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Abstract

Due to the advances in data capture and storage techniques over the last decade, the size of
Multivariate Time Series (MTS) data being recorded has grown massively. Many of these
MTS are characterised by a large number of interdependent variables with large possible time
lags. If new and useful knowledge is to be automatically learnt from this type of data in order
to aid the understanding of the underlying processes, a paradigm must be identified that is
capable of modelling data with these characteristics but at the same time exhibiting
transparency in how it models the data. A key challenge is that the number of possible
models is very large since it does not only depend on the number of time series variables, but
also on the size of possible time lags between ‘causes’ and ‘effects’.

In this thesis a general framework is described for automatically learning probabilistic models
from MTS with large time lags and high dimensionality in order to explain the underlying
processes involved. Specifically, a novel method to learn dynamic Bayesian networks for
explanation from these series is developed. This involves an efficient pre-processing stage,
which effectively groups MTS variables in order to reduce the dimensionality of the problem.
After pre-processing, a combination of Evolutionary Programming, Genetic Algorithms and
heuristics is used to speed up convergence when learning models. In addition, an approach is
looked at for the off-line learning of dynamic Bayesian networks with changing dependency
structures. All experiments have been carried out on a mixture of synthetic and real data
taken from an oil refinery repository. The resultant models are used to generate explanations
that are evaluated in several ways, including reviewing the feedback from chemical process
engineers. These results have demonstrated that the proposed framework is very promising in
terms of both efficiency and accuracy.
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“Time involves change. We say that something can remain unchanged

through time but there could be no time if nothing changed.”

J. M. E. McTaggart. (The Unreality of Time)



Allan Tucker The Automatic Explanation of Multivariate Time Series Birkbeck College

3

Contents

1 Introduction 13
1.1 The Problem 13
1.2 Explanation 16
1.3 Methodology 16
1.4 Contribution to Knowledge 20
1.5 Road Map to this Thesis 22

2 Background 25
2.1 The Datasets 25
2.1.1 Vector AutoRegressive Data 25
2.1.2 DBN Generated Data 25
2.1.3 Oil Refinery Data 26
2.1.4 Discretisation 29
2.2 Dynamic Models of Data 31
2.2.1 Vector Autoregressive Process 31
2.2.2 Transfer Functions 32
2.2.3 Time Delay Neural Networks 34
2.2.4 Hidden Markov Models 36
2.2.5 Dynamic Bayesian Networks 38
2.3 Summary 41

3 Dynamic Bayesian Networks for Modelling Multivariate Time Series 44
3.1 Learning Bayesian Networks (Static and Dynamic) 44
3.1.1 Metrics 45
3.1.2 Search 46
3.1.3 Spurious / Implicit Dependencies 52
3.2 Inference 53
3.2.1 Inference in Static BNs 53
3.2.2 Inference in DBNs 57
3.3 Modelling Hidden Variables 59
3.4 Preliminary Data Exploration 62
3.4.1 Modelling the Data 62
3.4.2 Generating Explanations 65
3.5 Adapting Existing Search Strategies 67
3.5.1 Introducing a Representation for DBNs 67
3.5.2 Adapting the Algorithms 69
3.5.3 Experimental Results 75
3.6 Conclusions 79



Allan Tucker The Automatic Explanation of Multivariate Time Series Birkbeck College

4

4 Grouping High Dimensional Time Series Variables 82
4.1 Real Time Constraints on Learning DBNs 82
4.2 Pre-processing MTS using Pair-wise Dependecies 83
4.2.1 Preliminaries 85
4.2.2 The Correlation Search 85
4.3 The Grouping Algorithms and Metric 89
4.3.1 The Parition Metric 90
4.3.2 The Grouping Search Algorithms 91
4.4 Parameter Estimation 98
4.4.1 Simulations of Random Bag 99
4.4.2 Lilliefors’ Test 100
4.4.3 Finding  and 101
4.4.4 Confidence Limits on c 103
4.5 Experiments 104
4.5.1 Multivariate Time Series Datasets 104
4.5.2 Parameter Estimation Results 106
4.5.3 Evaluation Metric 108
4.6 Results from Synthetic Data 109
4.6.1 The 15 Methods 110
4.6.2 A Note Regarding RB and EP 111
4.6.3 Marginal Statistics 112
4.6.4 Sample of Groupings 114
4.7 Results from Real Process Data 116
4.8 Conclusions 119

5 Scaling Dynamic Bayesian Networks for Explaining High Dimensional 
Time Series with Large Time Lags

121

5.1 Real World MTS 121
5.2 Methodology 122
5.2.1 Representation 122
5.2.2 Useful Heuristics 123
5.2.3 Seeded GA for Search 124
5.3 The Algorithm 126
5.4 Evaluation 129
5.4.1 Efficiency 130
5.4.2 Accuracy 133
5.6 Conclusions 138

6 Detecting Dependency Changes within a Time Series whilst Learning 
Dynamic Bayesian Networks

140

6.1 The Dynamic Cross Correlation Function 141
6.2 Learning DBNs from MTS with Changing Dependencies 144
6.2.1 Representation 145



Allan Tucker The Automatic Explanation of Multivariate Time Series Birkbeck College

5

6.2.2 The Algorithms 146
6.3 Experiments 149
6.3.1 Results from Synthetic Data 149
6.3.2 Results from Process Data 154
6.4 Explanations incorporating Hidden Controllers 159
6.5 Conclusions 165

7 Discussion 167
7.1 Conclusions 167
7.2 Further Research Directions 172

References 177

Appendix A - Glossary 189
Appendix B - Proofs for Grouping Evaluation Metric 192
Appendix C - The Lilliefors’ Test Results 194
Appendix D - MTS Dataset Generation 195
Appendix E - Genetic Programming Details 197
Appendix F - Dynamic Cross Correlation Functions 199
Appendix G - Structural Expectation Maximisation for the Explanation of 

Multivariate Time Series with Changing Dependencies
214



Allan Tucker The Automatic Explanation of Multivariate Time Series Birkbeck College

6

List of Figures

Figure 1.1. Figure 1.1. The General Methodology adopted within the Thesis for Learning
MTS Models.

Figure 2.1. The Process of Data Generation using Stochastic Simulation on a hand-coded
DBN. The Diagram shows Six Iterations on a very small network with N=2
and MaxT=4. The links are not shown.

Figure 2.2 (a) Range Based Discretisation and (b) Frequency Based Discretisation

Figure 2.3 A Dynamic Transfer Function.

Figure 2.4. A CCF from variable ai to Variable aj with maximum time lag of 30 time
slices. Notice the strong correlation for aj to ai with a time lag  of 6.

Figure 2.5. (a) The Time Delay Neural Network Architecture and (b) the FIR synaptic
connections.

Figure 2.6. The Architecture of the Hidden Markov Model.

Figure 2.7. A Bayesian Network for a 5 variable domain. (a) Nodes represent variables
and links represent conditional dependencies between variables. (b) The CPT
for each node.

Figure 2.8. A Dynamic Bayesian Network (DBN) with 5 variables and 5 time slices.

Figure 3.1. The Crossover Operator applied to two binary chromosomes where the
crossover point = 4.

Figure 3.2. (a) Spurious Correlation denoted by a dotted line between the node
representing a0(t) and the node representing a1(t). (b) Implicit Dependency
between the node representing a0(t-1) and the node representing a1(t).

Figure 3.3. Inference in Multiply Networks by (a) Clustering and (b) Conditioning.

Figure 3.4. A Sample Monitoring Problem. Taken from [Kanazawa95].

Figure 3.5. The use of a Hidden Node to simplify BN Structure. If the hidden node in (a)
marked with an ’H’ was not included in the model, the only way to capture all
of the dependencies between the measured variables would be using the
structure in (b).

Figure 3.6. The DBN discovered from the VAR data.



Allan Tucker The Automatic Explanation of Multivariate Time Series Birkbeck College

7

Figure 3.7. A five-step ahead Forecast on one VAR data variable using the discovered
DBN.

Figure 3.8. The DBN discovered from the Controller data.

Figure 3.9. A Sample one-step ahead Forecast on PV using the Controller DBN.

Figure 3.10. The Posterior Probability over three of the VAR Process Variables (a) and the
Controller Variables (b) as the Explanation is generated backwards in time.
Note the breaks in the lines in (a) where we have no information about a
particular variable at that point in time.

Figure 3.11. An Example Explanation using the Controller BN. Shaded boxes represent
input to the network. Unshaded boxes represent possible causes for events.

Figure 3.12. A Summary of the Notation used for the DBN Representation showing an
example DBN with N variables, MaxT time lags and four links. Each parent is
a member of Q and each child a node at time t.

Figure 3.13. The Crossover Operation Applied to two Parent Triple Lists of length 6 and 8
respectively. This operator generates two new Children Triple Lists. Crossover
points were 2 and 5 for Par1 and Par2 respectively.

Figure 3.14. Comparing the Search Methods on DBN-Generated MTS using Minimum
Description Length (a) N=5, MaxT=10; (b) N=10, MaxT =10; (c) N =5, MaxT
=30; (d) N =10, MaxT =30; (e) N =10, MaxT =60.

Figure 3.15. Comparing the Search Methods on DBN-Generated MTS using Maximum
Log Likelihood (a) N=5, MaxT=10; (b) N=10, MaxT =10; (c) N =5, MaxT =30;
(d) N =10, MaxT =30; (e) N =10, MaxT =60.

Figure 4.1. A Process Diagram of the Grouping Procedure.

Figure 4.2. Confidence against  with varying R.

Figure 4.3. Sample variable Plots from Group I

Figure 4.4. Sample variable Plots from Group H

Figure 5.1. The DL of a single link between two oil refinery variables over 60 time lags.
Note the relative smoothness of the curve.

Figure 5.2. The Process of using an Evolutionary Program to Seed the Population of a
Genetic Algorithm with good scoring single triples.



Allan Tucker The Automatic Explanation of Multivariate Time Series Birkbeck College

8

Figure 5.3. Uniform Crossover on the DBN Triple Representation.

Figure 5.4. Performance on Synthetic Datasets: (a) (b) N=10, MaxT=60; (c) (d) N=20,
MaxT=60; and Oil Refinery Datasets: (e) (f) N=11, MaxT=60.

Figure 5.5. Performance on Synthetic Dataset with N=10 and MaxT=60 with varying
number of calls, c,  in the EP-Seeding Stage of EP-Seeded-GA.

Figure 5.6. Breakdown of Average Structural Difference on Synthetic Dataset where
N=10 and MaxT=60 using (a) Standard EP and (b) EP-Seeded-GA.

Figure 5.7. Sample Dependency Diagrams constructed from advice of Control Engineer.

Figure 5.8. Sample explanations generated using the refinery data. Shaded blocks
represent observed variables.

Figure 6.1. Generating the Dynamic Cross Correlation Function (DCCF).

Figure 6.2. An example DCCF applied to two variables from the oil refinery dataset
(TT / TGF).

Figure 6.3. Using a Hidden Variable, OpState2, to act as a ‘Controller’ for variable a2 at
time t. Each variable, i is assigned an OpStatei.

Figure 6.4. (a) The Procedure for scoring the Current Model. (b) The HCHC Algorithm
for Segmenting Process Data and learning DBN structure.

Figure 6.5. (a) Each DBN is displayed corresponding to the different segments of MTS 3.
The numbers in parenthesis denote the time lag for that particular link. The
positions of state change are included on the lower axis. (b) illustrates the
positions of dependency change generated from the DBNs in (a)

Figure 6.6. Resulting DBN and Segments on MTS 3 using HCHC.

Figure 6.7. (a) The DCCF for variable a3 and a4  in MTS 3. Note the strong correlations
‘troughs’ in black (‘pos1’ and ‘pos2’) and ‘peaks’ in white (‘pos3’), and how
they change depending on the position of the window. (winlen = 200, winjump =
50). (b) shows the most significant correlation (positive or negative) for each
window position of the Surface Plot and segments out the position of each
peak and trough.

Figure 6.8. Most Significant Correlations for each window position of a DCCF
corresponding to TGF and its discovered parents (winlen = 1000,
winjump = 500). For the Full DCCFs see Appendix F.



Allan Tucker The Automatic Explanation of Multivariate Time Series Birkbeck College

9

Figure 6.9. Most Significant Correlations for each window position of a DCCF
corresponding to BPF and its discovered parents (winlen = 1000, winjump

= 500). Full DCCFs in Appendix F.

Figure 6.10. Most Significant Correlations for each window position of a DCCF
corresponding to T36T and its discovered parents (winlen = 1000, winjump =
500). Full DCCFs in Appendix F.

Figure 6.11. The Final DBN Structure discovered using HCHC applied to One Months Oil
Refinery Data  from 21 Variables. OpState nodes are not included.

Figure 6.12. Sample Explanations from MTS3 incorporating Hidden Controllers
(OpStates).

Figure 6.13. Sample Explanations from MTS3 incorporating Hidden Controllers
(OpStates).

Figure 6.14. The posterior probabilities of three variables in MTS3 as inference is applied
back in time given differing values of OpStates. (a) All OpStates = 0, (b) All
OpStates = 4. Notice how the OpStates have affected the probabilities over the
variables. a0 is the most likely reason for a1 changing from state 1 to state 0
when OpStates = 0 (having a positive effect  with a lag of 5) but a2 is the most
likely reason if OpStates = 4 (having a negative effect  with a lag of 6).

Figure 6.15. Sample of Generated Explanations from the Oil Refinery DBN.

Figure 6.16. Sample of Generated Explanations from the Oil Refinery DBN.



Allan Tucker The Automatic Explanation of Multivariate Time Series Birkbeck College

10

List of Tables

Table 2.1. A Summary of some of the features of the MTS Models.

Table 3.1. Parameters for the Adapted Search Algorithms

Table 3.2. The Number of Function Calls to Find Optimal Structure using Branch and
Bound with MDL. MaxBranch has been set to 5

Table 4.1. The different MTS descriptions.

Table 4.2. The Breakdown of each Dataset.

Table 4.3. Parameters for Datasets 1-6.

Table 4.4. The 5 Grouping Strategies applied to the Random Bag List.

Table 4.5. The 5 Grouping Strategies applied to the Evolutionary Program List.

Table 4.6. The 5 Grouping Strategies applied to the Exhaustive Search List.

Table 4.7. The Top r Correlations for Three Search Methods.

Table 4.8. Averaging over Correlation Search

Table 4.9. Averaging over Grouping Strategy.

Table 4.10. Averaging over Dataset.

Table 4.11. A sample of grouping results from Falkenauer’s GGA method along with the
original groupings that were used to generate the MTS.

Table 4.12. The Discovered Groupings from the Oil Refinery MTS. The Final Column
Includes Abbreviations for Variables that are Used in Chapter 6.

Table 5.1. The Parameters for EP-Seeded GA and Standard EP.

Table 5.2. The Average Structural Differences (SD) between the original DBN and the
discovered DBN using EP-Seeded-GA and Standard EP with Log Likelihood
after varying numbers of FC.

Table 5.3. Approximate timing for the entire explanation generation for varying size
datasets.

Table 6.1. Details of the Synthetic Data with Changing Dependencies.



Allan Tucker The Automatic Explanation of Multivariate Time Series Birkbeck College

11

Table 6.2. Structural Difference Results using HCHC.



Allan Tucker The Automatic Explanation of Multivariate Time Series Birkbeck College

12

List of Algorithms

Algorithm 2.1. Generating Data using Stochastic Simulation.

Algorithm 3.1. The General Genetic Algorithm.

Algorithm 3.2. The General Evolutionary Program.

Algorithm 3.3. Stochastic Simulation.

Algorithm 3.4. The General EM Algorithm.

Algorithm 3.5. The K2 / K3 Algorithm.

Algorithm 3.6. The Genetic Algorithm for Learning DBNs.

Algorithm 3.7. The Evolutionary Algorithm for Learning DBNs.

Algorithm 3.8. The Branch and Bound Algorithm for Learning DBNs.

Algorithm 4.1. The Exhaustive Search for List.

Algorithm 4.2. ‘Random Bag’, A Heuristic Search for Finding List.

Algorithm 4.3. Evolutionary Program for Generating List.

Algorithm 4.4. Standard Grouping GA.

Algorithm 4.5. Grouping Hill Climb.

Algorithm 4.6. Separate and Conquer.

Algorithm 4.7. Stochastic Simulation of Random Bag.

Algorithm 4.8. The Evaluation Metric EVM(G1,G2).

Algorithm 5.1. The EP-Seeded GA.

Algorithm 6.1. Constructing the DCCF Surface Plot.

Algorithm 6.2. The HCHC Segmentation Algorithm.



Allan Tucker The Automatic Explanation of Multivariate Time Series Birkbeck College

13

1 Introduction

1.1 The Problem

Due to the advances in data capture and storage techniques over the last decade, the size of

repositories storing multivariate time series (MTS) data has grown massively. Many datasets

now exist that are very high in dimensionality e.g. gene expression profiles, financial time

series and industrial process data. This data will be characterised by a large number of

interdependent variables, though some may have no substantial impact on any others. Many

of these complex systems such as industrial and financial processes record data at frequent

time periods and in some cases there can be large time lags between causes and effects. If we

want to try and learn useful new knowledge about this type of data in order to aid the

understanding of the underlying processes, we need to identify a paradigm that is capable of

modelling data with these characteristics but at the same time exhibiting transparency in how

it models the data.

There has been a great deal of research into the analysis of time series data in both the

statistical and artificial intelligence communities, especially for forecasting purposes. In this

context, there are a variety of statistical methods for modelling MTS, e.g. the vector

autoregressive process, Markov Chain Monte-Carlo methods and other non-linear and

Bayesian systems [Lutkepohl93, Pole94]. In the computing community, many forecasting

methods have also been proposed using recurrent or time-delay neural networks, evolutionary

computation, inductive logic programming and, more recently, support vector machines.
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In modelling MTS for explanation purposes, work in the statistical community has been

largely focussed on the use of variation in one or more series to explain the variation in

another series e.g. multiple regression models or linear systems [Chatfield96]. When it comes

to modelling MTS for explaining current observations on all the variables using previous

observations of the same variables, the computing, especially AI, community has explored a

number of approaches over the years. Probably the most common approach has been the use

of relevant knowledge or expertise from domain experts to construct the explanation model

[Shahar97]. This process requires am intensive knowledge acquisition effort and the resultant

model is often incomplete and inconsistent with the observations. Therefore, a considerable

effort is required to refine and fine-tune the model.

AI researchers have also proposed model-based approaches to construct explanations in

which an underlying system based on first principles in a domain is used. These model-based

systems relay on low-level mathematical principles and have been used to successfully model

complex and uncertain data [Chang94, DeKleer91, Kramer87, Petti90]. They have been used

to monitor, detect faults and isolate their causes. However, the construction of such models is

extremely costly in terms of expertise and has, therefore, only been used in special

circumstances. What is more, these model-based paradigms offer little in terms of explaining

how events in complex systems arise - the model that is used often contains a complex set of

mathematical equations that will not aid the understanding of the underlying mechanisms at

work in these systems. Model-based approaches rely on well-understood domain theory and

an efficient way of reasoning with the system description to generate explanations.
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Between the 1960s and 1980s, expert systems were investigated in order to automatically

diagnose identified events within many real-world processes, including medical, scientific

and engineering applications, [Shortcliffe76, McDermott84, Dhurjati87]. Whilst these

systems were capable of modelling some domains in a way that humans could understand

(i.e. they were transparent), many were found to be inadequate in modelling complex

processes due to the dynamics and uncertainties that occur within systems such as chemical

processes. These experience-based approaches assume that there is a rich body of knowledge

and experience from domain experts about the MTS under consideration, the cost of eliciting

the knowledge from experts is reasonable and one is prepared to continuously resolve any

inconsistency between the model which is largely derived from human experience, and the

data collected from real-world operating environments. When these assumptions do not hold,

an alternative must be found.

A general framework is required that will automatically learn models from MTS with large

time lag and high dimensionality in order to explain the underlying processes involved. It

must be able to deal with modelling complex processes but at the same time the input and

output of each stage in the learning process must be transparent so that it is explainable unlike

previous model-based systems. This thesis introduces a general framework for learning such

models.

1.2 Explanation

Within this thesis we will often refer to the notion of explanation. We define an explanation

to be a set of possible events leading up to some previously identified observation with the
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aim of giving an insight into why that observation has been made, where an event is a

variable or set of variables being in a particular instantiation. The set of variables that can be

used as observations to be explained will be the same set of variables that are used to

construct the explanation. It should be made clear that this definition of explanation does not

include the notion of direct causal influence between events. This will be described in more

detail in section 2.3. The model that we want to use for explaining datasets will contain

uncertain information. Firstly in some systems, there may be uncertainty in the recording of

data. For example, there may be errors in the instruments when measuring real world data

that means that we may not be one hundred percent sure that it is correct. Secondly, having

learnt a model for explanation, there will be uncertainty within the process of reasoning about

events in the data. For example, if we were to observe that variable A is very high, and the

reasoning process concludes that this is most probably due to variable X being low 5 minutes

ago, we will not necessarily be one hundred percent sure that this conclusion is correct. The

model that we employ must be able to manage these sorts of uncertainties in the data and

reasoning process.

1.3 Methodology

In this thesis we describe a general framework for learning probabilistic models from MTS in

order to explain the underlying processes involved. This will be beneficial to many

applications in medicine, science and engineering, for example the control of chemical

processes that we will focus on for the scope of this thesis. In reviewing process data such as

that from an oil refinery, process engineers often come across trends with unexpected

characteristics. In many cases these anomalous events have a significant adverse economic
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impact, whether in terms of reduced yield, excessive equipment stress, or violation of

environmental constraints. The identification of such events is important but of greater

importance still are adequate explanations of how these events arose. These could then be

used to modify operating practices, retrain operators or conduct anticipatory planning. The

MTS that we propose to model are high dimensional datasets with large time lags and

changing dependencies.

The specification for such a tool (based on [Samad97, Ogden96]) will be to:

a) Learn a model from new data as quickly as possible (in a matter of minutes) with as little

user intervention as possible. The model must be transparent and, therefore, be capable of

making the relationships found within the data explicit to non-statisticians or

mathematicians.

b) Learn a number of models from large repositories of data that contain changing

dependency structure. Once again all models must be transparent, including the way

dependency changes are modelled.

(a) addresses the problem of trying to understand why a particular variable or set of variables

have started behaving in some way when time is limited. For example, when data has been

generated recently from a high dimensional process and a model must be learnt rapidly from

this data in order to assist the understanding of the underlying processes and the explanation

of certain variables.
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(b) addresses the problem of trying to learn models from the vast repositories of historic data

that are common in many scientific and engineering applications. The process is carried out

off-line and, therefore, time is not as short, although efficiency is still required as the search

spaces can be massive when taking into account the possible changing dependencies.

The resulting models will allow users to query events in the system. For example, users can

ask for probable reasons that variable A is currently high whilst variable B and variable C

have been low for the last 5 minutes. Output would be of the form: Given the evidence, the

most likely explanation is variable X being low 3 minutes ago with probability 0.783 which

is, in turn, explained by variable Y being low 10 minutes previous with probability 0.679.

Various heuristic searches are employed to find a good set of probabilistic models for each

MTS. Searches include hill climb and evolutionary approaches and employ various heuristics

which are compared and contrasted in Chapter 3. The framework involves breaking down

high dimensional MTS into smaller dimensional MTS that are more suitable for learning

models from in a feasible amount of time. This is achieved as timely as possible through the

rapid search for high correlations within the data followed by grouping the variables based on

these discovered correlations and a grouping metric. This subject is dealt with in detail in

Chapter 4. Having broken down the single MTS into smaller dimensional MTS, a new

method is introduced in Chapter 5. Here, the proposed method is systematically compared to

the best performing one from Chapter 3 and its efficiency and accuracy analysed. The MTS

we model contain dependencies that change over time and in Chapter 6 a method is

investigated for incorporating the segmentation of MTS variables into different operating
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states whilst searching for good probabilistic models simultaneously. This method should still

continue to be transparent and allow explanations to be generated based on different

operating states.

The basic framework adopted for solving the problem is illustrated in Figure 1.1. Data

Preparation involves the selection of variables and portions of MTS from the oil refinery data

as well as the generation of the synthetic data (using vector auto-regressive and Bayesian

network models). Variable Groupings involves pre-processing the high-dimensional MTS

into several smaller dimensional MTS and is addressed in Chapter 4. Search Methods

involves looking at existing search procedures for Bayesian Networks and investigating their

performance when adapted to learning DBNs (See Chapter 3). It also involves comparing a

new proposed algorithm to the best of the existing search methods (Chapter 5). Changing

Correlations addresses the issue of extending the models to handle relationships that change

over time whilst keeping the generated explanations transparent (Chapter 6).
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Figure 1.1. The General Methodology adopted within the Thesis for Learning MTS Models

1.4 Contribution to Knowledge

The five key contributions to knowledge that this thesis provides are outlined in this section.

1. Grouping - A new method is introduced and investigated for grouping MTS variables

where dimensionality is very high, time lag can be large and/or time is short. This

method consists of a correlation search using an EP combined with a grouping

algorithm for pre-processing MTS. It has been shown to be very efficient (results

within 4 minutes on MTS with 50 variables, 1000 time points and time lags of up to

60, using a standard Pentium) compared to the other methods investigated, including a

clustering algorithm, hill climb and various approximate searches. What is more, it
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can be scaled to very large MTS in order to reduce the dimensionality of model

building.

2. Comparison of Searches - A comparison of standard static BN search methods that

have been adapted to search for DBN structure including Suzuki’s Branch and Bound

[Suzuki96], Cooper’s K2 [Cooper92], Larranaga’s GA {Larranaga96] and Wong’s EP

[Wong99]. These have been tested on both information theory and statistical metrics.

3. EP-Seeded GA - A new method for efficiently searching for DBN structure known as

EP-Seeded GA. This makes use of a rapid approximate correlation search using EP in

order to seed the original population of a GA. The EP has been found to be excellent

at rapidly homing in on structure in the MTS (within the time axis). By seeding a GA

in this way, as well as defining an operator that will maximise recombination, results

have been obtained that show the algorithm to be highly efficient (results within about

3 minutes on MTS with 20 variables, 1000 time points and time lags of up to 60,

using a standard Pentium) compared to the other methods investigated.

4. Incorporating Changing Dependencies - A method for incorporating changing

dependencies into the representation whilst ensuring transparency has been achieved

with some success. This is achieved by using hidden discrete variables to represent

the changing states of dependencies. These variables retain transparency in that they

can easily be interpreted as `the operating state of the system’.

