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1.3 Understanding distributed systems and Hadoop 
Moore’s law  suited us well for the past decades, but building bigger and bigger servers 
is no longer necessarily the best solution to large-scale problems. An alternative that 
has gained popularity is to tie together many low-end/commodity machines together 
as a single functional distributed system .

To understand the popularity of distributed systems (scale-out)  vis-à-vis huge 
monolithic servers (scale-up), consider the price performance of current I/O 
technology. A high-end machine with four I/O channels each having a throughput of 
100 MB/sec will require three hours to read a 4 TB data set!  With Hadoop, this same 
data set will be divided into smaller (typically 64 MB) blocks that are spread among 
many machines in the cluster via the Hadoop Distributed File System (HDFS ). With 
a modest degree of replication, the cluster machines can read the data set in parallel 
and provide a much higher throughput. And such a cluster of commodity machines 
turns out to be cheaper than one high-end server!

The preceding explanation showcases the efficacy of Hadoop relative to monolithic 
systems. Now let’s compare Hadoop to other architectures for distributed systems. 
SETI@home , where screensavers around the globe assist in the search for extraterrestrial 
life, represents one well-known approach. In SETI@home, a central server stores radio 
signals from space and serves them out over the internet to client desktop machines 
to look for anomalous signs. This approach moves the data to where computation will 
take place (the desktop screensavers). After the computation, the resulting data is 
moved back for storage.

Hadoop differs from schemes such as SETI@home in its philosophy toward data.  
SETI@home requires repeat transmissions of data between clients and servers. This 
works fine for computationally intensive work, but for data-intensive processing, 
the size of data becomes too large to be moved around easily. Hadoop focuses on 
moving code to data instead of vice versa. Referring to figure 1.1 again, we see both 
the data and the computation exist within the Hadoop cluster. The clients send only 
the MapReduce programs to be executed, and these programs are usually small (often 
in kilobytes). More importantly, the move-code-to-data  philosophy applies within the 
Hadoop cluster itself. Data is broken up and distributed across the cluster, and as much 
as possible, computation on a piece of data takes place on the same machine where 
that piece of data resides.

This move-code-to-data philosophy makes sense for the type of data-intensive 
processing Hadoop is designed for. The programs to run (“code”) are orders of 
magnitude smaller than the data and are easier to move around. Also, it takes more 
time to move data across a network than to apply the computation to it. Let the data 
remain where it is and move the executable code to its hosting machine.

Now that you know how Hadoop fits into the design of distributed systems, let’s see 
how it compares to data processing systems, which usually means SQL databases. 




