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Problem

Similarity Search (aka Nearest Neighbour Search)
— Given a query document, find its most similar documents from a large document collection

Information Retrieval tasks

near-duplicate detection, plagiarism analysis, collaborative
filtering, caching, content-based multimedia retrieval, etc.

k-Nearest-Neighbours (kNN) algorithm

text categorisation, scene completion/recognition, etc.

“The unreasonable effectiveness of data”
If a map could include every possible detail of the land, how big would it be?
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Problem

A promising way to accelerate similarity search is
Semantic Hashing

Design compact binary codes for a large number of documents
so that semantically similar documents are mapped to similar
codes (within a short Hamming distance)

Each bit can be regarded as a binary feature
Generating a few most informative binary features to represent
the documents

Then similarity search can done extremely fast by just checking
a few nearby codes (memory addresses)

For example, 0000 =⇒ 0000, 1000, 0100, 0010, 0001.
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Related Work

Fast (Exact) Similarity Search in a Low-Dimensional Space

Space-Partitioning Index

KD-tree, etc.

Data Partitioning Index

R-tree, etc.
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Related Work

Figure: An example of KD-tree (by Andrew Moore).
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Related Work

Fast (Approximate) Similarity Search in a High-Dimensional Space

Data-Oblivious Hashing

Locality-Sensitive Hashing (LSH)

Data-Aware Hashing

binarised Latent Semantic Indexing (LSI),
Laplacian Co-Hashing (LCH)
stacked Restricted Boltzmann Machine (RBM)
boosting based Similarity Sensitive Coding (SSC)
and Forgiving Hashing (FgH)
Spectral Hashing (SpH) — the state of the art

Restrictive assumption: the data are uniformly distributed in a
hyper-rectangle
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Related Work

Table: Typical techniques for accelerating similarity search.

low-dimensional space exact similarity search data-aware KD-tree, R-tree
data-oblivious LSH

LSI, LCH,
high-dimensional space approximate similarity search data-aware RBM, SSC, FgH,

SpH, STH
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Review of STH

Input:

X = {xi}ni=1 ⊂ Rm

Output:

f (x) ∈ {−1,+1}l : hash function

−1 = bit off; +1 = bit on
l � m
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Review of STH

Figure: The proposed STH approach to semantic hashing.
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Review of STH

Stage 1: Learning of Binary Codes

Let yi ∈ {−1,+1}l represent the binary code for document
vector xi

−1 = bit off; +1 = bit on.

Let Y = [y1, . . . , yn]T
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Review of STH

Criterion 1a: Similarity Preserving

We focus on the local structure of data

Nk(x): the set of k-nearest-neighbours of document x

The local similarity matrix W

i.e., the adjacency matrix of the k-nearest-neighbours graph
symmetric and sparse

Wij =

{ (
xTi
‖xi‖

)
·
(

xj
‖xj‖

)
if xi ∈ Nk(xj) or xj ∈ Nk(xi)

0 otherwise

Wij =

{
exp
(
−‖xi−xj‖

2

2σ2

)
if xi ∈ Nk(xj) or xj ∈ Nk(xi)

0 otherwise
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Review of STH

Figure: The local structure of data in a high-dimensional space.
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Review of STH

Figure: Manifold analysis: exploiting the local structure of data.
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Review of STH

Criterion 1a: Similarity Preserving

The Hamming distance between two codes yi and yj is

‖yi − yj‖2

4

We minimise the weighted total Hamming distance, as it incurs
a heavy penalty if two similar documents are mapped far apart

n∑
i=1

n∑
j=1

Wij
‖yi − yj‖2

4

The squared error of distance would lead to a non-convex optimisation problem
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Review of STH

Spectral Methods for Manifold Analysis
— Minimising Cut-Size

For single-bit codes f = (y1, . . . , yn)T :

S =
n∑

i=1

n∑
j=1

Wij
(yi − yj)

2

4
=

1

4
fTLf

Laplacian matrix L = D−W

D = diag(k1, . . . , kn) where ki =
∑

j Wij
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Review of STH

Spectral Methods for Manifold Analysis
— Minimising Cut-Size

Figure: Spectral graph partitioning through Normalised Cut.
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Review of STH

Spectral Methods for Manifold Analysis
— Minimising Cut-Size

Real relaxation

Requiring yi ∈ {−1,+1} makes the problem NP hard
Substitute ỹi ∈ R for yi

L is positive semi-definite

eigenvalues: 0 = λ1 = . . . = λz < λz+1 ≤ . . . ≤ λn
eigenvectors: u1, . . . ,uz ,uz+1, . . . ,un

Optimal non-trivial division: f = uz+1

The number of edges across clusters is small
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Review of STH

Spectral Methods for Manifold Analysis
— Minimising Cut-Size

For l-bit codes Y = [y1, . . . , yn]T :

S =
n∑

i=1

n∑
j=1

Wij
‖yi − yj‖2

4
=

1

4
Tr(YTLY)

Let Ỹ be the real relaxation of Y
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Review of STH

Spectral Methods for Manifold Analysis
— Minimising Cut-Size

Laplacian Eigenmap (LapEig)

arg min
Ỹ

Tr(ỸTLỸ)

subject to ỸTDỸ = I

ỸTD1 = 0

Generalised Eigenvalue Problem

Lv = λDv (1)

Ỹ = [v1, . . . , vl ]
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Review of STH

Criterion 1b: Entropy Maximising

Best utilisation of the hash table
= Maximum entropy of the codes
= Uniform distribution of the codes (each code has equal probability)

