Extensions to Self-Taught Hashing: Kernelisation and Supervision

Dell Zhang, Jun Wang, Deng Cai, Jinsong Lu

Birkbeck, University of London dell.z@ieee.org

The SIGIR 2010 Workshop on Feature Generation and Selection for Information Retrieval (FGSIR)

23 July 2010, Geneva, Switzerland

Outline

- 2 Related Work
- 3 Review of STH
- Extensions to STH
- **5** Conclusion

Similarity Search (aka Nearest Neighbour Search)

- Given a query document, find its most similar documents from a large document collection

- Information Retrieval tasks
 - near-duplicate detection, plagiarism analysis, collaborative filtering, caching, content-based multimedia retrieval, etc.
- k-Nearest-Neighbours (kNN) algorithm
 - text categorisation, scene completion/recognition, etc.

"The unreasonable effectiveness of data"

If a map could include every possible detail of the land, how big would it be?

A promising way to accelerate similarity search is **Semantic Hashing**

- Design compact *binary* codes for a large number of documents so that semantically similar documents are mapped to similar codes (within a short Hamming distance)
 - Each bit can be regarded as a binary feature
 - Generating a few most informative binary features to represent the documents
- Then similarity search can done extremely fast by just checking a few nearby codes (memory addresses)
 - For example, 0000 \implies 0000, 1000, 0100, 0010, 0001.

Problem

Problem

Outline

1 Problem

- 2 Related Work
- 3 Review of STH
- Extensions to STH

5 Conclusion

Fast (Exact) Similarity Search in a Low-Dimensional Space

- Space-Partitioning Index
 - KD-tree, etc.
- Data Partitioning Index
 - R-tree, etc.

Figure: An example of KD-tree (by Andrew Moore).

D. Zhang (Birkbeck)

Fast (Approximate) Similarity Search in a High-Dimensional Space

- Data-Oblivious Hashing
 - Locality-Sensitive Hashing (LSH)
- Data-Aware Hashing
 - binarised Latent Semantic Indexing (LSI), Laplacian Co-Hashing (LCH)
 - stacked Restricted Boltzmann Machine (RBM)
 - boosting based Similarity Sensitive Coding (SSC) and Forgiving Hashing (FgH)
 - Spectral Hashing (SpH) the state of the art
 - Restrictive assumption: the data are uniformly distributed in a hyper-rectangle

Table: Typical techniques for accelerating similarity search.

low-dimensional space	exact similarity search	data-aware	KD-tree, R-tree
		data-oblivious	LSH
high-dimensional space	approximate similarity search	data-aware	LSI, LCH, RBM, SSC, FgH, SpH, STH

Outline

1 Problem

- 2 Related Work
- 3 Review of STH
 - Extensions to STH

5 Conclusion

Input:

•
$$X = \{\mathbf{x}_i\}_{i=1}^n \subset \mathbb{R}^m$$

Output:

Review of STH

Figure: The proposed STH approach to semantic hashing.

Stage 1: Learning of Binary Codes

• Let $\mathbf{y}_i \in \{-1, +1\}^{l}$ represent the binary code for document vector \mathbf{x}_i

• Let $\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_n]^T$

Criterion 1a: Similarity Preserving

- We focus on the *local* structure of data
- $N_k(\mathbf{x})$: the set of *k*-nearest-neighbours of document \mathbf{x}
- $\bullet\,$ The local similarity matrix ${\bf W}$
 - i.e., the adjacency matrix of the k-nearest-neighbours graph
 - symmetric and sparse

$$W_{ij} = \begin{cases} \left(\frac{\mathbf{x}_i^T}{\|\mathbf{x}_i\|}\right) \cdot \left(\frac{\mathbf{x}_j}{\|\mathbf{x}_j\|}\right) \\ 0 \\ W_{ij} = \begin{cases} \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}\right) \\ 0 \end{cases}$$

if $\mathbf{x}_i \in N_k(\mathbf{x}_j)$ or $\mathbf{x}_j \in N_k(\mathbf{x}_i)$ otherwise

if
$$\mathbf{x}_i \in N_k(\mathbf{x}_j)$$
 or $\mathbf{x}_j \in N_k(\mathbf{x}_i)$
otherwise

Review of STH

Figure: The local structure of data in a high-dimensional space.

Review of STH

Figure: Manifold analysis: exploiting the local structure of data.

