### Self-Taught Hashing for Fast Similarity Search

#### Dell Zhang, Jun Wang, Deng Cai, Jinsong Lu

Birkbeck, University of London dell.z@ieee.org



The 33rd Annual ACM SIGIR Conference 19-23 July 2010, Geneva, Switzerland

### Outline

- Problem
- 2 Related Work
- Our Approach
- 4 Experiments
- Conclusion

#### Similarity Search (aka Nearest Neighbour Search)

- Given a query document, find its most similar documents from a large document collection
  - Information Retrieval tasks
    - near-duplicate detection, plagiarism analysis, collaborative filtering, caching, content-based multimedia retrieval, etc.
  - k-Nearest-Neighbours (kNN) algorithm
    - text categorisation, scene completion/recognition, etc.

"The unreasonable effectiveness of data"

If a map could include every possible detail of the land, how big would it be?

D. Zhang (Birkbeck) Self-Taught Hashing SIGIR 2010

A promising way to accelerate similarity search is

### Semantic Hashing

- Design compact binary codes for a large number of documents so that semantically similar documents are mapped to similar codes (within a short Hamming distance)
  - Each code can be regarded as a cluster
  - Clustering similar documents into nearby codes (buckets) in the hash table
- Then similarity search can done extremely fast by just checking a few nearby codes (memory addresses)
  - For example,  $0000 \Longrightarrow 0000$ , 1000, 0100, 0010, 0001.





### Outline

- Problem
- 2 Related Work
- Our Approach
- Experiments
- Conclusion

Fast (Exact) Similarity Search in a Low-Dimensional Space

- Space-Partitioning Index
  - KD-tree, etc.
- Data Partitioning Index
  - R-tree, etc.

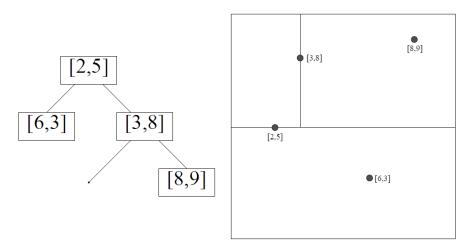


Figure: An example of KD-tree (by Andrew Moore).

Fast (Approximate) Similarity Search in a High-Dimensional Space

- Data-Oblivious Hashing
  - Locality-Sensitive Hashing (LSH)
- Data-Aware Hashing
  - binarised Latent Semantic Indexing (LSI), Laplacian Co-Hashing (LCH)
  - stacked Restricted Boltzmann Machine (RBM)
  - boosting based Similarity Sensitive Coding (SSC) and Forgiving Hashing (FgH)
  - **Spectral Hashing (SpH)** the state of the art
    - Restrictive assumption: the data are uniformly distributed in a hyper-rectangle

**SIGIR 2010** 

10 / 40

Table: Typical techniques for accelerating similarity search.

| low-dimensional space  | exact similarity search       | data-aware     | KD-tree, R-tree                         |
|------------------------|-------------------------------|----------------|-----------------------------------------|
|                        |                               | data-oblivious | LSH                                     |
| high-dimensional space | approximate similarity search | data-aware     | LSI, LCH,<br>RBM, SSC, FgH,<br>SpH, STH |

### Outline

- Problem
- 2 Related Work
- 3 Our Approach
- 4 Experiments
- Conclusion

#### Input:

• 
$$X = \{\mathbf{x}_i\}_{i=1}^n \subset \mathbb{R}^m$$

#### Output:

- $f(\mathbf{x}) \in \{-1, +1\}^{T}$ : hash function
  - -1 = bit off; +1 = bit on
  - I ≪ m

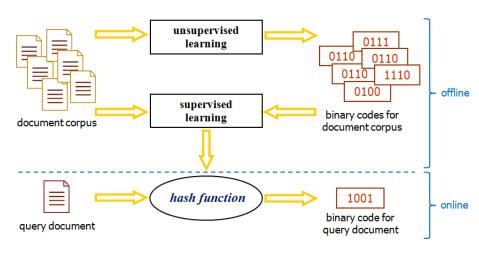


Figure: The proposed STH approach to semantic hashing.

