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Abstract—In multi-class text classification, the performance
(effectiveness) of a classifier is usually measured by micro-
averaged and macro-averaged F1 scores. However, the scores
themselves do not tell us how reliable they are in terms
of forecasting the classifier’s future performance on unseen
data. In this paper, we propose a novel approach to explic-
itly modelling the uncertainty of average F1 scores through
Bayesian reasoning, and demonstrate that it can provide
much more comprehensive performance comparison between
text classifiers than the traditional frequentist null hypothesis
significance testing (NHST).
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I. INTRODUCTION

Automatic text classification [1] is a fundamental tech-
nique in information retrieval (IR) [2]. It has many important
applications, including topic categorisation, spam filtering,
sentiment analysis, message routing, language identification,
genre detection, authorship attribution, and so on. In fact,
most modern IR systems for search, recommendation, or
advertising contain multiple components that use some form
of text classification.

The most widely used performance measure for text clas-
sification is the F1 score [3] which is defined as the harmonic
mean of precision and recall. It is known to be more
informative and more useful than classification accuracy etc.
due to the prevalent phenomenon of class imbalance in text
classification. When multiple classes exist in the document
collection (such as Reuters-21578 with its 118 classes),
we often want to compute a single aggregate measure that
combines the F1 scores for individual classes. There are two
methods to do this: micro-averaging and macro-averaging
[2]. The former pools per-document decisions across classes,
and then computes the overall F1 score on the pooled
contingency table. The latter just computes a simple average
of the F1 scores over classes. The differences between these
two averaging methods can be large: micro-averaging gives
equal weight to each per-document classification decision
and therefore is dominated by large classes, whereas macro-
averaging gives equal weight to each class. It is nowadays
a common practice for IR researchers to evaluate a multi-

class text classifier using both the micro-averaged F1 score
(denoted as miF1) and the macro-averaged F1 score (de-
noted as maF1), since their introduction by Yang and Liu’s
seminal SIGIR-1999 paper [4].

However, the average F1 scores themselves only reflect a
text classifier’s performance on the given test data. How can
we be sure that it will work well on unseen data? Given any
finite amount of test results, we can never be guaranteed that
one classifier’s performance will definitely achieve a certain
acceptable level (say 0.80) in practice. For example, suppose
that a classifier got miF1 0.81 on 100 test documents. Due
to the small number of test documents, we probably do
not have much confidence in pronouncing that its future
performance will definitely be above 0.80. If instead the
classifier got miF1 0.81 on 100,000 test documents, we can
be more confident than in the previous case. Nevertheless,
there will always be some degree of uncertainty. The central
question here is how to assess the uncertainty of a classifier’s
performance as measured by miF1 and maF1. Perhaps the
simplest solution is to apply k-fold cross-validation [5] and
then calculate the sample variance of average F1 scores
over multiple “folds” of the dataset. This method tends
to yield poor estimations though: the sample variance can
approximate the true variance well only if we have a large
number of folds, but when the dataset is divided into many
folds, the size of each fold is likely to be too small to give a
meaningful average F1 score. Hence it is desirable to derive
the uncertainty of average F1 scores directly from all the
atomic document-category classification results.

In this paper, we build up on our previous preliminary
work [6] to address this problem through Bayesian hierar-
chical modelling [7], [8], and demonstrate that our proposed
Bayesian approach can provide much more comprehensive
performance comparison between text classifiers than the
traditional frequentist null hypothesis significance testing
(NHST).

The rest of this paper is organised as follows. In Sec-
tion II, we review the existing approaches to the problem
of classifier performance comparison. In Section III, we
present our Bayesian estimation based approach in detail. In
Section IV, we show how the proposed approach can be used



to compare some well-known text classification algorithms.
In Section V, we discuss several natural extensions to the
proposed approach. In Section VI, we draw conclusions.

II. RELATED WORK

A. Frequentist Performance Comparison

The traditional frequentist approach to comparing clas-
sifiers is to use NHST [5]. The usual process of NHST
consists of four steps: (1) formulate the null hypothesis H0

that the observations are the result of pure chance and the
alternative hypothesis H1 that the observations show a real
effect combined with a component of chance variation; (2)
identify a test statistic that can be used to assess the truth of
H0; (3) compute the p-value, which is the probability that a
test statistic equal to or more extreme than the one observed
would be obtained under the assumption of hypothesis H0;
(4) if the p-value is less than an acceptable significance level,
the observed effect is statistically significant, i.e., H0 is ruled
out and H1 is valid.