Criterion 1a: Similarity Preserving

• The Hamming distance between two codes y_i and y_j is

$$\frac{\|\mathbf{y}_i - \mathbf{y}_j\|^2}{4}$$

• We minimise the weighted total Hamming distance, as it incurs a heavy penalty if two similar documents are mapped far apart

$$\sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} \frac{\|\mathbf{y}_{i} - \mathbf{y}_{j}\|^{2}}{4}$$

• The squared error of distance would lead to a non-convex optimisation problem

Spectral Methods for Manifold Analysis — Minimising Cut-Size

For single-bit codes $\mathbf{f} = (y_1, \ldots, y_n)^T$:

$$S = \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} \frac{(y_i - y_j)^2}{4} = \frac{1}{4} \mathbf{f}^T \mathbf{L} \mathbf{f}$$

Laplacian matrix L = D − W
D = diag(k₁,...,k_n) where k_i = ∑_j W_{ij}

Review of STH

Spectral Methods for Manifold Analysis — Minimising Cut-Size

Figure: Spectral graph partitioning through Normalised Cut.

Spectral Methods for Manifold Analysis

- Minimising Cut-Size
 - Real relaxation
 - Requiring $y_i \in \{-1, +1\}$ makes the problem NP hard
 - Substitute $\tilde{y}_i \in \mathbb{R}$ for y_i
 - L is positive semi-definite
 - eigenvalues: $0 = \lambda_1 = \ldots = \lambda_z < \lambda_{z+1} \le \ldots \le \lambda_n$
 - eigenvectors: $\mathbf{u}_1, \ldots, \mathbf{u}_z, \mathbf{u}_{z+1}, \ldots, \mathbf{u}_n$
 - Optimal non-trivial division: $\mathbf{f} = \mathbf{u}_{z+1}$
 - The number of edges across clusters is small

Spectral Methods for Manifold Analysis — Minimising Cut-Size

For *I*-bit codes $\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_n]^T$:

$$S = \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} \frac{\|\mathbf{y}_{i} - \mathbf{y}_{j}\|^{2}}{4} = \frac{1}{4} \operatorname{Tr}(\mathbf{Y}^{T} \mathbf{L} \mathbf{Y})$$

• Let
$$\tilde{\mathbf{Y}}$$
 be the real relaxation of \mathbf{Y}

Review of STH

Spectral Methods for Manifold Analysis — Minimising Cut-Size

• Laplacian Eigenmap (LapEig)

 $\begin{array}{ll} \mathop{\text{arg min}}_{\tilde{\mathbf{Y}}} & \operatorname{Tr}(\tilde{\mathbf{Y}}^{\mathcal{T}}\mathbf{L}\tilde{\mathbf{Y}}) \\ \text{subject to} & \tilde{\mathbf{Y}}^{\mathcal{T}}\mathbf{D}\tilde{\mathbf{Y}} = \mathbf{I} \\ & \tilde{\mathbf{Y}}^{\mathcal{T}}\mathbf{D}\mathbf{1} = \mathbf{0} \end{array}$

• Generalised Eigenvalue Problem

$$\mathbf{L}\mathbf{v} = \lambda \mathbf{D}\mathbf{v} \tag{1}$$
$$\tilde{\mathbf{Y}} = [\mathbf{v}_1, \dots, \mathbf{v}_l]$$

Criterion 1b: Entropy Maximising

Best utilisation of the hash table

- = Maximum entropy of the codes
- = Uniform distribution of the codes (each code has equal probability)
 - The *p*-th bit is on for half of the corpus and off for the other half

$$y_i^{(p)} = \left\{egin{array}{cc} +1 & ilde{y}_i^{(p)} \geq {\sf median}({f v}_p) \ -1 & {\sf otherwise} \end{array}
ight.$$

• The bits at different positions are almost mutually uncorrelated, as the eigenvectors given by LapEig are orthogonal to each other

Stage 2: Learning of Hash Function

How to get the codes for new documents previously unseen? — Out-of-Sample Extension

- High computational complexity
 - Nystrom method
 - Linear approximation (e.g., LPI)
- Restrictive assumption about data distribution
 - Eigenfunction approximation (e.g., SpH)

Stage 2: Learning of Hash Function

- We reduce it to a supervised learning problem
 - Think of each bit y_i^(p) ∈ {+1, −1} in the binary code for document x_i as a binary class label (class- "on" or class- "off") for that document
 - Train a binary classifier y^(p) = f^(p)(x) on the given corpus that has already been "labelled" by the 1st stage
 - Then we can use the learned binary classifiers f⁽¹⁾,..., f^(l) to predict the *l*-bit binary code y⁽¹⁾,..., y^(l) for any query document x

Kernel Methods for *Pseudo*-Supervised Learning — Support Vector Machine (SVM) $y^{(p)} = f^{(p)}(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}^T \mathbf{x})$

$$\begin{array}{ll} \underset{\mathbf{w},\xi_i\geq 0}{\arg\min} & \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{C}{n}\sum_{i=1}^{n}\xi_i\\ \text{subject to} & \quad \forall_{i=1}^n: y_i^{(p)}\mathbf{w}^T\mathbf{x}_i\geq 1-\xi_i \end{array}$$

n

$$ullet$$
 large-margin classification \longrightarrow good generalisation

- linear/non-linear kernels \longrightarrow linear/non-linear mapping
- $\bullet\ \mbox{convex}\ \mbox{optimisation}\ \longrightarrow\ \mbox{global}\ \mbox{optimum}$

