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specify the actual steps in processing the data, which is more analogous to an execution 
plan for a SQL engine . Under SQL you have query statements; under MapReduce 
you have scripts and codes. MapReduce allows you to process data in a more general 
fashion than SQL queries. For example, you can build complex statistical models  from 
your data or reformat your image data. SQL is not well designed for such tasks.

On the other hand, when working with data that do fit well into relational structures, 
some people may find MapReduce less natural to use. Those who are accustomed to 
the SQL paradigm may find it challenging to think in the MapReduce way. I hope the 
exercises and the examples in this book will help make MapReduce programming 
more intuitive. But note that many extensions are available to allow one to take 
advantage of the scalability of Hadoop while programming in more familiar paradigms. 
In fact, some enable you to write queries in a SQL-like language, and your query is 
automatically compiled into MapReduce code for execution. We’ll cover some of these 
tools in chapters 10 and 11.

OFFLINE BATCH PROCESSING INSTEAD OF ONLINE TRANSACTIONS

Hadoop is designed for offline processing  and analysis of large-scale data. It doesn’t 
work for random reading and writing of a few records, which is the type of load for 
online transaction processing. In fact, as of this writing (and in the foreseeable future), 
Hadoop is best used as a write-once , read-many-times  type of data store. In this aspect 
it’s similar to data warehouses in the SQL world.

You have seen how Hadoop relates to distributed systems and SQL databases at a 
high level. Let’s learn how to program in it. For that, we need to understand Hadoop’s 
MapReduce paradigm. 

1.5 Understanding MapReduce 
You’re probably aware of data processing models such as pipelines  and message 
queues . These models provide specific capabilities in developing different aspects of 
data processing applications. The most familiar pipelines are the Unix pipes . Pipelines 
can help the reuse of processing primitives; simple chaining of existing modules cre-
ates new ones. Message queues can help the synchronization of processing primitives . 
The programmer writes her data processing task as processing primitives in the form 
of either a producer or a consumer. The timing of their execution is managed by 
the system.

Similarly, MapReduce is also a data processing model . Its greatest advantage is the 
easy scaling of data processing over multiple computing nodes. Under the MapReduce 
model, the data processing primitives are called mappers  and reducers .  Decomposing a 
data processing application into mappers and reducers is sometimes nontrivial. But, 
once you write an application in the MapReduce form, scaling the application to run 
over hundreds, thousands, or even tens of thousands of machines in a cluster is merely 
a configuration change. This simple scalability is what has attracted many programmers 
to the MapReduce model.
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1.5.1 Scaling a simple program manually

Before going through a formal treatment of MapReduce, let’s go through an exercise 
of scaling a simple program to process a large data set. You’ll see the challenges of 
scaling a data processing program and will better appreciate the benefits of using a 
framework such as MapReduce to handle the tedious 
chores for you.

Our exercise is to count the number of times each word 
occurs in a set of documents. In this example, we have a 
set of documents having only one document with only one 
sentence:

Do as I say, not as I do.

We derive the word counts shown to the right.
We’ll call this particular exercise word counting . When 

the set of documents is small, a straightforward program 
will do the job. Let’s write one here in pseudo-code :

define wordCount as Multiset;
for each document in documentSet {
    T = tokenize(document);
    for each token in T {
        wordCount[token]++;
    }
}
display(wordCount);

The program loops through all the documents. For each document, the words are 
extracted one by one using a tokenization process. For each word, its corresponding 
entry in a multiset called wordCount is incremented by one. At the end, a display() 
function prints out all the entries in wordCount.

Many ways to say MapReduce
Even though much has been written about MapReduce, one does not find the name 
itself written the same everywhere. The original Google paper and the Wikipedia 
entry use the CamelCase version MapReduce. However, Google itself has used Map 
Reduce in some pages on its website (for example, http://research.google.com/
roundtable/MR.html). At the official Hadoop documentation site, one can find links 
pointing to a Map-Reduce Tutorial. Clicking on the link brings one to a Hadoop 
Map/Reduce Tutorial (http://hadoop.apache.org/core/docs/current/mapred_
tutorial.html) explaining the Map/Reduce framework. Writing variations also exist 
for the different Hadoop components such as NameNode (name node, name-
node, and namenode), DataNode, JobTracker, and TaskTracker. For the sake of 
consistency, we’ll go with CamelCase for all those terms in this book. (That is, we will 
use MapReduce, NameNode, DataNode, JobTracker, and TaskTracker.)

