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1
In the past decade the amount of data being created has skyrocketed. More than
30000 gigabytes of data are generated , and the rate of data creation isevery second
only accelerating.

The data we deal with is diverse. Users create content like blog posts, tweets,
social network interactions, and photos. Servers continuously log messages about
what they're doing. Scientists create detailed measurements of the world around us.
The internet, the ultimate source of data, is almost incomprehensibly large.

This astonishing growth in data has profoundly affected businesses. Traditional
database systems, such as relational databases, have been pushed to the limit. In an
increasing number of cases these systems are breaking under the pressures of "Big
Data." Traditional systems, and the data management techniques associated with
them, have failed to scale to Big Data.

To tackle the challenges of Big Data, a new breed of technologies has emerged.
Many of these new technologies have been grouped under the term "NoSQL." In
some ways these new technologies are more complex than traditional databases,
and in other ways they are simpler. These systems can scale to vastly larger sets of
data, but using these technologies effectively requires a fundamentally new set of
techniques. They are not one-size-fits-all solutions.

Many of these Big Data systems were pioneered by Google, including
distributed filesystems, the MapReduce computation framework, and distributed
locking services. Another notable pioneer in the space was Amazon, who created
an innovative distributed key-value store called Dynamo. The open source
community responded in the years following with projects like Hadoop, HBase,
MongoDB, Cassandra, RabbitMQ, and countless other projects.

We will learn how to use this new breed of technologies to build robust and

A New Paradigm for Big Data
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1.  

2.  

scalable Big Data systems. We will be exploring a new set of techniques for
handling Big Data. Managing the complexity of these systems is as important as
scaling. As our tools become more complex and we must worry about concepts
like fault-tolerance, consistency, and availability in our application code, it is
imperative that we find ways to eliminate complexity throughout the rest of our
systems. Some of the most basic ways people handle data in traditional systems is
too complex for building robust Big Data systems. The simpler, alternative
approach is the new paradigm for Big Data that we will be exploring.

In this first chapter, we will explore the "Big Data problem" and why we need a
new paradigm for Big Data. We'll look at the perils of some of the traditional
techniques for scaling and disocver some deep flaws in the traditional way of
building data systems. By starting from first principles of data systems, we'll
formulate a different way to build data systems that avoids the complexity of
traditional techniques. We'll take a look at how recent trends in technology
encourage the use of new kinds of systems, and finally we'll take a look at an
example Big Data system that we'll be building throughout this book to illustrate
the key concepts.

Let's start by taking a look at some of the problems you'll run into when trying to
scale a traditional database to Big Data. The most pervasive traditional database I
will be referring to are relational databases, such as MySQL, Oracle, or Postgres.
Relational databases exhibit the following characteristics:

Centralized: Relational databases are designed to be run on one machine. You can shard
and/or replicate a relational database, but those lead to their own set of headaches as we
will discuss. The best way to scale a relational database is to get a more powerful
machine.
One-size-fits-all: Relational databases try to satisfy all query workloads. This includes
both "known queries", queries that are done repeatedly by the application, and "one-off
queries", queries that are done infrequently to answer arbitrary questions. Relational
databases try to accomplish being one-size-fits-all databases through their query
language, SQL, and features such as indexing and views.

With that, let's take a closer look at some of the perils you'll run into when
working with traditional databases. We'll do this by observing as a simple
application scales and evolves.

The example application we'll look at is a simple web analytics application. The
application tracks the number of pageviews to any url a customer wishes to track.

1.1 Scaling with a traditional database
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A web page pings the application's web server with its url everytime a pageview is
received.

Additionally, the application occasionally runs a query to extract the top 100
most viewed urls from the database.

Figure 1.1 Relational schema for simple analytics application

The initial implementation for this application is simple. The data is all kept on
a relational database with a schema as shown in Figure 1.1. When a webpage pings
the web server with a page view, the web server increments the pageview count for
that url in a transaction.

At some point, the write throughput will become too high for the relational
database to handle. In the next few sections I'll discuss two very common
techniques used to scale applications: inserting a queue to do asynchronous,
batched updates and sharding the database across multiple machines to increase
write throughput. You'll see that these techniques scale at the cost of significant
complexity and loss of fault tolerance, and that to achieve both robustness and
scale we'll need to rethink the entire application.

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
 http://www.manning-sandbox.com/forum.jspa?forumID=787

3



Figure 1.2 Batching updates with queue and worker

When the application grows big enough, the single database won't be able to
handle the load of all the incoming requests. A common technique used to increase
performance is to batch write requests to the database. Rather than increment only
one url in a given request, it is more efficient to increment multiple urls in a single
request. This is accomplished by inserting a queue into the architecture as shown in
Figure 1.2. A worker continuously pulls items off the queue in batches and sends
one request to the database for each batch.

Unfortunately, this approach is only a band-aid to the scaling problem. Batches
can only be made so big and a new scaling technique will be needed once the write
throughput gets high enough.

There is a conceptual benefit to this approach though. It decouples the web tier
from the database. If the database can't keep up with writes, the queue will grow
bigger rather than timeout to the client.

The standard technique to scale a write-heavy application is to shard the database.
Rather than keep all the data for a table on one machine, the table will instead be
spread across multiple machines. A simple function is used that maps a key to the
machine it belongs on.

Sharding will scale this pageview application, as the load of writes is now
spread across multiple machines. However, sharding introduces new problems into

1.1.1 Adding asynchronous, batched updates

1.1.2 Sharding a relational database
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the back-end.
First, sharding is a manual, multi-step process. The difficulty of adding new

shards increases the more shards already exist: it's a lot harder to go from 16 shards
to 32 shards than it is to go from 2 shards to 4 shards. The process involves writing
scripts to create the new shards and move every row to the correct shard. For this
to happen in a timely manner, the resharding process must be parallelized. The
process typically involves backup and verification steps to reduce the risk of
catastrophic error. Resharding without taking any downtime is even more complex.