Specifically for performance comparison of text classi-
fiers, the usage of NHST has been presented in detail by
Yang and Liu in their SIGIR-1999 paper [4]. In summary,
on the document level (micro level), sign-test can be used
to compare two classifiers’ accuracy scores (called s-test),
while unpaired t-test can be used to compare two classifiers’
performance measures in the form of proportions, e.g.,
precision, recall, error, and accuracy (called p-test); on the
category level (macro level), sign-test and paired-t test can
both be used to compare two classifiers’ F1 scores (which
are called S-test and T-test respectively).

In spite of being useful and influential, such a frequentist
approach unfortunately has many inherent deficiencies and
limitations [8], [9]. To name a few: (i) NHST is only able
to tell us whether the experimental data are sufficient to
reject the null hypothesis (that the performance difference
is zero) or not, but there is no way to accept the null
hypothesis, i.e., it is impossible for us to confidently claim
that two classifiers perform equally well; (ii) NHST will
reject the null hypothesis as long as the experimental data
suggest that the performance difference is non-zero, even
if the performance difference is too slight to have any real
effect in practice; (iii) complex performance measures such
as the F1 score can only be compared on the category level
but not on the document level, which seriously restricts the
statistical power of NHST as the number of categories is
usually much much smaller than the number of documents.

The other NHST methods that have been applied to
compare classifiers include ANOVA test [10], Friedman
test [11], McNemar’s test [12], and Wilcoxon signed-rank
test [13]. Due to their frequentist nature, no matter which
specific test they use, more or less they suffer from the above
mentioned perils.

B. Bayesian Performance Comparison

1) Bayes Factor: Model comparison using Bayes factor
has been applied to the problem of classifier performance
comparison [14], [15]. In our context, the Bayes factor
is the marginal likelihood of classification results data for
the null model Pr[D|M0] (where two classifiers perform
equally well) relative to the marginal likelihood of clas-
sification results data for the alternative model Pr[D|M1]
(where one classifier works better than the other classifier):
BF = Pr[D|M0]/Pr[D|M1].

As the BF becomes larger, the evidence increases in
favour of model M0 over model M1. The rule of thumb
for interpreting the magnitude of the BF is that there is
“substantial” evidence for the null model M0 when the
BF exceeds 3, and similarly, “substantial” evidence for the
alternative model M1 when the BF is less than 1

3 .
Although for simple models the value of Bayes factor

can be derived analytically as shown by [14]–[17], for
complex models it can only be computed numerically using
for example the Savage-Dickey (SD) method [18]–[20]. The
SD method assumes that the prior on the variance in the null
model equals the prior on the variance in the alternative
model at the null value: Pr[σ2|M0] = Pr[σ2|M1, δ = 0].
From this it follows that the likelihood of the data in the null
model equals the likelihood of the data in the alternative
model at the null value: Pr[D|M0] = Pr[D|M1, δ = 0].
Thus, the Bayes factor can be determined by consider-
ing the posterior and prior of the alternative hypothesis
alone, because the Bayes factor is just the ratio of the
probability density at δ = 0 in the posterior relative to
the probability density at δ = 0 in the prior: BF =
Pr[δ = 0|M1,D]/Pr[δ = 0|M1]. The posterior density
Pr[δ = 0|M1,D] and the prior density Pr[δ = 0|M1] can
both be approximated by fitting a smooth function to the
Markov Chain Monte Carlo (MCMC) [7], [8] samples via
kernel density estimation (KDE) etc.

This approach largely avoids the above mentioned perils
of NHST, except for the third one on complex performance
measures. However, it is known that the value of Bayes
factor can be very sensitive to the choice of prior distribution
in the alternative model [9]. Another problem with Bayes
factor is that the null hypothesis can be strongly preferred
even with very few data and very large uncertainty in the
estimate of the performance difference [9]. Furthermore,
generally speaking, a single Bayes factor is much less
informative than the entire posterior probability distribution
of the performance difference provided by our Bayesian
estimation based approach.