Word Count

as 2

do 2

i 2

not 1

say 1

http://research.google.com/roundtable/MR.html
http://research.google.com/roundtable/MR.html
http://hadoop.apache.org/core/docs/current/mapred_tutorial.html
http://hadoop.apache.org/core/docs/current/mapred_tutorial.html
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NOTE A multiset  is a set where each element also has a count. The word count 
we’re trying to generate is a canonical example of a multiset. In practice, it’s 
usually implemented as a hash table .

This program works fine until the set of documents you want to process becomes large. 
For example, you want to build a spam filter  to know the words frequently used in the 
millions of spam emails you’ve received. Looping through all the documents using a 
single computer will be extremely time consuming. You speed it up by rewriting the 
program so that it distributes the work over several machines. Each machine will pro-
cess a distinct fraction of the documents. When all the machines have completed this, 
a second phase of processing will combine the result of all the machines. The pseudo-
code for the first phase, to be distributed over many machines, is

define wordCount as Multiset;
for each document in documentSubset {
    T = tokenize(document);
    for each token in T {
        wordCount[token]++;
    }
}
sendToSecondPhase(wordCount);

And the pseudo-code for the second phase is

define totalWordCount as Multiset;
for each wordCount received from firstPhase {
    multisetAdd (totalWordCount, wordCount);
}

That wasn’t too hard, right? But a few details may prevent it from working as expected. 
First of all, we ignore the performance requirement of reading in the documents. If 
the documents are all stored in one central storage server, then the bottleneck  is in 
the bandwidth of that server. Having more machines for processing only helps up to a 
certain point—until the storage server can’t keep up. You’ll also need to split up the 
documents among the set of processing machines such that each machine will process 
only those documents that are stored in it. This will remove the bottleneck of a central 
storage server. This reiterates the point made earlier about storage and processing hav-
ing to be tightly coupled in data-intensive distributed applications.

Another flaw with the program is that wordCount (and totalWordCount) are stored 
in memory. When processing large document sets, the number of unique words can 
exceed the RAM storage  of a machine. The English language has about one million 
words, a size that fits comfortably into an iPod, but our word counting program will deal 
with many unique words not found in any standard English dictionary. For example, 
we must deal with unique names such as Hadoop. We have to count misspellings even 
if they are not real words (for example, exampel), and we count all different forms 
of a word separately (for example, eat, ate, eaten, and eating  ). Even if the number of 
unique words in the document set is manageable in memory, a slight change in the 
problem definition can explode the space complexity. For example, instead of words 



in documents, we may want to count IP addresses in a log file, or the frequency of 
bigrams. In the case of the latter, we’ll work with a multiset with billions of entries, 
which exceeds the RAM storage of most commodity computers.

NOTE A bigram  is a pair of consecutive words. The sentence “Do as I say, not 
as I do” can be broken into the following bigrams: Do as, as I, I say, say not, not 
as, as I, I do. Analogously, trigrams  are groups of three consecutive words. Both 
bigrams and trigrams are important  in natural language processing .

wordCount may not fit in memory; we’ll have to rewrite our program to store this hash 
table on disk. This means we’ll implement a disk-based hash table, which involves a 
substantial amount of coding.

Furthermore, remember that phase two has only one machine, which will process 
wordCount sent from all the machines in phase one. Processing one wordCount is 
itself quite unwieldy. After we have added enough machines to phase one processing, 
the single machine in phase two will become the bottleneck. The obvious question 
is, can we rewrite phase two in a distributed fashion so that it can scale by adding 
more machines?