Second, sharding a database makes the code using that database more complex.
Rather than simply run queries on a key, the code must first find what shard to talk
to. This becomes even worse for our analytics query to find the 100 urls with the
most pageviews. Rather than simply ask for the top 100 urls, the query needs to get
the top 100 urls from each shard and then merge the results in the code.

Doing sharding manually is a lot of work given that you just want to track
pageviews for URLs. With the databases we will be using that are designed for Big
Data, the distributed nature of the data will be hidden from our application code.
Scaling will be as easy as adding new machines to the cluster. Since the databases
are aware of their distributed nature, they will handle any necessary resharding
internally. 1

Footnote 1 For the most part - may need to run a rebalancing task but this is much easier than doing it manually.m

Adding new features to this application is complex. Let's observe what happens
when trying to add a new feature that keeps track of the last time a url was viewed
by anyone.

First, we need to add a new column to the schema for the "last_viewed
timestamp". This schema migration needs to be run on every shard, and updating a
schema can be slow. The migration will need to be monitored for success.

The original pageview information was discarded after the aggregate view
count was updated in the database. Since that information was not kept, it's
impossible to know what the last_viewed timestamp should be for each url. The
common solution to this is to default the value to "null" indicating that the value is
unknown. Unfortunately, this affects the application code that queries the database
and serves the data to the user: the application needs to handle null as a special
case and display to the user that the last viewed timestamp is unknown for that url.

This problem of having different versions of data gets compounded the more

1.1.3 Complexity of adding new features
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the application evolves over time. The "unknown case" manifests itself over and
over and the application code gets riddled with code to handle the different
versions of data.

The complexity of adding new features is caused by two problems with the
pageview application. The first problem is that only an aggregate of the pageview
information is kept rather than the raw pageview information. The last_viewed
timestamps could be deduced from the raw pageviews if they were available, but
they are not. The second problem is that even if the raw pageviews were kept, the
system isn't setup to run a massive computation to recompute the databases so that
every url has a last_viewed timestamp.

Both these problems won't exist in the approach we take in this book to
building Big Data systems. Because the systems will be able to handle arbitrary
amounts of data, we will collect the raw data rather than just an aggregate form of
it. And since batch, massive scale computation will be at the core of the systems
we build, doing schema migrations that involve recomputing the entire database
will be easy.

One of the key problems in the pageview application is that it relies on incremental
algorithms at its core. When a new pageview is received, the count is incremented
by one, rather than recomputed by fetching and counting all the known pageviews.

Incremental algorithms are vulnerable to human error. And if there's one
guarantee in software development, it's that humans aren't perfect and bugs
inevitably reach production. If a bug was deployed to production that incremented
pageviews by two instead of by one, there would be no way to fix the corrupt
values in the database. Information was lost through the incremental process of
updating pageview counts. This is a fundamental weakness of incremental
algorithms. Human errors happen and your systems need to be designed to be
resilient to human error. There should always be a recovery process.

In the Big Data world, we will keep the raw data and use recomputation
algorithms when possible to make our algorithms resilient to human error. When a
mistake is made, we can just remove bad data and use recomputation to fix our
databases.

1.1.4 Incremental approaches are vulnerable to human error
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A sharded relational database is not very fault tolerant. The more it's sharded, the
less fault tolerant it is. There's always some probability of a machine going down,
whether because of a disk going bad, a disk filling up, or the machine losing
power. The more machines you have, the more likely it is that some machine will
be unavailable.

The way to achieve fault tolerance is to replicate each shard across multiple
machines. That way, if a machine goes down, its data can be served off of another
machine. Unfortunately, there are an enormous amount of complications to doing
this, and implementing this scheme is equivalent to writing an entire NoSQL
database.

The Big Data databases we will be using make use of the sharding plus
replication strategy internally, but they hide the complexities of it from you.

Distributing data and computations across many machines has proven to be the
best way to scale data systems. Unfortunately, there is a strong negative result
called the CAP theorem that places limits on how fault-tolerant distributed systems
can be to machine failure. The CAP theorem explores the relationship between
three desired properties of data systems -- consistency, availability, and
partition-tolerance -- and states that a distributed database can have at most two of
these properties. Let's look at the definition of these properties and then see how
the CAP theorem impacts the construction of actual data systems.

Consistency means that after you do a successful write, future reads will always
take that write into account. Consider the example of writing to the database that
Sally's location is "Atlanta", where previously her location was "Chicago". In a
consistent database, all future reads of the value are guaranteed to get "Atlanta"
back. In an inconsistent database, future readers may or may not get "Atlanta"
back. Some readers may get "Atlanta" and others may get "Chicago".

Availability means you can always read from and write to the system. An
unavailable database will return errors back to the client when the client requests
an unavailable portion of the data. Dealing with unavailability can be awkward.
Oftentime your best option is to bubble up the error back to the user, which can
seriously detract from the user experience of your product.

A partition in a distributed systems means that messages fail to get delivered

1.1.5 Fault tolerance of sharded database is bad

1.2 The CAP Theorem

1.2.1 Definition
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between any two nodes in the system. A partition-tolerant system maintains its
properties even in the event of one or more partitions. Partitions can occur due to
problems in the network (like losing a network switch) or due to machines going
down.

It is tempting to think that you don't need partition-tolerance and pick
consistency and availability. Unfortunately, you can't really do this. Partitions can
and do happen, whether because of network failure or high load on your system
causes multiple nodes to go down. Since partitions are a fact of nature, it doesn't
make sense to build a partition-untolerant system. Otherwise, when a partition
happens, your database can't give you any guarantees. So you have to choose
between availability and consistency.

A database that chooses consistency and partition-tolerance (commonly
abbreviated CP) is easy to understand: reads and writes are always consistent but
sometimes you'll get an error when you do a read or write. What about a highly
available and partition-tolerant database (AP)? Is it completely inconsistent or does
it provide a different kind of consistency guarantee?