5. Application to Synthetic and Chemical Process Data - The above methods have

allowed the rapid automatic explanation of synthetically generated data and chemical

process data through using a combination of grouping and EP-Seeded GA so that

incoming data can be analysed `on the fly'. Modelling changing dependencies allow
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models to be built from vast historical data repositories and then queried with as little

or as much user intervention as required. Transparency has been ensured throughout

so that at the end of each process (e.g. grouping, model building etc.) a non-statistical

user can intervene and adjust the models.

1.5 Road Map to this Thesis

This section contains a brief guide to the contents of each chapter within this thesis.

Chapter 2 looks through various dynamic models in the context of explaining MTS

automatically in order to justify the use of the dynamic Bayesian network. These models

include statistical, neural network and state space models.

Chapter 3 firstly outlines the associated issues of Bayesian networks, both static and

dynamic, such as learning from data, inference, discretisation, changing dependencies and

hidden nodes. The second part of this chapter takes some of the widely used standard

methods for learning static Bayesian networks, adapts them to be able to learn dynamic

models through the use of a new representation and compares the methods for efficiency and

accuracy on several synthetic datasets. This chapter is based on the work in [Tucker2001b]

Chapter 4 addresses the problems associated with very high dimensionality in MTS, and

introduces a new method for pre-processing data by breaking MTS into several lower

dimensional MTS based on dependencies discovered in the data. The method allows the user

to make a trade-off between speed and accuracy by altering certain parameters. It is applied
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to synthetic data and the oil refinery dataset and the results are documented. This chapter is

based on the work in [Tucker2000, Tucker2001a]

Chapter 5 introduces a new method for learning dynamic Bayesian networks by seeding a

Genetic Algorithm with the results of an Evolutionary Program search for strong

dependencies. This algorithm is compared with the efficiency and accuracy of the best

method found in Chapter 4 when applied to synthetic data and the oil refinery data. Sample

explanations are shown which have been generated from resulting networks for both the

synthetic and oil refinery data. Feedback from experts in the refinery data is documented

including the comparison to dependency diagrams elicited from the experts. Some resultant

explanations are also included that are based on networks learnt from variables grouped using

the method in Chapter 4 in order to gain an insight into the speed of the overall process. This

chapter is based on the work in [Tucker2001b].

Chapter 6 looks at the problem of offline learning of DBN models for explanation with

changing dependencies. An extension of the representation from Chapter 4 is outlined which

will ensure transparency and two methods are compared for learning the structure at the same

time as segmenting the data into regions of different control structure. In addition, a new tool

is introduced known as the Dynamic Cross Correlation Function (DCCF) which is used to

analyse the datasets. Synthetic data shows very good results when compared to original

structures and segmentations. The oil refinery data is compared to the DCCF analysis with

very encouraging results. Sample explanations are included to show how the method has also
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learnt more complex dependencies that are not evident in the DCCF analysis (which can only

find pair-wise dependencies).

Chapter 7 concludes all of the results documented within this thesis and raises several

problem areas for the methods as well as ways to overcome them. Various interesting areas

for future work are also discussed.
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2 Background

Within this chapter, the datasets that are used within this thesis will be detailed and their

characteristics outlined in section 2.1. Various well-established dynamic models of data will

then be documented in section 2.2 and finally a summary of the desirable features of each

model is documented in section 2.3.

2.1 The Datasets

In this section, methods for generating datasets that are used throughout this thesis are

described as well as characteristics of the real-world oil refinery dataset.

2.1.1 Vector AutoRegressive Data

The VAR process is a statistical multivariate time series model (see section 2.2). The VAR

model has a wide variety of applications ranging from medical domains [Swift99a] to

economic domains [Chatfield89]. Using VAR models of varying order, M, and

dimensionality, N, 1000 time points of data have been generated (n = 1000) for training and

testing DBN models in forecasting and explaining. One dataset is used in this chapter to show

how a DBN can be used to model VAR process data and in Chapter 4, a number of VAR

process generated datasets are used in order to test our MTS variable grouping algorithm.

2.1.2 DBN-Generated Data

Datasets with varying dimensionality, N and maximum time lags, MaxT have been generated

using hand-coded DBNs. This requires imposing both structure and conditional distributions
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upon a network. These hand-coded DBNs were used with an inference algorithm to generate

data where the length of the MTS, n, was 1000. Stochastic simulation, which is described in

detail in chapter 3, was the chosen method for inference. The algorithm for generating the

data is given in Algorithm 2.1 and is graphically illustrated in Figure 2.1.

Figure 2.1. The Process of Data Generation using Stochastic Simulation on a hand-coded
DBN. The Diagram shows Six Iterations on a very small network with N=2 and MaxT=4.

The links are not shown.

1 Apply inference (e.g. Stochastic Simulation) given no
information upon the DBN.

2 Record all values at current time slice t
3 For i =1 to n-1
4 Time-shift the DBN so that the values at time t are

now at time t-1
5 Apply inference using any recorded values at time < t

as evidence
6 Record all values at current time slice t
7 End For

Algorithm 2.1 - Generating Data using Stochastic Simulation
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2.1.3 Oil Refinery Data

The real-world data used in this and later chapters is generated from an oil refinery in

Grangemouth on the Firth of Forth in Scotland. The entire plant produces 34 Mb of data per

day. The process focussed on in this thesis is from an Absorber / Stripper fractionating

column within a Fluid Catalytic Cracker (FCC) and has approximately 300 measured

variables. The measurements include temperatures, pressures, flow rates, and controller set

points and modes (controllers are explained in the next paragraph). These measurements are

taken every minute and are stored on the PI-system which is a set of server and client-based

software programs designed to fully automate the collection, storage and presentation of plant

data. Data has been downloaded from the PI-system into a series of Excel files. The original

data is compressed, that is, only when a measurement ‘moves’ past a given threshold will the

time stamp and process measurement be stored. To convert this data into a multivariate time

series involves an algorithm which increments the time by a fixed amount and sets the

measurement equal to the interpolation between the previous time stamp and the next time

stamp.

Many of the variables are controlled. A controlled variable is one whose movement is being

directly manipulated, sometimes manually or sometimes automatically by a controller. A

controller has a Set Point (SP) which is a value that a controlled variable is manipulated to try

and follow. The output (OP) from a controller will be used to reduce the difference between

the actual value of the variable and the value of its set point. For example, the output from a

controller that is trying to lower the value of a pressure variable will cause a valve to open

more and, therefore, lower the pressure. There are different modes a controller can be in:
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AUTO: where a controller automatically produces an `Output’. The output is used to

determine an action which will rectify any inconsistency between the actual process value

and its setpoint. Essentially, it is a closed loop, feedback system like a thermostat. For

example, a pressure variable dropping below its set point causes the controller’s output to

decrease. This in turn, causes a valve to close slightly, resulting in an increase in the

variable's pressure.

MANUAL: where a variable is being controlled, manually, by a process engineer to follow

its set point. For example, the engineer is directly controlling a valve to increase the flow rate

of a variable which has dropped below its set point.

CASCADE: where the set point of a controller is determined from the output of another

controller. A collection of controllers can be set up like this for complex interactions between

variables.

The mode, output and set point are all measured variables in the data set. However, some

control information is not. That is, there is other controller information, specifically for use in

multivariable control situations (known as Robust Multivariate Predictive Control

Technology - RMPCT), which is not included in the data.

The decompressed data is in the form of a time series sampled every minute over

approximately 300 variables. That is 60 × 24 × 300 = 432000 measurements in a day. The

dataset contains approximately 45000 minutes of data which is about one months worth,

although an entire year’s data is available in compressed format. The variables vary in type.

Measurements are real values and state variables are discrete. The time it takes for one
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variable to have an effect on another varies over time and between variables. It is not likely to

be more than two hours but will often be between 0 and 60 minutes. The dependencies

between some variables may change over time due to the change in operation of the refinery

unit (how the unit is being controlled). This means that two variables may be very highly

dependant for some time and then, suddenly, become uncoupled and behave independently.

There is a very small percentage of data missing where, for example, a measurement or

calculation fails. This accounts for less than 1% of the data.

2.1.4 Discretisation

Prior to learning the structure of a DBN we must discretise any continuous data into a number

of states. There are many different methods for doing this. We can discretise the data based

on patterns that are found in the data. For example, Dynamic Time Warping (DTW),

[Berndt96], offers a way of ‘stretching’ a section of a time series along the time axis in order

to match the data to a template. Wavelet Decomposition [Bakshi94] can be used to split the

data into sections that can then be matched to templates using simple neural network pattern

matchers. Alternatively, we can simply discretise the data into states based on their relative

values. For example, range based discretisation involves breaking up the state space for each

variable into equally sized ranges from the minimum to the maximum value. Figure 2.2(a)

shows the ranges for each of four states using range based discretisation and also the resultant

discretised data. Frequency based discretisation, on the other hand, involves dividing the state

space into ranges of varying sizes so that the frequency of each state within the data is equal.

Figure 2.2(b) shows the ranges for frequency based discretisation and the resultant discretised
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data. [Friedman96] tries to improve the quality of data discretisation further by investigating

a method for learning BNs and discretisation policies simultaneously.
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Figure 2.2. (a) Range Based Discretisation and (b) Frequency Based Discretisation

For the remainder of this thesis we will concentrate on the frequency methods of

discretisation as in general it has been found that the frequency based discretisation produces

DBNs that are more expressive than the range based method. This is probably due to the

resultant data maximising the frequency of different combinations of instantiations. For

example, the range based discretised data in Figure 2.2(a) contains only nine percent of cases

where it is in state 3. This will result in networks that have been learnt on a smaller sample of

many of the instantiations where this variable is in state 3. In contrast, the frequency based



Allan Tucker The Automatic Explanation of Multivariate Time Series Birkbeck College

31

data in Figure 2.2(b) contains precisely twenty five percent of the data for each of the four

states.

2.2 Dynamic Models of Data

There are many different paradigms that are capable of modelling dynamic domains from

classic statistical methods such as the vector autoregressive model to the relatively new

dynamic Bayesian network architecture. In this section, some of these models are introduced

and their suitability for tackling the problem of automatic explanation of MTS is discussed.

This section introduces various different AI and statistical methods for modelling MTS and

the suitability of these are summarised in section 2.3.

A Multivariate Time Series, A, with N variables of length n is to be modelled. Relationships

between two variables ai and aj can exist over varying time lags where ai(t) represents

variable ai at time point t and ai(ts,tf) = { ai(ts) … ai(tf)}.

2.2.1 Vector AutoRegressive Process

A commonly used statistical method for modelling MTS is the Vector AutoRegressive

Process [Lutkepojl93], usually denoted as VAR(M) for a model of order M, as defined in

Equation 2.1.

(t)l)A(tVtA
M

l
l ε+−⋅= ∑

=1

)(
(2.1)

where A(t) is the next data vector of size N (the number of variables in the model), Vl is an

N×N coefficient matrix at time lag l, and (t)ε  is an N-dimensional zero mean noise vector at

time t (usually Gaussian). The value of each element in Vl is usually a bound real number.
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A(t)  is often assumed to have zero mean over the entire sample length t = 1...n, i.e. .0
1

∑
=

=

=
nt

t
i(l)a

The standard statistical methods for fitting a VAR process to a set of data often consist of two

steps: order selection (determining a suitable M) and parameter estimation (calculating the

matrices Vi from the data). Order selection is commonly performed through the use of

information theory based metrics such as AIC (Akaike’s Information Criterion)

[Lutkepojl93]. The standard methods for parameter estimation include Maximum Likelihood

(ML) methods, the Yule-Walker equations method, and the Least Squares  method.

It can be seen that this type of model will not really be suitable for automatically generating

explanations for two reasons. Firstly, the matrices which form the model are not at all easy to

interpret in that the parameters within them go through various complex matrix operations in

order to forecast future values. Secondly, the construction of such models is not automatic,

requiring order determination and parameter estimation. It should be noted, however, that

certain procedures are being developed in order to try and achieve this [Swifty99a].

2.2.2 Transfer Functions

Transfer functions are used to relate an output MTS variable to one or more input MTS

variables. The relationship between input and output is modelled through the linear filter in

Equation 2.2 where ∑
∞

−∞=

=
j

j
j Bvv(B)  is the transfer function, [BoxJenkins76] and (t)ε is

independent noise.

(t)tv(B)ata ji ε+= )()( (2.2)
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The coefficients in such models are referred to as impulse response weights. Figure 2.3

illustrates how the transfer function is used to modify an input signal and a noise signal to

generate the output time series. In order to build Transfer Functions based on data, the Cross

Correlation Function (CCF) can be used.

Figure 2.3. A Dynamic Transfer Function.

The CCF is a useful measure of strength and direction between two variables and is directly

proportional to the impulse response weights.  It is generated by calculating the correlation

coefficient such as Pearson’s [Pearson02] across two time series variables for varying time

lags. Therefore, the variables are time-shifted up to some maximum time lag in both

directions and the correlation coefficient calculated on these data. There are various

correlation coefficients that can be calculated. Two of the most common are Pearson’s

Correlation Coefficient and Spearman’s Rank Correlation. Spearman’s Rank Correlation is

defined in chapter 5 where it is used to group variables in an MTS. The CCF (using

Pearson’s) is calculated as follows:
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This function makes use of the Cross Covariance Function which is calculated as follows:

)),(),,(()( nltantaCovl jiaa ji
+=γ 2.4
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where Cov(x,y) returns the covariance of x and y. See Figure 2.4 for an example CCF

between two variables ai and aj. It can be seen from this that there is a strong positive

correlation from variable aj to variable ai with a time lag of 6. The CCF will be used as an

analysis tool in several chapters of this thesis.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-26 -21 -16 -11 -6 -1 4 9 14 19 24 29

Time Lag

C
o

rr
el

at
io

n

Figure 2.4. A CCF from variable ai to Variable aj with maximum time lag of 30 time slices.
Notice the strong correlation for aj to ai with a time lag  of 6.

In the context of automatically explaining MTS, the transfer model’s biggest drawbacks are

the same as the VAR model - difficult to interpret parameters, and impulse response weights

that require a procedure of estimation (including an analysis of the CCF) and diagnostic

checking, preventing automatic model building.
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2.2.3 Time Delay Neural Networks

The Time Delay Neural Network (TDNN) [LangHinton88, Waibel89, Haykin94] offers a

method for modelling MTS data using a multilayer perceptron architecture that encodes each

neuron as a finite impulse response filters (FIR). This means that weights are computed for

neurons over different time delays in order to capture the dynamic relationships between

input and output variables. The general architecture of a TDNN and the FIR synaptic

connections are shown in  Figure 2.5(a) and 2.5(b). It can be seen that the output signal from

synapse i is calculated according to the convolution Equation 2.6 below where t is discrete

time.

∑ −=
M

ijiji ltxlwts )()()(
(2.6)

Unlike the previous statistical models, this paradigm should be very good for automatically

learning accurate models from MTS using a specifically designed back-propagation scheme

[Wan90]. However, its major drawback (as is the case with most neural network models) is

that it is inherently black box in nature. In other words, however well it can model the data,

the intricacies of the model will be of little use to a user who is interested in understanding

the discovered relationships within the MTS. The complex relationships within the data will

be hidden within the weights of the links between neurons.
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(a)

(b)

Figure 2.5. (a) The Time Delay Neural Network Architecture and (b) the FIR synaptic
connections.

2.2.4 Hidden Markov Models

The Hidden Markov Model (HMM) [Rabiner1989] is a stochastic model which encodes the

probability distribution over a sequence of observations by storing their conditional

distributions given some discrete hidden state of the system. This unmeasured hidden state is

conditioned upon the hidden state at the previous time slice. Based on the Markov property,

the observations at each time slice are independent of one another given the hidden state of

the system and the distribution at each hidden state can be calculated using only the

information from the previous time slice. Figure 2.6 displays a HMM in graphical form.
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Figure 2.6. The Architecture of the Hidden Markov Model

It can be seen that this model requires two transition probability matrices. Firstly, the

transition matrix between hidden nodes over time slices (e.g. between H(t-2) and H(t-1), and

secondly between the hidden node and the observed node (e.g. H(t) and O(t)). These

transition matrices are the same over all time points - they are time invariant. In order to learn

the parameters for such models from data, an Expectation Maximisation (EM) algorithm

[Dempster76] is employed which is described later in this chapter with respect to DBNs with

hidden nodes. HMMs have been used successfully in many applications, probably the most

well known being speech recognition [Rabiner93].

The HMM offers an ideal method for modelling MTS and many algorithms exist for

parameterising models based on data. Whilst the parameters are essentially probabilities and

should be therefore relatively easy to understand, the sheer size of the matrices that would be

required for larger problems may make the paradigm unfeasible.
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2.2.5 Dynamic Bayesian Networks

The Dynamic Bayesian Network (DBN) [Dagum95, Friedman98a, Gharmani98] is an

extension of its static counterpart whereby a domain is modelled using a DAG and

conditional probability tables. Bayesian Networks (BNs) offer a method for modelling

domains probabilistically. They allow us to store the joint probability distribution of a domain

by making conditional independence assumptions about variables. A thorough discussion of

BNs can be found in [Pearl88, Neapolitan90]. As was described in  BN consists of the

following:

1. A graphical structure, hS . This is made up of a set of N  nodes, X , representing

variables within the domain and directed links between them representing conditional

dependencies between a node, ix , and its parents, iπ . The structure must form a Directed

Acyclic Graph (DAG). There must not exist a directed path from any node to itself in

order to preserve this directed acyclic property.

2. A set of conditional probability distributions. Each node is assigned a Conditional

Probability Table (CPT) which determines the probability of that nodes different possible

instantiations given the instantiations of its parents, )|( iixp π .
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 (a) (b)

Figure 2.7. A Bayesian Network for a 5 variable domain. (a) Nodes represent variables and
links represent conditional dependencies between variables. (b) The CPT for each node.

For example, Figure 2.7(a) shows a BN for a small domain containing five Boolean variables

along with their CPT in 2.7(b) (from [Pearl88]). Note that +xi signifies that xi  is true and ¬xi

signifies that it is false. Also note that each variable's distribution must sum to one so, for

example, P(¬xo) is equal to 0.8. Given a BN such as that in Figure 2.7 we can retrieve the

joint probability distribution by multiplying over the conditional probabilities based on the

states of each node for each atomic event. An atomic event is a situation where every node

ahs been instantiated to some value. To calculate the probability of such an event requires the

Equation 2.7.

∏
=

=
N

i
iixpXp

1

)|()( π
(2.7)

For example the probability of the atomic event where xo is true, x1 is true, x2 is false, x3 is

false and x4 is true is as follows:

)|(),|()|()|()(),,,,( 242130201043210 xxpxxxpxxpxxpxpxxxxxp ¬+¬+¬+¬+++=+¬¬++

01536.06.02.08.08.02.0 =××××=

Given the joint distribution of a domain, we can calculate the impact of various observations

upon other unobserved variables. Trivially, we could calculate the joint using Equation 2.7
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and then manipulate the appropriate probabilities to calculate the impact of the evidence on

other nodes. However, it would be more compact and useful if certain observations could be

made about the domain, these entered into the network (which will involve setting the

probability of a node taking a particular instantiation to 1) and then calculating the impact of

the evidence on the distributions of unobserved nodes in the network. There are existing

inference algorithms which are capable of doing this.

In Dynamic Bayesian Networks, nodes will represent variables at particular time slices (or

positions within a MTS) represented by the letter t. Therefore, dependencies can exist

between nodes over different time lags. These models can make use of inference algorithms

in the same way as in static BNs. This will allow them to be used for forecasting and

monitoring. For example, in Figure 2.8 a DBN representing five variables is shown where

there are dependencies between nodes within the same time slice (known as

contemporaneous dependencies) and between nodes in different time slices (non-

contemporaneous links). By making observations at time slice t, we can use inference

algorithms to see the effect upon other nodes at different time slices in the past and future.
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Figure 2.8. A Dynamic Bayesian Network (DBN) with 5 variables and 5 time slices

The graphical structure of a DBN offers an excellent way of displaying the relationships

between variables over time. In the same way as with its static counterpart, nodes can be

manipulated by entering observations and inspecting the impact of that evidence upon other

nodes. What is more, whilst there is little research into learning DBNs from data, algorithms

do exist for learning static models which can possibly be adapted.

2.3 Summary

Having looked at a selection of MTS models from both AI and the statistical fields, it has

been decided that the model that fits the criteria most closely for the problem specification in

Chapter 1 is the DBN. Table 2.1 summarises the features of each of the models discussed.
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Feature
Vector

AutoRegre-
ssive

Process

Transfer
Functions

Time Delay
Neural

Networks

Hidden
 Markov
Models

Dynamic
Bayesian
Networks

Transparent ✗ ✗ ✗ ? �

Learn from
Data

✗ ✗ � � �

Accurate
Forecasting

� � � ✗ ✗

Scalability ✗ ✗ ✗ ✗ ?

Table 2.1. A Summary of some of the features of the MTS Models

Based on this summary, the DBN has been chosen to model the process data for generating

explanations. Whilst forecasting will be limited to discrete states unlike the VAR process, the

transfer function and the TDNN, the DBN can be learnt from data and remain transparent. In

contrast to most other methods it has the ability to combine expert knowledge in a non-

technical format with data. Many of the models will not scale well to high dimensions and

this may include the DBN. Scalability issues, therefore, will have to be resolved.

Within this chapter, a comparison has been made of various different models for MTS data.

Whilst accuracy in predicting data is not as good as other dynamic models such as the

TDNN, the advantage of a DBN model of MTS data is its ability to explain events. The

graphical structure is easy to interpret by making explicit the dependencies that have been

discovered within the data. Additionally, inference within the DBN allows us to calculate the

most likely set of events that have led up to the current observations. The discretisation of

continuous variables will obviously result in loss of information and therefore reduce the
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accuracy in operations such as forecasting. However, it will allow us to make more

generalised statements about relationships between variables. For example, we can make a set

of observations on a DBN and see what impact this has on nodes at previous time slices.  In

the next chapter some of the issues concerning BNs are outlined including some examples of

explanations using inference and methods for learning such models from data.
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3 Dynamic Bayesian Networks for Modelling MTS

In this chapter, firstly various issues concerning BNs (both static and dynamic) are

documented. This includes a review of the work in learning such models from data, applying

inference and modelling hidden variables. Following this review it is investigated how well a

DBN can be used to model Multivariate Time Series such as Vector Auto Regressive (VAR)

data and a simple process from the oil refinery dataset. Some preliminary data exploration

experiments are undertaken in order to show how a DBN can be used to model the synthetic

and real-world datasets. The remainder of this chapter is devoted to investigating how

existing search methods for static BNs can be adapted to DBNs. These adapted algorithms

are tested on several synthetic MTS. This work is taken from the research documented in

[Tucker2001b].

3.1 Learning Bayesian Networks (Static and Dynamic)

Learning static BNs from data is an extensively researched area and a good review of related

literature in the subject can be found in [Buntine96]. Most methods involve scoring candidate

network structures, hS , with some metric and applying a search strategy for exploring the

space of different structures. The metric will reflect how well hS  fits a particular dataset, D .

Methods for learning DBNs have not been researched quite so heavily and so this section will

focus more on static network algorithms. Later in this chapter some of these methods will be

adapted to learn DBNs.
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As was pointed out in section 1.2, the explanations that will be generated from a BN that has

been learnt from data will not necessarily involve direct causal influence

[Pearl91, Heckerman97]. This is due to the fact that even if the optimal BN structure is

discovered from data, several possible networks can represent the same conditional

independences within data but portray a different causal structure (where links represent

direct causal relationships). Different networks that encode the same conditional

independence are said to be in the same equivalent classes  [Pearl91]. For example, a network

with just two variables, xi and xj and one link from xi to xj will have the same conditional

independences as the same variables with the link from xj to xi. However, the causal

dependencies have very different meanings.

3.1.1 Metrics

The relative posterior probability ),( hSDp  is a commonly used metric and the logarithm of

this is usually taken due to the extremely small values involved in computation. It is

calculated from the log prior and the log marginal likelihood (see Equation 3.1).

)|(log)(log),(log hhh SDpSpSDp += (3.1)

If we consider all network priors to be equal (assume a uniform prior), we can ignore the first

part of Equation 3.1 and simply try and maximise the log marginal likelihood. This is the

method by which Cooper and Herskovitz demonstrated the learning of BN structure from

data [Cooper92]. The log likelihood was calculated as in Equation 3.2.
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where ir  denotes the number of instantiations of  a node ix , iq  denotes the number of

unique instantiations of the parents of node ix , ijkF  is the number of cases in D  where ix

takes on its k th unique instantiation and iπ  takes on its j th unique instantiation, and

∑
=

=
ir

k
ijkij FF

1

. Equation 3.2 can be calculated using Stirling’s approximation for the logarithm

of factorials [Stirling1730, Knuth69] to avoid computing extremely small numbers. This is

calculated as in Equation 3.3 below.

yyyy −≈ )ln()!ln( (3.3)

In contrast to the maximum likelihood method we have briefly introduced, above, there is a

family of metrics which try to minimise some information complexity measure. For example

Minimum Description Length (MDL) which was used by Lam and Bachus, [Lam94], and

Suzuki, [Suzuki96], to learn BN structure. The Description Length of a network is calculated

in two parts. Firstly the DL of the network model, 
hSDL  is calculated and summed with the

DL of encoding D  given hS , DDL . This is formalised in Equations 3.4 and 3.5.
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3.1.2 Search

The problem of searching for network structure has been shown to be NP-Hard

[Chickering96a] and so various heuristic and approximate search methods have been

explored.
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The K2 Algorithm

In [Cooper93] a simple search technique, known as K2, was employed with the marginal

likelihood which involved initialising a network with no links. With each iteration, a link was

added that most increased the marginal likelihood of the network structure. This process was

repeated until no link could be added which would improve the network score. This method

required an ordering over the variables, was heuristic driven and deterministic, and therefore

prone to suffer from local maxima in the search space.

Branch and Bound

Branch and Bound [Suzuki96] applies a recursive search whereby the exhaustive search is

limited through the calculation of a minimal bound. This bound will determine whether any

further evaluation is necessary along the current branch of the recursive search. If the current

score is better then the bound calculated for the remainder of that recursive branch then no

more calls to that branch are necessary. The technique will be sure to find the optimal

solution as it offers a method of limiting the exhaustive search. It is however, only applicable

to the MDL metric as no simple bound exists for the log marginal likelihood metric where a

uniform prior is assumed.

Genetic Algorithms

Various Evolutionary methods have been investigated in order to try and overcome the

ordering requirement and the huge search spaces involved. [Larranaga96] investigated the use

of a Genetic Algorithm (GA) in order to search for structure. The GA was first introduced by

Holland in 1975, [Holland95], and is a procedure for searching for the global optimum
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through the application of certain operators upon a population of candidate solutions. The

algorithm was designed to mimic the kind of processes which  occur in the natural processes

of evolution, where organisms evolve to solve particular problems in order to survive through

the inherited characteristics of their parents.

