
2.6. COMPLEXITY THEORY FOR MAP-REDUCE 51

Star Joins

A common structure for data mining of commercial data is the star join.
For example, a chain store like Walmart keeps a fact table whose tu-
ples each represent a single sale. This relation looks like F (A1, A2, . . .),
where each attribute Ai is a key representing one of the important com-
ponents of the sale, such as the purchaser, the item purchased, the store
branch, or the date. For each key attribute there is a dimension table
giving information about the participant. For instance, the dimension ta-
ble D(A1, B11, B12, . . .) might represent purchasers. A1 is the purchaser
ID, the key for this relation. The B1i’s might give the purchaser’s name,
address, phone, and so on. Typically, the fact table is much larger than
the dimension tables. For instance, there might be a fact table of a billion
tuples and ten dimension tables of a million tuples each.

Analysts mine this data by asking analytic queries that typically join
the fact table with several of the dimension tables (a “star join”) and then
aggregate the result into a useful form. For instance, an analyst might ask
“give me a table of sales of pants, broken down by region and color, for
each month of 2012.” Under the communication-cost model of this section,
joining the fact table and dimension tables by a multiway join is almost
certain to be more efficient than joining the relations in pairs. In fact, it
may make sense to store the fact table over however many compute nodes
are available, and replicate the dimension tables permanently in exactly
the same way as we would replicate them should we take the join of the
fact table and all the dimension tables. In this special case, only the
key attributes (the A’s above) are hashed to buckets, and the number of
buckets for each key attribute is inversely proportional to the size of its
dimension table.

Naturally, a1a2 · · · am = k. Finally, suppose each dimension table Di has size
di, and the size of the fact table is much larger than any of these sizes. Find
the values of the ai’s that minimize the cost of taking the star join as one
map-reduce operation.

2.6 Complexity Theory for Map-Reduce

Now, we shall explore the design of map-reduce algorithms in more detail. Sec-
tion 2.5 introduced the idea that communication between the Map and Reduce
tasks often accounts for the largest fraction of the time spent by these tasks.
Here, we shall look at how the communication cost relates to other desiderata
for map-reduce algorithms, in particular our desire to shrink the wall-clock time
and to execute each reducer in main memory. Recall that a “reducer” is the

dell
Rectangle

52 CHAPTER 2. MAP-REDUCE AND THE NEW SOFTWARE STACK

execution of the Reduce function on a single key and its associated value list.
The point of the exploration in this section is that for many problems there is a
spectrum of map-reduce algorithms requiring different amounts of communica-
tion. Moreover, the less communication an algorithm uses, the worse it may be
in other respects, including wall-clock time and the amount of main memory it
requires.

2.6.1 Reducer Size and Replication Rate

Let us now introduce the two parameters that characterize families of map-
reduce algorithms. The first is the reducer size, which we denote by q. This
parameter is the upper bound on the number of values that are allowed to
appear in the list associated with a single key. Reducer size can be selected
with at least two goals in mind.

1. By making the reducer size small, we can force there to be many reducers,
i.e., many different keys according to which the problem input is divided
by the Map tasks. If we also create many Reduce tasks – even one for
each reducer – then there will be a high degree of parallelism, and we can
look forward to a low wall-clock time.

2. We can choose a reducer size sufficiently small that we are certain the
computation associated with a single reducer can be executed entirely in
the main memory of the compute node where its Reduce task is located.
Regardless of the computation done by the reducers, the running time
will be greatly reduced if we can avoid having to move data repeatedly
between main memory and disk.

The second parameter is the replication rate, denoted r. We define r to
be the number of key-value pairs produced by all the Map tasks on all the
inputs, divided by the number of inputs. That is, the replication rate is the
average communication from Map tasks to Reduce tasks (measured by counting
key-value pairs) per input.

Example 2.11 : Let us consider the one-pass matrix-multiplication algorithm
of Section 2.3.10. Suppose that all the matrices involved are n × n matrices.
Then the replication rate r is equal to n. That fact is easy to see, since for
each element mij , there are n key-value pairs produced; these have all keys of
the form (i, k), for 1 ≤ k ≤ n. Likewise, for each element of the other matrix,
say njk, we produce n key-value pairs, each having one of the keys (i, k), for
1 ≤ i ≤ n. In this case, not only is n the average number of key-value pairs
produced for an input element, but each input produces exactly this number of
pairs.