2) Bayesian Estimation: It has been loudly advocated
in recent years that the Bayesian estimation approach to
comparing two groups of data has many advantages over
using NHST or Bayes factor [8], [9]. However, to our
knowledge, almost all the existing models of Bayesian
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Figure 1: A schematic diagram of confusion matrix.

estimation deal with continuous values (that can be described
by Gaussian or t distributions) but not discrete classification
outcomes, and they produce estimations for simple statistics
(such as the average difference between the two given
groups) but not complex performance measures (such as
the F1 score). Probably the most closely related work is
that of Goutte and Gaussier [21] (which has been brought
to our attention by the reviewers). Their F1 score model
constructed using a couple of Gamma variates is not as
expressive and flexible as ours. It is restricted to a single
F1 score for binary classification with two classes only. In
contrast, our proposed approach opens up many possibilities
for adaptation or extension.

III. OUR APPROACH

A. Probabilistic Models

Let us consider a multi-class classifier which has been
tested on a collection of N labelled test documents, D.
Here we focus on the setting of multi-class single-label
(aka “one-of”) classification where one document belongs
to one and only one class [1], [2]. For each document xi
(i = 1, . . . , N), we have its true class label yi as well as
its predicted class label ŷi. Given that there are M different
classes, the classification results could be fully summarised
into an M ×M confusion matrix C where the element cjk
at the j-th row and the k-th column represents the number
of documents with true class label j but predicted class label
k, as shown in Fig. 1.

The performance measures miF1 and maF1 can be cal-
culated straightforwardly based on such a confusion matrix.
However, as we have explained earlier, we are not satisfied
with knowing only a single score value of the performance
measure, but instead would like to treat the performance
measure (either miF1 or maF1) as a random variable ψ
and estimate its uncertainty by examining its posterior
probability distribution.

The test documents can usually be considered as “inde-
pendent trials”, i.e., their true class labels yi are independent
and identically distributed (i.i.d.). For each test document,
we use µ = (µ1, . . . , µM ) to represent the probabilities
that it truly belongs to each class: µj = Pr[yi = j]

(j = 1, . . . ,M),
∑M
j=1 µj = 1. This means that the

class sizes n = (n1, . . . , nM ) would follow a Multinomial
distribution with parameter N and µ: n ∼ Mult(N,µ), i.e.,

Pr[n|N,µ] =
N !

n1! . . . nM !

M∏
j=1

µ
nj

j

=
Γ
((∑M

j=1 nj

)
+ 1
)

∏M
j=1 Γ(nj + 1)

M∏
j=1

µ
nj

j . (1)

It would then be convenient to use the Dirichlet distribution
(which is conjugate to the Multinomial distribution) as the
prior distribution of parameter µ. More specifically, µ ∼
Dir(β), i.e.,

Pr[µ] =
Γ
(∑M

j=1 βj

)
∏M
j=1 Γ(βj)

M∏
j=1

µ
βj−1
j , (2)

where the hyper-parameter β = (β1, . . . , βM ) encodes
our prior belief about each class’s proportion in the test
document collection. If we do not have any prior knowledge,
we can simply set β = (1, . . . , 1) that yields a uniform
distribution, as we did in our experiments.

Furthermore, let cj = (cj1, . . . , cjM ) denote the j-th row
of the confusion matrix. In other words, cj shows how those
documents belonging to class j are classified. For each test
document from that class j, we use θj = (θj1, . . . , θjM ) to
represent the probabilities that it is classified into different
classes: θjk = Pr[ŷi = k|yi = j] (k = 1, . . . ,M),∑M
k=1 θjk = 1. This means that for each class j, the corre-

sponding vector cj would follow a Multinomial distribution
with parameter nj and θj : cj ∼ Mult(nj ,θj), i.e.,

Pr[cj |nj ,θj ] =
nj !

cj1! . . . cjM !

