
 The technological underpinnings of cloud computing 27

2.1.3 Controlling remote servers with a cloud API

The API is to a cloud what the dashboard and controls are to a car. You have tremen-
dous power under that hood, but you need the dials and readouts to know what the
vehicle is doing. You need the steering wheel, accelerator, and brake to control it.
Remember, you’d never drive fast if you didn’t have good brakes.

When you have a cloud, you need a way to access it. The highest-level clouds—
those offering Software as a Service (SaaS) applications—offer a browser-based web
interface . Lower-level clouds—those offering Infrastructure as a Service (IaaS)—also
need a way to access applications. Each type of cloud must provide some kind of API
that can be used to provision resource s, configure and control them, and release them
when they’re no longer needed.

An API is necessary to engage the service of a cloud provider. It’s a way for the
vendor to expose service features and potentially enable competitive differentiation.
For example, Amazon’s EC2 API is a SOAP- and HTTP Query-based API used to send
proprietary commands to create, store, provision, and manage Amazon Machine
Images (AMIs). Sun’s Project Kenai Cloud API specification is a Representational
State Transfer (REST)-ful API for creating and managing cloud resources, including
compute, storage, and networking components.

REST ARCHITECTURE AND RESTFUL APIS Representational State Transfer
(REST) is a style of software architecture for distributed hypermedia systems,
such as the World Wide Web. The REST architectural style was developed
in parallel with the HTTP protocol. The largest-known implementation
of a system conforming to the REST architectural style is the World Wide
Web. In fact, REST can be considered a post hoc description of the features
of the web that made the web successful. REST-style architectures consist
of clients and servers. Client s initiate requests to servers; server s process
requests and return appropriate responses. Requests and responses are
built around the transfer of representations of resources. A resource can be any
coherent and meaningful concept that may be addressed. A representation
of a resource is typically a document that captures the current or intended
state of a resource. Conforming to the REST constraints is referred to as
being RESTful.

Because your cloud applications will be the lifeblood of your company, you’ll want
to ensure that only authorized parties can access your applications. If an appli-
cation was running in your company’s secure data center protected by layers of
physical and logical security you’d be certain that no unauthorized person could ac-
cess it. Here, because everything having to do with your application and the server
it runs on is by definition accessible over the internet, the approach Amazon and
others take to security is to issue X.509 public key pairs initially and then require a
key on every API call. This ensures that the caller has the credentials to access the
infrastructure.

28 CHAPTER 2 Understanding cloud computing classifications

To understand a cloud API—for which there isn’t yet an accepted standard—it’s best
to look at Amazon’s cloud API as the default standard as they’re the leaders. Table 2.2
outlines some of the basic definitions and operations central to the Amazon cloud API.

Table 2.2 Basic terms and operations of the Amazon EC2 API

Term Description

AMI An Amazon Machine Image is an encrypted and signed machine image suitable
to run in a virtual server environment. For example, it may contain Linux, Apache,
MySQL, or PHP, as well as the application of the AMI’s owner.

AMI s can be public (provided by Amazon), private (custom designed by its creator),
paid (purchased from a third party), or shared (created by the community for free).

AMIs can be stored in Amazon’s Simple Storage Service (S3).

Instance The result of launching an AMI is a running system called an instance . When
an instance terminates, the data on that instance vanishes. For all intents and
purposes, an Instance is identical to a traditional host computer.

Standard flow 1. Use a standard AMI by customizing an existing one.

2. Bundle the AMI, and get an AMI ID to enable launching as many instances of
the AMI as needed.

3. Launch one or more instances of this AMI.

4. Administer and use the running instance(s).

Connecting From a web browser, go to http://<hostname>, where <hostname> is your
instance’s public hostname.

If you want to connect to a just-launched public AMI that hasn’t been modified, run
the ec2-get-console-output command.

The result in either case enables you to log in as root and exercise full control over
this instance, just like any host computer you could walk up to in a data center.

We’ve barely scratched the surface of all the concepts and corresponding API calls that
exist in Amazon’s API. Documentation is available at http://docs.amazonwebservices.
com. APIs also cover these areas:

 Using instance addressing■

 Using network security■

 Using regions and availability zones■

 Using Amazon■ Elastic Block Store (EBS)
 Using auto scaling, elastic load balancing, and Amazon CloudWatch■

 Using public data sets■

 Using Amazon’s■ Virtual Private Cloud

We’ll revisit select aspects of the cloud API at various points throughout the book. Let’s
leave this now and talk about the next important layer in what it takes to set up and use
a cloud: cloud storage.

http://docs.amazonwebservices