The answer is, yes. To make phase two work in a distributed fashion, you must somehow 
divide its work among multiple machines  such that they can run independently. You 
need to partition  wordCount after phase one such that each machine in phase two only 
has to handle one partition. In one example, let’s say we have 26 machines for phase 
two. We assign each machine to only handle wordCount for words beginning with a 
particular letter in the alphabet. For example, machine A in phase two will only handle 
word counting for words beginning with the letter a. To enable this partitioning in 
phase two, we need a slight modification in phase one. Instead of a single disk-based 
hash table for wordCount, we will need 26 of them: wordCount-a, wordCount-b, 
and so on. Each one counts words starting with a particular letter. After phase one, 
wordCount-a from each of the phase one machines will be sent to machine A of phase 
two, all the wordCount-b’s will be sent to machine B, and so on. Each machine in 
phase one will shuffle  its results among the machines in phase two.

Looking back, this word counting program is getting complicated. To make it work 
across a cluster of distributed machines, we find that we need to add a number of 
functionalities:

 Store files over many processing machines (of phase one).■

 Write a disk-based hash table permitting processing without being limited by ■

RAM capacity.
 Partition the intermediate data■   (that is, wordCount) from phase one.
 Shuffle the partitions to the appropriate machines in phase two.■

This is a lot of work for something as simple as word counting, and we haven’t even 
touched upon issues like fault tolerance. (What if a machine fails in the middle of its 
task?) This is the reason why you would want a framework like Hadoop. When you 
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write your application in the MapReduce model, Hadoop will take care of all that 
scalability “plumbing” for you.

1.5.2 Scaling the same program in MapReduce

MapReduce programs are executed in two main phases, called mapping  and reducing . 
Each phase is defined by a data processing function, and these functions are called 
mapper and reducer, respectively. In the mapping phase, MapReduce takes the input 
data and feeds each data element to the mapper. In the reducing phase, the reducer 
processes all the outputs from the mapper and arrives at a final result.

In simple terms, the mapper is meant to filter and transform  the input into something 
that the reducer can aggregate over. You may see a striking similarity here with the two 
phases we had to develop in scaling up word counting. The similarity is not accidental. 
The MapReduce framework was designed after a lot of experience in writing scalable, 
distributed programs. This two-phase design pattern was seen in scaling many programs, 
and became the basis of the framework.

In scaling our distributed word counting program in the last section, we 
also had to write the partitioning and shuffling functions. Partitioning and 
shuffling are common design patterns that go along with mapping and reducing. 
Unlike mapping and reducing, though, partitioning and shuffling are generic 
functionalities that are not too dependent on the particular data processing 
application. The MapReduce framework provides a default implementation that 
works in most situations.

In order for mapping, reducing, partitioning, and shuffling (and a few others we 
haven’t mentioned) to seamlessly work together, we need to agree on a common 
structure for the data being processed. It should be flexible and powerful enough to 
handle most of the targeted data processing applications. MapReduce uses lists  and 
(key/value) pairs as its main data primitives. The keys and values are often integers 
or strings but can also be dummy values to be ignored or complex object types. The 
map and reduce functions must obey the 
following constraint on the types of keys 
and values.

In the MapReduce framework you write 
applications by specifying the mapper 
and reducer. Let’s look at the complete 
data flow:

1 The input to your application must be structured as a list of (key/value) pairs , 
list(<k1, v1>). This input format may seem open-ended but is often quite 
simple in practice. The input format for processing multiple files is usually 
list(<String filename, String file_content>). The input format for 
processing one large file, such as a log file, is list(<Integer line_number, 
String log_event>).

Input Output

map <k1, v1> list(<k2, v2>)

reduce <k2, list(v2)> list(<k3, v3>)



2 The list of (key/value) pairs is broken up and each individual (key/value) pair, 
<k1, v1>, is processed by calling the map function of the mapper. In practice, 
the key k1 is often ignored by the mapper. The mapper transforms each <k1, 
v1> pair into a list of <k2, v2> pairs. The details of this transformation largely 
determine what the MapReduce program does. Note that the (key/value) pairs 
are processed in arbitrary order. The transformation must be self-contained in 
that its output is dependent only on one single (key/value) pair.
 For word counting, our mapper takes <String filename, String file_
content>  and promptly ignores filename. It can output a list of <String 
word, Integer count> but can be even simpler. As we know the counts will 
be aggregated in a later stage, we can output a list of <String word, Integer 
1> with repeated entries and let the complete aggregation be done later. That 
is, in the output list we can have the (key/value) pair <"foo", 3> once or we 
can have the pair <"foo", 1> three times. As we’ll see, the latter approach is 
much easier to program. The former approach may have some performance 
benefits, but let’s leave such optimization alone until we have fully grasped the 
MapReduce framework.