M∏
k=1

θ
cjk
jk

=
Γ
((∑M

k=1 cjk

)
+ 1
)

∏M
k=1 Γ(cjk + 1)

M∏
k=1

θ
cjk
jk . (3)

It would then be convenient to use the Dirichlet distribution
(which is conjugate to the Multinomial distribution) as the
prior distribution of parameter θj . More specifically, θj ∼
Dir(ωj), i.e.,

Pr[θj ] =
Γ
(∑M

k=1 ωjk

)
∏M
k=1 Γ(ωjk)

M∏
k=1

θ
ωjk−1
jk , (4)

where the hyper-parameter ωj = (ωj1, . . . , ωjM ) encodes
our prior belief about a classifier’s prediction accuracy for
class j.

Moreover, we introduce a higher-level overarching hyper-
parameter η to capture the overall tendency of making
correct predictions. In other words, we assume that ωjj ,
the prior probability of correctly assigning a document of
class j to its true class j, would be governed by the same



hyper-parameter η for all the classes. Thus for class j, we
set ωjk = η if j = k and ωjk = (1− η)/(M − 1) if j 6= k.
The hyper-parameter η itself can be considered as a random
variable that ranges between 0 and 1, so it is assumed to
follow a Beta distribution. More specifically, η ∼ Beta(α),
i.e.,

Pr[η] =
Γ(α1, α2)

Γ(α1)Γ(α2)
µα1−1(1− µ)α2−1 , (5)

where the hyper-parameter α = (α1, α2) encodes our prior
belief about the average classification accuracy of the given
classifier. If we do not have such knowledge, we can simply
set α = (1, 1) that yields a uniform distribution, as we did
in our experiments. Such a Bayesian hierarchical model [7],
[8] is more powerful as it allows us to “share statistical
strength” across different classes.

Once the parameters µ and θj (j = 1, . . . ,M) have
been estimated, it will be easy to calculate, for each class,
the contingency table of “expected” prediction results: true
positive (tp), false positive (fp), true negative (tn), and false
negative (fn). For example, the anticipated number of true
positive predictions, for class j, should be the number of
test documents belonging to that class Nµj times the rate
of being predicted by the classifier into that class as well
θjj . The equations to calculate the contingency table for
each class j are listed as follows.

tpj=Nµjθjj fpj=
∑
u6=j

Nµuθuj

fnj=
∑
v 6=j

Nµjθjv tnj=
∑
u6=j

∑
v 6=j

Nµuθuv

In micro-averaging, we pool the per-document predictions
across classes, and then use the pooled contingency table
to compute the micro-averaged precision P , micro-averaged
recall R, and finally their harmonic mean miF1 as follows.

P =

∑M
j=1 tpj∑M

j=1(tpj + fpj)
=

M∑
j=1

µjθjj (6)

R =

∑M
j=1 tpj∑M

j=1(tpj + fnj)
=

M∑
j=1

µjθjj (7)

miF1 =
2PR

P +R
=

M∑
j=1

µjθjj (8)

It is a well-known fact that in multi-class single-label (aka
“one-of”) classification, miF1 = P = R which is actually
identical to the overall accuracy of classification [2].

In macro-averaging, we use the contingency table of each
individual class j to compute that particular class’s precision
Pj as well as recall Rj , and finally compute a simple average

M

ψ

cj θj
N

µ

ωj

β

η

α

n

Figure 2: The probabilistic graphical model for estimating
the uncertainty of average F1 scores.

of the F1 scores over classes to get maF1 as follows.

Pj =
tpj

tpj + fpj
=

µjθjj∑M
u=1 µuθuj

(9)

Rj =
tpj

tpj + fnj
= θjj (10)

maF1 =

 M∑
j=1

2PjRj
Pj +Rj

 /M (11)

In the above calculation of miF1 and maF1, N has been
cancelled out so it does not appear in the final formulae.
Therefore the deterministic variable ψ for the performance
measure of interest (either miF1 or maF1) is a function that
depends on µ and θ1, . . . ,θM only:

ψ = f(µ,θ1, . . . ,θM ) . (12)

The above model describes the generative mechanism of
a multi-class classifier’s test results (i.e., confusion matrix).
It is summarised as follows, and also depicted in Fig. 2 as
a probabilistic graphical model (PGM) [22] using common
notations.