Highly available databases commonly provide aneventual consistency
guarantee. During a partition, these databases may be inconsistent. So you may do
a write and read a stale value, or different readers may read different values for the
same key at the same time. When the partition goes away, the nodes of the
databases will talk to each other and reconcile the inconsistency. Eventual
consistency is the best guarantee you can get when you require your database to be
highly available. It's important to remember that this is a limitation of nature and
not of our tools.

Eventual consistency is not free. It requires work on the part of the programmer
to tell the database how to reconcile values to make them consistent again. This is
best explained through example.

Suppose you have a simple application that updates counters in an eventually
consistent database. Suppose the same key K is being incremented by two writers
"W1" and "W2". The database achieves high availability by keeping a replica of
each key on another node. Let's call the two replicas of a key "R1" and "R2". This
setup looks something like Figure 1.4.

1.2.2 Eventual Consistency

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
 http://www.manning-sandbox.com/forum.jspa?forumID=787

8



Figure 1.3 Highly available
database without a partition

Now suppose a partition forms in the network between the two replicas. Now
W1 can only increment R1, and W2 can only increment R2. The values of K at R1
and R2 will quickly get out of sync, and each replica will represent a different set
of updates since the two replicas were last consistent. A partition is illustrated in
Figure 1.4.

Figure 1.4 Highly available database with a partition

When the partition goes away, the database can now detect that R1 and R2 are
out of sync. Unfotunately, it has no idea how to repair the value. Should it pick one
of the replicas as the new value, or should it somehow merge the replicas together?
It is up to you as a developer to tell the database how to make the value consistent
again. The next time you read K, the database will give you all replicas for the key
along with a history of how the replicas diverged since they were last consistent. In
our example, the history might look something like Figure 1.5.
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Figure 1.5 History of a value that diverged
due to a partition

This history is represented in a data structure called a vector clock, and using
this information you need to repair the value. This process is called "read repair".

As you can see, read-repair is complex. Read-repair code is extremely
susceptible to developer error; if and when you make a mistake, faulty read-repairs
will introduce irreversible corruption into the database.

It is clear that there is something fundamentally wrong with this way of
building data systems. Not only do you have to figure out how to store, read, and
write your data, you need to figure out how to repair your data as a core part of
your data workflow. It is all too likely that you will make a mistake and cause
corruption in your database.

What's missing from these systems is the notion of "human fault-tolerance." If
there's any certainty in software development, it's that bugs make it to production
and the correctness of our applications cannot be reliant on developers being
perfect all the time. Mistakes shouldn't cause irreversible corruption -- there should
always be a way to recover. The CAP theorem is a result about the degree to which
data systems can be fault-tolerant to machine failure, but we need to go beyond
that and build systems that are human fault-tolerant as well.

To achieve this goal, we will look at what we're doing wrong that's causing all
this complexity. By starting from first principles, you can avoid the complexity and
build human fault-tolerant systems that are easy to reason about. Let's talk more
about the properties we desire from Big Data systems and then look at the first
principles that are going to allow us to satisfy those properties.

The properties we strive for in Big Data systems are as much about complexity as
they are about scalability. Not only must a Big Data system perform well and be
resource-efficient, it must be easy to reason about as well. Let's go over each
property one by one.

1.3 Desired Properties of a Big Data System
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Building systems that "do the right thing" is difficult in the face of the challenges
of distributed systems. Systems need to behave correctly in the face of machines
going down randomly, the complex semantics of consistency in distributed
databases, duplicated data, concurrency, and more. These challenges make it
difficult just to reason about what a system is doing. Part of making a Big Data
system robust is avoiding these complexities so that we can easily reason about the
system.

As discussed before, we also want our systems to "human fault-tolerant." This
is an oft-overlooked property of systems that we are not going to ignore. In a
production system, it's inevitable that someone is going to make a mistake
sometime, like by deploying incorrect code that corrupts values in a database. By
building in "recomputation" into the core of a Big Data system, the system will be
innately resilient to human error by providing a clear and simple mechanism for
recovery. This will be described in depth in Chapters 2 and 3.

The vast majority of applications require reads to be satisfied with very low
latency, typically between a few milliseconds to a few hundred milliseconds. On
the other hand, the update latency requirements vary a great deal between
applications. Some applications require updates to propogate immediately, while in
other applications a latency of a few hours is fine. Regardless, we will need to be
able to achieve low latency updates in our Big Data systems.when we need them 
More importantly, we need to be able to achieve low latency reads and updates
without compromising the robustness of the system. We will learn how to achieve
low latency updates in the discussion of the "speed layer" in Chapter 5.

Scalability is the ability to maintain performance in the face of increasing data
and/or load by adding resources to the system. The systems we build will be
horizontally scalable across all layers of the system stack: scaling is accomplished
by adding more machines.

1.3.1 Robust and fault-tolerant

1.3.2 Low latency reads and updates

1.3.3 Scalable
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A general system can support a wide range of applications. Indeed, this book
wouldn't be very useful if it didn't generalize to a wide range of applications! The
systems we will build will generalize to applications as diverse as financial
management systems, social media analytics, scientific applications, and social
networking.

We don't want to have to reinvent the wheel each time we want to add a related
feature or make a change to how our system works. Extensible systems allow
functionality to be added with a minimal development cost.

Oftentimes a new feature or change to an existing feature requires a migration
of old data into a new format. Part of a system being extensible is making it easy to
do large-scale migrations. Being able to do big migrations quickly and easily is
core to the approach we will learn.

Being able to do ad hoc queries on your data is extremely important. Nearly every
large dataset has unanticipated value within it. Being able to mine a dataset
arbitrarily gives opportunities for business optimization and new applications.
Ultimately, you can't discover interesting things to do with your data unless you
can ask arbitrary questions of it.

