presumably using a single core, though this is

not specified).

Again, this asynchronous approach to deme transfers modifies the EC algorithm

and presumablymakes reproducibility extremely challenging. The asynchronous trans-

45

fers occur at points defined by the intricacies of the hardware so the algorithm is

changed. Asynchronous transfers between thread blocks suffer a further problem in

that it may be risky. This is because the CUDA documentation indicates that client

code should not make any assumptions about the ordering and parallelism of the ex-

ecution of blocks in a grid launch. This means that although the code may work in

practice for the setups investigated, there is potential for the behaviour to vary wildly.

If nVidia choose to schedule the blocks sequentially in future CUDA releases, the result

would not be an island model so much as a sequence of runs with some potential for

the results of some to seed others.

Further, the paper does not describe efforts to avoid possible conflicts between

reads and writes to global memory from simultaneously executing blocks. The paper

may have just omitted the description of this part of the system. However, if no such

efforts have been made, this could cause trouble if, for example, one block is writing

the details of an individual to be transferred whilst another is reading. It is difficult to

see how this could be avoided as CUDA is not designed for communication between

blocks in a single launch.

An alternative approach was explored by Tsutsui et al in their implementation of

a parallel GA to solve the Quadratic Assignment Problem (QAP) using CUDA [89].

Their system ran each deme on a separate multiprocessor without CPU intervention

for multiple generations but then transferred all data to the CPU for the transfers to be

performed. Their system was tested on an nVidia 285 GTX and the speedups ranged

from 3 to 12 times.

Luong et al performed a comparison between different methods for implement-

ing demes for an Evolutionary Algorithm (EA) on the GPU using CUDA [53]. They

compared three setups: using the GPU for evaluation and the CPU for the other steps;

using the GPU for all steps; and using the GPU for all steps with the benefit of the

GPU’s shared memory. In particular, the latter two steps involve using the blocks of

threads as demes and implementing the deme transfer on the GPU itself. An advantage

of this is that the parallelism of the GPU can be brought to bear on the entire EA and

overheads of switching data and tasks between chips can be minimised. A disadvan-

tage is that exploiting the thread blocks in this way imposes constraints. Examples of

such constraints include difficulties in allowing differences between the configurations

of the demes, limits on the number of individuals per deme (to 512 or 1024 depending

on the architecture) and, in the case of the third setup which uses the shared memory,

limits on the sizes of the individuals.

In the asynchronous mode of the second and third setups, the GPU code transfers

individuals between demes as and when it reaches the appropriate point. This sys-

tem presumably suffers the same problems as those described above for the work of

Pospichal et al [74]. The authors also implemented a synchronous mode which wraps

each generation in one kernel launch so that all demes complete a generation before any

46

deme begins the next. Another potential issue with these approaches is that the CPU

sits idle whilst the GPU is evaluating and so the computational power is not maximally

utilised.

The experiments were performed using an Intel Xeon with 8 cores and an nVidia

GTX 280. The test problem used was the Weierstrass-Mandelbrot function. The results

indicated that all setups were considerably faster than a single core CPU implementa-

tion and that each of the progressive steps (moving all computation to the GPU and

then utilising shared memory) improved the speed further. The synchronous mode

was found to be a little slower than the asynchronous mode. The most impressive

speedup seen over a single core CPU implementation was 2074.

In the literature survey, the authors describe the configuration used in this thesis

(and as described in the 2009 paper mentioned above [49]) and the configuration used

in the work of Garnica et al [21] as: “CPU and GPU simultaneously evaluate one sep-

arate local population with basic two-directional exchange mechanisms”. In fact, al-

though this accurately describes the configuration used by Garnica et al, in this thesis

and in the related 2009 paper [49], none of the configurations that use the GPU, also

use the CPU for evaluation. Instead, the CPU is used for the other steps of the GP algo-

rithm. In discussing the architecture, the authors state that “due to many data transfers

between the CPU and the GPU and a non-optimal task distribution, the performance of

such approach might be limited”. The issue of optimal task distribution is relevant to

the architecture described in this thesis but much less so than it would be if the evalu-

ation tasks were divided between the GPU and CPU in the way implied. Furthermore,

the 2009 paper describing the architecture [49] described the steps to mitigate the prob-

lems of data transfers and explained that the steps were rather superfluous because so

little time was spent on data transfers. This is covered further in Section 5.2.

The results of their study suggest that data transfers are a considerable limitation, so

how can it be that they were found to be such a minor problem here? The explanation

may be that the architecture used in this work deals in cyclic GP which is considerably

more computationally intensive than the typical EA so it may be that the data trans-

fers are considerable only by comparison to an associated computation that is not so

intensive.

Demes are not the only approach to localising evolution; a Cellular Evolutionary

Algorithm (CEA) involves placing the individuals of the population on the points of a

grid and the selection process occurs within local neighbourhoods on the grid. A CEA

is like a deme-based system in which the demes are of size one and the deme transfers

involve a selection process between several neighbouring demes.

PUGACE is a framework for implementing CEAs on GPUs [81]. The authors of

PUGACE have attempted to define separate module files which the user can provide

although they concede that complete separation was not possible due to technical con-

straints. The framework was tested on the QAP using an nVidia 9800 GTX. The best

47

speedup seen over the CPU implementation was a factor of 18.53.

2.1.11 Uses of Related Technologies

Other GPU-like technology has also been used to accelerate EC. Wilson and Banzhaf

have investigated using the “XNA’s Not Acronymed” (XNA) framework to implement

Linear Genetic Programming (LGP) on the PC, the XBox 360 (a video game console)

and the Zune (a portable media device) [98] [101] [99]. For both the PC and the XBox

360, their framework allowed them to use either the CPU of the machine or the GPU.

They used a linear form of GP which used the four standard operands (“ADD, SUB,

MUL or DIV” [99]) and four registers. Flow control (the use of conditional statements)

was not implemented as the authors observed that it was not required for the regression

problem being attempted.

Although the XNA framework aims to provide a common framework to access the

hardware of these various platforms, the authors found non-trivial variations were re-

quired in their code. Themutation was implemented using textures (one with potential

mutations and one with a mask to determine what is mutated) to allow the mutation

to be performed on the GPU. The problems attempted were a UCI Ecoli classification

problem and symbolic regression of a sextic formula. The GPU used on the PC was a

GeForce 8800 GTX.

The framework’s highest observed computation rate was 1.695 Mgpop/s on the PC

CPU, 19.074 Mgpop/s on the PC GPU, 0.158 Mgpop/s on the XBox 360 CPU and 0.533

Mgpop/s on the XBox 360 GPU. The greatest speedup over the PC CPU was 11.254

times which was achieved by the PC GPU. The best Zune run took around 3.924 times

longer than the equivalent XBox 360 CPU run and the figures suggest a computation

rate of 0.040 Mgpop/s.

An attempt has been made to implement an Estimation of Distribution Algorithm

(EDA) (a type of EA) on the Cell Broadband Engine of a Playstation 3 (a video game

console) [68]. The authors expressed disappointment at the best speedup achieved,

which was between five and six times. Attempts to exploit the technology in other

areas of scientific computing have had more success. For instance one investigation

used the Playstation 3’s Cell Broadband Engine to implement the Smith-Waterman al-

gorithm [102], an algorithm widely used for sequence comparison in bioinformatics.

They found the peak performance to be 3 times that of a CUDA implementation of the

same algorithm running on a GeForce 8800 GTX.

2.1.12 Applications

It is not clear how widely useful it is to be able to perform GP on huge data sets. Some

studies have demonstrated possible uses of this capability by finding problems with

suitably large data sets.

48

Langdon et al [46] used a GPU accelerated form of GP on a problem of finding pat-

terns associated with breast cancer on GeneChips. With a population-parallel frame-

work using RapidMind and a GeForce 8800 GTX, the authors were able to perform

runs with 5, 000, 000 individuals over a huge amount of data. An interesting aspect

of this work is that size of the data set arises from the number of features (1, 013, 888)

rather than the number of testcases (251). To deal with this many features, the authors

performed runs in multiple passes, selecting the most successful terminals from each

pass to be used in the next. The system achieved more than 535 Mgpop/s which was

7.59 times faster than the CPU implementation.

Harding used a framework for performing CGP using Accelerator (as described in

various papers [28] [32] discussed above) to tackle an image processing problem [27].

Each individual was evaluated on the pixels of a large grayscale image. For each pixel,

the inputs were the values of the nine pixels in the three by three grid that had the

pixel in question at the centre. The input image was the same as the target image but

with 5% of the pixels damaged with noise. The fitness of an individual was the average

error per pixel between the individual’s output and the equivalent pixel in the target

image. In other words: individuals were assessed on their ability to remove noise to

reconstruct the original image.

Two images were used: one of 512× 512 and another of 1024× 1024. Each image

was a tiled grid of 256× 256 pixel images. A mask was used to ensure that evaluations

of pixels at the edge of one image were not affected by pixels in the neighbours. The

runs were allowed to proceed for 50000 evaluations.

The paper quotes the performance results in FLOPS. The performance using a 7300

GTX on the 512× 512 image was 300 mega FLOPS; on the 1024× 1024 image it was 620

mega FLOPS. Using a CPU-bound reference driver for the Accelerator implementation,

an average performance of 1.82 mega FLOPS was observed for the larger image.

Harding et al extended this work to evolve individuals which duplicate the be-

haviour of various graphic filters available in the GNU Image Manipulation Program

(GIMP) [29]. This work used a more powerful graphics card (a 8800 GTX), tackled a

wider range of filters and introduced a separation between training data and validation

data.

This time the results are quoted in Mgpop/s. The authors state “it is unclear of

the relationship of this figure to Floating Point Operations Per Second”. All images in

this work are 1024× 1024 pixels. The performance obtained was approximately 145

Mgpop/s and the peak performance was 324 Mgpop/s. The authors explain that “the

processing rate is dependent on the length of the evolved programs”. The CPU-bound

reference driver achieved 1.2 Mgpop/s.

49

2.1.13 Possible Future Directions

The benefits of using the GPU to accelerate EC have become very clear. Unfortunately,

the work required to incorporate GPU evaluation into an EC system is non-trivial, even

for those following in the footsteps of the field’s pioneers. Perhaps many of those us-

ing the GPU for EC in coming years will do so through frameworks provided by oth-

ers. The work of Robilliard et al to incorporate GPU evaluation into the standard ECJ

framework [76] [77] has been discussed above. The work by Soca et al on the PUGACE

framework for implementing CEAs [81] has also been mentioned.

Work by Maitre et al has also moved in this direction by providing a GPU interface

for EAsy Specification for Evolutionary Algorithms (EASEA, pronounced [i:zi:]) [54].

EASEA is a language that grew out of a collaborative project and aimed to help non-

expert programmers try out evolutionary algorithms. The language lets users specify

an evolutionary algorithm using as little code as possible to specify the problem. The

work by Maitre et al expanded this by providing a new -cuda option for the EASEA

compiler, which specifies that the evaluation should be performed on a CUDA-capable

GPU. The authors tested their system on a Weierstrass benchmark problem using an

nVidia 8800 and observed a speedup of 33.3 times. Using a borrowed nVidia 260, they

observed a speedup of “about 105” times.

The authors wished to see how their platform fared with a non-expert so they

worked with a chemist with little programming experience. The first attempt caused

a crash but this was fixed by removing around 19, 600 lines of largely superfluous li-

brary code from the 20, 000 or so lines of code in the chemist’s evaluation function. The

second attempt did not crash but ran slower than a CPU implementation. This was

addressed by linearising a data structure containing four pointers to arrays of three

floating point numbers into one array of 12 floating point numbers. The third attempt

provided a speedup of “nearly ×60”.

Later work published in 2010 by a subset of these authors investigated implement-

ing a population-parallel GP system on the GPU [55]. As with previous population-

parallel systems such as those described in Section 2.1.8, the individuals were repre-

sented with RPN. The system was tested using one of the two GPUs on an nVidia 295

and speedups of “around ×250” were observed.

In their conclusions the authors stated: “However, this work is to our knowledge

the first to focus on hardware scheduling of GPGPU cards in order to efficiently evalu-

ate different individuals with as few as 32 fitness cases ”. Earlier, they state: “Threads

within a bundle execute the same GP individual on different fitness cases, but different

bundles can evaluate different individuals. This technique allows to make improved

use of the underlying hardware for as few as 32 fitness cases, which is the main contri-

bution of this work[. . .]”. It is not entirely clear what these two statements are saying.

The work of Robilliard et al published in 2008 described dividing the work such that

neighbouring threads evaluate the same individual on the different testcases [76]. Sim-

50

ilarly the 2009 paper covering some of this work described the adoption of the same

technique [49].

The authors state their intentions to “make parallel GP programming over CUDA

available in a language such as EASEA, making GPGPU-based GP (GPGPGPU?) avail-

able to all researchers who would be interested in trying them out without needing to

program the cards themselves.” Perhaps this is the sort of endeavour through which

most GP researchers will be accessing the GPU’s power in coming years.

2.2 Assembly and Machine Code

The main disadvantage of data-parallel techniques is the overhead of time spent com-

piling GPU kernels. Chapter 6 discusses attempts to tackle this problem. One of the

approaches involves coding individuals in a lower-level, assembly-like language to re-

duce the workload on the compiler. This relates to two lineages of previous research:

research on using GPUs for EC evaluation as discussed in Section 2.1.5 (and onwards)

and the use of CPU assembly or even machine code to encode individuals. In the lat-

ter case—as in the former—researchers have been motivated by wanting to feed the

computational hunger of GP with fast fitness evaluations. In contrast to the situation

with the GPU, interpreting methods on the CPU are perhaps simpler than compiling

methods.

CPU implementations of GP adopt one of three approaches to evaluating individu-

als: interpreting them, dynamically compiling them or directly encoding them in ma-

chine code. The last option is probably themost technically daunting and yet—perhaps

surprisingly—was substantially investigated whilst GP was relatively young. Nordin

and his collaborators were responsible for much of this work and the focus was a sys-

tem originally called Compiling Genetic Programming System (CGPS) [65]. CGPS was

later renamed to Automatic Induction of Machine code with Genetic Programming

(AIMGP) to avoid the word “compiling” giving the false impression that the system

dynamically compiles from source code in each generation [66]. The approach man-

aged to incorporate such functionality as “arithmetic operators, large indexed memory,

automatic decomposition into subfunctions and subroutines (ADFs), conditional con-

structs i.e. if-then-else, jumps, loop structures, recursion, protected functions, string

and list functions”. The later system was found to be 60 times faster than the interpret-

ing system on average.

Langdon et al applied AIMGP to evolve the hand-eye coordination system to con-

trol a 60cm humanoid robot called Elvis [47]. The software architecture used three

layers: a reactive layer, a model building layer and a reasoning layer. The model build-

ing layer utilised the high speed of AIMGP, stated to be around 40 times greater than

that of conventional GP. The system used version 2.0 of Discipulus.

Rather than using constrained genetic operators to ensure program safety, Kuhling

et al used the exception handling system of the host machine to provide the required

51

protection [43]. For those that prefer to prevent invalid solutions by assigning them

poor fitnesses rather than by forbidding evolution from constructing them, this is pre-

sumably an efficient way of doing it because the exception handling system is designed

for trapping such problems at a low level.

Squillero’s motivation for evolving machine code programs in his µGP system [82]

was not to make the GP faster but to use it to generate tests for the processor on which

it runs. A µGP individual can be executed directly on the target processor or can be

tested on a simulation of the processor and assessed for characteristics such as instruc-

tion coverage. The GP is used to develop test programs with suitable properties for

effectively testing processors.

More recently, Siebel et al encoded the neural networks that they were evolving

into machine code [80]. One of the nice features of their approach was to represent the

weights of the neural network in an external data structure so they could be modified

by the evolutionary process without having to recompute the machine code. Conse-

quently, they found the time spent on compilation at the start of the run to be a neg-

ligible part of run time when many generations were evolved. They found that their

technique performed around 5-10 times faster than a standard interpreted approach.

Two investigations into evolving GPU shaders [17] [56] provide a link between the

two research lineages. Shaders are the programs that the GPU uses for rendering. In

both cases, the fitness was provided through interactive user selection of objects, dy-

namically rendered by the GPU with the use of the shader. In one of these cases, the

language used was quite low-level [56], in the other it was the high-level C-like lan-

guage of nVidia’s Cg framework [17].

2.3 Tournament Selection

Chapter 7 describes two pieces of work to optimise CPU-side computation, one of

which investigated tournament selection. This involved a mathematical analysis of

tournament selection that meant it could be implemented without requiring as many

random number generations. The analysis also gained new insight into tournament

selection. Hence it is appropriate to look at this work’s context in the literature.

A selection scheme is a method to select which individuals are used to build new

generations. Selection schemes are discussed in more detail in Section 7.1 but it is

worth outlining the basic principles of tournament selection here to provide context

for the discussion of related literature.

One tournament selection picks one individual from a population by identifying a

group of individuals to compete in a tournament and then picking the member with

the highest fitness as the winner. Larger tournament sizes lead to a higher probability

that the best individuals will be selected. Here, the population’s size will be denoted

N and the tournament size m. Repeated tournament selections may be used to fill

the next generation and additional tournament selections may be used to choose sec-

52

ond parents for crossover. When choosing individuals to compete in tournaments, a

tournament selection scheme must choose whether to select individuals from the pop-

ulation without replacement or with replacement. In the former case, an individual

may only be entered into each tournament once; in the latter case, multiple copies of

an individual may be entered into a tournament.

Outside literature specifically analysing selection schemes, tournament selection

is usually described without specific mention of whether the selection is performed

with or without replacement [6] [73]. In that context of describing tournament selec-

tion, it makes sense to skim over such minor implementation details; in the context of

this work, the distinction matters because contributions are made to the understanding

of without-replacement tournament selection and its relationship to with-replacement

tournament selection. Furthermore, it will be argued that this property should be

mentioned whenever reporting experiments using tournament selection. The litera-

ture contains several studies examining tournament selection, and apparently all of

these restrict themselves to with-replacement tournament selection, perhaps because it

is considerably simpler to analyse. In this work, the code targeted for optimisation was

initially using without-replacement tournament selection so this was used for the anal-

ysis and the optimisation work. This is an achievement since the without-replacement

analysis is considerably harder as is seen in Section 7.2.2.

The literature contains severalmeasures of selection pressure, outlined below. These

are of interest and will be highlighted because Section 7.2.7 proposes a new measure of

selection pressure, called the many-from-few measure.

Goldberg and Deb performed an important comparative analysis of many selection

schemes [25]. As with several other studies, it considered selection schemes in the con-

text of GAs rather than GP but since the type of entity being evolved in both cases is

typically completely independent of the selection scheme, this may be ignored. Gold-

berg and Deb looked at proportionate selection, ranking selection, with-replacement

tournament selection, and Genitor (a “steady-state” selection scheme in which new

individuals are created one at a time rather than in generations [97]). For each, they

assessed the time complexity of the algorithm with respect to the population size and

the takeover time. The “takeover time” is the expected number of generations it takes

for the best individual to fill the population. They found the takeover time of with-rep-

lacement tournament selection is 1
lnm [ln(N) + ln(ln(N))] and its complexity is O(N).

Bäck investigated proportional selection, linear ranking, with-replacement tourna-

ment selection and (µ, λ) selection [3]. He found them to increase in selection pres-

sure in that order. For with-replacement tournament selection, he derived the selection

probability of the ith best individual as N−m((N − i+ 1)m − (N − i)m). He performed

an experiment to find the best fitness of an evolutionary run on a simple problem using

the various selection configurations.

Later work from Bäck extended this to derive selection intensity and to carry out two

53

more empirical investigations [4]. Selection intensity is a biological concept that was

imported into EC [61] [62] and is defined as the expected average fitness value after

selection of a population with fitnesses from the normalised Gaussian distribution.

Equivalent results were found in two papers by Blickle and Thiele from the same

year [10] [11]. One of those papers [10] derives other results for with-replacement tour-

nament selection. Of particular note are the reproduction rate, “the ratio of the number

of individuals with a certain fitness value f after and before selection”, and the loss of

diversity, “the proportion of individuals of a population that is not selected during the

selection phase”. The other paper [11] expands this analysis to also cover truncation

selection, ranking selection and exponential ranking selection.

Motoki studied loss of diversity in with-replacement tournament selection in more

detail [60] and, in particular, examined it over varying population size. The paper

stated “from numerical results, we observe that in tournament selection, many more

individuals are expected to be lost than with Blickle and Thiele’s static estimate.”

Perhaps the most relevant work is a more recent study into with-replacement tour-

nament selection by Xie et al [106]. They plotted the selection probabilities in various

ways to provide a visualisation of tournament selection. They then considered the

effect of some programs having the same fitness values and visualised this. They pro-

posed a variation of tournament selection that treats such groups of individuals with

equal fitness as one cluster. They found that this “clustering tournament selection” in-

creases the selection probabilities of the middle fitness individuals at the expense of the

selection probabilities of the best individuals.

Enhancing the “backward chaining” of Poli and Langdon [71] [72], Xie et al sug-

gested another scheme that avoids evaluations for individuals that are not selected in

any of the tournaments [106]. The work described in Chapter 7 does not permit this as

it requires all the fitnesses to be present so that the population can be sorted.

This is not seen to be a problem since the notion of saving significant computation

this way seems questionable. Such savings would require that, with considerable reg-

ularity, there are a considerable number of individuals that never get a chance to be

selected, even though the population best might be among them. Rather than being an

opportunity for optimisation, this would seem to suggest that there is a problem with

the selection scheme configuration.

Xie et al noted in their conclusion that the selection probabilities are not dependent

on the population size.

2.3.1 Measures of Strength of Selection Pressure

Several possiblemeasures of selection pressure have beenmentioned and they are sum-

marised in Table 3. Of these, the reproduction rate does not provide a single number

but gives values for members of the population for a given configuration. This is use-

ful but does not fulfil the role of giving a single value indicating selection pressure.

54

Selection intensity delivers a single number but relies on the assumption that the pop-

ulation having a Gaussian distribution of fitnesses. Takeover time and loss of diversity

are more intuitive measures. Still, neither of these quite captures the notion of selection

pressure, i.e. howmuch does the selection scheme favour the fittest individuals. In Sec-

tion 7.2.7, a new measure of selection pressure strength, the many-from-few measure,

is proposed in an attempt to address these issues.

Name Primary author Year Description and notes

Takeover time Goldberg [25] 1991 The number of generations for the best individual
to take over the entire population

Selection Intensity Mülenbein [61] [62] 1993 “The expected average fitness value of the pop-
ulation after applying the selection method Ω to
the normalised Gaussian distribution G(0,1)[. . .]”
[10]. This concept is drawn from biology.

Loss of diversity Blickle [10] 1995 ”The proportion of individuals of a population
that is not selected during the selection phase” [10]

Reproduction rate Blickle [10] 1995 “The ratio of the number of individuals with a cer-
tain fitness value f after and before selection” [10]

Table 3: A summary of selection pressure measures from the literature.

2.3.2 Tournament Selection With or Without Replacement

The work in Chapter 7 makes a novel contribution by analysing without-replacement

tournament selection. To make this contribution clear, this review has emphasised the

fact that analytical literature appears to be restricted to with-replacement tournament

selection. Although the analytical literature apparently ignores without-replacement,

there is no apparent reason to think it is used less widely. Indeed there are reasons to

suggest it might be preferable:

• It seems more intuitive that if a tournament of individuals is selected to compete

from a population, then the tournament should not include duplicates.

• Without-replacement has the nice feature of scaling from no selection pressure

with tournament size one to completely deterministic selection of the fittest indi-

vidual with tournament size N.

• There is a sense of wasting random numbers using with-replacement because a

random number might be spent adding an individual to a tournament that has al-

ready been added by a previous random number. This matters, since generating

high-quality random numbers typically requires non-trivial amounts of compu-

tation time.

With respect to the last point, random number generation might be viewed as the

price one has to pay to achieve higher selection pressure. Under this view, without-

55

replacement represents better value. This is particularly relevant to this work as very

high selection pressure is used.

An example, generated using the tools derived in Chapter 7, helps illustrate the

point. To achieve the same selection pressure as a without-replacement tournament

of size 99 in a population of 100, a with-replacement would need a tournament size

of 459. Using standard implementations, this would require 4.59 as many random

number generations. This selection pressure is strong but perhaps not so strong as

to make the example ridiculous: it is approximately the equivalent of without-rep-

lacement tournament selection using a tournament size of 8.76% of a population of

5000.

The only advantages of with-replacement tournament selection that come to mind

are:

• It is easier to analyse and

• It might be slightly easier to implement.

The latter point is minor because most modern programming languages provide

tools thatmakewithout-replacement sampling trivial to implement (such as random sam-

ple(), provided with most modern C++ compilers).

56

3 Methods

3.1 Genetic Programming (GP) Representation

3.1.1 Nodes and Instructions

Attempting to evolve a program presents considerable challenges. Not least of these is

finding a goodway to represent programs so that they are susceptible to evolution. The

standard approach to this issue is to use the tree representation. An illustrative exam-

ple of a tree-based Genetic Programming (GP) individual is shown in Subfigure 5(a).

One of the advantages of this representation is that it naturally suggests methods of im-

plementing mutation and crossover as indicated in Subfigure 5(b) and Subfigure 5(c)

respectively. The representations of GP are often categorised into tree-based, graph-

based and linear (as illustrated in Figure 6(a)). Graph-based representations are those

representations that are depicted by graphs not constrained to be trees. Graph-based

representations may or may not constrain individuals to be acyclic.

+y

%

y 1

+

x

(a) Tree evaluation

+y

%

y 1

+

x

√

x

(b) Tree mutation

+y

%

y 1

+

x y

√

-

+

y 1

(c) Tree crossover

Figure 5: The tree representation naturally suggests methods for evaluation (5(a)), mutation
(5(b)) and crossover (5(c)). Subfigure 5(a) depicts a tree that evaluates to (y/(y+ 1))+
x. Subfigure 5(b) depicts a natural method for mutating trees, in which a randomly
selected subtree is randomly regenerated; here, y+ 1 is replaced by

√
x. Subfigure 5(c)

depicts a natural method for performing crossover, in which randomly selected sub-
trees are exchanged; here, one tree’s y+ 1 is exchanged for another tree’s y.

Perhaps this tree/graph/linear approach to classifying GP representations might

be improved. It has previously been observed that a further distinction can be made

between several of the non-linear representations based on what the diagram used to

depict the individual represents [86]. In some cases, the diagram represents the flow of

data from one computing node to another (as in Figure 5(a)) whereas in others, it rep-

resents the flow of execution from one node to another (as in Figure 7(a)). For instance

in representations such as the standard tree-based representation, each point on the

graph represents a node, which sends the output of its calculation as input to the next

nodes on the graph. There are other graph-based representations (such as linear-tree

[38], linear-graph [39], Parallel Algorithm Discovery and Orchestration (PADO) [88],

Genetic Network Programming (GNP) [40] and GRAph structured Program Evolution

57

(GRAPE) [79]) for which the graph represents a network of instructions to be traversed

whilst carrying some memory structure on which the instructions may operate. Hence

the classification might be divided into “flow-of-data” representations and “flow-of-

execution” representations [86]. This first refinement to the classification is shown in

the first two subfigures of Figure 6.

Line

Tree

Graph

(a) The standard classification

Line

Tree

Graph
data

Flow-of-execution

Flow-of-data

Flow-of-execution

(b) A refinement to distinguish flow-of-data/flow-of-execution

Nodes

Non-branching

Instructions

Tree

Acyclic

Cyclic

Branching

Non-branching

Branching

Stack

Registers

(c) A different approach

Figure 6: Steps to attempt improving the standard classification of GP representations. Subfig-
ure 6(a) shows the standard approach of splitting representations by their layout: line,
tree or graph. In Subfigure 6(b), this is refined to distinguish between flow-of-data
and flow-of-execution within tree-based and graph-based representations. However,
this still fails to keep Figure 7’s individuals in the same classification. Subfigure 6(c)
shows a different approach in which the primary distinction is made on whether the
representation is node-based or instruction-based. Node-based representations are
further divided according to their layout (tree, acyclic or cyclic) and instruction-based
representations are further divided according to whether they are use a stack or reg-
isters and then according to whether they are branching or not.

In fact, it might be possible to improve the traditional classification further. What

properties should a good classification have? It should help distinguish between items

58

based on their objective properties, placing items in different categories if and only if

their objective properties are different. Yet under this stipulation, the graph/tree/linear

classification scheme fails, even with the flow-of-data/flow-of-execution refinement,

because it separates out some functionally equivalent representations because of the

way in which they are depicted. In other words, it distinguishes representations based

on subjective criteria and consequently places representations with the same objective

properties in different categories. To see this, consider the two examples illustrated

below in Figure 7. The first shows a graph-based representation and the second shows

a linear representation; yet these two individuals are the same and have functionally

identical execution. They are merely depicted in different styles.

add(3,1,2) if(3) sub(8,9,4)

mult(5,7,2)

y

n

add(5,1,2)

(a) Graph-based representation

 ...

#label_23:

 r3 = r1 + r2;

 if (r3 > 0) goto #label_24;

 r8 = r9 - r4;

 ...

#label_24:

 r5 = r7 * r2;

 r5 = r1 + r2;

 goto #label_23;

 ...

(b) Linear representation

Figure 7: Two functionally equivalent individuals that are classified separately because they
are depicted differently. The individual in Figure 7(a) is laid out as a graph whereas
the individual in Figure 7(b) is linear. Ideally, a classification should place these rep-
resentations together.

Since there is no functional difference between these two examples, they should be

classified together. Nevertheless a classification is still useful because there remain real

differences between the way, say, a tree is evaluated and the way the two examples in

Figure 7 are evaluated. To refine the classification, then, it is necessary to describe this

difference in objective terms regarding their functional evaluation rather than in terms

of their depiction.

To achieve this, it helps to think of how these representations utilise the two basic

ingredients that must make up any computation: instructions and memory. The fol-

lowing classification is proposed: representations like tree-based GP should be distin-

guished by the way they bind instructions and memory slots together in pairs, which

we call nodes. In trees (such as the one depicted in Figure 5(a)), the nodes are normally

thought of as indivisible units but it helps to consider the instruction and memory slot

under the node’s bonnet. In this light, a node may be interpreted as meaning “per-

form this node’s single instruction on its inputs and store the result in a single piece

of memory within the node to be made available as an input to other nodes”. Un-

der this scheme, each instruction writes its output to precisely one piece of memory,

59

to which it has exclusive write access. (Of course, an efficient implementation might

reuse memory locations for distinct nodes but that is immaterial here because such an

implementation would be functionally equivalent.)

By contrast, other representations such as the one depicted in Figure 7 do not bind

instructions and memory in this way and a slot may be written to by any number of

the instructions (including none of them). Node-based systems constrain instructions

together into exclusive pairs called nodes; other systems do not. It is suggested that

this is what distinguishes tree-based GP from linear GP. The constraints induced by a

node-based representation naturally lead to one way of depicting individuals; the flex-

ibility of a node-free representation allows both graphs and lists to depict individuals

effectively. The style in which individuals are depicted is not important; what matters

is the presence or absence of the set of functional constraints that define nodes.

If the classification is accordingly altered to use this distinction of whether or not

representations are node-based, it no longer places functionally identical representa-

tions in different categories. This change in the classification is depicted in Figure 6(c).

Under the new approach, node-based representations are further divided according

constraints on their to their layout (tree, acyclic or cyclic) and instruction-based repre-

sentations are further divided according to whether they use a stack or registers and

then according to whether they are branching or not.

3.1.2 Cartesian Genetic Programming (CGP)

The GP used in Chapter 4 is a form of Cartesian Genetic Programming (CGP). CGP

is a node-based representation that drops standard GP’s requirement that individuals

must be trees. This allows the results of nodes to be used by multiple other nodes.

The standard presentation of a CGP individual involves laying the nodes out in a two-

dimensional grid (whence the “Cartesian” in the name). Each node’s inputs may each

be drawn from the output of any node within the last few columns of nodes. The

“levels back” parameter—one of several—defines the number of columns back that a

node’s input may seek for the node to which it will connect. The result of this pre-

scription is that an individual node’s output may be used by zero, one or several other

nodes. Figure 8 shows an example CGP individual, illustrating these points and Fig-

ure 9 presents some CGP pseudo-code.

Issues such as crossover are dealt with elegantly through the use of a genotype that

describes the individual using a string of integers. This permits the representation to

import all of themechanisms, such as crossover, from the field of the Genetic Algorithm

(GA). Recent CGP work has tended to use one row and a parameter setting that allows

node inputs to be connected to any previous node in the row [27] [57]. CGP is a very

well studied representation [14] [16] [27] [30] [31] [34] [41] [57] [58] [91] [92] [93] [94]

[95] [96] [100] [105].

60

* + % *

+ *

x

y

- + %

+ -

%

Figure 8: An example Cartesian Genetic Programming individual. The input nodes are in red,
the normal nodes are in green and the output node is in yellow. This example has
two inputs, one output, a layout with three rows by four columns and a “levels back”
parameter of one (meaning that each node’s input must be connected to a node in the
previous column). Each input on each node is connected to exactly one other node,
whereas a node’s output may be connected to zero, one or many nodes.

3.1.3 Cyclic Genetic Programming

The form of CGP used in Chapter 4 is cyclic CGP. Cyclic GP involves allowing the con-

nections between nodes to form cycles. In the case of standard CGP, cycles do not form

because the nodes may only draw their inputs from nodes in previous columns. Cyclic

CGP allows the nodes to receive their inputs not only from nodes in previous columns

but also from nodes in later columns (and possibly from nodes in the same column).

A “levels forward” parameter is used to specify the number of columns forward from

which a node may draw its inputs.

Permitting cycles in a GP structure raises a question about how individuals are to

be evaluated. For standard, tree-based GP, the order of execution of the instructions is

implied by the structure and each instruction need only be executed once to derive the

final answer for a single evaluation. By contrast, the evaluation for cyclic GP is iter-

ated, with successive iterations performing new computations based on the values of

the previous iteration. Much of this thesis deals with iterated forms such as cyclic GP

(Chapter 4) and Tweaking Mutation Behaviour Learning (TMBL, pronounced “tum-

ble”) (Chapter 6). Hence the runs described in this thesis typically involve multiple

generations, iterations, sub-populations (or demes), individuals, instructions (or nodes)

and testcases.

3.2 Tweaking Mutation Behaviour Learning (TMBL)

The form of Evolutionary Computation (EC) used in Chapter 6 is TMBL, a form of

EC that has been developed as part of this work’s investigation into long term fitness

61

sub cartesian_evaluation(individual, testcase) {

nodes = individual.get_nodes();

node_values = [];

foreach node (nodes) {

inputs = [];

input_node_indices = node.get_node_indices_of_inputs();

foreach input_node_index (input_node_indices) {

push inputs, node_values[input_node_index];

}

push node_values, node.perform_node_operation(inputs);

}

return individual.get_output_node_value();

}

Figure 9: Pseudo-code illustrating the principles of Cartesian Genetic Programming

growth. TMBL has been proposed as a sister to GP in research conducted as part of

this PhD research and published in a 2010 conference paper [50]. Like GP, it entails

evolving programs; unlike GP, it prioritises the long term growth of fitness above all

else. This may be at the expense of efficiency in the initial generations if necessary. It

is built on the following hypothesis: long term fitness growth is dependent on the ease with

which mutations can affect an individual’s behaviour without (necessarily) ruining its existing

functionality. Such changes are known as tweaks, a term coined as part of this PhD

research and in a 2010 conference paper [50].

Of course, the quest to develop long term fitness growth is superfluous for problems

that are simple enough to be solved before GP’s stagnation sets in.

Before developing the motivation for TMBL, it is worth outlining how its view fits

with the dominant perspective for EC argumentation: the fitness landscape.

The fitness landscapes of forms like GP and TMBL can be difficult to ponder be-

cause they can have very unintuitive topologies due to genetic operators that have

some non-zero probability of mutating any individual into any other. This leads to

all points of the fitness landscape being connected to each other, which complicates

the standard views regarding local/global optima and requires notions of distance to

be probabilistic. Further, given a non-zero probability of any individual being mutated

into any other, the probability of finding the global optimumwithin n generations tends

to 1 as n tends to infinity. An initial, naive reading of this might be that the answer to all

problems is simply to increase the number of generations. However we know that in

most non-trivial problems, the theoretical possibility of mutating directly to the global

optimum is not of much practical use.

Despite these complications, the fitness landscape abstraction remains useful. Much

discussion of fitness landscapes focuses on how getting trapped in local optima pre-

vents reaching the global optimum. Certainly, successful EC must incorporate the ex-

ploration required to escape small-scale local optima. However it is not clear that the

62

correct diagnosis of what prevents GP from the sort of long term fitness growth seen

in biology is that it is not able to escape sufficiently large local optima. The guidance

should come from examining why biological evolution does not suffer the stagnation

of GP.

True, biological evolution has been able to deploy vast population sizes and time-

scales to perform vast searches of a population’s neighbouring genomes. However,

since populations do not have foresight, populations do not typically make long-term

movements into less well adapted areas of genome space in order to move to escape

a local optimum. The remarkable observation about biological evolution is not that it

manages to find the globally optimal genome, but that the local optima that it achieves

through its cumulative improvement are so functionally complex and so well adapted.

Hence, our aim should not be to change our search strategies to ensure that we always

get to the highest point of our fitness landscapes but to change our fitness landscapes

to raise the larger-scale optima so that most points are on the (possibly bumpy) slopes

of very high peaks.

In practice, few hills within GP fitness landscapes are very high. GP’s stagnation

tends to cap them at a certain height because as the individuals get fitter, they quickly

become less evolvable. To understand why this is so, we must leave the abstraction of

the fitness landscape and delve into the details of what is actually happening within

GP individuals.

3.2.1 An Analysis of the Problem

In order to understand TMBL’s approach, it is important to understand the related

analysis of what currently limits long term fitness growth.

Consider a toy puzzle consisting of many cube-shaped blocks that must be lined

up in some specific order according to the patterns on their surfaces. Assume that it

is quite possible to stack the blocks into a tall tower without them toppling. Further

assume that the puzzle is sufficiently tricky to require a good deal of trial and error but

that planning is forbidden. Now imagine attempting to solve the puzzle by stacking

the blocks vertically in a single, free-standing column as depicted for a small example

in Figure 10(a). It is intuitively clear that this single-stack, trial-and-error approach is

doomed; given a puzzle with enough blocks, the strategy will stagnate.

Why must this be so? This is because once initial progress has been made, it be-

comes difficult to make changes without ruining previous achievements. Once suc-

cessful regions are formed in the stack, it becomes extremely difficult to adjust any

blocks belowwithout the successful region falling over. Hence as progress is made and

as successful regions are formed, the cost of meddling increases for more and more of

the blocks and so each next step becomes harder. There might be some easy improve-

ments that can be made, particularly near the top of the stack, but once these get used

up, the same problems remain. Eventually the attempt grinds to a halt.

63

Note that this strategy’s attempts may consistently start well and may consistently

make moderate progress. Initially, it would be easy to put one block on top of another

or to substitute this block for that. This should not mislead; the strategy is limited.

(a) A small tower of blocks

y

%

+ -

+

x

+

(b) An inverted GP tree

Figure 10: Illustrations of a small tower of blocks (a) and an inverted GP tree representing
x + (((?−?) + (?+?))%y) (b). It is claimed that these two challenges face similar
limitations. In both cases, progress may initially be good but it stagnates later on as
initial achievements get buried beneath dependent material. It becomes ever harder
to make further improvements without damaging previous results.

This analysis also illuminates the stagnation seen in GP. Compare the tower of

blocks to an upside-down GP tree as depicted in Figure 10(b). In both cases, it becomes

increasingly difficult to improve the structure by a process of trial and error because

the more successful material that is built on top of an item, the harder it becomes to

change that item without doing more harm than good. In the tower, the lower blocks

provide physical support for the blocks above; in the inverted GP tree, the support is

functional.

Then how are these processes able to make any progress at all? The early solutions

are unremarkable so progress can be made by additions and occasional lucky random

alterations. This process continues and the solution collects components built with the

best luck seen so far. Consequently it becomes increasingly rare that a new randomly

trialed component is better than the component it would replace, which represents the

best luck seen so far in that area. The closer to the structure’s core that the candidate

change would occur, the more damage it is likely to do to the prior achievements and

so the more exceptional good luck is needed to succeed.

These arguments emphasise the problem with building a single structure out of

such highly interdependent units: as the structure becomes increasingly elaborate, it

becomes increasingly difficult to modify the structure without ruining prior achieve-

ments. Imagine if biology had somehow been constrained to allow only one gene

(translated to one protein chain) per organism. As evolution added ever more func-

64

tions to this Swiss Army knife protein, newmutationswould face evermore formidable

constraints tomaintain the precise structural configurations required tomaintain all the

previous functions.

Given plentiful blocks or nodes, why can’t the process just keep improving by

adding at the fringes until the resources dry up? For one thing, passable components

congeal at the heart of the structure and get buried until there is no practical way to

improve them. Each new layer of passable component that establishes itself, adds new

limitations to the material deeper down. That said, developing at the top of a tower

may continue to improve its value at the same rate until the blocks are used up. For

the GP tree, the outlook is worse because most components will tend to restrict the

influence and scope of their neighbours further out from the core.

As with the tower, consistent moderate progress in tree-based GP should not mis-

lead; all attention should remain on the situation after the initial progress and on over-

coming the obstacles that arise then.

In reality, few players of the blocks game would persist with building a single verti-

cal tower for long before switching to a strategy of assembling the puzzle horizontally.

Once the puzzle is laid out flat, changes can easily be made without ruining previ-

ous achievements, making better results easier. This concept of a change which affects

without ruining is at the heart of this work and is given the name tweak. For exam-

ple, a sub-tree replacement mutation is not a tweak because it completely removes the

previous sub-tree and thus requires the new random sub-tree to do a better job in that

position than the sub-tree it replaces.

When tweaks are prevented, a candidate alteration must do a better job than the

“best luck” component it would replace or damage. When tweaks are encouraged,

a candidate alteration may alternatively succeed by making a new contribution to an

existing component whilst still allowing it to persist and to function as before.

The aims then, are to focus on the situation later on in the run and to find a form of

program evolution that is “laid out flat” to encourage tweaks.

3.2.2 A TMBL Form to Avoid Limitations

TMBL focuses on the situation later on in the evolutionary process. The path taken

to that position is secondary; the primary concern is what can be done to encourage

further development once there. Consider what this situation tends to look like. At

this point, the population fitness has typically made substantial progress and the best

individuals have a lot to lose from a bad mutation. The initial flurry of improvements

has waned and few generations see the population best improve. The individual that

most recently improved the population best is likely to be dominating the population

through its descendants. Other lineages that do not match the fitness of this top indi-

vidual disappear quickly and descendants with deleterious mutations rarely last more

than a few generations.

65

For these reasons, there is unlikely to be much diversity in the enduring core of the

population, just minor variations on one form of solution. This means there is little for a

crossover operator to work with, so although it may or may not confer some additional

benefit, it isn’t the significant source of functional innovation. Instead, the evolutionary

process must rely on mutation to provide most adaptive steps 1.

It was argued in Section 3.2.1 that to improve long term fitness growth, the fo-

cus should be on finding a structure that encourages tweaks (changes which affect

behaviour without ruining existing functionality).

What sorts of properties of a program representation might encourage tweaks?

Firstly, a change to one component of the program should be able to affect the be-

haviour of another part of the program without it being necessary to also change that

other part. Compare this to the way that a newly evolved gene’s product can interact

with a pre-existing biological process carried out by other genes’ products. This sug-

gests that the program should be built out of actions that affect other entities rather than

static components that present their results for use by another part of the program. In-

stead of the overall behaviour arising from a single structure, it should arise frommany

parts which evolve to make their own contributions. Secondly, each component should

have as few ties with functionally unrelated components as possible. This suggests that

the design should not force components of the program to share aspects globally.

This analysis can be used to design a standard form for TMBL. Note that this is

just one of many possibilities and other researchers are encouraged to propose their

alternative suggestions for achieving the aims of TMBL. The methodology used here is

to review the properties that divide the various GP representations and, at each stage,

use a fresh focus on tweaks to guide a choice.

3.2.3 Choosing whether to use nodes

Using nodes makes it hard to modify the behaviour of a program without damag-

ing existing functional behaviour. In other words, using nodes hinders tweaks. This

is because the changes affecting the behaviour of a node-based program will involve

changes to active nodes (nodes which currently affect the output) but this involves dis-

rupting the contribution that node and its active children were already making to the

output.

Changes at the boundary between active and inactive nodes may minimise the

number of useful nodes that are disrupted. Unfortunately, such changes at the fringes

of the functional structure tend to have restricted influence and tend to create a new

fringe with even less influence. As argued in Section 3.2.1, building at the fringes does

not solve the problem.

Nodes undermine the stated aim of building programs out of actions which can

1Where mutation should be construed in the broad sense of any heritable change that does not draw
material from other individuals. The broadness of this definition is discussed further in Section 3.4.

66

directly affect the behaviour of other parts of the program. Without nodes, it is rela-

tively easy to change an instruction to modify some register without disrupting other

instructions that are already using it. For these reasons, nodes will not be used in this

representation.

3.2.4 Choosing the structure of memory

What structure ofmemory seemsmost likely to encourage tweaks? Until now, theword

“register” has been used to refer to any part of an EC program’s memory. From now

on, it is worth being more precise because in addition to plain registers, GP systems

may alternatively arrange the memory into a stack or indexed memory.

In register-based memory, each instruction is tied to specific registers that it uses

for its output and inputs. Unlike when using nodes, each register may be read from or

written to by multiple instructions. This means that the instructions must be placed in

some order to ensure consistency and to avoid access clashes. Non–node-based GP sys-

temsmore commonly use stack-basedmemory. This involves each instruction popping

enough data off the stack for its inputs, performing its calculation and then pushing the

result back onto the stack. Indexed memory involves providing read/write functions

that allow a program to use a run time argument to indicate which slot of memory to

access.

The stack approach seems likely to be the most brittle. As a stack-based program

develops, it will become increasingly tricky for mutations to affect behaviour (in any

way which involves the stack) whilst still preserving the state of the stack well enough

to avoid damaging already functioning parts. A stack is too global in the sense that all

separate computations in a program are forced to share the same stack.

Indexed memory is a potentially suitable approach which appears less brittle than

a stack because it is relatively easy for newly mutated parts of a program to access one

area of indexed memory without affecting already functioning parts of the program

which access another area. However, since indexed memory is more complicated than

register-based memory and requires more of its instructions, it is not included in the

scope of this work.

Plain registers encourage tweaks because they make it easy for changes to one set

of instructions to affect those registers being used by another set of instructions with-

out ruining the actions of those other instructions. Furthermore, different parts of a

program can easily avoid sharing resources by using separate registers.

Systems using registers often use relatively few, and an analysis of Linear Genetic

Programming (LGP) found that 16 registers was suitable [12]. The consequence of this

is to force growth to be vertical in the sense that programs develop their fitness by ex-

tending the list of instructions that cooperate in sequence on a small set of registers.

That sort of growth is important and may be essential for developing some of the com-

plex parts of an algorithm, but it involves building a complex network of interactions

67

and so makes tweaks increasingly difficult. For this reason it should be complemented

by horizontal growth in which programs can develop their fitness by developing new

groups of instructions and registers which make (fairly) independent contributions.

This suggests that TMBL should use substantially more registers than are normally

used in LGP.

3.2.5 Choosing the type of flow control

Programs that require conditional behaviour should permit some form of flow control

in the representation. The most common forms of flow control in non–node-based

GP use a single point of execution which flows through the program and jumps to

different locations in the program depending on the result of an evaluation each time it

reaches certain branch points. This approach is too global for TMBL because it requires

that all components of a program must collaborate on a shared flow of execution. As

programs develop complexity, it becomes increasingly hard for new parts to exploit

their programs’ flow control systems without damaging other parts already relying on

them.

To encourage tweaks, the TMBL representation should instead use a more local sys-

tem in which each instruction can determine its own execution status. This is achieved

by allowing each instruction the potential to have its own if-condition test. An in-

struction with an active if-condition is only executed when the value at the if-socket is

positive. This system can still be used to generate sophisticated behaviours by repeat-

ing the execution through the program for multiple iterations. Similar systems have

been discussed for LGP that allow multiple, nested if-conditions [12].

3.2.6 Choosing the type of instructions

In a final step to encourage tweaks, the instructions are constrained to always have

the target register as the first input register. Whereas instructions are normally of the

form “overwrite register C with the result of adding register A and B”, this constraint

restricts them to the form “add register A to register B”. This encourages instructions to

modify the values in registers without destroying any information that they previously

hold and so encourages changes that affect without ruining.

3.2.7 A Summary of TMBL’s Standard Form

The resulting representation is somewhere between a linear (node-free) representation

and a cyclic graph-based (node-based) representation. Figure 43 contains represen-

tative code implementing TMBL, which might help the reader get a feel for this and

which might help clarify the following text. Like a linear representation, the instruc-

tions and registers are not paired together in nodes. A stack is not used as is often the

case in linear representations and more registers are used than is normally the case (for

68

those linear representations that use them). Like a cyclic graph-based representation,

the evaluation is iterated and all nodes are evaluated each iteration (except those that

opt out via their if-conditions) rather than there being a single point of execution as is

often the case in linear genetic programming. The instructions are constrained to be of

the form “add the value in register A to the value in register B”. The implementation

can be summarised as follows:

• Each individual consists of an ordered list of instructions and two numbers in-

dicating the number of registers and iterations to be used when evaluating the

individual.

• Each instruction contains an if-switch, an if-socket, an input-socket, an output-

socket and an operation.

• The if-switch is a Boolean value indicating whether the if-condition is to be used.

• Each of the sockets contains the index of a register or of a dimension of the test-

case. The output-socket may only refer to a register (because instructions should

not write to testcases).

• Before evaluation, the registers are all initialised to zero.

• In each iteration, each instruction is evaluated in turn.

• If an instruction has an active if-condition, the instruction is skipped whenever

the value pointed to by the if-socket is negative.

• Executing an instruction involves reading the value pointed to by the input-

socket and using the operation to apply that value to the register indicated by

the output-socket.

• After the last iteration is complete, the output is taken from the last register.

In addition to the standard functions, a TMBL program has the functions SetValue

and Copy. The SetValue function sets the target register to some floating point number

held within the instruction (which is open to mutation). The Copy function copies

the input to the output. It would be simple to modify this representation to allow

for operations with arity other than two (although some thought may be required to

construct these operators such that they act on a register rather than overwriting it).

Crossover could easily be applied but was not used in these experiments. The mu-

tation operator varies each component of each instruction with some small probability

and moves an instruction to some other location in the execution list with some small

probability. The probabilities are set such that each individual has a 0.95 probability of

having at least one mutation.

69

3.3 Compute Unified Device Architecture (CUDA)

Compute Unified Device Architecture (CUDA) is a framework provided by nVidia to

access an nVidia Graphics Processing Unit (GPU) for general purpose computing. The

model involves writing a function for the GPU in a language like C with a few extras

(and an increasing number of C++ constructs in newer versions). This function, known

as a kernel, is compiled using the nvcc compiler and is then uploaded to the GPU, ready

for execution. Executing the kernel involves specifying the number and layout of the

threads that will execute the kernel. Threads are grouped into thread blocks, with each

thread block in a launch having the same number of threads. The kernel code may

access the index of the block and the thread under which it is executing. This offers a

great deal of flexibility in the way a computation is divided amongst the threads. Code

should make no assumptions about the order or parallelism with which the different

thread blocks execute but interaction between threads within a thread block is possible

with the use of the barrier synchronisation function syncthreads(). This function

ensures that all threads reach the call before any threads pass it. The GPU may read

andwrite to a large quantity of slow, off-chip globalmemory, which is also accessible by

the Central Processing Unit (CPU) and so allows data to be sent to and from the GPU.

Threads within a block may also communicate with each other using a limited amount

of faster, on-chip shared memory. Each thread also has a limited number of very fast

registers with which to perform computations. These registers are not indexable.

Although all threads must execute the same kernel in a single launch it is possible

for threads to take different paths of execution through this code. Thread blocks are

grouped into groups of consecutive threads called warps, which at the time of writing

always contain 32 threads. If threads within the same warp diverge from each other,

this is implemented in the hardware by the entire group of 32 threads taking all paths

through the code. Hence minimising such “warp divergence” is an important part of

maximising execution speed.

3.3.1 PTX

The CUDA compiler, nvcc, compiles CUDA C into a GPU-ready binary in two stages

via an intermediate, assembly-like language called Parallel Thread EXecution (PTX).

PTX is well documented and is supported by nVidia. It is possible to instruct nvcc to

retain its intermediate PTX files. By inspecting the code in these files, it is possible to

see how the compiler implements any given CUDA C file in PTX.

The main drawback of programming the GPU in PTX rather than in CUDA C is

that it is considerably more complex. On the other hand, directly writing PTX means

that the time spent compiling from CUDA C to PTX is completely removed. For most

CUDA developers, this time will be of little import because it will only be performed

once; for data-parallel GP, compiling from CUDA C to PTX is performed many times

70

within a single run so it can waste a considerable amount of time as described in Chap-

ter 6.

3.4 Conventions Used in the Thesis

Throughout the thesis, a few conventions are repeatedly used. Many of the graphs

indicate the estimated standard error of the values of a line by using a paler bar of the

same colour behind it (indicating the sample mean plus andminus one standard error).

Many of the tables include the standard error of a sample within square brackets after

the mean and use the ± symbol within the square brackets to indicate this.

Strictly speaking, the random number generators used in this work were not “true”

randomnumber generators (such as based on quantum events) butwere pseudo-random

number generators (PRNGs). However for the sake of brevity and simplicity, the dis-

tinction is ignored in this thesis and the “pseudo” is omitted.

In several places, this thesis refers to the protected division function, notated %, in

place of the standard division function (notated /). The protected division function

always returns some fixed constant value (usually zero) whenever the denominator

is zero but acts like the standard division function otherwise. This function is often

used in GP research but there is some debate regarding its merits. That debate is not

addressed here because this thesis seeks to replicate runs identically but at higher

speed, not to assess the effect of changes to the run on its internal behaviour.

In this thesis, the word mutation will be used in a broad sense to mean any change

to the genetic material of an individual that does not involve the insertion of genetic

material from another individual.

This is consistent with the definition of mutation widely used in biology. For

instance in their undergraduate and graduate level textbook “Evolution”, Barton et

al state that “Mutation, formally defined as a heritable change in the genetic material

(DNA or RNA) of an organism, is the ultimate source of all variation” [7]. The

definitions used in GP are often similarly broad. For instance in “A Field Guide to Ge-

netic Programming”, Poli et al definemutation as “The creation of a new child program

by randomly altering a randomly chosen part of a selected parent program” [73] and in

“Genetic Programming: An Introduction”, Banzhaf et al include a table of mutation

operators applied in tree-based GP, which includes a wide range of operators such as

subtree mutation and gene duplication [6].

By contrast, some of the EC literature (perhaps the GA literature in particular) uses

the word mutation more narrowly to refer to a specific type of change, in which a new

value is substituted into a single point of a genome. For instance in “An Introduction

to Genetic Algorithms”, Mitchell describes mutation by saying that “This operator

randomly flips some of the bits in a chromosome” [59].

71

4 A Population-Parallel Implementation of Cyclic GP

4.1 Introduction

This chapter tackles the first objective outlined in Section 1.4: to use a population-

parallel implementation to evaluate cyclic, node-based Genetic Programming (GP) as

fast as possible. This beginning to the acceleration work uses a population-parallel im-

plementation and a cyclic GP form, which encompasses a wide range of node-based

GP forms. The chapter introduces many of the issues involved in Graphics Process-

ing Unit (GPU) acceleration and so, by comparison with the chapters that follow, it

is quite focused on implementation. This chapter’s objective poses a range of new

challenges for which the solutions are described. The resulting architecture is experi-

mentally assessed and is found to execute cyclic GP up to 175.703 times faster than an

implementation using a single core of a Central Processing Unit (CPU).

4.1.1 Motivation for Using Graphics Processing Unit (GPU) Approaches

Why use the GPU in this research? As discussed in Section 2.1.5, the GPU has recently

become an extremely powerful way of accelerating GP computation. GPU approaches

offer several advantages for this research:

• A GPU card is relatively cheap and easy to obtain.

• In the best cases, GPU acceleration has been shown to achieve impressive accel-

eration for a range of scientific computing problems.

• There is good reason to hope that this research is well suited to the GPU ap-

proaches. This is because GP is “embarrassingly parallel” [1] (as mentioned in

Section 2.1) and because much of this research will involve many iterations and

many testcases per evaluation which suggests a high ratio of computation to data

transfer.

• GPU acceleration should be able to achieve valuable results without the use of

multiple computers meaning fewer of the administrative overheads and com-

plexities of maintaining machines and splitting jobs amongst them.

• A single computer can be extended with a motherboard that accepts multiple

graphics cards if more computing power is required than can be provided by one

GPU.

• The computing cores of a GPU are homogeneous, persistently present and avail-

able and can easily be dedicated to the required task. This is in contrast to the

computing cores available in, say, a peer-to-peer networks of computers.

72

• GPU acceleration of GP is an active area of research and so work in this area

can make a useful contribution to knowledge as well as being of direct practical

value.

In combination, these advantages indicate that GPU approaches are a very inter-

esting avenue for investigation. nVidia have released Compute Unified Device Archi-

tecture (CUDA), a technology which allows developers to write kernels for a range of

nVidia GPU cards in C [67]. CUDA’s extensive resources (such as documentation, li-

braries and tutorials) combined with the simplicity of writing kernels in C make it an

appealing technology and it is the framework used for this work.

4.2 Cyclic Cartesian Genetic Programming

This investigation of cyclic genetic programming uses Cartesian Genetic Programming

(CGP). It is important to distinguish between these two types of GP because a GP sys-

tem may be Cartesian, cyclic, both or neither. The acronym CGP will only be used here

to refer to Cartesian Genetic Programming.

CGP is a form of graph-based GP introduced by Miller and Thomson [58]. The

standard form of CGP is constrained to be acyclic, however the paper that introduced

it explicitly stated the possibility of adjusting a parameter to allow cyclic individuals.

There are several cyclic forms of existing representations such as cyclic Parallel Dis-

tributed Genetic Programming (PDGP) [69] and Neural Programming (NP) [86], how-

ever CGP was chosen for this work because, as discussed in Section 3.1.2, it has been

the subject of numerous papers and tutorials in recent years.

CGP was originally developed “for the purpose of evolving digital circuits” [30]

and it approached the problem of graph crossover by using an elegant mapping from

a genotype consisting of a string of integers to a graph-based phenotype.

In a CGP phenotype, the nodes are laid out in a two dimensional (“Cartesian”) grid

with the input nodes at the left and the output nodes at the right. The connections are

constrained such that nodes’ inputs are connected to nodes in the previous l columns

where l is an adjustable parameter called “levels back”. In a CGP individual, each node

input has exactly one connection but nodes’ outputs may be connected to no nodes, one

node or many nodes. Recent CGP work has tended to use one row and a parameter

setting that allows node inputs to be connected to any previous node in the row [27]

[57]. This leaves few constraints remaining. Further constraints were removed for this

work by allowing function nodes’ inputs to be connected to the outputs of any other

input node or function node (including their own outputs). This move means graphs

may potentially be cyclic and so takes them into the territory of cyclic GP.

The evaluation of a normal CGP individual is much like that of any normal GP

individual: each node connected to an input of another node is evaluated before it.