We also see that q, the required reducer size is 2n. That is, for each key (i, k),
there are n key-value pairs representing elements mij of the first matrix and
another n key-value pairs derived from the elements njk of the second matrix.

2.6. COMPLEXITY THEORY FOR MAP-REDUCE 53

While this pair of values represents only one particular algorithm for one-pass
matrix multiplication, we shall see that it is part of a spectrum of algorithms,
and in fact represents an extreme point, where q is as small as can be, and r is
at its maximum. More generally, there is a tradeoff between r and q, that can
be expressed as qr ≥ 2n2. 2

2.6.2 An Example: Similarity Joins

To see the tradeoff between r and q in a realistic situation, we shall examine a
problem known as similarity join. In this problem, we are given a large set of
elements X and a similarity measure s(x, y) that tells how similar two elements
x and y of set X are. In Chapter 3 we shall learn about the most important
notions of similarity and also learn some tricks that let us find similar pairs
quickly. But here, we shall consider only the raw form of the problem, where
we have to look at each pair of elements of X and determine their similarity by
applying the function s. We assume that s is symmetric, so s(x, y) = s(y, x),
but we assume nothing else about s. The output of the algorithm is those pairs
whose similarity exceeds a given threshold t.

For example, let us suppose we have a collection of one million images, each
of size one megabyte. Thus, the dataset has size one terabyte. We shall not try
to describe the similarity function s, but it might involve giving higher values
when images have roughly the same distribution of colors and when images have
corresponding regions with the same distribution of colors. The goal would be
to discover pairs of images that show the same type of object or scene. This
problem is extremely hard, but classifying by color distribution is generally of
some help toward that goal.

Let us look at how we might do the computation using map-reduce to exploit
the natural parallelism found in this problem. The input is key-value pairs
(i, Pi), where i is an ID for the picture and Pi is the picture itself. We want
to compare each pair of pictures, so let us use one key for each set of two ID’s
{i, j}. There are approximately 5 × 1011 pairs of two ID’s. We want each
key {i, j} to be associated with the two values Pi and Pj , so the input to the
corresponding reducer will be ({i, j}, [Ri, Rj]). Then, the Reduce function can
simply apply the similarity function s to the two pictures on its value list, that
is, compute s(Ri, Rj), and decide whether the similarity of the two pictures is
above threshold. The pair would be output if so.

Alas, this algorithm will fail completely. The reducer size is small, since no
list has more than two values, or a total of 2MB of input. Although we don’t
know exactly how the similarity function s operates, we can reasonably expect
that it will not require more than the available main memory. However, the
replication rate is 999,999, since for each picture we generate that number of
key-value pairs, one for each of the other pictures in the dataset. The total
number of bytes communicated from Map tasks to Reduce tasks is 1,000,000
(for the pictures) times 999,999 (for the replication), times 1,000,000 (for the
size of each picture). That’s 1018 bytes, or one exabyte. To communicate this

54 CHAPTER 2. MAP-REDUCE AND THE NEW SOFTWARE STACK

amount of data over gigabit Ethernet would take 1010 seconds, or about 300
years.9

Fortunately, this algorithm is only the extreme point in a spectrum of possi-
ble algorithms. We can characterize these algorithms by grouping pictures into
g groups, each of 106/g pictures.

The Map Function: Take an input element (i, Ri) and generate g − 1 key-
value pairs. For each, the key is one of the sets {u, v}, where u is the group to
which picture i belongs, and v is one of the other groups. The associated value
is the pair (i, Ri).