14 / 40

#### Stage 1: Learning of Binary Codes

- Let  $\mathbf{y}_i \in \{-1, +1\}^I$  represent the binary code for document vector  $\mathbf{x}_i$ 
  - -1 = bit off; +1 = bit on.
- Let  $\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_n]^T$

#### Criterion 1a: Similarity Preserving

- We focus on the *local* structure of data
- $N_k(\mathbf{x})$ : the set of k-nearest-neighbours of document  $\mathbf{x}$
- The local similarity matrix W
  - i.e., the adjacency matrix of the k-nearest-neighbours graph
  - symmetric and sparse

$$W_{ij} = \left\{ \begin{array}{c} \left(\frac{\mathbf{x}_i^T}{\|\mathbf{x}_i\|}\right) \cdot \left(\frac{\mathbf{x}_j}{\|\mathbf{x}_j\|}\right) \\ 0 \end{array} \right.$$

$$W_{ij} = \left\{ egin{array}{l} \exp\left(-rac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}
ight) \ 0 \end{array} 
ight.$$

if 
$$\mathbf{x}_i \in N_k(\mathbf{x}_j)$$
 or  $\mathbf{x}_j \in N_k(\mathbf{x}_i)$  otherwise

if 
$$\mathbf{x}_i \in N_k(\mathbf{x}_j)$$
 or  $\mathbf{x}_j \in N_k(\mathbf{x}_i)$  otherwise

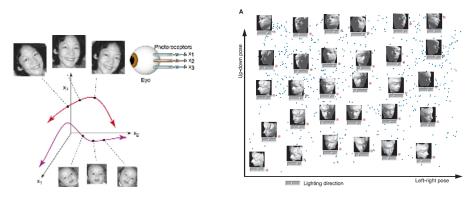


Figure: The local structure of data in a high-dimensional space.

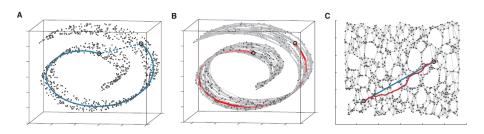


Figure: Manifold analysis: exploiting the local structure of data.

#### Criterion 1a: Similarity Preserving

• The Hamming distance between two codes  $y_i$  and  $y_j$  is

$$\frac{\|\mathbf{y}_i - \mathbf{y}_j\|^2}{4}$$

 We minimise the weighted total Hamming distance, as it incurs a heavy penalty if two similar documents are mapped far apart

$$\sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} \frac{\|\mathbf{y}_{i} - \mathbf{y}_{j}\|^{2}}{4}$$

• The squared error of distance would lead to a non-convex optimisation problem

Spectral Methods for Manifold Analysis

— Minimising Cut-Size

For single-bit codes  $\mathbf{f} = (y_1, \dots, y_n)^T$ :

$$S = \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} \frac{(y_i - y_j)^2}{4} = \frac{1}{4} \mathbf{f}^T \mathbf{L} \mathbf{f}$$

- Laplacian matrix  $\mathbf{L} = \mathbf{D} \mathbf{W}$ 
  - $\mathbf{D} = \operatorname{diag}(k_1, \dots, k_n)$  where  $k_i = \sum_j W_{ij}$

Spectral Methods for Manifold Analysis

— Minimising Cut-Size

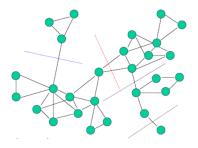


Figure: Spectral graph partitioning through Normalised Cut.