The evaluation of a cyclic individual is trickier because the cycles make it unclear how

73

+% - -- *

 0

 0

 0

 0

-2

-4

 0

 0

 1

 3

 5

 7

 0

 0

 1

 2

 3

 6

 0

 0

 0

 1

 4

 9

 0

 0

 0

 2

 1

.8

 0

 0

 0

 0

-2

-6

 0

 0

 0

 0

 0

 0

 0

 1

 2

 3

 4

 5

 0

 0

 0

 0

-1

-2

 0

 0

 0

-1

-2

-5

+ ++

tc

1

%

Figure 11: An example of the iterated evaluation of a cyclic CGP individual. The line of green
boxes is the collection of main nodes, the red “tc” box is the testcase and the blue
“1” box represents a constant of one. The first input socket of a node is at its top, the
second input is at its bottom and the output is at its right. The two division operators
are protected so that they return zero when the denominator is zero, as described in
Section 3.4. The first row of numbers represents the nodes initialised to zero and
the following rows of numbers represent the successive evaluation iterations. Here,
the testcase value is −4. In each row, each input is taken from the previous row’s
outputs. In this example, the eighth node happens to act as a counter by adding a
constant one to the previous iteration’s value.

to order the node evaluations and the ordering can dramatically affect the result. The

standard approach to this is to evaluate in an iterated flip-flop fashion. Before the

first iteration, all of the nodes (except the input nodes) are set to a value of 0. For

each iteration after that, the nodes’ results from the previous iteration are used as their

outputs. In this way, the order of node evaluation in each iteration does not affect

the result. This iterated evaluation is illustrated in Figure 11 and in pseudo-code in

Figure 12. The experiments in this work varied the number of iterations per evaluation.

These representations bear some resemblance to neural networks. Research on us-

ing these powerful structures in GP could connect with research on the evolution of

neural networks and might allow new problems to be tackled. However little research

has been done on cyclic graph-based GP because the evaluations are time consuming.

The evaluations require the whole individual to be evaluated over multiple iterations.

74

sub cyclic_cartesian_evaluation(individual, testcase, no_of_iters) {

nodes = individual.get_nodes();

node_values = array_of(0.0, nodes.size());

prev_node_values = array_of(0.0, nodes.size());

for (iteration = 0; iteration < no_of_iters; ++iteration) {

for (node_index = 0; node_index < nodes.size(); ++node_index) {

node = nodes[node_index];

inputs = [];

input_node_indices = node.get_node_indices_of_inputs();

foreach input_node_index (input_node_indices) {

push inputs, prev_node_values[input_node_index];

}

node_values[node_index] = node.perform_node_operation(inputs);

}

prev_node_values = node_values;

}

return individual.get_output_node_value();

}

Figure 12: Pseudo-code illustrating the principles of Cyclic Cartesian Genetic Programming

Furthermore, cyclic graph evaluation has largermemory requirements as will be ex-

plained in Section 4.4.3. This makes it much more difficult to design a system in which

the processor accesses memory efficiently. This poses a new challenge in designing an

appropriate CUDA evaluator. It also means that there may be greater improvements to

be had over a standard CPU implementation which also faces the same problems and

which presumably uses many slow accesses to memory off the processor’s cache.

4.3 Overall CUDA Architecture

In order to use the CUDA framework to access the GPU, client code must launch one

or more kernels. Each kernel is a piece of code which is compiled and sent to the GPU

and then executed in parallel on multiple multiprocessors. A kernel is written as a C

function marked with the global qualifier. Newer releases of CUDA permit more

C++ constructs in kernel code. A kernel must be declared void, i.e. it cannot return

a value and must communicate any results back to the CPU by copying results to an

appropriate section of memory. A kernel may call other functions and use their return

values; functions to be solely used in this way are marked with the device qualifier.

One kernel launch can invoke a very large number of threads. Threads are grouped

into thread blocks and thread blocks are in turn grouped into grids. Each thread block

within a grid must contain the same number of threads. The code for a kernel is able to

identify the block and thread in which it is executing and act accordingly. This idea is

demonstrated in the following pseudo-code.

75

dev i ce void doSomethingUsingThreadIndex (unsigned in t ful lThreadIndex) {

/ * P r o c e s s t h e f u l l T h r e a d I n d e x−th p a r t o f t h e r e q u i r e d computa t i on * /

. . .

}

g l oba l void kernel I l lustrat ingUseOfBlockAndThreadIds () {

const unsigned in t threadIdxInBlock=threadIdx . x ;

const unsigned in t numThreadsInBlock=blockDim . x ;

const unsigned in t blockIdxInGrid=blockIdx . x ;

const unsigned in t numThreadsInPrevBlocks=blockIdxInGrid * numThreadsInBlock ;

const unsigned in t ful lThreadIndex=numThreadsInPrevBlocks+threadIdxInBlock ;

doSomethingUsingThreadIndex (ful lThreadIndex) ;

}

A variety of memory types are available for use by the kernel. Different memory

types have very different properties and designing kernels that use themwell can have

a profound effect on computation speed. Some of the types of memory are designed for

sequential access from sequential threads and so their performance degrades as access

patterns deviate from this. In particular, the thread blocks are grouped into warps of

threads and the memory performance depends on the access pattern within each warp

(or half warp). For all current devices, a warp contains 32 consecutive threads.

Registers are very fast units of memory local to a specific thread and they are the

default type of memory used by the compiler for local variables. There are a total

of between 8192 and 32768 registers available per block, depending on the compute

capability of the GPU device. Registers are completely separate from each other and

are not addressable so they cannot be used in an array (unless the size and all the access

indices of the array are compile-time constants so that the compiler can implement

them as completely separate variables).

Sharedmemory is accessible by all threadswithin a given block and can be similarly

fast although access speed depends on the access pattern used. There is a total of 16384–

49152 bytes per block depending on the compute capability of the GPU device.

Registers and shared memory are both very useful types of memory but neither

persists between thread block executions and neither is accessible from the CPU. To

allow data transfers to and from the device, CUDA also provides global memory and

constantmemory. Accessing these types ofmemory is verymuch slower than accessing

registers or shared memory (roughly in the order of 100 times slower) but there is a

much larger amount of them available and it is possible to access them from the CPU.

Since globalmemory access is so slow, it can often be quicker to recalculate derived data

on the GPU than to load it from global memory. The amount of global memory varies

between cards (and even between cards that use the same GPU) but, as examples, a

GTX260 card might come with 896 MB and a GTX480 card might come with 1536 MB.

Constant memory can offer improvements over global memory due to caching but at

the cost of only providing read-only access to the GPU, as its name suggests.

76

Global memory is accessible from both the kernel code and the CPU code that initi-

ates the kernel and so is typically used as a means of transferring data to and from the

kernel. Kernel access to the global memory should ideally be coalesced, that is arranged

into a single contiguous, aligned memory access across the threads in a half warp (and

across the threads in a full warp for CUDA devices of compute capability greater than

or equal to 2.0). The slowness of global memory accesses is made considerably worse

if the access is not coalesced.

The typical way a kernel might use this memory model is to read data from global

memory into shared memory and registers, use registers to perform calculations on the

data in the shared memory and then copy results to some other area of global memory.

In cases where there are insufficient registers available, the compiler uses local vari-

ables as a substitute. Local variables have the same functional behaviour as registers

but they are implemented in the same off-chip device memory as global memory and

so have the same poor access performance. It is possible to force the compiler to use

this mechanism to constrain the number of registers, for example to allowmore threads

per block.

A CUDA kernel launch is asynchronous so the host code is free to return to other

tasks whilst the kernel is being executed and may query the readiness of the results

at any time. The host code may intermittently check for the results whilst performing

other tasks or may block until the results are ready if there is no other work that can be

usefully performed.

4.3.1 Decisions and Constraints

The CUDA architecture allows code to launch many threads on the GPU. The user

determines the size and number of the thread blocks and hence the total number of

threads. CUDA makes no guarantees about the order of execution of the thread blocks

so threads in different blocks cannot interact. However, threads within a block are exe-

cuted in a batch in such a way that it is possible for them to communicate. These con-

straints give applications a lot of freedom about how to divide work amongst threads.

The task imposes some additional constraints. The evaluation of a population of

cyclic GP individuals involves evaluating the many nodes of many programs over

many testcases for many iterations. For a given program–testcase pair, all the work

of one iteration must be complete before any work for the next iteration commences

and each node must be able to access the results of the others. Apart from these con-

straints, there remains a lot of freedom regarding how to divide the work up over the

threads. However there are further constraints and recommendations for achieving the

best results from the CUDA technology.

If the work is divided up too much into tiny packets of work then the overheads of

each thread may drown out time spent on real computation. If the work is divided up

too little into huge packets of work then it may fail to saturate the GPU’s computing

77

resources with enough threads per block and blocks per grid. Either of these extremes

may yield disappointing results from the GPU.

Much of the design of the architecture involves making choices and using up free-

doms to satisfy constraints and performance recommendations. The CUDA documen-

tation provides detailed information on the architecture of the CUDA capable GPU and

how it affects the design of good CUDA applications. The following text will introduce

constraints and efficiency guidelines and explain how they influenced the design of the

architecture in this work.

4.3.2 Kernel Details

Asmentioned in Section 4.3, the execution of a typical kernel involves loading data into

shared memory and registers, processing the values in shared memory and registers

and then sending it back again.

The method for accessing shared memory arrays for which the size is not known

at compile-time is rather involved. It requires calculating pointers to the memory by

using offsets from the start of the sharedmemory, which requires knowledge of the size

of each of the required arrays.

CUDA attempts to organise the execution of warps of threads to maximise effi-

ciency which means that developers may not make many assumptions about the order

of execution of threads within a block. However, it is possible to synchronise a block’s

threads at any point in the kernel’s execution using the CUDA function syncthreads().

The kernel code may assume that the threads within a warp are always synchro-

nised but must use syncthreads() to synchronise threads in different warps. The

result of this call is that afterwards it may be assumed that all threads in the block

have reached that call and all effects of statements before the call are complete. Un-

derstandably, kernel code is forbidden from calling syncthreads() from sections of

code which may involve divergent thread behaviour because it is meaningless to call

syncthreads() if some threads cannot reach the point of the call.

CUDA is capable of loading each multiprocessor with multiple warps of threads.

The multiprocessor keeps all information about the execution state of each warp on the

chip and so is able to switch between executing different warps extremely quickly. The

multiprocessor uses this to attempt to cover latencies so that, for example, if one warp

requests a read from global memory, the multiprocessor can initiate the read and then

get busy executing another warp for the several hundred clock cycles that it takes for

the read to complete. Unfortunately, each multiprocessor only has a limited quantity

of registers and shared memory so the number of warps with which it can be loaded

depends on how many registers and how much shared memory a given kernel launch

requires for its warps.

78

4.3.3 Textures

The code arranges the data to allow coalesced access as far as possible. However this

is less relevant for data accessed via textures. Textures provide another method of

read-only access to global-memory and allow efficient access that does not need to be

coalesced. An early experiment during the development of the architecture indicated

that textures gave improved speeds so they were incorporated into the system. Since

the publication of a 2009 paper describing some of this work [49], newer nVidia docu-

mentation has stated that the future direction of CUDA devices is away from this use

of textures to provide access to global memory (because devices of compute capability

2.0 and above provide an explicit cache). With this in mind, the code has been migrated

to perform fewer of the memory accesses through textures. Nevertheless, the devices

used in this work are of compute capability 1.3 and textures remains a key part of the

architecture at the time of writing so must be described here.

On the CPU side, the texture objects can unfortunately only be handled by nvcc

compiled codewhichmeans C++ code is not currently able to refer to the texture objects

directly. There is good reason to want to be able to have the C++ directly refer to such

resources that must be obtained and returned. It is considered to be good C++ practice

in cases such as these to use the Resource Acquisition Is Initialisation (RAII) idiom

to ensure that resources are automatically cleaned up [83]. This practice was widely

followed for the several different types of CUDA resources required. This issue will be

discussed further in the description of later stages of the research.

The code was written such that the actual textures are hidden from the C++ code

whilst still allowing the RAII idiom to be used to ensure the textures are automatically

unbound (and unbound before the appropriate memory is deallocated). In more detail:

the TextureBinding class is designed using the RAII idiom so that it automatically un-

binds the texture on destruction (and does this before the associated memory is freed).

A further problem arises because it is not possible to declare arrays of textures. This

was circumvented by using some hard-coding of specific textures and a range of C

macro tricks to access them.

4.4 Implementation Details

4.4.1 Minimising Divergent Warps and Optimising Memory Access With Testcase-

Groups

As discussed in Section 2.1.5, the CUDA architecture uses a Single Program, Multi-

ple Data (SPMD) approach rather than a Single Instruction, Multiple Data (SIMD) ap-

proach. This means that all the threads in a given kernel launch must execute on the

same program but do not necessarily have to follow the same paths.

As described in Section 4.3, the CUDA threads are grouped into warps and at the

time of writing, all CUDA devices have 32 threads per warp. Threads within a warp

79

should always execute the same instruction in parallel for maximum efficiency. Neigh-

bouring threads may follow different execution paths but this is implemented by all

the threads in the warp executing all of the paths. Hence any flow control instruction

(such as if, switch or for) that causes threads of the same warp to diverge from each

other (i.e. to follow different execution paths) causes all threads in the warp to pay the

full time penalty of executing all threads’ branches.

Minimising warp divergence is one of the top priority optimisation aims in kernel

design (along with minimising global memory accesses and designing the necessary

global memory accesses to be coalesced wherever possible). This presents a choice

of how to distribute work between neighbouring threads in a warp to minimise the

warp divergence. It would be simpler to divide work using only one aspect of the

computation. Referring back to the computational cuboid in Subfigure 3(b), the choice

is how to divide up a single blue cuboid between neighbouring threads. This leaves

three choices: to divide up the work over a warp by iteration, by testcase or by node

(either within the same individual or not). As mentioned earlier, successive iterations

of the same node–testcase pair must be evaluated sequentially. This leaves a choice

between dividing up the work by testcase or by node.

Different nodes may have quite different behaviour; one node may have a different

operation and a different arity to another. This makes dividing the work by node quite

unappealing. On the other hand, the computation involved for different testcases is

almost identical; typically the only difference to the computation is the set of values

involved. This parallelisation over data is precisely the sort of division of work to

which GPU computation is ideally suited.

This leads to the conclusion that contiguous threads in thewarp should evaluate the

same nodes of the same programs on different testcases. Indeed, the natural arrange-

ment is to use contiguous threads to evaluate contiguous testcases and this makes good

memory access patterns easier to achieve.

This approach has previously been proposed and used with success [76] [77] and it

was adopted for this work.

If there are exactly 32 testcases, then it is very easy to assign one testcase per thread

in each warp. When there are fewer than 32 testcases, they are padded out so that their

number is a power of two in an attempt to minimise unnecessary warp divergence.

For example, if there are 13 real testcases, they are padded out to 16 testcases so that

each half of each warp evaluates these 16 testcases. In that case, there will still be some

divergence within warps because each half of each warp will evaluate the testcases

over a different sets of nodes. However, at least this padding avoids groups of testcases

being unnecessarily split from the end of one warp over to the start of another.

Similarly, when there aremore than 32 testcases, the testcases are padded out so that

their number is a multiple of 32. In this case, the threads will evaluate the testcases in

consecutive batches, with each batch being executed simultaneously by 32 consecutive

80

threads. For particularly large programs, it may be necessary to break up testcases into

artificially smaller groups as explained later in Section 4.4.4.

This deals with the division of the work of the testcases. Since the group of threads

evaluating a group of testcases is evaluating the same iterations of the same nodes of

the same individuals at the same time, it is helpful to think of the group acting as one.

For this reason, the phrase “testcase-group” will be used to describe a group of threads

evaluating a group of testcases (and occasionally to describe the group of testcases

themselves). When possible, the size of the testcase-group will be the same as the size

of the warp (32 threads) but as discussed above, this may not always be true. Hence it

will often be more useful to refer to the size of the testcase-group rather than the size

of the warp. Figure 13 illustrates the division of a thread block into testcase-groups of

threads.

Figure 13: The design organises each thread block into testcase-groups of threads, each evalu-
ating a node-set of nodes over all the testcases. Here, the block of 256 threads (in
yellow) contains eight testcase-groups of 32 threads. Each testcase-group evaluates
a specific node-set of nodes (in blue) over consecutive testcases (in green). When
the testcase-group of threads completes one row of testcases, it moves onto the next.
Here, each node-set contains four nodes and some programs require multiple node-
sets. The thread block synchronises after each iteration so that threads working on
the same testcase and the same program can use each other’s results. This example
is covered again in Figure 15.

4.4.2 Limits on Registers Constrain the Number of Threads

The documentation encourages the use of many threads in each thread block andmany

thread blocks in each grid. The CUDAdevice used in this work is of compute capability

1.3 and allows a maximum of 512 threads per block and 16384 registers per thread

block as mentioned in Section 4.3. These registers provide very fast local memory and

they are automatically used by the compiler for local variables in the kernel code. It is

possible to force the compiler to limit the number of registers used per thread which it

achieves through the use of shared memory. The code used for the kernel in this work

is compiled with a limit of 64 registers per thread without any noticeable problems.

81

With 16384 registers available per block, this means that the kernel can be launched

with a maximum of 256 threads.

More recent GPUs of compute capability 2.0 or above offer 32768 registers per

thread block. If such processors were available for this work, the number of threads

might still be kept at 256 and the compile limit on registers per thread might even be

reduced slightly. The reason for this is that the GPU’s resources are available to mul-

tiple units of work and so if the resource requirements are sufficiently low, the GPU is

able to hold more units of work at the same time. This does not allow the processor

to compute any faster but, as mentioned in Section 4.3.2, it does allow it to attempt to

cover memory access latencies. This means that if one unit of work requests a memory

access (which might take several hundred clock cycles), the processor can stay produc-

tive by switching to performing computations on another unit of work. The term “oc-

cupancy” is used to describe the number of units of work being processed as a fraction

of the maximum possible units of work. nVidia provide a “CUDA Occupancy Calcu-

lator” spreadsheet for calculating the occupancy that will be achieved with different

numbers of threads per block, registers per thread and bytes of shared memory per

block. The spreadsheet uses graphs to indicate the effect on occupancy of varying any

of these three parameters whilst holding the other two constant. These tools indicate

that the best use of a device of compute capability 2.0 or above might be to constrain

register use and shared memory use to improve latency covering.

4.4.3 Shared Memory Limits

As discussed in Section 4.4.1, it is preferable to have neighbouring threads evaluating

the same thing on neighbouring testcases. This naturally suggests a policy of “one

thread evaluates one individual on one testcase”. This policy was adoptedwith success

for tree-based GP by Langdon [45] and Robilliard [76]. Unfortunately it turns out that

the greater memory requirements of cyclic GP prevent this from working and require

a more complicated solution.

As the kernel evaluates, it requires somewhere to store the values being computed

for the nodes. Ideally, it would be best to store this local data in registers. Unfortu-

nately, this is not possible for two reasons: firstly because there are no spare registers

(as explained above) and secondly because the size and all access indices of any arrays

of registers must be constant. This second rule in particular would induce unacceptable

constraints on the rest of the architecture.

The next best memory after registers is shared memory, which can be slower de-

pending on how it is accessed. As explained in Section 4.3, it is common for kernels

to copy input data into shared memory, carry out processing in registers and shared

memory and then copy results back to global memory. Shared memory is shared be-

tween the threads of a block and so allows threads to use each other’s intermediate

results which is useful for this architecture as will be seen.

82

The biggest limitation of shared memory is its small size. CUDA provides each

block with 16384 bytes of shared memory (which can be increased to 49152 bytes in

devices of compute capability 2.0 or higher but at the expense of some of the L1 cache

offered by such devices). This is sufficient for many applications but unfortunately

memory requirements tend to be greater when evaluating cyclic graph-based GP indi-

viduals than when evaluating tree-based GP individuals as illustrated in Figure 14.

(a) Tree-based GP (b) Cyclic, graph-based GP

Figure 14: Cyclic, graph-based GP requires more memory for evaluation than tree-based GP.
Both example individuals have 31 nodes and 30 connectors, yet the tree-based ex-
ample in Subfigure 14(a) uses a stack of 5 memory slots whilst the cyclic example
in Subfigure 14(b) uses 31 memory slots, one per node. To see how the tree in Sub-
figure 14(a) may be calculated with 5 memory slots, trace a depth-first, left-to-right
traversal of the tree, disposing values when they are no longer needed. Doing this
shows that the most memory slots are required near the end of this traversal, when
the values of the highlighted nodes must all be held in memory. It might be possi-
ble to evaluate the particular individual in Subfigure 14(b) with fewer slots but, in
general, 31 memory slots must be available for 31-node, cyclic individuals.

This is because partial results are not reused in trees and so can be discarded after

first use. A full tree of depth d and made up of function nodes with arity a will con-

tain ad−1
a−1 nodes but a stack-based tree evaluator may only require (d− 1) ∗ (a− 1) + 1

memory slots to evaluate it. To illustrate the significance of the difference, a full tree

with a = 4 and d = 10 would have 349525 nodes but could be evaluated with only

28 memory slots. Evaluating 349525 nodes in a cyclic graph-based individual might

require up to 349525 memory slots.

Worse, each combination of a node and a testcase requires two floating point num-

bers, or eight bytes, of this memory for the iterated flip-flop evaluation. Since there are

16384 bytes of share memory per block, this means that each thread block is restricted

to evaluating 2048 node–testcase combinations at once. Furthermore, each individual

must be evaluated within one thread block in order to use this shared memory.

Indeed, the situation is slightly worse still because the kernel is written to also use

83

some shared memory to store local copies of data on testcases and nodes because it

improves speed to use fast memory for these regularly used data.

The decision described in Section 4.4.1 to divide consecutive testcases over up to 32

testcases means that it will often be impossible to evaluate anymore than 2048/32 = 64

distinct nodes in one thread block. Limiting all individuals to around 64 nodes would

be rather severe so the code deploys tactics to evaluate larger programs (containing

more than ≈64 nodes but fewer than ≈2048 nodes) whilst still allowing smaller pro-

grams in the same evaluation job to be evaluated as efficiently as possible.

Since there are 256 threads and since there will often be 32 threads per testcase-

group, the ≈64 nodes will often need to be divided amongst the 256/32 = 8 testcase-

groups meaning that each testcase-group evaluates a maximum of 8 nodes. For any

programs larger than 8 nodes, this requires dividing up the evaluation of a single

program over multiple threads. As mentioned in Section 4.3.2, the CUDA function

syncthreads() is used by the kernel to synchronise the different parts of the evalua-

tion.

Just as it is helpful to give the name “testcase-group” to a group of threads evalu-

ating a single group of testcases, so it is helpful to give the name “node-set” to a set of

nodes to be evaluated by one thread. Indeed it is much simpler to consider the divi-

sion of work over threads according to the testcase-groups and the node-sets. Figure 13

shows this principle with a simple example. To help illustrate this further, Figure 15

shows the same example in more detail.

Figure 15(a) depicts every thread in a thread block of 256 threads arranged into 8

rows of 32 threads. Each row of threads evaluates one node-set on two consecutive

testcase-groups and the 32 testcases of the each testcase-group are distributed over the

32 threads. In this example, each node-set contains 4 nodes which are to be evaluated

by all the threads in the corresponding row. Figure 15(b) represents the same thread

block and somemore information. This shows that such descriptions are much simpler

when expressed in terms of testcase-groups and node-sets.

Shared memory is arranged into banks with neighbouring memory locations in dif-

ferent banks. To achieve maximum efficiency, the threads in a half warp must all access

different memory banks, which might commonly be achieved by each of a contiguous

sequence of memory locations being accessed by any one of the threads. On reading,

there is a special “broadcast” mechanism, whichmeans it is just as efficient if all threads

simultaneously read from one location.

4.4.4 ThreadPolicy and ThreadPlan

The above design decisions and method of viewing things in terms of testcase-groups

and node-sets go some way to determining how jobs are processed. However there

remains considerable flexibility about how each specific job is performed.

The policy for making the remaining decisions will be referred to as a ThreadPolicy

84

Thread 1

I:1

N:1,2,3,4

T:1,33

Thread 2

I:1

N:1,2,3,4

T:2,34

Thread 3

I:1

N:1,2,3,4

T:3,35

Thread 4

I:1

N:1,2,3,4

T:4,36

Thread 33

I:1

N:5,6,7,8

T:1,33

Thread 34

I:1

N:5,6,7,8

T:2,34

Thread 35

I:1

N:5,6,7,8

T:3,35

Thread 36

I:1

N:5,6,7,8

T:4,36

Thread 5

I:1

N:1,2,3,4

T:5,37

Thread 6

I:1

N:1,2,3,4

T:6,38

Thread 7

I:1

N:1,2,3,4

T:7,39

Thread 37

I:1

N:5,6,7,8

T:5,37

Thread 38

I:1

N:5,6,7,8

T:6,38

Thread 39

I:1

N:5,6,7,8

T:7,39

Thread 65

I:2

N:1,2,3,4

T:1,33

Thread 97

I:2

N:5,6,7,8

T:1,33

Thread 129

I:3

N:1,2,3,4

T:1,33

Thread 161

I:4

N:1,2,3,4

T:1,33

Thread 66

I:2

N:1,2,3,4

T:2,34

Thread 98

I:2

N:5,6,7,8

T:2,34

Thread 130

I:3

N:1,2,3,4

T:2,34

Thread 162

I:4

N:1,2,3,4

T:2,34

Thread 67

I:2

N:1,2,3,4

T:3,35

Thread 99

I:2

N:5,6,7,8

T:3,35

Thread 131

I:3

N:1,2,3,4

T:3,35

Thread 163

I:4

N:1,2,3,4

T:3,35

Thread 68

I:2

N:1,2,3,4

T:4,36

Thread 100

I:2

N:5,6,7,8

T:4,36

Thread 132

I:3

N:1,2,3,4

T:4,36

Thread 164

I:4

N:1,2,3,4

T:4,36

Thread 69

I:2

N:1,2,3,4

T:5,37

Thread 101

I:2

N:5,6,7,8

T:5,37

Thread 133

I:3

N:1,2,3,4

T:5,37

Thread 165

I:4

N:1,2,3,4

T:5,37

Thread 70

I:2

N:1,2,3,4

T:6,38

Thread 102

I:2

N:5,6,7,8

T:6,38

Thread 134

I:3

N:1,2,3,4

T:6,38

Thread 166

I:4

N:1,2,3,4

T:6,38

Thread 71

I:2

N:1,2,3,4

T:7,39

Thread 103

I:2

N:5,6,7,8

T:7,39

Thread 135

I:3

N:1,2,3,4

T:7,39

Thread 167

I:4

N:1,2,3,4

T:7,39

Thread 193

I:4

N:5,6,7,8

T:1,33

Thread 194

I:4

N:5,6,7,8

T:2,34

Thread 195

I:4

N:5,6,7,8

T:3,35

Thread 196

I:4

N:5,6,7,8

T:4,36

Thread 197

I:4

N:5,6,7,8

T:5,37

Thread 198

I:4

N:5,6,7,8

T:6,38

Thread 199

I:4

N:5,6,7,8

T:7,39

Thread 225

I:4

N:9,10,11,12

T:1,33

Thread 226

I:4

N:9,10,11,12

T:2,34

Thread 227

I:4

N:9,10,11,12

T:3,35

Thread 228

I:4

N:9,10,11,12

T:4,36

Thread 229

I:4

N:9,10,11,12

T:5,37

Thread 230

I:4

N:9,10,11,12

T:6,38

Thread 231

I:4

N:9,10,11,12

T:7,39

Thread 8

I:1

N:1,2,3,4

T:8,40

Thread 40

I:1

N:5,6,7,8

T:8,40

Thread 72

I:2

N:1,2,3,4

T:8,40

Thread 104

I:2

N:5,6,7,8

T:8,40

Thread 136

I:3

N:1,2,3,4

T:8,40

Thread 168

I:4

N:1,2,3,4

T:8,40

Thread 200

I:4

N:5,6,7,8

T:8,40

Thread 232

I:4

N:9,10,11,12

T:8,40

Thread 9

I:1

N:1,2,3,4

T:9,41

Thread 10

I:1

N:1,2,3,4

T:10,42

Thread 11

I:1

N:1,2,3,4

T:11,43

Thread 12

I:1

N:1,2,3,4

T:12,44

Thread 41

I:1

N:5,6,7,8

T:9,41

Thread 42

I:1

N:5,6,7,8

T:10,42

Thread 43

I:1

N:5,6,7,8

T:11,43

Thread 44

I:1

N:5,6,7,8

T:12,44

Thread 13

I:1

N:1,2,3,4

T:13,45

Thread 14

I:1

N:1,2,3,4

T:14,46

Thread 15

I:1

N:1,2,3,4

T:15,47

Thread 45

I:1

N:5,6,7,8

T:13,45

Thread 46

I:1

N:5,6,7,8

T:14,46

Thread 47

I:1

N:5,6,7,8

T:15,47

Thread 73

I:2

N:1,2,3,4

T:9,41

Thread 105

I:2

N:5,6,7,8

T:9,41

Thread 137

I:3

N:1,2,3,4

T:9,41

Thread 169

I:4

N:1,2,3,4

T:9,41

Thread 74

I:2

N:1,2,3,4

T:10,42

Thread 106

I:2

N:5,6,7,8

T:10,42

Thread 138

I:3

N:1,2,3,4

T:10,42

Thread 170

I:4

N:1,2,3,4

T:10,42

Thread 75

I:2

N:1,2,3,4

T:11,43

Thread 107

I:2

N:5,6,7,8

T:11,43

Thread 139

I:3

N:1,2,3,4

T:11,43

Thread 171

I:4

N:1,2,3,4

T:11,43

Thread 76

I:2

N:1,2,3,4

T:12,44

Thread 108

I:2

N:5,6,7,8

T:12,44

Thread 140

I:3

N:1,2,3,4

T:12,44

Thread 172

I:4

N:1,2,3,4

T:12,44

Thread 77

I:2

N:1,2,3,4

T:13,45

Thread 109

I:2

N:5,6,7,8

T:13,45

Thread 141

I:3

N:1,2,3,4

T:13,45

Thread 173

I:4

N:1,2,3,4

T:13,45

Thread 78

I:2

N:1,2,3,4

T:14,46

Thread 110

I:2

N:5,6,7,8

T:14,46

Thread 142

I:3

N:1,2,3,4

T:14,46

Thread 174

I:4

N:1,2,3,4

T:14,46

Thread 79

I:2

N:1,2,3,4

T:15,47

Thread 111

I:2

N:5,6,7,8

T:15,47

Thread 143

I:3

N:1,2,3,4

T:15,47

Thread 175

I:4

N:1,2,3,4

T:15,47

Thread 201

I:4

N:5,6,7,8

T:9,41

Thread 202

I:4

N:5,6,7,8

T:10,42

Thread 203

I:4

N:5,6,7,8

T:11,43

Thread 204

I:4

N:5,6,7,8

T:12,44

Thread 205

I:4

N:5,6,7,8

T:13,45

Thread 206

I:4

N:5,6,7,8

T:14,46

Thread 207

I:4

N:5,6,7,8

T:15,47

Thread 233

I:4

N:9,10,11,12

T:9,41

Thread 234

I:4

N:9,10,11,12

T:10,42

Thread 235

I:4

N:9,10,11,12

T:11,43

Thread 236

I:4

N:9,10,11,12

T:12,44

Thread 237

I:4

N:9,10,11,12

T:13,45

Thread 238

I:4

N:9,10,11,12

T:14,46

Thread 239

I:4

N:9,10,11,12

T:15,47

Thread 16

I:1

N:1,2,3,4

T:16,48

Thread 48

I:1

N:5,6,7,8

T:16,48

Thread 80

I:2

N:1,2,3,4

T:16,48

Thread 112

I:2

N:5,6,7,8

T:16,48

Thread 144

I:3

N:1,2,3,4

T:16,48

Thread 176

I:4

N:1,2,3,4

T:16,48

Thread 208

I:4

N:5,6,7,8

T:16,48

Thread 240

I:4

N:9,10,11,12

T:16,48

Thread 17

I:1

N:1,2,3,4

T:17,49

Thread 18

I:1

N:1,2,3,4

T:18,50

Thread 19

I:1

N:1,2,3,4

T:19,51

Thread 20

I:1

N:1,2,3,4

T:20,52

Thread 49

I:1

N:5,6,7,8

T:17,49

Thread 50

I:1

N:5,6,7,8

T:18,50

Thread 51

I:1

N:5,6,7,8

T:19,51

Thread 52

I:1

N:5,6,7,8

T:20,52

Thread 21

I:1

N:1,2,3,4

T:21,53

Thread 22

I:1

N:1,2,3,4

T:22,54

Thread 23

I:1

N:1,2,3,4

T:23,55

Thread 53

I:1

N:5,6,7,8

T:21,53

Thread 54

I:1

N:5,6,7,8

T:22,54

Thread 55

I:1

N:5,6,7,8

T:23,55

Thread 81

I:2

N:1,2,3,4

T:17,49

Thread 113

I:2

N:5,6,7,8

T:17,49

Thread 145

I:3

N:1,2,3,4

T:17,49

Thread 177

I:4

N:1,2,3,4

T:17,49

Thread 82

I:2

N:1,2,3,4

T:18,50

Thread 114

I:2

N:5,6,7,8

T:18,50

Thread 146

I:3

N:1,2,3,4

T:18,50

Thread 178

I:4

N:1,2,3,4

T:18,50

Thread 83

I:2

N:1,2,3,4

T:19,51

Thread 115

I:2

N:5,6,7,8

T:19,51

Thread 147

I:3

N:1,2,3,4

T:19,51

Thread 179

I:4

N:1,2,3,4

T:19,51

Thread 84

I:2

N:1,2,3,4

T:20,52

Thread 116

I:2

N:5,6,7,8

T:20,52

Thread 148

I:3

N:1,2,3,4

T:20,52

Thread 180

I:4

N:1,2,3,4

T:20,52

Thread 85

I:2

N:1,2,3,4

T:21,53

Thread 117

I:2

N:5,6,7,8

T:21,53

Thread 149

I:3

N:1,2,3,4

T:21,53

Thread 181

I:4

N:1,2,3,4

T:21,53

Thread 86

I:2

N:1,2,3,4

T:22,54

Thread 118

I:2

N:5,6,7,8

T:22,54

Thread 150

I:3

N:1,2,3,4

T:22,54

Thread 182

I:4

N:1,2,3,4

T:22,54

Thread 87

I:2

N:1,2,3,4

T:23,55

Thread 119

I:2

N:5,6,7,8

T:23,55

Thread 151

I:3

N:1,2,3,4

T:23,55

Thread 183

I:4

N:1,2,3,4

T:23,55

Thread 209

I:4

N:5,6,7,8

T:17,49

Thread 210

I:4

N:5,6,7,8

T:18,50

Thread 211

I:4

N:5,6,7,8

T:19,51

Thread 212

I:4

N:5,6,7,8

T:20,52

Thread 213

I:4

N:5,6,7,8

T:21,53

Thread 214

I:4

N:5,6,7,8

T:22,54

Thread 215

I:4

N:5,6,7,8

T:23,55

Thread 241

I:4

N:9,10,11,12

T:17,49

Thread 242

I:4

N:9,10,11,12

T:18,50

Thread 243

I:4

N:9,10,11,12

T:19,51

Thread 244

I:4

N:9,10,11,12

T:20,52

Thread 245

I:4

N:9,10,11,12

T:21,53

Thread 246

I:4

N:9,10,11,12

T:22,54

Thread 247

I:4

N:9,10,11,12

T:23,55

Thread 24

I:1

N:1,2,3,4

T:24,56

Thread 56

I:1

N:5,6,7,8

T:24,56

Thread 88

I:2

N:1,2,3,4

T:24,56

Thread 120

I:2

N:5,6,7,8

T:24,56

Thread 152

I:3

N:1,2,3,4

T:24,56

Thread 184

I:4

N:1,2,3,4

T:24,56

Thread 216

I:4

N:5,6,7,8

T:24,56

Thread 248

I:4

N:9,10,11,12

T:24,56

Thread 25

I:1

N:1,2,3,4

T:25,57

Thread 26

I:1

N:1,2,3,4

T:26,58

Thread 27

I:1

N:1,2,3,4

T:27,59

Thread 28

I:1

N:1,2,3,4

T:28,60

Thread 57

I:1

N:5,6,7,8

T:25,57

Thread 58

I:1

N:5,6,7,8

T:26,58

Thread 59

I:1

N:5,6,7,8

T:27,59

Thread 60

I:1

N:5,6,7,8

T:28,60

Thread 29

I:1

N:1,2,3,4

T:29,61

Thread 30

I:1

N:1,2,3,4

T:30,62

Thread 31

I:1

N:1,2,3,4

T:31,63

Thread 61

I:1

N:5,6,7,8

T:29,61

Thread 62

I:1

N:5,6,7,8

T:30,62

Thread 63

I:1

N:5,6,7,8

T:31,63

Thread 89

I:2

N:1,2,3,4

T:25,57

Thread 121

I:2

N:5,6,7,8

T:25,57

Thread 153

I:3

N:1,2,3,4

T:25,57

Thread 185

I:4

N:1,2,3,4

T:25,57

Thread 90

I:2

N:1,2,3,4

T:26,58

Thread 122

I:2

N:5,6,7,8

T:26,58

Thread 154

I:3

N:1,2,3,4

T:26,58

Thread 186

I:4

N:1,2,3,4

T:26,58

Thread 91

I:2

N:1,2,3,4

T:27,59

Thread 123

I:2

N:5,6,7,8

T:27,59

Thread 155

I:3

N:1,2,3,4

T:27,59

Thread 187

I:4

N:1,2,3,4

T:27,59

Thread 92

I:2

N:1,2,3,4

T:28,60

Thread 124

I:2

N:5,6,7,8

T:28,60

Thread 156

I:3

N:1,2,3,4

T:28,60

Thread 188

I:4

N:1,2,3,4

T:28,60

Thread 93

I:2

N:1,2,3,4

T:29,61

Thread 125

I:2

N:5,6,7,8

T:29,61

Thread 157

I:3

N:1,2,3,4

T:29,61

Thread 189

I:4

N:1,2,3,4

T:29,61

Thread 94

I:2

N:1,2,3,4

T:30,62

Thread 126

I:2

N:5,6,7,8

T:30,62

Thread 158

I:3

N:1,2,3,4

T:30,62

Thread 190

I:4

N:1,2,3,4

T:30,62

Thread 95

I:2

N:1,2,3,4

T:31,63

Thread 127

I:2

N:5,6,7,8

T:31,63

Thread 159

I:3

N:1,2,3,4

T:31,63

Thread 191

I:4

N:1,2,3,4

T:31,63

Thread 217

I:4

N:5,6,7,8

T:25,57

Thread 218

I:4

N:5,6,7,8

T:26,58

Thread 219

I:4

N:5,6,7,8

T:27,59

Thread 220

I:4

N:5,6,7,8

T:28,60

Thread 221

I:4

N:5,6,7,8

T:29,61

Thread 222

I:4

N:5,6,7,8

T:30,62

Thread 223

I:4

N:5,6,7,8

T:31,63

Thread 249

I:4

N:9,10,11,12

T:25,57

Thread 250

I:4

N:9,10,11,12

T:26,58

Thread 251

I:4

N:9,10,11,12

T:27,59

Thread 252

I:4

N:9,10,11,12

T:28,60

Thread 253

I:4

N:9,10,11,12

T:29,61

Thread 254

I:4

N:9,10,11,12

T:30,62

Thread 255

I:4

N:9,10,11,12

T:31,63

Thread 32

I:1

N:1,2,3,4

T:32,64

Thread 64

I:1

N:5,6,7,8

T:32,64

Thread 96

I:2

N:1,2,3,4

T:32,64

Thread 128

I:2

N:5,6,7,8

T:32,64

Thread 160

I:3

N:1,2,3,4

T:32,64

Thread 192

I:4

N:1,2,3,4

T:32,64

Thread 224

I:4

N:5,6,7,8

T:32,64

Thread 256

I:4

N:9,10,11,12

T:32,64

(a) The ThreadPlan details of a single block of threads

ThreadPlan[

Testcase padding: 3

No of threads per block: 256

No of blocks: 1

No of node-sets: 8

Block 1 (index 0) {

Number of testcases per testcase-group: 32

Number of nodes per thread: 4

Program and nodes by node-set:

[P1,N1-4] [P1,N5-8] [P2,N1-4] [P2,N5-8] [P3,N1-4] [P4,N1-4] [P4,N5-8] [P4,N9-12]

}

]
(b) A full ThreadPlanwith one block of threads, equivalent to that in Subfigure 15(a)

Figure 15: Subfigure 15(a) shows an example of the division of work in a block of 256 CUDA
threads. The letter I precedes the individual’s number, N precedes the nodes’ num-
bers and T precedes the testcases’ numbers. The block has been separated into two
sets of threads to allow the figure to fit on the page and the suspension points in-
dicate the join. Subfigure 15(b) shows a full ThreadPlan (see Section 4.4.4), which
contains the same thread block. In this subfigure, P precedes the program’s num-
ber (equivalent to I preceding the individual’s number) and N again precedes the
nodes’ numbers. These two subfigures show how viewing the division of work in
terms of testcase-groups and node-sets simplifies matters considerably. Given the
framework of ThreadPlans, Subfigure 15(b) conveys more information than does
Subfigure 15(a).

85

and a specific set of such decisions for a given evaluation job will be referred to as a

ThreadPlan. These terms correspond to two classes used in the code.

A ThreadPolicy receives the relevant details about an evaluation submission as

input and produces a ThreadPlan as output. What are these details? The required

details are the individuals’ sizes and number of testcases. The ThreadPolicy is also

able to call upon various values of the environment:

• The maximum number of threads allowed per block,

• The number of registers available per block,

• The number of threads per warp and

• The amount of shared memory available per block.

Although some of these values have already been used in the decisions described

above, it is preferable to use dynamically retrieved values so that the code will auto-

matically benefit from being run on newer hardware with improved abilities.

The ThreadPolicy takes all of this information and uses it to produce a ThreadPlan.

What information must a ThreadPlan contain? It must contain the number of threads

per block. For each thread block, it must specify the number of threads (or testcases) in

each testcase-group, the number of nodes in each node-set and a reference to informa-

tion about the node-sets in the block. For each node-set (of each block), the ThreadPlan

must specify the index of the individual to be evaluated and the index (within the in-

dividual) of the first node in the node-set.

Combined with the decisions described above, this ThreadPlan gives all the infor-

mation required to divide up the work amongst blocks of threads. Figure 15(b) shows

an example ThreadPlan.

Of course, the ThreadPlan that a ThreadPolicy generates must match several con-

straints. For example, every node in every individual must be evaluated by at least

one node-set (and in fact must be evaluated by exactly one node-set because otherwise

threads can conflict with each other whenwriting to the sharedmemory). Furthermore,

the nodes of a given individual must all be evaluated within the same thread block. For

each block, the number of node-sets multiplied by the size of the testcase-group must

equal the ThreadPlan’s number of threads per block. Finally, the amount of shared

memory the ThreadPlan requires must be less than or equal to the amount available.

The code represents ThreadPolicy as an abstract base class so that different thread

policies may be plugged in. However, only one ThreadPolicy was used for this work

and there follows a description of how that ThreadPolicy goes about determining

ThreadPlans.

The first steps are to evaluate the number of threads per block and the amount of

padding to be applied to the testcases. Both of these decisions are described above and

the calculations are fairly routine. From that point onwards, the layout of the testcases

86

is fairly obvious and can largely be disregarded (apart from for memory calculations

etc). The remaining problem is the distribution of the nodes over the various node-sets.

The default size of the testcase-group can be easily calculated as the lesser of either the

warp size or the number of appropriately padded testcases.

This gives enough information to calculate the maximum number of nodes each

node-set can contain within the shared memory constraints. This, in turn, makes it

possible to calculate the number of nodes a block can evaluate. The next stage is to

take all the individuals that have that number of nodes or fewer and pack them into

blocks.

This is an instance of the well studied “bin-packing problem”: given a list L of

items, with sizes of varying fractions of the capacity of identical bins, find the optimal

distribution of items between the bins so as to pack all the items using as few bins

as possible. Here, each block is a bin with capacity in terms of the number of node-

sets it can compute and the list of programs is the list of items with sizes in terms of

the number of node-sets each program requires. Finding a solution to the bin-packing

problem using the optimal number of bins,OPT(L), is an NP–hard problem. However

it has been shown that the number of bins, FFD(L), used by a packing given by the

First Fit Decreasing (FFD) heuristic satisfies the condition FFD(L) ≤ 11
9 OPT(L) + 1, ∀L

[108].

The FFD heuristic simply sorts the items in decreasing order of size and then works

though the items, packing each into the first bin in which it fits. The FFD approach is

used here for packing the programs in the thread blocks.

Of course, there may be individuals too big to fit into any of the thread blocks. So

when all possible packing is complete, the size of the testcase-group is halved and the

process repeated to allow more packing. Halving the size of the testcase-group halves

the number of program–testcase pairs the block is expected to compute and so frees up

more shared memory per program allowing larger programs to be packed. This comes

at the expense of increased warp divergence and so is only done for those programs

that cannot be packed otherwise. This process is repeated until all the individuals are

packed.

Consider the following worked example, illustrated in Figure 16. 20 programs are

to be packed into blocks of 256 threads. When using 32 testcases per testcase-group, the

shared-memory constraints allow 7 nodes for each of the 8 node-sets; when using 16

testcases per testcase-group, the constraints allow 6 nodes for each of the 16 node-sets;

no further dividing of the warp is necessary in this example. The sizes of programs are

51, 48, 67, 49, 48, 20, 13, 54, 96, 55, 6, 68, 60, 55, 15, 81, 5, 37, 82 and 4 nodes respectively.

Blocks using 8 node-sets of 7 nodes offer enough space to contain any programs of

56 nodes or fewer which means programs 1, 2, 4, 5, 6, 7, 8, 10, 11, 14, 15, 17, 18 and

20. These programs are sorted into descending order of the number of node-sets they

require and then packed using the FFD heuristic to get the following blocks: 1, 8, 10,

87

1 8 10

14 2+11 4+17

6+1518+75+20

9 16

19 3

12 13

Figure 16: An example packing of 20 programs. Each rectangle of squares represents one thread
block. However the depiction differs from that in Figures 13 and 15(a) in that squares
do not represent threads. Here, the focus is on the node-sets not the testcases in the
testcase-groups so each column of squares represents a node-set (a group of nodes to
be executed in parallel across a testcase-group). Each square represents one node and
the colours of the squares indicate the different programs to which the nodes belong.
The hues have no significance other than that they highlight the different programs.
Grey squares represent padding nodes. The upper nine blocks are evaluating 32
testcases in each testcase-group and this provides enough memory for seven nodes
per node-set; the lower six blocks are evaluating 16 testcases in each testcase-group
and have six nodes per node-set. In either case, the number of node-sets multiplied
by the number of testcases per testcase-group is 256, the number of threads per block.
The programs have been reordered so that their respective sizes are now of sizes 51,
54, 55, 55, 48, 6, 49, 5, 48, 4, 37, 13, 20, 15, 96, 81, 82, 67, 68, 60. See the main text for
more information on the steps that lead to this packing.

88

14, 2+11, 4+17, 5+20, 18+7, 6+15. Packing the remaining programs into blocks using 16

testcases per testcase-group produces: 9, 16, 19, 3, 12 and 13.

At present the ThreadPolicy is unable to reduce the number of threads per block

to allow it to handle extremely large individuals. If the halving of the testcase-group

reaches one and there remain individuals too large to be packed, the ThreadPolicy

must give up and output an error message. It may be possible to adjust the code to

handle this sort of situation but this would significantly increase the complexity and is

not necessary for this work.

When constructing a ThreadPlan, it is likely that there are some blocks, that cannot

be completely filled with useful node-sets. In this case, the ThreadPlan is padded out

with repeated copies of a padding node-set which extends the program referred to by

the last useful node-set in the block. This padding node-set will refer to nodes beyond

the end of the real program and indeed some of the other node-sets at the end of each

program may contain some nodes beyond the end to fill out the complete node-set.

The inputs and weights are padded out accordingly so that there are dummy values

for the evaluator to use for these nodes. However these nodes will never be referred to

by the other real nodes in the program and none of them will ever be set as the output

node so they will have no effect.

As mentioned earlier in this section, the ThreadPlanmust avoid evaluating any real

nodes with more than one thread to prevent potential memory clashes. This constraint

does not apply to the padding nodes because their results are not used.

The CudaEvaluator code that receives the ThreadPlan from the ThreadPolicymust

ensure that the data which is copied to the GPU device is appropriately padded. This

includes padding out the testcases with false testcases, padding out the programs with

false nodes and padding out node data to the maximum arity used by any of the nodes.

4.4.5 Time Recording and Timeline Generation

In order to understand the performance of the system, it is helpful to get an indication

of the timing of events. This is particularly valuable for the work described in Chapter 5

In order to obtain the times on the GPU, CUDA provides a mechanism to insert a

point, called an event, into the stream of GPU requests and then later query when

this event occurred. The time is retrieved relative to some earlier GPU event. To obtain

an overall view of the system’s timings, it is important to be able to relate these timings

with CPU timings. To achieve this, the system precedes a run by inserting an anchor

event into the GPU stream with no preceding requests so that the event occurs on the

GPU immediately. Using this event, it is possible to map from GPU event timings to

absolute clock times on the CPU. These techniques were used to obtain the times for

the timelines, an example of which is shown in Figure 17.

Henceforth, all such timelines will follow the same rules. The time is shown on

the x-axis in seconds. Different rows are shown in different regions marked as either

89

 0 0.05 0.1 0.15 0.2 0.25 0.3

Time (seconds)

CPU 1

GPU 1

Figure 17: An example of the sort of timeline that can be automatically generated from runs.
See the main text below for a guide. The times used to construct the timeline are
real and are recorded throughout the run. The CPU times and the GPU times are
recorded with different offsets so an anchor event is performed before the run and
this permits the GPU times to be translated into their equivalent CPU times.

GPU or CPU according to the type of processor on which the line’s events occurred.

On later timelines, there may be multiple GPU and CPU regions to indicate the use of

multiple processors. Within a GPU region, different rows represent GPU processing

of different demes. On the CPU side, light yellow bars mean submission (and CPU

evaluation where appropriate), orange bars mean gathering and dark blue bars mean

preparation. On the GPU side, light yellow bars mean computation, red bars mean

memory transfer, thin black bars indicate a deme waiting to be evaluated or gathered

and arrows mean submission or retrieval. For both CPU and GPU, the absence of bars

means idle (although on the GPU side, this is often because the GPU is working on

another deme. This is summarised in Table 4.

CPU side, light yellow bars Submission (and CPU evaluation where appropriate)

CPU side, orange bars Gathering

CPU side, dark blue bars Preparation

GPU side, light yellow bars Computation

GPU side, red bars Memory transfer

GPU side, thin black bars A deme waiting to be evaluated or gathered

Arrows Submission or retrieval

Table 4: A key to the timeline figures

The initial submissions are sometimes slower than all following submissions, pre-

sumably because of time spent on one-off setup tasks such as resource allocation. To

avoid this distracting from the point being illustrated by the timelines, their runs each

used an earlier warm-up generation, which is not shown.

4.5 Assessment of Performance

4.5.1 Performance Measurement Issues

Before describing the experiments, it is worth explaining that it is difficult to compare

directly between results in this area and it is not clear what measurement is most useful.

An ideal measurement would allow direct comparison between different pieces of re-

90

search and would give other Evolutionary Computation (EC) researchers an indication

of the potential benefits.

Perhaps the most obvious measurement is the speed improvement over a CPU im-

plementation. Unfortunately different systems will have different configurations in

many areas such as the CPU, the GPU, the compiler and the compiler options. One test

indicated that simply turning the compiler optimisations off makes the CPU evaluator

used here run 3.32 times slower. Worse, each researcher may focus on a different type

of EC system and so may have their own CPU implementation with a different level

of efficiency. Those GPU researchers who persevere to craft the best CPU implementa-

tions are then punished by facing the harshest comparisons.

An alternative comparison might be sought by using the device emulation mode

of the GPU technology. However, this may fail to discriminate the quality of the GPU

code as any inefficiencies will be present on both sides of the comparison. This mode

is also likely to be much less efficient than a good CPU implementation so it may give

an artificially positive impression of GPUs. It was not used here because a test showed

the device emulation runs to be 9.60 times slower than the CPU evaluator runs.

Another possibility is to measure the rate of evaluation of GP primitives. This has

the advantage of beingmeaningful without a comparison to the CPU performance. The

disadvantage is that it may be unfair on attempts to tackle GP systems that are inher-

ently difficult to run efficiently (on either the CPU or the GPU). The greater memory

requirements of cyclic GP discussed in Section 4.4.3 give cause to suspect that cyclic GP

may be just such a system.

A further issue is the importance of distinguishing whether results are measured

only over the period of evaluation or over the whole run. Work in this area often

reports results measured only over the evaluation to indicate the full scale of the im-

provement. However only measuring during the evaluation may give an artificially

positive impression of the speed improvements to be gained with GPUs.

Thework described in Section 5.2 aims to reduce the overall run time by performing

other tasks in parallel with the evaluation, so measurements over the whole run are

important.

4.5.2 Experimental Setup and Results

The details of the system setup used in this work are provided in Table 5. Each result

was averaged over ten runs. The times measured over the whole run did not include

time spent creating and destroying resources at the start and end of the run.

The equivalence of the results from the GPU evaluator and CPU evaluator was ver-

ified but, as discussed in Section 1.5, the experiments in this thesis are not concerned

with the behaviour of the runs, only accelerating them. For this reason, these results

are not considered here. The experiments did not use additional optimisations (such

as reusing results for identical individuals, removing nodes not connected to the out-

91

CPU Intel Core2 Quad Q6600, 2.40GHz

Graphics card 1 BFG GTX260 OC MAXCORE 55nm 896MB

Graphics card 2 BFG GTX260 OC MAXCORE 55nm 896MB

Cores per card 216

Shader clock speed 1296MHz

Operating system Ubuntu 10.10 (Linux 2.6.35-28-generic-pae)

Compiler GCC v4.4.5

GCC options -O3 (optimisation level 3)

CUDA v3.2 (nvcc v0.2.1221)

nVidia driver v270. 41.06

Fitness caching None between generations

Cyclic evaluation Iterated (no early convergence checks)

Table 5: A table summarising the technical details of the system used for the experiments.

put and terminating the iterated evaluation early on convergence) because these might

have obscured the performance gain achieved by the GPU.

The CPU evaluator and the GPU evaluator were written as subclasses of a common

abstract base class. The approach of using equivalent Evaluator classes is advocated

because it facilitates adding support for future parallel technologies. This architecture

also made it easy to compare the speeds and cross-validate the results. Validation was

complicated by the fact that the CPU and GPU have slightly different floating point

implementations. In the past this could be dealt with using CUDA’s device emulation

mode which attempted to emulate the GPU using CPU threads and which could be

used for direct comparisonwith the CPU evaluator. Unfortunately, nVidia are changing

the debugging functionality to allow debugging software to directly interact with ker-

nels running on the GPU using facilities provided by the hardware of later cards. For

this

reason, the emulation mode was deprecated in release 3.0 of the CUDA toolkit in

March 2010 and removed in release 3.1 in June 2010. This sort of CPU emulation can

now be achieved with third-party tools such as Ocelot (http://code.google.com/p/

gpuocelot/). Anyway, there is less need for CPU emulation in the newer cards of com-

pute capability 2.0 and higher since their floating point implementations have far fewer

deviations from the IEEE 754-2008 [36] floating point standard.

When the code is built with the debug mode switched on, many checks in the code

are executed. This mode also turns on such things as compiler debug symbols (for GCC

and nvcc) and GLIBCXX DEBUG which performs bounds checking on C++ standard STL

containers. However the release build was used for the experiments described here

and the release build has the debug mode switched off and the compiler optimisations

switched on.

The problem tackled and the CGP parameters are summarised in Table 6. The ex-

periments followed much of the CGP research in not using crossover [27] [57]. Acyclic

CGP systems may use very large individuals because few of the nodes typically get

92

Objective Match x2 + x+ 1

Testcases Evenly spaced points from −4 to 4

Number of testcases Varied in experiments

Function set +, -, *, % (protected division)

Terminal set x

Evaluation type 32-bit floating point numbers

Fitness Sum of absolute errors

Selection Tournament selection (size 30)

Initialisation Standard CGP initialisation

Population 2160 individuals (4 demes of 540)

Mutation All genes with probability 0.05

Crossover None

Termination 30 generations

Inputs per individual 1

Arity of functions 2

Nodes per row 30

Nodes per column 1

CGP levels back ∞

CGP levels forward ∞

CGP self loops allowed True

Iterations in evaluation Varied in experiments

Table 6: A table summarising the parameters of the symbolic regression GP runs.

connected to the output and most of the nodes can be disregarded during evaluation.

Unfortunately cyclic CGP individuals appear to bemore prone to use a high proportion

of their nodes, so smaller individuals of 30 nodes were used.

Since the first generation of the GPU run is likely to be relatively slower than that

of the CPU, increasing the number of generations would be likely to improve the

acceleration demonstrated by the GPU. A run of 30 generations was chosen to balance

showcasing the GPU’s abilities with ensuring that the experiment could be run in a

sensible amount of time.

The aim of this investigation was to determine the ability of a population-parallel

GPU implementation to accelerate cyclic graph evaluation. Table 7 shows the results

of runs using the CPU architecture and these values are depicted in Figures 18 and 19.

Table 8 shows the equivalents for the GPU architecture and these values are depicted

in Figures 20 and 21.

With 512 testcases and 160 iterations, the GPU implementation is able to perform

the whole run 175.703 times faster than is a CPU implementation. With only 30 nodes,

32 testcases, 10 iterations, 30 generations and 540 individuals per deme, the GPU eval-

uator ran 8.247 times faster than the CPU evaluator.

The rates for the CPU evaluator seem rather low despite it being coded as a set of

tightly nested loops. This might support the hypothesis (indicated in Section 4.2 and

Section 4.4.3) that the memory requirements of cyclic GP make it hard to implement

93

efficiently without specifically designing the architecture to allow efficient memory ac-

cess.

4.6 Summary and Contribution

The most successful previous attempts to accelerate GP with a GPU have used a data-

parallel approach on very large data sets but they have proved less effective on more

modest configurations.

This work proposed cyclic genetic programming as another candidate system for

acceleration. A cyclic CGP system was accelerated using a population-parallel evalua-

tor. On a realistic configuration (30 nodes per individual, 400 individuals, 512 testcases

and 160 iterations per evaluation) the GPU architecture ran 175.703 times faster than

the single–core CPU equivalent when measured over the whole run. Execution time

has previously been a major obstacle to research on cyclic GP but this work demon-

strated that this no longer need be the case.

Three factors are likely to have played a significant part in this result. Firstly, the

GPU is particularly powerful at manipulating floating point numbers, making each

core very efficient at this sort of task. Secondly, the GPU is highly optimised for parallel

processing and care was taken when designing the thread layout to follow the guide-

lines on how to allow these optimisations to be most effective. Thirdly, as described in

Section 4.4.3, cyclic GP has extra memory constraints which are likely to have caused

access inefficiencies in the CPU implementation but which should have been tackled

more effectively in the GPU implementation by exploiting the various types of on-chip

memory. It should be noted that these suggestions are only speculation and it is ex-

tremely difficult to be certain of the precise contributions of these factors.

This work made a novel contribution in tackling cyclic GP for a population-parallel

GPU evaluation. This introduced strong constraints on the use of shared memory and

required a new architecture capable of dividing the evaluation of a single individual

and single testcase over multiple threads. This required a kernel capable of handling

this (through appropriate use of memory and synchronisations). It also required a

ThreadPolicy to construct a ThreadPlan for specific batches of programs to be evalu-

ated.

As the system has been extended andmademore robust since the publication of the

2009 paper [49], the results appear to have diminished slightly despite the installation

of slightly more powerful cards. Future work may investigate this to see if the former

results can be restored.

The use of CUDA on Linux can pose problems due to an unfortunate interaction

with the X windows system. If a CUDA job runs for longer than five seconds, the X

server may try to kill it. This only occurs when the X server is attached to the card

in question. To circumvent these issues, a cheap graphics card is used to drive the

94

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200 250 300 350 400 450 500 550

T
ot

al
 r

un
 d

ur
at

io
n

(in
 s

ec
on

ds
)

Regression problem size

 Number Of Iterations:10
 Number Of Iterations:20
 Number Of Iterations:40
 Number Of Iterations:80

 Number Of Iterations:160

Figure 18: Total run duration in seconds for the CPU implementation over varying number of
testcases and number of iterations.