µ ∼ Dir(β)

n ∼ Mult(N,µ)

η ∼ Beta(α)

ωjk =

{
η if k = j

(1− η)/(M − 1) if k 6= j for k = 1, . . . ,M

for j = 1, . . . ,M

θj ∼ Dir(ωj) for j = 1, . . . ,M

cj ∼ Mult(nj ,θj) for j = 1, . . . ,M

ψ = f(µ,θ1, . . . ,θM )

In order to make a comparison of average F1 scores
between two classifiers A and B, we just need to build an
model as described above for each classifier’s miF1 or maF1,
and then introduce yet another deterministic variable δ to
represent their difference:

δ = ψA − ψB . (13)

The posterior probability distribution of δ provides com-
prehensive information on all aspects of the performance
difference between A and B.



When applying our models to performance comparison,
we first need to define a Region of Practical Equivalence
(ROPE) [8], [9] for the performance difference δ around
its null value 0, e.g., [−0.05,+0.05], which encloses those
values of δ deemed to be negligibly different from its null
value for practical purposes. The size of the ROPE should be
determined based on the specifics of the application domain.

B. Decision Rules

Given the posterior probability distribution of δ, we
can then reach a discrete judgement about how those two
classifiers A and B compare with each other by examining
the relationship between the 95% Highest Density Interval
(HDI) of δ and the user-defined ROPE of δ [8], [9]. The
95% HDI is a useful summary of where the bulk of the
most credible values of δ falls: by definition, every value
inside the HDI has higher probability density than any value
outside the HDI, and the total mass of points inside the 95%
HDI is 95% of the distribution.

The decision rules are as follows:

• if the HDI sits fully within the ROPE, A is practically
equivalent (≈) to B;

• if the HDI sits fully at the left or right side of the
ROPE, A is significantly worse (�) or better (�) than
B respectively;

• if the HDI sits mainly though not fully at the left or
right side of the ROPE, A is slightly worse (<) or
better (>) than B respectively, but more experimental
data would be needed to make a reliable judgement.

C. Software Implementation

The purpose of building these models for classification
results is to assess the Bayesian posterior probability of δ —
the performance difference between two classifiers A and B.
An approximate estimation of δ can be obtained by sampling
from its posterior probability distribution via Markov Chain
Monte Carlo (MCMC) [7], [8] techniques.

We have implemented our models with an MCMC method
Metropolis-Hastings sampling [7], [8]. The default con-
figuration is to generate 50,000 samples, with no “burn-
in”, “lag”, or “multiple-chains”. It has been argued in the
MCMC literature that those tricks are often unnecessary; it
is perfectly correct to do a single long sampling run and
keep all samples [22]–[24].

The program is written in Python utilising the module
PyMC31 [25] for MCMC based Bayesian model fitting. The
source code will be made open to the research community
on the first author’s homepage2. It is free, easy to use, and
extensible to more sophisticated models (see Section V).

1http://pymc-devs.github.io/pymc3/
2http://www.dcs.bbk.ac.uk/∼dell/

Table I: The filtered & vectorised 20newsgroups dataset.

category name #train #test

0 alt.atheism 480 319
1 comp.graphics 584 389
2 comp.os.ms-windows.misc 591 394
3 comp.sys.ibm.pc.hardware 590 392
4 comp.sys.mac.hardware 578 385
5 comp.windows.x 593 395
6 misc.forsale 585 390
7 rec.autos 594 396
8 rec.motorcycles 598 398
9 rec.sport.baseball 597 397
10 rec.sport.hockey 600 399
11 sci.crypt 595 396
12 sci.electronics 591 393
13 sci.med 594 396
14 sci.space 593 394
15 soc.religion.christian 599 398
16 talk.politics.guns 546 364
17 talk.politics.mideast 564 376
18 talk.politics.misc 465 310
19 talk.religion.misc 377 251

IV. EXPERIMENTS

A. Dataset

We have conducted our experiments on a standard bench-
mark dataset for text classification, 20newsgroups3. In
order to ensure the reproducibility of our experimental
results, we choose to use not the raw document collection,
but a publicly-available ready-made “vectorised” version4. It
has been split into training (60%) and testing (40%) subsets
by date rather than randomly. Following the recommenda-
tion of the provider, this dataset has also been “filtered”
by striping newsgroup-related metadata (including headers,
footers, and quotes). Therefore our reported F1 scores will
look substantially lower than those in the related literature,
but such an experimental setting is much more realistic and
meaningful. Table I shows the number of training documents
and the number of testing documents for each category in
this dataset.