The p-th bit is on for half of the corpus and off for the other half

y
(p)
i =

{
+1 ỹ

(p)
i ≥ median(vp)

−1 otherwise

The bits at different positions are almost mutually uncorrelated,
as the eigenvectors given by LapEig are orthogonal to each other
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Review of STH

Stage 2: Learning of Hash Function

How to get the codes for new documents previously unseen?
— Out-of-Sample Extension

High computational complexity

Nystrom method
Linear approximation (e.g., LPI)

Restrictive assumption about data distribution

Eigenfunction approximation (e.g., SpH)
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Review of STH

Stage 2: Learning of Hash Function

We reduce it to a supervised learning problem

Think of each bit y
(p)
i ∈ {+1,−1} in the binary code for

document xi as a binary class label (class-“on” or class-“off”)
for that document
Train a binary classifier y (p) = f (p)(x) on the given corpus that
has already been “labelled” by the 1st stage
Then we can use the learned binary classifiers f (1), . . . , f (l) to
predict the l-bit binary code y (1), . . . , y (l) for any query
document x
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Review of STH

Kernel Methods for Pseudo-Supervised Learning
— Support Vector Machine (SVM)
y (p) = f (p)(x) = sgn(wTx)

arg min
w,ξi≥0

1

2
wTw +

C

n

n∑
i=1

ξi (2)

subject to ∀ni=1 : y
(p)
i wTxi ≥ 1− ξi

large-margin classification −→ good generalisation

linear/non-linear kernels −→ linear/non-linear mapping

convex optimisation −→ global optimum
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Review of STH

Self-Taught Hashing (STH): The Learning Process
1 Unsupervised Learning of Binary Codes

Construct the k-nearest-neighbours graph for the given corpus
Embed the documents in an l-dimensional space through
LapEig (1) to get an l-dimensional real-valued vector for each
document
Obtain an l-bit binary code for each document via thresholding
the above vectors at their median point, and then take each bit
as a binary class label for that document

2 Supervised Learning of Hash Function

Train l SVM classifiers (2) based on the given corpus that has
been “labelled” as above
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Review of STH

Self-Taught Hashing (STH): The Prediction Process

1 Classify the query document using those l learned classifiers

2 Assemble the output l binary labels into an l-bit binary code
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Extension I: Kernelisation

In the second stage of STH, we rewrite the SVM quadratic
optimisation problem (2) into its dual form

arg min
α

n∑
i=1

αi −
1

2

n∑
i ,j=1

y
(p)
i y

(p)
j αiαjx

T
i xj (3)

subject to 0 ≤ αi ≤ C , i = 1, . . . , n
n∑

i=1

αiy
(p)
i = 0

and replace the inner product between xi and xj by a nonlinear kernel
such as the Gaussian kernel:

K (x, x′) = exp

(
−‖x− x′‖2

2σ2

)
(4)
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Extension I: Kernelisation

Then the p-th bit (i.e., binary feature) of the binary code for a query
document x would be given by

f (p)(x) = sgn

(
n∑

i=1

αiy
(p)
i K (x, xi)

)
(5)

which is a nonlinear mapping.
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Extension I: Kernelisation

For example, using 16-bit binary codes,

linear hashing: 2l = 2× 16 = 32 sectors
nonlinear hashing: 2l = 216 = 65536 pieces

D. Zhang (Birkbeck) Extensions to STH FGSIR 2010 34 / 46



Extension I: Kernelisation

Figure: The 16-bit hash function for the pie dataset using SpH.

D. Zhang (Birkbeck) Extensions to STH FGSIR 2010 35 / 46



Extension I: Kernelisation

Figure: The 16-bit hash function for thepie dataset using STH.
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Extension I: Kernelisation

Figure: The 16-bit hash function for the two-moon dataset using SpH.
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Extension I: Kernelisation

Figure: The 16-bit hash function for the two-moon dataset using STH.
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Extension II: Supervision

In the first stage of STH, we make use of the class label information
in the construction of k-nearest-neighbour graph for LapEig: a
training document x’s k-nearest-neighbourhood Nk(x) would only
contain k documents in the same class as x that are most similar to x.

Let STHs denote such a supervised version of STH to distinguish it
from the standard unsupervised version of STH.
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Extension II: Supervision

Why not use SVMs directly?

kNN still has its advantages over SVMs in some aspects.

For example, if there are 1000 classes,

the multi-class SVM approach may need 1000 binary SVM
classifiers using the one-vs-rest ensemble scheme
the kNN (on top of STH) approach using 16-bit binary codes
would only require 16 binary SVM classifiers
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Extension II: Supervision

Text Datasets

Reuters21578

Top 10 categories
7285 documents
ModeApt split: 5228 (75%) training, 2057 (28%) testing

20Newsgroups

All 20 categories
18846 documents
‘bydate’ split: 11314 (60%) training, 7532 (40%) testing

TDT2 (NIST Topic Detection and Tracking)

Top 30 categories
9394 documents
random split (x10): 5597 (60%) training, 3797 (40%) testing
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Extension II: Supervision
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Figure: The precision-recall curve for retrieving same-topic documents.
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Extension II: Supervision
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Figure: The accuracy of approximate kNN classification (via hashing).
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Conclusion

Major Contribution: Self-Taught Hashing

Unsupervised Learning + Supervised Learning
Spectral Method + Kernel Method

Extensions (in the FGSIR Workshop on 23 Jul 2010)

Kernelisation
Supervision

Future Work

Implementation using MapReduce
Applications in Multimedia IR
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Question Time

Thanks!

8-)
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