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400 450 500 550

O
pe

ra
tio

n
ra

te
 (

in
 m

ill
io

n
G

P
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d)

Regression problem size

 Number Of Iterations:10
 Number Of Iterations:20
 Number Of Iterations:40
 Number Of Iterations:80

 Number Of Iterations:160

Figure 19: Operation rate (in million GP operations per second) for the CPU implementation
over varying number of testcases and number of iterations.

Number of testcases
Iterations

32 64 128 256 512

7.380 mo/s [±0.016] 8.075 mo/s [±0.015] 8.472 mo/s [±0.018] 8.667 mo/s [±0.010] 8.766 mo/s [±0.013]
10

84.293 s [±0.185] 154.073 s [±0.278] 293.741 s [±0.622] 574.186 s [±0.690] 1135.480 s [±1.729]
8.160 mo/s [±0.016] 8.528 mo/s [±0.020] 8.710 mo/s [±0.018] 8.810 mo/s [±0.018] 8.870 mo/s [±0.017]

20
152.485 s [±0.299] 291.805 s [±0.687] 571.364 s [±1.208] 1129.851 s [±2.273] 2244.392 s [±4.178]

7.985 mo/s [±0.134] 8.357 mo/s [±0.156] 8.172 mo/s [±0.251] 8.511 mo/s [±0.087] 8.510 mo/s [±0.091]
40

312.553 s [±5.476] 597.956 s [±13.015] 1231.947 s [±45.730] 2341.337 s [±24.547] 4683.970 s [±51.079]
8.015 mo/s [±0.157] 7.834 mo/s [±0.179] 7.276 mo/s [±0.279] 7.477 mo/s [±0.216] 7.872 mo/s [±0.240]

80
623.668 s [±14.185] 1277.677 s [±31.434] 2784.065 s [±125.774] 5377.222 s [±181.440] 10220.635 s [±345.618]

6.864 mo/s [±0.300] 7.224 mo/s [±0.245] 6.658 mo/s [±0.162] 7.646 mo/s [±0.209] 7.014 mo/s [±0.379]
160

1480.404 s [±69.943] 2787.479 s [±94.238] 6016.100 s [±147.782] 10504.058 s [±332.263] 23601.420 s [±1684.645]

Table 7: The results for the CPU implementation in terms of operation rate (in million GP oper-
ations per second) and total run duration (in seconds) over varying number of testcases
and number of iterations.

95

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400 450 500 550

T
ot

al
 r

un
 d

ur
at

io
n

(in
 s

ec
on

ds
)

Regression problem size

 Number Of Iterations:10
 Number Of Iterations:20
 Number Of Iterations:40
 Number Of Iterations:80

 Number Of Iterations:160

Figure 20: Total run duration in seconds for the GPU implementation over varying number of
testcases and number of iterations.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300 350 400 450 500 550

O
pe

ra
tio

n
ra

te
 (

in
 m

ill
io

n
G

P
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d)

Regression problem size

 Number Of Iterations:10
 Number Of Iterations:20
 Number Of Iterations:40
 Number Of Iterations:80

 Number Of Iterations:160

Figure 21: Operation rate (in million GP operations per second) for the GPU implementation
over varying number of testcases and number of iterations.

Number of testcases
Iterations

32 64 128 256 512

60.915 mo/s [±0.552] 117.237 mo/s [±0.663] 209.402 mo/s [±1.154] 350.799 mo/s [±0.665] 531.932 mo/s [±1.019]
10.221 s [±0.092] 10.616 s [±0.060] 11.887 s [±0.065] 14.187 s [±0.027] 18.712 s [±0.036]10

8.247 × 14.513 × 24.711 × 40.473 × 60.682 ×
124.572 mo/s [±1.217] 224.756 mo/s [±1.660] 374.142 mo/s [±1.975] 571.876 mo/s [±2.495] 766.200 mo/s [±2.453]

9.997 s [±0.097] 11.077 s [±0.081] 13.305 s [±0.070] 17.408 s [±0.076] 25.984 s [±0.082]20
15.253 × 26.343 × 42.944 × 64.904 × 86.376 ×

226.496 mo/s [±1.203] 379.469 mo/s [±2.939] 583.930 mo/s [±3.983] 793.110 mo/s [±2.710] 957.914 mo/s [±2.639]
10.989 s [±0.058] 13.123 s [±0.100] 17.053 s [±0.118] 25.102 s [±0.085] 41.565 s [±0.115]40

28.442 × 45.565 × 72.242 × 93.273 × 112.690 ×
387.249 mo/s [±2.628] 591.747 mo/s [±3.894] 804.421 mo/s [±1.981] 976.014 mo/s [±2.437] 1100.948 mo/s [±1.974]

12.857 s [±0.087] 16.828 s [±0.112] 24.748 s [±0.061] 40.794 s [±0.101] 72.327 s [±0.130]80
48.508 × 75.926 × 112.497 × 131.814 × 141.311 ×

601.118 mo/s [±3.203] 811.468 mo/s [±3.486] 991.219 mo/s [±2.177] 1109.425 mo/s [±1.890] 1185.576 mo/s [±1.206]
16.563 s [±0.086] 24.536 s [±0.105] 40.168 s [±0.088] 71.775 s [±0.122] 134.326 s [±0.137]160

89.380 × 113.608 × 149.773 × 146.347 × 175.703 ×

Table 8: The results for the GPU implementation in terms of operation rate (in million GP oper-
ations per second) and total run duration (in seconds) over varying number of testcases
and number of iterations. Each entry is followed by the speedup the result represents
over the equivalent CPU result in Table 7.

96

two displays so that the other two cards can be devoted to compute tasks and are not

subject to attacks from the X server.

The evaluator can also process directed acyclic graphs and trees but is not expected

to be as efficient as GPU evaluators specifically written to handle those structures. This

is not a priority as cyclic graphs require much more computational resources.

The architecture described cannot handle individuals of more than 2048 nodes (and

in practice might begin to encounter problems at approximately 1500 nodes due to

other use of the memory). This can be alleviated with code that strips out any nodes

which cannot affect the output.

It is expected that as parallel computing develops, other evaluators for different

technologies may be added to the current repertoire. Perhaps this will become a com-

mon practice amongst EC researchers.

97

5 Improving GPU Usage

5.1 Introduction

This chapter tackles the second objective outlined in Section 1.4: to take the accelera-

tion of one machine further by improving the interaction between the Central Process-

ing Unit (CPU) and the Graphics Processing Unit (GPU) and by using a second GPU.

This is important because, as will be seen, the work in the preceding chapter can leave

the CPU and the GPU idle for much of the run, thus wasting valuable computational

resources. This chapter conducts an investigation into whether this can be done better.

The investigation is performed in incremental steps:

• Step one: Section 5.2 investigates accelerating the run further by carrying out

GPU execution, CPU execution and data transfer in parallel.

• Step two: Section 5.3 investigates accelerating the run further by using a second

GPU and a second CPU core.

• Step three: The first two steps use sub-populations, or demes to achieve their

speed improvements. Section 5.4 investigates the time cost incurred in imple-

menting transfers between demes and the extent to which this can be reduced

with a more sophisticated approach.

It is important to emphasise that although the techniques described in this section

will be examined in the context of the population-parallel system described in Chap-

ter 4, they should be applicable to any GPU evaluation system for Evolutionary Com-

putation (EC).

Work in this area has often concentrated on the evaluation stage because this typ-

ically accounts for the majority of the execution time of a full Genetic Programming

(GP) run. However, once the evaluation is accelerated, the time spent on the other

parts of the run becomes more significant. For this reason, very impressive reductions

in evaluation time may lead to much less impressive reductions in overall run time.

It is possible to execute GPU kernels in parallel with CPU threads: when a CPU

thread launches a GPU kernel, execution returns to it almost immediately whilst the

GPU is just starting work. The GPU and the CPU are thought to be the critical re-

sources so they should work in parallel to minimise the time that they spend waiting

for new work. This parallelism has previously been exploited to further accelerate the

evaluation of an EC system by having the CPU and GPU simultaneously evaluating

separate demes [21]. Here it is used to allow the GPU to evaluate one deme at the same

time as the CPU is performing the other tasks on another. This approach is experi-

mentally assessed and is found to further improve the overall acceleration by a further

1.806 times.

98

The second step builds on the first by adding the use of a second GPU. This in

turn requires the use of a second CPU core so the technique requires work to allow

the evolutionary algorithm to be safely distributed over multiple CPU threads. The

technique is experimentally assessed and found to reduce the overall run time by up

to 1.982 times. In combination, steps one and two are found to reduce the overall run

time by up to 3.292 times.

The use of demes to achieve these techniques might raise concerns about the cost of

the deme transfers that they introduce. The third step involves building a deme transfer

system that can operate in the multi-threaded environment and then extends it with a

“smart” mode for carrying out the deme transfers. The effects of using this system on

various topologies are explored through the use of timelines. Experimental assessment

reveals that, even with a particularly high deme-transfer frequency, the time cost of

the deme transfers is small and that this small cost can be mitigated through the use

of the “smart” deme transfers. The largest increase seen is 13.449% and this falls to an

increase of 1.742% through the use of smart transfers.

5.2 Step One: Parallel GPU Execution, CPU Execution and Memory Trans-

fer

This step further enhances the acceleration by exploiting the parallelism between the

CPU and GPU to allow each to work on separate tasks simultaneously. This is achieved

through the use of demes.

5.2.1 Description of the Step

In Chapter 4, the GPU greatly accelerated GP evaluation (to 175.703 times faster than a

single–core CPU equivalent when measured over the whole run). Figure 22(a) depicts

a timeline associated with a standard CPU implementation and Figure 22(b) depicts a

timeline for a standard GPU implementation. The extent of the acceleration means that

the scale used for the other timelines only allows Figure 22(a) to depict the first CPU

evaluation partially.

Section 5.1 explains that accelerating the evaluation in this way only tackles part of

the problem because the other tasks of the run become more significant in the total run

time. The same section also explains that synchronous access to the GPU and to the

data transfer mechanism only utilises part of the available parallel computing power.

This step aimed to use the remaining part of the power to help attack the remaining

part of the problem.

This is possible by dividing the population into demes. When one deme is sent for

evaluation by the GPU, execution returns to the CPU which can then simultaneously

process another deme. This work involves the CPU updating this other deme in prepa-

ration for its next evaluation, based on the results of its last evaluation. An example

99

 0 0.05 0.1 0.15 0.2 0.25 0.3

Time (seconds)

CPU 1

(a) Timeline for standard CPU implementation

 0 0.05 0.1 0.15 0.2 0.25 0.3

Time (seconds)

CPU 1

GPU 1

(b) Timeline for GPU accelerated implementation

 0 0.05 0.1 0.15 0.2 0.25 0.3

Time (seconds)

CPU 1

GPU 1

(c) Timeline for GPU–CPU parallel implementation (step one)

Figure 22: By using the CPU and GPU in parallel—as in Subfigure 22(c)—run times can be
reduced even further. The timelines’ runs all used 6 generations, 256 testcases and
20 iterations. See Section 4.4.5 for a description of timelines.

timeline depicting this approach is shown in Figure 22(c). For most generations, the

demes do not interact so they can be handled independently. Every few generations,

this extra parallelism is halted so that evaluation results can be collected for the whole

population and used to conduct migration between the demes. The extra parallel pro-

cedure is then restarted. Section 5.4 analyses the cost of these transfers and investigates

a strategy to mitigate it.

Section 2.1.10 discusses some of the context of this work. Before the work was first

described in a 2009 paper [49], Garnica et al had investigated having a GPU and a CPU

each completely process their own demes. This has the disadvantage of having the

demes running at different rates because the GPU’s evaluation is much faster than the

CPU’s. It has the further disadvantage of failing to play to the relative strengths and

weaknesses of the two processors. It requires writing complicated code for the GPU

for tasks that could be performed as effectively on the CPU whilst also having the CPU

perform tasks that are performed much faster by the GPU. In contrast, the architecture

constructed for this step uses each processor to perform those tasks to which it is best

suited.

Since this work was first described in the 2009 paper [49], others have explored

running a distributed (deme-based or cellular) model entirely on the GPU [53] [74].

Again, this fails to exploit the strengths of the CPU and now wastes the CPU’s compu-

tational power by having it sit idle. These approaches also suffer from complications

arising from the difficulty of synchronising between parallel GPU tasks. These sys-

tems tend to use an asynchronous approach to transfers between sub-populations and

this means that the algorithm is changed and that reproducibility is made extremely

100

difficult. Worse, Compute Unified Device Architecture (CUDA) implementations of

this type are highly vulnerable to changes in future CUDA software and hardware

because the nVidia documentation urges users to make no assumptions about the or-

dering and parallelisation involved in the execution of multiple blocks of threads in a

single launch.

The architecture used in this work not only avoids these problems but also goes

further by also performing data transfers to and from the graphics card in parallel with

the GPU computation and the CPU computation. This is achieved by associating each

deme with a CUDA stream and then inserting the sequence of requests for GPU data

transfers and GPU executions in the appropriate stream. This information can then be

used by CUDA to determine which data transfers and kernel executions must be run

sequentially and which can be run in parallel. Before the CPU code uses any results

from the GPU, it calls a CUDA function to ensure that all preceding operations in the

relevant stream are complete.

Note that the CUDA stream handling is not perfect: if a call is blocked by preceding

tasks, then it also blocks all calls of the same type (kernel execution or memory copy)

that were launched behind it, even if they were launched in different streams. For ex-

ample, consider the scenario depicted in Figure 23: client code initiates a kernel and

then an asynchronous memory copy in stream one and then an asynchronous memory

copy in stream two. In this case, the memory copy in stream two will not begin until

both the kernel and the memory copy in stream one have completed because the mem-

ory copy in stream one will block whilst the kernel is running and this will block the

copy in stream two. There is no algorithmic reason for this constraint; it is an artifact

of the current nVidia design.

Stream 1:

Stream 2:

kernel copy

copy

1 2

3

Figure 23: CUDA’s handling of streams is not perfect. If these items are placed in these streams
in the order of their numbers, the copy in stream 2 does not begin until the copy
in stream 1 has completed. This is because the copy in stream 1 is blocked by the
preceding kernel and this blocks all operations of the same type until it is complete.

GPUs of compute capability 2.0 or higher allow a copy from page-locked host mem-

ory to device memory (i.e. CPU memory to GPU memory) to run concurrently with a

copy from device memory to page-locked host memory (i.e. they allow copies to and

from the graphics card to run concurrently).

101

5.2.2 Implementation

The most natural scheduling is the one depicted in Figure 22(b): submit and then im-

mediately wait to gather each deme in turn and repeat for the required number of gen-

erations. As Figure 22(b) shows, this means the CPU and GPU never work in parallel.

Even repeatedly submitting and then gathering all of the demes, would not maximise

parallelisation. It is better to submit all of the demes and then for each generation,

gather and immediately resubmit each deme and finally gather each deme at the end

of the run. In this way, demes are submitted to the GPU as soon as possible to keep

the GPU as busy as possible and also the CPU does not sit idle waiting for the GPU

to return results if it has submitting work it can do. In fact, though this strategy is an

improvement, it does not handle the deme transfers as well as it should and a more

advanced mechanism is explored in Section 5.4.2.

The code which implements evaluation is kept as independent as possible from the

evolution code so that each instance of an Evaluator class just performs evaluation

of individuals and does not need to keep track of things such as generations, demes

and deme transfers. Similarly, the evolution code keeps track of these things but as a

client of an Evaluator class does not need to concern itself with any of the details of

the evaluation. However, since the evaluation submission may be asynchronous, the

evolution code must be able to query its Evaluator about a specific submission. For

this reason, a submission call to an Evaluator returns an EvaluatorSubmissionHan-

dle object which the client may use to query the readiness of results and then to request

them.

Within the CudaEvaluator class, the resources and parameters associated with per-

forming a single submission are held within a CudaResourceSet. Each such CudaRe-

sourceSet contains the number of programs, the number of testcases, the CUDA stream

being used, a set of pairs of memory handles and the index of the CUDA texture set to

use.

Each of the CUDA resource objects held within a CudaResourceSet (a CudaTex-

tureSetIndex, a CudaStream and several CudaMemoryPairs) is designed to hold a re-

source under the C++ Resource Acquisition Is Initialisation (RAII) idiom [83] so that

the resources will be automatically freed (and freed in the correct order) when the

CudaResourceSet goes out of scope. The steps involved in this are shown in a Uni-

fied Modelling Language (UML) sequence diagram in Figure 24.

A CudaMemoryPair holds a piece of page-locked host memory (i.e. CPU memory)

and an equally sized piece of CUDA device memory (i.e. GPU global memory). The

host memory must be page-locked in order to allow the data-transfer to happen in

parallel with the execution of CUDA kernels. Using one class to hold both the page-

locked host memory and the device memory makes it very easy to copy data between

them. From the perspective of code which uses the CudaMemoryPair class, the alloca-

tion of each type of memory is done in parallel and it can be viewed as a special type

102

 : CudaResourceSetDealer : CUDA

: getCudaResourceSetRef()
: CudaResourceSet()

: CudaStream()

: cudaStreamCreate()

: allocateMemory()
: CudaMemoryPair()

: CudaRuntimeDeviceMemory()

: cudaMalloc()

: CudaPageLockedMemory()

: cudaMallocHost()

: cudaBindAllTextures()
: cudaBind()

: TextureBinding()

: cudaBindTexture()

: ~TextureBinding() : cudaUnbindTexture()

: cudaStreamDestroy()

: ~CudaPageLockedMemory()

: ~CudaRuntimeDeviceMemory()

: cudaFreeHost()

: cudaFree()

 : CudaStream

 : client

Use CudaResourceSet here

: ~CudaResourceSet()
: ~CudaMemoryPair()

: ~CudaStream()

 : CudaPageLockedMemory

 : CudaMemoryPair

 : CudaRuntimeDeviceMemory

 : TextureBinding

 : CudaResourceSet

Figure 24: The CudaResourceSet and CudaResourceSetDealer classes encapsulate much of
the work in allocating and freeing CUDA resources. The client requests a CudaRe-

sourceSet from the CudaResourceSetDealer, uses its resources via simple methods
and then lets it go out of scope. The CudaResourceSet does the work of acquiring
the CUDA resources (the stream, the device memory, the page-locked host memory
and the texture binding) and uses its destructor to ensure that these resources are
returned and in the correct order.

of double-memory.

A CudaMemoryPair also attempts to reuse memory in order to reduce the time that

is wasted on allocations and deallocations. This works in the following way. In ad-

dition to holding the memory itself, a CudaMemoryPair object records two numbers:

the amount of memory that was most recently requested and the size of the block of

memory that was actually allocated. When client code requests a CudaMemoryPair to

allocate memory for the first time, it actually allocates some multiple of that requested

amount.

CudaResourceSets are reused so if the CudaMemoryPair is later reused by another

job (as happens many times in a normal evolutionary run) and its client requests an-

other memory allocation, the CudaMemoryPair can check if it already holds a sufficient

amount of memory. If so, it will just reuse that previously allocated memory. If a deal-

location and reallocation is necessary, the amount of memory requested will again be

103

multiplied to determine the amount of memory that should actually be allocated. This

means that in practice, allocations or deallocations are rarely required except at the

very start and end of the evolutionary run.

Growth factor of 2:

Growth factor of 1.5:

Figure 25: Figure showing the effects of two different reallocation growth factors on the reuse of
memory when using a first-fit allocator. The grey blocks represent previously used
memory, the black blocks indicate the currently active memory and the coloured
blocks indicate the amount memory to be allocated in the next step, coloured ac-
cording to whether the block will fit in the previously used space (green) or not
(red). The upper part illustrates the problem of using a growth factor of 2: after sev-
eral reallocations, the previously used space is not large enough to contain the next
allocation and further reallocations will never solve this problem. In the lower part,
a growth factor of 1.5 is used and memory gets reused after five allocations.

This exponential growth strategy is used in other areas of computer science such

as in many implementations of the C++ STL vector container [84]. In the worst case of

a sequence of requests for incrementally increasing sizes of memory up to size N, the

exponential growth strategy performs O(N) allocations and wastes O(N) space [84].

The present code uses a multiplying factor of 1.5 as recommended in an article on

reallocation growth strategies [42]. The article explains that, depending on the memory

allocator’s strategy, a multiplying factor of 2 can cause problems. The argument is as

follows.

Consider a first-fit allocation strategy and say the first allocation requires a bytes,

then after n further allocations the contiguous stretch of n previously allocatedmemory

blocks will occupy a(2n − 1) bytes but the next allocation will require a larger stretch

of a.2n+1 bytes and so will not fit into this empty space. Since this argument holds for

all values of n, the earlier memory is never reused and the sequence of allocated blocks

moves endlessly up the memory space. This scenario is depicted in the upper part of

Figure 25.

How low must the factor be reduced to avoid this problem? It turns out that the

104

cut-off is the golden ratio (ϕ = 1+
√
5

2 ≈ 1.618) 2 so any value between 1 and ϕ suffices

[42]. A value of 1.5 is widely used and is used here. The lower part of Figure 25 shows

that the fifth reallocation then fits into the memory left from the first four.

In this context, the reallocations are often associated with refreshing the data in

memory. This might make it possible to deallocate the current block of memory (de-

picted as a black block in each part of Figure 25) and hence potentially include it in the

reallocation. This would mean that the reallocation multiplier could be higher than ϕ

(provided it were kept below two). This current strategy was not found to be a problem

(and reallocations are rarely needed anyway) so this possibility was not investigated

further.

5.2.3 Experiments and Results

The aim of this first step was to investigate further accelerating the run by carrying out

GPU execution, CPU execution and data transfer in parallel. The effect of this technique

was assessed by using the technique whilst repeating the experiments as described in

Section 4.5.2.

Table 9 shows the results for the parallel GPU–CPU architecture over the full run

and compares them to the equivalent CPU results. The durations and operation rates

as measured over the full run are not only included in Table 9 but are also shown in

Figures 26 and 27 respectively.

The best overall acceleration was observedwith 128 testcases and 160 iterations: the

total run time was reduced by 191.248 times over the CPU implementation.

The best improvements over the original acceleration occurred with 64 testcases

and 80 iterations: the total run time was reduced by a further 1.806 times. Figure 22(c)

(repeated in Figure 28(b)) illustrates how this increased parallelism works using times

recorded from a real run. The figure shows that data transfer is a very small factor in

the total run time. This is not surprising as cyclic GP performs multiple iterations on

each individual that is transferred.

2An argument why this might be true (rather than a rigorous proof) proceeds as follows. Observe that
if the initial allocation is a > 0, the factor is k > 1 and there have been n+ 1 allocations, then the condition
that the next allocation will fit into the contiguous block of previous allocations is equivalent to:

a+ ak+ ak2 + . . .+ akn−1 ≥ akn+1

⇒ a(kn − 1)

k− 1
≥ akn+1

⇒ k2 − k− 1+
1

kn
≤ 0

⇒
(

k− 1+
√
5

2

)(

k− 1−
√
5

2

)

+
1

kn
≤ 0

The limit of the left hand side of this equation as n → ∞ is
(

k− 1+
√
5

2

) (

k− 1−
√
5

2

)

and the solutions of

equating this to zero are k = 1−
√
5

2 and k = 1+
√
5

2 , and only the latter of these meets the initial assumption
that k > 1.

105

Number of testcases
Iterations

32 64 128 256 512

64.888 mo/s [±0.475] 127.165 mo/s [±0.789] 250.309 mo/s [±1.233] 478.616 mo/s [±2.989] 900.238 mo/s [±7.303]
9.592 s [±0.070] 9.788 s [±0.060] 9.943 s [±0.049] 10.402 s [±0.065] 11.063 s [±0.085]10

8.788 × 15.741 × 29.542 × 55.200 × 102.638 ×
136.977 mo/s [±1.556] 264.161 mo/s [±1.640] 523.919 mo/s [±2.396] 1000.557 mo/s [±12.694] 1230.926 mo/s [±1.013]

9.095 s [±0.103] 9.423 s [±0.059] 9.501 s [±0.044] 9.964 s [±0.127] 16.172 s [±0.013]20
16.766 × 30.967 × 60.137 × 113.393 × 138.783 ×

271.465 mo/s [±3.537] 539.110 mo/s [±5.441] 1036.073 mo/s [±7.491] 1245.314 mo/s [±0.883] 1256.684 mo/s [±0.683]
9.183 s [±0.128] 9.241 s [±0.093] 9.612 s [±0.069] 15.985 s [±0.011] 31.681 s [±0.017]40

34.036 × 64.707 × 128.168 × 146.471 × 147.848 ×
554.578 mo/s [±3.419] 1069.559 mo/s [±13.048] 1250.971 mo/s [±1.198] 1263.611 mo/s [±0.898] 1268.945 mo/s [±1.408]

8.977 s [±0.055] 9.320 s [±0.114] 15.913 s [±0.015] 31.508 s [±0.022] 62.751 s [±0.070]80
69.474 × 137.090 × 174.955 × 170.662 × 162.876 ×

1076.508 mo/s [±7.528] 1252.781 mo/s [±1.061] 1265.630 mo/s [±0.731] 1274.696 mo/s [±0.614] 1276.595 mo/s [±1.323]
9.250 s [±0.065] 15.890 s [±0.013] 31.457 s [±0.018] 62.467 s [±0.030] 124.749 s [±0.129]160

160.044 × 175.423 × 191.248 × 168.154 × 189.191 ×

Table 9: The results for the CPU-GPU parallel implementation in terms of operation rate (in
million GP operations per second) and total run duration (in seconds) over varying
number of testcases and number of iterations. Each entry is followed by the speedup
the result represents over the equivalent CPU result in Table 7.

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400 450 500 550

T
ot

al
 r

un
 d

ur
at

io
n

(in
 s

ec
on

ds
)

Regression problem size

 Number Of Iterations:10
 Number Of Iterations:20
 Number Of Iterations:40
 Number Of Iterations:80

 Number Of Iterations:160

Figure 26: Total run duration (in seconds) for the parallel CPU-GPU implementation over vary-
ing number of testcases and number of iterations.

106

The best reductions are expected to occur when the CPU and GPU take similar

amounts of time on each deme. Through optimisation of whichever step is taking the

longest, it should then be possible to get close to halving the run time.

5.3 Step Two: Using Two GPUs

5.3.1 Description of the Step

Chapter 4 describes the use of a GPU to accelerate cyclic GP evaluation, as depicted

in Figure 28(a). Section 5.2 describes the use of the parallelism between the CPU and

GPU to improve this acceleration further, as depicted in Figure 28(b). This step makes

the final addition to the architecture: a second GPU. The system of demes already

described in Section 5.2.1 provides a natural way to divide evaluation work between

the GPUs. This approach is depicted in Figure 28(c).

5.3.2 Implementation

The use of multiple GPUs is complicated by the fact that CUDA requires a different

thread to access each GPU. This constraint has been relaxed in v4.0 of the CUDA toolkit,

released in May 2011. This is too late to be used here; a paper describing the basics

of this work was published in 2009 [49]. Furthermore, although the use of multiple

threads adds some complications in a few areas of code, it also makes the architecture

more powerful because it exploits further CPU cores. The complications are not exten-

sive because the demes are largely independent and because each thread has its own

CUDA resources. Nevertheless, it is worth outlining the software design that addresses

these issues.

As discussed in Section 5.2.2, the CudaEvaluator associates each job with a CudaRe-

sourceSet which contains the details of the CUDA resources that are required to per-

form the job. A job’s CudaResourceSet is referenced by its EvaluatorSubmissionHan-

dle. These handles are returned to the CudaEvaluator’s client whenever it submits

a new job. To acquire the CudaResourceSet for a given EvaluatorSubmissionHan-

dle, the CudaEvaluator passes the handle to the getCudaResourceSetRef() method

of the singleton CudaResourceSetDealer. This method determines whether a CudaRe-

sourceSet has previously been assigned to the job and if so returns it, otherwise it

allots and returns a new one.

When all processing is complete for the job, the relevant EvaluatorSubmissionHan-

dle is passed to the returnCudaResourceSet() method of the singleton CudaResou-

rceSetDealer. This CudaResourceSet will then be freed up and kept by the CudaRe-

sourceSetDealer for future reuse.

An index is required to identify the set of textures to be used for a given job and

this index is stored in a CudaTextureSetIndex object in the relevant CudaResourceSet.

When a particular job is assigned its CudaResourceSet, a CudaTextureSetIndex is cho-

107

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300 350 400 450 500 550

O
pe

ra
tio

n
ra

te
 (

in
 m

ill
io

n
G

P
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d)

Regression problem size

 Number Of Iterations:10
 Number Of Iterations:20
 Number Of Iterations:40
 Number Of Iterations:80

 Number Of Iterations:160

Figure 27: Operation rate (in million GP operations per second) for the parallel CPU-GPU im-
plementation over varying number of testcases and number of iterations.

 0 0.05 0.1 0.15 0.2 0.25 0.3

Time (seconds)

CPU 1

GPU 1

(a) Timeline for GPU accelerated implementation

 0 0.05 0.1 0.15 0.2 0.25 0.3

Time (seconds)

CPU 1

GPU 1

(b) Timeline for GPU–CPU parallel implementation (step one)

 0 0.05 0.1 0.15 0.2 0.25 0.3

Time (seconds)

CPU 1

GPU 1

CPU 2

GPU 2

(c) Timeline for GPU–CPU implementation using two GPUs and two CPU cores (step two)

Figure 28: By using multiple CPU cores and multiple GPUs—as in Subfigure 28(c)—run times
can be reduced even further. Subfigures 28(a) and 28(b) depict the previously de-
scribed GPU acceleration (Chapter 4) and CPU-GPU parallelism (Section 5.2). Sub-
figure 28(c) shows the additional effect of using two CPU cores and two GPUs.
The timelines’ runs all used 6 generations, 256 testcases and 20 iterations. See Sec-
tion 4.4.5 for a description of timelines.

108

sen for it from the CudaTextureSetIndexRepository. A CudaTextureSetIndex object

automatically returns itself to the CudaTextureSetIndexRepository on destruction

(but not until the corresponding CudaMemoryPair in the CudaResourceSet has been

destroyed). Figure 29 adds this process into the previous UML sequence diagram of

Figure 24. Figure 30 shows the relationships between these various classes.

 : CudaResourceSetDealer

 : CudaResourceSet

 : CUDA : CudaTextureSetIndexRepository

: getCudaResourceSetRef()

: ~Cuda TextureSetIndex()

 : client

: getTextureIndex()

: cudaStreamCreate()
: CudaStream()

: Cuda TextureSetIndex()

: cudaBind()

: cudaMallocHost()

: cudaBindTexture()

: CudaRuntimeDeviceMemory()

: allocateMemory()

: TextureBinding()

: ~CudaPageLockedMemory()

: CudaResourceSet()

: ~CudaRuntimeDeviceMemory()

 : CudaStream

 : CudaRuntimeDeviceMemory

 : CudaPageLockedMemory

: ~CudaStream()
: cudaStreamDestroy()

: cudaMalloc()

: cudaFreeHost()

: returnTextureIndex()

: ~CudaMemoryPair()

: CudaMemoryPair()

: ~CudaResourceSet()

: cudaFree()

: cudaUnbindTexture()
: ~TextureBinding()

: cudaBindAllTextures()

 : Cuda TextureSetIndex

 : CudaMemoryPair

Use CudaResourceSet here

: CudaPageLockedMemory()

 : TextureBinding

Figure 29: The CudaResourceSet setup (previously illustrated in Figure 24) may be extended
to also handle the CudaTextureSetIndex. Whilst the CudaResourceSetDealer is
constructing a new CudaResourceSet, it acquires a CudaTextureSetIndex from
the CudaTextureSetIndexRepository and uses this to construct the new CudaRe-

sourceSet. Later on, when the CudaResourceSet executes its destructor, it can en-
sure that the destructor of the CudaTextureSetIndex is executed at the correct point,
which returns it to the CudaTextureSetIndexRepository so that its index may be
reused.

A subtle problem arises with regard to the freeing up of resources. On the one

hand, performing consecutive runs in one thread using multiple CudaEvaluators leads

to CUDA resources running out if they are not freed up. On the other hand, simply

cleaning up CUDA resources when the CudaEvaluator goes out of scope creates a new

problem because if its CUDA resources have been used by other threads which have

since terminated, they will have already been cleaned up and an attempt to clean them

up again will result in an error.

To solve this issue properly, it is necessary to keep track of the different CUDA

resources held by the CudaEvaluator according to the thread that used them. Further-

109

CudaResourceSet
- noOfPrograms : unsigned int
- noOfTestcasesWithoutPadding : unsigned int
- noOfPaddingTestcases : unsigned int

CudaMemoryPair
- realSize : size_t
- requestedSize : size_t

CudaRuntimeDeviceMemory

CudaTextureSetIndex
- index : unsigned int

CudaStream TextureBinding

CudaPageLockedMemory

Figure 30: A UML class diagram showing the various resources managed by the CudaRe-

sourceSet class. A CudaResourceSet owns a CudaTextureSetIndex and a
CudaStream and it also has a CudaMemoryPair which in turn has a Tex-

tureBinding and owns a CudaRuntimeDeviceMemory and a CudaPageLockedMe-

mory. The CudaResourceSet has three integer attributes to keep track of its work:
noOfPrograms, noOfTestcasesWithoutPadding and noOfPaddingTestcases. The
CudaTextureSetIndex has an integer attribute for the index. The CudaMemoryPair

tracks the requests and allocations using two integer attributes: realSize and
requestedSize.

more, it is highly desirable to do this in such a way that they will be automatically

cleaned up when they are no longer required. This need is met by the AccessHandle

class. In informal terms, this can be viewed as a deal offered by the evaluator to its

client threads: “I will perform evaluations for you but to do that I have to hold re-

sources specifically for you, so my condition is that you must hold onto this handle

throughout, show it to me with every request and let go of it when your last request is

complete”. Figure 31 is a UML sequence diagram showing how this works in practice,

shielding the client from the complexity of multi-threaded CUDA resource manage-

ment.

More formally, the specifications are as follows:

• There is one AccessHandle for each thread and evaluator combination.

• A thread wishing to use a given Evaluator must first obtain and hold an Acc-

essHandle for it.

• Internally, the Evaluator contains an AccessHandleRegistrar to keep track of

the AccessHandles held by its various client threads.

• The client thread must pass the correct AccessHandle with every call to an Eva-

luator (and the correctness of this AccessHandle is validated).

• Each client thread may only obtain one AccessHandle from each Evaluator (and

an attempt to obtain any further AccessHandles results in an error).

• When the AccessHandle goes out of scope (which will happen when the thread

is complete if not before), it automatically signals the Evaluator to free any re-

sources being held for that thread.

• A thread that has relinquished its AccessHandle for an Evaluator, may acquire

another one if required.

110

 : client

 : CudaEvaluator : Evaluator

 : AccessHandleRegistrar

 : AccessHandle

 : CudaResourceSetDealer

 : CudaResourceSet

 : EvaluatorSubmissionHandleDealer

 : EvaluatorSubmissionHandle

Submit here

Gather here

: CudaEvaluator() : Evaluator()

: AccessHandleRegistrar(evaluator :)

: getAccessHandleRegistrarRef() : getAccessHandleRegistrarRef()

: AccessHandle(accessHandleRegistrar :)

: submitDeme(accessHandle :)
: checkAccessHandle(accessHandle :)

: getNewSubmissionHandle()
: EvaluatorSubmissionHandle()

: submit(evaluatorSubmissionHandle :)

: getCudaResourceSetRef(evaluatorSubmissionHandle :)
: CudaResourceSet()

: gatherDeme(accessHandle : , evaluatorSubmissionHandle :)

: checkAccessHandle(accessHandle :)

: gather()

: getCudaResourceSetRef(evaluatorSubmissionHandle :)

: returnCudaResourceSet(evaluatorSubmissionHandle :)

: returnSubmissionHandle(evaluatorSubmissionHandle :)

: ~AccessHandle()
: relinquish(threadId :)

: relinquish(threadId :)

: relinquish(threadId :) : ~CudaResourceSet()

Figure 31: The client code is insulated from much of the complexity of managing CUDA re-
sources. The client constructs (or is passed) a CudaEvaluator, uses this to acquire
a reference to the AccessHandleRegistrar, and then uses this to construct an Acc-

essHandle. It may then use this AccessHandle for numerous submit and gather
calls on the CudaEvaluator. When finished, the client can clean up the resources by
simply allowing the AccessHandle to go out of scope.

The multi-threaded design requires several other classes to be thread-safe. Three of

the thread-safe classes have already been described above: AccessHandleRegistrar,

CudaResourceSetDealer and CudaTextureSetIndexRepository. The thread-safety of

the DemeTransferManager is discussed in Section 5.4.2. Four other thread-safe classes

(FitnessRecorder, NodeCounter, ProgressDisplay and Timer) are used to record and

display information about the run but do not directly affect the run itself. The CpuEva-

luator has its own thread-safety mechanism to allow it to be used in a multi-threaded

run.

The two remaining thread-safe classes are the EvaluatorSubmissionHandleDealer

and the RandomNumGenDealer. The EvaluatorSubmissionHandleDealer class deals

out EvaluatorSubmissionHandles in response to requests from multiple threads. The

RandomNumGenDealer class handles the random number seeds for different threads.

Each thread can acquire access to its own random number seed by a call to the sin-

gleton RandomNumGenDealer. When a new group of threads are created, their random

number generators are each seeded in a deterministic way, based on the parent thread’s

random number generator. This greatly improves reproducibility since it means that

the sequence of random numbers in the child threads can be reproduced by simply

111

setting the right seed in the parent thread before those threads are spawned.

5.3.3 Experiments and Results

Number of testcasesIterations 32 64 128 256 512
124.322 mo/s [±1.048] 245.357 mo/s [±2.172] 481.108 mo/s [±4.035] 914.344 mo/s [±8.175] 1735.707 mo/s [±13.243]

5.007 s [±0.043] 5.075 s [±0.045] 5.176 s [±0.043] 5.447 s [±0.049] 5.738 s [±0.043]10
16.835 × 30.359 × 56.751 × 105.413 × 197.888 ×

251.983 mo/s [±0.738] 492.162 mo/s [±5.115] 1016.231 mo/s [±9.806] 1831.333 mo/s [±20.005] 2376.598 mo/s [±3.042]
4.938 s [±0.014] 5.061 s [±0.052] 4.901 s [±0.045] 5.441 s [±0.058] 8.376 s [±0.011]20

30.880 × 57.658 × 116.581 × 207.655 × 267.955 ×
493.114 mo/s [±6.237] 1031.007 mo/s [±11.750] 1922.307 mo/s [±12.429] 2404.669 mo/s [±2.653] 2466.436 mo/s [±2.868]

5.054 s [±0.062] 4.833 s [±0.055] 5.180 s [±0.034] 8.278 s [±0.009] 16.142 s [±0.019]40
61.843 × 123.724 × 237.828 × 282.838 × 290.173 ×

1001.312 mo/s [±10.650] 1942.620 mo/s [±13.181] 2420.000 mo/s [±3.191] 2475.459 mo/s [±1.600] 2508.680 mo/s [±2.566]
4.976 s [±0.053] 5.126 s [±0.035] 8.226 s [±0.011] 16.083 s [±0.010] 31.741 s [±0.033]80

125.335 × 249.254 × 338.447 × 334.342 × 322.001 ×
1936.591 mo/s [±19.929] 2429.562 mo/s [±2.905] 2485.024 mo/s [±2.776] 2520.197 mo/s [±2.920] 2529.779 mo/s [±3.295]

5.145 s [±0.052] 8.194 s [±0.010] 16.021 s [±0.018] 31.596 s [±0.037] 62.952 s [±0.082]160
287.736 × 340.185 × 375.513 × 332.449 × 374.911 ×

Table 10: The results of the multiple GPU and multiple CPU core implementation in terms of
operation rate (in million GP operations per second) and total run duration (in sec-
onds) over varying number of testcases and number of iterations. Each entry is fol-
lowed by the speedup the result represents over the equivalent CPU result in Table 7.

The aim of this first step was to investigate further accelerating the run by carrying

out GPU execution, CPU execution and data transfer in parallel. The aim of this second

step was to investigate accelerating the run yet further by using a second GPU and a

second CPU core. Figure 28(c) illustrates how this increased parallelism works using

times recorded from a real run.

It should be noted that from this point to the end of the chapter, many of the results

represent an architecture that usesmultiple CPU cores and are compared to CPU results

representing an architecture with only one. Hence, the comparison should be seen as

illustrating how powerful the whole architecture can make one machine rather than

how much better GPUs are than CPUs (which this comparison cannot fairly illustrate).

For assessment, the experiments described in Section 4.5.2 were repeated again,

this time using both the technique from step one and this technique from step two. The

results of this change are shown in Table 10 along with comparisons to the equivalent

CPU results. The durations and operation rates as measured over the full run are not

only included in Table 10 but are also shown in Figures 32 and 33 respectively.

The best improvement over the original GPU acceleration occurred with 128 test-

cases and 40 iterations: the total run time was reduced by 3.292 times. The best im-

provement over the results in step one occurred with 512 testcases and 160 iterations:

the total run time was reduced by a further 1.982 times. Perhaps most importantly, the

best improvement over the CPU results occurred with 128 testcases and 160 iterations:

the total run time was reduced by 375.513 times and the evaluation rate over the full

run was 2529.779 million GP operations per second.

112

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400 450 500 550

T
ot

al
 r

un
 d

ur
at

io
n

(in
 s

ec
on

ds
)

Regression problem size

 Number Of Iterations:10
 Number Of Iterations:20
 Number Of Iterations:40
 Number Of Iterations:80

 Number Of Iterations:160

Figure 32: Total run duration (in seconds) for the multiple GPU and multiple CPU core imple-
mentation over varying number of testcases and number of iterations.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300 350 400 450 500 550

O
pe

ra
tio

n
ra

te
 (

in
 m

ill
io

n
G

P
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d)

Regression problem size

 Number Of Iterations:10
 Number Of Iterations:20
 Number Of Iterations:40
 Number Of Iterations:80

 Number Of Iterations:160

Figure 33: Operation rate (in million GP operations per second) for the multiple GPU and mul-
tiple CPU core implementation over varying number of testcases and number of
iterations.

113

5.4 Step Three: Deme Transfers

5.4.1 Description of the Step

The parallelisation described in the previous sections was achieved by splitting the

population into demes, which allows different processors to work simultaneously on

different demes. If the demes are not to conduct entirely separate evolutionary runs,

there must be transfer of evolved material between them and this introduces a new

computational cost. This section aims to show that this cost need not undermine the

appeal of the strategy. The deme transfer system’s time costs are assessed and then a

smarter approach is designed to reduce these time costs and this approach’s costs are

compared.

5.4.2 Implementation

A deme transfer policy must specify when and where the transfers occur, what is trans-

ferred and how it is incorporated into the recipient deme. In more detail, a common

approach is to define some topological connectivity between the demes, to define the

number of generations between transfers and to define some system for copying or

moving good individuals to the topological neighbours during each interaction [19]. A

typical strategy might involve organising the demes into a loop (so that every deme

has exactly two neighbouring demes) and then, every 10 generations, using copies of

the best 10% of individuals from each deme to overwrite random individuals in each

of the two neighbouring demes.

The deme transfer codewaswritten to require two policy classes: DemeTransferLay-

outPolicy and DemeTransferUpdatePolicy. A concrete DemeTransferLayoutPolicy

class must provide definitions of methods to specify which demes will transfer to

which demes in which generations. A concrete DemeTransferUpdatePolicy class must

provide definitions of methods to specify how to retrieve the necessary information

from a donor deme and to specify how to incorporate that information into a recipient

deme. When the deme transfer code is configured with these two classes, it uses them

to carry out the deme transfers (and to perform various checks when running in debug

mode). The class architecture for this is depicted in Figure 34.

DemeTransferTorusLayout

DemeTransferLayoutPolicy DemeTransferManager

DemeTransferBestReplacesRandomUpdate

DemeTransferUpdatePolicy

Figure 34: The DemeTransferManager class owns a DemeTransferLayoutPolicy and a
DemeTransferUpdatePolicy. These two classes are abstract base classes with con-
crete instantiations such as DemeTransferTorusLayout and DemeTransferBestRep-

lacesRandomUpdate respectively.

The normal mode of operation for the parallel architecture used in this work is to

114

process all demes as soon as possible. Deme transfers may interrupt this pattern be-

cause a deme involved in a transfer must wait until it has received all contributions

from its neighbouring demes before it can proceed to the next generation. If this is

implemented on a serial architecture, there is no reason for the ordering of the tasks

to make much impact on the employment of the processor so this causes no prob-

lem. However if multiple or parallel processors are being used—as is the case here—

processing power may be wasted if processors sit idle whilst waiting for others to com-

plete their work.

The most obvious method of implementing the deme transfer might be the one

hinted at by the description in Section 5.2.1. That is, complete all normal processing of

all demes up to the end of the generation before the deme transfer, perform the deme

transfer, and then return to normal processing. This is depicted in Figure 35(a). In

fact, it is possible to perform deme transfer with less idle processor time by return-

ing each deme to normal processing as soon as possible, as shown in Figure 35(b).

The deme transfer code attempts to implement this “smart” technique as far as possi-

ble with whatever DemeTransferLayoutPolicy and DemeTransferUpdatePolicy it has

been configured. It is possible to switch this mechanism off so that the effects of it can

be compared.

So the simple approach involves waiting for everything to be ready for the deme

transfers, executing them fully and then returning to normal evolution. The smart ap-

proach aims to do as much as possible as soon as possible and to aid this, separates out

donating individuals from receiving individuals. This allows demes to return to evolu-

tion, even if its neighbours have not yet taken receipt of its donations. There is another,

more extreme approach which is to make deme transfers completely asynchronous.

This means that demes transfer whenever they can, regardless if one deme is many

generations ahead of another. This approach was rejected since it significantly changes

the nature of the EC algorithm and makes reproducibility very difficult. This sort of

asynchronous has been attempted for transfers between demes executing in parallel

on the same GPU as discussed in Section 5.2.1.

When the GPU evaluation takes much longer than the CPU tasks, the time spent on

deme transfers is usually small, relative to the total run time. Any criticism regarding

the cost of using demes is more likely to be directed at the examples in which the GPU

evaluation is faster. The aim is to show that this cost is small and that the smart deme

transfer approach can help mitigate it, as shown in Figure 36.

All deme transfers are controlled by a DemeTransferManager class. To achieve the

“smart” behaviour, the DemeTransferManager extracts any required information from

a donor deme as soon as possible so that the deme is not held up from progressing

to the next generation (unless it is still waiting to receive transfers from neighbouring

demes). For this reason, the methods that a concrete DemeTransferUpdatePolicymust

provide describe how to extract a DemeUpdateRemnant object from a donor deme and

115

 0 0.5 1 1.5 2 2.5 3

Time (seconds)

CPU 1

GPU 1

(a) Simple approach

 0 0.5 1 1.5 2 2.5 3

Time (seconds)

CPU 1

GPU 1

(b) Smart approach

Figure 35: A smarter deme transfer mechanism can avoid the need to stop and restart all eval-
uation. In Subfigure 35(a), the two deme transfers (at around one second and two
seconds) require all evaluation to be completely stopped and restarted. In Subfig-
ure 35(b), the smarter deme transfer system restarts each deme’s processing as soon
as possible. This figure gives preliminary evidence to support the hopes that the
the deme transfers are not adding much time to the run and that a smarter approach
helps reduce any small amount of time that is being added. These hopes are assessed
more thoroughly in Section 5.4.4. The topology used in this example is a strip (see
Section 5.4.3). The problem size is 256 testcases and the number of iterations is 100.

how to incorporate a previously extracted DemeUpdateRemnant into a recipient deme.

The DemeTransferManager class keeps track of the status of each deme and man-

ages the interactions between them. Since the demes may be distributed over multiple

CPU threads, the DemeTransferManager must be thread-safe. It provides a method

for clients to register that a given deme is ready to donate any required transfers. It

provides two methods that update demes with any appropriate transfers from other

demes (if they are all ready). One of these methods updates any demes for which all

transfers are ready and then returns with information about which demes, if any, were

updated. Clients may use this to see if any demes are ready to receive transfers before

resorting to looking for lower priority work.

If no such updates are ready and if there is no lower priority work, clients may have

nothing to do until a deme is ready for updating. This happens when all the demes

that a CPU thread is managing still require deme transfers from demes being managed

by other threads. This is the motivation for the other DemeTransferManager update

method, whichwaits until at least one of the specified demes can be updated. To do this

efficiently, a standard technique in concurrent programming, the condition variable (or

monitor), is used. This allows the thread to sleep, waiting for the opportunity to update

one of the demes. Whenever a thread registers that a deme is ready to donate, it uses

the condition variable to wake any sleeping threads so that they may check if this gives

them the donation they require to update one of their demes.

All this provides a mechanism to allow each deme to be processed as soon as pos-

116

 0 0.1 0.2 0.3 0.4 0.5 0.6

Time (seconds)

CPU 1

GPU 1

(a) Simple approach

 0 0.1 0.2 0.3 0.4 0.5 0.6

Time (seconds)

CPU 1

GPU 1

(b) Smart approach

Figure 36: The smarter deme transfer mechanism makes more of a difference when the GPU
is relatively faster compared to the CPU tasks. Again, the topology used in this
example is a strip (see Section 5.4.3). Again, the problem size is 256 testcases but
here the number of iterations is reduced to 20.

sible given the appropriate deme transfers. However this may not be sufficient if it

is used in a framework that processes all of a CPU’s demes in a strict order, such as:

submit all demes in order, gather and immediately submit all demes in order for each

generation, gather all demes in order. Under many deme transfer topologies, this ar-

rangement would lead to the code waiting for one deme whilst another is ready for

processing. Instead, the strict ordering of deme processing should be broken and each

deme should be processed as independently as possible. This requires a little more

work to keep track of the status of each deme. For this reason, each CPU thread man-

ages its demes with a FlowStageManager object, which records each deme’s progress.

Further, it keeps track of the order of demes where appropriate so that it can be main-

tained where there is no advantage to breaking it. This is implemented with queues:

when a deme is processed through from one flow stage to another, say by being submit-

ted to the GPU, it joins the back of the queue for the next flow stage. This mechanism

makes it easy to ensure that each CPU thread never sits idle if there is work to be done

whilst also making it easy to prioritise tasks. For instance, since it is also important to

ensure the GPU does not sit idle, submitting to the GPU is treated as a high priority

task for the CPU.

5.4.3 Topologies

The topology defines which demes are neighbours of each other and so defines the

pattern of deme transfers. This in turn affects the time required to carry out the deme

transfers; for example, the transfers can be eradicated completely by using a topology

that keeps all demes separate. For this reason the topology is worth considering. As

mentioned in Section 2.1.10, various different topologies have been proposed in the

117

literature and their effects on the evolutionary algorithm compared. This work is not

concernedwith these effects of the topologies but with their effects on the delays caused

by the deme transfers. The three topologies investigated in this study are the strip, the

loop and the torus as illustrated in Figure 37.

(a) Strip (b) Loop (c) Torus

Figure 37: Examples of the strip, loop and torus topologies for twelve demes. The grey and
black sections of the connections have no significance, other than to help clarify the
image for the torus topology.

All connections in these three topologies are bidirectional, meaning that there are

deme transfers from deme A to deme B in some generation if and only if there are

transfers from deme B back to deme A in the same generation. This is merely a design

choice of the topologies in question; the code does not enforce this property. All three

topologies are also connected, meaning that it is possible to get from any deme to any

other via some path of transfers.

The strip (Figure 37(a)) consists of a single line of demes in which each deme shares

a connection with its two neighbours, except the first and last deme which each only

share a connection with one neighbour.

The loop (Figure 37(b)) is like the strip except that the first and last demes also

share a connection with each other (which can be visualised as a strip with its two ends

looped around so that they meet).

The torus (Figure 37(c)) can be thought of as a rectangular grid with each deme

sharing a connectionwith its four (horizontal and vertical) neighbours andwith further

connections being shared by each pair of equivalent demes in the top and bottom rows

and each pair of equivalent demes in the far left and far right columns. This topological

connectivity can also be visualised as a grid drawn on the surface of a torus, hence the

name. To see how the two are topologically equivalent, it might be helpful to imagine

drawing the grid on a square sheet of rubber and then smoothly deforming the rubber

to align and glue the top and bottom edges (forming a hollow cylinder) and then to

align and glue the two remaining edges (forming a torus).

To understand the different natures of these layouts it is helpful to consider some

of their numerical properties as given in Table 11. This table shows that there are fewer

connections between the demes in the loop than in the torus and fewer again in the strip

than in the loop. This is reflected in the average minimum number of steps between

118

pairs of demes which is greater for the loop than for the torus and greater again for the

strip. In terms of the EC algorithm, this means that we would expect a new individual

of very high fitness to take more deme transfers to propagate throughout the whole

population when using a strip than when using a torus.

Strip Loop Torus (3x4)

Fraction of deme pairs directly connected 11
66 (0.16̇) 12

66 (0.1̇8̇) 24
66 (0.3̇6̇)

Average minimum steps between demes 4 1
3 (4.3̇) 3 3

11 (3.2̇7̇) 1 9
11 (1.8̇1̇)

Maximum steps between demes 11 6 3

Table 11: For a 12 deme instance of each of the layouts, this table gives the fraction of pairs of
demes that are directly connected, the minimum number of steps between a pair of
demes, averaged over all pairs of demes and the maximum number of steps between
any pair of demes.

5.4.4 Experiments and Results

It was hoped that the results from the experiments would show that the cost of deme

transfers is small and that it can be made smaller through the use of smart deme trans-

fers. Before discussing the more robust comparative data, it is worth examining some

timelines which can give an indication of what happens during the runs.

Figures 35 and 36 in Section 5.4 depict relevant results in that they show the effect

of the smart deme transfer system on a strip topology using real timing data. In those

figures, the ordering of the deme evaluations was unchanged by the deme transfers

over the strip topology, regardless of the deme transfer approach being used. This

is because the strip topology has few connections and in particular, if the demes are

evaluated in order, then they also become available in order after strip-based deme

transfer.

The loop and torus topologies are more connected and this makes things more in-

teresting as shown in Figures 38 and 39 respectively. Figure 38(a) shows that the simple

mechanism remains very similar (to Figure 36(a)) with a loop topology. In Figure 38(b)

the first deme is not ready to be submitted again after the first deme transfer until the

results of the sixth (and last) deme have been retrieved from the previous generation.

In contrast, the second deme is the first to be ready for evaluation, after the results of

the third deme are gathered for the second generation. After the second deme transfer,

the order of the demes gets changed again.

Figure 39(a) shows that the simple mechanism remains very similar again for the

toroidal topology. In Subfigure 39(b) the deme ordering also gets altered by the first

deme transfer, although it is then left unchanged by the second transfer. To reiter-

ate: these behaviours are not directly coded for each topology; they arise from the

DemeTransferManager class dynamically querying the DemeTransferLayoutPolicy to

calculate what processing can be done.

119

Figure 40 illustrates the same mechanism for twelve demes being processed by two

CPU threads. When using the smart deme transfer approach, the constraints between

the various demes being processed by two different threads produce an intricate pat-

tern of evaluations.

These timelines give a feel for the workings of the deme transfer system but do not

provide a robust assessment of the time cost incurred by the deme transfers or the time

savings offered by the smarter deme transfers. To tackle these questions, an experi-

ment was performed. Each of the three topologies (strip, loop and torus) was assessed

along with an empty topology specifying no deme transfers. Each deme topology was

configured to perform any deme transfers every two generations. This is quite a high

frequency and was chosen to highlight the effects of deme transfer. The experimental

setup was similar to that described in Section 4.5.2 but the runs involved 384 individ-

uals assessed on 256 testcases for 20 iterations over 180 generations. Each run was

repeated 20 times.

The results are in shown in Table 12 and are depicted in Figure 41. The two values

for the empty topology are very similar, which is as expected because the style of deme

transfer is irrelevant for a topology with no deme transfers. The overall message of the

remaining results is clear: although there are costs associated with deme transfer, they

are small and can be tackled effectively by being a bit smarter about deme transfers.

The largest percentage increase over the average of the two corresponding empty

results occurred for two threads, four demes per thread and the toroidal topology: the

naive deme transfers added 13.449% to the total run time but the smart deme transfers

only added 1.742%. For single threaded results, the largest increase occurred with four

demes per thread and the toroidal topology: the naive deme transfers added 7.571% to

run time but the smart deme transfers reduced the run time by 0.101%. The slightness

of all of these deme transfer costs is particularly striking in the context of the transfer

frequency being set so high to accentuate the cost.

Error bars are included in Figure 41 to indicate the average plus and minus one

estimated standard error, however these are so small that they can barely be seen. The

largest estimated standard error is 0.037 seconds and this can just about be seen at the

tip of the second column in the last group.

5.5 Summary and Contribution

This chapter investigated three additional steps to accelerate GPU implementations of

GP. The population-parallel implementation of cyclic GP described in Chapter 4 was

used to assess these steps, though they are all applicable to any GPU evaluation system

(such as the data-parallel system discussed in Chapter 6).

Step one was based on the observation that the GPU is parallel in the sense of op-

erating in parallel to the CPU, as well as in the sense of being a parallel processor. To

capitalise on this, a deme-based approach was used such that the GPU can be evalu-

120

 0 0.1 0.2 0.3 0.4 0.5 0.6

Time (seconds)

CPU 1

GPU 1

(a) Simple approach

 0 0.1 0.2 0.3 0.4 0.5 0.6

Time (seconds)

CPU 1

GPU 1

(b) Smart approach

Figure 38: The effect of using smart deme transfers when using a loop topology. The problem
size is 256 testcases and the number of iterations is 20.

ating one deme whilst the CPU is preparing another. The use of CUDA streams also

allows the graphics card to transfer data between the two processors whilst they are

both executing.

An experimental investigation was conducted into the effects of this approach. The

timelines recorded for this technique revealed its workings. They showed that the data

transfers accounted for a very small amount of time in these experiments and so little

was gained by attempting to execute them in parallel. Instead, the timelines suggest

that the savings come from allowing GPU and CPU processing to occur in parallel.

With negligible savings in parallel transfers, the factor of speed improvementwould

be expected to lie between one and two. The speed should not reduce unless the

small management overheads outweigh the benefits, which seems unlikely. The speed

should improve no more than two-fold because the time should not reduce to less than

is required by the slower of the two processors (which would account for at least half

the time in the serial setup). The improvements would be expected to be greatest when

the two processors require the same amount of time as each other.

The best overall acceleration was observedwith 128 testcases and 160 iterations: the

total run time was reduced by 191.248 times over the CPU implementation. The best

improvement over the original GPU acceleration was observed with 64 testcases and

80 iterations: the total run time was reduced by a further 1.806 times.

This work involved a number of contributions that are believed to be novel:

• The approach of using demes to allow the CPU to be preparing one deme whilst

the GPU is processing another. The closest work published before a description

of this work was that of Garnica et al [21], which involved the CPU completely

processing one demewhilst the GPU completely processed another. As discussed

in Section 5.2.1, this fails to play to the respective strengths of the two processors.

121

 0 0.1 0.2 0.3 0.4 0.5 0.6

Time (seconds)

CPU 1

GPU 1

(a) Simple approach

 0 0.1 0.2 0.3 0.4 0.5 0.6

Time (seconds)

CPU 1

GPU 1

(b) Smart approach

Figure 39: The effect of using smart deme transfers when using a toroidal topology. The prob-
lem size is 256 testcases and the number of iterations is 20. This purpose of this figure
is to give a qualitative feel for what is assessed more quantitavely in Figure 41.

• The approach of using CUDA streams to also allow data transfers be performed

whilst both processors are doing useful work.

• An explanation of key issues faced in implementing this technique and a descrip-

tion of successful solutions.

• The real timing data drawn from runs and depicted as timelines, showing the

inner workings of the technique.

• Experimental investigation into the effect of this technique on total run time. The

best result showed a further improvement of 1.806 times beyond the correspond-

ing result in Chapter 4.

Step two built upon the work in step one by adding another GPU and using a sec-

ond CPU core to drive it. This required some parts of the code to be made thread-safe.