1 Initialise random Population of size Popsize
For i=1 to Generations

2 Select Parents from Population
3 Generate Children from Selected Parents using

Crossover according to CrossoverRate
4 Apply Mutation to random Individuals according

MutationRate
5 Add Children to Population
6 Remove the least fittest individuals until

Population is of size Popsize
7 End For
O/P The Fittest Individual in the final Population

Algorithm 3.1 - The General Genetic Algorithm

This search is applied to a population of individuals which are known as chromosomes.

Traditionally, these chromosomes are made up of a string of binary digits which represent

possible solutions to the problem at hand. The search is implemented in a GA through the use

of recombination and mutation operators, the most common being Crossover and Mutation

although hundreds of different variations exist. Recombination operators cut and splice bits

of parent chromosomes to create new children bit strings. Mutation operators update current

chromosomes by making random changes to a number of bits within a chromosome. The

operators are applied repeatedly in an iterative process where each iteration is known as a

generation. At the end of each generation a process known as survival of the fittest is applied

which involves reducing the size of the population to its original value before recombination

increased it. Chromosomes are deleted from the population based on their fitness so that only
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the fitter individuals remain for the next generation. The General GA process is defined in

Algorithm 3.1.

Larranaga used the standard genetic algorithm to search for BN structure using a binary

chromosome to represent network structure by converting the string to an N × N connectivity

matrix, C where each binary element cij  represents a link from node  xj to node xi if equal to

1. Therefore the network in Figure 2.7 would be represented by the following matrix:























01000

00110

00001

00001

00000

 which is represented as a chromosome by the string

( )00010 01100 10000 10000 00000

Crossover involves deciding upon a random position on the chromosome and using this

position to split each parent chromosome and generate to children by attaching the first half

of one parent to the second half of the second parent and vice versa (see Figure 3.1).

Figure 3.1 - The Crossover Operator applied to two binary chromosomes where the
crossover point = 4.
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Unfortunately, using the binary representation with crossover can result in children that do

not represent legal structures (two legal acyclic parents can generate a child that represents a

cyclic network). We say that the crossover operator is not a closed operator.

Mutation involves randomly altering single bits within the chromosome (based upon the

parameter Mutation Rate) so that a one becomes a zero and a zero becomes a one.

Larranaga’s representation means that mutation is also not a closed operator as it can result in

cyclic networks.

Survival of the Fittest (SOF) involves selecting individuals to go through to the next

population based on their fitness. There are many different forms of SOF but the simplest is

to reduce the swollen population (from the addition of children) to its original size by

removing the surplus individuals with the lowest finesses.

Using the GA in Algorithm 3.1 with the representation and operators described above, as well

as repair operators which converted invalid chromosomes into valid ones representing acyclic

structures, Larranaga showed how BNs could be learnt using GAs without having to impose

an order on the nodes (unlike K2).
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Evolutionary Programming

1 Initialise a random Population of size Popsize
2 For i=1 to Generations
3 Generate a child for each member of Population using

Mutation
4 For p=1 to Popsize
5 Select individual p from Population and q other

random individuals
6 For each random individual with a fitness less

than the fitness of  individual p add one to its
score

7 End For
8 Randomly Mutate all individuals in the new

population and remove any that are not Legal
9 Select the Popsize individuals with the highest

scores to recreate the next population
10 End For
O/P The Fittest Individual in Population

Algorithm 3.2 - The General Evolutionary Program

[Wong99] used the MDL principle with an Evolutionary Program (EP) and some modified

operators in order to improve the speed of convergence of the standard GA. An EP differs

from a GA in several ways [Baeck96, Fogel95]. Firstly, the emphasis is upon mutation as

opposed to recombination, where parents are selected to go forward to the next generation

after a mutation operator is applied. It is typically applied to real valued domains though not

restricted to only these as any representation can be used that is not necessarily real or binary.

Tournament Selection [Baeck93] is the most common method of selecting parents for

mutation in an EP. This involves taking each individual and comparing its fitness to a

selection of q other randomly chosen individuals in the population. The individual in question

then is scored based on how many of the q other individuals have a fitness lower then its

own. The General EP with Tournament selection is shown in below in Algorithm 3.2.
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Wong’s  modified operator made use of some pre-processed information, whereby the

Description Length of all possible individual links was calculated and used to bias the

addition and removal of links in candidate networks. This heuristic has been used several

times before. For example, [Chow68] and [Sahami96] both utilise a similar approach

whereby the Mutual Information of all pairs is calculated and used to order them. The former

applied the heuristic to learning trees and a best first search was adopted in the latter paper.

Turning now to dynamic Bayesian networks, there has been relatively little documented work

in investigating efficient algorithms for learning models. We will look at adapting existing

algorithms for static BNs to learn their dynamic counterparts at the end of this chapter

(section 3.5). Friedman has described simple hill climbing techniques to independently learn

models involving the contemporaneous links between time slices  and the non-

contemporaneous links within a time slice [Friedman98a]. Dagum, [Dagum95], investigated

the forecasting of MTS using DBNs which were learnt using classical time series analysis

with maximum likelihood methods. These DBNs were used for prediction on the course of

critical care patients and pointed out the disadvantages of classical methods which assume

linear relationships amongst variables and normal probability distributions. In particular, he

highlighted the problems associated with spurious and implicit dependencies which could

result in overly connected networks and therefore slow or even intractable inference.

3.1.3 Spurious and Implicit Dependencies

Spurious correlations and implicit dependencies were highlighted as problems that classical

approaches encounter. A spurious correlation is a dependency that appears to exist between
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two nodes due to a common parent between the two nodes (see Figure 3.2(a)), an implicit

dependency is one which appears to exist due to indirect causes (see Figure 3.2(b)).

(a) (b)

Figure 3.2. (a) Spurious Correlation denoted by a dotted line between the node representing
a0(t) and the node representing a1(t). (b) Implicit Dependency between the node

representing a0(t-1) and the node representing a1(t).

In contrast to classical methods, the dependencies between two nodes that are discovered in

BNs can be determined as explicit (i.e. not spurious or implicit) if a set of nodes cannot be

found such that when we instantiate them, we break the dependency. This is from [Pearl92].

It will be important to ensure that any dependencies are explicit in an explanation model in

order to prevent misleading or incorrect explanations.

3.2 Inference

In this section we look at difference ways to perform inference in both static BNs and DBNs.

3.2.1 Inference in Static BNs

In order to compute the posterior distribution of a BN given some observations, we must

apply an inference algorithm to propagate this evidence throughout the network. Kim and

Pearl introduced an algorithm to perform inference in Polytrees [KimPearl83]. Polytrees (also
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known as singly connected networks) are network structures that contain no loops

irrespective of link direction. The algorithm involves a message passing system which

updates the beliefs in each node based on evidence from the node’s parents (the causal

support) and evidence from the node’s children (the evidential support). This algorithm falls

down, however, when applied to multiply networks (networks with loops) because the

messages passing around the system cause nodes to oscillate indefinitely around the loops.

Exact inference in multiply networks has been shown to be NP-Hard [Cooper90]. Therefore,

different methods have been adopted to try and circumvent this problem. Some methods such

as clustering and conditioning convert the multiply networks into polytrees; others use

approximate algorithms such as stochastic simulation. Clustering involves merging nodes in

multiply networks so that polytree inference algorithms may be applied. For example, the BN

structure in Figure 2.7 (which is multiply) would have the offending nodes, B and C,

combined into one. This would mean that a new node, B & C, would be formed using the

combined distributions for the new CPT (see Figure 3.3(a)). Conditioning involves splitting a

multiply network structure into several polytree structures based on instantiating a certain set

of nodes. For example, by instantiating node A from Figure 2.7, we get a structure such as

that in Figure 3.3(b) for each instantiation of A (i.e. one polytree where A=false and one

where A is true).
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(a) (b)

Figure 3.3. Inference in Multiply Networks by (a) Clustering and (b) Conditioning

Stochastic Simulation is a method to try and approximate the posterior distributions of a BN

by running repeated simulations in order to generate multiple samples over the nodes. As the

number of simulations increase, the frequencies of the states of each node occurring in the

samples will approximate the exact posterior distribution. Logic Sampling as suggested by

[Henrion88] handles the propagation of evidence by discarding all simulations where the

observed nodes have been instantiated to states different to those observed. This can result in

many simulations being discarded, especially as the number of observations increases. Pearl

suggests a method to overcome this problem by clamping the observed nodes to their

respective states and applying a two-step algorithm. All unobserved nodes are sampled given

the other instantiations in the BN and then a biased random number generator is used to select

the next state of that node.

This algorithm is outlined in Algorithm 3.3 (from [Pearl88]). Let iw  denote all other variables

in a BN except variable ix . The algorithm calculates )|( ii wxp  by local computation using the

Markov blanket of ix . The Markov blanket of a node consists of its parents, its children, and
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the parents of its children. For example, the Markov blanket of node x2 in Figure 2.7 will

consist of all the other nodes in the network { x0, x1, x3, x4 }, the Markov blanket of x0 will be

the set { x1, x2 }, and the Markov blanket of x4 will be { x3 }.

1 Set all observed nodes to their appropriate states
2 Set all unobserved nodes to random states
3 For s = 1 to Sims
4 For i=1 to N
5 Calculate )|( ii wxp

6 Generate the next state of ix  using a random number
generator biased to the distribution computed in
step 4

7 Next i
8 Next s
9 Take the average conditional probability calculated from

step 4 as the posterior distribution for each node

Algorithm 3.3 - Stochastic Simulation

Another method of inference aims to generate the most probable configuration of values for

all unobserved nodes rather than their posterior distribution. We cannot simply choose the

state with the greatest probability for each node in order to calculate this. For example, if we

were to imagine that nine people entered a lottery, eight buying one ticket each and one

buying two, and we modelled this as a BN where each node represented a person with two

states, win and lose. The posterior distribution should be for each of the eight with one ticket

[0.1, 0.9] for the states win and lose, respectively. This posterior shows that the state with

highest probability for all contestants will be lose. Even the person who buys two tickets will

have a posterior distribution [0.2,0.8], and so will be likely to lose. However, if we want to

calculate the Most Probable Explanation (MPE) [Pearl88], this would be the person with two

tickets instantiated to win and the remainder to lose. In the context of automatically

explaining MTS, this procedure may be useful. However, standard belief propagation is less
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prone to influences from irrelevant information. MPE results can also be deceptive in

situations where even the most probable explanation is very unlikely. In general  using

standard propagation to calculate posterior probabilities is better in prediction and diagnoses

situations and for this reason it will be used in the remainder of this thesis.

3.2.2 Inference in DBNs

Inference in DBNs is almost identical to that of static BNs. Given a set of observations,

algorithms can be employed to calculate the posterior distributions over unobserved nodes,

both in previous time points or into the future. Standard inference algorithms can be used

such as stochastic simulation which was discussed in the previous chapter. What is more, the

distributions of nodes which are outside the initial time-scale of the original DBN can be

computed. This involves a process called scrolling. For example, consider the DBN in Figure

2.6. If observations can be made about variables in the system, we can apply inference to gain

the distribution of other unobserved nodes. The entire DBN can then be shifted forward one

time slice so that variable a0(t-1) becomes a0(t). This is known as scrolling the DBN forward

[Dagum92]. Essentially all nodes that were previously conditioned upon nodes at previous

time points have their distributions converted so that any conditionals become priors. Having

done this, inference can be re-applied using the distributions that were calculated from the

previous inference. These are used as observations to update nodes in the new time slice and

the process can be repeated to further time slices in the future. In the same way, the DBN can

be shifted back in time to infer distribution in previous time slices.
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If a DBN is used to monitor a system, the inference method described, can be vastly

improved upon. This is due to available sensor information that is not being used to update

the current state of the model in any way. To demonstrate this, consider tracking an object

over time within 2D space using a weak state transition model such as random walk, but an

almost error prone sensor. Figure 3.4 (taken from [Kanazawa95]) shows how the model

evolves so that the possible states of the system spread out randomly over the space whilst the

object follows its particular trajectory. Most of the projected states bear no relation to the

actual position of the object and so only a very small sample of projections will be used to

update the estimated next state, resulting in large errors. This type of prediction is not taking

into account the fact that the true state of the system (the actual position of the object) is

known with very little error at each time point. Kanazawa, Koller and Russell have

researched into inference in stochastic processes [Binder97, Boyen98, Koller97] and

experimented with algorithms for resolving this situation. In particular, a Survival of the

Fittest (SOF) algorithm which works by only allowing samples that are similar to the current

state of the system to be propagated [Kanazawa95].

Figure 3.4. A Sample Monitoring Problem. Taken from [Kanazawa95].
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This problem does not arise in non-monitoring problems such as projection because the

sensor information at future time slices is not available. In explanation, where the DBN is

shifted backwards to explain current events, the data will obviously be available. However,

the question of whether to use data to update the inference process has not been investigated

within this thesis. It was decided that a standard stochastic simulation method would be used

which was introduced by Pearl, and is essentially the Algorithm 3.3.

Stuart Russel et al. have been investigating DBNs, including the application to modelling car

driving behaviour [Forbes95]. In particular, they are attempting to develop a system for

driving a car autonomously using a DBN as one of the central models.

3.3 Modelling Hidden Variables

A feature that is very characteristic of process data in general is that dependencies between

variables can change over time. For example, in the oil refinery dataset the behaviour of some

variables will be dependent upon the control engineer responsible for that particular process.

Different engineers will control certain variables in different ways such as reducing a

particular pressure by lowering a temperature somewhere else in the plant or by opening an

associated valve. Dependencies may also be affected by the product that is being maximised

by the refinery at any particular time. Changes in dependency will have to be taken into

account when learning models from MTS data, especially when the MTS is long and has,

therefore, had more chance of experiencing multiple switches. There is an extensive literature

in state space models that incorporate changing dependencies or ’switching states’. A review

of this literature is included in [Gharamani99] which describes the different architectures that
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have been explored for modelling MTS with switching states and introduces a method for

modelling discrete and continuous dynamics based on the hidden Markov model.  For

example, [Shumway91]  makes use of an architecture which uses a state vector that is

independent of previous states and is restricted to switching only the observed matrices (O in

Figure 2.6) as opposed to the state matrices (H in Figure 2.6) which was the case in

[GordonSmith88]. The method adopted a pseudo Expectation Maximisation (EM) algorithm

[Dempster76] for the earlier stages and a non-linear optimiser procedure to maximise

likelihood at the latter stages. The algorithm was tested successfully on synthetic multiple

target tracking data.

For BNs, changing dependencies can be modelled using hidden nodes which are not

measured and, therefore, do not appear in the dataset. A good example of how the exclusion

of a hidden node can cause overly complicated BN structures is shown in Figure 3.5. In order

to capture the distribution of the structure in Figure 3.5(a) many more dependencies are

required if no hidden variable is included (Figure 3.5(b)).

(a) (b)

Figure 3.5. The use of a Hidden Node to simplify BN Structure. If the hidden node in (a)
marked with an ’H’ was not included in the model, the only way to capture all of the
dependencies between the measured variables would be using the structure in (b).
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Recently there has been a growing interest in learning BNs and DBNs with hidden nodes

[Chickering96b]. Friedman, in particular, has developed an extension to the EM algorithm to

learning network structure in the presence of missing data or hidden nodes. This algorithm,

known as the Structural Expectation Maximisation (SEM) algorithm [Friedman97,

Friedman98b] is described in general terms in Algorithm 3.4.

I/P Initial Model with random structure hS and random

parameters except from observed variables, A
1 i = 0
2 Repeat until convergence or i > Iterations
3
4 E-Step
5 Improve model parameters through Parametric-EM given

hS  and current parameters

6 M-Step
7 Search for structure that improves the expected

score given the current parameters using a standard
scoring metric such as log likelihood or DL

8 i = i + 1
9 End Repeat
O/P Final Structure and Parameters

Algorithm 3.4 - The General SEM Algorithm

The E-Step is often implemented using an inference mechanism to calculate the probability

of the hidden variable given the observed [Lauritzen92]. Friedman has proved that

improvement in expected score results in an improved objective score of a BN model

[Friedman98b]. The methodology has been tested on various datasets in order to learn BNs

from datasets with one or more hidden variables. The biggest drawbacks concern the time-

consuming process of calculating expected statistics during the M-Step and encountering

local maxima which are common in this problem. Methods to overcome this include local
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perturbations and an alternating SEM algorithm where the E-Step is allowed to progress for a

number of steps or until convergence before any change is made to the structure, and a

process known as deterministic annealing [Ueda95] which alters the likelihood’s surface plot

so as to allow the search to home in on the global maximum early on.

3.4 Preliminary Data Exploration

This section focuses on learning small networks from continuous data and tests the resultant

DBNs by forecasting future values and comparing to actual observed values. The goal of this

section is to identify the different stages involved in generating explanations automatically as

well as any potential problems.

3.4.1 Modelling the Data

Frequency based discretisation was applied to both the synthetic VAR data and a 4000

minute section of the real-world controller data to generate four states over all variables. The

structure is scored using the log marginal likelihood as a scoring metric and an exhaustive

search strategy. The search involves adding links from one of the nodes at time lag greater

than zero to a node at time lag zero. As the VAR data is a fourth order process, we search for

links between all nodes up to a time lag of four and we search for all time lags up to five

minutes for the controller data. The discovered DBN model can be used to predict states of

variables in the future or to explain states of variables back in time through various existing

inference algorithms. Here we apply stochastic simulation to the network in order to predict

the following states of the variables given the previous observed states. This was applied to a

new piece of data that the network was not trained on. We apply one step ahead forecast and
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five-step ahead forecast on the oil refinery and VAR process datasets, respectively. We

compare these forecasts to the actual data that was observed.

The parameters for the VAR process should determine the dependencies within the data. The

structure, learnt from the first five hundred time points, shown in Figure 3.6 displays several

dependencies between the variables with all links pointing from one of the three variables a2,

a3 or a4 at various time lags to all the variables at time lag zero. Figure 3.7 illustrates a five-

step ahead forecast on a section of the remaining five hundred time points. The forecasts such

as this one are fairly accurate, rarely predicting a state that is out by more than one.

Fig 3.6. The DBN discovered from the VAR data
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Figure 3.7. A five-step ahead Forecast on one VAR data variable using the discovered DBN
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Next, a DBN is learnt from three variables relating to an automatically controlled flow rate

within the FCC. The three variables relate to the actual recorded flow rate (PV), the set point

of the flow rate (SP) which is the ideal rate of flow, and the output (OP) of the flow

controller. These should be very closely related to one another as discussed in the previous

section. The learnt structure, shown in Figure 3.8, highlights the dependencies that were

discovered between the control variables. SP at time zero is determined by itself and PV one

time slice previously, PV is determined by itself and OP in the previous time slice and OP is

determined by itself and SP. This structure mirrors the sort of dependencies that we expected

to find in this data (see the description of the behaviour of a controller in Chapter 2).

Figure 3.8. The DBN discovered from the Controller data

Figure 3.9 shows the one-step ahead forecast for the learnt DBN on the discretised FCC flow

rate data. Once again as with the VAR data, the forecast is generally very good.
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Figure 3.9. A Sample one-step ahead Forecast on PV using the Controller DBN
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Given that the methods described in this chapter are limited to forecasting states of data

rather than actual real-valued variables, the results are promising. They give a strong

indication of the quality of the discovered DBN models. However, if we are to generate more

accurate forecasts with real valued predictions, there are many other methods such as the

TDNN introduced in Chapter 2 which will produce better results.

3.4.2 Generating Explanations

Figure 3.10 shows the posterior probabilities of variables in the VAR and Controller data

given some observations. The x-axis represents the number of slices back in time from t and

the y-axis represents the probability of a node being in state 2 or 3 (i.e. the higher two of the

four states). Notice how the on the VAR process, some of the graphs have breaks. This is

where there is no information that can be propagated to those variables at that  particular time

slice. Also notice on the controller data, the way that the shape of each graph is reflected in

the other graphs back in time. For example, the sudden switch from low to high probability in

PV is reflected by a similar behaviour in OP a few time slices previous and then in SP a few

time slices previous to that.
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Figure 3.10. The Posterior Probability over three of the VAR Process Variables (a), and the
Controller Variables (b), as the Explanation is generated back in time. Note the breaks in
the lines in (a) where we have no information about a particular variable at that point in
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time.
Figure 3.11 shows an example explanation that has been generated using the controller

network. This is generated directly from the DBN structure where each node is replaced with

its most probable state given the observations. Note that the explanation is formed from

phrases such as ‘PV in_state 3’. This essentially means that PV was between two limits

depending on those used for discretising variable PV. It can be loosely interpreted as PV is

‘high’. An explanation for ‘PV in_state 0’ (low) at the current time slice given ‘PV in_state 3’

(i.e. ‘high’) in the last time slice (as well as some other observations over the other variables)

is shown in Figure 3.11. The arrows show the dependencies between events as found in the

DBN structure and the probabilities relate to those found in Figure 3.10(b).

Figure 3.11. An Example Explanation using the Controller BN. Shaded boxes represent
input to the network. Unshaded boxes represent possible causes for events.

The input observes that currently the PV is in state 0 but in the previous time slice it was in

state 3. The inference back in time generates the probabilities over the three variables back in

time. The output shows the OP changing from being in state 3 with a probability of 0.68 to
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being in state 0 with a probability of 0.91, given the input. This can be interpreted as

whenever PV is in state 3 and changes to state 0 in the following time slice, OP will have

changed to state 3 one minute ago with 0.91 probability within the training data. Further

inference, shows that given the distribution over OP at t-1, SP was in state 3 at t-2 with a

probability of 0.85.

3.5 Adapting Existing Search Strategies to Process Data

The existing methods for learning static BNs from data are many and varied and some were

briefly discussed in section 3.1. In this section, a representation is introduced which permits

some of these methods to be adapted to learn DBN structure. The different algorithms are

compared and contrasted when applied to MTS from process data in order to see which

methods are most suited to learning from large MTS such as oil refinery data. The learning

curves are investigated of the K2 algorithm, a GA, an EP with knowledge guided mutation,

and Branch and Bound. These are all tested with both log likelihood parameters and MDL on

synthetic datasets. Note that experiments involving the stochastic algorithms (EP and GA) are

repeated ten times and the average taken in order to give a clearer indication of overall

performance.

Each algorithm has been adapted to the learning of DBNs and are described in detail below.

The resulting curves are compared and contrasted. The goal of these comparisons is to

identify any salient features that may be adopted in some hybrid algorithm for learning good

networks rapidly from process data with large time lag.
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3.5.1 Introducing a Representation for Dynamic Bayesian Networks

From now on the assumption is made that the process being modelled is being recorded

frequently enough to allow us to exclude any instantaneous dependencies. That is our DBN

will contains no links within the same time slice (also known as contemporaneous links). In

many applications where data is recorded frequently, the assumption that all variables take at

least one time slice to impose any effect on another may well be true. In other words it is

impossible for there to be instantaneous relationships between variables - they all must take at

least one time slice (if the time slice is small enough) to affect another. It should be pointed

out that if some temporal order is put upon each link in this way, then the chances of a link

representing a causal dependence are increased because many networks with the same

equivalent class are removed from the set of possible candidate structures.

A DBN with only non-contemporaneous links can be represented by a selection of N + |Q|

nodes, where N is the number of variables at a single time slice, t, and Q is the set of nodes at

previous time slices up to some maximum lag MaxT (|Q| ���×MaxT) where members of Q

have a direct dependency on nodes at time slice t. We can use a list of triples to represent a

possible network: (ai,aj,l) where ai is the parent variable which is represented by a node in Q ,

aj is the child variable and l is the time lag. Therefore, each triple maps directly to a link in

the network. So for N = 6, MaxT = 4 and |Q| = 6 , a list such as:

( ))1,5,4(),3,2,4(),4,1,3(),2,4,3(),2,0,3(),2,3,2(

would represent the DBN discovered from the VAR data in Figure 3.6. This notation is

illustrated in Figure 3.12 for a DBN with N variables and MaxT time lags.
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Figure 3.12. A Summary of the Notation used for the DBN Representation showing an
example DBN with N variables, MaxT time lags and four links. Each parent is a member of

Q and each child a node at time t.

The search space for this representation can be reduced because each node at time 0 and its

set of parents will be independent of other variables at time 0. Therefore, we can search for

the parents of each variable independently and the actual search space will be ( )MaxLagNN .2 .

3.5.2 Adapting the Algorithms

We will now describe the algorithms that have been implemented and compared. These

algorithms have been adapted to be used on DBN structures using the proposed

representation.

For these experiments an operator, Legal, was defined which returned true if and only if

i) The number of parents did not exceed a parameter, MaxBranch, which was set as 3.

ii) There were no repeated triples within in each triple list.
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K2 / K3 (adapted for DBN from [Cooper92] and [Bouckaert94])

This algorithm usually requires an ordering on the nodes. However, due to the assumption

that is made based on ignoring contemporaneous links, this ordering can be ignored as all

nodes will be ordered upon their time slice, t . It works by iterating through each node at time

t  and scoring the effect of adding all possible single parents to the current node. The parent

that increases the score the most is then added to that that node’s list of parents. This

procedure is repeated until there are no parents that can be added to any nodes at time t , that

will increase the network’s score

I/P Set of N+|Q| nodes, A (n×N MTS), upper bound on number
of Parents, MaxBranch

1 For i=0 to N-1 (each node at t=0)
2

iπ =∅
3 oldP = ),( iig π
4 Proceed = True
5 While Proceed
6 Let z be the node that maximises }){,( zig i ∪π where

Qz ∈ , iz π∉

7 newP = }){,( zig i ∪π
8 If Legal ( newP ) AND newP > oldP  Then
9 oldP = newP

10 iπ = }{zi ∪π
11 Else
12 Proceed = False
13 End If
14 End While
15 End For
O/P Set of parents iπ  for each of the N variables

Algorithm 3.5. The K2 / K3 Algorithm

where ),( iig π  is calculated using either 3.6 or the summation of 3.7 and 3.8 below:
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The ),( iig π is used in all of the following algorithms to score networks. However, rather than

calculate this for all nodes, it was only applied to nodes at time t . These are the only nodes

which have changing parents and so all other nodes scores will remain fixed. What is more,

we can calculate these values independently for each variable at time t . This is due to the

assumption of no missing data where the score will decompose to the summation of DLs or

product of likelihoods [Cooper92].