The Reduce Function: Consider the key {u, v}. The associated value list
will have the 2 × 106/g elements (j, Rj), where j belongs to either group u or
group v. The Reduce function takes each (i, Ri) and (j, Rj) on this list, where i
and j belong to different groups, and applies the similarity function s(Ri, Rj).
In addition, we need to compare the pictures that belong to the same group,
but we don’t want to do the same comparison at each of the g − 1 reducers
whose key contains a given group number. There are many ways to handle this
problem, but one way is as follows. Compare the members of group u at the
reducer {u, u + 1}, where the “+1” is taken in the end-around sense. That is,
if u = g (i.e., u is the last group), then u + 1 is group 1. Otherwise, u + 1 is the
group whose number is one greater than u.

We can compute the replication rate and reducer size as a function of the
number of groups g. Each input element is turned into g − 1 key-value pairs.
That is, the replication rate is g − 1, or approximately r = g, since we suppose
that the number of groups is still fairly large. The reducer size is 2×106/g, since
that is the number of values on the list for each reducer. Each value is about a
megabyte, so the number of bytes needed to store the input is 2 × 1012/g.

Example 2.12 : If g is 1000, then the input consumes about 2GB. That’s
enough to hold everything in a typical main memory. Moreover, the total
number of bytes communicated is now 106 × 999 × 106, or about 1015 bytes.
While that is still a huge amount of data to communicate, it is 1000 times
less than that of the obvious algorithm. Moreover, there are still about half a
million reducers. Since we are unlikely to have available that many compute
nodes, we can divide all the reducers into a smaller number of Reduce tasks
and still keep all the compute nodes busy; i.e., we can get as much parallelism
as our computing cluster offers us. 2

The computation cost for algorithms in this family is independent of the
number of groups g, as long as the input to each reducer fits in main memory.
The reason is that the bulk of the computation is the application of function s
to the pairs of pictures. No matter what value g has, s is applied to each pair

9In a typical cluster, there are many switches connecting subsets of the compute nodes, so

all the data does not need to go across a single gigabit switch. However, the total available

communication is still small enough that it is not feasible to implement this algorithm for the

scale of data we have hypothesized.

2.6. COMPLEXITY THEORY FOR MAP-REDUCE 55

once and only once. Thus, although the work of algorithms in the family may
be divided among reducers in widely different ways, all members of the family
do the same computation.

2.6.3 A Graph Model for Map-Reduce Problems

In this section, we begin the study of a technique that will enable us to prove
lower bounds on the replication rate, as a function of reducer size for a number
of problems. Our first step is to introduce a graph model of problems. For each
problem solvable by a map-reduce algorithm there is:

1. A set of inputs.

2. A set of outputs.

3. A many-many relationship between the inputs and outputs, which de-
scribes which inputs are necessary to produce which outputs.

P 1

P 2

P 3

P 4

P 1

P 1

P 1

P 2

P 3

P 4

P 2

P 2

P 3

P 4

P 3 P 4

{ , }

{ , }

{ , }

{ , }

{ , }

{ , }

Figure 2.9: Input-output relationship for a similarity join

Example 2.13 : Figure 2.9 shows the graph for the similarity-join problem
discussed in Section 2.6.2, if there were four pictures rather than a million. The
inputs are the pictures, and the outputs are the six possible pairs of pictures.
Each output is related to the two inputs that are members of its pair. 2

Example 2.14 : Matrix multiplication presents a more complex graph. If we
multiply n × n matrices M and N to get matrix P , then there are 2n2 inputs,
mij and njk, and there are n2 outputs pik. Each output pik is related to 2n
inputs: mi1, mi2, . . . , min and n1k, n2k, . . . , nnk. Moreover, each input is related

56 CHAPTER 2. MAP-REDUCE AND THE NEW SOFTWARE STACK

to n outputs. For example, mij is related to pi1, pi2, . . . , pin. Figure 2.10 shows
the input-output relationship for matrix multiplication for the simple case of
2 × 2 matrices, specifically

[

a b
c d

] [

e f
g h

]

=

[

i j
k l

]

2

a

b

c

d

e

f

g

h

i

j

k

l

Figure 2.10: Input-output relationship for matrix multiplication

In the problems of Examples 2.13 and 2.14, the inputs and outputs were
clearly all present. However, there are other problems where the inputs and/or
outputs may not all be present in any instance of the problem. An example
of such a problem is the natural join of R(A, B) and S(B, C) discussed in
Section 2.3.7. We assume the attributes A, B, and C each have a finite domain,
so there are only a finite number of possible inputs and outputs. The inputs are
all possible R-tuples, those consisting of a value from the domain of A paired
with a value from the domain of B, and all possible S-tuples – pairs from the
domains of B and C. The outputs are all possible triples, with components from
the domains of A, B, and C in that order. The output (a, b, c) is connected to
two inputs, namely R(a, b) and S(b, c).