B. Classifiers

In the experiments, we have applied our proposed ap-
proach to carefully analyse the performances of two well-
known supervised machine learning algorithms that are
widely used for real-world text classification tasks: Naive
Bayes (NB) and linear Support Vector Machine (SVM) [2].
For the former, we consider its two common variations: one
with the Bernoulli event model (NBBern) and the other
with the Multinomial event model (NBMult) [26], [27].
For the latter, we consider its two common variations: one
with the L1 penalty (SVML1) and the other with the L2
penalty (SVML2) [28], [29]. Thus we have four different
classifiers in total. Obviously, the classification results of

3http://qwone.com/∼jason/20Newsgroups/
4http://scikit-learn.org/stable/datasets/twenty newsgroups.html



Table II: The F1 scores of the classifiers being compared.

category NBBern NBMult SVML1 SVML2

0 0.398 0.480 0.453 0.480
1 0.551 0.666 0.626 0.638
2 0.170 0.577 0.599 0.605
3 0.545 0.641 0.591 0.611
4 0.431 0.682 0.654 0.676
5 0.666 0.768 0.709 0.717
6 0.645 0.781 0.716 0.768
7 0.634 0.725 0.561 0.695
8 0.596 0.741 0.720 0.735
9 0.770 0.850 0.760 0.634
10 0.840 0.731 0.834 0.846
11 0.632 0.725 0.737 0.742
12 0.533 0.631 0.523 0.557
13 0.681 0.796 0.716 0.736
14 0.647 0.756 0.694 0.706
15 0.655 0.682 0.656 0.691
16 0.535 0.641 0.569 0.600
17 0.694 0.797 0.759 0.743
18 0.398 0.487 0.457 0.472
19 0.207 0.248 0.319 0.311

miF1 0.581 0.689 0.641 0.660
maF1 0.561 0.670 0.633 0.648

NBBern and NBMult would be highly correlated, and those
of SVML1 and SVML2 as well. Among them, SVML2 is
widely regarded as the state-of-the-art text classifier [1],
[4], [30]. It is also worth to notice that the NB algorithms
will be applied not to the raw bag-of-words text datasets as
people usually do, but on the vectorised 20newsgroups
dataset which has already been transformed by TF-IDF term
weighting and document length normalisation.

We have used the off-the-shelf implementation of these
classification algorithms provided by a Python machine
learning library scikit-learn5 in our experiments, again
for the reproducibility reasons. The smoothing parameter
α for the NB algorithm and the regularisation parameter
C for the linear SVM algorithm have been tuned via grid
search with 5-fold cross-validation on the training data for
the macro-averaged F1 score. The optimal parameters found
are: NBBern with α = 10−14, NBMult with α = 10−3,
SVML1 with C = 22, SVML2 with C = 21.

C. Results

The F1 scores of these four classifiers in comparison, for
each target category as well as the micro-average (miF1)
and the macro-average (maF1), are shown in Table II. Please
be reminded that the 20newsgroups dataset used in our
experiments is more challenging than most of its versions
appeared in literature.

The confusion matrices of the classifiers provide all the
data that our model needs to make comparison of average F1

scores. They are shown in Fig. 3 to ensure the reproducibility
of our experimental results.

5http://scikit-learn.org/stable/

Table III: Frequentist comparison of the average F1 scores.

sign-test t-test

NBBern vs NBMult
miF1 0.000 0.000
maF1 0.000 0.000

SVML1 vs SVML2
miF1 0.000 0.013
maF1 0.003 0.145

NBMult vs SVML2
miF1 0.000 0.000
maF1 0.115 0.138

Table III shows the results of frequentist comparison of
the average F1 scores. The column “sign-test” contains the
two-sided p-values of using sign-test on the micro level
(called s-test in [4]) and also the macro level (called S-test
in [4]). The column “t-test” contains the two-sided p-values
of using unpaired t-test on the micro level (called p-test in
[4]) and using paired t-test on the macro level (called T-test
in [4]). The above tests on the macro level are based on the
classes’ F1 scores, but those on the micro level are actually
based on the accuracy of document-class assignments which
happens to be equivalent to miF1 in multi-class single-label
(aka “one-of”) classification [2]. However, those tests will
not longer be feasible on the micro level if we extend to
multi-class multi-label (aka “any-of”) classification.

