
Chapter 8

Closing Remarks

The need to process enormous quantities of data has never been greater. Not
only are terabyte- and petabyte-scale datasets rapidly becoming commonplace,
but there is consensus that great value lies buried in them, waiting to be
unlocked by the right computational tools. In the commercial sphere, busi-
ness intelligence—driven by the ability to gather data from a dizzying array
of sources—promises to help organizations better understand their customers
and the marketplace, hopefully leading to better business decisions and com-
petitive advantages. For engineers building information processing tools and
applications, larger datasets lead to more effective algorithms for a wide range
of tasks, from machine translation to spam detection. In the natural and phys-
ical sciences, the ability to analyze massive amounts of data may provide the
key to unlocking the secrets of the cosmos or the mysteries of life.

In the preceding chapters, we have shown how MapReduce can be exploited
to solve a variety of problems related to text processing at scales that would
have been unthinkable a few years ago. However, no tool—no matter how
powerful or flexible—can be perfectly adapted to every task, so it is only fair
to discuss the limitations of the MapReduce programming model and survey
alternatives. Section 8.1 covers online learning algorithms and Monte Carlo
simulations, which are examples of algorithms that require maintaining global
state. As we have seen, this is difficult to accomplish in MapReduce. Sec-
tion 8.2 discusses alternative programming models, and the book concludes in
Section 8.3.

8.1 Limitations of MapReduce

As we have seen throughout this book, solutions to many interesting problems
in text processing do not require global synchronization. As a result, they can
be expressed naturally in MapReduce, since map and reduce tasks run inde-
pendently and in isolation. However, there are many examples of algorithms
that depend crucially on the existence of shared global state during processing,
making them difficult to implement in MapReduce (since the single opportu-

153

dell
Rectangle



nity for global synchronization in MapReduce is the barrier between the map
and reduce phases of processing).

The first example is online learning. Recall from Chapter 7 the concept
of learning as the setting of parameters in a statistical model. Both EM and
the gradient-based learning algorithms we described are instances of what are
known as batch learning algorithms. This simply means that the full “batch”
of training data is processed before any updates to the model parameters are
made. On one hand, this is quite reasonable: updates are not made until the
full evidence of the training data has been weighed against the model. An
earlier update would seem, in some sense, to be hasty. However, it is generally
the case that more frequent updates can lead to more rapid convergence of
the model (in terms of number of training instances processed), even if those
updates are made by considering less data [24]. Thinking in terms of gradient
optimization (see Section 7.5), online learning algorithms can be understood
as computing an approximation of the true gradient, using only a few training
instances. Although only an approximation, the gradient computed from a
small subset of training instances is often quite reasonable, and the aggregate
behavior of multiple updates tends to even out errors that are made. In the
limit, updates can be made after every training instance.

Unfortunately, implementing online learning algorithms in MapReduce is
problematic. The model parameters in a learning algorithm can be viewed as
shared global state, which must be updated as the model is evaluated against
training data. All processes performing the evaluation (presumably the map-
pers) must have access to this state. In a batch learner, where updates occur
in one or more reducers (or, alternatively, in the driver code), synchronization
of this resource is enforced by the MapReduce framework. However, with on-
line learning, these updates must occur after processing smaller numbers of
instances. This means that the framework must be altered to support faster
processing of smaller datasets, which goes against the design choices of most
existing MapReduce implementations. Since MapReduce was specifically opti-
mized for batch operations over large amounts of data, such a style of computa-
tion would likely result in inefficient use of resources. In Hadoop, for example,
map and reduce tasks have considerable startup costs. This is acceptable be-
cause in most circumstances, this cost is amortized over the processing of many
key-value pairs. However, for small datasets, these high startup costs become
intolerable. An alternative is to abandon shared global state and run inde-
pendent instances of the training algorithm in parallel (on different portions
of the data). A final solution is then arrived at by merging individual results.
Experiments, however, show that the merged solution is inferior to the output
of running the training algorithm on the entire dataset [52].

A related difficulty occurs when running what are called Monte Carlo sim-
ulations, which are used to perform inference in probabilistic models where
evaluating or representing the model exactly is impossible. The basic idea is
quite simple: samples are drawn from the random variables in the model to
simulate its behavior, and then simple frequency statistics are computed over
the samples. This sort of inference is particularly useful when dealing with so-



called nonparametric models, which are models whose structure is not specified
in advance, but is rather inferred from training data. For an illustration, imag-
ine learning a hidden Markov model, but inferring the number of states, rather
than having them specified. Being able to parallelize Monte Carlo simulations
would be tremendously valuable, particularly for unsupervised learning appli-
cations where they have been found to be far more effective than EM-based
learning (which requires specifying the model). Although recent work [10] has
shown that the delays in synchronizing sample statistics due to parallel im-
plementations do not necessarily damage the inference, MapReduce offers no
natural mechanism for managing the global shared state that would be required
for such an implementation.

The problem of global state is sufficiently pervasive that there has been
substantial work on solutions. One approach is to build a distributed datas-
tore capable of maintaining the global state. However, such a system would
need to be highly scalable to be used in conjunction with MapReduce. Google’s
BigTable [34], which is a sparse, distributed, persistent multidimensional sorted
map built on top of GFS, fits the bill, and has been used in exactly this man-
ner. Amazon’s Dynamo [48], which is a distributed key-value store (with a
very different architecture), might also be useful in this respect, although it
wasn’t originally designed with such an application in mind. Unfortunately, it
is unclear if the open-source implementations of these two systems (HBase and
Cassandra, respectively) are sufficiently mature to handle the low-latency and
high-throughput demands of maintaining global state in the context of mas-
sively distributed processing (but recent benchmarks are encouraging [40]).

8.2 Alternative Computing Paradigms

Streaming algorithms [3] represent an alternative programming model for deal-
ing with large volumes of data with limited computational and storage re-
sources. This model assumes that data are presented to the algorithm as one
or more streams of inputs that are processed in order, and only once. The
model is agnostic with respect to the source of these streams, which could be
files in a distributed file system, but more interestingly, data from an “external”
source or some other data gathering device. Stream processing is very attrac-
tive for working with time-series data (news feeds, tweets, sensor readings, etc.),
which is difficult in MapReduce (once again, given its batch-oriented design).
Furthermore, since streaming algorithms are comparatively simple (because
there is only so much that can be done with a particular training instance),
they can often take advantage of modern GPUs, which have a large number
of (relatively simple) functional units [104]. In the context of text processing,
streaming algorithms have been applied to language modeling [90], translation
modeling [89], and detecting the first mention of news event in a stream [121].

The idea of stream processing has been generalized in the Dryad framework
as arbitrary dataflow graphs [75, 159]. A Dryad job is a directed acyclic graph
where each vertex represents developer-specified computations and edges rep-

dell
Rectangle


