
14 CHAPTER 1 Introducing Hadoop

 for each value in values {
 sum = sum + value;
 }
 emit ((String)token, (Integer) sum);
}

We’ve said before that the output of both map and reduce function are lists. As you
can see from the pseudo-code, in practice we use a special function in the framework
called emit() to generate the elements in the list one at a time. This emit() function
further relieves the programmer from managing a large list.

The code looks similar to what we have in section 1.5.1, except this time it will
actually work at scale. Hadoop makes building scalable distributed programs easy,
doesn’t it? Now let’s turn this pseudo-code into a Hadoop program.

1.6 Counting words with Hadoop—running your first program
Now that you know what the Hadoop and MapReduce framework is about, let’s get it
running. In this chapter, we’ll run Hadoop only on a single machine, which can be
your desktop or laptop computer. The next chapter will show you how to run Hadoop
over a cluster of machines, which is what you’d want for practical deployment. Run-
ning Hadoop on a single machine is mainly useful for development work.

Linux is the official development and production platform for Hadoop, although
Windows is a supported development platform as well. For a Windows box, you’ll need
to install cygwin (http://www-cygwin.com/) to enable shell and Unix scripts.

NOTE Many people have reported success in running Hadoop in development
mode on other variants of Unix, such as Solaris and Mac OS X . In fact,
MacBook Pro seems to be the laptop of choice among Hadoop developers, as
they’re ubiquitous in Hadoop conferences and user group meetings.

Running Hadoop requires Java (version 1.6 or higher). Mac users should get it from
Apple. You can download the latest JDK for other operating systems from Sun at
http://java.sun.com/javase/downloads/index.jsp. Install it and remember the root of
the Java installation, which we’ll need later.

To install Hadoop, first get the latest stable release at http://hadoop.apache.org/
core/releases.html. After you unpack the distribution, edit the script conf/hadoop-
env.sh to set JAVA_HOME to the root of the Java installation you have remembered
from earlier. For example, in Mac OS X, you’ll replace this line

export JAVA_HOME=/usr/lib/j2sdk1.5-sun

with this line

export JAVA_HOME=/Library/Java/Home

You’ll be using the Hadoop script quite often. Let’s run it without any arguments to
see its usage documentation:

http://www-cygwin.com/
http://java.sun.com/javase/downloads/index.jsp
http://hadoop.apache.org/core/releases.html
http://hadoop.apache.org/core/releases.html
dell
Rectangle

 Counting words with Hadoop—running your first program 15

bin/hadoop

We get

Usage: hadoop [--config confdir] COMMAND
where COMMAND is one of:
 namenode -format format the DFS filesystem
 secondarynamenode run the DFS secondary namenode
 namenode run the DFS namenode
 datanode run a DFS datanode
 dfsadmin run a DFS admin client
 fsck run a DFS filesystem checking utility
 fs run a generic filesystem user client
 balancer run a cluster balancing utility
 jobtracker run the MapReduce job Tracker node
 pipes run a Pipes job
 tasktracker run a MapReduce task Tracker node
 job manipulate MapReduce jobs
 version print the version
 jar <jar> run a jar file
 distcp <srcurl> <desturl> copy file or directories recursively
 archive -archiveName NAME <src>* <dest> create a hadoop archive
 daemonlog get/set the log level for each daemon
 or
 CLASSNAME run the class named CLASSNAME
Most commands print help when invoked w/o parameters.

We’ll cover the various Hadoop commands in the course of this book. For our current
purpose, we only need to know that the command to run a (Java) Hadoop program is
bin/hadoop jar <jar>. As the command implies, Hadoop programs written in Java
are packaged in jar files for execution.

Fortunately for us, we don’t need to write a Hadoop program first; the default
installation already has several sample programs we can use. The following command
shows what is available in the examples jar file:

bin/hadoop jar hadoop-*-examples.jar

You’ll see about a dozen example programs prepackaged with Hadoop, and one
of them is a word counting program called... wordcount! The important (inner)
classes of that program are shown in listing 1.2. We’ll see how this Java program
implements the word counting map and reduce functions we had in pseudo-code
in listing 1.1. We’ll modify this program to understand how to vary its behavior. For
now we’ll assume it works as expected and only follow the mechanics of executing a
Hadoop program.