Table IV shows the results of Bayesian comparison
of the average F1 scores, where the ROPE is set to
[−0.005,+0.005]. It can be clearly seen that our proposed
Bayesian approach offers a lot richer information about
the difference between two classifiers’ average F1 scores
than the frequentist approach does. In addition to the final
judgement (“derision”) of comparison, we have shown the
posterior “mean”, standard deviation (“std”), Monte Carlo
error (“MC error”), the Bayes factor estimated by the SD
method (“BFSD”), the percentage lower or greater than the
null value 0 (“LG pct”), the percentage covered by the
ROPE (“ROPE pct”), and the 95% “HDI”. By contrast, the
frequentist NHST based approach would lead to a far less
complete picture as it has only the p-values (and maybe
also the confidence intervals) to offer. Furthermore, note
that the judgements made by the Bayesian estimation on
several cases are different from those made by the frequentist
NHST (e.g., at the significance level 5%). So even if in some
researchers’ opinion the superiority of the former over the
latter is still debatable, there is no doubt that the former can
at least be complementary to the latter.

The Bayesian comparisons of maF1 for three pairs of
text classifiers (NBBern vs NBMult, SVML1 vs SVML2,
and NBMult vs SVML2) are visualised in Fig. 4, 5, and
6 respectively. In each figure, the “trace plot” sub-graph
shows the corresponding MCMC trace which proves the
convergence of sampling; the “posterior plot” sub-graph
shows the posterior probability distribution of the perfor-
mance difference variable; and the “factor plot” sub-graph
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Figure 3: The confusion matrices of the classifiers to be compared in our experiments.

shows the estimation of the Bayes factor by the SD method
(see Section II-B1). The figures for miF1 look very similar
to those for maF1, so they are omitted due to the space limit.

The results of our Bayesian comparison between NBBern
and NBMult indicate that NBBern is significantly outper-
formed by NBMult in terms of both miF1 and maF1. This
confirms the finding of [26] on this harder dataset.

The results of our Bayesian comparison between SVML1

and SVML2 indicate that SVML1 is only slightly outper-
formed by SVML2 in terms of both miF1 and maF1 though
the former may have its advantages in terms of sparsity. This
is complementary to the findings reported in [28].

The results of our Bayesian comparison between NBMult

and SVML2 — the better performing classifiers from the NB



Table IV: Bayesian comparison of the average F1 scores.

mean std MC error BFSD LG pct ROPE pct HDI decision

NBBern vs NBMult
miF1 −0.107 0.008 0.000 0.000 100.0%<0<0.0% 0.0% [−0.122,−0.092] �
maF1 −0.109 0.008 0.000 0.000 100.0%<0<0.0% 0.0% [−0.123,−0.094] �

SVML1 vs SVML2
miF1 −0.020 0.008 0.000 0.097 99.4%<0<0.6% 2.9% [−0.035,−0.005] <
maF1 −0.016 0.008 0.000 0.177 98.0%<0<2.0% 7.3% [−0.031,−0.001] <

NBMult vs SVML2
miF1 +0.028 0.008 0.000 0.003 0.0%<0<100.0% 0.1% [+0.013,+0.043] �
maF1 +0.022 0.008 0.000 0.027 0.2%<0<99.8% 1.3% [+0.007,+0.037] �

and SVM camps — indicate that NBMult works a lot better
than SVML2 in terms of both miF1 and maF1, which is a
bit surprising given that SVML2 is widely regarded as the
state-of-the-art classifier for text classification. This some-
what supports the claim of [31] that NBMult, if properly
enhanced by TF-IDF term weighting and document length
normalisation, can reach a similar or even better performance
compared to SVML2.