(2)

Self-Taught Hashing (STH): The Learning Process

- Unsupervised Learning of Binary Codes
 - Construct the *k*-nearest-neighbours graph for the given corpus
 - Embed the documents in an *I*-dimensional space through LapEig (1) to get an *I*-dimensional real-valued vector for each document
 - Obtain an *I*-bit binary code for each document via thresholding the above vectors at their median point, and then take each bit as a binary class label for that document
- Supervised Learning of Hash Function
 - Train / SVM classifiers (2) based on the given corpus that has been "labelled" as above

Self-Taught Hashing (STH): The Prediction Process

- Classify the query document using those *l* learned classifiers
- Assemble the output / binary labels into an /-bit binary code

Outline

Problem

- 2 Related Work
- 3 Review of STH
- 4 Extensions to STH

5 Conclusion

In the second stage of STH, we rewrite the SVM quadratic optimisation problem (2) into its dual form

$$\underset{\alpha}{\operatorname{arg\,min}} \qquad \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} y_{i}^{(p)} y_{j}^{(p)} \alpha_{i} \alpha_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \qquad (3)$$
subject to
$$0 \leq \alpha_{i} \leq C, \quad i = 1, \dots, n$$

$$\sum_{i=1}^{n} \alpha_{i} y_{i}^{(p)} = 0$$

and replace the inner product between \mathbf{x}_i and \mathbf{x}_j by a nonlinear kernel such as the Gaussian kernel:

$$\mathcal{K}(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right)$$
(4)

Then the *p*-th bit (i.e., binary feature) of the binary code for a query document \mathbf{x} would be given by

$$f^{(\rho)}(\mathbf{x}) = \operatorname{sgn}\left(\sum_{i=1}^{n} \alpha_i y_i^{(\rho)} K(\mathbf{x}, \mathbf{x}_i)\right)$$
(5)

which is a nonlinear mapping.

- For example, using 16-bit binary codes,
 - linear hashing: $2I = 2 \times 16 = 32$ sectors
 - nonlinear hashing: $2^{I} = 2^{16} = 65536$ pieces

Figure: The 16-bit hash function for the pie dataset using SpH.

Figure: The 16-bit hash function for thepie dataset using STH.

Figure: The 16-bit hash function for the two-moon dataset using SpH.

D. Zhang (Birkbeck)

Extensions to STH

Figure: The 16-bit hash function for the two-moon dataset using STH.

D. Zhang (Birkbeck)

Extensions to STH

In the first stage of STH, we make use of the class label information in the construction of k-nearest-neighbour graph for LapEig: a training document \mathbf{x} 's k-nearest-neighbourhood $N_k(\mathbf{x})$ would only contain k documents in the same class as \mathbf{x} that are most similar to \mathbf{x} .

Let **STHs** denote such a supervised version of STH to distinguish it from the standard unsupervised version of STH.

Why not use SVMs directly?

kNN still has its advantages over SVMs in some aspects.

- For example, if there are 1000 classes,
 - the multi-class SVM approach may need 1000 binary SVM classifiers using the one-vs-rest ensemble scheme
 - the kNN (on top of STH) approach using 16-bit binary codes would only require 16 binary SVM classifiers

Extension II: Supervision

Text Datasets

- Reuters21578
 - Top 10 categories
 - 7285 documents
 - ModeApt split: 5228 (75%) training, 2057 (28%) testing
- 20Newsgroups
 - All 20 categories
 - 18846 documents
 - 'bydate' split: 11314 (60%) training, 7532 (40%) testing
- TDT2 (NIST Topic Detection and Tracking)
 - Top 30 categories
 - 9394 documents
 - random split (x10): 5597 (60%) training, 3797 (40%) testing

Extension II: Supervision

Figure: The precision-recall curve for retrieving same-topic documents.

Extension II: Supervision

Figure: The accuracy of approximate kNN classification (via hashing).

Outline

Problem

- 2 Related Work
- 3 Review of STH
- Extensions to STH

- Major Contribution: Self-Taught Hashing
 - Unsupervised Learning + Supervised Learning
 - Spectral Method + Kernel Method
- Extensions (in the FGSIR Workshop on 23 Jul 2010)
 - Kernelisation
 - Supervision
- Future Work
 - Implementation using MapReduce
 - Applications in Multimedia IR

Thanks! 8-)