Ad hoc queries don't need to be low latency because they're only needed for
offline analysis. They just need to be doable in a reasonable amount of time. We'll
learn how to do ad hoc queries in Chapter 3 when we discuss batch processing.

Maintenance is a tax on developers. Maintenance is the work required to keep a
system running smoothly. This includes anticipating when to add machines to
scale, keeping processes up and running, and debugging anything that goes wrong
in production.

An important part of minimizing maintenance is choosing components that
have as small an  as possible. We want to rely onimplementation complexity
components that have simple mechanisms underlying them. In particular,
distributed databases tend to have very complicated internals. The more complex a
system, the more likely something will go wrong and the more you need to
understand about the system to debug and tune the system.

1.3.4 General

1.3.5 Extensible

1.3.6 Allows ad hoc queries

1.3.7 Minimal maintenance
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We will combat implementation complexity by preferring to rely on simple
algorithms and simple components. A trick that we will employ is to push
complexity out of our core components and into pieces of our system whose
outputs are discardable after a few hours. The most complex components we use,
like read/write distributed databases, will be in this layer where outputs are
eventually discardable. We will discuss this technique in depth when we discuss
the "speed layer" in Chapter 5.

A Big Data system must provide the information necessary to debug the system
when things go wrong. The key is to be able to trace for each value in the system
exactly what caused it to have that value.

We will accomplish "debuggability" through the functional nature of the "batch
layer" and by preferring to use "recomputation" algorithms when possible. We will
go in depth into how to debug these systems in Chapter 12.

Achieving all these properties together in one system seems like a daunting
challenge. But by starting from first principles, these properties will naturally
emerge from the resulting system design. Let's begin that journey by exploring
those first principles.

Before we can even begin to approach the design of a system that satisfies our
desired properties, first we have to define the problem we're trying to solve. What
is the purpose of a data system? What is data?

Data applications range from storing and retrieving objects, joins, aggregations,
stream processing, continuous computation, machine learning, and so on and so on.
The definitions we choose must generalize to all data systems if they are going to
be a foundation for desiging a Big Data system.

It turns out data systems can be summarized by one simple equation. Let's look
at the equation and then rigorously define what each piece of it means.

Query = Function(All data)
That's it. This equation summaries the entire field of databases and data

systems. Everything in the field -- the past 50 years of RDBMS's, indexing, OLAP,
OLTP, MapReduce, ETL, distributed filesystems, stream processors, NoSQL, etc.
-- is summarized by that equation in one way or another.

A data system answers questions about a dataset. Those questions are called
"queries". And this equation states that a query is just a function of all the data you

1.3.8 Debuggable

1.4 First principles
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have.
This equation may seem too general to be useful. It doesn't seem to capture any

of the intricacies of data system design. But what matters is that every data system
falls into that equation. The equation is a starting point from which we can explore
data systems, and the equation will eventually lead to a method for satisfying all
the properties we enumerated.

There are two concepts in this equation: "data" and "queries". These are distinct
concepts that are often conflated in the database field, so let's be rigorous about
what these concepts mean.

Let's start with "data". A piece of data is an indivisible unit that you hold to be true
for no other reason that it exists. It is like an axiom in mathematics.

There are two crucial properties to note about data. First, data is inherently time
based. A piece of data is a fact that you know to be true at some moment of time.
For example, suppose Sally enters into her social network profile that she lives in
Chicago. The data you take from that input is that she lived in Chicago as of the
particular moment in time that she entered that information into her profile.
Suppose that on a later date Sally updates her profile location to Atlanta. Then you
know that she lived in Atlanta as of that particular time. The fact that she lives in
Atlanta now doesn't change the fact that she used to live in Chicago. Both pieces of
data are true.

The second property of data follows immediately from the first: data is
inherently immutable. Because of its connection to a point in time, the truthfulness
of a piece of data never changes. One cannot go back in time to change the
truthfulness of a piece of data. This means that there are only two main operations
you can do with data: read existing data and add more data. CRUD
(Create-read-update-delete), the standard operations of relational databases, has
become CR.

I've left out the "Update" operation. This is because updates don't make sense
with immutable data. For example, "updating" Sally's location really means that
you're adding a new piece of data saying she lives in a new location as of a more
recent time.

I've also left out the "Delete" operation. Again, most cases of deletes are better
represented as creating new data. For example, if Bob stops following Mary on

1.4.1 Data
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Twitter, that doesn't change the fact that he used to follow her. So instead of
deleting the data that says he follows her, you'd add a new data record that says he
un-followed her at some moment in time.

There are a few cases where you do want to permanently delete data, such as
regulations requiring you to purge data after a certain amount of time. These cases
are easily supported by the data system design I'm going to show as we'll discuss
later on in the book.

This definition of data is almost certainly different than what you're used to,
especially if you come from the relational database world where updates are the
norm. There are two reasons for this. First, this definition of data is extremely
generic: it's hard to think of a kind of data that doesn't fit under this definition.
Second, the immutability of data is the key property we're going to exploit in
designing a human fault-tolerant data system that's easy to reason about.

The second concept in the equation is the "query". A query is a derivation from a
set of data. In this sense, a query is like a theorem in mathematics. For example,
"What is Sally's current location?" is a query. You would compute this query by
returning the most recent data record about Sally's location. Queries are functions
of the complete dataset, so they can do anything: aggregations, join together
different types of data, and so on. So you might query for the number of female
users of your service, or you might query a dataset of tweets for what topics have
been trending in the past few hours.

I've defined a query as a function on the complete dataset. Of course, many
queries don't need the complete dataset to run -- they only need a subset of the
dataset. But what matters is that my definition encapsulates all possible queries.

Now that data and queries have been defined and shown to encapsulate all data
systems, let's begin our exploration of how to build a system that allows you to run
any query on any dataset within your performance constraints.

The simplest possible data system computes queries by literally running a function
on the complete dataset to compute queries. If you could do this within your
latency constraints, then you'd be done. There would be nothing else to build.