Genetic Algorithm (adapted for DBN from [Larranaga96])

The Genetic Algorithm searches for the global optimum through the application of

recombination and mutation operators as explained in section 3.1. These operators are applied

to a population of candidate solutions which we will represent using the triple list method,

proposed above, as opposed to the standard binary chromosome. Many different forms of

operator exist, the most common being single point crossover and standard mutation. These

operators have been adapted for the application to two triple list parents where each parent

can be of varying length.
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Crossover :

I/P Two triple lists: Par1, Par2 containing len1 and len2
triples respectively

1 cp1 and cp2 are set to random values in the distribution
U(0,len1) and U(0,len2), respectively

2 Set Child1 to the triples: { )2,...,2(2)1,...,1(1 lencpParcpPar ∪ }
3 Set Child2 to the triples: { )1,...,1(1)2,...,1(2 lencpParcpPar ∪ }
O/P Child1, Child2

The crossover operator is applied to the triple lists in the same way as it would be to a binary

chromosome (see Figure 3.13). Note that the triple lists can vary in length (determining the

size of Q).

Figure 3.13. The Crossover Operation Applied to two Parent Triple Lists of length 6 and 8
respectively. This operator generates two new Children Triple Lists. Crossover points were

2 and 5 for Par1 and Par2 respectively.

Mutation :

The mutation operator involves randomly adding or removing a triple from the triple list in

question. Any new triple is generated using random values from uniform distributions of the

form:

( )),1(),1,0(),1,0( MaxLagUNUNU −−
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Unlike, [Larranaga96] operators on static BNs, these are closed operators. They cannot

generate a cyclic graph due to the contemporaneous link assumption within the

representation.

The Genetic Algorithm for DBNs is very similar to the standard GA described earlier. It

determines parents based on their fitness, the fitter being more likely to be selected.

Crossover Rate determines the number of times two parents are selected to perform

crossover. Mutation Rate determines the likelihood that a chromosome has one triple

mutated.

I/P A (n×N MTS), Crossover Rate, MutationRate, Popsize,
MaxBranch

1 Initialise random Population of Legal varying length
triple lists

2 For i=1 to Generations
3 Select Parents from Population based on their

fitness according to CrossoverRate
4 Generate Children from selected parents using

Crossover
5 Mutate individuals using Mutation according to

MutationRate
6 Add all Legal Children to Population
7 Remove the least fittest individuals until

Population is of size Popsize
8 End For
O/P The DBN represented by the fittest individual in

Population

Algorithm 3.6. The Genetic Algorithm for Learning DBNs

Evolutionary Program (adapted for DBN from [Wong99])

The Evolutionary Program described here is a simplified  version of Wong’s EP which was

applied to static BNs in that it makes use of a specialised operator called the Knowledge
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Guided Operator. This requires calculating the DL of all possible single links in the network

in order to bias the mutations. For DBNs the DL must be calculated over all possible time

lags as well as between all possible variables. The likelihood of a single link was used to bias

the mutation where the log likelihood metric was used.

I/P A (n×N MTS), Popsize, MaxBranch
1 Initialise random Population
2 For i=1 to Generations
3 Generate a child for each member of Population using

KGM
4 For p=1 to Popsize
5 Select individual p from Population and q other

random individuals
6 For each random individual with a fitness less

than the fitness of  individual p add one to its
score

7 End For
8 Randomly Mutate all individuals in new Population

and remove any that are not Legal
9 Select the Popsize individuals with the highest

scores to recreate the next Population
10 End For
O/P The DBN represented by the fittest individual in

Population

Algorithm 3.7. The Evolutionary Algorithm for Learning DBNs.

Knowledge Guided Mutation (KGM) takes a list of all possible links (triples) in the DBN

which have been scored according to Equation 3.6, or 3.7 and 3.8. Given a parent, it then

randomly adds or deletes a triple where a triple is more likely to be added, the better the its

score and more likely to be deleted, the worse its score. Mutation is identical to the Mutation

operator applied to the GA.
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Branch & Bound (adapted for DBN from [Suzuki96])

The ordering on the nodes can also be ignored for this recursive algorithm. It is more efficient

than carrying out an exhaustive search yet is guaranteed to find the optimal structure given a

dataset D . It does this by calculating bounds on further recursive calls on a branch. If these

bounds are not lower than the current DL then further searching is ignored. This offers an

intelligent method of limiting the search, where we normally have to apply a blanket limit on

the branching factor of our networks.

Branch_Bound ( 1π , 1p , DL1, E1)
1 Calculate entropy E1 for 1π  using Equation 3.3;

DL1=E1+ 1p ; H1= 1π
2 If 1π = null Then
3 j = 0
4 Else
5 j = last element in 1π
6 End If
7 For q = jQ  to QQ

8 2π = q∪1π ; 2p = qrp ×1

9 If ( )1(11 −×> qrpE ) & ( 2π < MaxBranch )  Branch_Bound

( 2π , 2p ,DL2,H2)
If 21 DLDL < Then

21 DLDL =
21 HH =

10 End If
11 End For

Algorithm 3.8. The Branch and Bound Algorithm for Learning DBNs.

The recursive function, above, is applied to each of the N variables, where 1π  is initially set

to a null list and 1p  to 
2

)1(
)log(

−× irn .
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3.5.3 Experimental Results

We found that the best performance over all datasets was achieved using the parameters

shown in Table 3.1 for each of the algorithms. Interestingly, the initial population for EP was

found to be optimal when all chromosomes contained no triples. This is most likely due to its

strength being through the use of pre-processed knowledge as opposed to the recombination

of random triples as used by the GA. MaxBranch was set to three for all experiments except

Branch and Bound in order to limit the search to some degree. Branch and Bound limits the

search, itself but a limit of five was still applied as anything greater than this would have

seriously affected inference.

K2 / K3 Branch and
Bound

EP GA

Popsize 1 1 10 100
Crossover Rate - - - 0.8
Mutation Rate - - 0.8 0.1

MaxBranch 3 5 3 3

Table 3.1. Parameters for the Adapted Search Algorithms.
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Figure 3.14. Comparing the Search Methods on DBN-Generated MTS using Minimum
Description Length (a) N=5, MaxT=10; (b) N=10, MaxT =10; (c) N =5, MaxT =30;

(d) N =10, MaxT =30; (e) N =10, MaxT =60

It is evident from graphs 3.14(a) and 3.15(a) that on the smaller synthetic datasets the K2 and

K3 algorithms are the fastest at finding a good structure. However, these algorithms can

suffer from local maxima and some of the experiments using other global methods have

found structures with better scores after a larger number of function calls.
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Figure 3.15. Comparing the Search Methods on DBN-Generated MTS using Maximum Log
Likelihood (a) N=5, MaxT=10; (b) N=10, MaxT =10; (c) N =5, MaxT =30; (d) N =10,

MaxT =30; (e) N =10, MaxT =60.

Notice that as either N or MaxT increases, graphs 3.14(b), (c) and (d), and 3.15(b), (c) and

(d), the EP method appears to find better networks in a shorter number of function calls. The

KGM heuristic is of assistance in speeding the convergence of the algorithm. What is more,

as the networks increase in both dimensionality and time lag, K2 and K3 become less and

less efficient. This is probably due to the unnecessary search over the addition of every
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possible single link to the network (including all variables and time lags). The GA does not

appear to perform that well, particularly in the smaller networks but performs better than K2

and K3 in the earlier generations on larger networks, graphs 3.14(e) and 3.15(e). This is

likely to be due to the efficient recombination of good links in the first few generations

followed by the reliance upon mutation to fine-tune the DBN further.

Table 3.2 shows us the number of function calls to find optimal structure using Branch and

Bound (only applicable to the MDL metric) Branch and Bound is generally the best method

for finding the optimal structure in that it is far more efficient than an exhaustive search.

However, in considering the problem of finding a good but not optimal structure quickly it is

not really a suitable method, requiring many more function calls to find a network that scores

comparably to the other search results. Note that we have limited the branching factor (i.e. the

number of parents of any node). If it is desirable to perform rapid inference and to acquire

networks quickly, it makes sense to control the limit on the branching factor of networks in

order to achieve this. Branch and Bound offers a more intelligent method of doing this by

ensuring networks of higher connectivity with lower DL are not searched but even on the

Branch and Bound method, when N and MaxT are large, the search can become so large as to

be unfeasible.
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N MaxT Search Space Function Calls MDL
5 10 710185.1 × 510040.1 × 832.665145
10 10 810938.7 × 610667.1 × 2597.160
5 30 910062.3 × N/A N/A
10 30 1110992.1 × N/A N/A
10 60 1210426.6 × N/A N/A

Table 3.2. The Number of Function Calls to Find Optimal Structure using Branch and
Bound with MDL. MaxBranch has been set to 5. N/A shows where the number of

function calls was too large to practically carry out the experiment.

3.6 Conclusions

Firstly within this chapter, issues concerning BNs and DBNs have been documented

including learning models from data, inference within models and modelling hidden

variables. Next, some preliminary experiments have been carried out to look at the DBN

paradigm as a method for automatically generating explanations from MTS. There are

various issues that are raised from the experiments such as ‘How should continuous data be

discretised?’ and ‘What method should be used for learning the models?’. If these issues can

be resolved, it appears that the DBN will offer a way of integrating historical data with

transparent and interactive models for querying relationships within data. Finally in this

chapter, the issue of learning such models as quickly as possible are looked at through the

adaptation of various algorithms for static BNs to learning DBNs, and their efficiency has

been compared on synthetic data. If the rapid on-line generation of a DBN is the goal then

K2,  K3 and Branch and Bound are unlikely to be of use. As N and MaxT increase, these

methods become more and more inefficient. In Chapter 5, evolutionary methods are looked at

to quickly learn DBNs by combining the salient features found in the search methods

explored in this chapter with the addition of new heuristics based on analysis of process data.
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However, in applications where time is not as limited, such as the offline processing of

repository data, a more thorough search may be of use. Branch and Bound offers an efficient

way to learn models. However, the sheer size of the search space may still make this method

unfeasible. To sum up, on datasets with larger dimensionality and larger maximum time lag,

an approximate evolutionary algorithm appears to be the most likely candidate for learning a

good DBN structure quickly from process data.
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4 Grouping High Dimensional Time Series Variables

In this and the next chapter, methods are investigated to try and learn a model for explanation

from MTS in as little time as possible in order to make analyses and decisions based on new

sets of data. As the dimensionality of MTS and the number of possible time lags increase, the

search spaces involved will swell dramatically making real time learning impossible.

Therefore, it will be valuable to discover a method that will quickly break down a large

dimensional MTS into a number of smaller, relatively independent MTS. In this chapter,

methods to group variables in MTS are discussed in order to achieve this. Some approximate

search methods can then be applied to these subsets of data in order to explain events rapidly.

This chapter is based on the work in  [Tucker2000] and [Tucker2001a].

4.1 Time Constraints on Learning High Dimensional DBNs

There are many practical applications involving the partition of a set of objects into a number

of mutually exclusive subsets. The objective is to optimise a metric defined over the set of all

valid subsets, and the term grouping has been often used to refer to this type of problems.

Examples of the grouping applications include bin packing, workshop layout design, and

graph colouring [Falkenauer98]. Much research has been done on the grouping problem in

different fields, and it was established that many, if not all grouping problems, are NP-hard

[Garey79]. Therefore, any algorithm that is guaranteed to find the global optimum will run in

exponential time to the size of problem space, and a heuristic or approximate procedure is

normally required to cope with most of the real world problems. A variety of techniques have

been proposed to develop this procedure, including traditional clustering algorithms, hill-
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climbing and evolutionary algorithms. These techniques utilise a metric that takes

relationships or dependencies between objects into account, and partition them into a number

of mutually exclusive subsets [Falkenauer98].

 When it comes to the problem of decomposing a high-dimensional multivariate time series

(MTS) into a number of low dimensional MTS, the number of possible dependencies

between time series variables becomes huge because one variable could affect another after a

certain lag. Therefore how to effectively utilise these dependencies becomes an important

issue: to use all the possible dependencies in a variable grouping algorithm will be

computationally infeasible for many, especially real-time, applications.

This chapter is about a systematic study of the “variable groupings” problem in multivariate

time series (MTS). In particular, different heuristic methods are investigated for utilising the

information regarding dependencies among MTS variables. In all, 15 such methods are

suggested and applied to six datasets where there are identifiable mixed groupings of MTS

variables. Finally the most efficient method is applied to oil refinery data and comments from

control engineers are discussed.

4.2 Pre-processing MTS using Pair-wise Dependencies

Given a multivariate time series, the aim is to partition the variables into a number of smaller

dimensional time series. The methodology introduced in this chapter consists of two stages

(see Figure 4.1):
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Figure 4.1 - A Process Diagram of the Grouping Procedure

i) Firstly a search over combinations of variables and time lags is carried out in order to find a

list of highly correlated variables. Let us call this collection of dependencies List, which will

be of length R. List will consist of triples where a triple is made up of two variables and a

time lag. For example, the triple (ai, aj, 5) represents the correlation between ai and aj with a

time lag of 5. Essentially all of the triples in List represent the variable pairs that are deemed

to be significantly correlated with the corresponding time lag. Therefore, it is important to

estimate what R should be with a high degree of accuracy. This is discussed further in section

4.4.

ii) Stage two consists of a grouping algorithm which is applied to List where a specifically

designed metric is used to group the variables in the original MTS based on the pairs of

variables found in List. Note that the lag portion of the triple is no longer used once the

grouping algorithm is applied. This is because highly correlated variables are to be grouped

irrespective of the time lag between them.
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This section is arranged as follows. After, outlining the basic notation in section 4.2.1, three

methods for generating List are introduced in section 4.2.2. These methods are capable of

generating a list of highly correlated variable pairs, which can then be used along with an

appropriate metric by a grouping algorithm.

4.2.1 Preliminaries

Given a multivariate time series, A, with N variables and of length n the aim is to partition

each variable into m groups. The set of groups will be denoted by G and the size of each

group, gi will be denoted by ki. This will be achieved by generating a list of ‘strong’

correlations, List, which will be of length R. List will be calculated by using different

searches through the number of possible correlations, s, where the number of calls to the

correlation coefficient will be denoted by c. The aim of this search is to find the true

underlying dependencies that generated the data. The number of explicit dependencies (or

true underlying dependencies) will be denoted by e. For a full list of notation used in this

chapter, see the glossary in Appendix A.

4.2.2 The Correlation Search

The first stage of the methodology involves searching for the List which is the top R

correlated variables over all possible time lags up to some maximum, MaxT. Three methods

are discussed for performing this task and these make use of the triple representation

described in the previous chapter. The Correlation lists generated using these methods will

then be used in conjunction with five different grouping strategies described in section 4.3.
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Note that at time lag zero, the correlations represented by the triples (ai, aj, 0)  and (aj, ai, 0)

are effectively the same so duplicates are considered invalid. The triples (ai, ai, 0) are all one,

and hence these are considered invalid too. All triples of the form (ai, ai, lag) will also be

considered invalid since these are auto-correlations and do not show relationships between

different variables. All invalid triples were removed in all three methods. This results in a

search space determined calculated by )5.0)(1( +− MaxTNN  given the outlined invalid triples.

The Exhaustive Search

The exhaustive search consisted of simply exploring all of the variables, at each time lag. The

algorithm is detailed below.

I/P A (n×N MTS)
1 Set List = Empty List
2 For i = 0 to N-1
3 For j= 0 to N-1
4 For lag = 0 to MaxT
5 If the triple ),,( lagaa ji

 is valid

6 insert new triple ),,( lagaa ji  into List

7 Sort List in descending order of
correlation calculated from the MTS

8 If size of List = R+1 then remove a
triple from the tail of List

9 End If
10 End For
11 End For
12 End For
O/P List of length R

Algorithm 4.1 - The Exhaustive Search for List

The Random Bag

This is a heuristic approach whereby a random selection of triples is placed in a “bag”

containing R triples. With each iteration a new random triple is added to the bag. When the
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bag overflows, the worst correlation falls out. This is repeated for a predefined number of

iterations. The algorithm is described below:

I/P A ( n×N MTS)
1 Set List = Empty List
2 Repeat c times Do
3 i = U(0,n-1), j = U(0,n-1), lag = U(0,MaxT) where

(i, j,lag) is valid
4 Generate new triple: ),,( lagaa ji

5 If triple∉ List then insert into List
6 Sort List in descending order of correlation

calculated from the MTS, A
7 If size of List = R+1 then remove a triple from the

tail of List
8 End Loop
O/P List of length R

Algorithm 4.2 - ‘Random Bag’, A Heuristic Search for Finding List

Note that c is the maximum number of allowed calls to the correlation function and

U(min,max) returns a uniformly distributed random integer between min and max inclusive.

Evolutionary Programming

Evolutionary Programming was introduced in Chapter 3 in the context of learning DBN

structure. It is an evolutionary algorithm with the emphasis on mutation and the method does

not use any recombination. The basic algorithm employed to discover good triples is outlined

as in Algorithm 4.3.
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I/P A (n×N MTS)
1 Set List = Empty List
2 Generate R random triples, ),,( lagaa ji

,  and insert into

List
3 Set CallCount = R
4 While CallCount < c
5 Set Children to List
6        Apply Mutate operator to Children
7 Insert valid Children into List
8 Update CallCount by the number of valid Children
9         Apply Survival operator to List
10 End While
O/P List of length R

Algorithm 4.3 - Evolutionary Program for Generating List

A Child will be considered invalid if it is already in List. Traditionally, EP algorithms use

Tournament Selection during the survival of the fittest stage (as in the DBN search of Chapter

3) and the best chromosome out of the final population will be the solution to the problem.

However, it was decided that the entire population would be the solution for our EP method

as in the RB method. That is, each individual chromosome would represent a single

correlation (a triple) while the population would represent the set of correlations found

(PopulationSize=R). Hence the survival operator consisted of keeping the best R individuals.

This therefore required a check for any duplicates after mutation, and for any invalid

chromosomes. Any children that fell into this category were repeatedly mutated until they

became valid. Although the entire population would represent the solution, it must be noted

that the fitness of each individual would still be independent of the rest of the population.

Each individual would try to maximise the correlation coefficient that it represents. This in

turn would maximise the population’s fitness by improving the set of correlations represented

by the population.
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Within the EP, a gene is either a variable, ai or the lag. The idea of Self-Adapting Parameters

[Baeck96] has been used in this context to mutate the genes using a normal distribution that is

rounded up to the nearest discrete value. Whilst this is unlikely to have any effect on

mutating variables (the ordering of the variables is arbitrary), it is hoped that this controlled

mutation will assist the EP in ‘homing in’ on the best time lag. Here each gene, genei, in each

chromosome is given a parameter, σi. Mutation is defined as follows:

),0( iii Ngenegene σ+= (4.1)

)),0(),0(exp( iii NN ττσσ +⋅= (4.2)

len2

1=τ (4.3)

len
i

2

1=τ (4.4)

Note that � is constant for each gene in each chromosome but different between

chromosomes, and i is different for all genes. Both parameters are generated each time

mutation occurs. Each chromosome consisted of three parameters and their corresponding σi

values. The value of len is the size of each chromosome, i.e. three. Each gene within a

chromosome is mutated according to the Normal distribution with mean 0 and standard

deviation equal to the gene’s corresponding standard deviation, σi, in Equation 4.1. Each σi is

then mutated according to Equation 4.2.

4.3 The Grouping Algorithms and Metric

In this section the partition metric is introduced and its properties discussed in 4.3.1. This is

then followed by the description of  the different search algorithms in 4.3.2.
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4.3.1 The Partition Metric

The Partition metric, defined below, is used to group variables together where they have

strong mutual dependency and to separate them into different groups where the dependency

is low. Let N be the number of variables, G be the list of groups and m = |G| (the number of

groups). Let gi be the ith member of the list G where 1 ������� and let ki = |gi|. The notation

gij refers to the jth element of the ith set of G. It is clear that in all cases m ���. The partition

metric for any fixed list G, f(G), is defined as follows, where corr(xi, xj) returns true if there

exists in List any triple of the form (xi, xj, lag) or (xj, xi, lag) for any valid lag.
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The metric has the following characteristics (proofs for these can be found in Appendix B):

1. If there are no correlations, the maximum value is obtained when all variables are in

separate groups.

2. If a correlation exists for each pairing of variables (the search space), then the maximum

fitness is obtained when all of the variables are in one group.

3. If the data generating the correlations came from a mixed set of MTS observations, then

the metric will be maximised when the variables within the same group have as many

correlations within the list Q as possible and variables within differing groups contain as

few correlations as possible.
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In the following experiments a correl has been chosen that is a well established correlation

coefficient - Spearman’s Rank Correlation [Snedecor67]. Spearman’s Rank Correlation (SRC)

measures linear and non-linear relationships between two variables, either discrete or

continuous, by assigning a rank to each observation. The SRC can be calculated between two

variables over differing time lags by shifting one variable in time. The equation incorporates

the sums of the squares of the differences in paired ranks, according to the formula:
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where n is the length of the MTS and rank(ai(t)) is calculated from ordering and ranking

every observation of the variable ai on its value and recording the rank of the value at

position t.

It should be noted that the methods are in no way restricted to using this particular coefficient

and others such as Pearson's could have easily been used. Spearman’s Rank was chosen as it

is well recognised and not restricted to finding linear dependencies.

4.3.2 The Grouping Search Algorithms

Various methods have been investigated for maximising the partition metric outlined above

in the context of grouping MTS. First of all the adopted Genetic Algorithm approach is

described followed by three different forms of this algorithm. Next a hill climb technique is

described and finally a heuristic clustering method.
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The Genetic Algorithms

The general Genetic Algorithm [Holland95, Goldberg89] described below uses the notion of

chromosomes which represent possible solutions to a particular problem. Crossover and

Mutation operators are applied to these chromosomes in order to search different possible

solutions and a selection process is applied to the population of chromosomes in order to

preserve ‘good’ solutions and discard ‘poor’ ones. Our general algorithm for generating a set

of groups, G, from a set of correlations, List, is given in Algorithm 4.4.

I/P List
1 Generate Population chromosomes and calculate their

fitness according to Equation 4.6
2 For i = 1 to Generations do
3 For j = 1 to CrossoverRate × Population do
4 Set Parent1 to a random chromosome (with fitter

chromosomes being chosen with higher
probability)

5 Set Parent2 to a different random chromosome
(with fitter being chosen with higher
probability)

6 Apply Crossover Operator to Parent1 and Parent2
to generate Offspring1 and Offspring2

7 Apply Mutation Operator to Offspring1 and
Offspring2

8 Insert Offspring1 and Offspring2 into the
population

9 Sort the population according to Fitness
10 Remove the chromosomes with the least Fitness

but retain the Population fittest chromosomes
11 End For
12 End For
O/P G (a set of groups, constructed from the fittest

individual from the final population)

Algorithm 4.4 - Standard Grouping GA
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The following describes three different representations, forms of crossover and mutation that

were used with this general algorithm. For the scope of this chapter, the fitness function for

the methods will be the partition metric defined in Equation 4.6.

1) Gene Per Variable (GPV)

This representation consists of a chromosome with each gene representing a variable in the

domain. The value of the gene determines which group the variable is a member of. For

example, 10 variables being placed into 3 groups:

2 0 1 2 1 1 0 1 1 0 :chromosome following by the drepresente be   would

9 6 :2 Group

5 1 4 7 2 :1 Group

8 3 0 :0 Group







The Crossover operator used for this representation is Holland’s [Holland95] standard one

point crossover and the Mutation operator involves randomly mutating genes within the

chromosome according to the Mutation Rate. Each gene has Mutation Rate probability of

being mutated to a value from a uniform distribution U(0,n-1).

2) Goldberg’s Partially Mapped Crossover (PMX)

This form of crossover applies to a new representation of the grouping problem where the

chromosome consists of variables interspersed with group dividers. For example, let a group

divider be represented by the symbol i where the subscript is unique and each of 10

variables within a domain be represented by a unique integer.
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Therefore the chromosome: 0 3 8 1 2 7 4 1 5 2 6 9 would represent the groupings in the

previous example. In other words, variables within the same group dividers will be classed

within the same group.

This representation requires a new crossover operator in order to ensure that invalid offspring

are not produced. It can be seen that standard crossover as used in the GPV representation

would produce many invalid offspring as it would be highly likely to result in offspring with

variables appearing in more than one group. Goldberg introduced the PMX operator

[Goldberg85] which prevented this and developed an o-schema theory (closely linked to

Holland’s original schema theory). It ensures all offspring are valid (i.e. it is a closed

operator) and works as follows:

i) Select two crossing points for both parents

ii) Swap all elements between the crossing points

iii) For all repeating elements in the old part of the chromosome, replace with the value

found on the corresponding position on the other chromosome.

For example:

Parent 1: 4 3 0  1 1 6 5 2 2 3 & Parent 2: 5 4 2 2 3 3 0 1 1 6

i) Crossing points = 3 and 5

ii) Swap elements “ 1 1 6” with “2 3 3” 4 3 0 2 3 3 5 2 2 3

5 4 2 1 1 6 0 1 1 6

iii) Replace repeated values 4 6 0 2 3 3 5 1 2 1

5 4 2 1 1 6 0 3 2 3
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Mutation involves randomly mutating genes within the chromosome according to the

Mutation Rate. Each gene has Mutation Rate probability of being mutated to a value from a

uniform distribution U(0,2n-1), where values greater than N-1 were replaced by dividers with

unique indices.

3) Falkenauer’s Grouping Genetic Algorithm (GGA)

This representation is similar to the GPV except that it also has an extra part on the

chromosome which represents the actual groups without any information about their contents.

For example the same groupings as the previous examples would be represented by the

following chromosome: 0 1 1 0 1 1 2 1 0 2 : 0 1 2

It is the second part of the chromosome (after the colon) that crossover is applied to.

Crossover works as follows:

i) Select two random crossing sites, delimiting the crossing section in each of the two

parents.

ii) Inject contents of the crossing section of second parent at the first crossing site of first

parent.

iii) Remove any elements that are repeated from the groups that were members of in the

first parent.

iv) Remove any empty groups and reinsert any unassigned variables to existing groups.

v) Repeat (i) to (iv) to produce the second offspring by reversing the roles of the first and

second parent.
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Example for first offspring:

Parent 1: 0 1 1 0 0 2 1 2 : 0 1 2 &  Parent 2: 4 5 3 4 5 6 3 6 : 3 4 5 6

i) Cross Sites: Parent 1 = [0,1],  Parent 2 = [1,3]

ii) Inject group 0 into position 1 0 ? ? 0 0 ? ? ?  : 3 0 4 5 6

iii) Remove group 4 and 5 due to repeats 0 ? 3 0 0 6 3 6 : 3 0 6

iv) Reinsert variable 1 into random group (6) 0 6 3 0 0 6 3 6 : 3 0 6

where ? denotes an unallocated variable (adapted from [Falkenauer98]).