### Spectral Methods for Manifold Analysis

- Minimising Cut-Size
  - Real relaxation
    - Requiring  $y_i \in \{-1, +1\}$  makes the problem NP hard
    - Substitute  $\tilde{y_i} \in \mathbb{R}$  for  $y_i$
  - L is positive semi-definite
    - eigenvalues:  $0 = \lambda_1 = \ldots = \lambda_z < \lambda_{z+1} \leq \ldots \leq \lambda_n$
    - eigenvectors:  $\mathbf{u}_1, \dots, \mathbf{u}_z, \mathbf{u}_{z+1}, \dots, \mathbf{u}_n$
  - Optimal non-trivial division:  $\mathbf{f} = \mathbf{u}_{z+1}$ 
    - The number of edges across clusters is small

Spectral Methods for Manifold Analysis
— Minimising Cut-Size

For I-bit codes  $\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_n]^T$ :

$$S = \sum_{i=1}^{n} \sum_{i=1}^{n} W_{ij} \frac{\|\mathbf{y}_{i} - \mathbf{y}_{j}\|^{2}}{4} = \frac{1}{4} \text{Tr}(\mathbf{Y}^{T} \mathbf{L} \mathbf{Y})$$

ullet Let  $ilde{\mathbf{Y}}$  be the real relaxation of  $\mathbf{Y}$ 

#### Spectral Methods for Manifold Analysis

- Minimising Cut-Size
  - Laplacian Eigenmap (LapEig)

arg min 
$$\text{Tr}(\mathbf{\tilde{Y}}^T\mathbf{L}\mathbf{\tilde{Y}})$$
 subject to  $\mathbf{\tilde{Y}}^T\mathbf{D}\mathbf{\tilde{Y}}=\mathbf{I}$   $\mathbf{\tilde{Y}}^T\mathbf{D}\mathbf{1}=\mathbf{0}$ 

Generalised Eigenvalue Problem

$$\mathbf{L}\mathbf{v} = \lambda \mathbf{D}\mathbf{v} \tag{1}$$

$$\tilde{\mathbf{Y}} = [\mathbf{v}_1, \dots, \mathbf{v}_I]$$

Criterion 1b: Entropy Maximising

Best utilisation of the hash table

- = Maximum entropy of the codes
- = Uniform distribution of the codes (each code has equal probability)
  - The p-th bit is on for half of the corpus and off for the other half

$$y_i^{(
ho)} = \left\{ egin{array}{ll} +1 & ilde{y}_i^{(
ho)} \geq \mathsf{median}(oldsymbol{v}_{
ho}) \ -1 & \mathsf{otherwise} \end{array} 
ight.$$

 The bits at different positions are almost mutually uncorrelated, as the eigenvectors given by LapEig are orthogonal to each other

#### Stage 2: Learning of Hash Function

How to get the codes for new documents previously unseen?

- Out-of-Sample Extension
  - High computational complexity
    - Nystrom method
    - Linear approximation (e.g., LPI)
  - Restrictive assumption about data distribution
    - Eigenfunction approximation (e.g., SpH)

#### Stage 2: Learning of Hash Function

- We reduce it to a supervised learning problem
  - Think of each bit  $y_i^{(p)} \in \{+1, -1\}$  in the binary code for document  $\mathbf{x}_i$  as a binary class label (class-"on" or class-"off") for that document
  - Train a binary classifier  $y^{(p)} = f^{(p)}(\mathbf{x})$  on the given corpus that has already been "labelled" by the 1st stage
  - Then we can use the learned binary classifiers  $f^{(1)}, \ldots, f^{(l)}$  to predict the *l*-bit binary code  $y^{(1)}, \ldots, y^{(l)}$  for any query document  $\mathbf{x}$

Kernel Methods for *Pseudo*-Supervised Learning — Support Vector Machine (SVM)  $y^{(p)} = f^{(p)}(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}^T \mathbf{x})$ 

$$\underset{\mathbf{w},\xi_{i}\geq 0}{\operatorname{arg\,min}} \qquad \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + \frac{C}{n}\sum_{i=1}^{n}\xi_{i}$$
subject to 
$$\forall_{i=1}^{n}: y_{i}^{(p)}\mathbf{w}^{T}\mathbf{x}_{i} \geq 1 - \xi_{i}$$
(2)