But in an instance of the join computation, only some of the possible inputs
will be present, and therefore only some of the possible outputs will be produced.
That fact does not influence the graph for the problem. We still need to know
how every possible output relates to inputs, whether or not that output is
produced in a given instance.

2.6.4 Mapping Schemas

Now that we see how to represent problems addressable by map-reduce as
graphs, we can define the requirements for a map-reduce algorithm to solve

2.6. COMPLEXITY THEORY FOR MAP-REDUCE 57

a given problem. Each such algorithm must have a mapping schema, which
expresses how outputs are produced by the various reducers used by the algo-
rithm. That is, a mapping schema for a given problem with a given reducer
size q is an assignment of inputs to one or more reducers, such that:

1. No reducer is assigned more that q inputs.

2. For every output of the problem, there is at least one reducer that is
assigned all the inputs that are related to that output. We say this reducer
covers the output.

It can be argued that the existence of a mapping schema for any reducer size
is what distinguishes problems that can be solved by a single map-reduce job
from those that cannot.

Example 2.15 : Let us reconsider the “grouping” strategy we discussed in
connection with the similarity join in Section 2.6.2. To generalize the problem,
suppose the input is p pictures, which we place in g equal-sized groups of p/g
inputs each. The number of outputs is

(

p
2

)

, or approximately p2/2 outputs. A
reducer will get the inputs from two groups, that is 2p/g inputs, so the reducer
size we need is q = 2p/g. Each picture is sent to the reducers corresponding to
the pairs consisting of its group and any of the g − 1 other groups. Thus, the
replication rate is g − 1, or approximately g. If we replace g by the replication
rate r in q = 2p/g, we conclude that r = 2p/q. That is, the replication rate
is inversely proportional to the reducer size. That relationship is common; the
smaller the reducer size, the larger the replication rate, and therefore the higher
the communication.

This family of algorithms is described by a family of mapping schemas, one
for each possible q. In the mapping schema for q = 2p/g, there are

(

g
2

)

, or
approximately g2/2 reducers. Each reducer corresponds to a pair of groups,
and an input P is assigned to all the reducers whose pair includes the group of
P . Thus, no reducer is assigned more than 2p/g inputs; in fact each reducer
is assigned exactly that number. Moreover, every output is covered by some
reducer. Specifically, if the output is a pair from two different groups u and v,
then this output is covered by the reducer for the pair of groups {u, v}. If the
output corresponds to inputs from only one group u, then the output is covered
by several reducers – those corresponding to the set of groups {u, v} for any
v 6= u. Note that the algorithm we described has only one of these reducers
computing the output, but any of them could compute it. 2

The fact that an output depends on a certain input means that when that
input is processed at the Map task, there will be at least one key-value pair
generated to be used when computing that output. The value might not be
exactly the input (as was the case in Example 2.15), but it is derived from
that input. What is important is that for every related input and output there
is a unique key-value pair that must be communicated. Note that there is

58 CHAPTER 2. MAP-REDUCE AND THE NEW SOFTWARE STACK

technically never a need for more than one key-value pair for a given input and
output, because the input could be transmitted to the reducer as itself, and
whatever transformations on the input were applied by the Map function could
instead be applied by the Reduce function at the reducer for that output.

2.6.5 When Not All Inputs Are Present

Example 2.15 describes a problem where we know every possible input is pre-
sent, because we can define the input set to be those pictures that actually
exist in the dataset. However, as discussed at the end of Section 2.6.3, there
are problems like computing the join, where the graph of inputs and outputs
describes inputs that might exist, and outputs that are only made when at least
one of the inputs exists in the dataset. In fact, for the join, both inputs related
to an output must exist if we are to make that output.