As in step one, the factor of speed improvement would be expected to lie between one

and two. Again, the speed should not reduce unless the small management overheads

outweigh the benefits, which seems unlikely. The speed should improve no more than

two-fold because the computational resources of the processors are doubled by the

technique.

The best overall acceleration was observed with 128 testcases and 160 iterations:

the architecture completed the full run 375.513 times faster than the single–core CPU

equivalent and evaluated 2529.779 million GP operations per second over the full run.

The best improvement over the original GPU acceleration was observed with 128 test-

cases and 40 iterations: the total run time was reduced by a further 3.292 times. The

best improvement over step one was observed with 512 testcases and 160 iterations:

the total run time was reduced by a further 1.982 times.

122

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (seconds)

CPU 1

GPU 1

CPU 2

GPU 2

(a) Simple approach

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (seconds)

CPU 1

GPU 1

CPU 2

GPU 2

(b) Smart approach

Figure 40: The effect of using smart deme transfers when using a toroidal topology and twelve
demes split over two CPU threads. The problem size is 256 testcases and the number
of iterations is 20. This purpose of this figure is to give a qualitative feel for what is
assessed more quantitavely in Figure 41.

Number of CPU threads
1 2

Number of demes per CPU thread Number of demes per thread
Layout Technique

4 8 4 8

Smart 9.926 s [±0.006] 19.777 s [±0.010] 10.269 s [±0.015] 20.681 s [±0.027]
Empty

Naive 9.940 s [±0.015] 19.755 s [±0.008] 10.283 s [±0.015] 20.721 s [±0.037]

9.925 s [±0.012] 19.747 s [±0.021] 10.322 s [±0.015] 20.648 s [±0.026]
Smart

-0.008 s -0.019 s +0.046 s -0.053 s
10.661 s [±0.014] 20.570 s [±0.023] 11.587 s [±0.014] 22.096 s [±0.021]

Strip
Naive

+0.728 s +0.804 s +1.311 s +1.395 s
9.913 s [±0.013] 19.772 s [±0.015] 10.424 s [±0.012] 20.688 s [±0.034]

Smart
-0.020 s +0.006 s +0.148 s -0.013 s

10.663 s [±0.005] 20.574 s [±0.017] 11.601 s [±0.011] 22.073 s [±0.019]
Loop

Naive
+0.730 s +0.808 s +1.325 s +1.372 s

9.923 s [±0.010] 19.778 s [±0.014] 10.455 s [±0.015] 20.841 s [±0.017]
Smart

-0.010 s +0.012 s +0.179 s +0.140 s
10.685 s [±0.009] 20.615 s [±0.015] 11.658 s [±0.012] 22.199 s [±0.013]

Torus
Naive

+0.752 s +0.849 s +1.382 s +1.498 s

Table 12: Total run duration (in seconds) over varying layouts, numbers of threads, numbers of
demes per thread and smart or naive deme transfers. Each value is followed by the
estimated standard error in square brackets. Each value for non-empty topologies
is followed by the value’s difference from the average of the two equivalent empty
topology results.

123

 0

 5

 10

 15

 20

 25

1, 4 1, 8 2, 4 2, 8

T
ot

al
 r

un
 d

ur
at

io
n

(in
 s

ec
on

ds
)

Number of threads and number of demes per thread

Smart Empty
Naive Empty

Smart Strip
Naive Strip

Smart Loop
Naive Loop

Smart Torus
Naive Torus

Figure 41: Total run duration (in seconds) over varying layouts and over smart or naive deme
transfers. The results are grouped according to the number of threads and the num-
ber of demes per thread. Error bars indicate the average value plus and minus one
estimated standard error although these are so slight that they can barely be seen.

This work involved a number of contributions that are believed to be novel:

• The use of a second GPU to improve evaluation speed and the use of a second

CPU core to drive it (and to handle the increased workload).

• A combination of this technique with the one described in step one such that both

CPU cores and both GPUs may all be executing simultaneously.

• Explanation of key issues that might be faced in implementing this technique and

a description of successful solutions. In particular, this involved a discussion of

the techniques to divide the CPU work over multiple threads in an effective and

safe-manner.

• The real timing data drawn from runs and depicted as timelines, showing the

inner workings of this technique when combined with step one’s technique.

• Experimental investigation into the effect of this technique when used in com-

bination with step one’s technique. The best result showed an improvement of

1.982 times over the corresponding result from step one. The best combined result

showed an improvement of 3.292 times over the original GPU acceleration.

124

Motherboards that accept three graphics cards and graphics cards with multiple

GPUs are both nowwidely available. Limits on resources available for this workmeant

that it was not possible to use more than two GPUs. Nevertheless, GPU intensive

resources such as GPU farms seem likely to become more widely available and the

architecture being constructed in this work is well placed to take advantage of such

technology.

Step three introduced the deme transfers that are necessary if the demes are not to

execute entirely independent runs. This work addressed a potential criticism of the

approach adopted in steps one and two: that the use of demes incurs a time cost for

the deme transfers. The work aimed to show that this cost is small and that a proposed

“smart’ approach to deme transfers can reduce this small cost. Unlike completely asyn-

chronous approaches, this approach does not modify the EC algorithm.

The deme-transfer was built in a flexible way such that it is configured by two

policy classes: DemeTransferLayoutPolicy and DemeTransferUpdatePolicy. In sim-

ple mode or in smart mode, the DemeTransferManager implements these policies as

efficiently as it can. Timelines for the strip, loop and torus topologies show that the

DemeTransferManager and FlowStageManagermanage to operate well in a wide range

of circumstances. This is further supported by a timeline of a torus topology split over

two threads. The two approaches (naive and smart) were experimentally compared.

The largest percentage increase over the average of the two corresponding empty re-

sults occurred for two threads, four demes per thread and the torus topology: the

naive deme transfers added 13.449% to the total run time but the smart deme trans-

fers only added 1.742%. For single threaded results, the largest increase occurred with

four demes per thread and the torus topology: the naive deme transfers added 7.571%

to run time but the smart deme transfers reduced the run time by 0.101%. Despite a

very high transfer frequency being used, the results clearly show that the cost of deme

transfers is small and is reduced by the use of a smart approach to deme transfers.

This work involved a number of contributions that are believed to be novel:

• A new approach to organising deme transfers when using multiple deme trans-

fers (such as a GPU and a CPU core or multiple CPU cores). The approach aims

to reduce the impact of deme transfers as far as possible whilst preserving syn-

chronous nature of the algorithm. Furthermore, it does this efficiently when con-

figured with any DemeTransferLayoutPolicy or DemeTransferUpdatePolicy.

• Explanation of key issues that might be faced in implementing this technique and

a description of successful solutions. In particular, this involved a discussion of

the techniques to manage the tracking of different demes and the interactions

between events from different threads.

• Real timing data drawn from runs and depicted as timelines, showing the inner

workings of this technique. These showed the effects over multiple topologies

125

and over multiple threads and GPUs. The timelines displayed the reordering

effect on the deme evaluations.

• Experimental investigation into the effects of this technique over varying num-

bers of threads, demes and over varying topologies. The results suggest that

deme transfers add little to the run time of the architecture previously described

and that these costs can be mitigated through the use of the smart deme transfer

approach.

The asynchronous approach was rejected since it distorts the EC algorithm and

makes reproducibility very difficult. The reproducibility for this approach is much

better. However it should be noted that reordering the demes may alter the random

numbers that are used for each deme and therefore affect the algorithm. To eradicate

any theoretical possibility of this problem, it would be necessary to do something like

create a separate stream of random numbers for each deme. In practice, the patterns of

deme reordering appear to be robust between runs.

Combined, the three techniques described in this chapter help to squeeze evenmore

evaluation speed out of a single, reasonably-priced machine. The techniques maintain

reproducibility and only distort the EC algorithmminimally (by adopting the common

EC strategy of splitting the population into demes). The techniques seek to make good

use of whatever CPU cores and GPUs are available and so should be effective on new

hardware configurations.

126

6 Data-Parallel Optimisations

6.1 Introduction

This chapter moves from a population-parallel implementation of node-based pro-

grams to a data-parallel implementation of instruction-based programs. It tackles the

third objective outlined in Section 1.4: find ways to reduce compilation times of a data-

parallel implementation of a form of Evolutionary Computation (EC) with linear pro-

grams so that the best evaluation speeds can be brought to bear on more moderately

sized data-sets.

As described in Section 2.1.7, data-parallel methods involve dynamically writing

and compiling new GPU code for each batch of individuals to be evaluated. This has

several advantages: the compiler can write highly specific, heavily optimised binaries;

precious on-chip Graphics Processing Unit (GPU) memory need not be used to store

programs as data (as is the case when using an interpreter) and optimal GPU memory

access patterns arise very naturally. As a result, the GPU evaluation speeds for data-

parallel code tend to be impressive.

The problem with data-parallel techniques is that additional Central Processing

Unit (CPU) time must be spent compiling the GPU codes for every batch of programs

to be evaluated. In practice, this compilation overhead can be considerable (as will be

demonstrated in this chapter). If the data-set is vast then this price is worth paying

because the fast GPU evaluation over very many testcases makes up for the CPU com-

pilation time, which is independent of the number of testcases. For more moderate

numbers of testcases, the compilation time can mean that population-parallel methods

are faster. Even if the data-set is large enough to make data-parallel faster, it may still

be too small to exploit data-parallel fully. The GPU’s power is being wasted because it

spends much of its time sat idle waiting for the CPU to compile its code. Since data-

parallel evaluation can be so remarkably fast, it requires a remarkably large data-set to

reach the best speeds. This is illustrated in Figure 42.

For the best results, the data-set should be large enough so that the time spent on

evaluation is much longer than the time spent on compilation. If much less data is

used, then the compilation time will tend to dominate total run time. Since this chapter

describes work to reduce this compilation time, it is worth asking how much data it

would take to just get the evaluation and compilation times to be equal. The larger

this value, the greater range of problem sizes we would expect to benefit greatly from

these techniques to reduce compilation time. For the sake of a rough calculation, it

is helpful to use some values from Section 6.3.4. Individuals of 300 instructions were

evaluated for 20 iterations. The compilation time was 0.473 seconds per individual and

the evaluation rate was 155837.159 Mgpop/s. The values were derived using a single

GPU and single CPU core.

Let the population size (i.e. number of individuals) be labelled p and the data-set

127

CPU

GPU

CPU

GPU

Population Parallel

Data Parallel
time

time

(a) Few testcases

CPU

GPU

CPU

GPU

Population Parallel

Data Parallel
time

time

(b) Many testcases

CPU

GPU

CPU

GPU

Population Parallel

Data Parallel
time

time

(c) Very many testcases

Figure 42: It takes a lot of testcases to make data-parallel faster than population-parallel and
even more to realise data-parallel’s power fully. In Subfigure 42(a), the data-
parallel’s evaluation speed cannot compensate for its compilation time because
population-parallel is finished before data-parallel’s compilation is complete. In
Subfigure 42(b), an increase in testcases means data-parallel is now faster than
population-parallel. It is only after even more testcases are added in Subfigure 42(c)
that data-parallel begins to exhibit its full power. Even here, the system speed is only
around half that being achieved on the GPU and more testcases will be required to
do better.

size (i.e. number of testcases) be labelled x. For the sake of approximate calculations,

assume that the compilation times and evaluation times are linear over the number of

individuals (an assumption that can be justified as roughly correct based on the results

in Section 6.3.4 and in Section 6.4.7). The total number of instructions to be evaluated

can be calculated as the number of testcases multiplied by the number of individuals

multiplied by the number of instructions per individual multiplied by the number of

iterations per evaluation. The evaluation time can be calculated by dividing this by the

evaluation rate. The compilation time can be calculated as the compilation time per

individual multiplied by the number of individuals. Setting these equal to each other

using the figures in our example gives:

300× 20× px

1.55837159× 1011
=0.473p

⇒ (3.850× 10−8)x =0.473

⇒ x =1.229× 107

Hence, obtaining an evaluation time as long as the evaluation time would take over 12

million testcases. Using 1000-instruction individuals as in Section 6.5, the evaluation

speed is 148366.170Mgpop/s and the compilation time is 3.370 seconds per individual.

Using these values, it would take over 25 million testcases for the evaluation time to

equal the compilation time.

If this number of testcases had been very small, then there would be little value

in this chapter’s methods because it would be easy to provide enough testcases to en-

sure that the compilation time would be substantially shorter than the evaluation time.

128

As it stands, this result indicates the method should be of considerable value for any

problems that have fewer than around 12− −25 million testcases, a huge amount of

data. Indeed, depending on whether compilation is performed in parallel with the

evaluation and whether there are other considerable CPU tasks, this chapter’s tech-

niques may still be of considerable value for problems of much greater size than this.

Even larger data-sets would be required if fewer iterations were used, or if a more

powerful GPU were used (and the graphics card being used is a fairly low-level model

from a range several generations old). GPU manufacturers claim that the rates of im-

provements of their chips have been outstripping those of CPUs [15].

Note that the work described in Section 5.2 is of some considerable help here. That

section built on the observation that the GPU offers two sorts of parallelism: within

the GPU and between the GPU and the CPU. Jobs can be submitted to the GPU asyn-

chronously so that execution returns to the CPU code once the GPU starts evaluating.

That workwas in the context of population-parallel evaluation but can be appliedwith-

out modification in this context of data-parallel evaluation. If the GPU evaluation times

are of a similar magnitude to the CPU compilation times, then performing them in par-

allel will improve the rate of work by up to two times. Similarly, the work in Section 5.3

is applicable here and allows multiple threads to evaluate code whilst multiple GPUs

evaluate the binaries. Indeed, the machine used for this research contained two GPUs

and a four core CPU.

These techniques somewhat alleviate the need for huge data-sets to get the most

from data-parallel but they only make much difference when the data-set is already

large enough that the evaluation and compilation times are similar. A middle ground

is required on which systems may use data-parallel’s evaluation speeds to tackle prob-

lems with normal amounts of data but without having to pay such a high overhead in

compilation time.

The correct solution to the problem must be to reduce compilation times. It would

almost certainly be unwise to attempt to delve under the covers of the compiler itself

since compilers are typically highly complex and heavily optimised. The alternative is

to reduce the compiler’s workload. This chapter investigates two ways to attempt this.

The first method sends the code in a lower-level language whilst the second method

aims to reduce duplication in the code sent to the compiler.

Section 6.3 describes the attempt to send the code to the compiler in a lower level

language. The Compute Unified Device Architecture (CUDA) C compiler that is used

to convert CUDA C into a GPU-ready binary achieves this in two steps: from CUDA

C to Parallel Thread EXecution (PTX) (an assembly-like language) and from PTX to the

binary. Passing PTX code to the compiler instead of CUDA C saves the compiler the

work involved in the first step. It also allows more control over the low level code that

is compiled into the binary used for evaluation.

Section 6.4 describes the attempt to reduce duplication in the code. This exploits

129

code similarities within groups of individuals sent for evaluation. The core algorithm

of EC often involves evaluating the effect of fairly minor modifications to the most

successful individuals seen so far, particularly for the form used in this chapter (see

Section 6.2). This means that the code to be compiled involves a lot of duplication. The

technique described in Section 6.4 aims to scan for and draw out this duplication in

order to remove some of the work for the compiler.

Section 6.5 describes a brief investigation into how quickly 1000-instruction indi-

viduals can be compiled using a combination of the two previous techniques. Before

all this, Section 6.2 gives a brief overview of the form of EC that will be used throughout

the chapter.

6.2 A Brief Synopsis of TMBL

Tweaking Mutation Behaviour Learning (TMBL, pronounced “tumble”) has been pro-

posed as a baby sister to Genetic Programming (GP) [50] and is akin to linear GP. The

key feature of TMBL is its focus on long term fitness growth above all else. As de-

scribed in Section 3.2, it is built on the following hypothesis: long term fitness growth

is dependent on the ease with which mutations can affect an individual’s behaviour without

(necessarily) ruining its existing functionality. Such changes are known as tweaks.

An analogy helps motivate this hypothesis. Imagine that you are given around

a hundred toy blocks with patterns on their surfaces so that lining them up in one

particular way makes their patterns fit together. Imagine you are asked to solve the

puzzle but only using trial and error: no pre-planning, no writing, just considering

random changes and performing them if they improve things.

Given this challenge, you would almost certainly take the puzzle, lay it out flat and

solve it without much difficulty. Imagine you are then given an equivalent set of blocks

but this time you must build the blocks vertically in a tower. This would be much

harder. In fact, with around a hundred blocks, you might find it almost impossible.

However much progress is made, at some point you have to grab some block near the

bottom and ruin the prior achievements.

The argument is that the same principles hold for a GP tree flipped upside-down: at

some point, changes must be made to a node near the root of the tree and that ruins all

the nodes above. The lower blocks in the puzzle support the blocks above them physi-

cally; the lower nodes in the inverted GP tree support the nodes above functionally.

What went wrong when the tower became vertical? It became difficult to make

changes to parts where progress had been made without damaging what had already

been achieved. This view motivates the design of a representation for TMBL that is

like a form of linear GP. Figure 43 shows code implementing a short excerpt of a TMBL

individual.

Some of the features that make TMBL’s representation distinct from standard linear

GP also happen to make it more suitable for the PTX approach described in Section 6.3.

130

slot12 = slot15;

if (testcase0 >= 0) {

slot4 += testcase0;

}

if (slot13 >= 0) {

slot13 *= slot8;

}

if (slot7 >= 0) {

slot3 -= testcase0;

}

slot6 = ((testcase0 == 0.0f) ? 0.0f : slot6/testcase0);

slot16 = slot14;

if (testcase0 >= 0) {

slot17 = -95.3412549093695f;

}

slot13 = ((slot16 == 0.0f) ? 0.0f : slot13/slot16);

slot3 = ((slot4 == 0.0f) ? 0.0f : slot3/slot4);

Figure 43: An illustration of code one might see representing a TMBL individual. This is pre-
sented for those readers who are interested; other readers need not scrutinise the
details of the code.

For GPU work, we want the execution of different threads to diverge as little as possi-

ble. Linear-style branching is bad for this because it allows threads to take completely

different paths depending on data but TMBL achieves its conditionality with local if

conditions that can be implemented in PTX without any non-uniform branches. Stacks

are harder to implement than registers with PTX because the fastest type of memory

is not indexable but TMBL uses registers. The techniques used here should also suit

other forms of GP such as tree-based GP. Forms that involve conditional jumps, such

as some varieties of linear GP may experience slower evaluation speeds.

TMBL is also well suited to the alignment work described in Section 6.4. TMBL has

high computational requirements and will typically be applied to complex problems

with moderately large data sets. With current technology, these factors make it impor-

tant to find the quickest possible evaluation methods. TMBL is focused on long term

fitness growth through a slow process of tweaks of previous successful solutions. The

consequence of this is that its populations typically contain individuals that are highly

similar to each other.

6.3 Technique 1: Compiling from the Lower-Level Language PTX

6.3.1 Data-Parallel with CUDA C Code

Before describing the novel PTX work, it is worth outlining the standard data-parallel

techniques to which it will be compared.

CUDA requires applications to provide a function to be executed on the GPU,

131

known as a kernel. The standard approach to a CUDA data-parallel system is to write,

compile and execute one or more CUDA C kernels for each batch of individuals to be

evaluated. A CUDA C file contains source code in standard C with a few additional

keywords and constructs. New releases of CUDA are permitting more C++ constructs

in this code however for simplicity, it will still be referred to as CUDA C here.

Once the system has written out a CUDA C kernel file, there are three steps to

prepare it for execution as shown in Figure 44. First, the CUDA C must be compiled to

PTX, which is a lower-level language, similar to machine code. Second, the PTX code

must be compiled to a “cubin” file. In earlier versions of CUDA, the cubin file was

implemented as a text file but it is now a binary. Third, this binary file must be loaded

onto the GPU. The first and second steps are done using the nvcc compiler; the third

step is done using the CUDA function cuModuleLoadData().

CUDA

source file

(~C)

PTX

source file

(~assembly)

CUBIN

binary file

Module

loaded onto

the GPU

1

2

3

nvcc

nvcc cuModuleLoadData()

nvcc

cuModuleLoadData()

Figure 44: The steps required to compile and load source code into a callable GPU module.
The three grey rectangles on the left represent files, as indicated by the hard drive
icon; the green rectangle on the right represents a GPU module, as indicated by
the graphics card icon. These steps will be referred to throughout the section. The
nVidia compiler nvcc can be used to compile CUDA C-style source code into PTX
source code (step 1), to compile PTX source code into a binary cubin file (step 2) or to
perform both steps together. CUDA driver functions such as cuModuleLoadData()
load an executable GPU module from a cubin file (step 3) or from a PTX file (by
internally performing step 2 first). Existing techniques generate CUDA source files
and then apply steps 1, 2 and 3; this research investigates generating PTX source
code directly, hence reducing compilation time by skipping step 1.

As indicated in Figure 44, nvcc permits steps 1 and 2 to be done together and

cuModuleLoadData() permits steps 2 and 3 to be done together.

Using CUDAversion 3.2, the cuModuleLoadData() function (and its sister functions

132

cuModuleLoad() and cuModuleLoadDataEx()) cannot be accessed through the high-

level CUDA Runtime Application Programming Interface (API) but must be accessed

through the lower-level CUDA driver API, which increases the technical difficulty.

One of the advantages of the data-parallel approach is that it naturally leads to ex-

cellent memory access patterns in which consecutive threads always access consecutive

memory locations. Such memory access patterns are favourable to the fastest possible

access to off-chip global memory. This is worth highlighting here because the GPU code

used in this section’s experiments does not read testcases but calculates them dynami-

cally instead. This may make the evaluation speeds higher than they would otherwise

be. The excellent access patterns give reason to hope this effect is small because the

testcase reads that are being omitted would be as fast as possible. Furthermore, there

is no reason to think that this effect favours the novel techniques over the standard

techniques.

6.3.2 Data-Parallel with PTX Code

The data-parallel approach achieves very high evaluation speeds but suffers a high

compilation overhead, which must be paid every time a new batch is to be evaluated.

Step 3 from Figure 44 is relatively quick, as will be seen. The problem lies with steps

1 and 2. The aim of this research is to circumvent step 1 by writing the source code

directly in PTX. This should reduce the compilation time and may even increase the

evaluation speed. This requires leaving the comfortable familiarity of C and entering

the lower-level world of PTX.

So what is PTX? According to nVidia, PTX is a “low-level parallel thread execution

virtual machine and instruction set architecture (ISA)”, which “provides a stable pro-

gramming model and instruction set for general purpose parallel programming.” It

is a low-level, assembly-like language to which CUDA C gets compiled and which, in

turn, gets compiled to GPU-ready binary. Unlike assembly, it does not correspond di-

rectly to its resulting machine code binary and although it is “designed to be efficient

on nVidia GPUs” it could be implemented on other parallel platforms. Importantly,

the goal of PTX stated first in the nVidia documentation is to “provide a stable ISA that

spans multiple GPU generations” so it should be forward compatible. As PTX is one of

the CUDA resources, its tools and documentation are proprietary but freely available.

It is well documented: the CUDA toolkit v3.2 contains a 199-page PTX manual, the

source of this paragraph’s quotations.

PTX is considerably more low-level than CUDA C, so maintaining extensive PTX

code would be difficult. Fortunately this data-parallel approach only needs the PTX

code to describe a skeleton and the limited instruction set of the individuals being

evolved. This can be achieved with a small code base and using a simple subset of the

language.

PTX’s basic syntax rules will be familiar to programmers of many modern lan-

133

guages: whitespace may be used freely and is ignored (except in separating tokens);

semi-colons separate lines; lines beginning with a # character are pre-processor direc-

tives and commenting rules are as for C/C++ (/* and */mark comment blocks and //

marks rest-of-line comments).

Table 13 provides a translation from some commonC tasks to their PTX equivalents.

These building blocks provide most of the tools that are needed to construct complete

TMBL kernels. The float literals in the CUDA C use a trailing f to request floats ex-

plicitly, which stops the compiler grumbling about demoting doubles. Float literals in

PTX must be specified in native hexadecimal so a trailing comment is used to provide

a decimal equivalent for readability. It is worth taking a look at some of the basics of

the language.

Description CUDA C code PTX code

Set to constant slot0 = -1.64101672f; mov.f32 %slot0, 0fBFD20CD6; // -1.64101672

Add slot4 += slot3; add.f32 %slot4, %slot4, %slot3;

Subtract slot1 -= testcase0; sub.f32 %slot1, %slot1, %testcase0;

Multiply slot0 *= slot3; mul.f32 %slot0, %slot0, %slot3;

slot2 = (div.full.f32 %slot2, %slot2, %slot3;

(slot3 == 0.0f) ? setp.eq.f32 %divPred, %slot3, 0f00000000;

0.0f : slot2/slot3 selp.f32 %slot2, 0f00000000, %slot2, %divPred;
Safe divide

)

if (slot2 > 0) { sub.f32 %ifTemp, %slot0, %testcase1;

slot0 -= testcase1; slct.f32.f32 %slot0, %ifTemp, %slot0, %slot2;Test subtract

}

if (slot0 > 0) {

slot3 = (div.full.f32 %ifTemp, %slot3, %slot2;

(slot2 == 0.0f) ? setp.eq.f32 %divPred, %slot2, 0f00000000;

0.0f : slot3/slot2 selp.f32 %ifTemp, 0f00000000, %ifTemp, %divPred;

); slct.f32.f32 %slot3, %ifTemp, %slot3, %slot0;

Test safe divide

}

unsigned int iter=0; mov.u32 %iterCtr, 0;

while(iter<noIters) { $startOfLoop:

... ...

... add.u32 %iterCtr, %iterCtr, 1;

++iter; setp.ne.u32 %loopPred, %noOfIters, %iterCtr;

Loop

} @%loopPred bra.uni $startOfLoop;

if (progId==0) { mov.u32 %progComp, 0;

.. setp.eq.u32 %progPred, %progId, %progComp;

} @%progPred bra.uni $prog0;

else if (progId==1) { mov.u32 %progComp, 1;

.. setp.eq.u32 %progPred, %progId, %progComp;

} @%progPred bra.uni $prog1;

$prog0:

..

bra.uni $endCode;

$prog1:

..

bra.uni $endCode;

Program choice

$endCode:

Table 13: A comparison of the CUDA C and PTX code used to perform various tasks. Adjacent
blocks of code perform equivalent tasks but adjacent lines within them may not.

134

A declaration of a 32-bit unsigned integer (.u32) called %foo is written:

.reg .u32 %foo;

For convenience, a sequence of 5 numbered %bar registers may by declared with:

.reg .u32 %bar<5>;

The PTX code generated for the experiments described in Section 6.3.3 used 32-bit

floating point numbers (.f32) for the evaluation’s native type, 32-bit unsigned inte-

gers (.u32) for some of the administration and a few Boolean predicates (.pred) for

condition testing.

A typical instruction comprises three parts: the action to perform, qualified by the

register type; the destination register and the source registers. For example, the code to

set %bar1 to the result of a 32-bit floating point addition of %bar2 and %bar3 is:

add.f32 %bar1, %bar2, %bar3;

Conditional execution is achieved in two steps: one instruction sets a predicate

register according to some test and then a second instruction conditionally executes if

that register is set to true. For example, to branch to (i.e. goto) $codeLocationBaz if

(%bar3==%bar1) the code might be:

setp.eq.u32 %predicateVar, %bar3, %bar1;

@%progBranchPred bra $codeLocationBaz;

The GPU architecture is designed to execute the same instruction in parallel on

multiple data. Although CUDA permits divergence of neighbouring threads, the doc-

umentation emphasises the considerable time penalty this entails. Hence, to maximise

speed, good CUDA code should minimise any such divergence.

This raises the question of whether directly-coded PTX is faster or slower than the

intermediate PTX generated from CUDA C source by the nvcc compiler. On one hand,

the PTX that nvcc generates from CUDA C will have all the execution speed advan-

tages that nVidia’s compiler programmers could muster. On the other hand, directly-

coding PTX might allow greater control than is possible through compiling CUDA C.

For instance, where the compiler cannot identify that divergence is impossible, it may

generate PTX with avoidable divergences.

PTX offers its programmers two divergence-minimising tools:

• explicit conditional instructions (such as selp and slct in Table 13), which are

executed by all threads but which conditionally perform some limited action de-

pending on a predicate and

• a qualified branch instruction bra.uni, which indicates that a branch is guaran-

teed to be non-divergent.

135

By using the former, it is possible to code many tasks with no conditional execution

and hence no possibility of divergence. By using the latter, it is possible to guarantee to

the compiler that many of the remaining branches will be uniform. What is the effect

of this? The PTX manual ptx isa 2.2.pdf has the following to say:

A CTA [“Cooperative Thread Array”] with divergent threads may have

lower performance than a CTA with uniformly executing threads, so it is

important to have divergent threads re-converge as soon as possible. All

control constructs are assumed to be divergent points unless the control-

flow instruction is marked as uniform, using the .uni suffix. For diver-

gent control flow, the optimizing code generator automatically determines

points of re-convergence. Therefore, a compiler or code author targeting

PTX can ignore the issue of divergent threads, but has the opportunity to

improve performance by marking branch points as uniform when the com-

piler or author can guarantee that the branch point is non-divergent.

This leaves unclear precisely howmuch speed improvement (if any) might be avail-

able by avoiding non-uniform branches. In turn, this leaves open the question of

whether avoiding non-uniform branches produces faster code (and indeed of whether

writing PTX directly can produce faster kernels at all).

Nevertheless, carewas taken to try tominimise the number of non-uniform branches

in case there was a potential speed benefit. To achieve this, the design assumes that

there are enough testcases (with appropriate padding) such that CUDA thread blocks

(or at least warps) only evaluate data for one individual. If the number of testcases

is so low that this is a problem, population-parallel approaches would likely be more

appropriate anyway. If this assumption is violated, the code will attempt to diverge at

a branch labelled as uniform. The consequences of this are unknown.

So did this effort actually manage to reduce non-uniform branches in the directly-

generated PTX? To highlight the difference, the same population of 128 individuals,

each with 200 TMBL instructions, was output as a PTX file and as a CUDAC file, which

was then compiled to a PTX file using nvcc. The directly-generated PTX contained

384 branch instructions, all of which were uniform. The PTX compiled from CUDA C

contained 5205 branch instructions, 3092 (around 59%) of which were non-uniform.

It is worth noting that, although PTX looks like assembly, compiling it to a cubin

file is not a matter of direct translation. This can be seen by requesting verbose output

from nvcc with the --ptxas-options=-v option. This shows that the compiler often

uses far fewer registers than are directly implied by the PTX source.

6.3.3 Experimental Assessment

The tactic of using PTX introduces more complexity and so can only be justified if it

either reduces compilation times or improves evaluation speeds (or both). This section

136

describes experiments to test this. Since the purpose of the work was to implement the

same algorithm using faster techniques, the experiments examined speed, not results.

Tests verified that the method generated results equal to those generated by standard

methods.

The initial experiments appeared to give wildly varying results. On further investi-

gation, the reason for this was found to be nvcc’s optimisation capabilities. When com-

piling from CUDA C to PTX, nvcc spotted dead instructions that could never affect the

output and optimised them away. This resulted in the compilations and evaluations

from CUDA C code occasionally being extremely fast.

TMBL evolves individuals with very few dead instructions so the experiments were

seeded with a TMBL individual evolved during a long run. This means that this issue

does not affect these experiments. However it is worth underlining this point: using

PTX appears to sacrifice the optimisation of inactive code. This might be more of a

problem in the context of GP’s infamous introns.

One of the experiments varied the number of instructions per individual. To gen-

erate individuals with fewer instructions, instructions were removed from the start of

the seed individual. This may change the individual so that more of the instructions

may be optimised away. Hence the evaluation rates stated for CUDA C source for low

numbers of instructions may be overestimates.

The system configuration is the same as described in Section 6.4.6 and the parame-

ters are the same except a default of eight individuals per kernel was used here. Again,

the mutation rate was set such that 95% of individuals have at least one mutation. Each

experiment averaged results over five repetitions and the estimated standard error bars

are often too thin to be visible suggesting that the relatively small number of repetitions

has been adequate to give good estimates of the means.

Some of the estimated standard error bars are slightly thicker in some areas than in

others. These differences may just reflect the differences in variance that one would

expect to see between such small samples; they may be due to other factors such as

other processes on the test computer interfering with some runs. The differences do not

seem

pronounced enough to warrant an analysis of how likely it would be to see such

differences by random chance.

6.3.4 Results of Experiments

Whilst discussing the results, it would be useful to work with a couple of assumptions:

that performing the compiling and loading steps in pairs (1+ 2 or 2+ 3) does not mas-

sively affect the overall duration and that the load time is small enough to disregard.

The validity of these assumptions is checked in Figures 45 and 46. In both cases, the

values are plotted over varying number of individuals per kernel although this is not

too important in either case. Figure 45 and Table 14 show that performing the steps in

137

pairs does not massively affect the duration. Pairing steps 2 and 3 appears to increase

the duration slightly but this effect is minor and will henceforth be disregarded. Fig-

ure 46 and Table 15 show that the load times are very short (compared to compilation

times from other experiments) and so will be disregarded for the rest of the analysis.

Figures 47 and 48 consider the effect of varying the number of individuals per ker-

nel on evaluation speed and compilation time. Figure 47 and Table 16 show two strik-

ing results: that the evaluation speeds are remarkably high (compared to population-

parallel evaluation speeds) and that they are even higher from PTX source code. The

results are fairly steady across varying numbers of individuals per kernel.

It is very positive that the PTX can achieve higher evaluation speeds but the main

aim was to reduce compilation time. Figure 48 and Table 17 show that this has been

achieved effectively too. Complete compilation time per individual to generate a cubin

is much lower for PTX than for CUDA C and this effect intensifies as the number of

individuals per kernel increases. Interestingly the compilation time for CUDA C from

PTX to cubin suggests that the reduction in compilation time is only partly explained

by avoiding step 1. Presumably the rest is due to the directly-generated PTX being

simpler than the PTX that nvcc generates from equivalent CUDA C.

Figures 49 and 50 show the effect of varying the total number of programs on eval-

uation speed and compilation time. As would be hoped, neither is hugely affected.

However compilation times per individual for CUDA C source do vary slightly, with

the time to cubin higher for particularly small or large populations. Tables 18 and 19

show the corresponding values.

Figures 51 and 52 show the effect of varying the number of instructions per TMBL

individual. Figure 51 and Table 20 show that for individuals with 90 or more instruc-

tions, the evaluation speeds are fairly steady and the evaluation speeds from PTX are

consistently higher than those from CUDA C. At 300 instructions, the evaluation speed

is 155837.159 million operations per second from CUDA C and 191724.434 million op-

erations per second from PTX, an increase of 23.029%. Decreasing to 60 and then 30

instructions, both evaluations speeds get higher and at 30 instructions, CUDA C is

faster than PTX.

It is worth commenting that the higher evaluation speeds for low numbers of in-

structions may be an artifact of the way individuals are constructed. It may be that

these individuals with few instructions had a high fraction that could be optimised

away so the rate of evaluation appears higher than it actually was.

Figure 52 and Table 21 show that the compilation time to cubin per individual is

much lower for PTX than for CUDA C for all numbers of instructions. For both PTX

and CUDA C, the compilation times per individual appear to be increasing more than

linearly with respect to the number of instructions. This might be because the order

of the compiler’s algorithm is worse than linear; it might be because of demand on

limited resources such as memory. At 300 instructions, the total compilation time per

138

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

T
im

e
fo

r
se

pa
ra

te
 s

te
ps

 a
s

a
pe

rc
en

ta
ge

 o
f t

im
e

fo
r

jo
in

t s
te

p

Number of individuals per kernel

CUDA C source, steps 1 and 2
CUDA C source, steps 2 and 3

PTX source, steps 2 and 3

Figure 45: The linearity of combining pairs of steps over varying numbers of individuals per
kernel for CUDA C and PTX source. This purpose of this is for checking the valid-
ity of assumptions as discussed in the text.

Source type
Programs per kernel

CUDA C PTX

100.026 % [±0.093] N/A
1

94.455 % [±0.126] 95.934 % [±0.115]
100.267 % [±0.163] N/A

2
94.879 % [±0.550] 96.201 % [±0.081]
100.363 % [±0.334] N/A

3
94.434 % [±0.189] 96.606 % [±0.147]
99.878 % [±0.080] N/A

4
94.633 % [±0.100] 96.640 % [±0.261]
100.119 % [±0.498] N/A

5
95.480 % [±0.849] 96.901 % [±0.088]
99.931 % [±0.138] N/A

6
95.178 % [±0.155] 97.198 % [±0.112]
100.204 % [±0.105] N/A

8
95.446 % [±0.307] 97.412 % [±0.159]
99.746 % [±0.356] N/A

10
95.632 % [±0.095] 97.308 % [±0.093]
100.284 % [±0.121] N/A

12
96.154 % [±0.223] 97.857 % [±0.205]
99.806 % [±0.142] N/A

15
95.464 % [±0.083] 98.063 % [±0.314]
100.231 % [±0.319] N/A

20
96.028 % [±0.484] 98.099 % [±0.142]
99.813 % [±0.063] N/A

24
95.658 % [±0.119] 98.285 % [±0.168]
100.020 % [±0.135] N/A

30
95.296 % [±0.322] 98.311 % [±0.183]

Table 14: The linearity of combining pairs of steps over varying numbers of individuals per
kernel for CUDA C and PTX source

139

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0 5 10 15 20 25 30

C
ub

in
 lo

ad
 ti

m
e

pe
r

in
di

vi
du

al
 (

in
 s

ec
on

ds
)

Number of individuals per kernel

CUDA C source
PTX source

Figure 46: The cubin load time per individual over varying numbers of individuals per kernel
for CUDA C and PTX source. This purpose of this is for checking the validity of
assumptions as discussed in the text.

Source type
Programs per kernel

CUDA C PTX

1 0.00034863 s [±0.00000010] 0.00034462 s [±0.00000203]

2 0.00011336 s [±0.00000041] 0.00010839 s [±0.00000020]

3 0.00007137 s [±0.00000006] 0.00006656 s [±0.00000024]

4 0.00005386 s [±0.00000018] 0.00004903 s [±0.00000006]

5 0.00004449 s [±0.00000005] 0.00004027 s [±0.00000007]

6 0.00003906 s [±0.00000007] 0.00003493 s [±0.00000002]

8 0.00003356 s [±0.00000008] 0.00002913 s [±0.00000004]

10 0.00002979 s [±0.00000005] 0.00002604 s [±0.00000001]

12 0.00002747 s [±0.00000021] 0.00002408 s [±0.00000004]

15 0.00002538 s [±0.00000005] 0.00002205 s [±0.00000003]

20 0.00002183 s [±0.00000008] 0.00001850 s [±0.00000019]

24 0.00002160 s [±0.00000013] 0.00001777 s [±0.00000007]

30 0.00002061 s [±0.00000005] 0.00001739 s [±0.00000007]

Table 15: The cubin load time per individual over varying numbers of individuals per kernel
for CUDA C and PTX

140

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 5 10 15 20 25 30

E
va

lu
at

io
n

sp
ee

d
(in

 m
ill

io
n

T
M

B
L

op
er

at
io

ns
/s

ec
on

d)

Number of individuals per kernel

CUDA C source
PTX source

Figure 47: The effect on evaluation speed of varying the number of individuals per kernel for
CUDA C and PTX source

Programs Source type
per kernel CUDA C PTX

Change

1 158805.123 Mo/s [±134.257] 197741.473 Mo/s [±87.397] +24.518%
2 167831.260 Mo/s [±242.884] 209315.151 Mo/s [±173.477] +24.718%
3 165032.511 Mo/s [±149.071] 194343.676 Mo/s [±143.120] +17.761%
4 161646.680 Mo/s [±74.796] 198211.357 Mo/s [±83.347] +22.620%
5 160425.626 Mo/s [±306.146] 196488.093 Mo/s [±43.781] +22.479%
6 161986.958 Mo/s [±327.900] 198429.966 Mo/s [±57.069] +22.497%
8 162159.380 Mo/s [±202.829] 198788.216 Mo/s [±98.733] +22.588%
10 162449.723 Mo/s [±220.745] 198560.674 Mo/s [±132.443] +22.229%
12 162621.976 Mo/s [±267.583] 198554.999 Mo/s [±110.307] +22.096%
15 162186.285 Mo/s [±324.353] 198265.132 Mo/s [±182.975] +22.245%
20 163202.853 Mo/s [±488.099] 198737.958 Mo/s [±180.982] +21.774%
24 162935.422 Mo/s [±344.845] 198783.705 Mo/s [±103.458] +22.002%
30 163270.273 Mo/s [±391.122] 199012.729 Mo/s [±135.569] +21.892%

Table 16: The effect on evaluation speed of varying the number of individuals per kernel for
CUDA C and PTX source

141

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30

C
om

pi
le

 ti
m

e
pe

r
in

di
vi

du
al

 (
in

 s
ec

on
ds

)

Number of individuals per kernel

CUDA C source, from CUDA C to cubin
CUDA C source, from PTX to cubin

PTX source, from PTX to cubin

Figure 48: The effect on compilation time per individual of varying the number of individuals
per kernel for CUDA C and PTX source

Programs Source type
per kernel CUDA C PTX

Change

0.15263 s [±0.00013] N/A
1

0.06493 s [±0.00007] 0.04399 s [±0.00003]
−71.179%

0.15621 s [±0.00016] N/A
2

0.06996 s [±0.00038] 0.04078 s [±0.00005]
−73.894%

0.16375 s [±0.00018] N/A
3

0.07588 s [±0.00004] 0.04021 s [±0.00005]
−75.444%

0.17355 s [±0.00014] N/A
4

0.08355 s [±0.00010] 0.04033 s [±0.00016]
−76.762%

0.18402 s [±0.00038] N/A
5

0.09192 s [±0.00090] 0.04059 s [±0.00013]
−77.943%

0.19416 s [±0.00031] N/A
6

0.09965 s [±0.00024] 0.04118 s [±0.00014]
−78.791%

0.21911 s [±0.00054] N/A
8

0.11857 s [±0.00035] 0.04296 s [±0.00006]
−80.393%

0.24087 s [±0.00101] N/A
10

0.13318 s [±0.00066] 0.04458 s [±0.00020]
−81.492%

0.26194 s [±0.00041] N/A
12

0.14886 s [±0.00059] 0.04775 s [±0.00020]
−81.771%

0.29817 s [±0.00082] N/A
15

0.17198 s [±0.00063] 0.05146 s [±0.00040]
−82.741%

0.35215 s [±0.00116] N/A
20

0.20961 s [±0.00151] 0.05776 s [±0.00010]
−83.598%

0.39883 s [±0.00146] N/A
24

0.23947 s [±0.00124] 0.06332 s [±0.00046]
−84.124%

0.46791 s [±0.00136] N/A
30

0.28612 s [±0.00138] 0.06909 s [±0.00139]
−85.234%

Table 17: The effect on compilation time per individual of varying the number of individuals
per kernel for CUDA C and PTX source (where the first value in each cell is from
CUDA C to cubin and the second value is from PTX to cubin)

142

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 50 100 150 200 250

E
va

lu
at

io
n

sp
ee

d
(in

 m
ill

io
n

T
M

B
L

op
er

at
io

ns
/s

ec
on

d)

Total population size

CUDA C source
PTX source

Figure 49: The effect on evaluation speed of varying population sizes for CUDA C and PTX
source

Source type
Population

CUDA C PTX
Change

16 164139.446 Mo/s [±1923.278] 198895.037 Mo/s [±337.057] +21.174%
32 161943.142 Mo/s [±430.873] 198733.168 Mo/s [±138.417] +22.718%
48 162170.397 Mo/s [±386.229] 198345.937 Mo/s [±115.541] +22.307%
64 162087.015 Mo/s [±116.017] 198834.684 Mo/s [±177.841] +22.672%
80 162152.265 Mo/s [±156.723] 198585.415 Mo/s [±178.455] +22.468%
96 162918.939 Mo/s [±588.722] 198714.732 Mo/s [±129.684] +21.972%
112 162551.626 Mo/s [±539.116] 198619.793 Mo/s [±66.806] +22.189%
128 162103.340 Mo/s [±126.193] 198358.097 Mo/s [±162.960] +22.365%
144 162219.577 Mo/s [±342.545] 198343.349 Mo/s [±131.611] +22.268%
160 164478.474 Mo/s [±2060.750] 199518.908 Mo/s [±364.757] +21.304%
176 162151.190 Mo/s [±801.189] 200620.720 Mo/s [±709.098] +23.724%
192 162672.407 Mo/s [±677.593] 199202.037 Mo/s [±1331.087] +22.456%
208 163576.934 Mo/s [±1493.960] 198527.188 Mo/s [±133.804] +21.366%
224 162082.569 Mo/s [±757.031] 198914.113 Mo/s [±951.853] +22.724%
240 161720.934 Mo/s [±299.484] 198611.198 Mo/s [±556.692] +22.811%
256 160033.266 Mo/s [±389.726] 198008.989 Mo/s [±549.420] +23.730%

Table 18: The effect on evaluation speed of varying population sizes for CUDA C and PTX
source

143

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200 250

C
om

pi
le

 ti
m

e
pe

r
in

di
vi

du
al

 (
in

 s
ec

on
ds

)

Total population size

CUDA C source, from CUDA C to cubin
CUDA C source, from PTX to cubin

PTX source, from PTX to cubin

Figure 50: The effect on compilation time per individual of varying population sizes for
CUDA C and PTX source

Source type
Population

CUDA C PTX
Change

0.25020 s [±0.00250] N/A
16

0.10751 s [±0.00192] 0.04243 s [±0.00038]
−83.042%

0.23174 s [±0.00071] N/A
32

0.11047 s [±0.00059] 0.04197 s [±0.00030]
−81.889%

0.22588 s [±0.00037] N/A
48

0.11183 s [±0.00035] 0.04188 s [±0.00018]
−81.459%

0.22312 s [±0.00032] N/A
64

0.11260 s [±0.00033] 0.04219 s [±0.00019]
−81.091%

0.22271 s [±0.00027] N/A
80

0.11422 s [±0.00018] 0.04272 s [±0.00016]
−80.818%

0.22148 s [±0.00064] N/A
96

0.11500 s [±0.00058] 0.04283 s [±0.00022]
−80.662%

0.22457 s [±0.00075] N/A
112

0.11769 s [±0.00077] 0.04290 s [±0.00015]
−80.897%

0.22512 s [±0.00021] N/A
128

0.11989 s [±0.00012] 0.04353 s [±0.00008]
−80.664%

0.22555 s [±0.00061] N/A
144

0.12106 s [±0.00057] 0.04436 s [±0.00014]
−80.333%

0.22694 s [±0.00095] N/A
160

0.12352 s [±0.00119] 0.04480 s [±0.00018]
−80.259%

0.23029 s [±0.00080] N/A
176

0.12577 s [±0.00045] 0.04570 s [±0.00028]
−80.155%

0.23290 s [±0.00230] N/A
192

0.13047 s [±0.00212] 0.04603 s [±0.00045]
−80.236%

0.23406 s [±0.00364] N/A
208

0.13039 s [±0.00277] 0.04644 s [±0.00008]
−80.159%

0.23596 s [±0.00148] N/A
224

0.13289 s [±0.00111] 0.04781 s [±0.00036]
−79.738%

0.23820 s [±0.00117] N/A
240

0.13508 s [±0.00098] 0.04851 s [±0.00053]
−79.635%

0.24453 s [±0.00110] N/A
256

0.14141 s [±0.00121] 0.04947 s [±0.00049]
−79.769%

Table 19: The effect on compilation time per individual of varying population sizes for CUDA
C and PTX source (where the first value in each cell is from CUDA C to cubin and the
second value is from PTX to cubin)

144

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 50 100 150 200 250 300

E
va

lu
at

io
n

sp
ee

d
(in

 m
ill

io
n

T
M

B
L

op
er

at
io

ns
/s

ec
on

d)

Number of TMBL instructions per individual

CUDA C source
PTX source

Figure 51: The effect on evaluation speed of varying numbers of TMBL instructions per indi-
vidual for CUDA C and PTX source

Source type
Instructions

CUDA C PTX
Change

30 261474.862 Mo/s [±2124.695] 259582.278 Mo/s [±498.381] −0.724%
60 183085.021 Mo/s [±728.449] 242544.446 Mo/s [±372.822] +32.476%
90 153284.933 Mo/s [±403.871] 191423.677 Mo/s [±250.859] +24.881%
120 162355.469 Mo/s [±244.062] 200016.133 Mo/s [±140.292] +23.196%
150 164318.236 Mo/s [±138.657] 203611.813 Mo/s [±115.007] +23.913%
180 162802.268 Mo/s [±232.489] 205253.255 Mo/s [±162.186] +26.075%
210 163329.531 Mo/s [±316.118] 199176.476 Mo/s [±111.705] +21.948%
240 164816.979 Mo/s [±316.891] 195103.068 Mo/s [±154.135] +18.376%
270 170075.087 Mo/s [±203.362] 193755.862 Mo/s [±42.270] +13.924%
300 155837.159 Mo/s [±41.382] 191724.434 Mo/s [±38.273] +23.029%

Table 20: The effect on evaluation speed of varying numbers of TMBL instructions per individ-
ual for CUDA C and PTX source

145

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300

C
om

pi
le

 ti
m

e
pe

r
in

di
vi

du
al

 (
in

 s
ec

on
ds

)

Number of TMBL instructions per individual

CUDA C source, from CUDA C to cubin
CUDA C source, from PTX to cubin

PTX source, from PTX to cubin

Figure 52: The effect on compilation time per individual of varying numbers of TMBL in-
structions per individual for CUDA C and PTX source

Source type
Instructions

CUDA C PTX
Change

0.02636 s [±0.00006] N/A
30

0.00597 s [±0.00005] 0.00505 s [±0.00000]
−80.842%

0.04797 s [±0.00013] N/A
60

0.01571 s [±0.00009] 0.01010 s [±0.00005]
−78.945%

0.08881 s [±0.00014] N/A
90

0.03910 s [±0.00014] 0.01890 s [±0.00004]
−78.719%

0.11400 s [±0.00016] N/A
120

0.05314 s [±0.00012] 0.02401 s [±0.00005]
−78.939%

0.14878 s [±0.00028] N/A
150

0.07295 s [±0.00016] 0.03004 s [±0.00010]
−79.809%

0.18691 s [±0.00049] N/A
180

0.09506 s [±0.00010] 0.03618 s [±0.00003]
−80.643%

0.24913 s [±0.00096] N/A
210

0.13590 s [±0.00063] 0.04674 s [±0.00004]
−81.239%

0.32045 s [±0.00129] N/A
240

0.18191 s [±0.00076] 0.05931 s [±0.00018]
−81.492%

0.38727 s [±0.00089] N/A
270

0.22367 s [±0.00061] 0.06917 s [±0.00009]
−82.139%

0.47322 s [±0.00023] N/A
300

0.28188 s [±0.00161] 0.08074 s [±0.00017]
−82.938%

Table 21: The effect on compilation time per individual of varying numbers of TMBL instruc-
tions per individual for CUDA C and PTX source (where the first value in each cell is
from CUDA C to cubin and the second value is from PTX to cubin)

146

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 1.5 2 2.5 3 3.5 4

C
om

pi
le

 ti
m

e
pe

r
in

di
vi

du
al

 (
in

 s
ec

on
ds

)

Number of CPU threads

CUDA C Source, from CUDA C to cubin
CUDA C source, from PTX to cubin

PTX source, from PTX to cubin

Figure 53: Using multiple threads for compilation

Source type
Number of CPU threads

CUDA C PTX
Change

0.22428 s [±0.00042] N/A
1

0.11881 s [±0.00037] 0.04365 s [±0.00016]
−80.538%

0.23336 s [±0.00060] N/A
2

0.12498 s [±0.00072] 0.04412 s [±0.00011]
−81.094%

0.25455 s [±0.00027] N/A
3

0.14014 s [±0.00024] 0.04936 s [±0.00015]
−80.609%

0.29302 s [±0.00310] N/A
4

0.17267 s [±0.00153] 0.05895 s [±0.00044]
−79.882%

Table 22: Using multiple threads for compilation

147

individual is 0.473 seconds from CUDA C and 0.081 seconds from PTX, a decrease of

82.938%.

Figure 53 and Table 22 show the effects of compiling with multiple threads on a

4 core machine. In all cases, compilation time per individual increases when using

multiple threads. This effect is not strong enough to prevent parallel compilation being

worthwhile but it is somewhat disappointing.

6.3.5 Comments on Compiling from the Lower-Level Language PTX

Hopefully the findings described here will help researchers to understand these factors

better and so permit them to gauge the suitability of PTX more accurately. A number

of questions remain open for future investigation:

• Is it possible to improve the directly-coded PTX by manual comparing it to the

PTX that nvcc generates from CUDA C?

• Is it possible to increase the number of instructions with a linear increase in com-

pilation time?

• Is it possible to increase the number of parallel compilations with a smaller time

penalty?

• Do the uniform branches contribute to the improved execution speed?

Beyond this, there are two obvious possibilities to pursue: using PTX to write a

population-parallel interpreter and directly manipulating a data-parallel cubin binary.

Despite the success of the work described, these remain daunting prospects.

With work, a PTX interpreter might be possible and it might be expected to deliver

a small improvement in evaluation speed. However this does not seemworth the huge

increase in the difficulty of developing and maintaining the code.

Attempts to manipulate cubin binaries directly may be unwise because nVidia rec-

ommend storing CUDA C or PTX source files rather than cubin binaries to defend

against any radical changes theymaymake to the cubin format. Nevertheless, if it were

possible to manipulate the cubin files directly rather than having to compile afresh each

time, this might slash the CPU time spent preparing each individual for GPU evalua-

tion. This aspiration motivated a brief investigation using the Python program decuda,

which attempts to disassemble cubin files back to PTX code. This quickly revealed a

complex relationship between PTX and the cubin file to which it compiles. The inves-

tigation was promptly curtailed.

6.4 Technique 2: Reducing Repeated Code through Alignment

To exploit a GPU, one must write and compile a kernel for it. The data-parallel ap-

proach involves writing such kernels each time a batch of individuals is to be evalu-

ated. These kernels are then used for evaluation on the GPU. Several individuals may

148

be grouped together into one kernel. The problem of this approach is the time spent

compiling.

The technique discussed in this section aimed to reduce compilation time by target-

ing the redundancy of compiling blocks of similar code by exploiting their similarities.

Rather than sending highly redundant code like that shown on the left of Table 23 to the

compiler, an aligning algorithm is first used to identify the similarities and pull them

together to form code like that shown on the right of Table 23.

Unaligned Aligned

if (prog == 0) { ...

... slot1 += slot3;

slot1 += slot3; if (prog == 2) {
slot2 = 3.1096370; slot2 *= slot1;

... }
} slot2 = 3.1096370;

else if (prog == 1) { ...

...

slot1 += slot3;

slot2 = 3.1096370;

...

}
else if (prog == 2) {

...

slot1 += slot3;

slot2 *= slot1;

slot2 = 3.1096370;

...

}

Table 23: Reducing work for the compiler through alignment. On the left, each program’s code
is in a separate block. Since the compiler does not know these blocks are highly
similar, it repeats work by compiling each separately. On the right, the similarities
have been identified first so the common instructions are pulled together and need
only be compiled once.

The biggest danger with this approach is that the execution speed is reduced be-

cause the execution path through the kernel for each individual is more convoluted.

Can the faster compilation outweigh the slower evaluation? If so, under what circum-

stances? The investigation sought to tackle these questions.

How should the individuals be aligned? It might be possible to identify these sim-

ilarities by keeping track of the mutation and crossover operations performed on each

individual. However that would be a rather complicated and brittle approach which

would need extending with each new genetic operator. A more robust approach is to

align individuals when they are to be evaluated.

149

6.4.1 Alignment

How can lists of instructions be aligned? There is a standard approach to aligning lists

of items but it was not used in this context. To explain why, it is important to describe

the standard approach first.

The principles underlying alignment algorithms are not dependent on the type of

thing being aligned, so this section talks about aligning lists made up of instructions,

letters, items, amino acids and coloured shapes. The simplicity of letters makes them

suitable for outlining the principles.

Consider two lists of letters, DVSGGWIVHGVRGS and SGGWVHGRKGSA. An alignment of

these two lists involves laying them out such that some items from one list might tally

with some items from the other. Hence an alignment is a list of alignment positions,

each containing the next entry from one or more of the lists. For example, one possible

alignment is as follows:

DVSGGWIVHGVRG.....S

| | |||||

..S..G..GWVHGRKGSA

This is a poor quality alignment for two reasons. First, relatively few pairs of let-

ters have been aligned. Second, many of the aligned pairs do not contain matching

letters. This is permitted in other contexts but for this application, instructions may

only be aligned with each other if they are identical. Under these criteria, the following

alignment is an improvement:

DVSGGWIVHGVR.GS

|||| ||| | ||

..SGGW.VHG.RKGSA

These alignments involve a single pair of lists. Later, it will be necessary to create

multiple alignments with more than two lists. That algorithm will be described after

the single alignment algorithm, upon which it is built.

How many possible ways are there to align a list containing m items with a list

containing n items? That depends on whether different alignments that tally the same

pairs of items should only be counted once. If not, the number of ways of performing

the alignment may be calculated iteratively. If either of the lists is empty, there is only

one possible way since there are no choices that need to be made. Otherwise, there are

three recipes for aligning the lists:

• take the first item off the first list, add it to the end of the alignment and then align

the remaining items in any possible way,

• take the first item off the second list, add it to the end of the alignment and then

align the remaining items in any possible way or

150

• take the first item off both lists, tally them at the end of the alignment and then

align the remaining items in any possible way.

The total number of ways is the sum of these possibilities and so can be calculated

with the following iterative formula: F(m, n) = F(m− 1, n− 1) + F(m, n− 1) + F(m−
1, n), where F(0, i) = 1 and F(i, 0) = 1 for any i. This formula generates the result

that there are around 2.054 ∗ 1075 possible ways to align two lists of 100 items. Fortu-

nately things are much better than this calculation suggests since the problem exhibits

optimal substructure, i.e. optimal solutions can be calculated from optimal solutions to

subproblems. This makes the problem amenable to standard dynamic programming

techniques.

6.4.2 The Needleman and Wunsch Algorithm

One of the core techniques in the field of bioinformatics involves aligning amino acid

sequences so it has developed the area considerably. The basic algorithm used for this

is the Needleman-Wunsch (NW) algorithm [64]. This is the standard alignment

algorithm, against which others may be contrasted.

A scoring system is used to guide the algorithm and the standard scheme awards

an alignment one point for tallying each pair of identical items. The NW algorithm

is an application of dynamic programming to the process of alignment. The principle

of dynamic programming is to find the optimal solution to each subproblem and then

reuse these results. This can be applied to alignment by using the following subprob-

lem: align the two query sequences but with one or more items taken off the front of

either or both. The optimal solution will contain the optimal solution to one of these

subproblems. This observation can be applied iteratively to build up the optimal solu-

tion in simple steps.

For two sequences of lengths m and n, this process can be represented elegantly

in a matrix of dimensions m× n. Using conventional matrix indexing, the sequences

both start in the top-left and finish in the bottom-right. Each possible alignment can

be represented as a path through the matrix between these corners. Figures 54(a) and

54(b) can be viewed as such matrices.

6.4.3 The Need for a New Alignment Algorithm

What is the computational complexity of the NW algorithm with respect to the sizes

of the sequences? For each cell, the original NW algorithm scans for the maximum

values in the strips running down and right from the below-right cell. To examine the

(i − 1) + (j − 1) − 1 such cells for every position (i, j) (where i > 1 and j > 1) in an

m× n matrix the number of examinations is:

m

∑
i=2

n

∑
j=2

(i+ j− 3)

151

=
1

2

(

m2n+mn2 −m2 − n2 − 4mn+ 3m+ 3n− 2
)

This means the algorithm takes O(n3) time to align two sequences of length n and

O(n2) time to align a sequence of length n against a non-trivial, fixed-length sequence.

Sankoff [78] later showed how to refine the algorithm to reuse more information and

hence reduce the two running times from O(n3) and O(n2) to O(n2) and O(n) respec-

tively. This is now widely referred to as the NW algorithm.