Mutation involves randomly mutating genes within the chromosome according to the

Mutation Rate. Each gene has Mutation Rate probability of being mutated to a value from a

uniform distribution U(0,n-1). This is identical to the mutation used within GPV. However, it

is only applied to the first part of the chromosome and the second part, after the colon, is

updated accordingly.

Falkenauer proves [Falkenauer98] that this method allows the schema theory to hold even for

grouping problems. In contrast, PMX and standard crossover as used in GPV, with their

schema and o-schema theories, appear to collapse when applied to these sort of problems.

Hill Climbing

A Hill Climbing Search is essentially an iterative procedure that continually moves in the

direction of increasing value for some metric. Our version of Hill Climb involves using the

GPV representation and making simple changes to the current groupings with each iteration.

Within each iteration one variable is moved into another existing group or placed into a
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newly formed group and if this change improves the score of the individual, it is retained.

The algorithm is outlined below.

I/P List
1 Generate a random selection of groupings (i.e. a single

chromosome using the GPV representation)
2 Set Score according to the Partition Metric applied to

List given the grouping
3 For i = 1 to Iterations do
4 Make a random change to the groupings (either merge

two groups or split a group into two)
5 Set New_Score according to the Partition Metric

applied to List given the new grouping
6 If New_Score < Score Then undo changes
7 End For
O/P G (a set of groups)

Algorithm 4.5 - Grouping Hill Climb

Mirkin’s Separate and Conquer

This method is based on the clustering technique of Separate and Conquer [Mirkin99]. The

algorithm had to be amended to allow it to cluster on the relationships between variables

rather than on the value of variables. The algorithm is as shown in Algorithm 4.6 and uses

Equation 4.6 to calculate )(gih .

To summarise, a new group is created containing the two variables that have the highest

correlation between them. The next step is to take each variable in turn, and iterate through

each group that exists, seeing if adding the variable to that group increases the groups’ score.

If this is the case, then the variable is added to that group. If there are no more groups to test a

given variable with, then it is placed into a new group on its own.
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I/P List
1 Let G be a set of Groups (empty)
2 Let A be a set of variables {1..N}
3 Create a group g1 containing the best correlation pair

in List
4 Add g1 to G
5 m=1
6 For i = 1 to N
7 Set skip=false
8 j = 1
9 While j < m+1 and skip=false
10 If ai ∉gj then
11 Add ai to gj to create jg′
12 If )g( j′h  > )(g jh  then

13 Add ai to gj
14 skip=true
15 End If
16 End if
17 j= j+1
18 End While
19 If skip =false then
20 Create a group g* containing only ai
21 Add g* to G
22 m=m+1
23 End If
24 End for
O/P G (a set of groups)

Algorithm 4.6 - Separate and Conquer

4.4 Parameter Estimation

In order to retrieve groupings that correspond closely to the correlations that represent actual

dependencies, the ideal set of parameters will have to be determined for the correlation

search, most importantly R, the size of the List. As this will determine the cut off point for

significant correlations, it will affect the overall algorithm a great deal. For example, a cut off

point that is too high will mean there are too few significant correlations resulting in smaller

groups; a cut off point that is too low will mean there are too many significant correlations
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and so groups will be combined into larger ones due to the inclusion of low correlated

variables in the list. It has been decided to try and determine the parameters through

simulations of the random bag method described within this section. Random Bag was

chosen since it is the simplest to model. It should also be the weakest of the three methods for

correlation search and so by coming up with confidence intervals for selecting all the true

correlations for this method should result in a worst case scenario for the chosen parameters;

namely 95% confidence on Random Bag should mean at least 95% confidence on EP. This

has been shown to be true in previous work in [Swift99b], and through the experiments

within this chapter. These simulations were used to generate probability distributions of

selecting correlations that represent actual dependencies. These distributions could in turn be

used to determine confidence limits for R and the number of calls to the correlation function.

4.4.1 Simulations of Random Bag

Simulations were carried out in order to mimic the way in which the random bag searches for

good correlations. These  consisted of setting the size of List (R), the size of the total search

space (s) and the number of calls to the correlation function (c) to particular plausible

instantiations and then simulating the act of randomly selecting a correlation from the search

space and then recording whether it was a pre-defined “true” dependency. This process can

be compared to repeatedly picking a selection of c random cards from a pack without

replacement and recording the number of Aces found. Therefore for this case R = 4  (the

number of Aces) and s = 52 (the number of cards in a pack). It was possible, therefore, to

generate approximations of the distributions associated with the probability of picking a

“true” dependency. The number of these “true” explicit dependencies will be referred to as e,
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which is always less than or equal to R. These distributions were then tested for normality

using the Lilliefors’ test (in section 4.4.2). The mean and standard deviation were then

calculated for each distribution so that a method for symbolic regression could be used to

learn a function to determine the mean and standard deviation given R, s and c (in section

4.4.3). The algorithm for simulation is shown in Algorithm 4.7. This was repeated for Nsims

different values of R, s and c

I/P R, e, s, c and SimulationSize
1 Set dependencies = e randomly selected correlations
2 Set Distribution to be a zero array of length R
3 For i = 1 to SimulationSize
4 count = 0
5 For j = 1 to c
6 Randomly choose R different correlations
7 If (ai,aj) is in dependencies Then count = 

count + 1
8 End For
9 Distributioncount = Distributioncount + 1
10 End For
O/P Distribution

Algorithm 4.7 - Stochastic Simulation of Random Bag

The probability distribution for selecting a true dependency is found by dividing each

element in the distribution array by SimulationSize. SimulationSize is a variable that dictates

the number of times the process is repeated to ensure that a good approximation to the

random bag process is reached.

4.4.2 Lilliefors’ Test

Lilliefors’ test [Lilliefors67] is a simple test for normality that can be performed on a known

distribution function. The simulations performed in section 4.4.1 can easily be transformed
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into the required format for this method and the test can be performed to see if the random

bag method can be approximated by a normal distribution. The test is as follows:

Given v observations, a metric Dmax is computed by

)()(*max eCeFMAXD v−= (4.9)

Where Cv(r) is the sample cumulative distribution function, F*(r) is the cumulative normal

distribution with  equal to the sample mean, 2 equal to the sample variance, and v is equal

to R+1. Within the simulations, these two summary statistics can be computed directly from

the data. If the value of Dmax exceeds the critical value supplied by Lilliefors in his paper, one

rejects the hypothesis that the observations closely follow the normal distribution. For the

purpose of this chapter confidence was set at the 99% level, which requires Dmax not to

exceed 
v

031.1 . From the results of these tests it can be assumed that the random bag can be

approximated by a normal distribution with a 99% certainty. In fact all of the 150 simulations

passed the test for normality at this level. See Appendix C for the full results.

������������	� �
���

Once it has been ascertained that the distribution of the Random Bag process can be

approximated as Normal, a value for the means and standard deviation is needed in order to

place confidence limits on the number of function calls needed to find the required R, the size

of List. Since the process itself does not have a very easy representation for the probability

distribution, the algebraic representation for the mean and standard deviation is likely to be

difficult to derive. Since many simulations have been performed, tabulating R, c, s and the

����������	 	 �
�	 �	 �����	 ��
	 �	 ����	 ��	 ��������	 ���	 �������
����	 �����
	 	 �
�	 �	 ��	 ��



Allan Tucker The Automatic Explanation of Multivariate Time Series Birkbeck College

102

�������	����	 	��	�	��
����
	��	R, s and c, and that  is another function of R, s and c. The

Genetic Programming technique of Symbolic Regression is used for this [Koza92].

The functions for  and , which shall be denoted ���	�
� and ���	�
�, are assumed to be

functions in terms of the operators +,-,✕ ,/, and the terminal symbols R, s, c along with the

constant integers 0 to 9. The exact form is unknown. A binary tree is used to represent a

regular expression in terms of these symbols, with the terminal nodes being a variable or

constant and the non-terminals being an operator. The worth of any given tree (its fitness) is

���	�������
��	�����
	 ���	�������	�����	��	 	 �
����	 	���	 ���	����������	������	���
�	 ���

equation formed from the tree, and all of the available data. This is defined as in Equation

4.10 and 4.11.
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Where Nodes( � represents the number of nodes in the corresponding binary tree, and i

indexes a variable from the table of simulated examples (where there are a total of Nsims

examples). As with a Genetic Algorithm, the initial population will be a certain number of

random binary trees as described above. This population will be improved (better fitness)

over subsequent generations through the use of the standard genetic programming operators

of Mutation and Crossover. Note that the negative fitness function ensures that the process

tries to improve the population by minimising the fitness. Adjusting the fitness by penalising

it on the tree’s size will force the genetic program to look for a smaller tree.
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Parameters and result statistics of these experiments can be found in Appendix E. The
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4.4.4 Confidence Limits on c

Once values for the mean and standard deviation have been found, one can place confidence

limits on the probability of the random bag finding a number of correlations that lie between r

and R, where R is the size of the random bag and e is the number of correlations being

searched for. This is the cumulative normal distribution where the probability that the number

of correlations found is greater than r. For the purpose of this paper, the ratio of R to e has

been chosen as 5 and the confidence limit as 95%. The aim of this exercise is to recommend a

value for c based on the known parameters R, e and s. Given that the pr(number of

correlations �	e) = 0.95, the standard normal distribution tables can be used with z = (� ) /

to find what the corresponding value of c should be. For the 95% level, the value of z should

be –1.645. Since  and �are known, an equation can be formed in terms of  e, R, s and c

where only c is unknown, starting with:






 +








+
−

=

−=

s

cR
cs

cR
r

z

e
z

11

63

2

2
σ

µ (4.14)

(4.15)



Allan Tucker The Automatic Explanation of Multivariate Time Series Birkbeck College

104

Unfortunately this requires a lot of algebra to solve the above equation for c. The final

solution is a quadratic equation, and when some reasonable approximations are made, is as

follows:

( ) 
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The parameter c is a guide towards how long the procedure is going to take, in terms of how

many correlation function evaluations are made. For example if c is greater or equal to the

number of calls made by the exhaustive search (s), then it is pointless to use the random bag

to locate the required number of correlations. As a guideline, a 95% confidence at finding the

required number of correlations is aimed for.

4.5 Experiments

The generated synthetic datasets are described in section 4.5.1 and the results of estimating

the parameters for the algorithms in section 4.5.2. a metric for evaluating the discovered

groupings is then described in section 4.5.3.

4.5.1 Multivariate Time-Series Datasets

Based on the two problems being tackled by the grouping methods - the search for DBN

structure and the generation of VAR models, two types of datasets have been produced. One

set has been generated by hand-coded DBNs and the other by VAR models. 5 datasets have

been generated of each type with varying dimensionality and order. These are described

below and the full details for the models used can be found in Appendix D. For the

experiments, various variables from these datasets were mixed to produce some which had
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only DBN generated data, some which had only VAR generated data and some with a

mixture of the two. This was to see how the methods performed under different conditions

and for different types of data.

Dataset Organisation

Table 4.1 describes the datasets that were generated using the two methods described above:

Dynamic Bayesian Network
MTS a b c d e
Order 10 20 5 30 60
Dimensionali
ty

3 5 5 10 10

Vector AutoRegressive Process
MTS f g h i j
Order 2 3 4 5 2
Dimensionali
ty

10 7 6 3 2

Table 4.1 - The different MTS descriptions.

These 10 multivariate time-series were grouped into various different combinations to

produce 6 datasets. The first consisted of all 61 variables, the second consisted of only DBN

generated data, the third only VAR generated data and the remaining three consisted of

various mixtures. All datasets except the first consisted of 28 variables so as to keep the

search space identical. Table 4.2 shows the breakdown of each dataset:

Dataset 1 2 3 4 5 6

MTS a b c d e f g h i j a b d e f g h i j a e f i j a b c g h j d g h i j

Table 4.2 - The Breakdown of each Dataset.
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4.5.2 Parameter Estimation Results

If the parameter estimation analysis from section 4.4 is applied to Datasets 1-6, the results

obtained are as listed in Table 4.3.

Parameter Dataset 1 Dataset 2-6
MaxLag 75 75
n (number of variables) 61 28

r 150  64
R 750 320
c 72201 15585

)5.0)(1( +−= MaxLagnns 276330 57078

cs

cR

+
=

2

2µ 173.321 76.879

s

cR 11

63
+=σ 14.779 8.083

σ
µ−= r

z
-1.578 -1.593

s
c=γ 0.273 0.261

R
r=β 0.200 0.200

Confidence 0.943 0.945

Table 4.3 - Parameters for Datasets 1-6

The equation for s represents the total possible number of correlations at varying time lags,

once invalid correlations are removed.  and  are defined in Equations 4.12 and 4.13

respectively, z is the standard normal variable, and c is defined by Equation 4.16. Two new

parameters are introduced: γ and β. γ is the ratio of c to s and gives an indication of how

efficient the procedure is going to be. As a guideline, it is recommended that for the random

bag to be effective, this value should be less than 1/3. However, the parameter β needs
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defining. This represents the ratio r/R. a value of 0.2 is suggested, this being found by

experimentation, and provides a good trade off between the number of calls to the correlation

function, c, and how many correlations needed to be stored in memory. As can be seen, the

use of the approximation in Equation 4.16 has resulted in the confidence limit not being

exactly 95%, but rather 94.4% (on average).
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Figure 4.2 shows an example where s	#	$�%%%�%%%�	 	#	%���	  is allowed to vary between 0.22

and 0.32, and three values of R are displayed. The values of R corresponds to 2.5%, 0.25%

and 0.025% respectively of s. It can be immediately seen from the graph that R=250 requires

more correlation function calls for any level of confidence than for the other two values of R.

However there is not much between R=25,000 and R=2,500. Other similar experiments have

shown that the optimal value for R/s is near the 0.25% mark.
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To conclude this section, it has been shown that c should be calculated from Equation 4.16

once a confidence limit has been assigned (e.g. 95%, giving a value for z: -1.645); here a

recommended value for R/s is about 0.25%. And finally, it has been found that having the

ratio of r to R being 0.2 proves to be efficient.

4.5.3 Evaluation Metric

A metric is needed to show how similar or dissimilar two groups are so that the results can be

compared to the original groups. This is defined by pairing all of the variables up and

incrementing the score each time that the pair appears in the correct group within the two

groups or when the pair appears in different groups. The metric is scaled so that it returns a

value between 0 and 1 inclusive, where 0 represents very dissimilar groups and 1 represents

very similar groups. This metric EVM(G1,G2) is shown in Algorithm 4.8.

I/P G1 and G2 be two groupings
2 Let n be the number of variables
3 Let EVM = 0
4 For i = 1 to n –1
5 For j = i+1 to n
6 Let g1 be the group within G1 containing i
7 Let g2 be the group within G2 containing j
8 If j in g1 and i in g2 then EVM = EVM + 1
9 If j not in g1 and i not in g2 then

EVM = EVM +1
10 Next j
11 Next i
12

Update EVM to 
)1(

2

−nn

EVM

O/P EVM

Algorithm 4.8. The Evaluation Metric EVM(G1,G2)
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Having determined the parameters for the synthetic datasets, the next section presents the

results of applying the different grouping algorithms and compares the resulting groups to the

original ones using the metric defined in 4.5.3.

4.6 Results from Synthetic Data

This section documents the results of numerous experiments which compare different

grouping strategies consisting of all combinations of the proposed methods for grouping

search and for correlation search. These 15 strategies are applied to six datasets where there

are identifiable mixed groupings of MTS variables. For each experiment the following have

been recorded:

i) The Partition metric of the best solution after a varying number of calls to the fitness

function for various different datasets. This is a measure of how well the groupings

represent the correlations that were discovered during the correlation search.

ii) The score as calculated by the Evaluation metric described in 4.5.3, which is

independent of the correlation search results. This can be considered as a measure of

accuracy of the resulting groupings. It is essentially a measure of distance between the

groups that were used to generate the data and the resultant groups found using our

methods.

iii) The number of function calls to find the solution with the highest Partition metric.

This can be thought of as a measure of efficiency.

All stochastic grouping algorithms (all methods except Separate and Conquer) were repeated

10 times and the average recorded in order to remove any sampling bias. the marginal
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statistics were then calculated over the correlation searches, the grouping strategies and the

datasets.

4.6.1 The 15 Methods

In the following tables, the abbreviations HC stands for Hill Climbing and S&C for Separate

and Conquer, and Ex for the Exhaustive Search.

RB/GPV RB / PMX RB/ GGA RB / HC RB / S&C
Partn Metric 110.60 114.90 121.10 125.00 113.67
Eval Metric 0.91 0.92 0.93 0.92 0.90
FC 232292.52 12974.00 8697.67 4881.20 400.67

Table 4.4 - The 5 Grouping Strategies applied to the Random Bag List.

EP/GPV EP / PMX EP / GGA EP / HC EP / S&C
Partn Metric 105.43 109.87 113.67 118.80 109.33
Eval Metric 0.90 0.90 0.92 0.91 0.89
FC 232327.65 10545.67 8152.33 5331.52 427.67

Table 4.5 - The 5 Grouping Strategies applied to the Evolutionary Program List.

Ex/GPV Ex / PMX Ex / GGA Ex / HC Ex / S&C

Partn Metric 117.80 122.50 128.87 130.03 122.67
Eval Metric 0.91 0.92 0.93 0.93 0.92
FC 232237.37 11325.67 8693.67 4778.47 411.67

Table 4.6 - The 5 Grouping Strategies applied to the Exhaustive Search List.

It can be seen from the results of the 15 different methods that whilst there is a lot of

variation in the number of calls to the Partitioning Function (FC), the metrics, in particular

the evaluation metric does not vary a great deal at all. This implies that the initial process of

searching for List does not have to be exhaustive to get good results. This property would be
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very useful for those applications where the partitioning of a MTS must occur on a real time

basis. By far the fastest to converge is the Separate and Conquer Method taking little more

than 400 function calls. However, it must be noted that this method is deterministic and is not

guaranteed to find the best groupings.

The most important statistic is the evaluation metric and the method that seems to perform

best over all the datasets is the Exhaustive Search / Hill Climb. Although the GGA finds just

as good a solution, it takes almost twice as many function calls. However, as the marginal

statistics will show, the GGA method performs better when averaged over all the correlation

search strategies. Therefore, it appears that if the exhaustive search cannot be carried out then

a combination of Random Bag or Evolutionary Program with GGA is the best option.

4.6.2 A Note Regarding RB and EP

Table 4.7 displays the average of the top r correlations for each method of correlation mining,

and displays the average over all of the datasets.

Dataset
(r)

Exhaustive
Search

Random
Bag

Evolutionary
Programming

Dataset 1 (150) 0.592 0.527 0.547
Dataset 2 (64) 0.536 0.488 0.402
Dataset 3 (64) 0.694 0.629 0.659
Dataset 4 (64) 0.641 0.575 0.569
Dataset 5 (64) 0.548 0.509 0.497
Dataset 6 (64) 0.625 0.568 0.558
Dataset’s Average 0.606 0.549 0.539

Table 4.7 - The Top r Correlations for Three Search Methods.
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As can be seen in the table, the exhaustive search performs the best, followed by the random

bag, and then evolutionary programming. It should be noted that this result only applies to the

situation where there are a large number of correlation calls made (c is large). It has been

shown in [Swift99b] that the EP method outperforms the RB method for smaller values of c.

Based on the extensive analysis and experiments performed so far it is recommended that if c

is more than 30% of s then the exhaustive search method should be used. If this is not the

case and if z corresponds to less than 50%, use the EP method, otherwise use the RB method.

4.6.3 Marginal Statistics

In order to explore more fully the effect of the different correlation searches, grouping

strategies and datasets, various marginal statistics have been calculated. Essentially this

involved averaging over the correlation searches, the grouping strategies and the datasets to

see how each of these methods compared. These results can be found in Tables 4.8 to 4.10

below.

Average
Exh

Average
EP

Average
RB

Partition Metric 124.373 111.420 117.053
Evaluation Metric 0.923 0.905 0.915
Function Calls 51489.367 51356.967 51849.210

Table 4.8 - Averaging over Correlation Search

The correlation summary statistics support the conclusion that the method used for generating

a good set of correlations does not have a very significant effect on the final groupings. In

other words, the evaluation metric which measures the distance between the original

groupings and the discovered groupings are very similar for all correlation search methods
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(approximately 0.9). Therefore, it would make more sense to perform a fast approximate

correlation search on datasets where the search space is so large that the exhaustive search is

infeasible.

Average
GPV

Average
PMX

Average
GGA

Average
HC

Average
S&C

Partition Metric 111.278 115.756 121.211 124.611 115.222
Evaluation Metric 0.907 0.9156 0.926 0.922 0.903
Function Calls 232285.844 11615.111 8514.556 4997.061 413.333

Table 4.9 - Averaging over Grouping Strategy.

The best grouping strategies, as shown by the grouping summary statistics, are the Hill Climb

method and Falkenauer’s GGA. This is probably due to the economical use of function calls

made by Hill Climb (unlike the GA methods which require evaluating populations) and the

efficient crossover developed by Falkenauer. The other GA methods used less efficient

crossovers and the Separate and Conquer method is deterministic and therefore can never be

guaranteed to find the global solution. It is, however, very fast at finding a good set of

groupings after a very small number of function calls.

Av.
Dataset1

Av.
Dataset2

Av.
Dataset3

Av.
Dataset4

Av.
Dataset5

Av.
Dataset6

Partition Metric 222.12 69.227 105.667 101.2 99.493 107.987
Evaluation Metric 0.958 0.830 0.934 0.896 0.948 0.922
Function Calls 99294.81 42105.42 41916.15 42154.41 42003.8 41916.49

Table 4.10 - Averaging over Dataset.

Looking at the dataset statistics, it appears that Dataset 1 (the mixture of both types of data)

produced a higher fitness and independent metric score than the rest and Dataset 3 (the purely

VAR data) produced better results than Dataset 2 (the purely DBN data).  A reason for this
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could be that the VAR data generator produced variables with higher correlations between

true dependencies. These may then have outflanked any spurious correlations. It is

encouraging to note that the largest dataset, Dataset 1, with a mixture of DBN and VAR data

produced such good results. Datasets 4 to 6 which contain a mixture of VAR and DBN

exhibit the most variations in the evaluation metric. This is most likely down to the strength

of correlations that were reflected in the generated data as well as the existence of spurious

correlations.

4.6.4 Sample of Groupings

Table 4.11 shows a selection of groupings learnt from the 3 datasets using the GGA

algorithm with differing correlation searches. It can be seen that the majority of variables

have been grouped correctly in the all three experiments. In fact, 15 out of the 21 groups have

been perfectly recreated. Some of the variables have been placed in a group on their own

implying that they are independent when in actual fact there should be some correlation

between them and other variables. This could be due to spurious correlations which have

prevented the true correlations from being included on the correlation list.
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Grouping
Method

Original MTS Groupings Groupings Discovered from
Generated Data

EP / GGA

Dataset 1

0 1 2

3 4 5 6 7

8 9 10 11 12

13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42
43 44 45 46 47 48 49
50 51 52 53 54 55
56 57 58
59 60

0 6
1
2
3 4 5 7
8
9 10
11 12
13
14 15 20 21 22
16 17 18 19
23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42
43 44 45 46 47 48 49
50 51 52 53 54 55
56 57 58
59 60

Exhaustive /
GGA

Dataset 5

0 1 2
3 4 5 6 7

8 9 10 11 12

13 14 15 16 17 18 19
20 21 22 23 24 25
26 27

0 1 2
3 4 5 6 7
8
9 10
11 12
13 14 15 16 17 18 19
20 21 22 23 24 25
26 27

Rand Bag / GGA

Dataset 3

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22
23 24 25
26 27

0 1 2 3 5 7 8 9
4
6
10 11 12 13 14 15 16
17
18 19 20 21 22
23 24 25
26 27

Table 4.11 - A sample of grouping results from Falkenauer’s GGA method along with
the original groupings that were used to generate the MTS.

This effect is also evident in the summary tables where the independent metric (which simply

measures the distance between the discovered groupings and the original) is higher for some

experiments than others but the fitness (which relies on the correlations between variables) is

lower. The opposite is also evident in the results. Once again, this is most likely due to

spurious correlations between variables in different groups. An interesting result that was

found in the DBN data groups was that if a group of variables was incorrectly split into 2 or

more groups, then the divide(s) made topological sense when compared to the structure of the

DBNs that generated the data. For example, DBN structure 3 in Appendix D contains 10
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variables and these consist of variables 13-22 in dataset 1. If  the way EP/ Falkenauer

algorithm grouped these variables is explored, it can be seen that they placed variables 16-19

in their own group. In some respect it has split the network into relatively independent

structures such as the chain of nodes consisting of variables 16-19.

4.7 Results from Real Process Data

In this section the EP / GGA grouping method is applied to a set of oil refinery data. The

results of the grouping algorithm are displayed in Tables 4.12. This illustrates the nine groups

and the variables associated with each one. The fitness of the individual that represented

these groupings was 488.

Feedback from control engineers based on the discovered groupings was very good. Only 5

of the 50 variables were singled out as independent of the others. This was expected as there

are a lot of strong relationships amongst most of the dataset’s variables. Whilst one of these,

variable ID 22, was expected to be included in group H (and a raw data plot supports this

hypothesis), the remaining variables upon inspection appear to be extremely noisy. This is the

most likely reason for them being excluded from any groups. A small number of variables

were found to be grouped in unexpected groups. For example, variable with ID 4, was placed

in a small group (Group G) separated from any tray temperatures which was unexpected.