3 The output of all the mappers are (conceptually) aggregated into one giant 
list of <k2, v2> pairs. All pairs sharing the same k2 are grouped together into 
a new (key/value) pair, <k2, list(v2)>. The framework asks the reducer to 
process each one of these aggregated (key/value) pairs individually. Following 
our word counting example, the map output for one document may be a list 
with pair <"foo", 1> three times, and the map output for another document 
may be a list with pair <"foo", 1> twice. The aggregated pair  the reducer 
will see is <"foo", list(1,1,1,1,1)>. In word counting, the output of our 
reducer is <"foo", 5>, which is the total number of times “foo” has occurred 
in our document set. Each reducer works on a different word. The MapReduce 
framework automatically collects all the <k3, v3> pairs and writes them to 
file(s). Note that for the word counting example, the data types k2 and k3 are 
the same and v2 and v3 are also the same. This will not always be the case for 
other data processing applications.

Let’s rewrite the word counting program in MapReduce to see how all this fits together 
Listing 1.1 shows the pseudo-code.

Listing 1.1 Pseudo-code for map and reduce functions for word counting

map(String filename, String document) {
    List<String> T = tokenize(document);
    for each token in T {
        emit ((String)token, (Integer) 1);
    }
}
reduce(String token, List<Integer> values) {
    Integer sum = 0;
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    for each value in values {
        sum = sum + value;
    }
    emit ((String)token, (Integer) sum);
}

We’ve said before that the output of both map and reduce function are lists. As you 
can see from the pseudo-code, in practice we use a special function in the framework 
called emit() to generate the elements in the list one at a time. This emit() function  
further relieves the programmer from managing a large list.

The code looks similar to what we have in section 1.5.1, except this time it will 
actually work at scale. Hadoop makes building scalable distributed programs easy, 
doesn’t it? Now let’s turn this pseudo-code into a Hadoop program. 

1.6 Counting words  with Hadoop—running your first program
Now that you know what the Hadoop and MapReduce framework is about, let’s get it 
running. In this chapter, we’ll run Hadoop only on a single machine, which can be 
your desktop or laptop computer. The next chapter will show you how to run Hadoop 
over a cluster of machines, which is what you’d want for practical deployment. Run-
ning Hadoop on a single machine is mainly useful for development work.

Linux  is the official development and production platform for Hadoop, although 
Windows  is a supported development platform as well. For a Windows box, you’ll need 
to install cygwin  (http://www-cygwin.com/) to enable shell and Unix scripts.

NOTE Many people have reported success in running Hadoop in development 
mode on other variants of Unix, such as Solaris  and Mac OS X . In fact, 
MacBook Pro seems to be the laptop of choice among Hadoop developers, as 
they’re ubiquitous in Hadoop conferences and user group meetings.

Running Hadoop requires Java  (version 1.6 or higher). Mac users should get it from 
Apple. You can download the latest JDK for other operating systems from Sun at 
http://java.sun.com/javase/downloads/index.jsp. Install it and remember the root of 
the Java installation, which we’ll need later.

To install Hadoop, first get the latest stable release at http://hadoop.apache.org/
core/releases.html. After you unpack the distribution, edit the script conf/hadoop-
env.sh to set JAVA_HOME to the root of the Java installation you have remembered 
from earlier. For example, in Mac OS X, you’ll replace this line

# export JAVA_HOME=/usr/lib/j2sdk1.5-sun 

with this line

export JAVA_HOME=/Library/Java/Home

You’ll be using the Hadoop script quite often. Let’s run it without any arguments to 
see its usage documentation:

http://www-cygwin.com/
http://java.sun.com/javase/downloads/index.jsp
http://hadoop.apache.org/core/releases.html
http://hadoop.apache.org/core/releases.html
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