This means that NW is slower than would ideally be required here. Conversely,

consideration of NW’s requirements will show that they are much more stringent than

those required here. NW alignments are used to provide a consistent measure of the

level of sequence similarity between proteins and to identify stretches of sequences that

are most similar. NW often faces very difficult problems and is relied upon to perform

as good an alignment as possible.

In contrast, this problem only requires an alignment algorithm to face simple prob-

lems and to do a fairly good job quickly. Figure 54 helps to highlight the difference

between the sorts of problems that might be faced.

Items in protein two

Item
s in protein one

(a) Aligning two protein sequences of length 100

Items in TMBL program two

Item
s in T

M
B

L program
 one

(b) Aligning two TMBL programs of length 100

Figure 54: Aligning TMBL programs is very different to aligning protein sequences so NWmay
not be appropriate. A black pixel indicates a match between the two corresponding
items such that they could be aligned. Subfigure 54(a) shows the problem of align-
ing two sequences of length 100 from the proteins 2yuv and 2yuz. Subfigure 54(b)
shows the problem of aligning two TMBL programs with 100 instructions. The two
programs share the same single parent.

Figure 54(a) shows the problem of aligning two protein sequences from the files

2yuv and 2yuz in the Protein Data Bank (PDB) [9]. These sequences score highly (35%

sequence identity over 97% overlap using a gap penalty of 3), which provides good

evidence of relatedness and suggests that this is a relatively easy alignment problem.

A faint line can be discerned running from top left to bottom right, a likely rough path

for the optimal alignment. However the signal for this path is weak and is difficult to

152

discern due to the substantial noise of chance matches. Since each item is one of only

20 amino acids, we would expect such “false positive” matches in 5% of cases.

Contrast this with Figure 54(b) which shows the problem of aligning two 100 in-

struction TMBL programs. Here, there are very few items that match by chance since

there are very many possible instructions. Furthermore the signal is very strong be-

cause they have received few mutations since copying their shared parent’s genome.

Note that there is another important difference: in this application two instructions

may only be aligned together if they match whereas bioinformatics sequence align-

ments may include many aligned pairs that do not.

All of this motivates the design of a new, rough alignment algorithm.

6.4.4 A Rough Alignment Algorithm

The proposed algorithm’s core idea is to just keep looking for the next matching pair.

The algorithm is only ever interested in the next best step: it does not look far around

for better, less direct routes and it never turns back from its current path. This narrowly

focused approach is in contrast to the global approach of NW. For problems such as the

one shown in Figure 54(a), the false positives could easily lead this algorithm astray

through poor alignment routes. However for problems such as the one shown in Fig-

ure 54(b), the algorithm should rarely wander off track and should quickly find its way

back to the main path if it does.

In more detail, the algorithm starts from just outside the top-left of the alignment

matrix. It repeatedly looks for the next matching position, and moves there. When the

algorithm can find no more matching pairs to the bottom-right of its current position, it

stops. Non-matching items are never aligned and so can be ignored by the algorithm.

How does the algorithm choose the next matching position based on its current

location? In short, it sweeps out and selects the first match it finds. The sweep is

summarised in Figure 55 and depicted in Figure 56.

The worst case for the algorithm is aligning two sequences with no matching items.

This would require the described algorithm to search the entire matrix for the first

match before giving up. Hence the algorithm aligns two sequences of length n in amor-

tisedO(n2) time, like the NW algorithm. However the best case is aligning two identi-

cal sequences and the described algorithm would perform this in linear time whereas

the NW algorithm would still take O(n2). Furthermore, this speed should degrade

gracefully so that adding a few, small mutations should add little time to the align-

ment.

6.4.5 A Rough Multiple Alignment Algorithm

This mechanism provides the means to align pairs of lists as illustrated in Figure 57(a)

but this is only part of the problem of forming a multiple alignment. How should the

153

Stage One (neighbouring pair alignments)

* Align each neighbouring list pair as follows

* Start at the top-left corner of the matrix

* Work diagonally down-right through matches

* If the next down-right item is not a match, search progressively

further down and right from the previous match

* In searching, prefer:

1st: smaller maximum increments

2nd: more diagonal jumps

3rd: smaller first-list increments

* Continue from the next match found

* Repeat until there are no more matches to the bottom right of the

previous match

* Glue the resulting alignments together

Figure 55: A summary of the first stage of the alignment algorithm.

. . .
. . .

X

1 4 9 16 25

3 2 7 14 23

8 6 5 12 21

15 13 11 10 19

24 22 20 18 17

(a) First 17 search positions

X
1

X

X
2

X

X
3

X

X
4

X

X
5

X

X
6

X

X
7

X

X
8

X

X
9

X

(b) First nine as diagrams

Figure 56: The order in which the proposed alignment algorithm sweeps to find the next match.
The X denotes the current location and the numbers indicate the sequence of the
sweep.

code deal with aligning more than two lists? A globally optimumNW-based algorithm

can align k sequences of length n using a k-dimensional matrix. That algorithm runs in

O(nk) time (with respect to both n and k) which is unacceptable for all but the small-

est of cases. The compromise often adopted in bioinformatics methods is to perform

all-versus-all pairwise comparisons (typically alignments) and then use the results iter-

atively to identify the nextmost similar list and add it into a core (by performing further

alignments). This has much better running time since it requires k(k−1)
2 alignments and

so—when used in conjunction with NW— runs inO(n2k2) time (with respect to n and

k).

Even so, this problem demands a quicker, rougher approach. Rather than aligning

all k(k−1)
2 pairs, the new algorithm aligns each of the k − 1 pairs of neighbouring lists

154

(a) Align pairs of lists (b) Glue pairs; link more items (c) Do not join items within a list

(d) Do not form crosses (e) Look out for complex crosses

Figure 57: Grey strips represent lists of items, coloured shapes represent items being aligned,
solid black lines represent alignment links and dashed lines represent possible new
links. 57(a) First, items are aligned within pairs of neighbouring lists. 57(b) Then
these alignments are glued together and extra connections (e.g. the dashed line)
may be formed. These links must not be formed if they connect items within a list
or form crosses. 57(c) Joining items within a list (e.g. by forming the dashed line)
breaks the alignment since it means one of those duplicates will be absent from the
resulting code. 57(d) Forming a cross (e.g. by forming either of the dashed lines)
breaks the alignment since then one joined group (e.g. joined circles) comes both
before and after another (e.g. joined triangles). 57(e) Identifying some crosses (such
as the one created by joining the third circle to the other two) may involve tracing
back through lists that do not include any of the items to be joined (e.g. the list
containing one triangle and one star).

and then glues the resulting alignments together. As shown in Figure 57(b), this may

leave some easy connections missed out. For instance, if one individual with one mu-

tated item is placed in the middle of many otherwise identical lists, the mutated item

will break the connection between identical items on either side.

Figure 58 shows an example of individuals being aligned after stage one and after

stage two. Notice situations such as the one at the top of Figure 58(a): the first mutated

instruction has broken the connection between its neighbours. In Figure 58(b), these

two groups have been connected.

The proposed algorithm’s second stage takes the aligned-and-glued neighbour-

pair-lists from the first stage and scans for these extra connections. This avoids spend-

ing time on another alignment as is usual in bioinformatics multiple alignments. Since

these connections are not formed in an alignment process, they are vulnerable to two

155

’-’ matrix

(a) Stage one

’-’ matrix

(b) Stage two

Figure 58: Aligning 20 individuals, each with 80 instructions. Columns within these plots rep-
resent individuals, black marks represent individuals’ instructions and rows of black
marks represent aligned instructions. After stage one there are 183 positions; after
stage two, more connections have been identified and there are only 137 positions.

new dangers, which are worth highlighting.

The first danger is connecting items such that two identical items within the same

list are placed in the same group of equivalents. Figure 57(c) shows an example in

which the proposed dashed link would result in the two green circles in the middle

list being placed in the same group. Of course, this problem only occurs when a list

contains two identical items. This is rare with this TMBL representation but must still

be guarded against.

The second danger is forming a cross between two groups of equivalents so that

each group contains some items before the other group and some items after it. Fig-

ure 57(d) shows an example in which either of the proposed dashed links would create

a group that has items before another group and items after it. This would make the

alignment invalid and so must be avoided. Figure 57(e) shows a more complicated

156

cross example in which the proposed dashed link would create a group that has items

before the triangles and the stars and an item after them. This example illustrates that

some crosses may only be identified by tracing through relationships and through lists

that do not include any of the items to be joined.

The scan for these extra connections proceeds by searching through the individuals’

instructions. For each, a list of candidates instructions for connection is drawn up. To

be a candidate for connection, a pair must be matching, not yet connected and must ei-

ther both start or both precede their respective lists or either both immediately precede

or both immediately follow two connected items.

Such items are checked for conflicts and if there would not be any, the connection

is added. When any connection has been made between two items, the algorithm fol-

lows back up the pairs that immediately precede them in case they can be sequentially

connected like two sides of a zip.

The algorithm checks for the two types of conflict described earlier: overlaps and

crosses. The checks for crosses are the most involved so these are only initiated when

all other tests have been passed. The cross-checking subroutine checks for crosses from

above the first item to below the second item and is called with both orderings of the

item so that it checks for crosses in either direction.

The cross-checker scans up the equivalences from the first item and searches for

any routes that lead to something below the second item. It is important to ensure

that any possible cross will be found but it is also important that no more time is spent

checking for crosses than is necessary. To this end, the code works on the assumption

that there are no pre-existing crosses (or other conflicts) in the alignment. This allows

the code to terminate searches whenever it hits a “stop”: an instruction beyond which

a cross cannot exist if there are no pre-existing crosses. Instructions are stops if they

are equivalent to an item preceding an equivalent of the second item or if they precede

another stop. A simplified version of this is summarised in Figure 59.

Stage Two (build extra connections)

* Consider unconnected pairs where both items:

- immediately precede two connected items,

- immediately follow two connected items,

- start their respective lists or

- end their respective lists

* Reject the pair if its items mismatch

* Reject if connecting it would connect items within a list

* Reject if connecting it would form a cross

* If the pair has not been rejected, connect it

* Repeat until no more connections can be made

Figure 59: A summary of the second stage of the alignment algorithm.

This algorithmwas tested quite extensively to ensure that all potential dangers such

157

as crosses were identified and that the resulting aligned code is functionally equivalent

to the individual programs before alignment.

6.4.6 Experimental Assessment

The CUDA platform was used for the experiments. The technique is not dependent on

the platform andmight be applied in other GP compilation scenarios such as compiling

code for execution on a multi-core CPU. The C++ alignment code was written as a

template so it can align numbers, strings or TMBL instructions.

The experiments were concerned with the effects of the alignment on compilation

time and evaluation speed. The results from aligned code were verified against results

from non-aligned code to identical behaviour. Otherwise, the results are not of interest

here.

The individuals in the experiments were generated as children of a single seed par-

ent using a low mutation rate. Two points should be noted here. First, this creates

groups of similar individuals which will favour the alignment technique. The aim was

to provide a realistic environment. However in other systems, such as tree-based GP

systems, the diversity may be much greater and this may make alignment technique

worthless.

Second, the seed individual is evolved and so is likely to use most of its instructions

(as has been found with TMBL) so the compiler will not optimise away many of the

instructions. This is in contrast to situations in which many of the instructions do not

affect the output, as might be expected if the seed individual were randomly initialised.

Some of the experiments varied the number of instructions and this was achieved by

removing varying numbers of instructions from the start of the seed individual. This

may change the individual so that more of the instructions may be optimised away.

Hence the recorded evaluation rates for low numbers of instructions may be an over-

estimate.

Operating system Ubuntu Linux 10.10

Linux Kernel 2.6.35-28-generic-pae

GPU Device nVidia GeForce GTX 260 [Core 216]
(216 cores, core clock speed: 590MHz

shader clock speed: 1296MHz)

CUDA toolkit v3.2

Device driver 260.19.44

nvcc v0.2.1221

Table 24: Details of the system

The system configuration is provided in Table 24 and the default parameters are

provided in Table 25. The last three entries refer to how the evaluation speeds were

assessed: this involved timing eight consecutive launches of kernels, each executing

158

Number of CPU threads 1

Individuals per kernel 4

Number of individuals 120

Number of instructions 200

Number of evaluation repeats 8

Number of testcases per evaluation 65536

Number of iterations per evaluation 50

Table 25: Default parameters for the runs

all individuals for 50 iterations over 65536 testcases. For a standard population of 120

individuals, each with 200 TMBL instructions, this means executing 0.6291456× 1012

TMBL instructions.

The mutation rate was set such that 95% of individuals have at least one mutation.

For individuals with 200 instructions, this translates to a rate of 1.487% by instruction.

Each of the results in the experiments is averaged over five runs. Each line in the

graphs in Section 6.4.7 has a background bar that indicates the mean value plus and

minus one estimated standard error. In many cases, these bars are so thin that they

cannot be seen. This suggests that the relatively small number of repetitions has been

adequate to give good estimates of the means.

6.4.7 Results of Experiments

Figure 60 and Table 26 show the time per individual to align and generate the CUDA

C source. This indicates that the time spent on these tasks is very small and that the

alignment actually reduces this time. This is presumably because it reduces the amount

of code that must be output. This might also suggest that the code-outputting code

would benefit from some optimisation. Encouragingly, the graph seems to suggest

that the time required to load or to align and load increases linearly with the number

of TMBL instructions.

Figure 61 and Table 27 show the time taken per individual to compile from CUDA

C to a cubin binary file, ready to be loaded onto the GPU. These durations are much

longer than those in Figure 60. The reduction in compilation time achieved by align-

ment is more pronounced as the number of TMBL instructions increases. At 300 in-

structions, the compilation time per individual is 0.347 seconds without alignment and

0.072 seconds with, a reduction of 79.238%.

The figure appears to suggest that the growth in compilation time without align-

ment is faster than linear. With alignment, the increase looks as though it may be linear,

although this is not clear from the graph.

Figure 62 and Table 28 demonstrate the reduction in evaluation speed caused by

alignment. The slowdown reduces as the number of TMBL instructions increases and

the difference is relatively small from 60 instructions upwards. At 300 instructions

159

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0 50 100 150 200 250 300

T
im

e
pe

r
in

di
vi

du
al

 to
 a

lig
n

an
d

ge
ne

ra
te

 s
ou

rc
e

(in
 s

ec
on

ds
)

Number of TMBL instructions

Not aligned
Aligned

Figure 60: The time per individual to align and generate source over varying numbers of
TMBL instructions with and without alignment

Align kernel code
Instructions

False True
Change

30 0.0004066 s [±0.0000002] 0.0003951 s [±0.0000039] −2.828%

60 0.0007382 s [±0.0000011] 0.0006122 s [±0.0000038] −17.069%

90 0.0010685 s [±0.0000031] 0.0008247 s [±0.0000025] −22.817%

120 0.0013976 s [±0.0000008] 0.0010216 s [±0.0000044] −26.903%

150 0.0017499 s [±0.0000004] 0.0012253 s [±0.0000028] −29.979%

180 0.0020720 s [±0.0000011] 0.0014301 s [±0.0000031] −30.980%

210 0.0024013 s [±0.0000036] 0.0016529 s [±0.0000053] −31.166%

240 0.0028148 s [±0.0000022] 0.0018497 s [±0.0000025] −34.287%

270 0.0031906 s [±0.0000007] 0.0020878 s [±0.0000037] −34.564%

300 0.0035439 s [±0.0000003] 0.0022977 s [±0.0000047] −35.165%

Table 26: The time per individual to align and generate source over varying numbers of TMBL
instructions with and without alignment

160

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200 250 300

C
om

pi
le

 ti
m

e
pe

r
in

di
vi

du
al

 fr
om

 C
U

D
A

 C
 to

 c
ub

in
 (

in
 s

ec
on

ds
)

Number of TMBL instructions

Not aligned
Aligned

Figure 61: The time per individual to compile from CUDA C to cubin over varying numbers
of TMBL instructions with and without alignment

Align kernel code
Instructions

False True
Change

30 0.02675 s [±0.00004] 0.01717 s [±0.00018] −35.813%

60 0.04670 s [±0.00008] 0.02229 s [±0.00012] −52.270%

90 0.08067 s [±0.00019] 0.03002 s [±0.00014] −62.787%

120 0.09988 s [±0.00008] 0.03386 s [±0.00009] −66.099%

150 0.12550 s [±0.00014] 0.03865 s [±0.00008] −69.203%

180 0.15167 s [±0.00043] 0.04385 s [±0.00015] −71.089%

210 0.19851 s [±0.00320] 0.05120 s [±0.00021] −74.208%

240 0.24535 s [±0.00013] 0.05815 s [±0.00013] −76.299%

270 0.29033 s [±0.00071] 0.06489 s [±0.00026] −77.650%

300 0.34694 s [±0.00014] 0.07203 s [±0.00021] −79.238%

Table 27: The time per individual to compile from CUDA C to cubin over varying numbers of
TMBL instructions with and without alignment

161

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 50 100 150 200 250 300

E
va

lu
at

io
n

sp
ee

d
(in

 m
ill

io
n

T
M

B
L

op
er

at
io

ns
/s

ec
on

d)

Number of TMBL instructions

Not aligned
Aligned

Figure 62: The evaluation speed over varying numbers of TMBL instructions with and with-
out alignment

Align kernel code
Instructions

False True
Change

30 261941.308 Mo/s [±2101.291] 139470.198 Mo/s [±1614.673] −46.755%
60 181895.790 Mo/s [±297.537] 143734.897 Mo/s [±972.525] −20.980%
90 152445.107 Mo/s [±253.607] 130362.974 Mo/s [±615.323] −14.485%
120 161342.209 Mo/s [±273.564] 140385.536 Mo/s [±485.387] −12.989%
150 163612.386 Mo/s [±232.703] 147657.551 Mo/s [±263.846] −9.752%
180 163287.743 Mo/s [±714.749] 151757.682 Mo/s [±367.412] −7.061%
210 162223.776 Mo/s [±327.786] 151324.779 Mo/s [±421.162] −6.718%
240 163444.459 Mo/s [±103.636] 153908.795 Mo/s [±434.609] −5.834%
270 168980.278 Mo/s [±269.374] 156988.850 Mo/s [±589.476] −7.096%
300 155052.633 Mo/s [±24.321] 149383.227 Mo/s [±410.043] −3.656%

Table 28: The evaluation speed over varying numbers of TMBL instructions with and without
alignment

162

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
pe

r
in

di
vi

du
al

 to
 a

lig
n

an
d

ge
ne

ra
te

 s
ou

rc
e

(in
 s

ec
on

ds
)

Number of individuals per kernel

Not aligned
Aligned

Figure 63: The time per individual to align and generate source over varying numbers of
individuals per kernel with and without alignment

Programs Align kernel code
per kernel False True

Change

1 0.0022957 s [±0.0000007] 0.0029721 s [±0.0000027] +29.464%

2 0.0023031 s [±0.0000020] 0.0020603 s [±0.0000014] −10.542%

3 0.0023230 s [±0.0000010] 0.0017437 s [±0.0000024] −24.938%

4 0.0023086 s [±0.0000007] 0.0015857 s [±0.0000035] −31.313%

5 0.0023444 s [±0.0000034] 0.0015080 s [±0.0000018] −35.677%

6 0.0023270 s [±0.0000010] 0.0014446 s [±0.0000059] −37.920%

8 0.0023120 s [±0.0000020] 0.0013933 s [±0.0000039] −39.736%

10 0.0023358 s [±0.0000014] 0.0013805 s [±0.0000049] −40.898%

12 0.0023222 s [±0.0000003] 0.0014123 s [±0.0000083] −39.183%

15 0.0023104 s [±0.0000010] 0.0014529 s [±0.0000044] −37.115%

20 0.0023614 s [±0.0000018] 0.0017474 s [±0.0000230] −26.002%

Table 29: The time per individual to align and generate source over varying numbers of indi-
viduals per kernel with and without alignment

163

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16 18 20

C
om

pi
le

 ti
m

e
pe

r
in

di
vi

du
al

 fr
om

 C
U

D
A

 C
 to

 c
ub

in
 (

in
 s

ec
on

ds
)

Number of individuals per kernel

Not aligned
Aligned

Figure 64: The time per individual to compile from CUDA C to cubin over varying numbers
of individuals per kernel with and without alignment

Programs Align kernel code
per kernel False True

Change

1 0.15309 s [±0.00020] 0.15139 s [±0.00017] −1.110%

2 0.15867 s [±0.00034] 0.08380 s [±0.00019] −47.186%

3 0.16691 s [±0.00036] 0.06006 s [±0.00004] −64.017%

4 0.17721 s [±0.00041] 0.04856 s [±0.00019] −72.597%

5 0.18809 s [±0.00038] 0.04145 s [±0.00010] −77.963%

6 0.19934 s [±0.00022] 0.03679 s [±0.00019] −81.544%

8 0.22518 s [±0.00063] 0.03105 s [±0.00020] −86.211%

10 0.24971 s [±0.00129] 0.02714 s [±0.00013] −89.131%

12 0.27238 s [±0.00074] 0.02540 s [±0.00018] −90.675%

15 0.30891 s [±0.00114] 0.02298 s [±0.00024] −92.561%

20 0.36801 s [±0.00119] 0.02081 s [±0.00022] −94.345%

Table 30: The time per individual to compile from CUDA C to cubin over varying numbers of
individuals per kernel with and without alignment

164

 0

 50000

 100000

 150000

 200000

 0 2 4 6 8 10 12 14 16 18 20

E
va

lu
at

io
n

sp
ee

d
(in

 m
ill

io
n

T
M

B
L

op
er

at
io

ns
/s

ec
on

d)

Number of individuals per kernel

Not aligned
Aligned

Figure 65: The evaluation speed over varying numbers of individuals per kernel with and
without alignment

Programs Align kernel code
per kernel False True

Change

1 158850.182 Mo/s [±249.203] 158868.234 Mo/s [±90.088] +0.011%
2 168211.238 Mo/s [±163.977] 158268.944 Mo/s [±207.540] −5.911%
3 165373.722 Mo/s [±249.830] 151986.458 Mo/s [±263.702] −8.095%
4 161710.994 Mo/s [±368.757] 150369.875 Mo/s [±557.921] −7.013%
5 160741.163 Mo/s [±297.259] 146090.138 Mo/s [±159.134] −9.115%
6 162218.132 Mo/s [±287.876] 144433.089 Mo/s [±749.007] −10.964%
8 162280.312 Mo/s [±236.319] 134187.200 Mo/s [±1031.027] −17.311%
10 162218.674 Mo/s [±208.434] 115744.987 Mo/s [±902.907] −28.649%
12 162338.854 Mo/s [±67.455] 104626.361 Mo/s [±1618.974] −35.551%
15 161923.293 Mo/s [±200.493] 96105.564 Mo/s [±1079.823] −40.647%
20 162587.334 Mo/s [±252.569] 87934.720 Mo/s [±1100.069] −45.915%

Table 31: The evaluation speed over varying numbers of individuals per kernel with and with-
out alignment

165

the evaluation speed is 155052.633 million operations per second without alignment

and 149383.227 million operations per second with, a decrease of only 3.656%. This

may reflect the number of mutations being relatively high in the individuals with few

instructions, which would mean frequent differences between individuals and hence a

greater proportion of code to deal with these differences.

As with Figure 51, the higher evaluation speeds for low numbers of instructions

may be an artifact of the way individuals are constructed andmay be unrepresentative.

This hypothesis is consistent with the fact that this does not happen for the aligned

results because it is plausible that the alignment prevents code being optimised away.

Figures 63, 64 and 65 show these same properties over varying numbers of individ-

uals in each kernel. Figure 63 and Table 29 show that the alignment time remains small

across these values.

The only important point from this graph is that the alignment and generation times

are all short, relative to the times involved in other tasks. Nevertheless, it is notable that

the values do vary for the aligned individuals whereas, perhaps unsurprisingly, these

times appear fairly constant for the unaligned individuals. Ideally the alignment and

generation of a single individual should not take any more time than generation alone

as is the case in this graph but since these times are all so short, this is not important.

Figure 64 and Table 30 show that the reduction in compilation time from alignment

gets much larger as the number of individuals per kernel increases.

The compilation time per individual increases with the number of individuals per

kernel when alignment is not used, meaning that the total compilation time increases

worse than linearly. The aligned compilation time falls as the number of individuals

increases. The ideal would be that the total compilation time stays completely constant

so that the compilation time per individual is proportional to the inverse of the number

of individuals, although this would never be possible in practice as more individuals

will require more code to handle their increased number of differences.

Figure 65 and Table 31 show that increasing the number of individuals per kernel

also increases the reduction in evaluation speed.

Whereas the evaluation speeds attained without alignment stay fairly consistent,

the speeds achieved using alignment fall as the number of individuals to be required

and hence the complexity of the resulting code increases.

Note that the lines meet at one individual per kernel in Figures 64 and 65 because at

this point, there is no alignment work to be done so the input to the compiler remains

the same.

6.4.8 Comments on Reducing Repeated Code through Alignment

The program conditions in the aligned source code only used if statements and only

tested the individual’s index with equality tests. Future work could tackle the evalua-

166

tion speed reduction by adding else-if and else statements and greater-than and

less-than tests.

The techniquewas applied to a TMBL representation but it could equally be applied

to other forms of GP. There are two issues that need to be considered in judging the

applicability: the representation of the individuals and the nature of the population.

The representation is important in that it must allow similarities to be exploited to

reduce duplication in the compiler’s workload. In practice this should be possible for

most forms, for example GP trees can be flattened into linear lists of instructions and

these can then be aligned. This issue might not be the problem it initially appears.

More important is the nature of the population. The work here exploits the fact

that in most TMBL generations, most individuals are mostly similar to each other. This

suggests that the technique may be better suited to forms in which populations tend to

contain many highly similar individuals. Where this is not true the technique is likely

to be of little use. On the other hand, it doesn’t appear to introduce a significant penalty

so an investigation may be worthwhile.

6.5 Combining Both Techniques on 1000-Instruction Individuals

One of the most important aims of TMBL is to stimulate long term evolution by allow-

ing mutations to make contributions in fresh areas of an individual without ruining

what has already been achieved. To permit this, long evolutionary runs require fairly

large individuals. Compiling populations of 1000-instruction individuals was previ-

ously found to be prohibitively slow.

An investigationwas conducted to determinewhether this problem could be solved

by combining the two techniques described in Sections 6.3 and 6.4. Attempting this

required additional code to be written to allow the alignments to be built into PTX ker-

nels. In particular, choosing between sections of code in CUDAC requires if-statements,

whereas PTX is inherently a branching language. To achieve this, the code uses two

classes: AlignmentIfElseHelper and AlignmentBranchHelper. Each takes an align-

ment and decides how to arrange it into specific tests, blocks or branches in its respec-

tive type of language. This information is then used with the specifics of the actual

language when generating the code.

The combination of techniques was assessed on 1000-instruction individuals us-

ing the parameters described Section 6.4.6. Each test was repeated 10 times. The

1000-instruction individuals were created by gluing together four repeats of the 300-

instruction seed individual and then removing the first 200 instructions. The reason for

this was to attempt to produce an individual with little redundant code. This is the sort

of individual that is expected to be involved in TMBL work.

Table 32 shows the evaluation speeds. CUDA C speeds were 148366.170 Mgpop/s

for non-aligned and 149616.796 Mgpop/s for aligned. PTX speeds were considerably

167

Source type
Align kernel code

CUDA C PTX
Change

False 148366.170 Mo/s [±37.533] 187814.670 Mo/s [±23.757] +26.589%
True 149616.796 Mo/s [±82.185] 192711.933 Mo/s [±132.676] +28.804%

Change +0.843% +2.607% +29.889%

Table 32: The effect on evaluation speed (in million GP operations per second) of varying
whether kernel code is aligned and the language in which it is written. The bottom
right value represents the change from unaligned CUDA C to aligned PTX.

higher at 187814.670 Mgpop/s for non-aligned and 192711.933 Mgpop/s for aligned.

This represents an overall improvement of 29.889% from the use of both techniques.

Source type
Align kernel code

CUDA C PTX
Change

3.37047 s [±0.00354] N/A
False

1.92723 s [±0.00568] 0.44870 s [±0.00181]
−86.687%

0.28923 s [±0.00051] N/A
True

0.15146 s [±0.00063] 0.05849 s [±0.00019]
−79.777%

Change −91.419% −86.965% −98.265%

Table 33: The compilation time per thousand-instruction individual for aligned and unaligned
code and for CUDA C and PTX source (where the first value in each cell is from
CUDA C to cubin and the second value is from PTX to cubin). The bottom right
value represents the change from unaligned CUDA C to aligned PTX.

Table 33 shows the compilation times that were observed. The complete compi-

lation time for unaligned CUDA C was 3.370 seconds. For aligned CUDA C, it was

11.653 times faster at 0.289 seconds and for non-aligned PTX, it was 7.512 times faster

at 0.449 seconds. For aligned PTX, the complete compilation time was a remarkable

57.625 times faster than for unaligned CUDA C at 0.0585 seconds.

6.6 Summary and Contribution

This chapter described two strategies to reduce the compilation times associated with

data-parallel evaluation and an investigation of using these to tackle 1000-instruction

TMBL individuals.

Section 6.3 described an investigation into using the low-level language PTX for

data-parallel GPU evaluation, rather than the more standard CUDA C. Investigation

revealed that PTX is a forward compatible, well-documented language, usable enough

for small code bases such as data-parallel kernels. An implementation demonstrated

two advantages to the approach, illustrated here with values derived from individuals

of 300 instructions:

• considerably shorter compilation times (5.861×);

• higher resulting evaluation speeds (+23.029%).

This satisfies the aim of making data-parallel evaluation speeds accessible for mod-

erately sized data-sets. Yet there is a price to be paid for these benefits:

168

• PTX is more complicated to develop and less readable than CUDA C.

• The PTX documentation is probably not as extensive as the CUDA C documen-

tation and there is probably less PTX expertise available through CUDA forums.

• Compilation from PTX does not appear to optimise away dead code. This should

not be a problem for TMBL because it is thought to use most of its code. For

other forms of EC that do not, the problem can be avoided by performing intron

removal before evaluation.

This work involved a number of contributions that are believed to be novel:

• The first use of PTX for data-parallel evaluation of EC individuals.

• A guide to the issues involved in attempting this.

• The design and writing of code to write out TMBL individuals in PTX code.

• An investigation into whether performing consecutive pairs of compilation and

loading steps uses a similar amount of total time. This was found to be the case.

• An investigation into whether the time required to load binaries is very small

compared to the time required to compile them. This was also found to be the

case.

• An analysis into the effects of using PTX rather than CUDA C. The experiments

recorded the various compile and load times and the evaluation speeds over

varying numbers of instructions per individual and individuals per kernel, to-

tal population size and number of CPU threads.

In Section 6.4, code was written to identify and unite similarities in TMBL kernels.

The aim was to reduce the compilation time whilst keeping the evaluation speed com-

parably high. Implementing this involved finding a way to align individuals against

each other. The standard NW algorithm was examined but was found to be a slower,

more thorough algorithm than was required so a new algorithm was proposed that is

rough but fast. This was extended with another rough but fast algorithm for forming

multiple alignments.

This work involved a number of contributions that are believed to be novel:

• The idea of speeding up the dynamic compilation of EC individuals though iden-

tifying similarities and drawing them out to reduce duplication.

• The design, coding and testing of a novel, fast algorithm to perform a multiple

alignment between similar individuals in order to identify their similarities.

169

• The incorporation of this into an algorithm for exporting TMBL individuals in

aligned CUDA C to produce code that compiles faster and evaluates comparably

fast.

• An analysis of the effects of this technique. The experiments recorded the time re-

quired to align and generate the aligned CUDAC code, the compilation time, and

the evaluation speed over varying numbers of instructions per individual and in-

dividuals per kernel (which defined the number of individuals to be aligned in a

group).

This workwas successful. Experiments showed that, at 300 instructions, themethod

reduced compilation time 4.817 timeswhilst only reducing evaluation speed by 3.656%.

This satisfies the aim of making data-parallel evaluation speeds accessible for moder-

ately sized data-sets. The amount of time spent aligning the individuals and generat-

ing the source code was relatively small and was even quicker than when no alignment

was being used. Increasing the number of instructions made the technique reduce the

compilation time more and reduce the evaluation speed less. Increasing the number

of programs per kernel made the technique reduce the compilation time more but also

reduce the evaluation speed more.

These results suggests the following guidelines: use as many instructions as can be

benefited from and then tune the number of individuals per kernel to load both the

GPU and CPU fully.

Section 6.5 described an attempt to combine the two techniques (alignment and

PTX) to evaluate 1000-instruction TMBL individuals. Combined, the techniques re-

duced compilation times by an impressive 57.625 times. This work involved a number

of contributions that are believed to be novel:

• The design and writing of code to write out aligned PTX code for TMBL individ-

uals.

• An investigation into the effects combining the alignment and PTX technique.

170

7 Further CPU Optimisations

7.1 Introduction

This chapter tackles the final objective outlined in Section 1.4: identify the worst and

most avoidable bottlenecks within the Central Processing Unit (CPU) code and tackle

them. This is important because inefficient CPU code needlessly slows Genetic Pro-

gramming (GP) runs and excellent Graphics Processing Unit (GPU) evaluation speeds

can be ruined by CPU bottlenecks keeping the total run-time up. Thus effort was in-

vested in optimising CPU code in other stages. This was guided by the evidence ob-

tained from profiling the code. Two components of this optimisation work were inter-

esting enough to merit further investigation and discussion.

The first part of the work was motivated by evidence from profiling, which in-

dicated that considerable time was being spent generating random numbers for the

tournament selection. It would be possible to make some improvements by switching

the code to use a faster random number generator of lower quality. However, this sac-

rifice in random number quality would be a big price to pay; a study into the effect of

random number quality on Genetic Algorithm (GA) performance recommended that

“[. . .] in accordance with common practice in other fields, it is preferable to use the

best PRNG [pseudo random number generator] available to avoid muddling the inter-

pretation of the results” [13]. Hence it is better to keep higher quality random numbers

and to improve the tournament selection code to require fewer of them instead. This

work considers the mechanism of without-replacement tournament selection, and ob-

serves that each selection requires many random numbers but wastes many of them. If

the probability distribution is understood, each selection could be made with just one

random number. Amathematical analysis is performed on the probability distribution.

As discussed in Section 2.3, this has previously been done for with-replacement tour-

nament selection but not for without-replacement. The resulting formulae are used to

investigate selection pressure in both cases and to construct an optimised without-rep-

lacement tournament selection.

An order analysis shows that the optimised algorithm usesO(N) random numbers

rather than O(Nm), a significant improvement. Further analysis shows the optimised

algorithm is anO(N log(N)) algorithm (needed to sort the population) compared to the

original which is an O(Nm) algorithm. Hence the new algorithm’s ability to perform

better will depend on whether m is increased with respect to N at a rate asymptotically

worse or better than O(log(N)).

This is experimentally shown to perform without-replacement faster than the stan-

dard algorithm for most configurations in populations up to 1000. However this algo-

rithm is only likely to be of much use for very fast implementations of Evolutionary

Computation (EC) (such as in this work) since the slowest population tournament se-

lection in the experiments is 0.056042 seconds (around 1/18th of a second).

171

The discrete probability distributions for with-replacement tournament selection

and without-replacement tournament selection are both extended to continuous func-

tions. Mathematical analysis is then used to show that these continuous extensions are

well behaved. These mathematical tools inspire the proposal of a new many-from-few

measure of selection pressure strength. This many-from-few measure is used to inves-

tigate how selection pressure relates to tournament size and population size. Finally,

graphs of selection pressure contours are produced, which show how tournament size

must vary with respect to population size to keep selection pressure strength constant.

The second part of the work was motivated by evidence from profiling, which in-

dicated that considerable time was spent copying individuals whilst constructing new

generations. A naive strategy was being used, that took a complete temporary copy of

the population and then used this as a source for generating the new generation. A first

improvement replaces this with a system that updates the original population in-place.

This is found to be effective but unsatisfactory since it is unable to handle crossover.

Introducing crossover into the problemmakes it considerably more complex. A way to

represent these problems is proposed, which is effective at depicting an abundance of

information. This representation is used to guide the design of a heuristic to update the

population in-place with as few copies as possible. The proposed heuristic is assessed

on data sets generated using a range of selection pressures. It is compared against the

number of copies required for the naive strategy and against a lower bound on the

minimum possible number of copies. It is found to be highly effective for reducing the

number of copies toward the lower bound, particularly for population sizes more than

about 100.

7.2 Optimising the Tournament Selection

For EC to succeed, it must exert selection pressure, i.e. fitter individuals must propa-

gate to the next generationwith higher probability. Themethod of selecting individuals

for propagation is called the selection scheme. Selection schemes that select one indi-

vidual may be invoked repeatedly to populate a new generation. When crossover is

used, a selection scheme may be used to select two parents. The informal term “se-

lection pressure” describes the extent to which the selection scheme makes the fittest

individuals dominate the next generation. In Section 7.2.7, a new many-from-few mea-

sure is proposed to capture this notion.

This section describes an analysis of the tournament selection scheme, with the aim

of investigating whether tournament selection could be performed more efficiently. As

will be seen, the analysis also helps answer the two questions researchers might most

want to ask of tournament selection:

• What selection pressure is applied by a given tournament size, and what measure

can give an intuitive feel for this?

172

• How can tournament size be varied to keep selection pressure constant between

different runs with varying population sizes?

7.2.1 Common Selection Schemes

RouletteWheel Selection (RWS) is a common selection scheme, which randomly selects

individuals with probabilities in proportion to their fitnesses. Hence an individual’s

selection probability is its fitness divided by the total population fitness. This is known

as RWS because the process of selecting the individual is akin to marking sectors of a

roulette wheel in proportion to the individuals’ fitnesses and then rolling a ball in the

roulette wheel to make a selection.

(a) Roulette Wheel Selection (RWS) (b) Stochastic Universal Sampling (SUS)

Figure 66: Selection schemes applied to 20 individuals. The coloured sectors represent individ-
uals in the previous generation and their subtended angles are in proportion to their
fitnesses. Each colour has no particular significance except to identify the same sec-
tor between the two subfigures. Each arrow points to an individual the scheme has
selected for propagation. In both examples, some individuals are selected more than
once. In Subfigure 66(a), RWS randomly chooses a point on the “roulette wheel” for
each selection. In Subfigure 66(b), SUS sorts the individuals by descending fitness,
randomly chooses a point within an initial sector of average fitness and then copies it
round the wheel at intervals of average fitness. The grey and white patches indicate
sectors of average fitness.

Figure 66(a) depicts this scheme using a population of 20 individuals that will be

reused to illustrate later schemes. Running clockwise from the 12 o’clock point, the

fitnesses of the individuals are: 92, 74, 68, 100, 70, 15, 56, 84, 20, 55, 58, 67, 65, 34, 10, 38,

16, 22, 24 and 27.

Baker proposed an alternative called Stochastic Universal Sampling (SUS) [5]. The

roulette wheel analogy can also help to illustrate SUS. Again, the wheel’s sectors denote

each individual and are sized in proportion to their fitnesses, but this time the individ-

173

uals are sorted in descending order of fitness, say clockwise from some start point on

the wheel. The average of the sectors’ angles, A°, is calculated. Heading clockwise

from the start point, some mark is made at a randomly chosen point between 0°and

A°. Continuing clockwise from this mark, successive marks are made at regular in-

tervals of A°. Each mark denotes an individual in the new population and the sector

in which a mark falls denotes the parent of that individual. Figure 66(b) depicts this

scheme using the same population of 20 individuals as before. Note that the selections

are less random and less bunched than those in Figure 66(a).

Although SUS bears similarities to RWS, it differs in a few important ways. The SUS

scheme selects an entire population in one pass using one random number whereas the

RWS scheme only selects one individual for one pass using one random number, thus

RWS must be repeated with many different random numbers to select an entire pop-

ulation. Also, SUS achieves a certain spread so it ensures individuals are picked from

the full range of descending fitness sorted individuals whereas the RWS might only

pick from the top end of that ranking. That said, if one individual’s fitness dwarfs the

fitnesses of all the others, both schemes are quite likely to fill the selection with copies

of that one individual alone. Conversely, if all individuals have highly similar fitnesses,

both selection schemes will tend to select each individual with highly similar probabil-

ities (although RWS would do this stochastically whereas SUS would deterministically

select precisely one instance of each individual).

Some authors use the term Fitness Proportionate Selection (FPS) synonymously

with RWS [6]. Some others use FPS to denote a category that can be implemented

using any scheme such as RWS (or presumably SUS) in which selection probabilities

are assigned in proportion to fitness [59]. The distinction is unimportant here.

These approaches suffer the disadvantage of being sensitive to the measure of fit-

ness used. For instance, adding a constant to the fitnesses evens out the selection prob-

abilities of the individuals and so reduces the selection pressure. For this reason, these

schemes’ selection pressure usually weakens during an evolutionary run: at first, the

fitness values are low so a moderately improved fitness confers a very significant re-

productive advantage; later on, the fitness values are high so the samemoderate fitness

improvement has less effect.

Tournament selection offers an alternative. It involves selecting some subset of the

population to compete in a tournament that is won by the competitor with the high-

est fitness. Figure 67 shows a tournament selection applied to the population of 20

individuals previously used in Figure 66.

The selection pressure may be varied by adjusting the tournament size: large tour-

naments will frequently contain one of the population’s fittest members and so will

exert strong selection pressure; small tournaments will frequently contain none of the

population’s fittest members and so will exert weak selection pressure. At one extreme,

a tournament of the same size as the population will always select the fittest individual;

174

F
itn

es
s

Figure 67: A single tournament selection applied to 20 individuals. Each bar represents an
individual and its height is proportional to the fitness. Thick borders highlight the
four individuals entered into the tournament and an arrow highlights the selected
individual. It wins the tournament because it has the highest fitness of the four
competitors.

at the other extreme, a tournament of size one will select randomly and uniformly.

The individuals that make up these tournaments are selected without replacement

but with-replacement tournament selection is also possible. In that case, each addition

to the tournament is chosen from the whole population, including those individuals

that have already been added. For with-replacement tournament selection, the tour-

nament can be arbitrarily large whereas for without-replacement, the tournament can

only be as large as the population (since there can be no bigger subset).

Since tournament selection does not explicitly use fitness, it does not depend on

the fitness measure. This protects it from the problem of selection pressure weakening

throughout the run. Conversely, some might argue that this property exposes it to the

problem of excessive sensitivity to small fitness differences.

Tournament selection has further advantages. Since it does not explicitly use fit-

ness, it can be used for problems where no explicit fitness measure is available, pro-

vided there is some means of assessing which, if either, of two solutions is fitter. The

ranking may include individuals in joint place. Such schemes are compatible with vari-

ous optimisations which reduce the amount of evaluation performed. See Section 2.1.1

for more information.

175

For these reasons and because tournament selection is currently the most com-

monly used in GP [73], it was used throughout this work. Whilst performing the work

in Chapter 5, profiling indicated that the tournament selection was consuming consid-

erable CPU time. In particular, time was being spent on generating random numbers

to pick the individuals for the tournaments. For a population of 1000 split into four

demes of 250 with a tournament size fraction of 0.3, this entails picking 75 individuals

for each tournament and hence 75000 individuals for every generation. When using a

reasonable quality random number generator, this was using a non-trivial amount of

time. This will be discussed further in Section 7.2.3.

Generating all these random numbers wastes resources because all that matters is

the winner of the tournament. To make this clearer, consider a population of individu-

als sorted in descending order of fitness (such as in Figure 68). The trick of analysing

selection probabilities by fitness-sorting the population has previously been deployed

for with-replacement tournament selection [3] [106]. To perform a tournament selec-

tion, a random number generator repeatedly selects individuals to enter a tournament.

Once this is complete, the selection is the member of the tournament that comes first in

the sorted population and all other individuals are ignored. The probability of an in-

dividual winning the tournament is the probability that it will be the first of the sorted

population in a randomly selected tournament.

This is shown in Figure 68. It isn’t actually necessary to pick four randommembers

of the tournament to make the selection; all that’s required is the probability that each

individual would win under this method.

These probabilities are independent of the fitnesses that produced the ranking so

the probability distribution can be pre-calculated for any chosen set of parameters.

Such distributions have been derived for with-replacement tournament selection, as

discussed in Section 2.3, and this will be extended to a without-replacement tourna-

ment selection probability distribution in Section 7.2.2. This can then be used to per-

form a selection for any other sorted list using only one random number. The same

principle may be applied to any ranking-based selection scheme. This approach also

confers the benefit of code reusability sincemuch of the work (the ordering, the random

selection within a distribution and the randomising amongst joint-place individuals) is

common to any ranking-based selection scheme. Adding a specific scheme is as simple

as plugging in a new distribution.

This approach introduces a couple of issues worth mentioning. First, it requires

all of the individuals to be ranked in descending order of fitness. As was mentioned

earlier, ranking-based selection schemes offer the advantage of permitting problems

with no specific measure of fitness, as long as they provide a method of determining

which, if either, of any pair of individuals is fitter. However, if this method’s ordering

relation is not transitive (i.e. if it might produce results of the form A is fitter than B

which is fitter than C which is fitter than A), then it may be necessary to use something

176

F
itn

es
s

Figure 68: The same tournament selection as depicted in Figure 67. By pre-sorting the indi-
viduals, the winner is always the individual that comes first. The probability of an
individual winning the tournament is the probability that it will be the first in a ran-
domly selected tournament. These probabilities are independent of the fitnesses that
produced the ordering so they can be pre-calculated for a given tournament size and
population size.

like a round-robin (i.e. all-play-all) championship to generate the overall ranking of

individuals. This requires an unappealing O(n2) comparisons and each may be com-

putationally expensive.

Second, the story is slightly more complicated because, as noted earlier, a given

ranking may involve multiple individuals in joint places, such as two individuals in

joint fourth place as shown in Figure 69. If a tournament contains multiple joint win-

ners, the original algorithm randomly chose a winner among them, to avoid potential

drawbacks of any particular deterministic choice. The optimised algorithm can emu-

late this behaviour by performing an additional step after the first stage of selection.

In this step, the algorithm collects any individuals holding joint place with the selected

individual (including the individual itself) and then randomly chooses among them.

This replicates the original algorithm’s behaviour because it ensures that equally fit

individuals are equally likely to be selected and that the group’s total probability of

selection is correct.

177

F
itn

es
s

Figure 69: Figure 68 raised the possibility of pre-calculating selection probabilities, indepen-
dent of the actual fitness values. This leaves the problem of individuals of equal
fitness. In this figure, the fitness of the fifth fittest individual has been raised so that
it equals that of the fourth fittest. These two individuals (highlighted with arrows)
should have equal chance of selection, yet the pre-calculated probabilities are more
likely to select the fourth-ranked individual than the fifth-ranked. Hence, if either is
selected, there is an additional random choice between them to fix this problem.

7.2.2 Tournament Selection Mathematics

Implementing this technique requires the calculation of the associated probability dis-

tribution. For with-replacement tournament selection, this is fairly simple and has

previously been achieved in the literature [3] [106]. The calculation for without-rep-

lacement selection is more involved because the probabilities vary with successive ad-

ditions to a tournament.

Consider a population of N individuals that has been sorted by fitness such that the

first individual is the fittest and the Nth is the least fit. Since joint places are processed in

a later step as described above, for now each individual may be assumed to be strictly

fitter than the next. A tournament selection with tournament size m (such that 1 ≤
m ≤ N) will pick one individual. What is the probability P(Ei) of the event Ei that

the selected individual is the ith individual in the population? What is the cumulative

probability P(Ci) of the event Ci that the selected individual is the ith individual or any

earlier (fitter) individual?

For with-replacement tournament selection, the probability that any given individ-

178

ual will be added to a tournament is the same for each addition. The probability that a

given addition to the tournament is the ith individual or earlier is i
N so the probability

that it is after the ith is 1− i
N . The additions are independent so the probability that

the whole tournament of size m is filled with individuals after the ith is
(

1− i
N

)m
. This

observation helps to calculate both P(Ci) and P(Ei).

The cumulative selection probability P(Ci) is the probability that the whole tourna-

ment is not filled with individuals after the ith so P(Ci) = 1−
(

1− i
N

)m
. The selection

probability P(Ei) is the probability that the whole tournament is filled with individu-

als after the (i − 1)th, minus the probability that the whole tournament is filled with

individuals after the ith so P(Ei) =
(

1− i−1
N

)m −
(

1− i
N

)m
. This may be rearranged to

match other forms that have been used in the literature: N−m((N− i+ 1)m − (N− i)m)

[3] and (N−i+1)m−(N−i)m

Nm [106].

To begin the analysis for without-replacement tournament selection, observe that

the tournament selection is equivalent to randomly selecting a subset T of size m from

the set {1, 2, . . . ,N} and the event Ei occurs if and only if i is the smallest member of

T . This observation can be combined with conditional probability as follows.

P(Ei) = P [(i ∈ T) ∩ (∄j ∈ T |j < i)]

= P [(i ∈ T) ∩ (i− 1 /∈ T) ∩ (i− 2 /∈ T) ∩ . . . ∩ (1 /∈ T)]

= P [i ∈ T] .P [i− 1 /∈ T |i ∈ T] . . . P [1 /∈ T |(i ∈ T) ∩ (i− 1 /∈ T) ∩ . . . ∩ (2 /∈ T)]

=
m

N

(

N −m

N − 1

)(

N −m− 1

N − 2

)

. . .

(

N −m− i+ 2

N − i+ 1

)

=
m

N

i

∏
k=2

N −m− k+ 2

N − k+ 1

To understand the step from entries like P [i ∈ T] to entries like m
N , it may help to

visualise taking N balls numbered 1 to N and randomly choosing m balls to put into

a jar labelled T and putting the rest in a jar labelled !T . The probability that any one

ball ends up in the T jar is m
N . Similarly, for entries like P [i− 1 /∈ T |i ∈ T], we can

imagine that the ith ball has already been placed in jar T before we pick the other m− 1

balls from N − 1 to put in jar T and the N − m balls from N − 1 to put in jar !T . The

probability that any one ball now ends up in jar !T is N−m
N−1 .

If i ≥ N −m+ 2, then the final result is 0, otherwise it is equal to:

m

N

(N −m)!

(N −m− i+ 1)!

(N − i)!

(N − 1)!

A similar analysis may be used to evaluate the cumulative probability P(Ci) of the

event Ci that the selected individual is the ith individual or any earlier individual. In

this case it is easier to manipulate the probability of the queried event not happening.

179

P(Ci) = P [(1 ∈ T) ∪ (2 ∈ T) ∪ . . . ∪ (i ∈ T)]

= 1− P [(1 /∈ T) ∩ (2 /∈ T) ∩ . . . ∩ (i /∈ T)]

= 1− P [1 /∈ T] .P [2 /∈ T |1 /∈ T] . . . P [i /∈ T |(1 /∈ T) ∩ (2 /∈ T) ∩ . . . ∩ (i− 1 /∈ T)]

= 1−
(

N −m

N

)(

N −m− 1

N − 1

)

. . .

(

N −m− i+ 1

N − i+ 1

)

= 1−
i

∏
k=1

N −m− k+ 1

N − k+ 1

If i ≥ N −m+ 1, then the final result is 1, otherwise it is equal to:

1− (N −m)!

(N −m− i)!

(N − i)!

(N)!

In practice, it is better to compute these values using the appropriate list of frac-

tions rather than using the formulae with four factorials because the values for those

factorials will be huge and so will be more prone to rounding errors.

Figure 70 shows what these formulae look like when plotted for a tournament size

four and population size of 20. There is one graph for with-replacement and another

for without-replacement. In each, the fittest individual is on the left and the least fit

is on the right. Note that the expected values of “reproduction rate” (described in

Section 2.3.1) are simply the selection probabilities on this graph multiplied by N. The

results satisfy the following expected properties.

• The selection probabilities should be higher for fitter individuals.

• The cumulative probabilities should sum to one.

• Each probability should be the difference between the equivalent cumulative

probability and the one before.

• For without-replacement, the fittest item’s probability should be m
N (in this case

4
20), the chance of appearing in a tournament, because it wins any tournament in

which it appears.

• For without-replacement, the m− 1 least fit individuals should have probability

0 because their tournaments always contain fitter members.

• For without-replacement, all but the m− 1 least fit individuals should have non-

zero (but possibly very small) probabilities.

• For with-replacement, all individuals should have non-zero probabilities because

a tournament could be populated with nothing but copies of any of the individ-

uals.

180

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

P
ro

ba
bi

lit
y

of
 b

ei
ng

 s
el

ec
te

d
in

 a
 s

in
gl

e
to

ur
na

m
en

t

Rank of individual within population

Cum Prob
Prob

Cum Data
Data

(a) With-replacement tournament selection probabilities

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

P
ro

ba
bi

lit
y

of
 b

ei
ng

 s
el

ec
te

d
in

 a
 s

in
gl

e
to

ur
na

m
en

t

Rank of individual within population

Cum Prob
Prob

Cum Data
Data

(b) Without-replacement tournament selection probabilities

Figure 70: The probabilities of each individual in a population of 20 being selected by one tour-
nament of size four. The individuals are ranked in descending order of fitness, the
green bars indicate the probabilities and the red bars indicate the cumulative prob-
abilities. The cumulative (red) bars stand behind the non-cumulative (green) bars,
rather than being stacked atop them. The first cumulative probability bar is the same
height as the bar it is behind. Fitness would be averaged out within any groups of
equal fitness. For comparison, each graph has the real data from 100, 000, 000 tour-
nament selections plotted on top.

181

• The probabilities should be well fitted by real data.

As expected, without-replacement assigns a higher selection probability to the fittest

individuals than does with-replacement because it doesn’t waste any of its random

numbers on entering individuals into the same tournament multiple times and so is

more likely to include one of the fitter individuals in each tournament. The difference

is slight for this particular configuration although it can be much larger for other con-

figurations as will be seen in Section 7.2.8.

Note that when performing with-replacement tournament selection with tourna-

ment size m from a population of size N, there are easily calculable probabilities for

the number of unique individuals (from 1 to m) that the tournament will contain. For a

fixed number of unique individuals, the selection probabilities will be the same as the

without-replacement using that fixed-number as the tournament size. Hence the with-

replacement distribution can be viewed as a weighted sum of without-replacement

distributions based on the number of unique selections.

If there were no selection pressure, each green bar would be of equal height and

the tops of the red bars would form a straight line between bottom-left and top-right

as depicted in Subfigure 71(a). If there were maximal selection pressure, the first green

bar would have height 1, all other green bars would have no height and the red bars

would fill the whole graph into the top left corner as depicted in Subfigure 71(b).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

P
ro

ba
bi

lit
y

of
 b

ei
ng

 s
el

ec
te

d
in

 a
 s

in
gl

e
to

ur
na

m
en

t

Rank of individual within population

Cum Prob
Prob

(a) No selection pressure

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

P
ro

ba
bi

lit
y

of
 b

ei
ng

 s
el

ec
te

d
in

 a
 s

in
gl

e
to

ur
na

m
en

t

Rank of individual within population

(b) Maximal selection pressure

Figure 71: An illustration of how the graphs of Figure 70 would appear were there: no selection
pressure (Subfigure 71(a)) or maximal selection pressure (Subfigure 71(b)).

Indeed, the shape of the cumulative probabilities is a fingerprint of the scheme’s se-

lection pressure, precisely describing how much the scheme favours each of the ranks.

Perhaps the most interesting feature is the overall strength of the selection pressure.

The closer the red bars get to the top left corner, the stronger the selection pressure; the

closer to the straight line joining bottom-left to top-right, the weaker. If they were to

go below that line, towards the bottom right corner, that would indicate negative se-

lection pressure (favouring less fit individuals). None of the measures in Section 2.3.1

quite captures this notion of selection pressure strength: the degree to which the fittest

182

individuals are favoured. This will be revisited in Section 7.2.7, which proposes a new

many-from-fewmeasure of selection pressure strength.

7.2.3 Fast Tournament Selection

The motivation for this work is to reduce the time wasted in GP runs. With this in

mind, can the new analysis be used to make tournament selection more efficient? A

new algorithm is devised to attempt this. In each generation, the new algorithm be-

gins by sorting the population in order of descending fitness. Then for each selection,

the new algorithm selects one random number from a uniform distribution between

0 and 1 to represent the cumulative probability. It uses a pre-built database of cumu-

lative probabilities to translate this number to the index of the selected individual as

depicted in Figure 72. The database of cumulative probabilities for a given tournament

configuration only need be built once per run.

 0

 0.2

 0.4

 0.6

 0.8

 1

R
an

do
m

ly
 g

en
er

at
ed

 n
um

be
r

Figure 72: Cumulative probabilities may be used to map efficiently from a randomly generated
number in the interval [0, 1] to an individual in the population. Here, the random
number 0.68 (illustrated by the arrow) picks the fifth fittest individual. The smaller
cumulative probabilities are shown in front of the larger ones. This example’s cumu-
lative probabilities are those for without-replacement tournament selection using a
tournament of four in a population of 20 (as in Figure 70(b)).

Does this reduce the computationally expensive random number requirements?

The original algorithm required m random numbers for each of the N selections to

build a new generation, hence it required O(Nm) random numbers per generation.

Note that the tournament size m is not discarded as a constant in this analysis because

it may be increased with respect to N. The optimised algorithm requires only 1 ran-

dom number per selection (or sometimes two when there are multiple individuals of

equal fitness) so it requires only O(N) random numbers per generation. This is a clear

improvement.

Has the overall computational complexity similarly improved? The computational

complexity of the original algorithm is O(Nm), whereas for the new algorithm it is

183

O(N log(N)). The new algorithm requires this for sorting the individuals and for mak-

ing the selections. The code written for this research optimises the sort by performing

it on the individuals’ indices rather than the individuals themselves but this is still an

O(N log(N)) algorithm. The code uses a binary search to translate between the ran-

dom cumulative probability and the corresponding individual index so this also takes

O(N log(N)) steps per generation. This could be improved to O(N) time using a hash

function but that would not circumvent the O(N log(N)) time required for the sort.

So whether the new algorithm reduces the overall computational complexity with

respect to N depends on how one increases m as N increases. If the increase in m is

asymptotically slower than log(N), the new algorithm will have worse computational

complexity; if the increase is asymptotically faster than log(N), it will be better. Even

if m is not increased at all, the new algorithm will only get worse at the rate of log(N).

The random number generator used throughout this work was the mt19937 gener-

ator from the Boost C++ Library (www.boost.org). The Boost documentation describes

mt19937 as having 44% approximate speed compared to their fastest generator, cycle

length 219937 − 1, approximate memory requirements of 625*sizeof(uint32 t) and

good uniform distribution in up to 623 dimensions. It was chosen based on the follow-

ing Boost documentation advice: “If the names of the generators don’t ring any bell

and you have no idea which generator to use, it is reasonable to employ mt19937 for a

start: It is fast and has acceptable quality.”

Figures 73, 74, 75 and 76 and Tables 34, 35, 36 and 37 show the time required for

each of the algorithms to fill a population with tournament selections over various

population and tournament sizes. Each value is averaged over 20 runs and each plotted

line on the graphs has a bar behind it to represent the average plus and minus one

standard error. Since the standard errors are so small, these can hardly be seen. The

four figures are all shown on the same scale for ease of comparison. Since each plotted

line represents a constant fraction of the population size, wewould expect them to have

underlying O(N2) behaviour for the standard algorithm and O(n log(N)) for the new

algorithm.

Figure 73 and Table 34 show the values for without-replacement tournament se-

lection. The surprising pattern was that the tournament selection was slowest for the

smallest tournaments. On investigation, the standard C++ function random sample()

emerged as the cause of this behaviour, perhaps because its implementation is opti-

mised to minimise something other than random number generations.

It should take few random numbers to generate a small without-replacement ran-

dom sample from a set. Similarly, generating a large random subset should take few

random numbers because it can be constructed as the complement of a small randomly

generated subset. Using this approach, a new random sampling subroutine was coded

to replace random sample(). Figure 74 and Table 35 show the results. Here the slowest

tournament sizes are those that account for 50% of the population.