An algorithm for a problem where outputs can be missing still needs a
mapping schema. The justification is that all inputs, or any subset of them,
might be present, so an algorithm without a mapping schema would not be
able to produce every possible output if all the inputs related to that output
happened to be present, and yet no reducer covered that output.

The only way the absence of some inputs makes a difference is that we
may wish to rethink the desired value of the reducer size q when we select an
algorithm from the family of possible algorithms. Especially, if the value of q
we select is that number such that we can be sure the input will just fit in main
memory, then we may wish to increase q to take into account that some fraction
of the inputs are not really there.

Example 2.16 : Suppose that we know we can execute the Reduce function
in main memory on a key and its associated list of q values. However, we also
know that only 5% of the possible inputs are really present in the data set.
Then a mapping schema for reducer size q will really send about q/20 of the
inputs that exist to each reducer. Put another way, we could use the algorithm
for reducer size 20q and expect that an average of q inputs will actually appear
on the list for each reducer. We can thus choose 20q as the reducer size, or since
there will be some randomness in the number of inputs actually appearing at
each reducer, we might wish to pick a slightly smaller value of reducer size, such
as 18q. 2

2.6.6 Lower Bounds on Replication Rate

The family of similarity-join algorithms described in Example 2.15 lets us trade
off communication against the reducer size, and through reducer size to trade
communication against parallelism or against the ability to execute the Reduce
function in main memory. How do we know we are getting the best possible
tradeoff? We can only know we have the minimum possible communication if
we can prove a matching lower bound. Using existence of a mapping schema as

2.6. COMPLEXITY THEORY FOR MAP-REDUCE 59

the starting point, we can often prove such a lower bound. Here is an outline
of the technique.

1. Prove an upper bound on how many outputs a reducer with q inputs can
cover. Call this bound g(q). This step can be difficult, but for examples
like similarity join, it is actually quite simple.

2. Determine the total number of outputs produced by the problem.

3. Suppose that there are k reducers, and the ith reducer has qi < q inputs.
Observe that

∑k
i=1 g(qi) must be no less than the number of outputs

computed in step (2).

4. Manipulate the inequality from (3) to get a lower bound on
∑k

i=1 qi.
Often, the trick used at this step is to replace some factors of qi by their
upper bound q, but leave a single factor of qi in the term for i.

5. Since
∑k

i=1 qi is the total communication from Map tasks to Reduce tasks,
divide the upper bound from (4) on this quantity by the number of inputs.
The result is the replication rate.

Example 2.17 : This sequence of steps may seem mysterious, but let us con-
sider the similarity join as an example that we hope will make things clear.
Recall that in Example 2.15 we gave an upper bound on the replication rate
r of r ≤ 2p/q, where p was the number of inputs and q was the reducer size.
We shall show a lower bound on r that is half that amount, which implies that,
although improvements to the algorithm might be possible, any reduction in
communication for a given reducer size will be by a factor of 2 at most.

For step (1), observe that if a reducer gets q inputs, it cannot cover more
than

(

q
2

)

, or approximately q2/2 outputs. For step (2), we know there are a

total of
(

p
2

)

, or approximately p2/2 outputs that each must be covered. The
inequality constructed at step (3) is thus

k
∑

i=1

q2
i /2 ≤ p2/2

or, multiplying both sides by 2,

k
∑

i=1

q2
i ≥ p2 (2.1)

Now, we must do the manipulation of step (4). Following the hint, we note
that there are two factors of qi in each term on the left of Equation (2.1), so
we replace one factor by q and leave the other as qi. Since q ≥ qi, we can only
increase the left side by doing so, and thus the inequality continues to hold:

q

k
∑

i=1

qi ≥ p2

60 CHAPTER 2. MAP-REDUCE AND THE NEW SOFTWARE STACK

or, dividing by q:

k
∑

i=1

qi ≥ p2/q (2.2)

The last step, which is step (5), is to divide both sides of Equation 2.2 by p,

the number of inputs. As a result, the left side, which is (
∑k

i=1 qi)/p is equal to
the replication rate, and the right side becomes p/q. That is, we have proved
the lower bound on r:

r ≥ p/q

As claimed, this shows that the family of algorithms from Example 2.15 all have
a replication rate that is at most twice the lowest possible replication rate. 2