However, upon inspection of the raw data plots for this group, the variables were all very

highly correlated together.
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Group Variable ID Variable Name Chapter 5
Reference

A 2 ABSORB REFLUX TRAY-1
B
B

17
27

ABSORB TAIL-GAS H2 CHROM
M/FRACT TOP REFLUX

C 22 DE-PROP FEED
D 25 WASH WATER
E 32 J17-COMP SUCTN. PRESSURE
F 40 ABSRB STRIPPER BOTTOM
G
G
G
G

4
24
36
37

ABSORB TAIL-GAS
C3/C4 EX CDU3
AUTO/MAN STN TO GAS MAIN
AUTO/MAN STN TO GIRBOTOL

TGF

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

0
1
3
5
6
8
9
10
12
18
20
21
23
26
28
30
33
34
35
38
41
42
43
44

FRESH FEED A-PASS
FRESH FEED B-PASS
DEBUT FEED EX ABSORB
ABSORB REFLUX TO TRAY-13
ABSORB STRIPR WATER LVL
REACTOR INLET A
REACTOR INLET B
SPONGE OIL
ABSRB LEAN-OIL TO TRAY11
DEBUT O/HDS PCT C2
DEBUT OVERHEADS - C2
F8 H/CARBON TO ABSORB
PROPENE PRODUCT EX J102
REFRIDGE A201 TOTAL FEED
GAS FLOW TO ABSORB
F8 I/STAGE DRUM LEVEL
ABSORB SPONGE OIL TRAY11
M/F TOP REFLUX PRESS CTRL
DEBUT DIF PRESS TRAY1/19
J17-COMP SPEED
C11/3 INLET
J17 SUCTN.
J17 I/STAGE
J17 DISCH

FF
FF
BPF
SOF

RinT
RinT
SOT
SOF
%C2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

7
11
13
14
15
16
19
29
31
39
45
46
47
48
49

ABSORB PRESSURE CONTROL
ABSORB STRIPPER O/HDS
ABSRB STRIP RBOIL OUTLET
E4 OVERHEADS - C3
ABSORB TAIL-GAS PCT C3
ABSORB T/GAS METH CHROM
ABSORB. H2 METHANE RATIO
ABSORB BASE LEVEL
ABS/STRP TRAY-10
ABSORB STRIPPER TRAY-6
M/FRACT TOP REFLUX D/OFF
M/FRACT TOP TO C06
ABSORB STRIPPER FEED
ABSORB STRIPPER TRAY-36
ABSRB STRIP RBOIL OUTLET

TT

%C3

T6T

RBT

Table 4.12. The Discovered Groupings from the Oil Refinery MTS. The Final
Column Includes Abbreviations for Variables that are Used in Chapter 5.
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The most interesting result concerns the two main groups, H and I, which contained a large

number of strongly correlated variables, mostly temperatures and flow rates within the main

fractionator column. The two groups appear to separate out variables with certain

characteristics. For example, group I seems associated more with variables towards the top of

the fractionator column such as the higher tray temperatures and the top product quality.

Group H, in contrast, is more associated with the lower trays and the bottom product flow and

quality. What is more, those variables which are not located in either of these areas of the

fractionator but are associated with one or the other, appear in the group where they hold

most influence. For example, within this section of data, the variables with ID 0 and ID 1 (the

flow rates of the main feed to the FCC) have a strong effect on the bottom product flow (ID

3) and these are included with the associated group (H).

There are of course some exceptions to the lower trays / upper trays split such as variable ID

48, which is a low tray temperature yet is found in group I. However, in general these two

groups have fairly consistently separated these two systems. Figure 4.3 and 4.4 highlights the

different shaped plots and characteristic features of some variables from two sample groups, I

and H. Looking at the two graphs in Figures 4.3 and 4.4, it can be seen that the variables

plotted within each group appear to follow the same general trends.
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Figure 4.3. Sample variable Plots from Group I
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Figure 4.4. Sample variable Plots from Group H

4.8 Conclusions

In this chapter a framework has been outlined with which a high dimensional MTS can be

decomposed into smaller dimension MTS which are relatively independent of one another

based on the correlation between the variables. This can be very useful in problems where the

high dimensionality of a MTS prevents certain algorithms from being applied, for example

the generation of Vector AutoRegressive (VAR) models or Dynamic Bayesian Networks

(DBNs). The results have shown that whilst the initial search for good correlations to

generate the groupings does not have to be exhaustive to produce equally good results, the
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best method of grouping search appears to be either a Hill Climb strategy or Falkenauer’s

Grouping Genetic Algorithm. The results have been very promising on both VAR data and

DBN data and, in most cases, the metric used to find the groupings proved robust enough to

avoid mistaken groups due to spurious correlations. The chapter has also provided some

concrete practical recommendations on the correlation search step of the methodology.

On the real data, the grouping algorithm has produced very encouraging results that will

allow a 50 variable oil refinery dataset to be modelled as approximately three independent

sub-systems (groups G, H and I). What is more, these groupings have been generated very

quickly (a matter of seconds) allowing the algorithm to be used as a pre-processing stage for

a model-building algorithm for explaining new data. This rapid model-building algorithm for

explaining MTS is the subject of the next chapter.
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5 Scaling DBNs for Explaining High Dimensional Time Series

with Large Time Lags

In Chapter 3 existing static BN search methods were looked at for the learning of DBN

models. However, if these methods are to be used in the learning of DBN models for the

rapid generation of explanations of MTS such as the oil refinery data, we must find a way of

improving their performance through the use of heuristics and assumptions. This chapter

deals with the problem of discovering good DBNs from rapid incoming process data in as

little time as possible (see Figure 1.1(a) in Chapter 1) and is based on the work in [Tucker99]

and [Tucker2001b].

5.1 Real World MTS

Many real world scenarios involve MTS being generated rapidly, with large numbers of

variables and large possible time lags. Data of this nature is evident in many chemical process

repositories, as well as other domains such as medical and robot sensor data. Take the oil

refinery dataset that we introduced in Chapter 3. This contains three hundred variables and

could be expanded to many more if we included variables from other parts of the refinery. It

is unlikely that a model incorporating all of these variables could be learnt quickly enough to

be of use to control engineers. However, if a method can be found of rapidly learning models

of subsets of these variables over large possible time lags, it will be of use to a process

engineer who requires an explanation of the current measurements.  Chapter 4 has introduced

a tool for rapidly decomposing large MTS into several smaller dimensional MTS and these

subsets of the original MTS can be used as inputs to such a model building algorithm.
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This chapter describes some heuristics which have been taken from previous research papers

on learning BNs and introduces some new ones designed specifically for learning DBNs

rapidly from MTS process data. We apply these heuristics along with an evolutionary search

technique to learning DBNs from synthetic and oil refinery data. We compare our heuristics

with other standard searches and use the resulting network structures to generate explanations

which are compared to causal diagrams drawn up by control engineers who are familiar with

the oil refinery process. The algorithm outlined in this chapter has been adapted from

[Tucker99] where it was first introduced.

5.2 Methodology

This section described the general methodology adopted. Section 5.2.1 reiterates the

representation that was proposed in Chapter 3. In section 5.2.2 some heuristics are described

which are useful in learning a good DBN in as little time as possible. These heuristics are

applied to an evolutionary algorithm which makes use of both recombination, the knowledge

used by KGM in the EP of the last chapter, and other heuristics based on characteristics of the

process data. The general methodology is outlined in section 5.2.3.

5.2.1 Representation

We make the same assumption as was made in Chapter 3 during the search method review

that a dynamic network contains no links within the same time slice (also known as

contemporaneous links) and represent a DBN as a list of triples. Due to this assumption, each

node at time 0, along with its parents, will be independent of the other nodes at time 0.

Therefore, we treat the problem of finding a good network structure as a parallel problem of
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finding a group of tree structures where each tree consists of a node at time 0 and its parent

set in Q. The DL of a network structure will simply become the sum of DLs of all the tree

structures, DLi , and the likelihood will be the product of each tree structure’s likelihood.

5.2.2 Useful Heuristics

In the context of learning dynamic networks, we can apply a standard GA to the

representation described in the above section by using the list of triples of each DBN  as a

chromosome. These triples can then be optimised through the recombination and mutation

operators. However, this technique still takes too long to converge to a good solution as the

number of variables increases. Useful heuristics or knowledge are required to speed up the

convergence.

i) As there are no contemporaneous links in our proposed representation, each node at time t,

along with its parents, will be independent of the other nodes at time t. Therefore, we can

treat the problem of finding a good network structure as a parallel problem of finding a group

of simple tree structures where each tree consists of a node at time t and all of its parents. So

for variable 1 in Figure 2, the tree is represented by the triples {(0,1,3), (2,1,2), (1,1,1)}. A

change to one tree does not mean the entire structure has to be re-evaluated but only the tree

in question.

ii) Observing how the score of an individual triple varies with differing lags shows the

resultant curve to be relatively smooth. Figure 5.1 shows an example of the DL of a link with

differing time lags using two oil refinery variables - this can be thought of as a Cross
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Correlation Function (see Chapter 2) but using DL instead of a correlation coefficient. For

this reason a specific mutation has been applied to the lags of a triple (which we call

LagMutation), and is such that this mutation is based on a uniform distribution with the mean

centred on the present lag.

300

310

320

330

340

350

360

370

380

390

400

1 11 21 31 41 51

Lag

D
L

DL of link
(4,6) over
differing lags

Figure 5.1. The DL of a single link between two oil refinery variables over 60 time lags.
Note the relative smoothness of the curve.

iii) Experimentation has shown that autoregressive links with a time lag of one (triples of the

form )1,,( ii aa ) are always the most common in chemical process data. This is most likely due

to the relatively smooth nature of the data. For this reason, these links were excluded from

possible triples and automatically inserted into the networks before evaluation.

5.2.3 Seeded GA for Search

The sort of algorithm that will be of use to rapid explanation generation is one where a good

but not necessarily optimal DBN can be discovered very quickly. The application of a

standard GA using the list of triples of each DBN as a chromosome should perform a

relatively efficient search over triples through recombination. However, useful heuristics or

knowledge may be required to increase efficiency and speed up the convergence. Making use
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of pre-processed single link scores through KGM has been shown to be effective [Sahami96,

Wong99, Heckerman95, Chow68]. For example, it was used to improve efficiency of an EP

in Chapter 3. However, this knowledge is only used each time the operator is applied. The

random starting population will be generally poor in quality. If the single link knowledge is to

be exploited as soon as possible in order to find better networks in fewer generations, we can

seed [Tucker99] the entire first population with links found from the single link analysis.

Since the pre-processing of these single links can, itself, take a long time (if the MTS length,

dimensionality or MaxT is relatively large), it may be preferable to implement an

approximate method to find a list of good scoring links. Chapter 4 made use of an algorithm

for rapidly finding good correlations in order to group MTS variables. A similar algorithm

could be found to find good correlations for seeding the GA. Therefore, the algorithm would

be given a head start for the search of good DBN structure in two ways: firstly, by using an

approximate method to find a good list of single links rather than scoring the entire set (as the

KGM requires); secondly, by exploiting this knowledge in the first population by seeding it

entirely with a random selection of good links.

Chapter 4 demonstrated that an EP method is particularly efficient at finding a good selection

of links with good correlation, particularly when self-adapting parameters (SAPs) are

employed which are able to ‘home in’ on structures within the dataset (such as over time lags

in process data). We can use an approximate algorithm such as an EP for finding good triples

to seed an initial population. GAs should be better suited to exploring combinations of these

triples through recombination operators. Note that the size of the EP population will
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determine the size of the list of good triples. It will be important to consider this value as it

will have a large effect on the goodness of triples that are discovered.

If the initial population contains links with good scores as found using an EP, it would be

useful if the next stage of search emphasised the recombination of these links. For this reason

a uniform crossover operator is used within the GA which will maximise the recombination

of the high-ranking single links.

5.3 The Algorithm

See Figure 5.2 for a diagram of the process of seeding a GA with a set of correlations

discovered using an EP. This section describes the overall algorithm in full including all the

relevant mutation operators.

Figure 5.2. The Process of using an Evolutionary Program to Seed the Population of a
Genetic Algorithm with good scoring single triples.
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I/P A (n×N MTS)
1 If the MTS is not discrete then apply an appropriate

discretisation procedure.
2 Initialize N to the number of variables and MaxT  to

the maximum possible time lag.
3 Set the initial EP population EPList to a random

selection of links (ai, aj, l)
where 0 ��ai < N, 0 ��aj < N, 1 ��l ��MaxT.

4 For i = 1 to EPGenerations
5 Score each individual triple using Equation 3.1 or

3.3.
6 Sort EPList according to each triple's score
7 Make a copy of each link and apply the EPMutation

operator to each duplicate
8 Add the mutated duplicates back to the population
9 Remove the lower ranking links until the population

is back to its original size, namely EPListSize.
10 End For
11 Set a population of triple lists GAPopulation of length

random(MaxBranch) to a selection of links from EPList.
12 Construct the network represented by each individual’s

triple list and set the fitness using Equation 3.1 or
the sum of 3.2 and 3.3

13 For i = 1 to GAGenerations
14 Sort population according to their fitness
15 Apply UniformCrossover depending on GACrossover Rate

to randomly selected individuals biased on their
fitness to generate offspring

16 Apply LagMutation to the  chromosome of the
offspring

17 Apply KGMutate to GAMutationRate percent of the
chromosome of the offspring

18 Add all valid offspring to the population and remove
the least fittest individuals thus reducing the
population to its original size, GAPopulationSize.

19 End For
O/P The network structure represented by the individual with

the smallest DL/largest marginal probability within the
last generation of GAPopulation.

Algorithm 5.1. The EP-Seeded GA

Note that the search space for the EP stage will be slightly different to that of the EP search

for triples in chapter 5. This is because triples with time lag zero will not be considered valid
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and autoregressive triples will now be valid. This results in a search space of MaxTN 2 . For

the proposed algorithm the following operators were used:

The UniformCrossover Operator :

Uniform Crossover [Syswerda89] This operator crosses over subsets of triples within a

network structure (see Figure 5.3). As described earlier in this section, each triple in each

parent is selected to form part of one of the two offspring based on an unbiased random

number generator, having a fifty percent chance of forming part of either offspring’s

chromosome.

Figure 5.3. Uniform Crossover on the DBN Triple Representation.

The EPMutation Operator :

EPMutation is exactly the same as the mutation operator used in Chapter 4 to search for good

triples. It uses the notion of self adapting parameters upon elements of a triple to quickly

converge to a good selection of links with low DL. When this operator is applied to elements

of a triple, genei, it is mutated according to a normal distribution with the standard deviation
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being determined by its self-adapting parameter, σi, see Equation 4.1  This parameter is,

itself, updated according to Equation 4.2. See section 4.2.1 in Chapter 4 for a full description

and set of equations. Notice that rather than using Spearman’s rank correlation, a BN metric is

used to score triples (either DL or log likelihood).

The LagMutation Operator :

This simply mutates the lag of the individual’s genes with the probability Lag Mutation Rate

to a value from a uniform random distribution, U(lag-T, lag+T).

5.4 Evaluation

Within this section we investigate two aspects of the learnt DBNs:

i) Efficiency: First of all in section 5.4.1 the efficiency of the standard EP is compared to the

proposed algorithm on synthetic datasets and the oil refinery dataset by examining their

respective learning curves. The parameters of our algorithm are also investigated as to how

they can affect overall efficiency.

ii) Accuracy: Next, in section 5.4.2, the accuracy of the algorithm is tested by looking at

structural differences (SD) between networks learnt from the synthetic data and the original

network. This is repeated after varying numbers of function calls to see how the quality of the

model depends upon learning time. Also in this section, accuracy is investigated using the oil

refinery dataset through comparisons of learnt structures with dependency diagrams drawn up
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by control engineers and feedback concerning the explanations that have been generated

using the discovered networks.

5.4.1 Efficiency

The efficiency of our proposed algorithm was assessed through comparing its learning curves

to the standard EP on synthetic data and the oil refinery MTS. The refinery data consisted of

1000 datapoints over 11 variables that were discretised into four states. For these

experiments, the algorithms were parameterised as shown in Table 5.1 below. Notice that the

number of calls during the pre-processing stage, c, was varied between 20% of the total

search space and 100%. In the 100% case, the time taken for pre-processing is identical to

that of the pre-processing stage of the standard EP algorithm. It must be noted that ListSize

and c can be set according to the available time and required accuracy of the final DBN. For

all these experiments MaxT=60 and MaxBranch=3.

c PopSize GA
PopSize

ListSize GA
Crossover

Rate

GA
Mutation

Rate

Lag
Mutation

Rate
Standard EP 100% 10 - 100% - - -
EP-Seeded
GA

20 /
100%

- 10 2.5% 0.8 0.1 0.1

Table 5.1. The Parameters for EP-Seeded GA and Standard EP

Figures 5.4(a) to 5.4(f) show the learning curves of the methods: standard EP and the

proposed EP-Seeded-GA with c=20% and c= 100%. Notice that EP-Seeded GA where c is

100%, which takes the same amount of time to pre-process as the standard EP, not only

begins with better scoring network structures but continues to improve at a similar gradient to

the standard EP method. When the curves finally do meet, they generally converge at a
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similar rate. In contrast, the EP-Seeded-GA with c=20% starts off with a score better than

standard EP. However, as the function calls increase this method slows down in convergence

rate. In fact on the real dataset at the later stages of the experiments, it is overtaken by the

standard EP.
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Figure 5.4. Performance on Synthetic Datasets: (a) (b) N=10, MaxT=60;
(c) (d) N=20, MaxT=60; and Oil Refinery Datasets: (e) (f) N=11, MaxT=60.
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Figure 5.5. Performance on Synthetic Dataset with N=10 and MaxT=60 with varying
number of calls, c,  in the EP-Seeding Stage of EP-Seeded-GA.

Figure 5.5 shows how the number of calls in the EP seeding stage affects the overall

efficiency of the EP-Seeded-GA when learning DBN structure. The number of calls, c, is

varied between 10% and 100% of the entire search space. An interesting feature of this graph

is that the performance when c is 30% is almost identical to that when c is 100%.

To sum this section up, on larger MTS the pre-processing stage (learning the single link

information) requires much more time and so if good networks are required rapidly, it

appears that the approximate approach utilised by EP-Seeded-GA with a lower value of c

(around 30%) is the most suitable. If time is not as expensive, the EP-Seeded GA with

c=100% is recommended as it takes the same amount of time to pre-process the single links

as the standard EP and is more likely to converge quicker.
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5.4.2 Accuracy

In this section the resulting structures generated from the synthetic datasets after varying

number of function calls (FC) were investigated by calculating the Structural Difference

(SD). The SD is the summation of all those links that were found within the resulting

structures but should not have been due to spurious correlations and implicit dependencies

(see Chapter 2 for a description of these), and all links that were missing from the resultant

structures but which should have appeared. The smaller the SD the better the structure is

deemed to be. If the time lag of a parent is out by three or fewer, then it is not deemed to be

different from the original network. This value was arrived at as an explanation that was

incorrect in the time aspect by three minutes or fewer would not normally affect the overall

quality. What is more, discretisation of the data may affect the accuracy so that precise time

lags may be shifted a few minutes in either direction. Here we only show results from this

analysis using the log likelihood metric. DL scores produce almost identical results.

EP-Seeded-GA Standard EPFC

N=10
MaxT=60

N=20
MaxT=60

N=10
MaxT=60

N=20
MaxT=60

100 16 25.6 12.5 11.2
500 14 22.6 19.2 15
1000 12.8 20.4 16.4 21
2000 11.2 22 18.4 26.6
5000 9.2 20.6 24.6 31.4
10000 7.6 19.2 8.7 31

Table 5.2. The Average Structural Differences (SD) between the original DBN
and the discovered DBN using EP-Seeded-GA and Standard EP with Log Likelihood

after varying numbers of FC.

The SD analysis (Table 5.2) shows a surprising result in the standard EP algorithm. Whilst

the SD of the EP-Seeded-GA generally decreases as function calls increase as expected, this
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is not evident in the standard EP. In fact, for N=20, the SD generally increases. This is most

probably due to the EP initially finding structures that produce relatively good DBN metric

scores against the dataset even though they bear little relation to the original generating

structure. This may be through the discovery of the correct links at the expense of also

finding spurious correlations or implicit dependencies. Recall from Chapter 2 that a spurious

correlation is a dependency that appears to exist between two nodes due to a common parent

between the two nodes while an implicit dependency is one which appears to exist due to

indirect causes

(a)

0

5

10

15

20

25

0 2000 4000 6000 8000 10000

Function Calls

S
tr

u
ct

u
ra

l D
if

fe
re

n
ce

Missed

Implicit

Spurious

Total

(b)

0

5

10

15

20

25

0 2000 4000 6000 8000 10000

Function Calls

S
tr

u
ct

u
ra

l D
if

fe
re

n
ce

Missed

Implicit

Spurious

Total

Figure 5.6. Breakdown of Average Structural Difference on Synthetic Dataset where N=10
and MaxT=60 using (a) Standard EP and (b) EP-Seeded-GA.

The hypothesis that spurious correlations account for the rise in SD for standard EP is

supported by Figure 5.6(a). This shows the breakdown of the SD into implicit dependencies,

spurious correlations and missed links. The actual number of missed links decreases as

function calls progress. However, the number of spurious and implicit correlations actually

increases up to 5000 function calls before falling. It appears that the EP-Seeded-GA avoids

this growth with all elements of SD generally decreasing (see Figure 5.6(b)).
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For the oil refinery dataset, an analysis is required of how accurately the learnt network

structure represents the sort of relationships an expert would find. This is done by asking

control engineers, who have extensive knowledge of the refinery process and data, to produce

some dependency diagrams that represent the expected relationships between some of the

variables in the oil refinery MTS (see Figure 5.7). These diagrams are then compared to

explanations generated using the discovered networks. To generate these explanations,

evidence about a subset of variables at various time slices is entered into the network and

inference is performed on the network.

Figure 5.7 - Sample Dependency Diagrams constructed from advice of Control
Engineer

Figure 5.8 shows some of the explanations that were generated from the learnt structures

using two oil refinery datasets, one with N = 11 and the other with N = 20.  The algorithm

used to learn these structures was EP-Seeded-GA with ListSize being 2.5% of the entire

search space, c being 20% of the search space, and the algorithm was stopped after 1500 and
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2000 function calls for the 10 variables and 20 variables dataset, respectively. Shaded boxes

in Figure 5.8 represent observed nodes.

It is very encouraging to note that the current algorithm detects all of the relationships within

Figure 5.7 correctly except for those limited by MaxBranch being set to 3. For example, the

explanation in Figure 5.8(a) has captured TGF as being dependent upon SOT and TT.

However, the algorithm generates more explanations than those found in the dependency

diagram. This is to be expected since the diagram is not meant to be exhaustive in that it only

captures some of the obvious relationships that should exist in the dataset. From Figure

5.8(b), we can see that BPF is affected by three variables but mostly by its controller setpoint

BPF_SP. This is discovered from the data (the probability of BPF_SP being in state 3 if BPF

is in state 3 in the next time step is 0.999). However, if we observe BPF_SP as being in state

0 at t-1 (Figure 5.8(c)), we see an increase in the probability of other variables being the

cause of BPF’s current state.
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(a)

(b)

(c)

Figure 5.8 - Sample explanations generated using the refinery data. Shaded blocks represent
observed variables.
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However, it must also be pointed out that there were a few relationships found within the

network structure that were known to be false, leading to some incorrect explanations. These

are likely to have occurred for various reasons. For example, a false link in the opposite

direction of causality, is most likely caused by spurious correlations. These are likely to occur

due to the smoothness of the Cross Correlation Function (CCF) between two variables (see

Figure 5.1) where a strong dependency from variable 4 to variable 6 could produce a strong

correlation in the CCF in the opposite direction, from 6 to 4. Other reasons include loss of

information during discretisation or if some related variables are missing. For example, in

Figure 5.7  FF and TT affects TGF, but if TGF is missed out of the dataset, it is quite possible

that a dependency will be found between FF and TT. It is, therefore, important to ensure that

all of the relevant variables are included within the dataset and a good discretisation policy is

adopted.

5.6 Conclusions

The learning of dynamic probabilistic models with large time lags is an important issue, not

only for complex process applications but also for many AI problems (e.g. learning domain

behaviour for robot navigation, data-mining for temporal sequences, learning to control a

complex plant). Chapter 3 investigated different existing search algorithms for static BNs

which had been adapted to learn DBNs. It found that most methods suffered from various

problems such as local maxima and slow convergence. Within this chapter the use of

evolutionary methods have been investigated in order to improve upon the existing search

strategies. The number of possible network structures can be huge, even when dealing with a

small number of variables due to the consideration of large possible time lags. Tested on
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synthetic datasets and oil refinery data, the proposed algorithm has demonstrated success in

managing this complexity and in producing timely, good quality explanations.

In the next chapter, the focus will turn from trying to generate explanations rapidly, to the

subject of learning different models from large repositories of historical data off-line, where

the dependencies between variables can change over time.
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6 Detecting Dependency Changes within a Multivariate Time

Series whilst Learning DBNs

When learning from process datasets with many more time points, new problems arise. For

example, in many systems such as an oil refinery, dependencies between variables may

change over time. The dependencies can be affected by the way operators control the

processes and by the different products being refined at the current time. If  these changing

dependencies are not taken into account any model that is learnt from the data will average

over the different dependency structures. This feature will not only apply to chemical process

systems but also to many other dynamic systems in general.

There has been extensive work in the modelling of time series with changing dependencies

(or ‘switching states’). For example Hidden Markov Models have been used to model the

hidden states of a system which can change over time [Gharamani99, Shumway91, Kim94,

Settimi99]. However, these models can contain huge numbers of parameters causing

problems for very high-dimensional data with large time lags, and do not necessarily aid in

the understanding of the underlying processes. The aim of this chapter is to tackle the

problem of learning models from the vast data repositories that many chemical processes

have generated over the years (see Figure 1.1(b)) by incorporating changing dependencies but

at the same time remaining transparent so that the resulting models and explanations can

account for these changes.
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In Section 6.1, the Dynamic Cross Correlation Function is introduced which is used to

analyse the changes in dependency structure between two variables within MTS. Section 6.2

outlines the methods and algorithms investigated to incorporate the changing dependency

structures into the DBN paradigm described in the previous chapters and 6.3 details the

experiments and their results when applied to synthetic and real MTS data. Finally in 6.4,

some explanations are generated from the resulting structures and conclusions are drawn in

6.5.

6.1 The Dynamic Cross Correlation Function

During the analysis of MTS we have found it useful to explore how the Cross Correlation

Function (CCF) between two variables changes over time. Recall from Chapter 2 that the

CCF is used to measure the correlation between two time series variables over varying time

lags by time shifting the data before calculating the correlation coefficient. Analysis of data

with changing dependencies has involved developing a Dynamic CCF (DCCF), ),,( fsaa ttl
ji

ρ ,

whereby the CCF is calculated over lags, l, between two variables, ai and aj, for a window of

data delimited by ts and tf, and moved over the MTS by incrementing the window position by

set amounts (see Figure 6.1). The calculation of the ),,( fsaa ttl
ji

ρ is formalised in Equations

6.1 and 6.2.
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where ai(ts,tf) = { ai(ts), ai(ts +1), …, ai(tf)} and ts and tf are determined by the window

position and length, and Cov(x,y) returns the covariance function of x and y. If ),,( fsaa ttl
ji

ρ is

calculated for all lags and window increments (the process is illustrated in Figure 6.1), a

surface plot of the correlations is generated, known from now on as the DCCF, such as the

example in Figure 6.2.

Figure 6.1. Generating the Dynamic Cross Correlation Function (DCCF).

The algorithm for generating such a plot is a simple iteration over window positions and time

lags as described in Algorithm 6.1.