Of course, it's infeasible to expect a function on a complete dataset to finish
quickly. Many queries, such as those that serve a website, require millisecond
response times. It's impossible to run a function on even a small dataset that fast,

1.4.2 Queries

1.5 Thought experiment on the ideal Big Data architecture
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much less a petabyte scale dataset. However, let's do a thought experiment. Let's
pretend that you can compute any query function instantly, and let's look at the
properties of such a system. Doing this thought experiment will inform as to what a
real Big Data architecture should look like.

Let's start by looking at how this system interacts with the CAP theorem.
Remember, the CAP theorem states a limitation of nature; you must choose
between availability and consistency in any data system you build. As you are
about to see, the CAP theorem does not affect your ability to reason about the
system. It adds no complexity and requires no additional work on your part to
maintain consistency.

If you choose consistency over availability, then queries will always
incorporate all data that has been written in the past. During partitions though, the
system will sometimes fail to write data or compute queries.

Things get much more interesting when you choose availability over
consistency. In this case, the system is eventually consistent without any of the
complexities of eventual consistency. Since the system is highly available, you can
always write new data and compute queries. In failure scenarios, queries will return
results that don't incorporate previously written data. Eventually that data will be
consistent and queries will incorporate that data into their computations.

The key here is that data is immutable. Immutable data means there's no such
thing as an update, so it's impossible for different replicas of a piece of data to
become inconsistent. From the perspective of queries, a piece of data either exists
or doesn't exist. There are no divergent values, vector clocks, or read-repair. By
having immutable data and computing queries from scratch each time, you
completely avoid the complexity normally caused by the CAP theorem. There is
just data and functions on that data. Eventual consistency does not get in the way
of reasoning about the system, and the developer does not have to do anything to
enforce eventual consistency.

What caused complexity in my discussion of eventual consistency from before
was the interaction between incremental updates and the CAP theorem.
Incremental updates and the CAP theorem really don't play well together; mutable
values require read-repair in an eventually consistent system. By rejecting
incremental updates, embracing immutable data, and computing queries from
scratch each time, you avoid that complexity.

1.5.1 Interaction with the CAP theorem
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Such a system is also phenomenally human fault-tolerant. There's only two
mistakes a human can make in such a system: write bad data or deploy a buggy
query function.

Writing bad data does not cause corruption in this system. All data is
immutable and each piece of data is independent, so writing data never replaces
older data. Recovering from writing bad data is as simple as deleting the offending
pieces of data, and then queries will return correct results. Note that this is in stark
contrast to traditional databases, such as RDBMS's, where updates are the norm. In
a traditional database an update destroys an older piece of data. It can be hard or
impossible to recover from such corruption.

It's even easier to fix a system that has a buggy query function deployed. All
you have to do is fix the bug. Since the query recomputes its results from scratch
each time, queries will be correct once the bug is fixed.

This recomputation-based system has some very nice properties. It is easy to
reason about: you just think in terms of data and queries and everything works. Of
course, what we just went through was a thought experiment; a system like this is
infeasible. However, let's extract from this thought experiment the key aspects of
the system that made it human fault-tolerant and easy to reason about.

There are three distinguishing features of this recomputation-based system:

The system makes it easy to store and scale an immutable,
constantly-growing dataset.

The primary write operation is adding new immutable facts of data.

The system avoids the complexity of the CAP theorem by recomputing
queries from raw data.

Traditional databases like the RDBMS do not have any of these properties. The
lack of immutability of data in an RDBMS makes it lack human fault-tolerance; if
you write bad data you will irreversibly destroy good data.

One of the reasons RDBMS's don't treat data as immutable is for practicality:
you don't have enough space on a single server to store an immutable,
constantly-growing dataset. In the Big Data world, you have much looser space
constraints due to the nature of systems being horizontally scalable. Storing an
immutable dataset becomes feasible in the Big Data context.

1.5.2 Human fault-tolerance
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Let's now build on these principles and see what a Big Data architecture that
satisifes all our desired properties looks like.

Computing arbitrary functions on an arbitrary dataset in realtime is a daunting
problem. It is not possible with a single tool or approach. Instead, we will have to
use a variety of tools and techniques to build a complete Big Data system.

The main idea is to build Big Data systems as a series of layers. Each layer will
satisfy a subset of the properties and build upon the functionality provided by the
layers beneath it. We will be spending the whole book discussing how to design,
implement, and deploy each layer, but the high level ideas of how the whole
system fits together is fairly easy to understand.

Figure 1.6 Layered architecture

Since a query is a function of all the data, the easiest way to make queries run
fast is to precompute them. Whenever there's new data, you just recompute
everything from the master dataset. Recomputing things from scratch can be slow,
so by the time the precomputation finishes the queries may be out of date by a few
hours. However, building such a system is fairly straightforward and is a strong
first step to solving the more general problem of computing queries on the
complete dataset in realtime. All that will be left is to compensate for that last few
hours of data.

I call the layer that does the precomputation the "batch layer" and the layer that
provides random access to the results of the precomputation the "serving layer".
Finally, the layer that compensates for the last few hours of data is the "speed
layer". The layers and how they interact are described in the next few sections.

1.6 Realtime Big Data architecture
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Figure 1.7 Batch layer

At the bottom of our architecture is the batch layer. The batch layer stores the
master copy of the dataset and precomputes queries on that master dataset. The
master dataset is append-only and can be thought of us a very large list of records.
The batch layer is good at storing lots of data and doing high latency, high
throughput computations. Computations done in the batch layer typically scan the
full dataset. We will be using Hadoop as the basis for the batch layer.2

Footnote 2 This is not strictly true. We will be doing some partitioning of the dataset, but you rely on "scan andm
filter" computations instead of indexing individual records.