Without specifying any arguments, executing wordcount will show its usage
information:

bin/hadoop jar hadoop-*-examples.jar wordcount

which shows the arguments list:

wordcount [-m <maps>] [-r <reduces>] <input> <output>

16 CHAPTER 1 Introducing Hadoop

The only parameters are an input directory (<input>) of text documents you want to
analyze and an output directory (<output>) where the program will dump its output.
To execute wordcount, we need to first create an input directory:

mkdir input

and put some documents in it. You can add any text document to the directory. For
illustration, let’s put the text version of the 2002 State of the Union address, obtained
from http://www.gpoaccess.gov/sou/. We now analyze its word counts and see the
results:

bin/hadoop jar hadoop-*-examples.jar wordcount input output
more output/*

You’ll see a word count of every word used in the document, listed in alphabetical or-
der. This is not bad considering you have not written a single line of code yet! But, also
note a number of shortcomings in the included wordcount program. Tokenization
is based purely on whitespace characters and not punctuation marks, making States,
States., and States: separate words. The same is true for capitalization, where States and
states appear as separate words. Furthermore, we would like to leave out words that
show up in the document only once or twice.

Fortunately, the source code for wordcount is available and included in the
installation at src/examples/org/apache/hadoop/examples/WordCount.java. We
can modify it as per our requirements. Let’s first set up a directory structure for our
playground and make a copy of the program.

mkdir playground
mkdir playground/src
mkdir playground/classes
cp src/examples/org/apache/hadoop/examples/WordCount.java

➥ playground/src/WordCount.java

Before we make changes to the program, let’s go through compiling and executing
this new copy in the Hadoop framework.

javac -classpath hadoop-*-core.jar -d playground/classes

➥ playground/src/WordCount.java
jar -cvf playground/wordcount.jar -C playground/classes/ .

You’ll have to remove the output directory each time you run this Hadoop command,
because it is created automatically.

bin/hadoop jar playground/wordcount.jar

➥ org.apache.hadoop.examples.WordCount input output

Look at the files in your output directory again. As we haven’t changed any program
code, the result should be the same as before. We’ve only compiled our own copy
rather than running the precompiled version.

Now we are ready to modify WordCount to add some extra features. Listing 1.2 is
a partial view of the WordCount.java program. Comments and supporting code are
stripped out.

http://www.gpoaccess.gov/sou/

Listing 1.2 WordCount.java

public class WordCount extends Configured implements Tool {

 public static class MapClass extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(LongWritable key, Text value,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException {
 String line = value.toString();
 StringTokenizer itr = new StringTokenizer(line); q
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken()); w
 output.collect(word, one);
 }
 }
 }

 public static class Reduce extends MapReduceBase
 implements Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterator<IntWritable> values,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException {
 int sum = 0;
 while (values.hasNext()) {
 sum += values.next().get();
 }
 output.collect(key, new IntWritable(sum)); e
 }
 }

 ...
}

The main functional distinction between WordCount.java and our MapReduce pseudo-
code is that in WordCount.java, map() processes one line of text at a time whereas our
pseudo-code processes a document at a time. This distinction may not even be apparent
from looking at WordCount.java as it’s Hadoop’s default configuration.

The code in listing 1.2 is virtually identical to our pseudo-code in listing 1.1 though
the Java syntax makes it more verbose. The map and reduce functions are inside inner
classes of WordCount. You may notice we use special classes such as LongWritable ,
IntWritable , and Text instead of the more familiar Long, Integer, and String
classes of Java. Consider these implementation details for now. The new classes have
additional serialization capabilities needed by Hadoop’s internal.

The changes we want to make to the program are easy to spot. We see q that
WordCount uses Java’s StringTokenizer in its default setting, which tokenizes based
only on whitespaces. To ignore standard punctuation marks, we add them to the
StringTokenizer’s list of delimiter characters:

StringTokenizer itr = new StringTokenizer(line, " \t\n\r\f,.:;?![]'");

Tokenize using
white spaces
Cast token into
Text object

Output count of
each token

 Counting words with Hadoop—running your first program 17

18 CHAPTER 1 Introducing Hadoop

When looping through the set of tokens, each token is extracted and cast into a Text
object w. (Again, in Hadoop, the special class Text is used in place of String.) We
want the word count to ignore capitalization, so we lowercase all the words before turn-
ing them into Text objects.

word.set(itr.nextToken().toLowerCase());

Finally, we want only words that appear more than four times. We modify e to collect
the word count into the output only if that condition is met. (This is Hadoop’s equiva-
lent of the emit() function in our pseudo-code.)

if (sum > 4) output.collect(key, new IntWritable(sum));

After making changes to those three lines, you can recompile the program and ex-
ecute it again. The results are shown in table 1.1.