I/P ai , aj , winlen ,winjump, MaxLag
1 pos = 1
2 While pos < n-winlen
3 ts = winjump × pos,  tf = ts + winlen
4 For l = 0 to MaxLag
5 Set DCCF(l, pos) = ),,( fsaa ttl

ji
ρ

6 End For
7 pos = pos + 1
8 End While
O/P DCCF

Algorithm 6.1 - Constructing the DCCF Surface Plot.
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Whilst the DCCF will not be able to tell us about the more complex relationships within the

MTS that involve more than two variables, it will assist us in making preliminary judgements

about where likely dependency changes occur. Each horizontal cross section of a DCCF is a

distinct CCF. Notice how the surface plot in Figure 6.2 changes as the window position

progresses. For example there appears to be a weak correlation between the variables from

window position 10 to 20 with time lags of between 5 and 35 (indicated by ’pos1’) , and

another stronger area of correlation between window position 60 and 70 with a time lag of

between 5 and 25 (indicated by ’pos2’).
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6.2 Learning DBNs from MTS with Changing Dependencies

Controllers are used in the oil refinery plant to control how a variable behaves in respect to

other measurements (see section 2.1.3). For many variables, these controllers are not

measured or do not even exist (approximately 44% of the FCC data variables are controlled).

However, in some sense, all of the variables will be controlled in differing ways depending

on how the process is being operated. We can therefore model these behaviours as ‘hidden’

controllers. For example, sometimes a variable is directly controlled by an engineer (i.e.

when a controller is in ’Manual’) and a hidden node can be used to model the way that the

engineer controls that variable.

The problem of modelling changing dependencies in MTS is that on one hand we know part

of the structure (the dependency between each variable at time t and the hidden controller for

that variable) but we need to calculate the parameters; on the other hand we do not know the

remaining part of the structure (the parents of each node at time t) but the parameters for

these can be trivially calculated (we assume no missing data on all variables except

controllers). Unfortunately, both these problems are fundamentally intertwined, with the

parents of each node at t affecting the parameters of the hidden controller and the parameters

of the hidden controller affecting the parents of node at  t. What is required is some method

for maximising the likelihood of the DBN through the manipulation of both these features.

A hill climb search is investigated within this chapter when applied to a representation that

has been extended from that used in the previous chapters to learn DBN models. We have

also used this representation with the Structural Expectation Maximisation (SEM) procedure
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[Friedman97/98b]  described in Chapter 2. However, due to the disappointing results from

this method we have chosen to focus on the simple hill climb in this chapter. The results of

the SEM experiments can be found in Appendix G.

In the case of modelling process data with changing dependencies, the hill climb search can

be simplified due to certain features of the process data and this is discussed in the next

section.

6.2.1 Representation

By including a hidden controller node as a parent for each node at time t representing

variable i, which we will refer to from now on as Opstatei, the dependencies associated with

that variable can be controlled (see Figure 6.3). This hidden variable does not have to be

sought after and only the values for this node need to be discovered. These OpState nodes

will determine how the variables in the plant behave based upon their current state.

Figure 6.3. Using a Hidden Variable, OpState2, to act as a ‘Controller’ for variable a2 at
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time t. Each variable, i is assigned an OpStatei.
The representation for structure is precisely the same as previous chapters using a list of

triples. However, for learning models with changing dependencies, the OpState node is

automatically inserted before evaluation. We will call the list of triples DBN_List  for the

remainder of this chapter.

The switching of OpState is not likely to happen very often in chemical process data and so

the relative stability of these variables can be used to speed the convergence of a hill climb.

For this reason, the hill climb will use a list of pairs (state,position) to represent the switches

in OpState where state represents its new state and position represents the position of change

in the MTS. The pair with the lowest value of position determines the starting state of

OpState from position 1 until the next change. For example, taking the pairs:

(0,1250)} (1,900), (2,750), (0,500), {(1,230),

OpState will be set to state 1 from MTS positions 1 to 499 (determined from the first pair

because 230 is the lowest position value), then state 0 from 500 to 749, state 2 from 750 to

899, state 1 from 900 to 1249 and state 0 from 1250 until the end of the MTS. This list will

be called Segment_List. A heuristic-based hill climb procedure is employed by making small

changes in DBN_List and the Segment_List for each OpState variable. The algorithm is

described in the next section.

6.2.2 The Hidden Controller Hill Climb Algorithm

In order to search over the DBN structure and the parameters of OpState for each variable,

the Hidden Controller Hill Climb (HCHC) algorithm uses the representation and assumption
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described in section 6.3.1. This is illustrated in Figure 6.4(a) where DBN_List is used to

generate the structure of the DBN and the Segment_Lists are used to determine the

parameters of each variable’s OpState. The resulting network can then be scored using log

likelihood as defined in Chapter 3.

(a) (b)

Figure 6.4. (a) The Procedure for scoring the Current Model. (b) The HCHC Algorithm
for Segmenting Process Data and learning DBN structure.

Figure 6.4(b) shows the HCHC process. HCHC takes as input the initial random DBN_List

and a Segment_List for each OpState node, along with the MTS, A, the maximum time lag,

MaxT, and the number of iterations for the structure search, DBN_Iterations. It then applies a

standard hill climb search to the Op_State parameters by making small changes to each

Segment_List and keeping any that result in an improved log likelihood score. Structure

search is then carried out by repeatedly making small changes to DBN_List and keeping any

changes that improve log likeliood. After structure search is repeated DBN_Iterations times,

the entire process is repeated, returning to the Op_State parameter search.  The search ends

when the function calls, FC, reach some pre-defined value, Iterations. The algorithm is

defined formally in algorithm 6.2.
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I/P A, MaxT, DBN_Iterations, Random DBN_List, and N
Segment_Lists

1 FC = 0
2 Using the current DBN_List and Segment_Lists construct

the DBN and parameterise
3 Best_Score = log likelihood of DBN (Equation 3.1)
4 Repeat

OpState Parameter Search
5 For i=1 to N
6 Apply random change to the Nth Segment_List
7 Using the current DBN_List and Segment_Lists,

construct the DBN and parameterise
8 If log likelihood of DBN > Best_Score Then
9 Best_Score = log likelihood of DBN Else
10 Undo change to Nth Segment_List
11 End If
12 End For

Structure Search
13 For j=1 to DBN_Iterations
14 Apply random change to DBN_List
15 Using the current DBN_List and Segment_List

construct the DBN and parameterise
16 If log likelihood of DBN > Best_Score Then
17 Best_Score = log likelihood of DBN Else
18 Undo change to DBN_List
19 End If
20 End For

21 FC = FC + 1
22 Until Convergence or FC>Iterations

O/P The Final DBN_List and N Segment_Lists can be used to
construct the resultant DBN and Op_State parameters

Algorithm 6.2 - The HCHC Segmentation Algorithm.

DBN_List and the N Segment_Lists are output and used to generate the final DBN structure

and Op_State parameters. For example, given the DBN_List and five Segment_Lists in figure

6.6 we can construct the DBN structure with a link from a1 to a0 with a time lag of 8, from a0

to a1 with a time lag of 5, and so on. We can then learn the parameters for the observed
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variables using the MTS data. The Op_State variables, however, must be reconstructed using

the Segment_Lists, so referring to Figure 6.6, the state of OpState0 will be set to 0 for all time

points from 0 to 1998 and for the remainder of the series it will be set to 4. Once all Op_State

variables have been constructed, the DBN parameters can be learnt.

6.3 Experiments

The HCHC algorithm has been tested on both synthetic and real-world datasets. The

remainder of this chapter documents the results of these experiments and the analyses of

results.

6.3.1 Results from Synthetic Data

Synthetic data has been generated from hand-coded DBNs using stochastic simulation (see

section 2.1.2). The MTS datasets consisted of between five and ten variables with time lags

of up to 60 time slices. In order to incorporate changing dependencies within the datasets,

different DBN structures were used to generate different sections of the MTS. Essentially,

several MTS were appended together, having been generated from DBNs with varying

structures and parameters. For example, MTS1 consists of three MTS with 5 variables

appended together, each of length 1000. Characteristics of the datasets are described in Table

6.1 and the make-up of MTS3 is illustrated in more detail in Figure 6.5.
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MTS 1 MTS 2 MTS 3
MTS Dimensionality 5 10 5
Total MTS Length 3000 3000 2500
Segment Length 1000 1000 500
Maximum Time Lag (MaxT) 5 60 25
Number of Segments 3 3 5

Table 6.1. Details of the Synthetic Data with Changing Dependencies.

(a) (b)

Figure 6.5. (a) Each DBN is displayed corresponding to the different segments of MTS 3.
The numbers in parenthesis denote the time lag for that particular link. The positions of
state change are included on the lower axis. (b) illustrates the positions of dependency

change generated from the DBNs in (a).

The experiments involved applying the HCHC search procedure to learn the dependency

structure and segment the data for each variable according to its OpState. The resultant

structures and segmentations at convergence were then compared to the original structures

that generated each segment of the MTS by calculating the Structural Differences (SD), as

used in Chapter 5. Segmentation error was calculated by dividing the distance from the

correct segmentation point by the size of the segment. This was repeated for each segment in

each variable for all experiments and an average taken. The number of missed and spurious

segmentations was also recorded. A segmentation was deemed spurious if the error was
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greater than 10% of the segment length. This value was agreed with control engineers as

being of reasonable size to adversely affect explanation.

The results from using synthetic MTS have been very encouraging. Nearly all the

dependencies of the original networks were recovered. Segmentation varied from experiment

to experiment, but the distance between the discovered dependency change and the actual

change was usually around 15 time points on average. Both dependencies and segmentations

were normally found within 250 iterations. Table 6.2 contains the SD between the original

and the discovered structures. It shows the average number of missed dependencies, spurious

correlations, implicit dependencies and segmentation errors for each dataset. Also included

are the number of links in the original DBNs and the length of each segment of data.

MTS1 MTS2 MTS3
Number of Original Links 12 26 16
Spurious 2.3 2.9 4.0
Implicit 2.3 1.0 0.4
Missed 1.0 2.8 1.4
Total SD 5.6 6.7 5.8
Original Segmentation Length 1000 1000 500
Segmentation Error 15.89 16.08 14.157
Missed Segmentations 0.6 0.0 1.2
Spurious Segmentation 0.9 0.5 0.8

Table 6.2. Structural Difference Results using HCHC

The table illustrates that the quality of segmentation is generally very high. For all datasets

the number of spurious, missing and implicit links are small in comparison to the number of

actual links correctly discovered. Segmentation is also very good. The average error is a tiny

proportion of the length of a segment. Very few segments were missed (0.6 , 0.0 and 1.2 on
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average for MTS1, MTS2 and MTS3 respectively), and the most likely reason for those that

were is that the change had very little impact on the data. For example, a change from

variable a0 to a1 with lag of 3 to another link from a0 to a1 with a lag of 7 may cause the

segmentation to be missed. A sample DBN_List and the Segment_Lists discovered for each

variable from MTS 3 is shown below and, referring to Figure 6.5, indicates a very good

match to the original structures and segmentations:

DBN_List: {(1,0,8), (0,1,5), (0,1,9), (2,1,3), (2,1,6), (3,2,2), (1,2,7), (3,2,20), (4,3,3),

(2,3,5), (3,4,3), (3,4,25), (3,4,5)};

Segment_List for OpState0: {(0,0),(1998,4)}

Segment_List for OpState1: {(0,0),(500,1),(1022,2),(1487,3),(1998,4)}

Segment_List for OpState2: {(0,0),( 999,2),(1491,3)}

Segment_List for OpState3: {(0,0),(996,2),(1475,3),(1995,4)}

Segment_List for OpState4:  {(0,0),(498,1),(981,2),(1502,3),(1997,4)}

Figure 6.6. Resulting DBN and Segments on MTS 3 using HCHC.

Using these lists we can construct our DBNs by adding the links to each node depending

upon its set of parents and segmentations. For example, for variable a0, only one parent has

been found, (1,0,8), and the partitions discovered for this variable signify a change at around

the 2000th position in the MTS (1998 to be precise) where the dependency begins to take

effect. Referring to the original structures we only find one example of this dependency - in

the 5th segment which does indeed occur between time points 2000 and 2500 in MTS 3.

Overall, the results for each variable reflect the changing dependencies found in the original

networks very closely. Some time lags and segmentation positions vary from the original

structures but not significantly, and 13 of the 16 original dependencies have been recovered.
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We now make use of the DCCF in order to further analyse the results of the HCHC on

MTS 3. Whilst this is not really necessary for synthetic data where the original network

structures are available, it will be useful when analysing real world data where these

structures are unknown. Focussing on variable a4 from MTS 3, it can be seen how the

dependencies with variable a3 in MTS 3 are evident in its DCCF. Figure 6.7(a) shows a

DCCF for these two variables. Recall that this surface plot can be viewed as a set of standard

CCFs which are appended together where each horizontal position in the surface represents a

CCF for that window position.

(b)
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maximum time lag, MaxLag, calculated for each CCF was 30. Figure 6.7(b) shows a graph of

the most significant correlation for each window position in the DCCF. In other words the

maximum absolute correlation for each CFF as the window travels along the MTS. In Figure

6.7(a) note the varying peaks (in white) and troughs (in black) which signify stronger positive

and negative correlations, respectively. The DCCF between variable a3 and variable a4 in

Figure 6.7 shows five dependency states. Firstly there is no apparent correlation from a3 to a4

for window positions 1-10, then an inverse correlation occurs (the black trough denoted by

‘pos1’) with a lag of 25 in window positions 10-20, this lag then switches to 3 for positions

20-30 (denoted by ‘pos2’), then a positive correlation can be seen (white area denoted by

‘pos3’) with a lag of 5 in positions 30-40, and in the final sections of data (positions 40-50),

no correlation from a3 to a4 can be found. Note that these correlations correspond well to the

DBN_List and the Segment_List for a4, discovered for MTS 3 - there are five different

segments appended together which relate to the section before pos1, the section during pos1,

the section during  pos2, the section during pos3, and the section after pos3. In addition, the

time lags between each link from a3 to a4 tie in with the time lags relating to the significant

correlations in pos1, pos2 and pos3.

6.3.2 Results from Process Data

The application of the HCHC segmentation algorithm to the process data involved making

use of some of the available controller information. Recall from Chapter 3 that a controller

can be in three states: Manual, Automatic and Cascade. The different modes of controller

state should have an effect on what relationships exist between the variable in question and

others in the dataset. The following set of experiments involved applying Algorithm 6.2 to a
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selection of oil refinery variables and comparing the discovered segmentations with the

DCCFs between certain variables.

It has been found upon examination of the raw data that many changes in the observed

controllers states have little effect upon the relationships within the data. This is likely to be

because when a controller changes from, say, Auto to Manual, the same control is kept over

the variable (although the way this is done may differ). This means that many of the

discovered segmentations do not concur with the changes in the observed controller states.

There are, however, some controller state changes which do result in dependency changes

and concur with the discovered segmentations. Although the vast majority of segmentations

are not found in the measured controller data, when we look at the raw data, obvious changes

in dependency structure have occurred due to genuine ‘hidden’ causes. These are documented

in the remainder of this section.

In Figure 6.8, the most significant correlation graphs for each window position of the DCCF

are shown for MTS variable TGF with each of its three discovered parents (the full DCCF

from which these are constructed can be found in Appendix F). Super-imposed on these

graphs are the discovered segments. It can be seen that there is generally a fluctuation

between no and strong negative correlations between TGF and A/M_GB  throughout the

length of the MTS. However, at about window position 40, corresponding to approximately

MTS position 20000, a positive correlation occurs. This continues until position 50 (MTS

position 25000) where the fluctuating returns until the end of the series. This closely follows

the segmentation found using HCHC. The same applies for the other two parent variables
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with SOT also showing positive and negative correlations and T6T showing varying amounts

of positive correlation. The segmentation appears to successfully separate out each of these

regions. There are also, however, segmentations that are discovered which do not tie in with

the pair-wise relationships apparent in the DCCF. These could be due to more complex

relationships not detected in the DCCF.
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Figure 6.8. Most Significant Correlations for each window position of a DCCF
corresponding to TGF and its discovered parents (winlen = 1000, winjump = 500). For the Full

DCCFs see Appendix F.

In Figure 6.9, the most significant correlation graphs are shown for the variable, BPF. There

appears to be far fewer significant correlations between the discovered variables, with sudden

bursts of strong correlations, both negative and positive. Upon inspection of the MTS

variable, BPF, it was discovered that this variable contained a lot of noise which could have

resulted in lower correlations. Despite this, it can be seen once again that, where many of the

correlations change, segmentations have been found. For example, the graph representing the
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most significant correlation between BPF and RBT shows almost zero correlation until

window position 23 where there is a brief positive correlation followed by a brief negative

correlation (a segmentation has been discovered between these two regions).
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Figure 6.9. Most Significant Correlations for each window position of a DCCF
corresponding to BPF and its discovered parents (winlen = 1000, winjump = 500). Full DCCFs

in Appendix F.

Figure 6.10 shows the results for the variable T36T and similar results are found. In Figure

6.10 T36T and A/M_GB are either negatively correlated or not significantly correlated in the

first 17 window positions. At position 18 there is a sudden change to positive correlations and

a segmentation has been placed here.



Allan Tucker The Automatic Explanation of Multivariate Time Series Birkbeck College

158

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

Window Position

M
o

st
 S

ig
n

if
ic

an
t 

C
o

rr
el

at
io

n

%C3

A/M_GB

AFT

Segments

Figure 6.10. Most Significant Correlations for each window position of a DCCF
corresponding to T36T and its discovered parents (winlen = 1000, winjump = 500). Full

DCCFs in Appendix F.

It is interesting to note that most of the segmentations that have been discovered occur where

there are switches from positive to negative correlation rather than between regions of strong

and weak correlation. It should also be noted that some of the results in Figures 6.7 - 6.10

appear to find a number of segmentations that do not tie in with the correlation changes. This

is likely to be because the relationships that are changing are more complex than the pair-

wise relationships that are identified in these DCCF analyses and in the next section more

complex relationships that are modelled by the DBNs are highlighted.

The complete DBN structure that was discovered for the 21 variable oil refinery MTS can be

seen in Figure 6.11. Note how the links are spread relatively evenly over the variables and
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lags. Some links span the entire network lag space whilst some have relatively small lag.

Most variables bear some influence over another with the exception of about six which

appear to be influenced by others whilst having have no effect upon others.
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Figure 6.11. The Final DBN Structure discovered using HCHC applied to One Months Oil
Refinery Data  from 21 Variables. OpState nodes are not included.

In general, the results from the process data have been very encouraging with many of the

obvious relationships picked up by the DCCF analysis being discovered. It must be noted that

other more complex relationships may also have been discovered and the next section looks

at some sample explanations that have been generated from the DBNs with OpState nodes

included to identify these relationships.

6.4 Explanations incorporating Hidden Controllers

Given the discovered structure in Figure 6.11 and parameters for each node in the network

including the set of OpStates, inference can be applied to generate explanations. This



Allan Tucker The Automatic Explanation of Multivariate Time Series Birkbeck College

160

involves the same process as used in Chapters 3 and 6 whereby certain observations are made

about variables in the DBN and inference is used to generate posterior probability

distributions over the unobserved variables.

(a)

(b)

Figure 6.12. Sample Explanations from MTS 3 incorporating Hidden Controllers
(OpStates).

The explanations are also able to include the OpStates as part of the explanation. For

example, applying inference to four possible sets of observations on MTS 3 has generated the
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explanations in Figure 6.12. In the two explanations, (a) and (b), some observations about

variables a0, a1 and a2 are observed as well as the current state of OpState1. It can be seen that

the influences other variables have over a1 vary depending on the state of OpState1. When

OpState1 is in state 0, it appears that a0 being in state 0 with a time lag of 5, has the most

effect on variable a1 but when in state 4, a2 being in state 1 with a time lag of 6, has the most

influence, as highlighted in Figure 6.12 with bold lines.

(a)

(b)

Figure 6.13. Sample Explanations from MTS3 incorporating Hidden Controllers
(OpStates).
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Explanations can also be generated where a change in an OpState variable can be the most

likely reason for an observation. For example, in 6.13(a) and (b), nothing is observed about

any OpState variables. However, given the set of observations, the most probable state for

OpState1 can be inferred. The posterior distribution over time are displayed for explanation

6.12(a) and 6.12(b) in Figure 6.14, below.
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Figure 6.14. The posterior probabilities of three variables in MTS 3 as inference is applied
back in time given differing values of OpStates. (a) All OpStates = 0, (b) All OpStates = 4.
Notice how the OpStates have affected the probabilities over the variables. a0 is the most
likely reason for a1 changing from state 1 to state 0 when OpStates = 0 (having a positive
effect  with a lag of 5) but a2 is the most likely reason if OpStates = 4 (having a negative

effect  with a lag of 6).
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(a)

(b)

Fig 6.15. Sample of Generated Explanations from the Oil Refinery DBN.

Figure 6.15 and 6.16 show some more explanations that have been generated but using the

DBN discovered from the oil refinery data. It can be seen in 6.15(a) that SOT has a strong

likelihood of being in state 3 given the instantiations and OpStateTGF being 0. The posterior

probabilities change drastically when OpStateTGF changes to 3 as is shown in 6.15(b) with the
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most probable state for each parent variable altering (SOT now most likely to have been in

state 3 and A/M_GB in state 2). In 6.16(a) the effect of adding some new evidence to 6.15(b)

is shown which changes all the variable states again (if C11/3 is known  to have been in state

3, 16 minutes ago, SOT will now most likely have been in state 3 and A/M_GB in state 0). In

6.16(b) TGF and its set of parents are instantiated resulting in the controller variable

OpStateTGF being most likely in state 0.

(a)

(b)

Fig 6.16. Sample of Generated Explanations from the Oil Refinery DBN.
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In addition, by changing the value of  A/M-GB it was observed that TGF was tightly coupled

with it. In other words, when A/M-GB was high then TGF was high and low when TGF was

low. However, when T6T was high and SOT was low, it appeared that the relationship

between A/M-GB and TGF disappeared (TGF was generally in state 1 when A/M-GB was 3).

The most likely state of OpStateTGF was seen to change, implying that an alternative

operating state occurred when these configurations were encountered. This illustrates how the

segmentation of the MTS based on the discovered links includes more complex relationships

than the simple pair-wise ones shown in the DCCF cross-sections of Figures 6.8-6.10.

6.5 Conclusions

Experiments in this chapter indicate that hidden nodes such as OpState can be used to model

changing dependencies within a MTS. What is more they offer a method for doing so whilst

remaining transparent. In other words, the node can easily be interpreted as ‘the current state

of the system’ and, therefore, be used within explanations of events.

The hill climb procedure which reduces the search space drastically through the use of a

specific representation has allowed good models to be learnt from the oil refinery MTS.

Many of the segmentations discovered, tie in with the pair-wise correlations found in the

DCCF but some were found that do not, most likely due to the relationships being more

complex. The generation of explanations given certain test observations shows that the

paradigm is capable of modelling more complex relationships between groups of variables

that go beyond simple pair-wise relationships. For example, a pair-wise correlation may exist

between two variables but only whilst another variable or set of variables are in a particular
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configuration. This is often evident in data such as from a chemical process, where two

temperatures may be closely coupled, but if another flow rate increases or another

temperature increases, the effect may be lost between them.
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7 Discussion

This chapter discusses conclusions and possible future directions for the research covered in

this thesis. Section 7.1 is concerned with drawing conclusions from the results documented

within the previous chapters, including the pros and cons of the methods explored. Section

7.2 deals with ways in which the methods can be expanded and improved upon.

7.1 Conclusions

Within this thesis, a framework has been set out for automatically explaining high-

dimensional, long Multivariate Time Series (MTS) with large possible time lags and with

little time. This framework consists of solving two problems: Firstly, the explanation of new

data as quickly as possible using Dynamic Bayesian Networks (DBNs) and secondly the off-

line generation of these models from MTS with changing dependencies. Both involve pre-

processing such MTS in order to reduce their dimensionality based on pairwise correlation

between variables. A method has been proposed that is capable of doing this where a direct

trade-off can be made on accuracy and speed and has been shown on synthetic and real data

to ‘group’ MTS variables into related subsets very efficiently, even when time is very short.

Having broken down the original MTS into several smaller-dimensional MTS, the search

spaces involved in learning probabilistic models for explanation are still massive and an

approximate method has been investigated in this thesis which manages to find good models

very efficiently when compared to other standard techniques. Extending these sorts of models

for MTS with dependencies that can change between variables has also been investigated
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with success in keeping the models transparent and the explanations easy to interpret by a

layperson. The contribution to knowledge can be summarised as follows:

1. A new method for grouping MTS variables where dimensionality is very high, time

lag can be large and/or time is short. This can be scaled to very large MTS in order to

reduce the dimensionality of model building.

2. A comparison of standard static BN search methods that have been adapted to search

for DBN structure

3. A new method has been introduced for efficiently searching for DBN structure known

as EP-Seeded GA.

4. A method for incorporating changing dependencies into the representation whilst

ensuring transparency has been achieved with some success by using hidden discrete

variables to represent the changing states of dependencies.

5. The above methods have allowed the rapid automatic explanation of synthetically

generated data and chemical process data through using a combination of the above

methods and transparency has been ensured throughout so that at the end of each

process (e.g. grouping, model building etc.) a non-statistical user can intervene and

adjust the models.

In general the presented framework has been very successful in solving the problems set out

in Chapter 1. It is fully automated. No user intervention is required in the entire process from

MTS as input to explanation model at the other end, once parameters are set. Of course, if

need be, the user can examine the end result of each stage such as the groupings of the MTS

variables, the correlations that generated these groupings and the resulting DBN models.
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They can even update them based on background knowledge due to the transparency of each

stage. The generated explanations are easy to interpret, consisting of simple probabilistic

dependencies between variables due to the transparency of the DBN paradigm. The

evolutionary approach adopted, along with the heuristics used, have shown to be efficient in

comparison to standard methods that have been adapted to DBN learning. What is more the

quality of the resultant models were very good with respect to structural difference on

synthetic data and the oil refinery data generated good models that were parsimonious with

the expectations of experts and process diagrams.

The pre-processing grouping of MTS variables can be achieved very quickly making it ideal

for pre-processing in large, time constrained problems. This is achieved by using approximate

techniques for both the correlation search and the grouping of variables. What is more, by

altering the parameters, more precise groupings can be found given more time. In other

words, unlike other deterministic clustering methods, the method can be tailored to suit the

application - if time is not an issue then an exhaustive search can be carried out over all

correlations but if time is limited the extensiveness of the search can be controlled by altering

the parameters. The genetic grouping algorithm also holds the advantage over other

deterministic clustering methods that it will not be affected by local maxima due to the nature

of genetic algorithm search. This pre-processing method for large dimensional time series has

been successfully employed in this thesis to break down chemical process data rapidly before

applying model building.
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The EP-Seeded GA makes good use of approximate techniques to increase the efficiency of

learning DBN with large time lags by utilising a similar list to that sought after in the pre-

processing stage. The set of heuristics has assisted in narrowing the search space and

speeding convergence. It has compared favourably to other standard search methods for

Bayesian networks, which have been adapted to search for dynamic Bayesian networks.