184

Figure 75 and Table 36 show the values for the new algorithm. These results show

the proposed approach’s increase in speed. For a population of 1000, the new algorithm

is 8.714 times faster for 10% tournament selection and 12.442 times faster for 90% tour-

nament selection. For tournament sizes in between, the speed improvement is even

greater and at 50% tournament selection, it is 43.856 times faster.

Figure 76 and Table 37 show the values for with-replacement tournament selection

using the standard algorithm. For a population of 1000, it is 7.461 times slower than the

newwithout-replacement algorithm for 10% tournament selection and this increases to

72.972 times slower for 90% tournament selection. These results show that with-rep-

lacement tournament selection is faced with similar problems to those of without-rep-

lacement. Furthermore, as argued in Section 2.3.2, with-replacement is more wasteful

with random number generations in striving for a certain selection pressure. It is not

even susceptible to the subset complement trick deployed above.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 100 200 300 400 500 600 700 800 900 1000

D
ur

at
io

n
of

 to
ur

na
m

en
t s

el
ec

tio
ns

 to
 fi

ll
po

pu
la

tio
n

(in
 s

ec
on

ds
)

Total population size

 Tournament size as percentage of population size: 10%
 Tournament size as percentage of population size: 20%
 Tournament size as percentage of population size: 30%
 Tournament size as percentage of population size: 40%
 Tournament size as percentage of population size: 50%
 Tournament size as percentage of population size: 60%
 Tournament size as percentage of population size: 70%
 Tournament size as percentage of population size: 80%
 Tournament size as percentage of population size: 90%

Figure 73: Time to fill a population from without-replacement tournament selections using the
standard algorithm and random sample(). The smaller tournaments take longer
than the smaller ones due to the implementation of random sample().

It might be suggested that viewing the data this way unfairly benefits the new algo-

rithm because many researchers might choose to increase the tournament size slower

than linearly with respect to population size. For what absolute values of population

and tournament size, is the new algorithm better? Figure 77 shows the answer for

population sizes up to 1000. The colour of each point indicates how many of 20 com-

parisons showed the new algorithm to be faster (light green) or slower (dark red) than

185

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 100 200 300 400 500 600 700 800 900 1000

D
ur

at
io

n
of

 to
ur

na
m

en
t s

el
ec

tio
ns

 to
 fi

ll
po

pu
la

tio
n

(in
 s

ec
on

ds
)

Total population size

 Tournament size as percentage of population size: 10%
 Tournament size as percentage of population size: 20%
 Tournament size as percentage of population size: 30%
 Tournament size as percentage of population size: 40%
 Tournament size as percentage of population size: 50%
 Tournament size as percentage of population size: 60%
 Tournament size as percentage of population size: 70%
 Tournament size as percentage of population size: 80%
 Tournament size as percentage of population size: 90%

Figure 74: Time to fill a population from without-replacement tournament selections using the
standard algorithm and a new sampling subroutine. Now the smallest tournaments
are performed more quickly and the tournaments using 50% of the population are
slowest.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 100 200 300 400 500 600 700 800 900 1000

D
ur

at
io

n
of

 to
ur

na
m

en
t s

el
ec

tio
ns

 to
 fi

ll
po

pu
la

tio
n

(in
 s

ec
on

ds
)

Total population size

 Tournament size as percentage of population size: 10%
 Tournament size as percentage of population size: 20%
 Tournament size as percentage of population size: 30%
 Tournament size as percentage of population size: 40%
 Tournament size as percentage of population size: 50%
 Tournament size as percentage of population size: 60%
 Tournament size as percentage of population size: 70%
 Tournament size as percentage of population size: 80%
 Tournament size as percentage of population size: 90%

Figure 75: Time to fill a population from without-replacement tournament selections using the
new algorithm. Most times are much shorter than those in Figures 73 and 74.

186

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 100 200 300 400 500 600 700 800 900 1000

D
ur

at
io

n
of

 to
ur

na
m

en
t s

el
ec

tio
ns

 to
 fi

ll
po

pu
la

tio
n

(in
 s

ec
on

ds
)

Total population size

 Tournament size as percentage of population size: 10%
 Tournament size as percentage of population size: 20%
 Tournament size as percentage of population size: 30%
 Tournament size as percentage of population size: 40%
 Tournament size as percentage of population size: 50%
 Tournament size as percentage of population size: 60%
 Tournament size as percentage of population size: 70%
 Tournament size as percentage of population size: 80%
 Tournament size as percentage of population size: 90%

Figure 76: Time to fill a population from with-replacement tournament selections. Note that
the times are similar to those in Figure 73 but here the larger tournaments account
for the bigger times. Also note that for with-replacement tournament selection, the
tournament size may need to be larger than the population size to achieve the de-
sired selection pressure (see Section 7.2.8).

187

Tournament size as percentage of population size
Population size

10% 20% 30% 40% 50% 60% 70% 80% 90%

20 0.000027 s 0.000025 s 0.000023 s 0.000020 s 0.000017 s 0.000014 s 0.000012 s 0.000010 s 0.000007 s
40 0.000096 s 0.000092 s 0.000083 s 0.000071 s 0.000060 s 0.000048 s 0.000037 s 0.000029 s 0.000018 s
60 0.000213 s 0.000202 s 0.000181 s 0.000157 s 0.000131 s 0.000104 s 0.000080 s 0.000061 s 0.000041 s
80 0.000374 s 0.000356 s 0.000319 s 0.000276 s 0.000229 s 0.000183 s 0.000138 s 0.000104 s 0.000063 s
100 0.000580 s 0.000551 s 0.000496 s 0.000428 s 0.000356 s 0.000283 s 0.000215 s 0.000153 s 0.000100 s
120 0.000833 s 0.000790 s 0.000710 s 0.000613 s 0.000510 s 0.000405 s 0.000307 s 0.000223 s 0.000140 s
140 0.001133 s 0.001086 s 0.000968 s 0.000832 s 0.000695 s 0.000552 s 0.000417 s 0.000302 s 0.000189 s
160 0.001477 s 0.001399 s 0.001260 s 0.001084 s 0.000900 s 0.000716 s 0.000542 s 0.000389 s 0.000237 s
180 0.001865 s 0.001769 s 0.001591 s 0.001373 s 0.001145 s 0.000907 s 0.000698 s 0.000482 s 0.000304 s
200 0.002298 s 0.002189 s 0.001959 s 0.001695 s 0.001407 s 0.001118 s 0.000839 s 0.000597 s 0.000369 s
220 0.002778 s 0.002636 s 0.002401 s 0.002067 s 0.001698 s 0.001354 s 0.001019 s 0.000726 s 0.000445 s
240 0.003309 s 0.003152 s 0.002821 s 0.002432 s 0.002024 s 0.001603 s 0.001212 s 0.000863 s 0.000528 s
260 0.003879 s 0.003710 s 0.003306 s 0.002848 s 0.002369 s 0.001899 s 0.001418 s 0.001001 s 0.000620 s
280 0.004495 s 0.004252 s 0.003829 s 0.003299 s 0.002738 s 0.002179 s 0.001632 s 0.001159 s 0.000721 s
300 0.005140 s 0.004871 s 0.004391 s 0.003799 s 0.003134 s 0.002501 s 0.001884 s 0.001347 s 0.000807 s
320 0.005871 s 0.005551 s 0.004986 s 0.004306 s 0.003582 s 0.002856 s 0.002144 s 0.001531 s 0.000904 s
340 0.006618 s 0.006259 s 0.005618 s 0.004860 s 0.004037 s 0.003220 s 0.002431 s 0.001685 s 0.001043 s
360 0.007370 s 0.006990 s 0.006290 s 0.005400 s 0.004517 s 0.003607 s 0.002752 s 0.001889 s 0.001164 s
380 0.008220 s 0.007789 s 0.007001 s 0.006033 s 0.005023 s 0.003974 s 0.003018 s 0.002099 s 0.001296 s
400 0.009125 s 0.008597 s 0.007739 s 0.006691 s 0.005573 s 0.004468 s 0.003345 s 0.002336 s 0.001437 s
420 0.010013 s 0.009477 s 0.008499 s 0.007375 s 0.006128 s 0.004897 s 0.003696 s 0.002558 s 0.001574 s
440 0.010988 s 0.010426 s 0.009348 s 0.008153 s 0.006707 s 0.005319 s 0.004039 s 0.002859 s 0.001749 s
460 0.012015 s 0.011326 s 0.010170 s 0.008806 s 0.007332 s 0.005801 s 0.004453 s 0.003110 s 0.001898 s
480 0.013051 s 0.012366 s 0.011137 s 0.009581 s 0.007951 s 0.006362 s 0.004809 s 0.003405 s 0.002072 s
500 0.014114 s 0.013439 s 0.012075 s 0.010395 s 0.008693 s 0.006971 s 0.005231 s 0.003667 s 0.002224 s
520 0.015317 s 0.014532 s 0.013000 s 0.011241 s 0.009414 s 0.007453 s 0.005685 s 0.003964 s 0.002400 s
540 0.016488 s 0.015626 s 0.014038 s 0.012165 s 0.010130 s 0.008055 s 0.006155 s 0.004266 s 0.002580 s
560 0.017709 s 0.016795 s 0.015052 s 0.013145 s 0.010881 s 0.008604 s 0.006562 s 0.004621 s 0.002788 s
580 0.018964 s 0.018032 s 0.016202 s 0.014105 s 0.011712 s 0.009324 s 0.007007 s 0.004945 s 0.002959 s
600 0.020384 s 0.019247 s 0.017418 s 0.015145 s 0.012533 s 0.010001 s 0.007529 s 0.005307 s 0.003161 s
620 0.021728 s 0.020532 s 0.018465 s 0.016071 s 0.013265 s 0.010675 s 0.008046 s 0.005649 s 0.003360 s
640 0.023090 s 0.021819 s 0.019654 s 0.017075 s 0.014163 s 0.011257 s 0.008546 s 0.006006 s 0.003616 s
660 0.024524 s 0.023201 s 0.020974 s 0.018179 s 0.015220 s 0.012171 s 0.009112 s 0.006343 s 0.003858 s
680 0.026016 s 0.024714 s 0.022346 s 0.019240 s 0.016109 s 0.012759 s 0.009736 s 0.006683 s 0.004076 s
700 0.027646 s 0.026109 s 0.023536 s 0.020552 s 0.016953 s 0.013532 s 0.010213 s 0.007147 s 0.004328 s
720 0.029143 s 0.027603 s 0.024863 s 0.021511 s 0.017829 s 0.014287 s 0.010874 s 0.007536 s 0.004576 s
740 0.030724 s 0.029084 s 0.026135 s 0.022851 s 0.018924 s 0.015193 s 0.011492 s 0.007973 s 0.004843 s
760 0.032373 s 0.030609 s 0.027631 s 0.024174 s 0.020133 s 0.015957 s 0.012009 s 0.008361 s 0.005084 s
780 0.034157 s 0.032383 s 0.029257 s 0.025277 s 0.021167 s 0.016826 s 0.012751 s 0.008838 s 0.005360 s
800 0.035831 s 0.034014 s 0.030623 s 0.026481 s 0.022215 s 0.017579 s 0.013401 s 0.009303 s 0.005638 s
820 0.037700 s 0.035872 s 0.032413 s 0.027933 s 0.023334 s 0.018671 s 0.014010 s 0.009720 s 0.005915 s
840 0.039666 s 0.037400 s 0.033904 s 0.029398 s 0.024487 s 0.019663 s 0.014752 s 0.010235 s 0.006214 s
860 0.041443 s 0.039351 s 0.035617 s 0.030873 s 0.025612 s 0.020342 s 0.015408 s 0.010825 s 0.006517 s
880 0.043415 s 0.041017 s 0.036956 s 0.032016 s 0.026679 s 0.021273 s 0.016179 s 0.011278 s 0.006793 s
900 0.045347 s 0.043045 s 0.038710 s 0.033542 s 0.028063 s 0.022255 s 0.017057 s 0.011870 s 0.007113 s
920 0.047445 s 0.045279 s 0.040702 s 0.035618 s 0.029161 s 0.023419 s 0.017796 s 0.012351 s 0.007457 s
940 0.049462 s 0.046823 s 0.042346 s 0.036760 s 0.030904 s 0.024593 s 0.018538 s 0.012911 s 0.007786 s
960 0.051609 s 0.049000 s 0.044188 s 0.038296 s 0.032078 s 0.025715 s 0.019364 s 0.013483 s 0.008090 s
980 0.053643 s 0.050899 s 0.045918 s 0.040145 s 0.033586 s 0.026489 s 0.019958 s 0.013933 s 0.008452 s
1000 0.056042 s 0.053136 s 0.047977 s 0.041386 s 0.034849 s 0.027765 s 0.020997 s 0.014642 s 0.008799 s

Table 34: Time to fill a population from without-replacement tournament selections using the
standard algorithm and using random sample(). These values are depicted in Fig-
ure 73.

188

Tournament size as percentage of population size
Population size

10% 20% 30% 40% 50% 60% 70% 80% 90%

20 0.000008 s 0.000011 s 0.000013 s 0.000015 s 0.000018 s 0.000016 s 0.000014 s 0.000012 s 0.000009 s
40 0.000019 s 0.000028 s 0.000037 s 0.000045 s 0.000055 s 0.000046 s 0.000038 s 0.000032 s 0.000022 s
60 0.000034 s 0.000053 s 0.000073 s 0.000094 s 0.000115 s 0.000095 s 0.000077 s 0.000061 s 0.000043 s
80 0.000053 s 0.000089 s 0.000124 s 0.000160 s 0.000196 s 0.000162 s 0.000129 s 0.000102 s 0.000064 s
100 0.000077 s 0.000132 s 0.000187 s 0.000243 s 0.000317 s 0.000248 s 0.000197 s 0.000146 s 0.000100 s
120 0.000105 s 0.000185 s 0.000265 s 0.000344 s 0.000424 s 0.000350 s 0.000278 s 0.000210 s 0.000138 s
140 0.000141 s 0.000252 s 0.000356 s 0.000465 s 0.000571 s 0.000473 s 0.000373 s 0.000288 s 0.000180 s
160 0.000177 s 0.000318 s 0.000461 s 0.000603 s 0.000741 s 0.000639 s 0.000481 s 0.000359 s 0.000221 s
180 0.000218 s 0.000398 s 0.000578 s 0.000755 s 0.000932 s 0.000772 s 0.000612 s 0.000439 s 0.000282 s
200 0.000264 s 0.000487 s 0.000709 s 0.000927 s 0.001151 s 0.000944 s 0.000738 s 0.000540 s 0.000342 s
220 0.000316 s 0.000583 s 0.000851 s 0.001116 s 0.001383 s 0.001138 s 0.000895 s 0.000653 s 0.000425 s
240 0.000373 s 0.000688 s 0.001010 s 0.001324 s 0.001641 s 0.001352 s 0.001059 s 0.000776 s 0.000484 s
260 0.000430 s 0.000808 s 0.001180 s 0.001541 s 0.001950 s 0.001571 s 0.001236 s 0.000902 s 0.000553 s
280 0.000498 s 0.000931 s 0.001362 s 0.001783 s 0.002220 s 0.001832 s 0.001425 s 0.001038 s 0.000638 s
300 0.000567 s 0.001066 s 0.001568 s 0.002053 s 0.002538 s 0.002110 s 0.001649 s 0.001189 s 0.000724 s
320 0.000642 s 0.001207 s 0.001776 s 0.002333 s 0.002879 s 0.002374 s 0.001876 s 0.001362 s 0.000810 s
340 0.000722 s 0.001361 s 0.001985 s 0.002635 s 0.003260 s 0.002663 s 0.002104 s 0.001495 s 0.000934 s
360 0.000820 s 0.001522 s 0.002230 s 0.002933 s 0.003680 s 0.002989 s 0.002352 s 0.001672 s 0.001031 s
380 0.000893 s 0.001695 s 0.002497 s 0.003271 s 0.004068 s 0.003327 s 0.002593 s 0.001857 s 0.001141 s
400 0.000982 s 0.001860 s 0.002742 s 0.003610 s 0.004500 s 0.003692 s 0.002862 s 0.002056 s 0.001287 s
420 0.001085 s 0.002062 s 0.003025 s 0.004015 s 0.004946 s 0.004062 s 0.003185 s 0.002291 s 0.001430 s
440 0.001187 s 0.002246 s 0.003340 s 0.004386 s 0.005463 s 0.004425 s 0.003502 s 0.002510 s 0.001545 s
460 0.001291 s 0.002475 s 0.003602 s 0.004765 s 0.005936 s 0.004849 s 0.003810 s 0.002731 s 0.001655 s
480 0.001399 s 0.002659 s 0.003967 s 0.005218 s 0.006476 s 0.005282 s 0.004120 s 0.002980 s 0.001795 s
500 0.001534 s 0.002887 s 0.004274 s 0.005653 s 0.006983 s 0.005778 s 0.004454 s 0.003209 s 0.001961 s
520 0.001640 s 0.003143 s 0.004603 s 0.006094 s 0.007583 s 0.006211 s 0.004837 s 0.003489 s 0.002087 s
540 0.001765 s 0.003367 s 0.004978 s 0.006556 s 0.008146 s 0.006699 s 0.005244 s 0.003754 s 0.002262 s
560 0.001897 s 0.003611 s 0.005317 s 0.007051 s 0.008781 s 0.007201 s 0.005593 s 0.004029 s 0.002441 s
580 0.002009 s 0.003869 s 0.005703 s 0.007593 s 0.009447 s 0.007702 s 0.005987 s 0.004354 s 0.002553 s
600 0.002171 s 0.004133 s 0.006153 s 0.008130 s 0.010058 s 0.008281 s 0.006421 s 0.004598 s 0.002739 s
620 0.002305 s 0.004378 s 0.006517 s 0.008577 s 0.010744 s 0.008785 s 0.006865 s 0.004907 s 0.002939 s
640 0.002452 s 0.004696 s 0.006935 s 0.009211 s 0.011443 s 0.009381 s 0.007257 s 0.005287 s 0.003083 s
660 0.002611 s 0.004967 s 0.007378 s 0.009744 s 0.012220 s 0.009953 s 0.007750 s 0.005537 s 0.003341 s
680 0.002776 s 0.005331 s 0.007857 s 0.010354 s 0.012923 s 0.010599 s 0.008282 s 0.005845 s 0.003542 s
700 0.002951 s 0.005648 s 0.008322 s 0.010995 s 0.013683 s 0.011135 s 0.008698 s 0.006200 s 0.003740 s
720 0.003072 s 0.005951 s 0.008765 s 0.011646 s 0.014435 s 0.011853 s 0.009251 s 0.006543 s 0.003963 s
740 0.003249 s 0.006227 s 0.009267 s 0.012243 s 0.015256 s 0.012472 s 0.009705 s 0.006877 s 0.004167 s
760 0.003423 s 0.006586 s 0.009742 s 0.012963 s 0.016080 s 0.013179 s 0.010187 s 0.007298 s 0.004393 s
780 0.003623 s 0.006972 s 0.010264 s 0.013602 s 0.016936 s 0.013864 s 0.010827 s 0.007650 s 0.004608 s
800 0.003790 s 0.007324 s 0.010837 s 0.014333 s 0.017839 s 0.014590 s 0.011349 s 0.008061 s 0.004910 s
820 0.003965 s 0.007633 s 0.011375 s 0.015033 s 0.018691 s 0.015305 s 0.011909 s 0.008471 s 0.005104 s
840 0.004161 s 0.008031 s 0.011903 s 0.015821 s 0.019661 s 0.016043 s 0.012496 s 0.008921 s 0.005394 s
860 0.004366 s 0.008466 s 0.012464 s 0.016491 s 0.020562 s 0.016767 s 0.013058 s 0.009358 s 0.005613 s
880 0.004552 s 0.008851 s 0.013100 s 0.017331 s 0.021539 s 0.017629 s 0.013688 s 0.009821 s 0.005872 s
900 0.004778 s 0.009220 s 0.013637 s 0.018155 s 0.022611 s 0.018412 s 0.014316 s 0.010262 s 0.006152 s
920 0.004981 s 0.009651 s 0.014271 s 0.018927 s 0.023603 s 0.019209 s 0.014935 s 0.010720 s 0.006411 s
940 0.005220 s 0.010077 s 0.014858 s 0.019709 s 0.024550 s 0.020108 s 0.015626 s 0.011216 s 0.006688 s
960 0.005449 s 0.010505 s 0.015452 s 0.020545 s 0.025532 s 0.020869 s 0.016285 s 0.011645 s 0.007027 s
980 0.005726 s 0.010958 s 0.016203 s 0.021439 s 0.026685 s 0.021817 s 0.016928 s 0.012144 s 0.007248 s
1000 0.005873 s 0.011385 s 0.016820 s 0.022365 s 0.027805 s 0.022746 s 0.017648 s 0.012651 s 0.007627 s

Table 35: Time to fill a population from without-replacement tournament selections using the
standard algorithm and a new random sampling subroutine. These values are de-
picted in Figure 74.

189

Tournament size as percentage of population size
Population size

10% 20% 30% 40% 50% 60% 70% 80% 90%

20 0.000014 s 0.000014 s 0.000014 s 0.000013 s 0.000013 s 0.000013 s 0.000013 s 0.000013 s 0.000013 s
40 0.000024 s 0.000023 s 0.000023 s 0.000023 s 0.000022 s 0.000022 s 0.000022 s 0.000022 s 0.000022 s
60 0.000035 s 0.000034 s 0.000033 s 0.000033 s 0.000033 s 0.000032 s 0.000032 s 0.000031 s 0.000031 s
80 0.000046 s 0.000045 s 0.000044 s 0.000043 s 0.000043 s 0.000042 s 0.000043 s 0.000042 s 0.000042 s
100 0.000057 s 0.000056 s 0.000055 s 0.000054 s 0.000053 s 0.000053 s 0.000053 s 0.000052 s 0.000052 s
120 0.000068 s 0.000068 s 0.000066 s 0.000065 s 0.000064 s 0.000064 s 0.000063 s 0.000062 s 0.000062 s
140 0.000081 s 0.000080 s 0.000078 s 0.000076 s 0.000076 s 0.000076 s 0.000075 s 0.000074 s 0.000074 s
160 0.000093 s 0.000091 s 0.000089 s 0.000088 s 0.000087 s 0.000086 s 0.000087 s 0.000086 s 0.000084 s
180 0.000105 s 0.000103 s 0.000101 s 0.000099 s 0.000098 s 0.000098 s 0.000097 s 0.000096 s 0.000096 s
200 0.000117 s 0.000115 s 0.000113 s 0.000112 s 0.000110 s 0.000109 s 0.000108 s 0.000107 s 0.000107 s
220 0.000130 s 0.000127 s 0.000124 s 0.000123 s 0.000128 s 0.000120 s 0.000120 s 0.000118 s 0.000117 s
240 0.000143 s 0.000139 s 0.000136 s 0.000134 s 0.000134 s 0.000131 s 0.000137 s 0.000130 s 0.000128 s
260 0.000156 s 0.000152 s 0.000149 s 0.000147 s 0.000145 s 0.000144 s 0.000144 s 0.000142 s 0.000140 s
280 0.000174 s 0.000164 s 0.000161 s 0.000159 s 0.000158 s 0.000157 s 0.000156 s 0.000154 s 0.000154 s
300 0.000181 s 0.000176 s 0.000173 s 0.000172 s 0.000187 s 0.000168 s 0.000168 s 0.000166 s 0.000164 s
320 0.000194 s 0.000188 s 0.000186 s 0.000186 s 0.000182 s 0.000180 s 0.000179 s 0.000178 s 0.000177 s
340 0.000207 s 0.000201 s 0.000199 s 0.000197 s 0.000195 s 0.000194 s 0.000192 s 0.000190 s 0.000188 s
360 0.000220 s 0.000215 s 0.000212 s 0.000209 s 0.000208 s 0.000205 s 0.000205 s 0.000202 s 0.000199 s
380 0.000235 s 0.000229 s 0.000225 s 0.000222 s 0.000219 s 0.000218 s 0.000216 s 0.000213 s 0.000212 s
400 0.000246 s 0.000242 s 0.000238 s 0.000236 s 0.000232 s 0.000229 s 0.000229 s 0.000226 s 0.000225 s
420 0.000262 s 0.000255 s 0.000249 s 0.000247 s 0.000245 s 0.000244 s 0.000240 s 0.000237 s 0.000236 s
440 0.000276 s 0.000267 s 0.000262 s 0.000259 s 0.000256 s 0.000255 s 0.000254 s 0.000249 s 0.000249 s
460 0.000288 s 0.000281 s 0.000277 s 0.000273 s 0.000270 s 0.000285 s 0.000265 s 0.000263 s 0.000259 s
480 0.000303 s 0.000294 s 0.000289 s 0.000285 s 0.000282 s 0.000279 s 0.000277 s 0.000275 s 0.000273 s
500 0.000316 s 0.000307 s 0.000301 s 0.000297 s 0.000294 s 0.000293 s 0.000289 s 0.000286 s 0.000283 s
520 0.000330 s 0.000321 s 0.000315 s 0.000312 s 0.000309 s 0.000307 s 0.000304 s 0.000302 s 0.000301 s
540 0.000343 s 0.000335 s 0.000329 s 0.000325 s 0.000323 s 0.000321 s 0.000318 s 0.000315 s 0.000315 s
560 0.000355 s 0.000347 s 0.000342 s 0.000338 s 0.000336 s 0.000333 s 0.000331 s 0.000327 s 0.000326 s
580 0.000369 s 0.000361 s 0.000356 s 0.000351 s 0.000349 s 0.000345 s 0.000343 s 0.000342 s 0.000337 s
600 0.000384 s 0.000374 s 0.000369 s 0.000364 s 0.000361 s 0.000359 s 0.000354 s 0.000354 s 0.000369 s
620 0.000397 s 0.000387 s 0.000382 s 0.000377 s 0.000374 s 0.000373 s 0.000370 s 0.000367 s 0.000364 s
640 0.000412 s 0.000403 s 0.000396 s 0.000390 s 0.000388 s 0.000388 s 0.000381 s 0.000380 s 0.000379 s
660 0.000426 s 0.000415 s 0.000409 s 0.000405 s 0.000402 s 0.000401 s 0.000395 s 0.000394 s 0.000390 s
680 0.000441 s 0.000430 s 0.000424 s 0.000420 s 0.000415 s 0.000410 s 0.000409 s 0.000408 s 0.000406 s
700 0.000454 s 0.000444 s 0.000436 s 0.000431 s 0.000427 s 0.000424 s 0.000422 s 0.000421 s 0.000418 s
720 0.000471 s 0.000457 s 0.000450 s 0.000445 s 0.000440 s 0.000438 s 0.000433 s 0.000432 s 0.000432 s
740 0.000484 s 0.000472 s 0.000464 s 0.000458 s 0.000456 s 0.000449 s 0.000447 s 0.000444 s 0.000442 s
760 0.000497 s 0.000486 s 0.000477 s 0.000471 s 0.000467 s 0.000463 s 0.000460 s 0.000459 s 0.000455 s
780 0.000515 s 0.000505 s 0.000495 s 0.000489 s 0.000486 s 0.000481 s 0.000478 s 0.000473 s 0.000470 s
800 0.000529 s 0.000518 s 0.000507 s 0.000503 s 0.000496 s 0.000494 s 0.000491 s 0.000487 s 0.000485 s
820 0.000540 s 0.000529 s 0.000520 s 0.000517 s 0.000512 s 0.000506 s 0.000501 s 0.000500 s 0.000497 s
840 0.000556 s 0.000546 s 0.000537 s 0.000532 s 0.000526 s 0.000521 s 0.000517 s 0.000512 s 0.000511 s
860 0.000570 s 0.000560 s 0.000551 s 0.000546 s 0.000538 s 0.000534 s 0.000529 s 0.000526 s 0.000525 s
880 0.000585 s 0.000574 s 0.000564 s 0.000559 s 0.000554 s 0.000546 s 0.000541 s 0.000538 s 0.000535 s
900 0.000600 s 0.000588 s 0.000578 s 0.000572 s 0.000567 s 0.000564 s 0.000557 s 0.000552 s 0.000547 s
920 0.000614 s 0.000599 s 0.000592 s 0.000585 s 0.000579 s 0.000572 s 0.000571 s 0.000565 s 0.000563 s
940 0.000628 s 0.000618 s 0.000607 s 0.000599 s 0.000595 s 0.000588 s 0.000583 s 0.000581 s 0.000577 s
960 0.000644 s 0.000631 s 0.000623 s 0.000615 s 0.000607 s 0.000600 s 0.000595 s 0.000592 s 0.000590 s
980 0.000660 s 0.000643 s 0.000634 s 0.000629 s 0.000622 s 0.000616 s 0.000609 s 0.000604 s 0.000605 s
1000 0.000674 s 0.000660 s 0.000650 s 0.000641 s 0.000634 s 0.000627 s 0.000623 s 0.000617 s 0.000613 s

Table 36: Time to fill a population from without-replacement tournament selections using the
new algorithm. These values are depicted in Figure 75.

190

Tournament size as percentage of population size
Population size

10% 20% 30% 40% 50% 60% 70% 80% 90%

20 0.000004 s 0.000005 s 0.000007 s 0.000012 s 0.000011 s 0.000013 s 0.000015 s 0.000016 s 0.000019 s
40 0.000009 s 0.000017 s 0.000025 s 0.000033 s 0.000042 s 0.000050 s 0.000058 s 0.000062 s 0.000073 s
60 0.000019 s 0.000037 s 0.000056 s 0.000072 s 0.000089 s 0.000108 s 0.000125 s 0.000139 s 0.000157 s
80 0.000033 s 0.000065 s 0.000097 s 0.000127 s 0.000159 s 0.000190 s 0.000222 s 0.000249 s 0.000288 s
100 0.000052 s 0.000101 s 0.000149 s 0.000197 s 0.000248 s 0.000298 s 0.000347 s 0.000402 s 0.000445 s
120 0.000072 s 0.000143 s 0.000214 s 0.000285 s 0.000355 s 0.000431 s 0.000500 s 0.000568 s 0.000638 s
140 0.000098 s 0.000195 s 0.000291 s 0.000387 s 0.000487 s 0.000583 s 0.000686 s 0.000769 s 0.000869 s
160 0.000127 s 0.000253 s 0.000379 s 0.000507 s 0.000640 s 0.000760 s 0.000890 s 0.001005 s 0.001141 s
180 0.000161 s 0.000319 s 0.000480 s 0.000644 s 0.000803 s 0.000966 s 0.001110 s 0.001284 s 0.001433 s
200 0.000198 s 0.000394 s 0.000592 s 0.000798 s 0.000997 s 0.001195 s 0.001394 s 0.001587 s 0.001772 s
220 0.000240 s 0.000477 s 0.000719 s 0.000958 s 0.001204 s 0.001433 s 0.001674 s 0.001901 s 0.002155 s
240 0.000284 s 0.000565 s 0.000855 s 0.001140 s 0.001432 s 0.001705 s 0.001993 s 0.002265 s 0.002549 s
260 0.000335 s 0.000672 s 0.001009 s 0.001344 s 0.001695 s 0.002040 s 0.002350 s 0.002704 s 0.003019 s
280 0.000390 s 0.000779 s 0.001171 s 0.001559 s 0.001968 s 0.002337 s 0.002757 s 0.003104 s 0.003492 s
300 0.000445 s 0.000893 s 0.001345 s 0.001807 s 0.002265 s 0.002688 s 0.003136 s 0.003600 s 0.004060 s
320 0.000509 s 0.001014 s 0.001528 s 0.002035 s 0.002550 s 0.003056 s 0.003599 s 0.004052 s 0.004623 s
340 0.000578 s 0.001151 s 0.001724 s 0.002297 s 0.002870 s 0.003447 s 0.004001 s 0.004641 s 0.005155 s
360 0.000643 s 0.001291 s 0.001932 s 0.002576 s 0.003223 s 0.003903 s 0.004489 s 0.005201 s 0.005783 s
380 0.000714 s 0.001455 s 0.002152 s 0.002903 s 0.003589 s 0.004304 s 0.005021 s 0.005741 s 0.006487 s
400 0.000792 s 0.001614 s 0.002411 s 0.003182 s 0.003982 s 0.004775 s 0.005567 s 0.006361 s 0.007138 s
420 0.000880 s 0.001754 s 0.002629 s 0.003509 s 0.004383 s 0.005264 s 0.006133 s 0.007015 s 0.007870 s
440 0.000958 s 0.001925 s 0.002884 s 0.003847 s 0.004807 s 0.005770 s 0.006737 s 0.007735 s 0.008635 s
460 0.001049 s 0.002126 s 0.003151 s 0.004208 s 0.005256 s 0.006312 s 0.007432 s 0.008456 s 0.009448 s
480 0.001145 s 0.002291 s 0.003438 s 0.004587 s 0.005724 s 0.006928 s 0.008011 s 0.009130 s 0.010276 s
500 0.001240 s 0.002516 s 0.003768 s 0.004978 s 0.006212 s 0.007519 s 0.008699 s 0.009916 s 0.011154 s
520 0.001342 s 0.002687 s 0.004074 s 0.005382 s 0.006716 s 0.008064 s 0.009411 s 0.010726 s 0.012065 s
540 0.001441 s 0.002898 s 0.004394 s 0.005857 s 0.007308 s 0.008694 s 0.010148 s 0.011564 s 0.013104 s
560 0.001557 s 0.003116 s 0.004674 s 0.006292 s 0.007792 s 0.009348 s 0.010912 s 0.012521 s 0.013988 s
580 0.001669 s 0.003343 s 0.005011 s 0.006694 s 0.008351 s 0.010028 s 0.011691 s 0.013421 s 0.015122 s
600 0.001785 s 0.003615 s 0.005371 s 0.007169 s 0.009026 s 0.010820 s 0.012528 s 0.014282 s 0.016187 s
620 0.001901 s 0.003817 s 0.005729 s 0.007651 s 0.009546 s 0.011459 s 0.013371 s 0.015252 s 0.017193 s
640 0.002023 s 0.004067 s 0.006112 s 0.008139 s 0.010177 s 0.012223 s 0.014261 s 0.016264 s 0.018367 s
660 0.002170 s 0.004342 s 0.006499 s 0.008692 s 0.010841 s 0.013031 s 0.015192 s 0.017349 s 0.019456 s
680 0.002301 s 0.004590 s 0.006904 s 0.009285 s 0.011486 s 0.013806 s 0.016198 s 0.018399 s 0.020663 s
700 0.002439 s 0.004962 s 0.007336 s 0.009742 s 0.012185 s 0.014629 s 0.017034 s 0.019468 s 0.022006 s
720 0.002577 s 0.005180 s 0.007823 s 0.010404 s 0.012981 s 0.015565 s 0.018017 s 0.020680 s 0.023192 s
740 0.002724 s 0.005443 s 0.008164 s 0.010912 s 0.013604 s 0.016464 s 0.019067 s 0.021793 s 0.024466 s
760 0.002910 s 0.005803 s 0.008624 s 0.011480 s 0.014357 s 0.017326 s 0.020097 s 0.023012 s 0.025812 s
780 0.003026 s 0.006125 s 0.009078 s 0.012087 s 0.015126 s 0.018176 s 0.021247 s 0.024224 s 0.027191 s
800 0.003224 s 0.006364 s 0.009538 s 0.012780 s 0.016059 s 0.019273 s 0.022280 s 0.025457 s 0.028607 s
820 0.003342 s 0.006689 s 0.010043 s 0.013517 s 0.016739 s 0.020044 s 0.023390 s 0.026728 s 0.030035 s
840 0.003506 s 0.007007 s 0.010516 s 0.014026 s 0.017524 s 0.021076 s 0.024542 s 0.028056 s 0.031504 s
860 0.003719 s 0.007349 s 0.011019 s 0.014700 s 0.018359 s 0.022034 s 0.025717 s 0.029356 s 0.033013 s
880 0.003848 s 0.007702 s 0.011535 s 0.015390 s 0.019372 s 0.023091 s 0.026923 s 0.030726 s 0.034564 s
900 0.004026 s 0.008045 s 0.012193 s 0.016231 s 0.020118 s 0.024290 s 0.028148 s 0.032147 s 0.036184 s
920 0.004257 s 0.008415 s 0.012627 s 0.016828 s 0.021033 s 0.025225 s 0.029563 s 0.033578 s 0.037776 s
940 0.004390 s 0.008778 s 0.013294 s 0.017552 s 0.021952 s 0.026332 s 0.030856 s 0.035069 s 0.039449 s
960 0.004579 s 0.009163 s 0.013857 s 0.018326 s 0.023051 s 0.027466 s 0.032041 s 0.036578 s 0.041171 s
980 0.004830 s 0.009636 s 0.014299 s 0.019091 s 0.023838 s 0.028628 s 0.033573 s 0.038157 s 0.042894 s
1000 0.005029 s 0.009951 s 0.015075 s 0.020030 s 0.024907 s 0.029834 s 0.034808 s 0.039758 s 0.044732 s

Table 37: The effect on old style tournament selection duration (in seconds) of varying total
population size, tournament size fraction.

191

the standard algorithm (with the improved random sampling subroutine). Figure 77(a)

shows a detail of Figure 77(b).

The total number of points in Figure 77(b) is 31125. This is as expected since there

is a point for each of the multiples of four less than each of the multiples of four up to

1000, hence n(n− 1)/2 points where n = 250 = 1000/4. For 98.911% of these points,

the new algorithm was faster in all 20 cases; for 0.790%, it was slower in all 20 cases;

only 0.299% represent configurations for which the 20 results were not unanimous. The

new algorithm spends extra time sorting the population but aims to reduce the number

of random number generations. How small (or large) does the tournament size have

to be before the saving in random number generations is not worth the cost of the sort?

Figure 77 shows that the new algorithm is only slower when the tournament size is

very small or when it is very large in a small population.

7.2.4 The Effect of Tournament Size on Selection Pressure

This analysis also supplied tools to help unearth deeper insights into the role of tour-

nament size on selection pressure for without-replacement tournament selection. In

particular, it can show how to adjust the tournament size to maintain equivalent selec-

tion pressure as the population size is varied. Without the benefit of the analysis, two

obvious candidate tactics present themselves: maintain an identical tournament size or

maintain an identical ratio between the tournament size and the population size.

Some thought suggests that neither of these can be quite right and examples of the

use of each in the literature help develop this line of thought. It should be noted that

neither of the papers in the following examples specifies whether the tournament selec-

tion is performed with or without replacement. The following discussion will work on

the presumption that they are using without-replacement tournament selection. This

highlights the need for the replacement status to be included when reporting experi-

mental details.

One study examining the role of demes [19] compared the results of evolutionary

runs in populations of 2500 using different population structures such as one deme of

2500 or ten demes of 250. The ratio of tournament size to sub-population size was kept

constant at 10%.

Using the cumulative formulae derived in Section 7.2.2 with tournament sizes of

10% shows that a tournament selection from a deme of 250 is 95.088% likely to come

from the best 10.8% of individuals whereas a tournament selection from a deme of

2500 is 95.375% likely to come from the best 1.16%. This shows that 10% tournament

selection provides very much stronger selection pressure in a deme of 2500 than in a

deme of 250. Hence holding the tournament size a constant ratio of the population size

as it varies, does not ensure constant selection pressure.

Another study compared short runs with big populations against long runs with

small populations [23]. As the population size was varied over values between 50

192

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

W
ith

ou
t-

re
pl

ac
em

en
t t

ou
rn

am
en

t s
iz

e

Total population size

New algorithm is slower
New algorithm is faster

(a) Results for population sizes up to 100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000

W
ith

ou
t-

re
pl

ac
em

en
t t

ou
rn

am
en

t s
iz

e

Total population size

New algorithm is slower
New algorithm is faster

(b) Results for population sizes up to 1000

Figure 77: The without-replacement configurations for which the new algorithm is faster than
the standard algorithm (with the improved random sampling subroutine). Light
green points indicate configurations for which the new algorithm is faster; dark red
points indicate configurations for which the algorithm is slower. Each point rep-
resents twenty trials: where the results were not unanimous, the point is shaded
between the two colours according to the fraction that were faster. Points are placed
at tournament sizes and population sizes divisible by four.

193

and 400, a constant tournament size of four individuals was used. Using the formulae

derived in Section 7.2.2 shows that such a tournament selection in a population of 400

is 92.362% likely to come from the best 47.25% whereas in a population of 50, it is

92.380% likely to come from the best 46% of individuals. The difference is smaller

in this particular example (than in the previous example). Nevertheless, the fact that

the difference exists shows that holding the absolute tournament size constant as the

population size varies, does not ensure constant selection pressure either.

Although the selection pressure varies considerably less in the latter example, it is

possible to produce a larger change in selection pressure by usingmore extreme values:

e.g. in a population of six, a tournament selection using four individuals is 93.333%

likely to come from the best 33% of individuals.

So it turns out that it should indeed be possible to do better than either of these

strategies. This attempt will benefit from a bit more mathematics.

7.2.5 Extending Tournament Selection Mathematics Beyond Integers

In Sections 7.2.7 and 7.2.8, it will turn out to be useful to extend the probability formulae

to continuous functions over real values of i and m. This is because the continuous

functions will make possible a consistent way to compare selection pressure between

different tournament selection configurations.

For with-replacement, there is no work to do since the functions are already con-

tinuous with respect to i and m. For without-replacement, continuous functions can

be achieved by replacing the factorial function with the Γ function, which extends it to

real and complex numbers such that Γ(x) = (x− 1)! for all positive integers x.

It is important to remember that there is no claim that the results it provides be-

tween integers will be meaningful in this analysis. This is only one of an infinite num-

ber of functions which extend the factorial function, although the Bohr-Möllerup theo-

rem states it is the only one defined for all positive real numbers that is logarithmically

convex [2] and Section 7.2.6 shows that the resulting formulae are well behaved.

At this point, i and m are still assumed to be positive integers and so the equation

Γ(x) = (x − 1)! can be used to replace the factorials in the formula for values i ≥
N −m+ 2 :

P(Ei) =
m

N

(N −m)!

(N −m− i+ 1)!

(N − i)!

(N − 1)!

=
m

N

Γ(N + 1−m)

Γ(N + 2−m− i)

Γ(N + 1− i)

Γ(N)

Now the assumption that i and m are integers may be dropped to reveal a continu-

ous function. In practice, this form is rather hard to calculate and will be prone to large

rounding errors in the huge Γ function values. What is required is a form that allows

the value to be calculated as before for ⌊i⌋ and ⌊m⌋ and then modified according to the

194

differences i− ⌊i⌋ and m− ⌊m⌋. This can be obtained by multiplying top and bottom

by various Γ functions of the floors of i and m, which produces something akin to the

original formula using ⌊i⌋ and ⌊m⌋ multiplied by ratios of various Γ functions.

m

N

Γ(N + 1−m)

Γ(N + 2−m− i)

Γ(N + 1− i)

Γ(N)

=
m

N

Γ(N + 1−m)

Γ(N + 1− ⌊m⌋)
Γ(N + 1− ⌊m⌋)

Γ(N + 2− ⌊m⌋ − ⌊i⌋)
Γ(N + 2− ⌊m⌋ − ⌊i⌋)

Γ(N + 2−m− i)

Γ(N + 1− i)

Γ(N + 1− ⌊i⌋)
Γ(N + 1− ⌊i⌋)

Γ(N)

=
m

N

(N − ⌊m⌋)!
(N − ⌊m⌋ − ⌊i⌋+ 1)!

(N − ⌊i⌋)!
(N − 1)!

Γ(N + 1−m)

Γ(N + 1− ⌊m⌋)
Γ(N + 2− ⌊m⌋ − ⌊i⌋)

Γ(N + 2−m− i)

Γ(N + 1− i)

Γ(N + 1− ⌊i⌋)

There is no danger of multiplying top and bottom by zero since there is no value z ∈
C such that Γ(z) = 0. The same technique can be used on the formula for cumulative

probability for values i ≥ N −m+ 1:

P(Ci) = 1− (N −m)!

(N −m− i)!

(N − i)!

(N)!

= 1− Γ(N + 1−m)

Γ(N + 1−m− i)

Γ(N + 1− i)

Γ(N + 1)

Again, on dropping the assumption that i and m are integers, something akin to

the original formula may be retrieved using ⌊i⌋ and ⌊m⌋ and multiplied by ratios of

various Γ functions

1− Γ(N + 1−m)

Γ(N + 1−m− i)

Γ(N + 1− i)

Γ(N + 1)

= 1− Γ(N + 1−m)

Γ(N + 1− ⌊m⌋)
Γ(N + 1− ⌊m⌋)

Γ(N + 1− ⌊m⌋ − ⌊i⌋)
Γ(N + 1− ⌊m⌋ − ⌊i⌋)

Γ(N + 1−m− i)

Γ(N + 1− i)

Γ(N + 1− ⌊i⌋)
Γ(N + 1− ⌊i⌋)

Γ(N + 1)

= 1− (N − ⌊m⌋)!
(N − ⌊m⌋ − ⌊i⌋)!

(N − ⌊i⌋)!
(N)!

Γ(N + 1−m)

Γ(N + 1− ⌊m⌋)
Γ(N + 1− ⌊m⌋ − ⌊i⌋)

Γ(N + 1−m− i)

Γ(N + 1− i)

Γ(N + 1− ⌊i⌋)

These particular forms of the continuous extensions are of particular value since

the math library of the Boost C++ Library (www.boost.org) provides a function tgam-

ma delta ratio()which is specifically designed for accurately computing ratios Γ(a)
Γ(a+δ)

where δ may be small compared to a. Hence, these arrangements of the formulae can

be used in an algorithm which is essentially the same as for integers but with the result

multiplied and divided by some easily calculable values.

7.2.6 Showing the Continuous Extensions are Well Behaved

Before going further, it is worth demonstrating that the formulae that have been de-

rived are well behaved (positive, continuous and monotonic with respect to i and m).

The with-replacement formulae are fairly straightforward but things are not so simple

195

for the without-replacement formulae. First, it is worth noting that Γ is strictly positive

for all real values greater than zero.

Proposition 1. If f is a log-convex function on R and y ∈ R such that y > 0, then
f (x)

f (x−y)
is

monotonically increasing with respect to x wherever f (x) > 0 and f (x− y) > 0.

Proof. Remember the log-convexity of f means that log f is convex, i.e. for t ∈ [0, 1]

and x1 and x2 in the domain of f :

log(f (tx1 + (1− t)x2)) ≤ t log f (x1) + (1− t) log(f (x2))

⇒ f (tx1 + (1− t)x2) ≤ f (x1)
t f (x2)

1−t

Now the aim is to show that for a ∈ R and b ∈ R such that a < b, f (a) > 0,

f (a− y) > 0, f (b) > 0 and f (b− y) > 0 :

f (a)

f (a− y)
≤ f (b)

f (b− y)

There are three possibilities:

• b− y = a,

• b− y < a or

• b− y > a

To show the result for b − y = a, use t = 1
2 , x1 = a − y and x2 = b with the

log-convexity of f :

f

(

a− y

2
+

b

2

)

≤
√

f (a− y)
√

f (b)

⇒ f (a) ≤
√

f (a− y)
√

f (b)

⇒ f (a) f (a) ≤ f (a− y) f (b)

⇒ f (a) f (b− y) ≤ f (a− y) f (b)

⇒ f (a)

f (a− y)
≤ f (b)

f (b− y)
(since f (a− y) > 0 and f (b− y) > 0)

To show the results for b− y < a, use t = a−b+y
y , x1 = a− y and x2 = a:

f

(

a− b+ y

y
(a− y) +

b− a

y
a

)

≤ f (a− y)
a−b+y

y f (a)
b−a
y

⇒ f (b− y)y ≤ f (a− y)a−b+y f (a)b−a (since y > 0)

⇒ f (a)a−b

f (a− y)a−b+y
≤ 1

f (b− y)y

(since f (a) > 0, f (a− y) > 0 and f (b− y) > 0)

196

Then use t = b−a
y , x1 = b− y and x2 = b:

f

(

b− a

y
(b− y) +

a− b+ y

y
b

)

≤ f (b− y)
b−a
y f (b)

a−b+y
y

⇒ f (a)y ≤ f (b− y)b−a f (b)a−b+y (since y > 0)

⇒ f (a)y

1
≤ f (b)a−b+y

f (b− y)a−b

Multiplying these two (positive) results together and then using a− b+ y > 0:

f (a)a−b+y

f (a− y)a−b+y
≤ f (b)a−b+y

f (b− y)a−b+y

⇒ f (a)

f (a− y)
≤ f (b)

f (b− y)

To show the results for b− y > a, use t = b−y−a
b−a , x1 = a− y and x2 = b− y:

f

(

b− y− a

b− a
(a− y) +

y

b− a
(b− y)

)

≤ f (a− y)
b−y−a
b−a f (b− y)

y
b−a

⇒ f (a)b−a ≤ f (a− y)b−y−a f (b− y)y (since b− a > 0)

⇒ f (a)b−a

f (a− y)b−y−a
≤ 1

f (b− y)−y
(since f (a− y) > 0)

Then use t = y
b−a , x1 = a and x2 = b:

f

(

y

b− a
a+

b− y− a

b− a
b

)

≤ f (a)
y

b−a f (b)
b−y−a
b−a

⇒ f (b− y)b−a ≤ f (a)y f (b)b−y−a (since b− a > 0)

⇒ f (a)−y

1
≤ f (b)b−y−a

f (b− y)b−a
(since f (a) > 0 and f (b− y) > 0)

Multiplying these two (positive) results together and then using b− y− a > 0:

f (a)b−y−a

f (a− y)b−y−a
≤ f (b)b−y−a

f (b− y)b−y−a

⇒ f (a)

f (a− y)
≤ f (b)

f (b− y)

So the required result has been shown for all three possibilities.

Proof. (outline of refined version) During the viva voce examination of this thesis, one of

the examiners, Professor Qingfu Zhang, showed how this proof could be improved by

taking the log of both sides of the desired inequality and then defining g() = log(f ()).

This gives g(a) − g(a − y) ≤ g(b) − g(b − y), so the aim becomes to show that this

197

inequality is true if g() is convex. It is now substantially more intuitive than in the

original formulation to see that this is true. This improved clarity also helped me to see

how to avoid splitting the proof into three different cases. This can be done by using the

symmetry in the definition of convexity which means that the statement of convexity

using t ∈ [0, 1] is also true using (1− t) ∈ [0, 1], regardless of whether t < (1− t),

t = (1− t) or t > (1− t). Using this to continue the proof in both formulations (without

worrying about the details of where the original assumptions of positivity must be

deployed) :

The log-convexity of f gives us that for

any t ∈ [0, 1]:

f (tx1 + (1− t)x2) ≤ f (x1)
t f (x2)

1−t

Since t ∈ [0, 1], then also (1 − t) ∈ [0, 1]

and so:

f ((1− t)x1 + tx2) ≤ f (x1)
1−t f (x2)

t

From the first, it may be derived that:

f (x2)

f (tx1 + (1− t)x2)
≥
(

f (x2)

f (x1)

)t

. . . and from the second, it may be derived

that:

f ((1− t)x1 + tx2)

f (x1)
≤
(

f (x2)

f (x1)

)t

Combining these two inequalities gives:

f (x2)

f (tx1 + (1− t)x2)
≥ f ((1− t)x1 + tx2)

f (x1)

Now the desired result can be obtained by

plugging the following values into this in-

equality:

x1 = a− y

x2 = b

t =
y

b− a+ y

The convexity of g gives us that for any

t ∈ [0, 1]:

g(tx1 + (1− t)x2) ≤ tg(x1) + (1− t)g(x2)

Since t ∈ [0, 1], then also (1 − t) ∈ [0, 1]

and so:

g((1− t)x1 + tx2) ≤ (1− t)g(x1) + tg(x2)

From the first, it may be derived that:

g(x2)− g(tx1 + (1− t)x2) ≥ t(g(x2)− g(x1))

. . . and from the second, it may be derived

that:

g((1− t)x1 + tx2)− g(x1) ≤ t(g(x2)− g(x1))

Combining these two inequalities gives:

g(x2)− g(tx1 + (1− t)x2) ≥
g((1− t)x1 + tx2)− g(x1)

Now the desired result can be obtained by

plugging the following values into this in-

equality:

x1 = a− y

x2 = b

t =
y

b− a+ y

198

Proposition 2. If k, c ∈ N0 and δ,γ ∈ R+ such that k > δ + γ then Γ(k+c−δ)
Γ(k+c)

Γ(k)
Γ(k−δ−γ)

is

positive and monotonically decreasing with respect to δ.

Proof. Start by expanding the left hand side fraction using Γ(z+ 1) = zΓ(z) :

Γ(k+ c− δ)

Γ(k+ c)

Γ(k)

Γ (k− δ − γ)

=
(k+ c− 1− δ)

(k+ c− 1)

(k+ c− 2− δ)

(k+ c− 2)
. . .

(k− δ)

k

Γ(k− δ)

Γ(k)

Γ(k)

Γ (k− δ − γ)

=
(k+ c− 1− δ)

(k+ c− 1)

(k+ c− 2− δ)

(k+ c− 2)
. . .

(k− δ)

k

Γ(k− δ)

Γ (k− δ − γ)

This is positive because each of the fractions is and they are positive because each

of the numerators and denominators are. The Γ values are positive because their argu-

ments are. The product will be monotonically decreasing if each of the fractions are.

This is clearly true for all but the last and can be seen for that case using Proposition 1

and the log-convexity of Γ.

Now return to the formulae for the selection probability and for the cumulative

probability:

P(Ei) =
m

N

Γ(N + 1−m)

Γ(N + 2−m− i)

Γ(N + 1− i)

Γ(N)

P(Ci) = 1− Γ(N + 1−m)

Γ(N + 1−m− i)

Γ(N + 1− i)

Γ(N + 1)

These are both continuous where all the arguments to the Γ functions are strictly

positive because then all the numerators and denominators are strictly positive and

continuous. To show that they are monotonically decreasing and increasing respec-

tively with respect to both i and m, it will suffice to show that this is true between any

integer values. To do this, it will help to use the equivalent forms derived earlier and

to observe that, if varying either i or m, only two of the fractions vary:

P(Ei) =
m

N

(N − ⌊m⌋)!
(N − ⌊m⌋ − ⌊i⌋+ 1)!

(N − ⌊i⌋)!
(N − 1)!

Γ(N + 1−m)

Γ(N + 1− ⌊m⌋)
Γ(N + 2− ⌊m⌋ − ⌊i⌋)

Γ(N + 2−m− i)

Γ(N + 1− i)

Γ(N + 1− ⌊i⌋)

P(Ci) = 1− (N − ⌊m⌋)!
(N − ⌊m⌋ − ⌊i⌋)!

(N − ⌊i⌋)!
(N)!

Γ(N + 1−m)

Γ(N + 1− ⌊m⌋)
Γ(N + 1− ⌊m⌋ − ⌊i⌋)

Γ(N + 1−m− i)

Γ(N + 1− i)

Γ(N + 1− ⌊i⌋)

To demonstrate the selection probability is monotonically decreasing with respect

to i, use Proposition 2 by setting k = N + 2− ⌊m⌋ − ⌊i⌋, c = ⌊m⌋ − 1, δ = i− ⌊i⌋ and

γ = m− ⌊m⌋ to show the following is monotonically decreasing with respect to i :

199

Γ(N + 1− i)

Γ(N + 1− ⌊i⌋)
Γ(N + 2− ⌊m⌋ − ⌊i⌋)

Γ(N + 2−m− i)

To demonstrate the selection probability is monotonically decreasing with respect

to m, use Proposition 2 by setting k = N+ 2− ⌊m⌋ − ⌊i⌋, c = ⌊i⌋ − 1, δ = m− ⌊m⌋ and
γ = i− ⌊i⌋ to show the following is monotonically decreasing with respect to m :

Γ(N + 1−m)

Γ(N + 1− ⌊m⌋)
Γ(N + 2− ⌊m⌋ − ⌊i⌋)

Γ(N + 2−m− i)

To demonstrate the cumulative probability is monotonically increasing with respect

to i, use Proposition 2 by setting k = N + 1 − ⌊m⌋ − ⌊i⌋, c = ⌊m⌋, δ = i − ⌊i⌋ and

γ = m− ⌊m⌋ to show the following is monotonically decreasing with respect to i :

Γ(N + 1− i)

Γ(N + 1− ⌊i⌋)
Γ(N + 1− ⌊m⌋ − ⌊i⌋)

Γ(N + 1−m− i)

To demonstrate the cumulative probability is monotonically increasing with respect

to m, use Proposition 2 by setting k = N + 1− ⌊m⌋ − ⌊i⌋, c = ⌊i⌋, δ = m− ⌊m⌋ and

γ = i− ⌊i⌋ to show the following is monotonically decreasing with respect to m :

Γ(N + 1−m)

Γ(N + 1− ⌊m⌋)
Γ(N + 1− ⌊m⌋ − ⌊i⌋)

Γ(N + 1−m− i)

This argument has skimmed over the difficulties at the boundaries where, say, m+

i ≈ N + 1. By returning to the original formulae, it is possible to handle these points at

which the selection probability is zero and the cumulative probability is one. Care was

required to write the code in such as way as to calculate these values correctly.

7.2.7 A NewMeasure of Selection Pressure: Many-From-Few

Figure 78 depicts examples of the continuous formulae, plotted in front of the discrete

formulae that they extend over continuous values of i. As with the previous Figure 70,

tournament size is four and the population size is 20. The figure illustrates pleasing

features of the continuous extensions: they are smooth, match the discrete values at the

appropriate points and are monotonically increasing or decreasing with respect to i as

would be hoped.

These continuous functions return the analysis to the question of how to compare

the selection pressure of different tournament selection configurations. This is a diffi-

cult problem without the benefit of the continuous functions because the two config-

urations might have relatively prime (i.e. coprime) population sizes. In this case, no

discrete subsets will represent equal fractions of their populations and hence no di-

rect comparisons will be possible (unless two of the cumulative probabilities happen

to match).

A new measure of selection pressure is proposed called the many-from-few mea-

200

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

P
ro

ba
bi

lit
y

of
 b

ei
ng

 s
el

ec
te

d
in

 a
 s

in
gl

e
to

ur
na

m
en

t

Rank of individual within population

Cum Prob
Prob

Cont Cum Prob
Cont Prob

(a) With-replacement tournament selection probabilities and continuous extensions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

P
ro

ba
bi

lit
y

of
 b

ei
ng

 s
el

ec
te

d
in

 a
 s

in
gl

e
to

ur
na

m
en

t

Rank of individual within population

Cum Prob
Prob

Cont Cum Prob
Cont Prob

(b) Without-replacement tournament selection probabilities and continuous extensions

Figure 78: The probabilities shown in Figure 70 may be extended to smooth continuous func-
tions. In each case, the continuous extensions of probability and cumulative proba-
bility are shown as a dashed black curve and a solid black curve respectively. The
thick black line shows all points where the fraction of the population and the proba-
bility would sum to one, marked off in divisions of 10%. The many-from-few mea-
sure identifies the point where this intersects with the cumulative probability (as
highlighted by the yellow annulus).

201

sure. It indicates where the cumulative probability crosses the thick black line shown

in Figure 78. That line represents those points at which the two percentages (i.e. x%

likelihood that selection will choose from the best y%) add up to 100%. This measure

recalls the structure of the Pareto Principle (“roughly 80% of the effects come from 20%

of the causes”).

The continuous functions allow exact comparisons of the selection pressure of con-

figurations at intermediate values. In other cases, it might be more appropriate to find

the many-from-few measure by finding the discrete point nearest the line. Note that

the many-from-fewmeasure could easily be empirically recorded from a run using any

selection scheme using a histogram of the selection frequencies for the various fitness

ranks.

In Figure 78, marks on the thick black line indicate points every 10% from 50%/50%

up to 100%/0%. “50% likely from best 50%” represents no selection pressure at all,

which occurs when the tournament size is 1. For without-replacement tournament se-

lection, the selection pressure will be at its strongest when the tournament size is equal

to the population size; the selection pressure of this configuration tends to “100% likely

from best 0%” as the population size tends to infinity. “95% likely from best 5%” rep-

resents selection pressure so strong that (in a population of unique fitness values) we

would expect the fittest twentieth of the population to account for nineteen twentieths

of the population in the next generation.