- large-margin classification → good generalisation
- linear/non-linear kernels → linear/non-linear mapping
- convex optimisation → global optimum

#### Self-Taught Hashing (STH): The **Learning** Process

- Unsupervised Learning of Binary Codes
  - Construct the *k*-nearest-neighbours graph for the given corpus
  - Embed the documents in an I-dimensional space through LapEig (1) to get an I-dimensional real-valued vector for each document
  - Obtain an *I*-bit binary code for each document via thresholding the above vectors at their median point, and then take each bit as a binary class label for that document
- Supervised Learning of Hash Function
  - Train / SVM classifiers (2) based on the given corpus that has been "labelled" as above

Self-Taught Hashing (STH): The **Prediction** Process

- Classify the query document using those / learned classifiers
- ② Assemble the output / binary labels into an /-bit binary code

#### The Computational Complexity of STH

- The Learning Process (offline)
  - quadratic w.r.t. the number of documents in the corpus
  - linear w.r.t. the average size of the documents in the corpus
- The Prediction Process (online)
  - linear w.r.t. the size of the query document
    - the linear projection matrix would be sparse, unlike the LSH.

### Outline

- Problem
- 2 Related Work
- Our Approach
- Experiments
- Conclusion

#### Text Datasets

- Reuters21578
  - Top 10 categories
  - 7285 documents
  - ModeApt split: 5228 (75%) training, 2057 (28%) testing
- 20Newsgroups
  - All 20 categories
  - 18846 documents
  - 'bydate' split: 11314 (60%) training, 7532 (40%) testing
- TDT2 (NIST Topic Detection and Tracking)
  - Top 30 categories
  - 9394 documents
  - random split (x10): 5597 (60%) training, 3797 (40%) testing

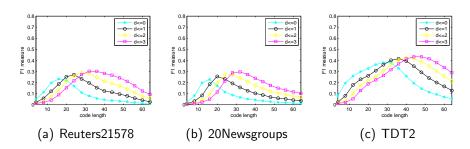


Figure: The  $F_1$  measure of STH for retrieving original nearest neighbours.

**SIGIR 2010** 

34 / 40

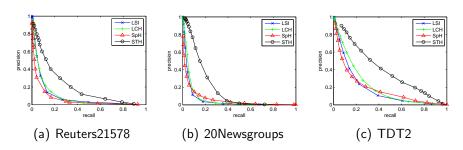


Figure: The precision-recall curve for retrieving original nearest neighbours.

**SIGIR 2010** 

35 / 40

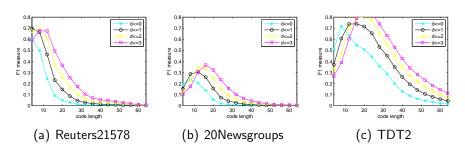


Figure: The  $F_1$  measure of STH for retrieving same-topic documents.

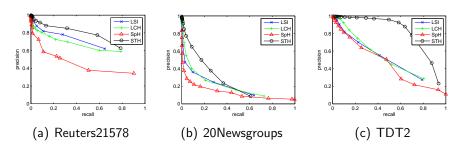


Figure: The precision-recall curve for retrieving same-topic documents.

**SIGIR 2010** 

37 / 40

### Outline

- Problem
- 2 Related Work
- Our Approach
- 4 Experiments
- Conclusion

### Conclusion

- Major Contribution: Self-Taught Hashing
  - Unsupervised Learning + Supervised Learning
  - Spectral Method + Kernel Method
- Extensions (in the FGSIR Workshop on 23 Jul 2010)
  - Kernelisation
  - Supervision
- Future Work
  - Implementation using MapReduce
  - Applications in Multimedia IR

# Question Time

Thanks!

8-)