The nice thing about the batch layer is that it's so simple to use. Batch
computations are written like single-threaded programs and you get parallism "for
free". It's easy to write robust, highly scalable computations on the batch layer. The
batch layer scales by adding new machines.

On the batch layer we will be computing views of the master dataset. A view is
simply a function of the complete dataset that precomputes some query. For
example, if your master dataset contains all the tweets that ever happened on
Twitter, one view may be the number of times any given URL has been tweeted.
Another view may assign a score for how influential each person is on Twitter.
Another view may classify each Twitter account as being a human, bot, or
company account. What makes the batch layer powerful is its arbitrariness: you
can compute any view on the batch layer, and you can do so with simple code.

In the batch layer, we will start off by literally writing functions of the complete
dataset to compute the views. To update a view, you would throw away the old

1.6.1 Batch layer
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view and compute a new one from scratch.
You may be wondering about the feasability of always recomputing views from

scratch. After all, it seems wasteful to recompute the entire view when only a small
part of it may have changed since the last recompute. The reason we start with the
full recompute approach is because full recomputes are sometimes necessary,
whether for the first run of the application, to do a schema migration, or to fix a
mistake that has been made. Additionally, full recomputes are easy to build.

For integrating smaller amounts of new data into our views, we will not be
doing full recomputes as it's too resource-intensive in practice. We want hours of
turnaround on our batch workflows rather than days or weeks. What we will do as
a compromise to make the batch layer more resource-efficient is introduce some
incrementalization into the batch layer. The idea is that for most views, most of the
view doesn't change given a few hours of new data. We'll learn techniques for how
to partially update a view to make the batch layer vastlly more resource efficient.
Incrementalization adds complexity, so we will introduce the minimum amount of
incrementalization necessary to maintain the simplicity of the full recompute
approach.

A view computed by the batch layer is not servable, as the batch layer just
produces flat files of records. This is where the serving layer comes in.

Figure 1.8 Serving layer

The serving layer makes views produced by the batch layer queryable. The serving
layer is optimized for batch updates and low-latency reads. Like the batch layer,

1.6.2 Serving layer
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the serving layer easily scales by adding more machines. There are a few choices
of databases to use for the serving layer, like Voldemort, HBase and ElephantDB,
with different data models and query capabilities. We'll be using ElephantDB
because it's the simplest to use and has facilities for doing incremental batch
processing and recovering from mistakes. However, there are tradeoffs to consider
when choosing a serving layer database that we will discuss in depth in Chapter 4.

The serving layer is tied to the batch layer and updates when the batch layer
finishes updating the views. Typically this means the serving layer will update
every few hours.

The batch and serving layers support arbitrary queries on an arbitrary dataset with
the tradeoff that queries will be out of date by a few hours. It takes a new piece of
data a few hours for the data to propogate through the batch layer into the serving
layer where it can be queried. The important thing to notice is that other than low
latency updates, the batch and serving layers satisfy every property we desire in a
Big Data system as outlined in Section 1.2. Let's go through them one by one:

Robust and fault tolerant: Hadoop handles failover when machines go
down. The serving layer uses replication under the hood to ensure
availability when servers go down. The batch and serving layers are also
human fault-tolerant, since when a mistake is made you can fix our
algorithm or remove the bad data and recompute the views from scratch.

Scalable: Both the batch layer and serving layers are easily scalable. Just
add new machines and they will be taken advantage of automatically.

General: The architecture described is as general as it gets. You can
compute and update arbitrary views of an arbtirary dataset.

Extensible: Adding a new view is as easy as adding a new function of the
master dataset. Since the master dataset can contain arbitrary data, new types
of data can be easily added. If you want to tweak a view, you don't have to
worry about supporting multiple versions of the view in the application. You
can simply recompute the entire view from scratch.

Allows ad hoc queries: The batch layer supports ad-hoc queries innately.
All the data is conveniently available in one location.

Minimal maintenance:The main component to maintain in this system is
Hadoop. Hadoop requires some administration knowledge, but is fairly

1.6.3 Batch and serving layers satisfy almost all properties
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straightforward to operate. The serving layer databases are simple because
they don't do random writes. Random writes causes most of the complexity
in a database. Since a serving layer database has so few moving parts, there's
lots less that can go wrong. As a consequence, it's much less likely that
anything will go wrong with a serving layer database so they are easier to
maintain.

Debuggable:You will always have the inputs and outputs of
computations run on the batch layer. In a traditional database, an output can
replace the original input -- for example, when incrementing a value. In the
batch and serving layers, the input is the master dataset and the output is the
views. Likewise you have the inputs and outputs for all the intermediate
steps. Having the inputs and outputs gives you all the information you need
to debug when something goes wrong.

The beauty of the batch and serving layers is that they satisfy almost all the
properties you want with a simple and easy to understand approach. There are no
concurrency issues to deal with, and you get parallelism for free. The only property
we're missing is low latency updates. The final layer, the speed layer, fixes this
problem.
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Figure 1.9 Speed layer

The speed layer exists to compensate for the high latency of updates to the serving
layer. The trick, and one of the cruxes of this book, is that the speed layer only
needs to compensate for data that hasn't made it into the serving layer yet. This
means that the speed layer only needs to handle hours of data rather than years of
data! Additionally, you will be able to throw data away from the speed layer once
it's available in the serving layer.

The speed layer tends to use complex, highly incremental algorithms to achieve
low latency updates. The beauty is that this complexity is all transient since the
serving layer eventually replaces computations done in the speed layer.

Some algorithms are difficult to compute incrementally. The batch/speed layer
split gives you the flexibility to use the exact algorithm on the batch layer and an
approximate algorithm on the speed layer. The batch layer constantly overrides the
speed layer, so the approximation gets corrected and your system exhibits the
property of "eventual accuracy". Computing unique counts, for example, can be

1.6.4 Speed layer
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challenging if the sets of uniques get large. It's easy to do the unique count on the
batch layer since you look at all the data at once, but on the speed layer you might
use a bloom filter as an approximation.3

Footnote 3 Bloom filters are a compact set representation that sometimes has false positives. Unique countsm
computed using a bloom filter will therefore be approximate.