Figure 78(a) shows that a with-replacement tournament of size four in a population

of 20 would be expected to select 72.449% from the best 27.551% of the individuals.

Figure 78(b) shows that a without-replacement tournament of size four in a population

of 20 would be expected to select 73.796% from the best 26.204% of the individuals. The

difference between the two types of tournament selection happens to be small for this

particular configuration but Section 7.2.8 shows that the difference can be much greater

for other configurations.

Strictly speaking, the many-from-few values from the continuous function are only

meaningful in terms of the information they give about the neighbouring integer val-

ues as indicated in Figure 79. Consider an example: the proposed measure for a wit-

hout-replacement tournament size of four in a population of 20 (as in Figure 78(b)),

is 73.796% likely from the best 26.204%. What does this mean? It means that a selec-

tion from any smaller subset of best individuals is less likely and a selection from any

larger subset of best individuals is more likely. Indeed, as it turns out the nearest inte-

ger values show that any selection is 71.827% likely to come from the best 25.000% and

79.340% to come from the best 30.000%.

This measure is valuable because it provides an intuitive feel for the strength of

selection pressure exerted by any given tournament selection configuration. It is only

one value drawn from an fingerprint of selection pressure but since this can be done in

a standardised way, it allows direct comparison between different configurations.

202

 0.8

 5

P
ro

ba
bi

lit
y

of
 b

ei
ng

 s
el

ec
te

d
in

 a
 s

in
gl

e
to

ur
na

m
en

t

Rank of individual within population

(a) With-replacement tournament selection

 0.8

 5

P
ro

ba
bi

lit
y

of
 b

ei
ng

 s
el

ec
te

d
in

 a
 s

in
gl

e
to

ur
na

m
en

t

Rank of individual within population

(b) Without-replacement tournament selection

Figure 79: Strictly speaking, the many-from-few values (each indicated with a yellow annu-
lus) from the continuous functions are only meaningful in terms of the information
they give about the neighbouring integer values (each indicated with a blue spot).
Subfigures 79(a) and 79(b) show details of Subfigures 78(a) and 78(b) respectively,
with additional highlighting of the integer values neighbouring the many-from-few
points.

Should we be concerned about using just one value to represent an entire selection

pressure fingerprint for (say without-replacement) tournament selection? Figure 80

shows the continuous cumulative probability distributions for two very different wit-

hout-replacement tournament configurations: a tournament of 10 in a population of

20 and a tournament of 14 in a population of 20000. These two setups were chosen

to illustrate this point because, despite having very different configurations, they have

very similar many-from-few values. With a tournament of 10 in a population of 20,

we would expect 86.492% to come from the best 13.508% of the individuals. With a

tournament of 14 in a population of 20000, we would expect 86.621% to come from

the best 13.379% of the individuals. Figure 80 shows how similar the corresponding

selection pressure fingerprints are by scaling the latter example to the range of the

former. The lines are so similar it is difficult to see them both. This helps allay concerns

about the dangers of representing an entire tournament selection fingerprint with a

single many-from-few value.

7.2.8 Calculating Many-From-Few Values and Studying Selection Pressure

How can themany-from-few value be calculated precisely? For with-replacement tour-

nament selection, this is fairly trivial. The labels are as before: i is the index of a specific

individual and m is the size of the tournament. For simplicity, define k = i
m and then

observe that at the many-from-few point the cumulative probability is equal to 1− k:

1− (1− k)m = 1− k

⇒ m =
log(k)

log(1− k)

203

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

P
ro

ba
bi

lit
y

of
 b

ei
ng

 s
el

ec
te

d
in

 a
 s

in
gl

e
to

ur
na

m
en

t

Rank of individual within population

Figure 80: Very similar continuous cumulative probability distributions for two very different
without-replacement tournament selection configurations. The graph shows one
line representing a tournament of 10 in a population of 20 and the corresponding
discrete bars behind in pale pink. On top of this, another line representing a tourna-
ment of 14 in a population of 20000 has been added, scaled down on the x-axis by
a factor of 1000. The two many-from-few are indicated by two (very close) crosses.
The two resulting lines are so similar that it is hard to see them both.

Hence it is easy to calculate m in terms of k. Note that the cumulative probability is ex-

pressible solely in terms of k (i’s fraction through the population) andm. This illustrates

that the selection pressure for with-replacement tournament selection is independent

of the population size N as has previously been observed [106].

The without-replacement points of intersection are harder to find and require trial

and error. To this end, a bisection algorithm is used repeatedly to subdivide the range

known to contain the point until the location of the point is found to an acceptable

degree of accuracy.

Examples selection pressure values generated using these methods are given in Ta-

bles 38 and 39 for with-replacement and without-replacement tournament selection

respectively.

These methods can determine the many-from-few value for any given configura-

tion. Is it also possible to determine the tournament size that exerts a given selection

pressure for a given population size? This can be done using another bisection process

using the continuity of the formulae over tournament size. For without-replacement

tournament selection, this involves a double bisection process. In the outer bisection, a

204

range of tournament sizes is narrowed down to the value that gives the correct selec-

tion pressure. For each guess of the outer bisection, an inner bisection determines the

selection pressure, as before.

Examples of tournament size values generated by these methods are shown in Ta-

bles 40 and 41 for with-replacement and without-replacement tournament selection

respectively.

This supplies the last tools required to answer the question about the relationship

between tournament size, population size and the resulting selection pressure. Fig-

ures 81 and 82 display the fruits of this labour: graphs of selection pressure contours

for with-replacement and without-replacement respectively. Each line on these graphs

represents a specific strength of selection pressure and its shape shows how to adjust

tournament size (if at all) to maintain constant selection pressure with varying popula-

tion size.

Tournament size
5 10 15 20 25 30 35 40 45 50 60 70 80 90

75.488 83.508 87.195 89.390 90.870 91.946 92.769 93.423 93.955 94.399 95.098 95.627 96.043 96.380

Table 38: The many-from-few selection pressure (as a percentage) exerted by with-replacement
tournament selection for various tournament sizes.

The black lines indicate where tournament size equals population size. This is an

upper bound for without-replacement (Figure 82) but not for with-replacement (Fig-

ure 81). These graphs clearly show how different with-replacement is from without-

replacement. The contours in Figure 81 are all perfectly horizontal and are all higher

than their equivalents in Figure 82 (because with-replacement requires larger tourna-

ments to achieve the same selection pressure).

Here it is possible to see more clearly that neither the “constant” strategy nor the

“constant ratio” strategy described earlier is capable of dealing with all without-rep-

lacement situations. It is worth considering some examples. As a population grows

from 250 to 500, adding just one to a tournament of 25 slightly increases the selection

pressure (which was “91.192% from the best 8.808%”). As a population size grows

from 25 to 50, a tournament of size 24 should be increased to 40 to maintain constant

selection pressure. Perhaps surprisingly, this selection pressure is only the same as

from 75 out of 750, namely “96% from the best 4%”.

Again, these figures are generated using a continuous extension of a discrete for-

mula and so should strictly be interpreted in the following way. If a line indicating

“x% likely from the best y%” passes through some point m for population size N then:

• for any integer tournament size less than or equal to m, and for any integer in-

dex i <= N ∗ y/100, the cumulative probability for selection within the best i

members of the population is less than or equal to x/100 and

• for any integer tournament size greater than or equal to m, and for any integer

205

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

T
ou

rn
am

en
t S

iz
e

Population Size

95% likely from best 5%
90% likely from best 10%
85% likely from best 15%
80% likely from best 20%
75% likely from best 25%
70% likely from best 30%
65% likely from best 35%
60% likely from best 40%
55% likely from best 45%
50% likely from best 50%

(a) Selection pressure contours for with-replacement tournaments in population sizes up to 50

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

T
ou

rn
am

en
t S

iz
e

Population Size

95% likely from best 5%
90% likely from best 10%
85% likely from best 15%
80% likely from best 20%
75% likely from best 25%
70% likely from best 30%
65% likely from best 35%
60% likely from best 40%
55% likely from best 45%
50% likely from best 50%

(b) Selection pressure contours for with-replacement tournaments in population sizes up to 500

Figure 81: This figure shows contours of constant selection pressure exerted by tournament
selection with replacement over varying population and tournament sizes. Each
thin line represents a change of 1% in both percentages from the neighbouring lines.
The lines are generated using a continuous extension of a discrete formula and so,
strictly speaking, should be interpreted as described in themain text. The thick black
line indicates where the tournament size is equal to the population size.

206

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

T
ou

rn
am

en
t S

iz
e

Population Size

95% likely from best 5%
90% likely from best 10%
85% likely from best 15%
80% likely from best 20%
75% likely from best 25%
70% likely from best 30%
65% likely from best 35%
60% likely from best 40%
55% likely from best 45%
50% likely from best 50%

(a) Selection pressure contours for without-replacement tournaments in population sizes up to 50

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

T
ou

rn
am

en
t S

iz
e

Population Size

95% likely from best 5%
90% likely from best 10%
85% likely from best 15%
80% likely from best 20%
75% likely from best 25%
70% likely from best 30%
65% likely from best 35%
60% likely from best 40%
55% likely from best 45%
50% likely from best 50%

(b) Selection pressure contours for without-replacement tournaments in population sizes up to 500

Figure 82: This figure shows contours of constant selection pressure exerted by tournament
selection without replacement over varying population and tournament sizes. Each
thin line represents a change of 1% in both percentages from the neighbouring lines.
The lines are generated using a continuous extension of a discrete formula and so,
strictly speaking, should be interpreted as described in themain text. The thick black
line indicates where the tournament size is equal to the population size.

207

Tournament size (as percentage of population size)
Pop 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 60% 70% 80% 90%
3 51.087 54.117 56.863 59.384 63.917 67.983 71.775 75.474
4 50.000 53.847 57.172 60.107 62.741 65.139 69.412 73.211 76.748 80.231
5 50.000 54.530 58.296 61.519 64.340 66.853 69.128 73.150 76.701 80.000 83.272
6 53.596 58.052 61.721 64.836 67.545 69.944 72.104 75.901 79.233 82.320 85.399
7 50.940 56.535 60.903 64.472 67.482 70.085 72.379 74.436 78.034 81.173 84.075 86.979
8 53.479 59.002 63.278 66.748 69.659 72.164 74.363 76.328 79.748 82.720 85.459 88.206
9 55.672 61.116 65.300 68.675 71.493 73.907 76.020 77.902 81.165 83.987 86.583 89.190
10 50.000 57.596 62.956 67.049 70.334 73.065 75.397 77.431 79.237 82.360 85.050 87.519 90.000
11 51.768 59.303 64.579 68.584 71.783 74.433 76.689 78.651 80.389 83.385 85.957 88.312 90.680
12 53.366 60.834 66.025 69.944 73.063 75.638 77.823 79.719 81.395 84.276 86.742 88.995 91.260
13 54.821 62.216 67.324 71.162 74.205 76.709 78.829 80.664 82.284 85.060 87.430 89.590 91.762
14 56.154 63.475 68.500 72.261 75.231 77.670 79.729 81.508 83.075 85.755 88.038 90.114 92.202
15 57.383 64.627 69.572 73.258 76.161 78.537 80.540 82.267 83.786 86.378 88.581 90.581 92.590
16 58.520 65.687 70.554 74.169 77.008 79.326 81.276 82.955 84.429 86.940 89.069 90.998 92.936
17 59.577 66.667 71.459 75.006 77.783 80.047 81.947 83.581 85.014 87.449 89.510 91.375 93.247
18 60.564 67.576 72.296 75.777 78.497 80.709 82.563 84.155 85.548 87.914 89.912 91.717 93.528
19 61.487 68.424 73.073 76.491 79.156 81.320 83.130 84.682 86.039 88.340 90.279 92.029 93.783
20 50.000 62.355 69.216 73.796 77.156 79.768 81.885 83.655 85.169 86.492 88.732 90.616 92.315 94.016
21 50.876 63.171 69.959 74.473 77.775 80.338 82.411 84.141 85.621 86.912 89.094 90.928 92.578 94.230
22 51.708 63.942 70.657 75.107 78.354 80.870 82.901 84.595 86.041 87.302 89.430 91.216 92.821 94.427
23 52.501 64.672 71.315 75.703 78.897 81.368 83.360 85.018 86.433 87.665 89.743 91.484 93.047 94.609
24 53.258 65.363 71.937 76.265 79.408 81.835 83.790 85.415 86.800 88.005 90.035 91.733 93.257 94.779
25 53.982 66.020 72.525 76.795 79.890 82.275 84.194 85.787 87.144 88.324 90.308 91.967 93.453 94.936
30 57.179 68.875 75.057 79.063 81.940 84.141 85.902 87.357 88.591 89.660 91.451 92.939 94.266 95.586
40 62.073 73.096 78.732 82.312 84.848 86.769 88.292 89.542 90.596 91.504 93.014 94.259 95.362 96.454
50 65.706 76.117 81.309 84.561 86.841 88.555 89.907 91.010 91.936 92.731 94.047 95.125 96.076 97.013
60 68.547 78.413 83.239 86.228 88.308 89.863 91.082 92.074 92.904 93.615 94.787 95.743 96.582 97.407
70 70.850 80.233 84.750 87.523 89.441 90.868 91.983 92.888 93.642 94.287 95.346 96.208 96.962 97.701
80 72.767 81.719 85.972 88.564 90.347 91.669 92.699 93.532 94.225 94.817 95.786 96.573 97.259 97.930
90 74.393 82.960 86.985 89.422 91.091 92.324 93.283 94.057 94.700 95.247 96.143 96.868 97.499 98.114
100 75.797 84.017 87.841 90.143 91.715 92.872 93.770 94.494 95.094 95.604 96.438 97.111 97.696 98.265
110 77.023 84.929 88.575 90.759 92.246 93.338 94.184 94.864 95.428 95.906 96.687 97.316 97.862 98.392
120 78.106 85.726 89.213 91.293 92.705 93.740 94.540 95.183 95.714 96.165 96.900 97.491 98.003 98.500
130 79.071 86.429 89.773 91.761 93.106 94.091 94.850 95.460 95.963 96.390 97.085 97.643 98.126 98.594
140 79.939 87.056 90.271 92.175 93.460 94.400 95.123 95.703 96.182 96.588 97.247 97.776 98.233 98.675
150 80.723 87.619 90.715 92.544 93.776 94.674 95.366 95.919 96.376 96.763 97.390 97.893 98.327 98.747
160 81.437 88.127 91.115 92.875 94.058 94.920 95.582 96.112 96.549 96.919 97.518 97.997 98.411 98.811
170 82.091 88.589 91.478 93.174 94.313 95.141 95.778 96.286 96.705 97.059 97.632 98.091 98.486 98.868
180 82.691 89.011 91.808 93.446 94.545 95.342 95.955 96.443 96.846 97.185 97.736 98.175 98.554 98.919
190 83.245 89.398 92.110 93.695 94.756 95.525 96.116 96.586 96.974 97.301 97.830 98.252 98.616 98.966
200 83.758 89.755 92.387 93.923 94.949 95.693 96.263 96.717 97.091 97.406 97.916 98.322 98.672 99.008
210 84.235 90.085 92.644 94.133 95.127 95.847 96.398 96.837 97.198 97.502 97.994 98.386 98.723 99.047
220 84.680 90.391 92.881 94.328 95.292 95.990 96.523 96.948 97.297 97.591 98.066 98.445 98.770 99.082
230 85.096 90.676 93.101 94.508 95.444 96.121 96.639 97.051 97.389 97.673 98.133 98.499 98.813 99.115
240 85.487 90.943 93.307 94.676 95.586 96.244 96.746 97.146 97.474 97.750 98.195 98.550 98.854 99.146
250 85.853 91.192 93.499 94.832 95.718 96.358 96.846 97.234 97.553 97.821 98.253 98.597 98.891 99.174
300 87.404 92.236 94.298 95.483 96.266 96.830 97.259 97.599 97.878 98.112 98.490 98.789 99.044 99.289
400 89.569 93.666 95.382 96.359 97.001 97.461 97.810 98.085 98.310 98.499 98.802 99.042 99.246 99.440
500 91.029 94.609 96.091 96.929 97.477 97.868 98.163 98.397 98.587 98.746 99.001 99.202 99.373 99.536
600 92.089 95.285 96.595 97.332 97.812 98.154 98.412 98.615 98.780 98.919 99.140 99.314 99.462 99.602
700 92.900 95.796 96.974 97.633 98.062 98.367 98.596 98.777 98.924 99.047 99.243 99.396 99.527 99.650
800 93.542 96.197 97.270 97.869 98.257 98.532 98.740 98.903 99.035 99.146 99.322 99.460 99.577 99.688
900 94.066 96.521 97.508 98.058 98.413 98.665 98.855 99.003 99.124 99.225 99.385 99.511 99.617 99.718
1000 94.503 96.790 97.705 98.213 98.542 98.774 98.949 99.086 99.197 99.289 99.437 99.552 99.650 99.742
1100 94.872 97.016 97.871 98.344 98.650 98.866 99.028 99.155 99.258 99.344 99.480 99.587 99.677 99.762
1200 95.190 97.210 98.012 98.455 98.741 98.943 99.095 99.213 99.309 99.389 99.517 99.616 99.700 99.779
1300 95.467 97.378 98.134 98.551 98.820 99.010 99.152 99.264 99.354 99.429 99.548 99.641 99.720 99.794
1400 95.710 97.524 98.241 98.635 98.889 99.068 99.203 99.308 99.392 99.463 99.575 99.663 99.737 99.807
1500 95.926 97.654 98.335 98.709 98.950 99.120 99.247 99.346 99.426 99.493 99.599 99.682 99.752 99.818
1600 96.119 97.770 98.418 98.775 99.004 99.165 99.286 99.380 99.457 99.520 99.621 99.699 99.765 99.828
1700 96.293 97.874 98.493 98.834 99.052 99.206 99.321 99.411 99.483 99.544 99.640 99.714 99.777 99.836
1800 96.450 97.967 98.561 98.887 99.096 99.243 99.352 99.438 99.508 99.565 99.657 99.728 99.788 99.844
1900 96.593 98.052 98.622 98.935 99.135 99.276 99.381 99.463 99.530 99.585 99.672 99.740 99.798 99.851
2000 96.723 98.130 98.678 98.978 99.171 99.306 99.407 99.486 99.549 99.602 99.686 99.751 99.806 99.858
2100 96.843 98.201 98.729 99.018 99.204 99.333 99.431 99.506 99.568 99.618 99.699 99.762 99.814 99.864
2200 96.954 98.266 98.776 99.055 99.234 99.359 99.452 99.525 99.584 99.633 99.711 99.771 99.822 99.869
2300 97.056 98.327 98.820 99.089 99.261 99.382 99.472 99.543 99.600 99.647 99.721 99.779 99.828 99.874
2400 97.151 98.383 98.860 99.120 99.287 99.404 99.491 99.559 99.614 99.659 99.731 99.787 99.834 99.879
2500 97.240 98.435 98.897 99.149 99.311 99.424 99.508 99.574 99.627 99.671 99.741 99.795 99.840 99.883
3000 97.605 98.648 99.050 99.268 99.408 99.505 99.578 99.635 99.680 99.718 99.778 99.825 99.864 99.900
4000 98.090 98.929 99.250 99.424 99.535 99.612 99.669 99.714 99.750 99.780 99.827 99.863 99.894 99.922
5000 98.401 99.108 99.377 99.522 99.614 99.679 99.726 99.764 99.793 99.818 99.857 99.887 99.913 99.936
6000 98.618 99.233 99.465 99.590 99.670 99.725 99.766 99.798 99.823 99.845 99.878 99.904 99.925 99.946
7000 98.780 99.325 99.530 99.640 99.710 99.759 99.795 99.823 99.845 99.864 99.893 99.916 99.935 99.953
8000 98.906 99.396 99.580 99.679 99.741 99.785 99.817 99.842 99.862 99.879 99.905 99.925 99.942 99.958
9000 99.006 99.452 99.620 99.710 99.766 99.806 99.835 99.858 99.876 99.891 99.914 99.933 99.948 99.962
10000 99.088 99.499 99.652 99.735 99.786 99.823 99.849 99.870 99.887 99.900 99.922 99.939 99.952 99.965
11000 99.157 99.537 99.679 99.755 99.803 99.837 99.861 99.880 99.896 99.908 99.928 99.944 99.956 99.968
12000 99.216 99.570 99.702 99.773 99.818 99.848 99.871 99.889 99.903 99.915 99.933 99.948 99.960 99.971
13000 99.266 99.598 99.722 99.788 99.830 99.859 99.880 99.897 99.910 99.921 99.938 99.951 99.962 99.973
14000 99.310 99.622 99.739 99.801 99.840 99.867 99.887 99.903 99.915 99.926 99.942 99.954 99.965 99.974
15000 99.348 99.644 99.754 99.813 99.850 99.875 99.894 99.909 99.920 99.930 99.945 99.957 99.967 99.976
16000 99.382 99.663 99.767 99.823 99.858 99.882 99.900 99.914 99.925 99.934 99.948 99.959 99.969 99.977
17000 99.413 99.680 99.779 99.832 99.865 99.888 99.905 99.918 99.929 99.937 99.951 99.962 99.970 99.978
18000 99.440 99.695 99.790 99.840 99.872 99.893 99.910 99.922 99.932 99.940 99.953 99.963 99.972 99.980
19000 99.465 99.709 99.799 99.847 99.877 99.898 99.914 99.926 99.935 99.943 99.956 99.965 99.973 99.980
21000 99.508 99.733 99.816 99.860 99.888 99.907 99.921 99.932 99.941 99.948 99.959 99.968 99.975 99.982
22000 99.527 99.743 99.823 99.865 99.892 99.911 99.924 99.935 99.943 99.950 99.961 99.969 99.976 99.983
23000 99.544 99.753 99.830 99.871 99.896 99.914 99.927 99.937 99.945 99.952 99.963 99.971 99.977 99.984
24000 99.560 99.761 99.836 99.875 99.900 99.917 99.930 99.940 99.947 99.954 99.964 99.972 99.978 99.984
25000 99.575 99.770 99.841 99.880 99.904 99.920 99.932 99.942 99.949 99.955 99.965 99.973 99.979 99.985

Table 39: The many-from-few selection pressure (as a percentage) exerted by without-rep-
lacement tournament selection for various tournament sizes and populations sizes.

Many-from-few selection pressure
55% 60% 65% 70% 75% 80% 85% 90% 0.95% 96% 97% 98% 99%

1.336 1.794 2.437 3.376 4.819 7.213 11.673 21.854 58.404 78.852 115.123 193.639 458.211

Table 40: The tournament size required to achieve various selection pressures using with-rep-
lacement tournament selection.

208

Many-from-few selection pressurePop 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.96 0.97 0.98 0.99
3 1.247 1.539 1.877 2.258 2.662 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000
4 1.266 1.592 1.988 2.459 3.000 3.574 4.000 4.000 4.000 4.000 4.000 4.000 4.000
5 1.279 1.628 2.063 2.602 3.254 4.000 4.750 5.000 5.000 5.000 5.000 5.000 5.000
6 1.288 1.653 2.117 2.707 3.449 4.346 5.324 6.000 6.000 6.000 6.000 6.000 6.000
7 1.294 1.671 2.158 2.788 3.602 4.630 5.826 6.935 7.000 7.000 7.000 7.000 7.000
8 1.299 1.685 2.189 2.851 3.725 4.864 6.264 7.670 8.000 8.000 8.000 8.000 8.000
9 1.303 1.697 2.214 2.902 3.826 5.061 6.646 8.359 9.000 9.000 9.000 9.000 9.000
10 1.306 1.706 2.235 2.944 3.910 5.228 6.980 9.000 10.000 10.000 10.000 10.000 10.000
11 1.309 1.713 2.252 2.980 3.981 5.371 7.275 9.594 11.000 11.000 11.000 11.000 11.000
12 1.311 1.720 2.266 3.010 4.041 5.496 7.537 10.143 12.000 12.000 12.000 12.000 12.000
13 1.313 1.725 2.278 3.035 4.094 5.605 7.770 10.651 13.000 13.000 13.000 13.000 13.000
14 1.314 1.730 2.289 3.058 4.140 5.701 7.978 11.121 14.000 14.000 14.000 14.000 14.000
15 1.316 1.734 2.299 3.077 4.180 5.786 8.166 11.557 14.890 15.000 15.000 15.000 15.000
16 1.317 1.738 2.307 3.095 4.216 5.862 8.337 11.961 15.749 16.000 16.000 16.000 16.000
17 1.318 1.741 2.314 3.110 4.248 5.931 8.491 12.336 16.590 17.000 17.000 17.000 17.000
18 1.319 1.744 2.321 3.124 4.277 5.993 8.633 12.685 17.414 17.988 18.000 18.000 18.000
19 1.320 1.746 2.326 3.136 4.303 6.049 8.762 13.011 18.217 18.885 19.000 19.000 19.000
20 1.321 1.749 2.332 3.148 4.327 6.100 8.881 13.315 19.000 19.771 20.000 20.000 20.000
21 1.321 1.751 2.337 3.158 4.349 6.147 8.991 13.600 19.762 20.644 21.000 21.000 21.000
22 1.322 1.753 2.341 3.167 4.369 6.191 9.092 13.867 20.503 21.505 22.000 22.000 22.000
23 1.323 1.754 2.345 3.176 4.387 6.230 9.186 14.118 21.223 22.351 23.000 23.000 23.000
24 1.323 1.756 2.349 3.184 4.404 6.267 9.274 14.354 21.922 23.183 24.000 24.000 24.000
25 1.324 1.757 2.352 3.191 4.419 6.302 9.356 14.577 22.601 24.000 24.938 25.000 25.000
30 1.326 1.763 2.366 3.221 4.482 6.441 9.693 15.520 25.700 27.846 29.450 30.000 30.000
40 1.328 1.771 2.383 3.258 4.563 6.622 10.140 16.830 30.654 34.378 37.744 39.832 40.000
50 1.330 1.775 2.394 3.281 4.612 6.735 10.423 17.694 34.377 39.588 44.936 49.000 50.000
60 1.331 1.778 2.401 3.297 4.646 6.811 10.618 18.306 37.251 43.779 51.093 57.593 60.000
70 1.331 1.781 2.406 3.308 4.670 6.866 10.760 18.761 39.526 47.200 56.363 65.522 70.000
80 1.332 1.782 2.410 3.316 4.688 6.908 10.869 19.113 41.367 50.033 60.893 72.779 79.884
90 1.332 1.783 2.413 3.323 4.703 6.941 10.954 19.393 42.885 52.414 64.813 79.395 89.522
100 1.333 1.785 2.415 3.328 4.714 6.968 11.023 19.622 44.158 54.438 68.229 85.420 99.000
110 1.333 1.785 2.417 3.332 4.723 6.989 11.080 19.811 45.239 56.179 71.226 90.909 108.274
120 1.333 1.786 2.419 3.336 4.731 7.008 11.128 19.971 46.169 57.692 73.875 95.918 117.310
130 1.333 1.787 2.420 3.339 4.738 7.023 11.169 20.108 46.977 59.018 76.230 100.497 126.084
140 1.333 1.787 2.421 3.341 4.744 7.036 11.204 20.226 47.686 60.189 78.336 104.693 134.581
150 1.334 1.788 2.422 3.344 4.749 7.048 11.234 20.329 48.312 61.230 80.230 108.548 142.792
160 1.334 1.788 2.423 3.346 4.753 7.058 11.261 20.420 48.869 62.163 81.942 112.098 150.712
170 1.334 1.788 2.424 3.347 4.757 7.067 11.285 20.501 49.368 63.002 83.495 115.376 158.343
180 1.334 1.789 2.425 3.349 4.760 7.075 11.306 20.573 49.818 63.761 84.912 118.411 165.688
190 1.334 1.789 2.426 3.350 4.763 7.082 11.325 20.638 50.225 64.451 86.208 121.226 172.752
200 1.334 1.789 2.426 3.352 4.766 7.089 11.342 20.697 50.595 65.081 87.399 123.845 179.544
210 1.334 1.789 2.427 3.353 4.768 7.094 11.357 20.750 50.934 65.659 88.497 126.286 186.072
220 1.334 1.790 2.427 3.354 4.771 7.100 11.371 20.798 51.244 66.190 89.512 128.566 192.346
230 1.334 1.790 2.428 3.355 4.773 7.105 11.384 20.843 51.530 66.680 90.452 130.700 198.375
240 1.334 1.790 2.428 3.356 4.775 7.109 11.396 20.884 51.793 67.134 91.327 132.701 204.170
250 1.334 1.790 2.428 3.356 4.776 7.113 11.407 20.921 52.038 67.556 92.142 134.581 209.741
300 1.335 1.791 2.430 3.360 4.783 7.130 11.451 21.073 53.031 69.278 95.506 142.495 234.577
400 1.335 1.791 2.432 3.364 4.792 7.150 11.506 21.265 54.309 71.516 99.954 153.345 272.479
500 1.335 1.792 2.433 3.366 4.798 7.163 11.539 21.381 55.096 72.907 102.760 160.415 299.738
600 1.335 1.792 2.433 3.368 4.801 7.171 11.561 21.459 55.630 73.854 104.691 165.381 320.161
700 1.335 1.792 2.434 3.369 4.804 7.177 11.577 21.515 56.015 74.542 106.101 169.059 335.987
800 1.335 1.793 2.434 3.370 4.806 7.181 11.589 21.557 56.306 75.063 107.175 171.891 348.591
900 1.335 1.793 2.435 3.370 4.807 7.185 11.598 21.590 56.534 75.471 108.021 174.138 358.858
1000 1.335 1.793 2.435 3.371 4.808 7.188 11.606 21.616 56.717 75.800 108.704 175.965 367.378
1100 1.335 1.793 2.435 3.371 4.809 7.190 11.612 21.637 56.868 76.071 109.268 177.480 374.559
1200 1.335 1.793 2.435 3.372 4.810 7.192 11.617 21.655 56.994 76.298 109.740 178.755 380.693
1300 1.335 1.793 2.435 3.372 4.811 7.193 11.621 21.671 57.101 76.490 110.142 179.844 385.991
1400 1.335 1.793 2.435 3.372 4.811 7.195 11.625 21.684 57.193 76.656 110.488 180.785 390.614
1500 1.335 1.793 2.436 3.372 4.812 7.196 11.628 21.695 57.272 76.800 110.789 181.605 394.682
1600 1.335 1.793 2.436 3.373 4.812 7.197 11.631 21.705 57.342 76.926 111.053 182.327 398.290
1700 1.335 1.793 2.436 3.373 4.813 7.198 11.634 21.714 57.404 77.037 111.287 182.968 401.510
1800 1.335 1.793 2.436 3.373 4.813 7.199 11.636 21.721 57.459 77.137 111.496 183.540 404.403
1900 1.335 1.793 2.436 3.373 4.813 7.199 11.638 21.728 57.508 77.226 111.683 184.053 407.015
2000 1.336 1.793 2.436 3.373 4.814 7.200 11.639 21.735 57.552 77.306 111.852 184.517 409.386
2100 1.336 1.793 2.436 3.373 4.814 7.201 11.641 21.740 57.593 77.378 112.005 184.938 411.547
2200 1.336 1.793 2.436 3.373 4.814 7.201 11.643 21.745 57.629 77.445 112.144 185.322 413.525
2300 1.336 1.793 2.436 3.373 4.814 7.202 11.644 21.750 57.663 77.505 112.271 185.674 415.343
2400 1.336 1.793 2.436 3.374 4.814 7.202 11.645 21.755 57.693 77.561 112.388 185.997 417.018
2500 1.336 1.793 2.436 3.374 4.815 7.203 11.646 21.759 57.721 77.612 112.496 186.295 418.568
3000 1.336 1.793 2.436 3.374 4.815 7.204 11.651 21.774 57.834 77.816 112.928 187.492 424.845
4000 1.336 1.794 2.436 3.374 4.816 7.206 11.656 21.794 57.976 78.073 113.472 189.004 432.872
5000 1.336 1.794 2.437 3.375 4.817 7.208 11.660 21.806 58.061 78.228 113.799 189.919 437.786
6000 1.336 1.794 2.437 3.375 4.817 7.208 11.662 21.814 58.118 78.332 114.019 190.532 441.104
7000 1.336 1.794 2.437 3.375 4.817 7.209 11.664 21.820 58.159 78.406 114.175 190.972 443.495
8000 1.336 1.794 2.437 3.375 4.818 7.209 11.665 21.824 58.190 78.461 114.293 191.302 445.300
9000 1.336 1.794 2.437 3.375 4.818 7.210 11.666 21.828 58.213 78.504 114.385 191.560 446.710
10000 1.336 1.794 2.437 3.375 4.818 7.210 11.666 21.830 58.232 78.539 114.459 191.767 447.842
11000 1.336 1.794 2.437 3.375 4.818 7.210 11.667 21.833 58.248 78.567 114.519 191.936 448.772
12000 1.336 1.794 2.437 3.375 4.818 7.210 11.668 21.834 58.261 78.591 114.569 192.077 449.548
13000 1.336 1.794 2.437 3.375 4.818 7.211 11.668 21.836 58.272 78.611 114.612 192.196 450.207
14000 1.336 1.794 2.437 3.375 4.818 7.211 11.668 21.837 58.281 78.628 114.648 192.299 450.772
15000 1.336 1.794 2.437 3.375 4.818 7.211 11.669 21.838 58.289 78.643 114.680 192.388 451.263
16000 1.336 1.794 2.437 3.375 4.818 7.211 11.669 21.839 58.297 78.656 114.707 192.466 451.693
17000 1.336 1.794 2.437 3.375 4.818 7.211 11.669 21.840 58.303 78.668 114.732 192.534 452.073
18000 1.336 1.794 2.437 3.375 4.818 7.211 11.669 21.841 58.309 78.678 114.753 192.596 452.411
19000 1.336 1.794 2.437 3.375 4.818 7.211 11.670 21.842 58.314 78.687 114.773 192.650 452.714
21000 1.336 1.794 2.437 3.375 4.818 7.211 11.670 21.843 58.322 78.703 114.806 192.744 453.234
22000 1.336 1.794 2.437 3.375 4.818 7.211 11.670 21.843 58.326 78.709 114.820 192.785 453.458
23000 1.336 1.794 2.437 3.375 4.818 7.211 11.670 21.844 58.329 78.715 114.834 192.822 453.664
24000 1.336 1.794 2.437 3.375 4.818 7.212 11.670 21.844 58.332 78.721 114.846 192.856 453.852
25000 1.336 1.794 2.437 3.375 4.818 7.212 11.671 21.845 58.335 78.726 114.857 192.887 454.025

Table 41: The tournament size required to achieve various selection pressures for various pop-
ulation sizes using without-replacement tournament selection.

209

index i >= N ∗ y/100, the cumulative probability for selection within the best i

members of the population is greater than or equal to x/100.

Figures 81 and 82 are tremendously useful reference resources for EC practitioners

that use tournament selection. Section 7.2.4 proposed the hypothesis that neither keep-

ing the tournament size constant nor keeping the tournament size ratio constant would

guarantee constant selection pressure. This graph shows that hypothesis to be true and

gives a good deal more information on these relationships.

210

7.3 Enhancing the Individual Copying Strategy

7.3.1 The Problem of Updating the Individuals

Profiling also revealed that one of the CPU’s most computationally expensive tasks

was building the new generation. This task comes after the individuals have been

evaluated, the fitnesses have been calculated, the selections have been made and all

that remains is to construct the new generation. Each new creation consists of a copy of

a selected individual, a possible crossover drawing material from another individual

and a possible mutation. The order in which the new creations appear does not matter.

The natural approach is to take a complete copy of the population, and then build

the new individuals in-place in the original array using the copy of the population for

sources as shown in Figure 83(a). This is simple to implement and was adopted in the

original code. However profiling revealed that this approach was time consuming and

that the copying of individuals accounted for most of this. This is perhaps unsurprising

since much of this work uses no crossover and the mutation operators often make a

small change. The relevant copy function was optimised but the problem remained.

If optimisation could not reduce the time per copy much further, perhaps it could

tackle the number of copies. For a population of N individuals, the naive technique

requires 2N copies: one for each of the N individuals in the copy of the population and

another for each of the N new individuals constructed in-place.

Is it possible to use fewer copies, perhaps by avoiding the copy to a temporary

population? First, is it possible if crossover is not used? If no temporary population is

available then the array of individuals must be updated in-place. The difficulty with

this is that unless care is taken, individuals that are still needed, get overwritten. For

example say a population of five is to be updated based on the selections 4, 1, 1, 2 and 1.

If this order is used as in Figure 83(b), the first step overwrites the first individual with

the fourth and so ruins the attempt because the first individual is now unavailable as a

source for later steps. At the time each new individual is created, its source individual

must still be intact.

It is possible to do better by using the freedom to reorder the steps and targets?

Figure 83(c) shows that the previous problem may be solved by copying the first indi-

vidual to the third slot and mutating, copying the first individual to the fifth slot and

mutating and then mutating the remaining individuals. The second version of the code

implemented a simple algorithm: “for each selection of an individual after the first one,

perform one copy onto an individual that has not been selected; mutate all”.

This algorithm tackles any possible list of selections. How many copies does it re-

quire? Observe that there must be at least one copy for each of the old individuals that

are not selected at all since other individuals must be copied into each of those individ-

uals’ slots. This improved algorithm performs exactly that minimum possible number

of copies. If each old individual is selected once, it performs no copies. Unfortunately,

211

1

2

3

4

5

4

5

4

3

2

1

2

1

1

1

(a) Attempt using a temporary copy
of the population (the blue squares
should be on top of the green
squares)

1

5

3

2

4

4

(b) Naive attempt
at building in-place

5

4

3

2

1

1

1

(c) Good attempt at
building in-place

5

44

3

2

1

2

1

5

1

3

(d) Failed attempt
to build in-place
with crossover

Figure 83: Four attempts at building a new population, the last of which involves crossover.
Green squares represent individuals in the previous generation, blue squares repre-
sent new individuals that have been mutated and grey squares represent temporary
copies. A square’s number indicates the location in the previous generation’s pop-
ulation of the individual (or its primary parent). A subscript number indicates a
secondary parent for crossover. The first three subfigures illustrate attempts to build
a population based on the selections 4, 1, 1, 2 and 1 (in any order). Subfigure 83(a)
shows an attempt which performs five copies of the originals to a temporary store
and then uses them as sources to build the new individuals in the original locations
with another five copies. Subfigure 83(b) attempts to reduce copies by constructing
in-place. This goes awry because the first step overwrites individual 1 with 4 but 1 is
still required for future steps. Subfigure 83(c) reorders and succeeds using only two
copies. Subfigure 83(d) attempts to handle crossover and build the recipes 4 → 5,
1 → 3, 1 → 5, 2 → 1 and 1 → 3. Recipes 4 → 5 and 2 → 1 are built without problem
but then any third step fails, e.g. the 1 → 3 here destroys individual 1 for remaining
steps. Note that 1 → 5 cannot be built in slot 5 because the primary parent (1) must
be copied on top of the destination (5) before the crossover, which then requires the
secondary parent (5).

the algorithm has one major problem: it does not deal with crossover.

Note that although many of the runs in this research did not use crossover, it was

deemed important that this optimisation should not prevent it because preventing

crossover would be a severe restriction to GP. For this reason, the crossover was in-

cluded as part of the problem. Unfortunately, crossover makes the problem more diffi-

cult because it means new individuals now specify two parents that must still be intact

at the time of creation. Each new creation is now specified by a recipe of the form:

“build an individual from the old ith individual, with a possible drawing of crossover

material from the old jth individual, and then mutate”. Such recipes will henceforth be

written i → j.

Temporary copies may be unavoidable once crossover is included: given the recipes

1 → 2, 2 → 3 and 3 → 1, each individual appears in two recipes so building any of the

recipes in any of the array slots will ruin the source for at least one future recipe. For

212

this reason, a scratch area may be used.

Since the crossover used in this work is typically computationally cheaper than a

copy and is often not used at all, it is assumed that the crossover must work with a

slot containing (a copy of) the first parent rather than the second. Figure 83(d) shows

an attempt with crossover going awry for a version of the previously solved problem

that has been extended to use the recipes 4 → 5, 1 → 3, 1 → 5, 2 → 1 and 1 → 3.

In addition to a slot being unusable if it appears in any remaining recipes, a slot is

unusable for building a recipe in which it appears as the second part because the first

stage of the recipe will overwrite the individual that is required as a source for the

second part.

The problem’s complexity now obstructs clear thinking. For instance, consider a

list of recipes that is tackled in Section 7.3.3 below: 2 → 27, 3 → 12, 3 → 16, 3 → 17,

3 → 23, 3 → 24, 3 → 26, 4 → 3, 4 → 22, 4 → 25, 6 → 15, 11 → 4, 11 → 12, 11 → 15,

11 → 16, 11 → 26, 12 → 15, 12 → 28, 13 → 8, 14 → 4, 14 → 13, 14 → 22, 16 → 3,

16 → 21, 16 → 25, 16 → 27, 21 → 20, 24 → 22, 25 → 4 and 30 → 6. How can one think

about how to find a good solution for these recipes?

7.3.2 Picturing the Problem

To think clearly about this problem, it was important to find a good way to depict it.

Figure 84(a) shows an example of the chosen representation. Orange nodes represent

individuals in the previous generation; arrows represent recipes for new individuals

such that an arrow from node a to node b represents the recipe a → b. Table 42 shows

how the constraints of the problem may now be translated to rules of a game on the

diagram.

Constraints of the problem Rules of the game

The task is to form a list of steps that build a list
of recipes. Each step builds a new individual in
one of the array’s slots, after which the recipe is
done and the slot is unavailable for use.

The task is to form a list of moves that eradicate
all nodes and arrows. Each move involves drag-
ging an arrow onto a node, after which the arrow
and the node disappear.

An individual in the array may not be used as a
destination if it is still mentioned in any future
recipes.

An arrow may not be dragged onto a node if
that node has any remaining arrows touching it
(other than the base of the dragged arrow).

Copying an individual i to a new slot j costs one
copywhereas building an individual in the same
slot as its first parent requires no copies.

Dragging an arrow onto a new node costs one
point whereas sucking an arrow into its own
base node is free.

When desperate, it may be necessary to spend
one copy to make a temporary copy of one of the
old individuals that can be used as the source of
future copies.

When desperate, it may be necessary to spend
one point to make a specific node immediately
removable. An arrow can then be dragged onto
it, even if it still has other arrows attached.

The aim is to use as few copies as possible. The aim is to use as few points as possible.

Table 42: Translating between constraints of the problem and equivalent rules of a game to be
played on diagrams like that in Figure 84(a).

Figures 84(b)-84(f) show one possible way to play this game for the problem de-

213

1

35

2

4

(a) Start

1

35

2

4

(b) Step 1

1

35

2

4

(c) Step 2

1

35

2

4

(d) Step 3

1

35

2

4

(e) Step 4

1

35

2

4

(f) Step 5

Figure 84: Orange nodes represent individuals in the previous generation; arrows represent
recipes for new individuals such that an arrow from node a to node b represents the
recipe a → b. 84(a) The recipes for the problem are: 4 → 5, 1 → 3, 1 → 5, 2 → 1,
1 → 3. 84(b) Step 1: the 4 → 5 arrow is sucked into the 4. 84(c) Step 2: the 2 → 1
arrow is sucked into the 2. 84(d) Step 3: the 3 is copied to a temporary and the 1 → 5
arrow is dragged onto the 3. 84(e) Step 4: one 1 → 3 arrow is dragged onto the 5.
84(f) Step 5: the other 1 → 3 arrow is sucked into the 1.

scribed earlier and attempted in Figure 83(d). The first step sucks the 4 → 5 arrow into

node 4, which costs no points. The second step sucks the 2 → 1 arrow into node 2,

which costs no points. At this juncture, no more normal moves can be played so one

point is spent making node 3 immediately removable and then another is spent drag-

ging the 1 → 5 arrow onto node 3. The fourth move drags one of the 1 → 3 arrows

onto node 5 at a cost of one point. The fifth move sucks the other 1 → 3 arrow into

node 1. Three points are spent in total.

This representation is even more useful because it allows a solution to be shown

on the same diagram as the problem. Figure 85 shows this for the same problem and

solution depicted in Figures 84(a)-84(f). The number of copies required for a particular

solution can be read off the figure as the number of solid arrows plus the number of

brown nodes, in this case three.

214

Although not essential, the code was written such that the crossover source is al-

ways different from the copy source so the diagrams never involve arrows from a node

to itself.

1

3

5 4(5)

5

3(3)

2

2

4

1

Figure 85: The problem and solution from Figure 84 compressed into one diagram. The details
of the nodes and arrows are as for Figure 84 and the labels on the arrows describe the
solution. The arrows are labelled with the order in which they are to be processed
(i.e. by the number of the step in which they should be processed). If an arrow’s label
has a second number in brackets, the arrow is to be dragged onto the node with that
number, otherwise it its to be sucked into the node at its base. Arrows that are to be
sucked into their base are dashed; arrows that are to be dragged to other nodes are
solid. Nodes that will need to be copied to a temporary are coloured brown rather
than orange. In this case, there are two solid arrows and one brown node indicating
three copies.

7.3.3 A Heuristic to Tackle the Problem

The aim was now to find a heuristic that quickly produces strategies that are usually

fairly good. It is much easier to reason about this when using the diagrams as a guide.

Since sucking an arrow is freewhereas dragging an arrow costs a point, the heuristic

should aim to suck as many arrows as possible. The diagrams suggest that sucking an

arrow into its base is an “easy” move that can free up other moves and can do little

harm. This suggests sucking moves should always be done before trickier moves and

that they should be done iteratively because sucking one arrow into its base node can

free up another node to suck its arrow. Making a node immediately writable should

only be used as a last resort. This leads to the following rules:

• Iteratively suck as many arrows into their base nodes as possible.

215

• When nomore arrows can be sucked into their base nodes, drag arrows onto each

of the nodes that are currently free or immediately writable:

– Prefer dragging arrows that are not due to be sucked into their base nodes

when fewer arrows point to them.

– If an arrow can be sucked into its base node now, always do that rather than

drag it elsewhere.

• Keep alternating between the previous two steps.

• When nothing else can be done (no self-writes, no free nodes, no immediately

writable nodes) identify the node with the most arrows pointing to it and make

it immediately writable.

• Keep following the above steps until the task is complete.

This leaves one difficult decision: how to prioritise which arrows to drag onto free

and immediately writable nodes. This question was tackled with a combination of

intuition and informal empirical investigation of different possibilities. The chosen

tactic aims to free up nodes as fast as possible by targeting arrows pointing to nodes

that are closest to being freed. More precisely the strategy selects the arrow that has

the fewest arrows pointing to the node to which it points. If there is a tie, it selects the

arrow that has the fewest arrows leaving the node to which it points. If there is further

tie, it just selects one of the joint winners arbitrarily (but deterministically and hence

reproducibly).

Figure 86 shows a solution generated by this heuristic for a problem of 30 recipes.

The solution begins with steps 1− 3 sucking arrows into nodes. Note that step 3 sucks

6 → 15 into its base but this is only possible after 30 → 6 is sucked into its base in step

1.

Steps 4− 15 drag arrows onto free nodes, avoiding dragging any arrows that could

be sucked into their base nodes. These steps prioritise arrows pointing to nodes that

can be freed up with the least work. For instance, steps 4− 7 each free up a node by

themselves. Steps 9, 12, 13 and 14 use nodes that were only freed up by earlier moves

in the same group. For instance step 9 moves arrow 14 → 13 to node 17 which was

only freed up in step 4.

By step 29, there are two remaining nodes, 16 and 3, and two remaining arrows,

16 → 3 and 3 → 16. This cannot be solved without making one node immediately

writable. Node 3 is made immediately writable, step 29 sucks 3 → 16 into node 3 and

step 30 sucks 16 → 3 into node 16.

In total, the solution uses 18 copies. 17 of the nodes have no arrows leaving them

so this provides a lower bound for the best possible solution. Hence in this solution,

making node 3 immediately writable was the only “wasted” copy. Moreover, 17 copies

216

1

2

2 7

2

3

1 2

23(26)

1 6

2 9

1 7

4(1)

2 3

5(5)

2 4

8(10)

2 6

13(27)

4

2 8

2 2

21(20)

2 5

15(29)

5

6

1 5

3

7

8

9 1 01 1

26(15)

22(22)

12(23)

2 7

11(19)

2 4

2 8

7(9)

1 3

1 6

1 4

2 5 9(17)

20(8)

3 0

2 1

10(18) 14(28)6(7)

1 8 1 9

2 0

1 7

1 8

1 9

2 9

3 0

1

Figure 86: A solution to a more realistically sized problem than in Figure 85. A population of
30 is being updated with the recipes: 2 → 27, 3 → 12, 3 → 16, 3 → 17, 3 → 23,
3 → 24, 3 → 26, 4 → 3, 4 → 22, 4 → 25, 6 → 15, 11 → 4, 11 → 12, 11 → 15, 11 → 16,
11 → 26, 12 → 15, 12 → 28, 13 → 8, 14 → 4, 14 → 13, 14 → 22, 16 → 3, 16 → 21,
16 → 25, 16 → 27, 21 → 20, 24 → 22, 25 → 4 and 30 → 6.

is only a lower bound; perhaps it is impossible with fewer than 18 copies. Either way,

18 copies is a big improvement over the 60 required for the naive population-copying

approach.

7.3.4 Assessment of the Heuristic

The aim of this work was to reduce the number of copies required to produce new gen-

erations. Profiling revealed that the mutation and crossover were not computationally

expensive relative to the copy operation. The time required to perform these copies

should be proportional to the number of copies although the average time per copy

may vary significantly depending on the particulars of the copy operator. For these

reasons, the heuristic was assessed based on the number of copy operations rather

than the time taken. Of course, it is quite possible that a mutation operator could be

written that was so slow, it would render these optimisations irrelevant.

Table 43 shows the results of 500 runs over varying population sizes. The data

for the tests were generated using tournament selection because it is used throughout

this work and is most widely used in GP [73]. The effectiveness of the algorithm may

depend on the distribution of selections: few individuals selected many times each, or

217

Selection pressure
Pop 55% 60% 65% 70% 75% 80% 85% 90% 95%

3.494 [±0.046] 4.336 [±0.044] 4.276 [±0.044] 5.280 [±0.037] 5.962 [±0.036] 6.594 [±0.033] 7.532 [±0.027] 8.362 [±0.021] 9.000 [±0.000]
20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 [±0.000]10

4.798 [±0.049] 5.464 [±0.046] 5.396 [±0.047] 6.320 [±0.037] 6.964 [±0.036] 7.594 [±0.033] 8.534 [±0.027] 9.362 [±0.021] 10.000 [±0.000]
7.212 [±0.063] 8.640 [±0.064] 8.690 [±0.061] 10.192 [±0.057] 11.546 [±0.053] 13.404 [±0.048] 15.148 [±0.041] 16.644 [±0.031] 18.326 [±0.021]

40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 [±0.000]20
8.774 [±0.068] 9.892 [±0.066] 9.938 [±0.064] 11.290 [±0.058] 12.604 [±0.053] 14.416 [±0.048] 16.150 [±0.041] 17.646 [±0.031] 19.326 [±0.021]

10.930 [±0.076] 12.946 [±0.074] 13.006 [±0.075] 15.168 [±0.076] 17.130 [±0.064] 19.730 [±0.061] 22.840 [±0.048] 25.394 [±0.038] 27.646 [±0.023]
60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 [±0.000]30

12.580 [±0.081] 14.304 [±0.077] 14.376 [±0.078] 16.348 [±0.077] 18.214 [±0.064] 20.764 [±0.061] 23.848 [±0.048] 26.396 [±0.038] 28.646 [±0.023]
14.566 [±0.091] 17.110 [±0.091] 17.380 [±0.087] 20.338 [±0.086] 24.580 [±0.072] 27.568 [±0.067] 30.150 [±0.060] 33.708 [±0.046] 36.926 [±0.030]

80.000 80.000 80.000 80.000 80.000 80.000 80.000 80.000 80.000 [±0.000]40
16.322 [±0.095] 18.546 [±0.093] 18.808 [±0.089] 21.560 [±0.087] 25.710 [±0.073] 28.612 [±0.067] 31.162 [±0.059] 34.712 [±0.046] 37.926 [±0.030]
18.222 [±0.102] 21.690 [±0.099] 21.516 [±0.100] 25.506 [±0.099] 30.490 [±0.083] 34.102 [±0.073] 37.558 [±0.066] 42.136 [±0.053] 46.066 [±0.033]

100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 [±0.000]50
20.090 [±0.108] 23.142 [±0.100] 23.024 [±0.104] 26.806 [±0.099] 31.612 [±0.084] 35.152 [±0.073] 38.572 [±0.067] 43.142 [±0.053] 47.066 [±0.033]
21.824 [±0.106] 25.854 [±0.114] 25.920 [±0.100] 30.584 [±0.098] 36.662 [±0.093] 40.904 [±0.082] 45.818 [±0.072] 50.284 [±0.054] 55.354 [±0.034]

120.000 120.000 120.000 120.000 120.000 120.000 120.000 120.000 120.000 [±0.000]60
23.784 [±0.114] 27.440 [±0.116] 27.512 [±0.105] 31.902 [±0.100] 37.784 [±0.093] 41.966 [±0.083] 46.822 [±0.072] 51.286 [±0.054] 56.354 [±0.034]
25.476 [±0.117] 30.478 [±0.109] 30.276 [±0.118] 35.436 [±0.108] 42.948 [±0.105] 47.570 [±0.089] 53.210 [±0.078] 58.992 [±0.064] 64.688 [±0.039]

140.000 140.000 140.000 140.000 140.000 140.000 140.000 140.000 140.000 [±0.000]70
27.512 [±0.121] 32.010 [±0.113] 31.856 [±0.120] 36.786 [±0.112] 44.144 [±0.104] 48.684 [±0.090] 54.220 [±0.079] 59.994 [±0.064] 65.688 [±0.039]
29.350 [±0.122] 34.588 [±0.122] 34.534 [±0.128] 40.410 [±0.123] 48.978 [±0.103] 54.274 [±0.101] 60.846 [±0.082] 67.118 [±0.067] 73.696 [±0.043]

160.000 160.000 160.000 160.000 160.000 160.000 160.000 160.000 160.000 [±0.000]80
31.442 [±0.125] 36.240 [±0.127] 36.186 [±0.133] 41.842 [±0.123] 50.206 [±0.103] 55.366 [±0.103] 61.862 [±0.082] 68.120 [±0.067] 74.698 [±0.043]
32.900 [±0.129] 38.882 [±0.135] 38.750 [±0.132] 45.496 [±0.131] 54.860 [±0.113] 60.926 [±0.107] 68.192 [±0.085] 75.560 [±0.068] 83.044 [±0.044]

180.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000 [±0.000]90
35.042 [±0.134] 40.660 [±0.140] 40.426 [±0.135] 46.936 [±0.130] 56.088 [±0.114] 62.028 [±0.107] 69.220 [±0.085] 76.560 [±0.068] 84.044 [±0.044]
36.644 [±0.145] 43.016 [±0.139] 43.382 [±0.145] 50.450 [±0.140] 60.870 [±0.123] 67.660 [±0.113] 75.784 [±0.090] 84.356 [±0.073] 92.234 [±0.045]

200.000 200.000 200.000 200.000 200.000 200.000 200.000 200.000 200.000 [±0.000]100
38.778 [±0.152] 44.714 [±0.143] 45.078 [±0.147] 51.922 [±0.142] 62.104 [±0.124] 68.790 [±0.112] 76.828 [±0.091] 85.360 [±0.073] 93.234 [±0.045]
40.288 [±0.139] 47.492 [±0.147] 47.454 [±0.154] 55.678 [±0.140] 67.028 [±0.131] 74.290 [±0.114] 83.186 [±0.097] 92.486 [±0.070] 101.388 [±0.048]

220.000 220.000 220.000 220.000 220.000 220.000 220.000 220.000 220.000 [±0.000]110
42.542 [±0.144] 49.306 [±0.152] 49.210 [±0.155] 57.126 [±0.141] 68.268 [±0.132] 75.430 [±0.115] 84.240 [±0.096] 93.486 [±0.070] 102.388 [±0.048]
43.940 [±0.155] 52.146 [±0.151] 52.040 [±0.158] 60.602 [±0.145] 72.964 [±0.136] 80.922 [±0.114] 90.934 [±0.098] 100.998 [±0.081] 110.588 [±0.052]

240.000 240.000 240.000 240.000 240.000 240.000 240.000 240.000 240.000 [±0.000]120
46.180 [±0.160] 53.976 [±0.152] 53.922 [±0.161] 62.148 [±0.148] 74.260 [±0.134] 82.068 [±0.115] 91.966 [±0.099] 102.004 [±0.080] 111.588 [±0.052]
47.354 [±0.164] 55.988 [±0.160] 56.068 [±0.154] 65.714 [±0.157] 78.986 [±0.127] 87.926 [±0.121] 98.134 [±0.101] 109.192 [±0.079] 119.836 [±0.052]

260.000 260.000 260.000 260.000 260.000 260.000 260.000 260.000 260.000 [±0.000]130
49.646 [±0.169] 57.798 [±0.160] 57.884 [±0.160] 67.276 [±0.158] 80.324 [±0.128] 89.136 [±0.122] 99.178 [±0.102] 110.198 [±0.079] 120.836 [±0.052]
51.360 [±0.157] 60.452 [±0.170] 60.598 [±0.169] 70.620 [±0.167] 85.324 [±0.144] 94.530 [±0.127] 105.786 [±0.113] 117.562 [±0.084] 129.252 [±0.054]

280.000 280.000 280.000 280.000 280.000 280.000 280.000 280.000 280.000 [±0.000]140
53.702 [±0.161] 62.282 [±0.172] 62.474 [±0.172] 72.182 [±0.168] 86.662 [±0.144] 95.764 [±0.127] 106.836 [±0.114] 118.572 [±0.084] 130.252 [±0.054]
55.156 [±0.172] 64.868 [±0.169] 65.020 [±0.170] 75.822 [±0.164] 91.128 [±0.148] 101.142 [±0.136] 112.884 [±0.113] 125.644 [±0.089] 138.284 [±0.059]

300.000 300.000 300.000 300.000 300.000 300.000 300.000 300.000 300.000 [±0.000]150
57.588 [±0.175] 66.772 [±0.173] 66.940 [±0.174] 77.370 [±0.164] 92.448 [±0.148] 102.336 [±0.137] 113.944 [±0.113] 126.650 [±0.089] 139.284 [±0.059]
58.646 [±0.173] 69.004 [±0.182] 69.296 [±0.173] 80.750 [±0.165] 97.338 [±0.155] 107.814 [±0.140] 120.818 [±0.117] 134.010 [±0.091] 147.522 [±0.056]

320.000 320.000 320.000 320.000 320.000 320.000 320.000 320.000 320.000 [±0.000]160
61.050 [±0.178] 70.980 [±0.186] 71.192 [±0.182] 82.312 [±0.167] 98.726 [±0.157] 109.070 [±0.142] 121.884 [±0.116] 135.014 [±0.091] 148.522 [±0.056]
62.826 [±0.180] 73.664 [±0.184] 73.566 [±0.192] 85.892 [±0.167] 103.462 [±0.159] 114.834 [±0.141] 128.128 [±0.124] 143.214 [±0.096] 156.760 [±0.061]

340.000 340.000 340.000 340.000 340.000 340.000 340.000 340.000 340.000 [±0.000]170
65.256 [±0.185] 75.592 [±0.185] 75.530 [±0.193] 87.526 [±0.167] 104.856 [±0.160] 116.040 [±0.142] 129.210 [±0.124] 144.216 [±0.096] 157.764 [±0.061]
66.056 [±0.194] 77.706 [±0.187] 77.356 [±0.184] 90.942 [±0.180] 109.364 [±0.158] 121.508 [±0.144] 135.676 [±0.128] 151.608 [±0.094] 166.118 [±0.058]

360.000 360.000 360.000 360.000 360.000 360.000 360.000 360.000 360.000 [±0.000]180
68.510 [±0.199] 79.744 [±0.188] 79.298 [±0.188] 92.590 [±0.181] 110.778 [±0.160] 122.796 [±0.145] 136.762 [±0.128] 152.616 [±0.094] 167.118 [±0.058]
69.766 [±0.188] 82.464 [±0.190] 81.932 [±0.188] 96.072 [±0.188] 115.576 [±0.165] 128.022 [±0.148] 143.166 [±0.129] 160.134 [±0.103] 175.224 [±0.064]

380.000 380.000 380.000 380.000 380.000 380.000 380.000 380.000 380.000 [±0.000]190
72.310 [±0.192] 84.472 [±0.193] 83.918 [±0.191] 97.734 [±0.189] 116.988 [±0.165] 129.274 [±0.148] 144.242 [±0.129] 161.134 [±0.103] 176.224 [±0.064]
73.558 [±0.202] 86.684 [±0.189] 86.508 [±0.200] 101.314 [±0.187] 121.612 [±0.165] 134.756 [±0.155] 150.452 [±0.128] 168.500 [±0.105] 184.606 [±0.064]

400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 [±0.000]200
76.100 [±0.206] 88.712 [±0.191] 88.488 [±0.203] 103.086 [±0.188] 123.034 [±0.167] 136.034 [±0.156] 151.538 [±0.129] 169.502 [±0.105] 185.606 [±0.064]
77.082 [±0.198] 90.610 [±0.199] 90.946 [±0.212] 106.226 [±0.186] 127.688 [±0.183] 141.534 [±0.156] 157.916 [±0.145] 176.936 [±0.107] 193.776 [±0.069]

420.000 420.000 420.000 420.000 420.000 420.000 420.000 420.000 420.000 [±0.000]210
79.750 [±0.205] 92.656 [±0.199] 92.998 [±0.210] 107.974 [±0.191] 129.096 [±0.184] 142.816 [±0.156] 159.030 [±0.145] 177.940 [±0.107] 194.776 [±0.069]
80.486 [±0.204] 95.252 [±0.201] 95.330 [±0.197] 110.940 [±0.199] 133.912 [±0.178] 148.196 [±0.150] 165.386 [±0.143] 185.012 [±0.108] 202.996 [±0.072]

440.000 440.000 440.000 440.000 440.000 440.000 440.000 440.000 440.000 [±0.000]220
83.144 [±0.207] 97.340 [±0.204] 97.408 [±0.202] 112.722 [±0.200] 135.432 [±0.180] 149.528 [±0.152] 166.504 [±0.143] 186.026 [±0.108] 203.998 [±0.072]
84.272 [±0.217] 99.486 [±0.210] 99.218 [±0.206] 116.176 [±0.198] 139.564 [±0.183] 154.488 [±0.177] 172.798 [±0.133] 193.450 [±0.109] 212.230 [±0.073]

460.000 460.000 460.000 460.000 460.000 460.000 460.000 460.000 460.000 [±0.000]230
87.026 [±0.223] 101.562 [±0.210] 101.280 [±0.206] 117.920 [±0.198] 141.040 [±0.184] 155.802 [±0.176] 173.906 [±0.133] 194.450 [±0.109] 213.230 [±0.073]
88.144 [±0.224] 103.514 [±0.222] 103.740 [±0.211] 121.116 [±0.207] 145.878 [±0.190] 161.874 [±0.166] 180.804 [±0.144] 201.932 [±0.109] 221.516 [±0.068]

480.000 480.000 480.000 480.000 480.000 480.000 480.000 480.000 480.000 [±0.000]240
90.810 [±0.227] 105.598 [±0.220] 105.782 [±0.215] 122.918 [±0.209] 147.368 [±0.195] 163.170 [±0.165] 181.920 [±0.144] 202.936 [±0.109] 222.516 [±0.068]
92.034 [±0.224] 108.034 [±0.232] 107.858 [±0.222] 126.178 [±0.220] 151.716 [±0.194] 168.202 [±0.181] 187.898 [±0.142] 210.168 [±0.109] 230.684 [±0.076]

500.000 500.000 500.000 500.000 500.000 500.000 500.000 500.000 500.000 [±0.000]250
94.786 [±0.228] 110.100 [±0.233] 109.968 [±0.226] 128.032 [±0.221] 153.238 [±0.196] 169.506 [±0.183] 189.042 [±0.143] 211.176 [±0.109] 231.684 [±0.076]
95.468 [±0.221] 111.616 [±0.228] 112.436 [±0.224] 131.608 [±0.213] 158.066 [±0.204] 175.286 [±0.177] 195.666 [±0.153] 218.382 [±0.121] 239.826 [±0.074]

520.000 520.000 520.000 520.000 520.000 520.000 520.000 520.000 520.000 [±0.000]260
98.176 [±0.230] 113.714 [±0.230] 114.564 [±0.227] 133.334 [±0.214] 159.598 [±0.204] 176.628 [±0.177] 196.820 [±0.154] 219.388 [±0.121] 240.828 [±0.074]
99.322 [±0.225] 116.364 [±0.238] 116.598 [±0.216] 136.470 [±0.223] 163.854 [±0.201] 181.704 [±0.181] 202.812 [±0.148] 226.998 [±0.124] 248.928 [±0.075]

540.000 540.000 540.000 540.000 540.000 540.000 540.000 540.000 540.000 [±0.000]270
102.010 [±0.229] 118.550 [±0.240] 118.696 [±0.216] 138.412 [±0.226] 165.318 [±0.204] 183.044 [±0.181] 203.944 [±0.149] 228.000 [±0.124] 249.928 [±0.075]
103.022 [±0.235] 120.858 [±0.238] 120.770 [±0.239] 141.120 [±0.231] 170.002 [±0.212] 188.264 [±0.193] 210.468 [±0.158] 235.256 [±0.116] 258.510 [±0.080]

560.000 560.000 560.000 560.000 560.000 560.000 560.000 560.000 560.000 [±0.000]280
105.836 [±0.239] 122.992 [±0.238] 123.000 [±0.241] 142.938 [±0.234] 171.540 [±0.213] 189.612 [±0.195] 211.648 [±0.161] 236.270 [±0.116] 259.510 [±0.080]
106.470 [±0.244] 125.246 [±0.257] 125.304 [±0.249] 146.426 [±0.236] 176.210 [±0.210] 195.384 [±0.193] 217.646 [±0.168] 243.916 [±0.119] 267.662 [±0.080]

580.000 580.000 580.000 580.000 580.000 580.000 580.000 580.000 580.000 [±0.000]290
109.324 [±0.245] 127.436 [±0.258] 127.452 [±0.249] 148.254 [±0.236] 177.730 [±0.213] 196.748 [±0.195] 218.782 [±0.169] 244.930 [±0.119] 268.662 [±0.080]
109.794 [±0.238] 130.004 [±0.243] 129.674 [±0.240] 151.840 [±0.231] 181.820 [±0.210] 201.716 [±0.194] 225.312 [±0.168] 251.956 [±0.124] 276.830 [±0.079]

600.000 600.000 600.000 600.000 600.000 600.000 600.000 600.000 600.000 [±0.000]300
112.558 [±0.247] 132.206 [±0.246] 131.964 [±0.243] 153.682 [±0.233] 183.442 [±0.213] 203.122 [±0.193] 226.460 [±0.169] 252.970 [±0.124] 277.830 [±0.079]

Table 43: Lower bound, copies for the naive algorithm and copies for the new algorithm over
varying population sizes and selection pressures. Square brackets contain standard
errors.