2.6.7 Case Study: Matrix Multiplication

In this section we shall apply the lower-bound technique to one-pass matrix-
multiplication algorithms. We saw one such algorithm in Section 2.3.10, but
that is only an extreme case of a family of possible algorithms. In particular,
for that algorithm, a reducer corresponds to a single element of the output
matrix. Just as we grouped inputs in the similarity-join problem to reduce the
communication at the expense of a larger reducer size, we can group rows and
columns of the two input matrices into bands. Each pair consisting of a band of
rows of the first matrix and a band of columns of the second matrix is used by
one reducer to produce a square of elements of the output matrix. An example
is suggested by Fig. 2.11.

=

Figure 2.11: Dividing matrices into bands to reduce communication

In more detail, suppose we want to compute MN = P , and all three matrices
are n × n. Group the rows of M into g bands of n/g rows each, and group the
columns of N into g bands of n/g columns each. This grouping is as suggested
by Fig. 2.11. Keys correspond to two groups (bands), one from M and one
from N .

2.6. COMPLEXITY THEORY FOR MAP-REDUCE 61

The Map Function: For each element of M , the Map function generates g
key-value pairs. The value in each case is the element itself, together with its
row and column number so it can be identified by the Reduce function. The
key is the group to which the element belongs, paired with any of the groups
of the matrix N . Similarly, for each element of N , the Map function generates
g key-value pairs. The key is the group of that element paired with any of the
groups of M , and the value is the element itself plus its row and column.

The Reduce Function: The reducer corresponding to the key (i, j), where i
is a group of M and j is a group of N , gets a value list consisting of all the
elements in the ith band of M and the jth band of N . It thus has all the
values it needs to compute the elements of P whose row is one of those rows
comprising the ith band of M and whose column is one of those comprising the
jth band of N . For instance, Fig. 2.11 suggests the third group of M and the
fourth group of N , combining to compute a square of P at the reducer (3, 4).

Each reducer gets n(n/g) elements from each of the two matrices, so q =
2n2/g. The replication rate is g, since each element of each matrix is sent to
g reducers. That is, r = g. Combining r = g with q = n2/g we can conclude
that r = n2/q. That is, just as for similarity join, the replication rate varies
inversely with the reducer size.

It turns out that this upper bound on replication rate is also a lower bound.
That is, we cannot do better than the family of algorithms we described above
in a single round of map-reduce. Interestingly, we shall see that we can get a
lower total communication for the same reducer size, if we use two passes of
map-reduce as we discussed in Section 2.3.9. We shall not give the complete
proof of the lower bound, but will suggest the important elements.

For step (1) we need to get an upper bound on how many outputs a reducer
of size q can cover. First, notice that if a reducer gets some of the elements in
a row of M , but not all of them, then the elements of that row are useless; the
reducer cannot produce any output in that row of P . Similarly, if a reducer
receives some but not all of a column of N , these inputs are also useless. Thus,
we may assume that the best mapping schema will send to each reducer some
number of full rows of M and some number of full columns of N . This reducer
is then capable of producing output element pik if and only if it has received
the entire ith row of M and the entire kth column of N . The remainder of the
argument for step (1) is to prove that the largest number of outputs are covered
when the reducer receives the same number of rows as columns. We leave this
part as an exercise.

However, assuming a reducer receives k rows of M and k columns of N ,
then q = 2nk, and k2 outputs are covered. That is, g(q), the maximum number
of outputs covered by a reducer that receives q inputs, is q2/4n2.

For step (2), we know the number of outputs is n2. In step (3) we observe

62 CHAPTER 2. MAP-REDUCE AND THE NEW SOFTWARE STACK

that if there are k reducers, with the ith reducer receiving qi ≤ q inputs, then

k
∑

i=1

q2
i /4n2 ≥ n2

or
k

∑

i=1

q2
i ≥ 4n4

From this inequality, you can derive

r ≥ 2n2/q

We leave the algebraic manipulation, which is similar to that in Example 2.17,
as an exercise.