However, it is likely that there are other ways to improve the algorithm further in order to

improve efficiency further such as making the parameters to the seeded GA dynamic. For

example, the crossover rate could be lowered and the mutation rate raised, as the number of

generations increases. This will mean that as the algorithm proceeds as existing triples are

exhausted in the number of combinations, new triples will be introduced more and more to

try and improve the final fittest chromosome.

In terms of learning models with changing dependencies, the results have been promising on

both synthetic and real data in terms of good explanations. The hidden controller nodes are

treated like any other node in the resultant models and are, therefore, easily interpreted. For

example, an explanation for variable 1 in an MTS may be ‘because OpState1 changed from

state 0 to state 1, five minutes ago’ where OpState1 represents some hidden controller for

variable 1. On the oil refinery data, some interesting relationships have been discovered using

the changing dependency paradigm. For example, when the state of hidden controller for a

particular flow rate changed, the relationship with each of its parent variables (all

temperatures) was noticed to alter. This change can sometimes be quite dramatic and this

behaviour was sometimes observed between variables where a strong negative relationship

became a strong positive one.
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Several problems have been encountered through the investigations carried out within this

thesis. The most prominent problem, which applies to several stages of the methodology, is

the selection of parameters. Both the pre-processing grouping algorithm and the EP-Seeded

GA are heavily parameterised. The grouping algorithm relies heavily on the size of the

correlation list, as this will determine how prospective groupings are scored. It is essential to

get this correct and yet very difficult to determine. Fortunately, for the oil refinery

application, the results were very good due to the even spread of high correlations and the

groupings made good intuitive sense. However, there may be some applications where

correlations between a few variables may dominate the list and, therefore, displace relatively

good correlations from the list. In these situations, the size of the list must be carefully

determined. Other very important parameters will be the population sizes, the number of

generations, and the mutation and crossover rates in the Evolutionary Program and Genetic

Algorithm of the EP-Seeded GA. These will all have a large effect on the efficiency of the

search and the quality of the final model.

Another possible problem that may be encountered is due to discretisation. Discretisation can

bias the model learning phase dramatically. The method adopted within this thesis, i.e.

frequency-based discretisation, was chosen as it relatively simple, quick, and maximises the

frequency of each state. However, like all discretisation methods, information is lost when

applied and so this must be minimised, particularly when data is not very rich. Explanations

may also be misleading when talking about states of a discretised variable. For example,

frequency-based disretisation may result in three states that have very close bounds and one

state which covers most of the variables range depending on how frequent each of these
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states are observed within the data. Therefore, some states which may be assumed as

relatively low are in fact in the higher ranges of possible value. However, as long as the

bounds of each variable’s state are made clear, misinterpretation should be minimised.

Finally, the learning of models with changing dependencies that generated some interesting

results when using a simple Hill Climb search was extremely slow. The Structural EM

algorithm was hoped to be a more effective and speedy method than the hill climb. However,

the results proved otherwise, suffering from local maxima and the calculation of expected

statistics taking a long time. However, it is hoped that future research will involve using

standard methods such as deterministic annealing to overcome local maxima. The next

section discusses some of the future research, which is planned to overcome some of the

problems that were encountered and suggests ways of extending the framework.

7.2 Further Research Directions

Combining the entire procedure into one continuous process is to be investigated including

the effect of different quality outputs from one process (e.g. grouping) being used as input to

the next (e.g. EP-Seeded GA). Due to the input/output of each stage in the methodology

being transparent, it has been possible to assess the quality of each process individually. This

is useful in allowing a user to correct any obvious errors and add user knowledge. However,

it will be interesting to see how the effects of one bad process propagate through to the final

explanations. A more challenging task may be to combine all of these processes into one

iterative algorithm which tries to improve the outputs of each stage given the outputs of the
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other stages. Therefore, the results from the grouping stage will not necessarily be left

unchanged during the EP-Seeded GA stage.

A 61 variable MTS of length 1000 has been grouped within 5 minutes and 58 seconds on a

standard Pentium PC. A group with 20 variables has been selected and a DBN learnt using

EP-Seeded GA taking 3 minutes and 29 seconds. Explanation has been generated using this

DBN in 4 minutes and 3 seconds. Expanding on these initial timing experiments, it will be

useful to see how the algorithms can be optimised to speed the explanation generation

further. If the methodology is to be utilised in real-world applications, it is the actual time in

minutes and seconds that will be important and this is to be investigated further.

The problem identified in the previous section concerning parameter estimation for the

grouping algorithm is to be explored in greater detail. A method for determining the size of

the list by imposing a distribution over correlations (all variables and lags) is currently

underway. It is known that the correlations in a bivariate time series process can be

approximated by a normal distribution [Fisher15, Lush31]. However, it is not known whether

this extends to MTS data. If a distribution can be found for the correlations of a MTS, this

will allow the size of the list to be calculated with a certain confidence (e.g. 95%) based upon

the number of variables and maximum time lag.

The calculation of pairwise correlation is carried out twice within the framework described in

this thesis. Firstly, a statistical correlation coefficient is used on the data to search for a list of

highly correlated variable pairs as part of the grouping algorithm. A similar procedure is

carried out on the pre-processed data for the EP part of EP-Seeded GA to speed convergence,
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where a Bayesian network scoring metric is used to score single links. It would be useful if

these two searches could be combined in some way to speed up the overall efficiency of the

methodology. It must be noted that these searches do not perform precisely the same function

and, therefore, each search has different valid pairings. For example, the groupings algorithm

only requires storing a link from ai to aj with one possible lag. This is because once a good

correlation is found between two variables, the lag is unimportant. In contrast, the EP for EP-

Seeded GA requires storing pairs of variables with various different lags because there may

be several good links between two variables with different time lags. Some process could be

carried out which would combine the two present searches, as there will be substantial

overlap between the two.

As mentioned in the previous section, a good discretisation policy is important in generating

good explanations. It is intended that many more MTS discretisation policies will be looked

at, particularly in how they affect the final explanations in a model. Methods exist for

learning such policies whilst learning network structure simultaneously. However, in time-

restricted situations the time required to learn policies is likely to be a problem and a simpler

quicker method will be preferred. Another way to avoid the problems associated with

discretisation would be to look at extending continuous BNs into the temporal domain.

Continuous BNs, [Hofmann96, John95], model continuous data using dependency structure

and probability density functions between groups of variables. There has been some work on

learning these from data, usually with Gaussian distribution assumptions [Geiger94].

Modelling MTS, such as the oil refinery data, in this way allows explanations to involve

more complex density functions rather than simpler distributions over states of variables.
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What is more, the problem of storing larger and larger conditional probability tables as the

number of links increase is avoided.

Confidence in learnt networks is vital if explanations are to be used in real world scenarios.

For this reason, methods to compute statistics which reflect the confidence in an explanation

must be investigated. This research has begun to some degree using bootstrapping methods

[Efron93]. Friedman et al. have used bootstrapping to calculate the confidence that data

supports a particular feature such as a set of links in a BN, [Friedman99]. It would be

invaluable if these confidence statistics could be incorporated into explanation such as those

found in Chapters 5 and 6.

Another important direction for this research is to experiment with as many different types of

MTS data as possible. Whilst some of the algorithms introduced in this thesis have been

tested on synthetic data, oil refinery data and also some on visual field data, it is still essential

to see how they, and the other algorithms, will behave on many other varied datasets. It is

planned to test the methodology on various datasets including EEG data, gene expression

data and robot sensor data, in order to identify the common characteristics and differences

between certain MTS. This will allow the algorithms to be generalised or specialised to

particular applications. For example it has already been discovered that the grouping

algorithm is more sensitive to datasets where the correlations are less evenly spread such as

visual field data as opposed to the oil refinery data where many variables are strongly

correlated with an even spread.
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The process of learning models with changing dependencies from MTS may be speeded up in

various ways. The techniques used in Chapter 5 could be used, such as the EP-Seeded GA

type search for structure, whilst a hill climb or some heuristic driven EM algorithm could be

applied to the parameters for the hidden variables. Some classic problems were encountered

with SEM and the investigation as to whether methods such as deterministic annealing

[Ueda95] can be applied to overcome these will be explored. Another problem that may be

encountered with some MTS is the over-connectivity of these networks with hidden operating

variables. If a variable has many operating states then it is likely that it will require many

parents for each state. A paradigm known as MultiNets [Bilmes2000] may be used to explore

ways to avoid this where links are removed based on the states of the hidden variables to

simplify the structure and speed inference.
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Appendix A - Glossary

General
N The Number of Variables in the domain
n The length of the MTS
M The order of a model
t Time Position in MTS
A The MTS

)(tA The MTS vector at time t

ia Variable i

)(tai Variable i at time t

Static BNs
hS Candidate Bayesian Network Structure

D A Dataset (either static cases or time series)
X , ix The set of nodes, node i

iπ The parent set of node i

ir The number of states on node i

)|( iixp π The probability of the instantiated node i given that its parents
are in a particular instantiation

iw The states of all other nodes in a BN except ix

DL The Description Length of the Candidate Network 
hSDL + DDL

hSDL The Description Length of the Candidate Network Structure, hS

DDL The Description Length of encoding the data, D , given hS

(Measure of Entropy)

i
DLπ The Description Length of a node i, and its parents set

)|(log hSDp Log Marginal Likelihood of a network structure

)|(log iDp π Log Marginal Likelihood of a node i, and its parent set

MaxBranch The maximum number of parents a node is allowed

Dynamic BNs
Q The set of nodes in a DBN which represent variables at a time

lag > 0
Q The number of nodes in Q
t The time slice of a set of nodes (also the position in an MTS)
MaxT The maximum possible time lag over a dependency

),,( lagaa ji
A triple representing a link from a parent representing variable
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ia to a child node ja with a time lag of lag

OpState The Hidden Controller Node used to model changing
Dependencies

H , ih Set of hidden nodes, hidden node i

Genetic Algorithms
Generations Number of Generations
Popsize Size of the Population (the number of individual chromosomes)
CrossoverRate The probability of 2 parents being crossed over
MutationRate The probability of a chromosome being mutated

Evolutionary Programming (for Seeding)
igene Gene i. The ith element of a chromosome representing either a

parent node, a child node or a lag

iσ Self Adapting Parameter relating to the standard deviation of a
Normal Distribution

List The list of highly dependant (strong correlated or good BN
metric score) triples

R The length of List

Grouping MTS Variables
G The set of groups

ig The ith group

m The number of groups

ik The size of the ith group

s The Search Space
e The number of explicit dependencies
c The number of calls to a correlation coefficient / BN metric

Mathematical Functions and Distributions
( )σµ ,N ��������	
��	��	����	�������� �����
�����������	��	���
( )maxminU , Uniform Distribution with bounds of min and max, inclusive
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Dynamic Cross Correlation Function
DCCF A 2�2 matrix of correlations between 2 variables, where rows

determine the window position over time and columns determine
time lag between the variables

),,( fsaa ttl
ji

ρ The DCCF value for time lag, l, between two variables, ai and aj

for a window of data, delimited by ts and tf

winlen The length of the window of data
winjump The size of shift made by the window of data during the

calculation of the DCCF
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Appendix B - Proofs for Grouping Evaluation Metric

Proof 1. When there are no correlations, then φ=List . Therefore max(f(G)) is 0, because

there will never be any cases where L is 1. This therefore requires that the size of any of the

groups in G will be 1. This is by definition of the functions L and h.

Proof 2. If a correlation exists for each pairing of variables, then the maximum size for List

will be 
2

)1( −NN , because of the duplicate restriction. It therefore follows that the value for

h(gi) will be 
2

)1( −ii kk
using the same logic. Using equation 6, we have

))(max())(max(
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This process can be repeated until there is only one value k1 remaining where k1=N, and f

attains its maximum value. Hence when List is at a maximum size (as above), the

arrangement with the maximum fitness will be all variables in a single group.

Proof 3. If the data generating the correlations came from a mixed set of multivariate time

series observations, then for a given grouping arrangement G and correlation set List
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1

),(max))(max(

))(max())(max(

This will be a maximum when all instances of the function L are 1. If List contains an

additional spurious correlation or is missing a correlation, then this value will be reduced by

1, by definition of L and proof 2. Hence the maximum value of the fitness for a given G will

be when List contains the all of the correlations that can exist for each grouping.
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Appendix C - The Lilliefors’ Test Results

The table below displays a sample of the results of applying Lilliefors’ test on a small sample
of simulations as described in sections 4.1 and 4.2.

R c S Dmax

v

031.1 Dmax<

v

031.1

50 657 4600 6.590 2.393 6.665 2.365 0.106 0.144 True
60 780 3900 10.823 2.939 10.909 3.152 0.079 0.132 True
70 357 3570 6.665 2.407 6.667 2.211 0.097 0.122 True
80 1062 7440 10.687 3.052 10.659 2.840 0.086 0.115 True
90 918 4590 16.293 3.639 16.364 3.629 0.069 0.108 True
100 1583 9500 15.400 3.589 15.382 3.420 0.070 0.103 True
110 1452 14520 10.418 3.058 10.476 2.846 0.082 0.098 True
120 1851 12960 15.972 3.743 15.997 3.476 0.067 0.094 True
130 1841 11050 19.95 4.138 19.993 3.896 0.060 0.090 True
140 2963 17780 21.539 4.222 21.536 4.055 0.059 0.087 True
150 3930 19650 27.127 4.767 27.273 4.581 0.052 0.084 True
160 2272 22720 15.222 3.708 15.238 3.640 0.071 0.081 True
170 4386 21930 30.896 5.007 30.909 4.898 0.053 0.079 True
180 1854 18540 17.158 3.878 17.143 3.957 0.065 0.077 True
190 988 9880 18.063 4.106 18.095 4.116 0.065 0.075 True

Within this table, �� ��  and are listed as examples for the section on Genetic Programming.
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Appendix D - MTS Dataset Generation

Below is a selection of DBN structures that were used to generate the DBN datasets.

Numbers associated with nodes represent variables and numbers associated with links

represent time lags.

DBN 1 DBN 2

DBN 3 DBN 4
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Below is a selection of VAR process parameters that were used to generate the VAR datasets.

7 Variable VAR(3)
P=1 P=2 P=3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 0.13 -0.32 -0.21 0.02 -0.22 -0.06 0.00 -0.29 0.11 0.30 -0.09 0.02 -0.04 -0.33 -0.05 0.17 -0.03 0.22 0.04 0.02 -0.25
2 -0.40 -0.63 0.02 -0.10 0.01 0.02 -0.22 0.05 0.16 0.58 0.05 -0.02 0.10 -0.24 -0.02 0.00 0.08 0.22 0.00 0.16 -0.01
3 0.11 -0.08 -0.10 0.03 -0.09 0.06 0.12 -0.12 -0.21 0.29 -0.17 0.08 -0.17 -0.26 0.09 -0.28 0.02 0.02 -0.03 -0.69 0.09
4 -0.11 -0.18 -0.42 -0.22 0.02 -0.13 0.12 -0.05 0.38 0.06 -0.14 -0.07 0.08 0.11 0.02 -0.27 -0.01 -0.08 0.32 0.02 0.06
5 -0.07 -0.01 0.09 0.31 0.08 -0.07 0.00 0.07 -0.61 -0.02 0.04 -0.29 0.01 -0.16 0.07 0.30 -0.41 -0.13 0.06 -0.15 0.06
6 0.06 0.27 -0.07 -0.19 0.16 -0.20 0.01 0.21 0.02 0.04 0.19 0.18 0.44 -0.04 0.06 0.18 -0.34 0.19 -0.05 -0.04 0.06
7 0.08 0.21 -0.32 0.07 -0.11 0.03 -0.41 -0.03 -0.33 -0.12 0.09 0.00 0.55 0.19 0.14 -0.02 0.02 0.16 0.04 -0.15 0.04

3 Variable VAR(5)
P=1 P=2 P=3 P=4 P=5

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 0.10 0.02 -0.20 0.15 -0.04 0.24 0.06 -0.08 0.31 -0.07 0.03 -0.04 -0.05 0.19 0.15
2 -0.16 -0.02 -0.02 0.01 -0.40 0.10 -0.28 0.02 -0.24 -0.08 -0.01 -0.04 0.12 0.06 0.19
3 0.03 0.55 -0.18 0.08 -0.02 0.04 -0.09 0.00 0.19 0.05 0.26 0.01 -0.12 -0.02 -0.23

2 Variable VAR(2)
P=1 P=2

1 2 1 2
1 -0.52 0.02 0.23 -0.22
2 0.28 -0.17 -0.41 -0.11
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Appendix E - Genetic Programming Details

Operator Description Value

Population Constant Population 100
Generations Number of iterations  =1,000

 =50,000
Crossover Percentage of population

allowed to breed
0.75

Prune Mutation Rate Cut down a sub-tree to a random
terminal node

0.25

Add Sub-tree
Mutation Rate

Replace a sub-tree for a new
random sub-tree (size varies)

0.25

Change Node
Mutation Rate

Change an operator to a new
random operator or a terminal
symbol to a new random
terminal symbol

0.25

Survival Simply select the top
“Population” after new
individuals have been added
through Crossover and Mutation

Deterministic and
Extinctive

 and  Results

The test dataset of parameters for the problems consisted of the same 150 records generated

by the simulation experiments. This was divided into two halves, one for the training set and

the other for the verification set. The records were numbered from 1 to 150, and  was trained

��� ��������� ������
� ���� ���� �������� ������
����������	������� ��������
� ����R, s and c

increased as the record identifier (ID) increased.
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Results were as follows:

Result
Value for function (1)

)4(2

2 2

++ RcRs

cR
s

cR 11

63

8 ++

Approximation to be used (2)

cs

cR

+2

2

s

cR 11

63
+

(1) (2) (1) (2)
Fitness for Training Set (Excluding
Nodes)

-0.1037 -0.2403 -0.7906 -2.0954

Sum of Absolute Error for Training
Set

2.2198 3.1939 6.0883 11.3506

Average % Error for Training Set 0.2029 0.2512 2.3911 4.4791
Fitness for Testing Set (Excluding
Nodes)

-1.038 -0.2490 -0.8421 -2.1139

Sum of Absolute Error for Testing
Set

2.2355 3.1997 6.2628 11.4010

Average % Error for Testing Set 0.8148 1.1119 2.4604 4.5181
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Appendix F - Dynamic Cross Correlation Functions

1 6

11 16 21 26 31 36 41 46 51 56 61

S1

S5

S9

S13

S17

S21

S25

S29

S33

S37

S41

S45

S49

S53

S57

S61

S65

S69

S73

S77

S81

S85

Time Lag

W
in

d
o

w
 P

o
sitio

n

0.4-0.6

0.2-0.4

0-0.2

-0.2-0

-0.4--0.2

-0.6--0.4

-0.8--0.6

-1--0.8

Figure F.1(a). The DCCF corresponding to AUTO/Man Girb with TGF,
(winlen = 1000, winjump = 500)
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Figure F.1(b). The DCCF corresponding to SOT with TGF
(winlen = 1000, winjump = 500)
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Figure F.1(c). The DCCF corresponding to T6T with TGF.
(winlen = 1000, winjump = 500)
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Figure F.2(a). The DCCF corresponding to RBT with BPF,
(winlen = 1000, winjump = 500)
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Figure F.2(b). The DCCF corresponding to C11/3 Inlet with BPF
(winlen = 1000, winjump = 500)
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Figure F.2(c). The DCCF corresponding to AUTO/MAN Gas with BPF
(winlen = 1000, winjump = 500)



Allan Tucker The Automatic Explanation of Multivariate Time Series Birkbeck College

205

1 6 11 16 21 26 31 36 41 46 51 56 61

S1

S5

S9

S13

S17

S21

S25

S29

S33

S37

S41

S45

S49

S53

S57

S61

S65

S69

S73

S77

S81

S85

Time Lag

W
in

d
o

w
 P

o
sitio

n

0.3-0.4

0.2-0.3

0.1-0.2

0-0.1

-0.1-0

-0.2--0.1

-0.3--0.2

Figure F.3(a). The DCCF corresponding to %C3 with T36T
(winlen = 1000, winjump = 500)
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Figure F.3(b). The DCCF corresponding to A/M_GB with T36T
(winlen = 1000, winjump = 500)
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Figure F.3(c). The DCCF corresponding to AFT with T36T
(winlen = 1000, winjump = 500)
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Figure F.4(a). The DCCF corresponding to SOT with TT
(winlen = 1000, winjump = 500)
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Figure F.4(b). The DCCF corresponding to A/M_GS with TT
(winlen = 1000, winjump = 500)
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Figure F.4(c). The DCCF corresponding to T6T with TT
(winlen = 1000, winjump = 500)
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Figure F.5(a). The DCCFs corresponding to TT with T6T
(winlen = 1000, winjump = 500)
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Figure F.5(b). The DCCF corresponding to C11/3 with T6T
(winlen = 1000, winjump = 500)
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Figure F.5(c). The DCCFs corresponding to %C2 with T6T
(winlen = 1000, winjump = 500)
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Appendix G - Structural Expectation Maximisation for the

Explanation of Multivariate Time Series with Changing

Dependencies

The Structural Expectation Maximisation (SEM) algorithm which was introduced in Chapter

2 provides a method for learning hidden variables using a two-stage, iterative algorithm. The

SEM algorithm [Friedman97/98b] which tackles the problem of learning structure from data

with missing values or hidden variables, can be adapted to solve the problem of modelling

changing dependencies. In these experiments, a more general case of this algorithm was

investigated where the expected likelihood is not maximised at each iteration but merely

incremented.

The SEM Algorithm

The algorithm uses the architecture in Figure G.1 and involves an iterative process whereby

the network (current model) is initialised with a random structure and a random set of

parameters for the hidden variables (here the Op_States). The current model and training data

are then used to generate the expected statistics for the hidden variables. In the context of

Bayesian network parameters, this involves applying inference using the current model where

the training data supplies the observations. The resulting posterior distributions over the

hidden nodes are then used to determine their expected states given the training data. Given

the expected statistics and the current model, a search engine is used to improve the log

likelihood score of the network structure. This process of repeatedly calculating expected
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statistics and structure search continues until some stopping criteria is met such as minimal

improvement in score or the maximum number of iterations is met.

Figure G.1. The SEM Architecture (from [Friedman97]).

Algorithm G.1 which has been adapted from Algorithm 2.4 in Chapter 2 to determine the

structure and values of OpState. It also uses a DBN_List in the same way as the HCHC from

Chapter 6.

I/P Random initial structure, hS , random parameters except

from observed variables, A, Iterations, MaxT
1 i = 0
2 Repeat until convergence or i > Iterations

Expectation Step
3 Use inference to calculate the expected statistics

for OpState given the current structure and values
for OpState.

4 Use these statistics to reassign the values for
OpState based upon the observed values in the MTS
Maximum Likelihood Step

5 Search for structure that improves the expected
score given the new values of OpState using a
standard scoring metric such as log likelihood or DL

6 i = i + 1
7 End Repeat
O/P Final Structure and Parameters

Algorithm G.1 - The SEM Algorithm for Learning DBNs with Changing
Dependencies.
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Applying SEM to Synthetic Data

The SEM algorithm has been applied to the synthetic datasets in Chapter 6. The average log

likelihood at convergence is shown in Table G.1 along with the results of applying HCHC

from Chapter 6. It is apparent that the log likelihood of the DBNs constructed with the SEM

method are much higher than those resulting from HCHC. This could be due to HCHC being

limited in its number of segmentations whereas the SEM is not. However, as the true number

of segmentations for each dataset was within the limits set for HCHC, this implies either an

inefficient HCHC or overfitting in the SEM. We investigate these hypotheses in the

remainder of this Appendix.

HCHC SEM
MTS1 -3115.665 -220.738
MTS2 -15302.017 -2032.371
MTS3 -4494.706 -239.346

Table G.1. Resulting Log Likelihoods Upon the Synthetic Data.

i) Structure

The results in Table 6.3 display the Structural Difference (SD), as used in Chapter 5 and

Chapter 6, between the original and the discovered structures. They are somewhat

disappointing. It appears that many links were missed. However, a number of implicit

dependencies were discovered which may help to explain the relatively good scores in Table

G.1. The reason for the high number of missed links could be for several reasons such as bad

segmentation which is looked at next. Also, there are a large number of very strongly

correlated variables in the synthetic data, resulting in many implicit dependencies. This is
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likely to be true of many MTS data and so the effect of this on learning models for

explanation is worth considering in the future.

MTS1 MTS2 MTS3
Number of Original Links 12 26 16
Spurious 4.2 3.0 1.0
Implicit 2.1 5.5 1.6
Missed 3.3 8.3 8.2
Total SD 9.6 16.8 10.8

Table G.2. Structural Difference Results using SEM.

ii) Segmentation

The expected states of the hidden variables OpState were explored to see how they changed

over time. Ideally this would reflect the segmentations of the synthetic datasets. The

breakdown of MTS 3 is now examined in more detail. The original structures and partitions

used to generate this dataset are as shown in Figure 6.5 of Chapter 6.

Figures G.2 - G.6 display the resulting OpState variables for each of the 5 segments within

MTS 3. Whilst the nature of the Op_State variable’s behaviour appear to change within each

segment (for example in one segment they may remain steadily in one state whilst in another

they may fluctuate rapidly between 2 or more), they do not come close to neatly allocating a

different state to different MTS segments. The problem in distinguishing between different

states on this synthetic data is likely to be for two reasons. Firstly, the data has been

generated so that there are many tightly related variables and changes in dependency such

that a link from a0 to a1 can switch to a link from a1 to a0. This will mean that for a lot of the

data, the expected state will be the same for both these situations (because there is a strong

correlation between two variables irrespective of direction due to spurious correlations). It is
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not known quite how much this will be true within the real datasets although many tightly

related variables are expected. Secondly, SEM is well known to suffer from local maxima

and although perturbation has helped reduce this, a more drastic approach may be required

such as deterministic annealing [Ueda95]. It may be the case that the better results attained

from HCHC were due to the assumption that OpStates would be relatively stable, thus

preventing overfitting to the data.
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Figure G.2. Expected states for OpState0  in each of the 5 segments in MTS 3
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Figure G.3. Expected states for OpState1  in each of the 5 segments in MTS 3
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Figure G.4. Expected states for OpState2  in each of the 5 segments in MTS 3
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Figure G.5. Expected states for OpState3  in each of the 5 segments in MTS 3
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Figure G.6. Expected states for OpState4  in each of the 5 segments in MTS 3
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