V. EXTENSIONS

Our probabilistic model for comparing the average F1

scores has been described in the multi-class single-label (aka
“one-of”) classification setting, but it is readily extensible to
the multi-class multi-label (aka “any-of”) classification set-
ting [1], [2]. In that case, the Dirichlet/Multinomial distribu-
tions should simply be replaced by multiple Beta/Binomial
distributions each of which corresponds to one specific target
class, because a multi-class multi-label classifier is nothing
more than a composition of independent binary classifiers.

To compare classifiers using a performance measure dif-
ferent from the average F1 score (miF1 or maF1), we would
only need to replace the function f(µ,θ1, . . . ,θM ) for
computing δ, as long as that performance measure could
be calculated based on the classification confusion matrix
alone. For example, it would be straightforward to extend our
probabilistic model to handle the more general Fβ measure
(β ≥ 0) with β 6= 1 [2], [3].

In this paper we have focused on comparing text clas-
sifiers, but our Bayesian estimation based approach can
actually be used to compare classifiers on any type of data,
e.g., images. Only the confusion matrices are needed for
our models. It does not really matter what kind of data are
classified.

VI. CONCLUSIONS

The main contribution of this paper is a Bayesian esti-
mation approach to assessing the uncertainty of average F1

scores in the context of multi-class text classification.
By modelling the full posterior probability distribution of

miF1 or maF1, we are able to make meaningful interval
estimation (e.g., the 95% HDI) instead of simplistic point
estimation of a text classifier’s future performance on unseen
data. The rich information provided by our model allows us
to make much more comprehensive performance comparison

between text classifiers than what the traditional frequentist
NHST can possibly offer.

REFERENCES

[1] F. Sebastiani, “Machine learning in automated text catego-
rization,” ACM Computing Surveys (CSUR), vol. 34, no. 1,
pp. 1–47, 2002.

[2] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to
Information Retrieval. Cambridge University Press, 2008.

[3] C. J. van Rijsbergen, Information Retrieval, 2nd ed. London,
UK: Butterworths, 1979.

[4] Y. Yang and X. Liu, “A re-examination of text categorization
methods,” in Proceedings of the 22nd Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), Berkeley, CA, USA, 1999, pp.
42–49.

[5] T. Mitchell, Machine Learning. McGraw Hill, 1997.

[6] D. Zhang, J. Wang, and X. Zhao, “Estimating the uncertainty
of average F1 scores,” in Proceedings of the ACM SIGIR
International Conference on Theory of Information Retrieval
(ICTIR), Northampton, MA, USA, 2015, in press.

[7] A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and
D. Rubin., Bayesian Data Analysis, 3rd ed. Chapman &
Hall/CRC, 2013.

[8] J. K. Kruschke, Doing Bayesian Data Analysis: A Tutorial
with R, JAGS, and Stan, 2nd ed. Academic Press, 2014.

[9] ——, “Bayesian estimation supersedes the t test.” Journal of
Experimental Psychology: General, vol. 142, no. 2, p. 573,
2013.

[10] D. A. Hull, “Improving text retrieval for the routing problem
using latent semantic indexing,” in Proceedings of the 17th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR), Dublin,
Ireland, 1994, pp. 282–291.

[11] H. Schutze, D. A. Hull, and J. O. Pedersen, “A comparison
of classifiers and document representations for the routing
problem,” in Proceedings of the 18th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), Seattle, WA, USA, 1995, pp.
229–237.



0 10000 20000 30000 40000 50000

iteration

0.12

0.10

0.08

0.06

0.04

0.02

0.00

δ

(a) trace plot

0.12 0.10 0.08 0.06 0.04 0.02 0.00
δ

0

10

20

30

40

50
mean = -0.109

100.0% < 0 < 0.0%

 0.0% in ROPE

HDI 95% [-0.123, -0.094]

(b) posterior plot

0.12 0.10 0.08 0.06 0.04 0.02 0.00
δ

0

10

20

30

40

50
prior

posterior
BFSD = 0.000

(c) factor plot

Figure 4: Comparing maF1 between NBBern and NBMult.

[12] T. G. Dietterich, “Approximate statistical tests for comparing
supervised classification learning algorithms,” Neural Com-
putation, vol. 10, no. 7, pp. 1895–1923, 1998.
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