What you end up with is the best of both worlds of performance and robustness.
A system that does the exact computation in the batch layer and an approximate
computation in the speed layer exhibits "eventual accuracy" since the batch layer
corrects what's computed in the speed layer. You still get low latency updates, but
because the speed layer is transient, the complexity of achieving this does not
affect the robustness of our results. The transient nature of the speed layer gives
you the flexibility to be very aggressive when it comes to making tradeoffs for
performance. Of course, for computations that can be done exactly in an
incremental fashion the system is fully accurate.

Incremental algorithms cause a lot of complexity: they interact poorly with the
CAP theorem, they cause corruption when a mistake is made, and when things go
wrong they can be hard to debug. Additionally, the complexity is transient since
the batch layer constantly overrides the speed layer. This "complexity isolation" is
one of the greatest strengths of the layered architecture.

Figure 1.10 Satisfying application queries

The model we will use in the speed layer is that of "stream processing."
Whereas in the batch layer we do computations on large, fixed-size datasets, in
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stream processing you process an infinite stream of messages one message at a
time. The complexity of the speed layer comes from using highly incremental
algorithms and needing to engineer for databases that aren't fully consistent.

To satisfy a query from the application, you query the results from the serving
layer and speed layer and merge them to get the final result. This is shown in
Figure 1.10

We have a lot of ground to cover to learn the tools and techniques for building Big
Data applications. Every aspect of how you manage your data -- storage,
schemafication, processing, and serving -- will most likely be different from how
you built applications in the past.

In the meantime, let's get a taste for what these Big Data applications look like.
The code snippet in the following listing computes the number of pageviews for
each url given an arbitrarily sized collection of raw pageviews. This code reads
from records that are formatted in text format: every line of a text file contains a
single url. This is  how we will store data in practice, but this is the simplestnot
way to show the processing code at this point.

Listing 1.1 Counting pageviews per url in parallel

Pipe pipe = new Pipe("counter");
pipe = new GroupBy(pipe, new Fields("url"));
pipe = new Every(
        pipe,
        new Count(new Fields("count")),
        new Fields("url", "count"));
Flow flow = new FlowConnector().connect(
                new Hfs(new TextLine(new Fields("url")), srcDir),
                new StdoutTap(),
                pipe);
flow.complete();

What's interesting about this code is that you get parallelism "for free." Because
the algorithm is written in this way, it can be arbitrarily distributed on a
MapReduce cluster, scaling to however many nodes you have available. At the end
of the computation, the output directory will contain some number of files with the
results in text format.

The core of our Big Data systems will be batch computations written like this.
Since you get the parallelism for free, and there are no concurrency issues to worry

1.7 A glimpse into the Big Data way
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about, these computations are easy to write. The drawback to batch computation is
that it has high latency -- a batch workflow that updates the databases that serve the
application will take hours to complete. However, we will be able to achieve low
latency on updates without sacrificing the simplicity of the batch approach. The
speed layer will utilize more complex algorithms to compensate for the high
latency of batch computation.

The architecture described in this book does for more than just scale existing
systems. Your systems will acquire some new capabilities as compared to
traditional relational databases and will have simpler operational properties.

Benefit #1: You will be able collect more data and get more value out of your
data. These Big Data systems are easily scalable. The powerful capabilities to store
and process data they provide will lead you to collect even more data. Increasing
the amount and types of data your store will lead to more opportunities to mine
your data, produce analytics, and build new applications.

Benefit #2: Applications will be more robust. There are many reasons why your
applications will be more robust. As one example, you'll have the ability to run
computations on your whole dataset to do migrations or fix things that go wrong.
You'll never have to deal with situations where there are multiple versions of a
schema active at the same time. When you change your schema, you will have the
capability to update all data to the new schema. Likewise, if an incorrect algorithm
is accidentally deployed to production and corrupts data you're serving, you can
easily fix things by recomputing the corrupted values. As we'll explore, there are
many other reasons why your Big Data applications will be more robust.

Benefit #3: Performance will be more predictable. Although these Big Data
systems as a whole are generic and flexible, the individual components comprising
the system are specialized. There is very little "magic" happening behind the
scenes as compared to something like a SQL query planner. This leads to more
predictable performance.

It’s helpful to understand the background behind the tools we will be using
throughout this book. There have been a number of trends in technology that
deeply influence the ways in which you build Big Data systems.

1.8 Benefits of Big Data systems

1.9 Recent trends in technology
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In terms of price/performance tradeoff, you get the most bang for your buck using
off-the-shelf components. This means that it's better to scale by adding more
machines rather than scaling by buying better hardware. The first appoach is called
"horizontal scaling", and the second approach is called "vertical scaling." Almost
all the systems we will be using are horizontally scalable.

Another trend in technology has been the rise of elastic clouds, also known as
"Infrastructure as a Service." Amazon Web Services (AWS) is the most notable
elastic cloud. Elastic clouds allow you to rent hardware on demand rather than own
your own hardware in your own location. Elastic clouds let you increase or
decrease the size of your cluster near instantaneously, so if you have a big job you
want to run you can allocate the hardware temporarily.

Elastic clouds drastically simplify system administration. They also provide
additional storage and hardware allocation options that can significantly drive
down the price of your infrastructure. For example, AWS has a feature called spot
instances in which you bid on instances rather than pay a fixed price. If someone
bids a higher price than you, you will lose the instance. Because spot instances can
disappear at any moment, they tend to be significantly cheaper than normal
instances. For distributed computation systems like MapReduce, they are a great
option because fault-tolerance is handled at the software layer.

The open source community has created a plethora of Big Data technologies over
the past few years. All the technologies we will be using are open-source and free
to use.