218

many individuals selected few times each. Hence the without-replacement tournament

sizes were varied to produce a range of selection pressures. The many-from-few mea-

sure described in Section 7.2.7 was used to prescribe the selection pressures and hence

tournament sizes.

Note that in most cases, it will not be possible to achieve the exact stated selection

pressure for the stated population size due the discrete nature of the tournament sizes.

For this reason, slight oddities are to be expected, particularly for lower population

sizes and selection pressures. This may explain the similarity between the values for

selection pressures of 60% and 65% in Figures 88 and 88(a).

It would be helpful to know how the resulting number of copies compares to the

best number of copies that could possibly be achieved. For this reason each result is

compared against both the naive algorithm’s 2N copies and a lower bound. As de-

scribed earlier, a lower bound can be obtained for a given problem from the number of

slots that are not mentioned as the first part of any recipes. Again, it is worth stressing

that the lowest possible number of copies may still be greater than this lower bound so

a result that doesn’t reach this lower boundmay still be doing as well as it possibly can.

For example, the lower bound for the problem with recipes 1 → 2, 2 → 3 and 3 → 1 is

zero yet the problem cannot be solved without using copies.

Figure 87 shows two subsets of these results: those generated with a high selection

pressure of 95% (Figure 87(a)) and those generated with a low selection pressure of 55%

(Figure 87(b)). The resulting number of copies appears to increase as a linear factor of

the population size and is lower in the case of low selection pressure. The lower bounds

indicate that this is largely because the higher selection pressure scenarios simply need

more copies.

Figure 88 shows the data to highlight the percentage reduction that the algorithm’s

number of copies represents compared to the naive algorithm’s 2N copies. Figure 88(a)

shows the percentage of the reduction from 2N to zero. This illustrates the same pat-

tern that the reductions are more impressive for data from lower selection pressures.

For populations of 10, the reductions vary from 50.000% for 95% selection pressure,

up to 76.010% for 55% selection pressure. These results improve as the population

size increases and for all populations of 100 or larger (up to 300), the reductions vary

from 53.383% for 95% selection pressure up to 80.611% for 55% selection pressure. Fig-

ure 88(b) shows the percentage of the reduction from 2N to the lower bound. This

shows that the reduction is often very close to the best possible, particularly for popu-

lation sizes above 100 and that this is not affected much by the selection pressure used

to generate the data. The worst reductions are for population size 10 and selection

pressure 95%: 90.909% reduction to the lower bound. For population sizes of 100 or

above (up to 300), all reductions toward the lower bound are at least 98.694%.

Figure 89 shows the average absolute number of copies above the lower bound

from the same data. All average values are below three in the population range shown.

219

The absolute number of copies appears to be growing slowly with regard to population

size and is larger for lower selection pressures.

7.4 Summary and Contribution

Chapters 4 and 6 created effective GPU evaluators to reduce the time spent on evalu-

ation. Chapter 5 made these more useful by showing how the GPU work could be in-

terleaved with CPU work and how multiple GPUs and CPU cores could be recruited.

This still leaves the danger that, depending on the setup, time wasted on CPU tasks

leaves the GPU sat idle for longer than necessary. Hence this chapter described two

optimisations to the CPU code of a GP run.

The benefit of these two optimisations will vary according to the details of the setup

to which they are applied. They will have the greatest effect for those setups in which

the time taken by the optimised tasks is greatest. This will tend to occur for those setups

that do not have sufficient testcases to ensure the GPU evaluation time is the slowest

part of the run. The acceleration ratio offered by these optimisations is unlikely to be

comparably high to the acceleration achieved by the initial move to the GPU but is of

value because it applies on top of the GPU acceleration. These optimisations help to

ensure that the full computational power of the GPU can be brought to bear on a wider

range of setups.

The first optimisation involved optimising without-replacement tournament selec-

tion in an attempt to reduce the number of random numbers it required. Through

mathematical analysis, the algorithm was optimised. The new algorithm was shown

to be faster than the standard algorithm for most configurations up to populations of

1000, even after the standard algorithm’s random sampling subroutine was improved.

However this algorithm is only likely to be of much use for very fast implementa-

tions of EC (such as in this work) since the slowest population tournament selection in

the experiments was 0.056042 seconds (around 1/18th of a second). The mathematical

analysis also generated insight into the relationship between a tournament selection

configuration and the strength of its selection pressure.

This work involved a number of contributions that are believed to be novel:

• Themathematical analysis of without-replacement tournament selection which is

considerably more challenging than the with-replacement analysis that has pre-

viously been performed in the literature.

• The optimised tournament selection algorithm it generated.

• The investigation into the affect of this work on the run time of the algorithm.

• The continuous extensions of the probability formulae.

• The mathematical demonstration that these extensions are well behaved.

220

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300

Total population size

 Lower bound on number of copies
 2N copies

 Number of Copies

(a) Average performance over data generated with high selection pressure

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300

Total population size

 Lower bound on number of copies
 2N copies

 Number of Copies

(b) Average performance over data generated with low selection pressure

Figure 87: The average number of copies required by the algorithm compared to the 2N copies
required for the naive algorithm and the lower bound. It is not possible to do bet-
ter than the lower bound and the best possible result may be larger than the lower
bound. Each line has a bar behind it to represent the average plus and minus one
standard error. Since the standard errors are so small, these can hardly be seen.

221

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
er

ce
nt

ag
e

R
ed

uc
tio

n
fr

om
 2

N
 to

 Z
er

o

Total population size

 Selection Pressure:55%
 Selection Pressure:60%
 Selection Pressure:65%
 Selection Pressure:70%
 Selection Pressure:75%
 Selection Pressure:80%
 Selection Pressure:85%
 Selection Pressure:90%
 Selection Pressure:95%

(a) Average percentage reduction from 2N copies to zero copies

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
er

ce
nt

ag
e

R
ed

uc
tio

n
fr

om
 2

N
 to

 L
ow

er
 B

ou
nd

Total population size

 Selection Pressure:55%
 Selection Pressure:60%
 Selection Pressure:65%
 Selection Pressure:70%
 Selection Pressure:75%
 Selection Pressure:80%
 Selection Pressure:85%
 Selection Pressure:90%
 Selection Pressure:95%

(b) Average percentage reduction from 2N copies to the lower bound number of copies

Figure 88: The results represent considerable reductions in the numbers of copies and get close
to the lower bounds. The average percentage reduction towards zero and towards
the lower bound from the 2N copies required for the naive algorithm. Each line has
a bar behind it to represent the average plus and minus one standard error. Since the
standard errors are so small, these can hardly be seen.

222

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300

C
op

ie
s

A
bo

ve
 L

ow
er

 B
ou

nd

Total population size

Selection Pressure:55%
Selection Pressure:60%
Selection Pressure:65%
Selection Pressure:70%
Selection Pressure:75%

Selection Pressure:80%
Selection Pressure:85%
Selection Pressure:90%
Selection Pressure:95%

Figure 89: The average absolute number of copies above the lower bound. Each line has a bar
behind it to represent the average plus and minus one standard error.

• The new many-from-fewmeasure, an intuitive measure of selection pressure.

• A method to determine this measure for a given tournament configuration.

• A method to determine the tournament size that would exert a given value of

this selection pressure measure (for a given population size in the case of wit-

hout-replacement tournament selection).

• Maps of the contours of constant selection pressure over varying population size

and tournament size.

This work suggests two key recommendations for all researchers publishing work

involving tournament selection.

1. When reporting experiments using tournament selection, one should always state

whether the tournament selection is being used with-replacement or without be-

cause these schemes are quite different.

2. One should also state (at least a rough indication of) the many-from-few selec-

tion pressure measure when reporting use of tournament selection. This value

conveys a direct sense of what is happening in the selection scheme and makes

it much easier to compare between different configurations. The tables in this

223

work should provide appropriate values for most practical configurations and

the formulae can be used to calculate the details in other cases.

The second optimisation involved optimising the algorithm to construct a new pop-

ulation based on the previous population and the selections. The aimwas to reduce the

number of copies of individuals required. A useful representation was found to depict

the problem and this was used to guide the design of a heuristic. This was found to be

highly effective at reducing the number of copies particularly when viewed as a per-

centage from 2N copies to the lower bound. The minimum reduction in the number of

copies was 50.000% for 95% selection pressure in a population of 10 and this rose to a

reduction of 80.611% for 55% selection pressure in a population of 100. A lower bound

was used to give some indication of how far the heuristic went towards achieving the

best possible reduction. The worst reductions to the lower bound were for population

size 10 and selection pressure 95%: 90.909% reduction to the lower bound. For popu-

lation sizes of 100 or above (up to 300), all reductions toward the lower bound were at

least 98.694%.

This work involved a number of contributions that are believed to be novel:

• The analysis of the problem faced in reducing copies in EC.

• The new representation to depict the problem thus making it much easier to con-

template.

• The new proposed heuristic to tackle real instances of the problem.

• The investigation into the effectiveness of this heuristic at reducing copies.

The benefit of these two optimisations will vary considerably according to the de-

tails of the run. For setups where the selection and copying account for a very small

part of the run time or are executed in paralled with other tasks such as GPU evaluation

that takes longer, there will be little benefit to be had. This will tend to occur for CPU

evaluation, data-parallel GPU evaluation or for data parallel population parallel runs

in which the number of testcases is not so large as to ensure the GPU computation.

224

8 Conclusions and Future Work

8.1 Conclusions

This thesis described work to accelerate Genetic Programming (GP) and TweakingMu-

tation Behaviour Learning (TMBL, pronounced “tumble”) as far as possible on one ma-

chine, primarily through the use of the Graphics Processing Unit (GPU). As discussed

in Chapter 1, the motivation for this work was to provide the tools to research how to

stimulate long-term fitness growth when evolving behaviours. The work in this thesis

contributes by taking a necessary and important first step toward this crucial aim of

stimulating long term fitness growth. More must be done in the future to build on this

first step.

More generally, the work contributes to the broader fields of GP and Evolutionary

Computation (EC) by reducing run times. The tools also have wide applicability in

any situation where there is reason to perform these forms of EC more quickly. Accel-

erating these forms of EC is of such importance to the research community that it has

developed into an independent research topic in its own right, as can be seen from the

volume of literature on the topic as discussed in Chapter 2. Accelerating EC improves

our ability to research, develop and apply it.

As described in Chapter 2, there are two main approaches to accelerating GP with

the GPU: population-parallel and data-parallel. The work described in this thesis made

contributions to both these techniques (as covered in Chapters 4 and 6 respectively).

Other chapters looked at how these techniques can be complemented with tactics to

speed up the whole run on a single machine: overlapping GPU and Central Process-

ing Unit (CPU) work, recruiting a further GPU and CPU core and performing intra-

population transfers efficiently (Chapter 5) and reducing wasted CPU time (Chap-

ter 7).

The main work began in Chapter 4, which described work to develop a population-

parallel evaluator. Since the research was aimed at providing tools to allow the investi-

gation of long-term fitness growth, it was deemed important that this evaluator should

permit a wide range of representations. Cyclic GP was chosen because it is a power-

ful representation that encompasses many of the more common forms of GP. Cyclic

GP imposes extra memory requirements and so providing this flexibility of represen-

tation required substantial work to accommodate the requirements within an efficient

Compute Unified Device Architecture (CUDA) system. Chapter 4 described the design

of the system in detail and then described experiments to assess the resulting perfor-

mance. On a realistic configuration, the architecture was found to run 175.703 times

faster than the single–core CPU equivalent when measured over the whole run.

Providing a powerful GPU evaluator only realises part of the potential of a single

machine as it leaves either the CPU or the GPU idle for most of the run and ignores any

extra GPU and CPU resources available. Chapter 5 described three steps to develop

225

a GPU evaluator into a faster overall system. Step one showed how to better utilise

the evaluator in the context of the whole run by using demes to allow the GPU and

the CPU to work simultaneously on different tasks. The described approach uses the

strengths of both types of processor and uses them both simultaneously. It also avoids

introducing unwanted asynchronous components that would corrupt the standard al-

gorithm and make reproducibility very difficult. This technique was found to reduce

the total run time by up to a further 1.806 times. Step two showed what is involved in

recruiting further GPUs and further CPU cores. This is likely to be of much interest be-

cause the current trend appears to be toward greater numbers of CPU cores and GPUs

in individual machines. This technique was found to reduce total run time by up to a

further 1.982 times over the first step and by up to a further 3.292 times in combina-

tion with the first step. Step three showed that the cost of the transfers required to use

demes was small, even compared to the run time of a highly accelerated architecture

and hence that deme transfers need not deter researchers from using demes in the ways

described in the previous steps. Furthermore, for those who are concerned about the

impact of these deme transfers, the work demonstrated how these costs can be reduced

by separating out donating from receiving to minimise unnecessary delays. The com-

bination of the first two techniques were found to reduce the total run time by up to a

further 3.292 times. The worst increase seen in run time caused by the deme-transfers

was only 13.449% and with smart transfers, this increase was only 1.742%.

Chapter 6 switched to the other major category of approaches to using the GPU

to accelerate GP: data-parallel. Whereas the population-parallel evaluator described in

Chapter 4 had coveredmost node-based representations of GP (through cyclic GP), this

chapter’s data-parallel evaluator covered the other side of GP representations: linear.

In particular, it implemented TMBL, a representation similar to linear GP proposed as

part of the investigation into long term fitness growth (and discussed further in Sec-

tion 3.2). The chapter contributed by showing two possible ways to tackle the biggest

problem of data-parallel GPU approaches, namely the time required for compilation. It

also identifies issues involved with these techniques and their possible solutions. The

two techniques were encoding individuals in a lower-level GPU language and aligning

individuals to reduce duplication of code. The first technique was seen to reduce com-

pilation times by up to 5.861 times and to increase evaluation speeds by up to 23.029%.

The second technique was seen to reduce compilation time by up to 4.817 times whilst

only reducing evaluation speed by 3.656%. Combined, the techniques were seen to

reduce the compilation times by up to 57.625 times on large, 1000-instruction TMBL

individuals.

Chapter 7 described work to optimise two of the processes that were wasting the

most CPU time: tournament selection and individual copying. The work on optimis-

ing tournament selection showed howwithout-replacement tournament selection may

be implemented in quite a simple way so as not to require as many random number

226

generations. This technique was seen to be faster than the standard technique for most

tournament configurations in populations of up to 1000. Furthermore, the mathemat-

ical analysis used to perform this is a contribution in itself and was used to make a

further contribution by underpinning a new measure of selection pressure. This mea-

sure was used to analyse selection pressure in a wide range of configurations of both

with-replacement and without-replacement tournament selection. Two figures pro-

vided a strikingly clear illustration of the patterns of selection pressure for these two

schemes. The second target for optimisation was the copying of individuals to con-

struct new generations. This was achieved by proposing an appropriate heuristic to

reduce the number of copies required. To devise such a heuristic, a suitable way to

represent example problems was proposed. At worst the technique was seen to deliver

a 50% reduction in the number of copies and was shown to deliver at worst a 90.909%

reduction towards a lower bound on the minimum possible number of copies.

The techniques described in this thesis combine to form a system that is highly

effective at achieving the aim set out in Section 1.4, namely:

Aim Accelerate program evolution (GP) as much as possible on a single, reasonably-priced

machine with as little distortion of the algorithm as possible. This should be done flexibly

to allow for a wide range of forms and problems.

It seems doubtful that, for example, TMBL can be performed at speedsmuch greater

than those achieved by this system on equivalent technology because the system al-

ready keeps the GPU busy for most of the run performing TMBL floating point oper-

ations about as fast as could be hoped for. One exception is that it may be possible to

reduce the CPU time spent on CUDA compilation quite considerably bywriting CUDA

binaries directly. This might allow the GPU to be kept busy for smaller data-sets. The

complexity and future compatibility issues arising from this potential technique were

deemed to outweigh any future benefit as described in Section 6.3.5.

The work has achieved these high speeds at the price of increased complexity. The

thesis has given an indication of the complexity involved in the various steps and the

resulting speed increases. To decide which, if any, of these techniques to adopt, each

individual researcher must consider whether they offer sufficient benefits to warrant

the greater complexity. The complexity has been curbed by designing and writing

quality code that attempts to keep components independent.

8.2 Future Work

The work described in this thesis opens up several possible lines of further research.

One avenue would be to take the techniques used to construct the population-parallel

evaluator in Chapter 4 and use them for a population-parallel evaluator of linear forms

such as linear GP or TMBL. If the quantity of memory required for each individual were

small enough, it would be possible to achieve this using only one thread per evaluation

227

of a single program–testcase combination. To provide more memory per individual, it

would be necessary to attempt to divide evaluation over multiple threads. Dividing the

evaluation of a linear sequence of instructions over multiple parallel processors is more

difficult than doing the same for a set of cyclic nodes. This is because the order of exe-

cution of the instructions is important. Nevertheless, it would be possible to perform a

CPU analysis of each individual before submission to the GPU to assess how the list of

instructions might be teased apart into several shorter lists of instructions. This is dif-

ficult since the analysis must ensure that if the lists are executed in parallel (with each

step synchronised) the original behaviour is preserved and furthermore, that there are

no potential read/write conflicts that might deliver differing results over multiple exe-

cutions. In fact, this technique was successfully coded but it could not be investigated

sufficiently thoroughly within the scope of this thesis. Informal assessment suggested

that the technique was successful but that on rare occasions it had to be abandoned for

individuals that could not be teased apart as required. On these occasions, small thread

blocks had to be used to evaluate those individuals at much slower speed.

In general, it would be more difficult to produce efficient GPU evaluators for forms

of linear GP that include conditional branches since these are likely to induce diver-

gences between neighbouring threads, which is very costly on a GPU architecture.

If there is sufficient cause, it might be sensible to extend the existing population-

parallel evaluator to automatically identify batches of individuals that are cycle-free

and switch to a simpler non-cyclic evaluator.

The work on recruiting further GPUs and CPU cores in Section 5.3 could easily be

extended by adding further processors. It is currently possible to havemany CPU cores

on a single machines through increased numbers of cores per processor and increased

numbers of processors per motherboard. Similarly, it is possible to have more GPUs on

a single machine. For instance, the nVidia GTX 590 (in the most recent generation of

graphics cards at the time of writing) contains two GPUs and at least two such cards

may be hosted in one machine. The architecture described in Section 5.3 should be

ready to usefully incorporate this additional processing power.

Another possibility would be to investigate applying the techniques that were used

to reduce data-parallel compilation times in Chapter 6 to node-based forms (such as

tree-based GP). The first technique of writing individuals in Parallel Thread EXecution

(PTX) should be just as applicable to node-based forms as it was to TMBL. This could

open up tree-based GP with moderate data-sets to the remarkable evaluation speeds

seen in the data-parallel work. It is perhaps less clear how effective the second tech-

nique of code alignment would be when applied to tree-based GP. Certainly, it should

be possible to apply the technique since the code to evaluate the tree could be linearised

and then aligned. However, it is not clear whether small mutations in trees will nec-

essarily correlate well with small changes in the linearised code and this may limit the

ability to reduce redundancy. It is also less clear that there is as much similarity within

228

a tree-based GP population are as there is within a TMBL population. If the level of

similarity is much lower, this may also reduce the effectiveness of the alignment tech-

nique.

As mentioned in Section 6.6, it is theoretically possible to cut compilation time com-

pletely by directly manipulating cubin binary files. As also discussed in Section 6.6, an

initial investigation suggested that this would be an extraordinarily complicated (and

potentially brittle) approach.

This thesis described research to create two evaluators (one population-parallel and

one data-parallel), make them as fast as possible and then work to keep the GPU (s)

as busy as possible on those evaluators throughout the run. The aim of this was to

squeeze as much GP/TMBL performance out of a machine as possible and this was

rather successful. In particular, the total system is capable of performing TMBL runs

on fairly moderate numbers of testcases such that the GPU spends most of the run

performing TMBL floating point operations about as fast as could be hoped for. There

are potential areas for future exploration as discussed above but the success of this

acceleration work means that their expected rewards would be relatively small.

Instead, the work described in this thesis really opens up a different line of research,

the one that provided the motivation at the start of the thesis: exploring how we can

be more effective at harnessing the creative power of evolution by natural selection. It

is hoped that this will provide us with a powerful tool that will contribute to progress

on a wide range of problems.

229

References

[1] D. Andre and J. R. Koza. A parallel implementation of genetic programming that

achieves super-linear performance. Information Sciences, 106(3-4):201–218, 1998.

[2] E. Artin. The gamma function. Holt, Rinehart and Winston (New York), 1964.

[3] T. Bäck. Selective pressure in evolutionary algorithms: A characterization of se-

lection mechanisms. In In Proceedings of the First IEEE Conference on Evolu-

tionary Computation, pages 57–62. IEEE Press, 1994.

[4] T. Bäck. Generalized convergence models for tournament- and (µ, λ)-selection.

In Proceedings of the 6th International Conference on Genetic Algorithms, pages

2–8, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[5] J. E. Baker. Reducing bias and inefficiency in the selection algorithm. In Proceed-

ings of the Second International Conference on Genetic Algorithms on Genetic

algorithms and their application, pages 14–21, Hillsdale, NJ, USA, 1987. L. Erl-

baum Associates Inc.

[6] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Programming

– An Introduction; On the Automatic Evolution of Computer Programs and its

Applications. Morgan Kaufmann, San Francisco, CA, USA, Jan. 1998.

[7] N. H. Barton, D. E. Briggs, J. A. Eisen, D. B. Goldstein, and N. H. Patel. Evolution.

Cold Spring Harbor Laboratory Press, 2007.

[8] F. H. Bennett III, J. R. Koza, J. Shipman, and O. Stiffelman. Building a par-

allel computer system for $18,000 that performs a half peta-flop per day. In

W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and

R. E. Smith, editors, Proceedings of the Genetic and Evolutionary Computation

Conference, volume 2, pages 1484–1490, Orlando, Florida, USA, 13-17 July 1999.

Morgan Kaufmann.

[9] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.

Shindyalov, and P. E. Bourne. The protein data bank. Nucleic Acids Res, 28:235–

242, 2000.

[10] T. Blickle and L. Thiele. A mathematical analysis of tournament selection. In

Proceedings of the 6th International Conference on Genetic Algorithms, pages

9–16, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[11] T. Blickle and L. Thiele. A comparison of selection schemes used in evolutionary

algorithms. Evol. Comput., 4:361–394, December 1996.

230

[12] M. Brameier and W. Banzhaf. Linear Genetic Programming. Number XVI in

Genetic and Evolutionary Computation. Springer, 2007.

[13] E. Cantú-Paz. On random numbers and the performance of genetic algo-

rithms. In Proceedings of the Genetic and Evolutionary Computation Confer-

ence, GECCO ’02, pages 311–318, San Francisco, CA, USA, 2002. Morgan Kauf-

mann Publishers Inc.

[14] P. T. Cattani and C. G. Johnson. ME-CGP:Multi expression Cartesian genetic pro-

gramming. In Proceedings of the 2010 IEEE World Congress on Computational

Intelligence, July 2010.

[15] D. M. Chitty. A data parallel approach to genetic programming using pro-

grammable graphics hardware. In D. Thierens, H.-G. Beyer, J. Bongard, J. Branke,

J. A. Clark, D. Cliff, C. B. Congdon, K. Deb, B. Doerr, T. Kovacs, S. Kumar, J. F.

Miller, J. Moore, F. Neumann, M. Pelikan, R. Poli, K. Sastry, K. O. Stanley, T. Stut-

zle, R. A. Watson, and I. Wegener, editors, GECCO ’07: Proceedings of the 9th

annual conference on Genetic and evolutionary computation, volume 2, pages

1566–1573, London, 7-11 July 2007. ACM Press.

[16] J. Clegg, J. A. Walker, and J. F. Miller. A new crossover technique for cartesian

genetic programming. In D. Thierens, H.-G. Beyer, J. Bongard, J. Branke, J. A.

Clark, D. Cliff, C. B. Congdon, K. Deb, B. Doerr, T. Kovacs, S. Kumar, J. F. Miller,

J. Moore, F. Neumann, M. Pelikan, R. Poli, K. Sastry, K. O. Stanley, T. Stutzle, R. A.

Watson, and I. Wegener, editors, GECCO ’07: Proceedings of the 9th annual con-

ference on Genetic and evolutionary computation, volume 2, pages 1580–1587,

London, 7-11 July 2007. ACM Press.

[17] M. Ebner, M. Reinhardt, and J. Albert. Evolution of vertex and pixel shaders. In

M. Keijzer, A. Tettamanzi, P. Collet, J. I. van Hemert, and M. Tomassini, editors,

Proceedings of the 8th European Conference on Genetic Programming, volume

3447 of Lecture Notes in Computer Science, pages 261–270, Lausanne, Switzer-

land, 30 Mar. - 1 Apr. 2005. Springer.

[18] S. E. Eklund. Time series forecasting using massively parallel genetic program-

ming. In Proceedings of Parallel and Distributed Processing International Sym-

posium, pages 143–147, 22-26 Apr. 2003.

[19] F. Fernandez, M. Tomassini, and L. Vanneschi. Studying the influence of com-

munication topology and migration on distributed genetic programming. In J. F.

Miller, M. Tomassini, P. L. Lanzi, C. Ryan, A. G. B. Tettamanzi, and W. B. Lang-

don, editors, Genetic Programming, Proceedings of EuroGP’2001, volume 2038

of LNCS, pages 51–63, Lake Como, Italy, 18-20 Apr. 2001. Springer-Verlag.

231

[20] K.-L. Fok, T.-T. Wong, and M.-L. Wong. Evolutionary computing on consumer

graphics hardware. IEEE Intelligent Systems, 22(2):69–78, Mar.-Apr. 2007.

[21] O. Garnica, J. L. Risco-Martin, J. Hidalgo, and J. Lanchares. Speeding-up resolu-

tion of deceptive problems on a parallel gpu-cpu architecture. In Parallel Archi-

tectures and Bioinspired Algorithms (at PACT), 2008.

[22] C. Gathercole and P. Ross. Dynamic training subset selection for supervised

learning in genetic programming. In Y. Davidor, H.-P. Schwefel, and R. Männer,

editors, Parallel Problem Solving from Nature III, volume 866 of LNCS, pages

312–321, Jerusalem, 9-14 Oct. 1994. Springer-Verlag.

[23] C. Gathercole and P. Ross. Small populations over many generations can beat

large populations over few generations in genetic programming. In J. R. Koza,

K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, editors, Ge-

netic Programming 1997: Proceedings of the Second Annual Conference, pages

111–118, Stanford University, CA, USA, 13-16 July 1997. Morgan Kaufmann.

[24] C. Gathercole and P. Ross. Tackling the boolean even N parity problem with

genetic programming and limited-error fitness. In J. R. Koza, K. Deb, M. Dorigo,

D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, editors, Genetic Programming

1997: Proceedings of the Second Annual Conference, pages 119–127, Stanford

University, CA, USA, 13-16 July 1997. Morgan Kaufmann.

[25] D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used

in genetic algorithms. In G. J. E. Rawlins, editor, Foundations of Genetic Algo-

rithms, pages 69–93. San Francisco, CA: Morgan Kaufmann, 1991.

[26] R. Groß, K. Albrecht, W. Kantschik, and W. Banzhaf. Evolving chess playing

programs. In W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli,

K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C.

Schultz, J. F. Miller, E. Burke, and N. Jonoska, editors, GECCO 2002: Proceedings

of the Genetic and Evolutionary Computation Conference, pages 740–747, New

York, 9-13 July 2002. Morgan Kaufmann Publishers.

[27] S. Harding. Evolution of image filters on graphics processor units using cartesian

genetic programming. In J. Wang, editor, 2008 IEEE World Congress on Compu-

tational Intelligence, Hong Kong, 1-6 June 2008. IEEE Computational Intelligence

Society, IEEE Press.

[28] S. Harding and W. Banzhaf. Fast genetic programming and artificial develop-

mental systems on gpus. In HPCS ’07: Proceedings of the 21st International

Symposium onHigh Performance Computing Systems and Applications, page 2,

Washington, DC, USA, 2007. IEEE Computer Society.

232

[29] S. Harding and W. Banzhaf. Genetic programming on GPUs for image process-

ing. International Journal of High Performance Systems Architecture, 1(4):231–

240, 2008.

[30] S. Harding, J. F. Miller, and W. Banzhaf. Self modifying cartesian genetic pro-

gramming: Parity. In A. Tyrrell, editor, 2009 IEEE Congress on Evolutionary

Computation, pages 285–292, Trondheim, Norway, 18-21 May 2009. IEEE Com-

putational Intelligence Society, IEEE Press.

[31] S. Harding, J. F. Miller, and W. Banzhaf. Developments in cartesian genetic pro-

gramming: self-modifying cgp. Genetic Programming and Evolvable Machines,

11(3-4):397–439, 2010.

[32] S. L. Harding and W. Banzhaf. Fast genetic programming and artificial devel-

opmental systems on GPUs. In 21st International Symposium on High Perfor-

mance Computing Systems and Applications (HPCS’07), page 2, Canada, 2007.

IEEE Computer Society.

[33] S. L. Harding and W. Banzhaf. Distributed genetic programming on GPUs us-

ing CUDA. In I. Hidalgo, F. Fernandez, and J. Lanchares, editors, Workshop on

Parallel Architectures and Bioinspired Algorithms, Raleigh, USA, Sept. 13 2009.

[34] S. L. Harding, J. F. Miller, and W. Banzhaf. Self-modifying cartesian genetic pro-

gramming. In D. Thierens, H.-G. Beyer, J. Bongard, J. Branke, J. A. Clark, D. Cliff,

C. B. Congdon, K. Deb, B. Doerr, T. Kovacs, S. Kumar, J. F. Miller, J. Moore, F. Neu-

mann, M. Pelikan, R. Poli, K. Sastry, K. O. Stanley, T. Stutzle, R. A. Watson, and

I. Wegener, editors,GECCO ’07: Proceedings of the 9th annual conference on Ge-

netic and evolutionary computation, volume 1, pages 1021–1028, London, 7-11

July 2007. ACM Press.

[35] M. I. Heywood and A. N. Zincir-Heywood. Register based genetic program-

ming on FPGA computing platforms. In R. Poli, W. Banzhaf, W. B. Langdon, J. F.

Miller, P. Nordin, and T. C. Fogarty, editors, Genetic Programming, Proceedings

of EuroGP’2000, volume 1802 of LNCS, pages 44–59, Edinburgh, 15-16 Apr. 2000.

Springer-Verlag.

[36] IEEE Task P754. IEEE 754-2008, Standard for Floating-Point Arithmetic. Aug.

2008.

[37] Y. Jin. A comprehensive survey of fitness approximation in evolutionary compu-

tation. Soft Comput., 9:3–12, January 2005.

[38] W. Kantschik and W. Banzhaf. Linear-tree GP and its comparison with other GP

structures. In J. Miller, M. Tomassini, P. L. Lanzi, C. Ryan, A. G. B. Tettamanzi,

233

and W. B. Langdon, editors, Genetic Programming: 4th European conference,

pages 302–312, Berlin, 2001. Springer.

[39] W. Kantschik and W. Banzhaf. Linear-graph GP—A new GP structure. In J. A.

Foster, E. Lutton, J. Miller, C. Ryan, and A. G. B. Tettamanzi, editors,Genetic Pro-

gramming, Proceedings of the 5th European Conference, EuroGP 2002, volume

2278 of LNCS, pages 83–92, Kinsale, Ireland, 3-5 Apr. 2002. Springer-Verlag.

[40] H. Katagiri, K. Hirasawa, J. Hu, and J. Murata. Network structure oriented evo-

lutionary model-genetic network programming-and its comparison with genetic

programming. In E. D. Goodman, editor, 2001 Genetic and Evolutionary Com-

putation Conference Late Breaking Papers, pages 219–226, San Francisco, Cali-

fornia, USA, 9-11 July 2001.

[41] M. M. Khan, G. M. Khan, and J. F. Miller. Evolution of neural networks using

cartesian genetic programming. In IEEE Congress on Evolutionary Computation

(CEC 2010), Barcelona, Spain, 18-23 July 2010. IEEE Press.

[42] A. Koenig. Why are vectors efficient? JOOP, 11(5):71–75, 1998.

[43] F. Kühling, K. Wolff, and P. Nordin. Brute-force approach to automatic induc-

tion of machine code on CISC architectures. In J. A. Foster, E. Lutton, J. Miller,

C. Ryan, and A. G. B. Tettamanzi, editors, Genetic Programming, Proceedings of

the 5th European Conference, EuroGP 2002, volume 2278 of LNCS, pages 288–

297, Kinsale, Ireland, 3-5 Apr. 2002. Springer-Verlag.

[44] W. B. Langdon. A many threaded CUDA interpreter for genetic programming.

In A. I. Esparcia-Alcazar, A. Ekart, S. Silva, S. Dignum, and A. S. Uyar, editors,

Proceedings of the 13th European Conference on Genetic Programming, EuroGP

2010, volume 6021 of LNCS, pages 146–158, Istanbul, 7-9 Apr. 2010. Springer.

[45] W. B. Langdon and W. Banzhaf. A SIMD interpreter for genetic programming

on GPU graphics cards. In M. O’Neill, L. Vanneschi, S. Gustafson, A. I. Esparcia

Alcazar, I. De Falco, A. Della Cioppa, and E. Tarantino, editors, Proceedings of

the 11th European Conference on Genetic Programming, EuroGP 2008, volume

4971 of Lecture Notes in Computer Science, pages 73–85, Naples, 26-28Mar. 2008.

Springer.

[46] W. B. Langdon and A. P. Harrison. GP on SPMD parallel graphics hardware for

mega bioinformatics data mining. Soft Computing, 12(12):1169–1183, Oct. 2008.

Special Issue on Distributed Bioinspired Algorithms.

[47] W. B. Langdon and P. Nordin. Evolving hand-eye coordination for a humanoid

robot with machine code genetic programming. In J. F. Miller, M. Tomassini,

P. L. Lanzi, C. Ryan, A. G. B. Tettamanzi, and W. B. Langdon, editors, Genetic

234

Programming, Proceedings of EuroGP’2001, volume 2038 of LNCS, pages 313–

324, Lake Como, Italy, 18-20 Apr. 2001. Springer-Verlag.

[48] J. Lässig and D. Sudholt. The benefit of migration in parallel evolutionary algo-

rithms. InGECCO ’10: Proceedings of the 12th annual conference on Genetic and

evolutionary computation, pages 1105–1112, New York, NY, USA, 2010. ACM.

[49] T. E. Lewis and G. D. Magoulas. Strategies to minimise the total run time of

cyclic graph based genetic programming with GPUs. In G. Raidl, F. Rothlauf,

G. Squillero, R. Drechsler, T. Stuetzle, M. Birattari, C. B. Congdon, M. Midden-

dorf, C. Blum, C. Cotta, P. Bosman, J. Grahl, J. Knowles, D. Corne, H.-G. Beyer,

K. Stanley, J. F. Miller, J. vanHemert, T. Lenaerts, M. Ebner, J. Bacardit, M. O’Neill,

M. Di Penta, B. Doerr, T. Jansen, R. Poli, and E. Alba, editors, GECCO ’09: Pro-

ceedings of the 11th Annual conference on Genetic and evolutionary computa-

tion, pages 1379–1386, Montreal, 8-12 July 2009. ACM.

[50] T. E. Lewis and G. D. Magoulas. Tweaking a tower of blocks leads to a TMBL:

Pursuing long term fitness growth in program evolution. In IEEE Congress on

Evolutionary Computation (CEC 2010), pages 4465–4472, Barcelona, Spain, 18-23

July 2010. IEEE Press.

[51] J.-M. LI, X.-J. WANG, R.-S. HE, and Z.-X. CHI. An efficient fine-grained parallel

genetic algorithm based on gpu-accelerated. InNPC ’07: Proceedings of the 2007

IFIP International Conference on Network and Parallel Computing Workshops,

pages 855–862, Washington, DC, USA, 2007. IEEE Computer Society.

[52] D. Lim, Y. Jin, Y.-S. Ong, and B. Sendhoff. Generalizing surrogate-assisted evolu-

tionary computation. Trans. Evol. Comp, 14:329–355, June 2010.

[53] T. V. Luong, N. Melab, and E.-G. Talbi. Gpu-based island model for evolution-

ary algorithms. In GECCO ’10: Proceedings of the 12th annual conference on

Genetic and evolutionary computation, pages 1089–1096, New York, NY, USA,

2010. ACM.

[54] O. Maitre, L. A. Baumes, N. Lachiche, A. Corma, and P. Collet. Coarse grain par-

allelization of evolutionary algorithms on gpgpu cards with easea. In GECCO

’09: Proceedings of the 11th Annual conference on Genetic and evolutionary

computation, pages 1403–1410, New York, NY, USA, 2009. ACM.

[55] O. Maitre, P. Collet, and N. Lachiche. Fast evaluation of GP trees on GPGPU

by optimizing hardware scheduling. In A. I. Esparcia-Alcazar, A. Ekart, S. Silva,

S. Dignum, and A. S. Uyar, editors, Proceedings of the 13th European Conference

on Genetic Programming, EuroGP 2010, volume 6021 of LNCS, pages 301–312,

Istanbul, 7-9 Apr. 2010. Springer.

235

[56] J. Meyer-Spradow and J. Loviscach. Evolutionary design of BRDFs. InM. Chover,

H. Hagen, and D. Tost, editors, Eurographics 2003 Short Paper Proceedings,

pages 301–306, 2003.

[57] J. Miller. What bloat? cartesian genetic programming on boolean problems. In

E. D. Goodman, editor, 2001 Genetic and Evolutionary Computation Conference

Late Breaking Papers, pages 295–302, San Francisco, California, USA, 9-11 July

2001.

[58] J. F. Miller and P. Thomson. Cartesian genetic programming. In R. Poli,

W. Banzhaf, W. B. Langdon, J. F. Miller, P. Nordin, and T. C. Fogarty, editors, Ge-

netic Programming, Proceedings of EuroGP’2000, volume 1802 of LNCS, pages

121–132, Edinburgh, 15-16 Apr. 2000. Springer-Verlag.

[59] M.Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA,

USA, 1998.

[60] T. Motoki. Calculating the expected loss of diversity of selection schemes. Evol.

Comput., 10:397–422, December 2002.

[61] H. Mühlenbein and D. Schlierkamp-Voosen. Predictive models for the breeder

genetic algorithm i. continuous parameter optimization. Evol. Comput., 1:25–49,

March 1993.

[62] H. Mühlenbein and D. Schlierkamp-Voosen. The science of breeding and its ap-

plication to the breeder genetic algorithm (bga). Evol. Comput., 1:335–360, De-

cember 1993.

[63] A. Munawar, M. Wahib, M. Munetomo, and K. Akama. Hybrid of genetic algo-

rithm and local search to solve MAX-SAT problem using nvidia CUDA frame-

work. Genetic Programming and Evolvable Machines, 10(4):391–415, Dec. 2009.

Special issue on parallel and distributed evolutionary algorithms, part I.

[64] S. B. Needleman and C. D. Wunsch. A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of Molecular

Biology, 48(3):443 – 453, 1970.

[65] P. Nordin andW. Banzhaf. Evolving turing-complete programs for a register ma-

chine with self-modifying code. In L. Eshelman, editor,Genetic Algorithms: Pro-

ceedings of the Sixth International Conference (ICGA95), pages 318–325, Pitts-

burgh, PA, USA, 15-19 July 1995. Morgan Kaufmann.

[66] P. Nordin, W. Banzhaf, and F. D. Francone. Efficient evolution of machine code

for CISC architectures using instruction blocks and homologous crossover. In

L. Spector, W. B. Langdon, U.-M. O’Reilly, and P. J. Angeline, editors, Advances

236

in Genetic Programming 3, chapter 12, pages 275–299. MIT Press, Cambridge,

MA, USA, June 1999.

[67] nVidia. Cuda compute unified device architecture programming guide v1.1.

http://www.nvidia.com/object/cuda_develop.html, 2007.

[68] C. Perez-Miguel, J. Miguel-Alonso, and A. Mendiburu. Evaluating the cell

broadband engine as a platform to run estimation of distribution algorithms.

In GECCO ’09: Proceedings of the 11th annual conference companion on Ge-

netic and evolutionary computation conference, pages 2491–2498, NewYork, NY,

USA, 2009. ACM.

[69] R. Poli. Parallel distributed genetic programming. Technical Report CSRP-96-15,

School of Computer Science, University of Birmingham, B15 2TT, UK, Sept. 1996.

[70] R. Poli. Sub-machine-code GP: New results and extensions. In R. Poli, P. Nordin,

W. B. Langdon, and T. C. Fogarty, editors, Genetic Programming, Proceedings of

EuroGP’99, volume 1598 of LNCS, pages 65–82, Goteborg, Sweden, 26-27 May

1999. Springer-Verlag.

[71] R. Poli and W. B. Langdon. Running genetic programming backward. In T. Yu,

R. L. Riolo, and B. Worzel, editors, Genetic Programming Theory and Practice

III, volume 9 of Genetic Programming, chapter 9, pages 125–140. Springer, Ann

Arbor, 12-14 May 2005.

[72] R. Poli and W. B. Langdon. Backward-chaining evolutionary algorithms. Artifi-

cial Intelligence, 170(11):953–982, Aug. 2006.

[73] R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to genetic

programming. Published via http://lulu.com and freely available at

http://www.gp-field-guide.org.uk, 2008. (With contributions by J. R. Koza).

[74] P. Pospı́chal, J. Jaroš, and J. Schwarz. Parallel genetic algorithm on the cuda

architecture. In Applications of Evolutionary Computation, LNCS 6024, pages

442–451. Springer Verlag, 2010.

[75] W. F. Punch. How effective are multiple populations in genetic programming.

In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H.

Garzon, D. E. Goldberg, H. Iba, and R. Riolo, editors,Genetic Programming 1998:

Proceedings of the Third Annual Conference, pages 308–313, University of Wis-

consin, Madison, Wisconsin, USA, 22-25 July 1998. Morgan Kaufmann.

[76] D. Robilliard, V. Marion-Poty, and C. Fonlupt. Population parallel GP on the

G80 GPU. In M. O’Neill, L. Vanneschi, S. Gustafson, A. I. Esparcia Alcazar, I. De

237

Falco, A. Della Cioppa, and E. Tarantino, editors, Proceedings of the 11th Euro-

pean Conference on Genetic Programming, EuroGP 2008, volume 4971 of Lecture

Notes in Computer Science, pages 98–109, Naples, 26-28 Mar. 2008. Springer.

[77] D. Robilliard, V. Marion-Poty, and C. Fonlupt. Genetic programming on graphics

processing units. Genetic Programming and Evolvable Machines, 10(4):447–471,

2009.

[78] D. Sankoff. Matching sequences under deletion-insertion constraints. Proceed-

ings of the Natural Academy of Sciences of the U.S.A., 69:4–6, 1972.

[79] S. Shirakawa, S. Ogino, and T. Nagao. Graph structured program evolution. In

H. Lipson, editor, Genetic and Evolutionary Computation Conference, GECCO

2007, Proceedings, London, England, UK, July 7-11, 2007, pages 1686–1693.

ACM, 2007.

[80] N. T. Siebel, A. Jordt, and G. Sommer. Accelerating neuro-evolution by com-

pilation to native machine code. In International Joint Conference on Neural

Networks (IJCNN 2010), Barcelona, Spain, 18-23 July 2010. IEEE Press.

[81] N. Soca, J. L. Blengio, M. Pedemonte, and P. Ezzatti. Pugace, a cellular evolution-

ary algorithm framework on gpus. In IEEE Congress on Evolutionary Computa-

tion, pages 1–8, 2010.

[82] G. Squillero. MicroGP - an evolutionary assembly program generator. Genetic

Programming and Evolvable Machines, 6(3):247–263, Sept. 2005. Published on-

line: 17 August 2005.

[83] H. Sutter. Exceptional C++: 47 engineering puzzles, programming problems,

and solutions. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

2000.

[84] H. Sutter. More exceptional C++: 40 new engineering puzzles, programming

problems, and solutions. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2002.

[85] E.-G. Talbi. Metaheuristics: From Design to Implementation. Wiley Publishing,

2009.

[86] A. Teller. Algorithm Evolution with Internal Reinforcement for Signal Under-

standing. PhD thesis, School of Computer Science, Carnegie Mellon University,

Pittsburgh, USA, 5 Dec. 1998.

[87] A. Teller and D. Andre. Automatically choosing the number of fitness cases: The

rational allocation of trials. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Gar-

zon, H. Iba, and R. L. Riolo, editors, Genetic Programming 1997: Proceedings of

238

the Second Annual Conference, pages 321–328, Stanford University, CA, USA,

13-16 July 1997. Morgan Kaufmann.

[88] A. Teller and M. Veloso. PADO: A new learning architecture for object recog-

nition. In K. Ikeuchi and M. Veloso, editors, Symbolic Visual Learning, pages

81–116. Oxford University Press, 1996.

[89] S. Tsutsui andN. Fujimoto. Solving quadratic assignment problems by genetic al-

gorithms with gpu computation: a case study. In GECCO ’09: Proceedings of the

11th Annual Conference Companion on Genetic and Evolutionary Computation

Conference, pages 2523–2530, New York, NY, USA, 2009. ACM.

[90] Turton, Openshaw, and Diplock. Some geographic applications of genetic pro-

gramming on the Cray T3D supercomputer. In C. R. Jesshope and A. V. Sha-

farenko, editors, UK Parallel’96, pages 135–150, University of Surrey, 3-5 July

1996. Springer.

[91] Z. Vasicek and L. Sekanina. Hardware accelerators for cartesian genetic pro-

gramming. In M. O’Neill, L. Vanneschi, S. Gustafson, A. I. Esparcia Alcazar, I. De

Falco, A. Della Cioppa, and E. Tarantino, editors, Proceedings of the 11th Euro-

pean Conference on Genetic Programming, EuroGP 2008, volume 4971 of Lecture

Notes in Computer Science, pages 230–241, Naples, 26-28 Mar. 2008. Springer.

[92] J. A. Walker and J. F. Miller. The automatic acquisition, evolution and reuse of

modules in cartesian genetic programming. IEEE Transactions on Evolutionary

Computation. Accepted for future publication.

[93] J. A. Walker and J. F. Miller. Evolution and acquisition of modules in cartesian

genetic programming. In M. Keijzer, U.-M. O’Reilly, S. M. Lucas, E. Costa, and

T. Soule, editors, Genetic Programming 7th European Conference, EuroGP 2004,

Proceedings, volume 3003 of LNCS, pages 187–197, Coimbra, Portugal, 5-7 Apr.

2004. Springer-Verlag.

[94] J. A. Walker and J. F. Miller. Investigating the performance of module acquisition

in cartesian genetic programming. In H.-G. Beyer, U.-M. O’Reilly, D. V. Arnold,

W. Banzhaf, C. Blum, E. W. Bonabeau, E. Cantu-Paz, D. Dasgupta, K. Deb, J. A.

Foster, E. D. de Jong, H. Lipson, X. Llora, S. Mancoridis, M. Pelikan, G. R. Raidl,

T. Soule, A.M. Tyrrell, J.-P.Watson, and E. Zitzler, editors,GECCO 2005: Proceed-

ings of the 2005 conference on Genetic and evolutionary computation, volume 2,

pages 1649–1656, Washington DC, USA, 25-29 June 2005. ACM Press.

[95] J. A. Walker, J. F. Miller, and R. Cavill. A multi-chromosome approach to stan-

dard and embedded cartesian genetic programming. In M. Keijzer, M. Cat-

tolico, D. Arnold, V. Babovic, C. Blum, P. Bosman, M. V. Butz, C. Coello Coello,

239

D. Dasgupta, S. G. Ficici, J. Foster, A. Hernandez-Aguirre, G. Hornby, H. Lipson,

P. McMinn, J. Moore, G. Raidl, F. Rothlauf, C. Ryan, and D. Thierens, editors,

GECCO 2006: Proceedings of the 8th annual conference on Genetic and evolu-

tionary computation, volume 1, pages 903–910, Seattle, Washington, USA, 8-12

July 2006. ACM Press.

[96] J. A. Walker, K. Völk, S. L. Smith, and J. F. Miller. Parallel evolution using multi-

chromosome cartesian genetic programming. Genetic Programming and Evolv-

able Machines, 10:417–445, December 2009.

[97] D. Whitley. The genitor algorithm and selection pressure: why rank-based al-

location of reproductive trials is best. In Proceedings of the third international

conference on Genetic algorithms, pages 116–121, San Francisco, CA, USA, 1989.

Morgan Kaufmann Publishers Inc.

[98] G. Wilson and W. Banzhaf. Linear genetic programming GPGPU on microsoft’s

xbox 360. In J. Wang, editor, 2008 IEEE World Congress on Computational In-

telligence, Hong Kong, 1-6 June 2008. IEEE Computational Intelligence Society,

IEEE Press.

[99] G. Wilson and W. Banzhaf. Deployment of parallel linear genetic programming

using GPUs on PC and video game console platforms. Genetic Programming

and Evolvable Machines, 11(2):147–184, June 2010.

[100] G. C. Wilson and W. Banzhaf. A comparison of cartesian genetic programming

and linear genetic programming. In M. O’Neill, L. Vanneschi, S. Gustafson, A. I.

Esparcia Alcazar, I. De Falco, A. Della Cioppa, and E. Tarantino, editors, Proceed-

ings of the 11th European Conference on Genetic Programming, EuroGP 2008,

volume 4971 of Lecture Notes in Computer Science, pages 182–193, Naples, 26-

28 Mar. 2008. Springer.

[101] G. C. Wilson and W. Banzhaf. Deployment of CPU and GPU-based genetic pro-

gramming on heterogeneous devices. In A. I. Esparcia, Y. ping Chen, G. Ochoa,

E. Ozcan, M. Schoenauer, A. Auger, H.-G. Beyer, N. Hansen, S. Finck, R. Ros,

D. Whitley, G. Wilson, S. Harding, W. B. Langdon, M. L. Wong, L. D. Merkle,

F. W. Moore, S. G. Ficici, W. Rand, R. Riolo, N. Kharma, W. R. Buckley, J. Miller,

K. Stanley, J. Bacardit, W. Browne, J. Drugowitsch, N. Beume, M. Preuss, S. L.

Smith, S. Cagnoni, J. DeLeo, A. Floares, A. Baughman, S. Gustafson, M. Keijzer,

A. Kordon, C. B. Congdon, L. D. Merkle, and F.W.Moore, editors,GECCOWork-

shop on Computational intelligence on consumer games and graphics hardware

(CIGPU-2009), pages 2531–2538, Montreal, 8-12 July 2009. ACM.

[102] A. Wirawan, C. Kwoh, N. Hieu, and B. Schmidt. Cbesw: Sequence alignment on

the playstation 3. BMC Bioinformatics, 9(1):377, 2008.

240

[103] M. L. Wong. Parallel multi-objective evolutionary algorithms on graphics pro-

cessing units. In GECCO ’09: Proceedings of the 11th Annual Conference Com-

panion on Genetic and Evolutionary Computation Conference, pages 2515–2522,

New York, NY, USA, 2009. ACM.

[104] M.-L. Wong, T.-T. Wong, and K.-L. Fok. Parallel evolutionary algorithms on

graphics processing unit. In D. Corne, Z. Michalewicz, B. McKay, G. Eiben, D. Fo-

gel, C. Fonseca, G. Greenwood, G. Raidl, K. C. Tan, and A. Zalzala, editors, Pro-

ceedings of the 2005 IEEE Congress on Evolutionary Computation, volume 3,

pages 2286–2293, Edinburgh, Scotland, UK, 2-5 Sept. 2005. IEEE Press.

[105] J. R. Woodward. Complexity and cartesian genetic programming. In P. Col-

let, M. Tomassini, M. Ebner, S. Gustafson, and A. Ekárt, editors, Proceedings of

the 9th European Conference on Genetic Programming, volume 3905 of Lecture

Notes in Computer Science, pages 260–269, Budapest, Hungary, 10 - 12 April

2006. Springer.

[106] H. Xie, M. Zhang, and P. Andreae. Another investigation on tournament selec-

tion: modelling and visualisation. In Proceedings of the 9th annual conference

on Genetic and evolutionary computation, GECCO ’07, pages 1468–1475, New

York, NY, USA, 2007. ACM.

[107] Q. Yu, C. Chen, and Z. Pan. Parallel genetic algorithms on programmable graph-

ics hardware. In L. Wang, K. Chen, and Y.-S. Ong, editors, Advances in Natural

Computation, First International Conference, ICNC 2005, Proceedings, Part III,

volume 3612 of Lecture Notes in Computer Science, pages 1051–1059, Changsha,

China, Aug. 27-29 2005. Springer.

[108] M. Yue. A simple proof of the inequality f f d(l) ≤ 11/9opt(l) + 1, ∀l for the ffd

bin-packing algorithm. Acta Mathematicae Applicatae Sinica (English Series),

7:321–331, 1991.

241