Table 1.1 Words with a count higher than 4 in the 2002 State of the Union Address

11th (5) citizens (9) its (6) over (6) to (123)

a (69) congress (10) jobs (11) own (5) together (5)

about (5) corps (6) join (7) page (7) tonight (5)

act (7) country (10) know (6) people (12) training (5)

afghanistan (10) destruction (5) last (6) protect (5) united (6)

all (10) do (6) lives (6) regime (5) us (6)

allies (8) every (8) long (5) regimes (6) want (5)

also (5) evil (5) make (7) security (19) war (12)

America (33) for (27) many (5) september (5) was (11)

American (15) free (6) more (11) so (12) we (76)

americans (8) freedom (10) most (5) some (6) we’ve (5)

an (7) from (15) must (18) states (9) weapons (12)

and (210) good (13) my (13) tax (7) were (7)

are (17) great (8) nation (11) terror (13) while (5)

as (18) has (12) need (7) terrorist (12) who (18)

ask (5) have (32) never (7) terrorists (10) will (49)

at (16) health (5) new (13) than (6) with (22)

be (23) help (7) no (7) that (29) women (5)

been (8) home (5) not (15) the (184) work (7)

best (6) homeland (7) now (10) their (17) workers (5)

budget (7) hope (5) of (130) them (8) world (17)

but (7) i (29) on (32) these (18) would (5)

by (13) if (8) one (5) they (12) yet (8)

 History of Hadoop 19

Table 1.1 Words with a count higher than 4 in the 2002 State of the Union Address (continued)

camps (8) in (79) opportunity (5) this (28) you (12)

can (7) is (44) or (8) thousands (5)

children (6) it (21) our (78) time (7)

We see that 128 words have a frequency count greater than 4. Many of these words
appear frequently in almost any English text. For example, there is a (69), and (210),
i (29), in (79), the (184) and many others. We also see words that summarize the issues
facing the United States at that time: terror (13), terrorist (12), terrorists (10), security
(19), weapons (12), destruction (5), afghanistan (10), freedom (10), jobs (11), budget (7),
and many others.

1.7 History of Hadoop
Hadoop started out as a subproject of Nutch , which in turn was a subproject of Apache
Lucene . Doug Cutting founded all three projects, and each project was a logical pro-
gression of the previous one.

Lucene is a full-featured text indexing and searching library. Given a text collection,
a developer can easily add search capability to the documents using the Lucene engine .
Desktop search, enterprise search, and many domain-specific search engines have been
built using Lucene. Nutch is the most ambitious extension of Lucene. It tries to build
a complete web search engine using Lucene as its core component. Nutch has parsers
for HTML, a web crawler, a link-graph database, and other extra components necessary
for a web search engine. Doug Cutting envisions Nutch to be an open democratic
alternative to the proprietary technologies in commercial offerings such as Google.

Besides having added components like a crawler and a parser, a web search engine
differs from a basic document search engine in terms of scale. Whereas Lucene is
targeted at indexing millions of documents, Nutch should be able to handle billions of
web pages without becoming exorbitantly expensive to operate. Nutch will have to run
on a distributed cluster of commodity hardware. The challenge for the Nutch team
is to address scalability issues in software. Nutch needs a layer to handle distributed
processing, redundancy, automatic failover, and load balancing. These challenges are
by no means trivial.

Around 2004, Google published two papers describing the Google File System (GFS)
and the MapReduce framework . Google claimed to use these two technologies for
scaling its own search system. Doug Cutting immediately saw the applicability of these
technologies to Nutch, and his team implemented the new framework and ported
Nutch to it. The new implementation immediately boosted Nutch’s scalability. It started
to handle several hundred million web pages and could run on clusters of dozens of
nodes. Doug realized that a dedicated project to flesh out the two technologies was
needed to get to web scale, and Hadoop was born. Yahoo! hired Doug in January

dell
Rectangle