There are five categories of open source projects we will be using:
1. Batch computation systems: Batch computation systems are high throughput,

high latency systems. Batch computation systems can do nearly arbitrary
computations, but they may take hours or days to do so. The only batch
computation system we will be using is Hadoop. The Hadoop project has two
subprojects: the Hadoop Distributed Filesystem (HDFS) and Hadoop MapReduce.
HDFS is a distributed fault-tolerant storage system and can scale to petabytes of
data. MapReduce is a horizontally scalable computation framework that integrates
with HDFS.

2. Serialization frameworks: Serialization frameworks provide tools and

1.9.1 Commoditization of Hardware

1.9.2 Elastic Clouds

1.9.3 Open Source
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libraries for using objects between languages. They can serialize an object into a
byte array from any language, and then deserialize that byte array into an object in
any language. Serialization frameworks provide a Schema Definition Language for
defining objects and their fields, and they provide mechanisms to safely version
objects so that a schema can be evolved without invalidating existing objects. The
three notable notable serialization frameworks are Thrift, Protocol Buffers, and
Avro. We will be using Thrift, but any of them could be used.

3. Random-access NoSQL databases: There have been a plethora of "NoSQL"
databases created the past few years. Between Cassandra, HBase, MongoDB,
Voldemort, Riak, CouchDB, and others, it's hard to keep track of them all! These
databases all share one thing in common: they sacrifice the full expressiveness of
SQL and instead specialize in certain kinds of operations. They all have different
semantics and are meant to be used for specific purposes. They are *not* meant to
be used for arbitrary data warehousing. In many ways choosing a NoSQL database
to use is like choosing between a hash-map, sorted-map, linked-list, or vector when
choosing a data structure to use in a program. You know beforehand exactly what
you're going to do and choose appropriately. We will be using Cassandra as part of
the example application we'll be building.

4. Messaging/Queuing systems: A messaging/queuing system provides a way to
send and consume messages between processes in a fault-tolerant and
asynchronous manner. A message queue is a key component for doing realtime
processing. We will be using Kestrel in this book, a message queue developed at
Twitter, because it's the simplest of the queues to operate and use that still has all
the features you require for realtime computation.

5. Realtime computation system: Realtime computation systems are high
throughput, low latency stream processing systems. They can't do the range of
computations a batch processing system can, but they process messages extremely
quickly. We will be using Storm in this book (written by the author). Storm
topologies are easy to write and scale.

As these open source projects have matured, companies have formed around
some of them to provide enterprise support. For example, Cloudera provides
Hadoop support and DataStax provides Cassandra support. Other projects are
company products. For example, Riak is a product of Basho technologies,
MongoDB is a product of of 10gen, and RabbitMQ is a product of SpringSource, a
division of VMWare.
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We will be building an example Big Data application throughout this book to
illustrate the concepts. We will be building the data management layer for a
Google Analytics like service. The service will be able to track billions of page
views per day.

The service will support a variety of different metrics. Each metric will be
supported in real-time. The metrics range from simple counting metrics to complex
analyses of how visitors are navigating a website.

The metrics we will support are:
1. Page view counts by URL sliced by time. Example queries are "What are the

pageviews for each day over the past year?". "How many pageviews have there
been in the past 12 hours?"

2. Unique visitors by URL sliced by time. Example queries are "How many
unique people visited this domain in 2010?" "How many unique people visited this
domain each hour for the past three days?"

3. Bounce rate analysis. "What percentage of people visit the page without
visiting any other pages on this website?"

We will be building out the layers that store, process, and serve queries to the
application.

You saw what can go wrong when scaling a relational system with traditional
techniques like sharding. The problems faced went beyond scaling as the system
became complex to manage, extend, and even understand. As you learn how to
build Big Data systems in the upcoming chapters, we will focus as much on
robustness as we do on scalability. As you'll see, when we build things the right
way, both robustness and scalability are achievable in the same system.

Don't worry if a lot of this material still seems uncertain. We have a lot of
ground yet to cover and will be revisiting every topic introduced in this chapter in
depth throughout the course of the book. In the next chapter we will start learning
how to build a layered architecture. We will start at the very core of the stack with
how you model and schemify the master copy of your dataset.

1.10 Our example application: SuperWebAnalytics.com

1.11 Summary

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
 http://www.manning-sandbox.com/forum.jspa?forumID=787

29


	Big Data MEAP Chapter 1
	Copyright
	Table of Contents
	Chapter 1: A New Paradigm for Big Data
	1.1 Scaling with a traditional database
	1.1.1 Adding asynchronous, batched updates
	1.1.2 Sharding a relational database
	1.1.3 Complexity of adding new features
	1.1.4 Incremental approaches are vulnerable to human
      error
	1.1.5 Fault tolerance of sharded database is bad

	1.2 The CAP Theorem
	1.2.1 Definition
	1.2.2 Eventual Consistency

	1.3 Desired Properties of a Big Data System
	1.3.1 Robust and fault-tolerant
	1.3.2 Low latency reads and updates
	1.3.3 Scalable
	1.3.4 General
	1.3.5 Extensible
	1.3.6 Allows ad hoc queries
	1.3.7 Minimal maintenance
	1.3.8 Debuggable

	1.4 First principles
	1.4.1 Data
	1.4.2 Queries

	1.5 Thought experiment on the ideal Big Data architecture
	1.5.1 Interaction with the CAP theorem
	1.5.2 Human fault-tolerance

	1.6 Realtime Big Data architecture
	1.6.1 Batch layer
	1.6.2 Serving layer
	1.6.3 Batch and serving layers satisfy almost all properties
	1.6.4 Speed layer

	1.7 A glimpse into the Big Data way
	1.8 Benefits of Big Data systems
	1.9 Recent trends in technology
	1.9.1 Commoditization of Hardware
	1.9.2 Elastic Clouds
	1.9.3 Open Source

	1.10 Our example application: SuperWebAnalytics.com
	1.11 Summary