Now, let us consider the generalization of the two-pass matrix-multiplication
algorithm that we described in Section 2.3.9. This algorithm too can be gener-
alized so that the first map-reduce job uses reducers of size greater than 2. The
idea is suggested by Fig. 2.12. We may divide the rows and columns of both
input matrices M and N into g groups of n/g rows or columns each. The inter-
sections of the groups partition each matrix into g2 squares of n2/g2 elements
each.

=

Figure 2.12: Partitioning matrices into squares for a two-pass map-reduce al-
gorithm

2.6. COMPLEXITY THEORY FOR MAP-REDUCE 63

The square of M corresponding to set of rows I and set of columns J com-
bines with the square of N corresponding to set of rows J and set of columns
K. These two squares compute some of the terms that are needed to produce
the square of the output matrix P that has set of rows I and set of columns K.
However, these two squares do not compute the full value of these elements of
P ; rather they produce a contribution to the sum. Other pairs of squares, one
from M and one from N , contribute to the same square of P . These contribu-
tions are suggested in Fig. 2.12. There, we see how all the squares of M with
a fixed value for set of rows I pair with all the squares of N that have a fixed
value for the set of columns K by letting the set J vary.

So in the first pass, we compute the products of the square (I, J) of M with
the square (J, K) of N , for all I, J , and K. Then, in the second pass, for each
I and K we sum the products over all possible sets J . In more detail, the first
map-reduce job does the following.

The Map Function: The keys are triples of sets of rows and/or column num-
bers (I, J, K). Suppose the element mij belongs to group of rows I and group
of columns J . Then from mij we generate g key-value pairs with value equal to
mij , together with its row and column numbers, i and j, to identify the matrix
element. There is one key-value pair for each key (I, J, K), where K can be any
of the g groups of columns of N . Similarly, from element njk of N , if j belongs
to group J and k to group K, the Map function generates g key-value pairs
with value consisting of njk, j, and k, and with keys (I, J, K) for any group I.

The Reduce Function: The reducer corresponding to (I, J, K) receives as
input all the elements mij where i is in I and j is in J , and it also receives all
the elements njk, where j is in J and k is in K. It computes

xiJk =
∑

j in J

mijnjk

for all i in I and k in K.

Notice that the replication rate for the first map-reduce job is g, and the to-
tal communication is therefore 2gn2. Also notice that each reducer gets 2n2/g2

inputs, so q = 2n2/g2. Equivalently, g = n
√

2/q. Thus, the total communica-

tion 2gn2 can be written in terms of q as 2
√

2n3/
√

q.

The second map-reduce job is simple; it sums up the xiJk’s over all sets J .

The Map Function: We assume that the Map tasks execute at whatever
compute nodes executed the Reduce tasks of the previous job. Thus, no com-
munication is needed between the jobs. The Map function takes as input one
element xiJk, which we assume the previous reducers have left labeled with i
and k so we know to what element of matrix P this term contributes. One
key-value pair is generated. The key is (i, k) and the value is xiJk.

The Reduce Function: The reduce function simply sums the values associated
with key (i, k) to compute the output element Pik.

64 CHAPTER 2. MAP-REDUCE AND THE NEW SOFTWARE STACK

The communication between the Map and Reduce tasks of the second job is
gn2, since there are n possible values of i, n possible values of k, and g possible
values of the set J , and each xiJk is communicated only once. If we recall from
our analysis of the first map-reduce job that g = n

√

2/q, we can write the

communication for the second job as n2g =
√

2n3/
√

q. This amount is exactly
half the communication for the first job, so the total communication for the
two-pass algorithm is 3

√
2n2/

√
q. Although we shall not examine this point

here, it turns out that we can do slightly better if we divide the matrices M
and N not into squares but into rectangles that are twice as long on one side
as on the other. In that case, we get the slightly smaller constant 4 in place
of 3

√
2 = 4.24, and we get a two-pass algorithm with communication equal to

4n3/
√

q.
Now, recall that the replication rate we computed for the one-pass algorithm

is 4n4/q. We may as well assume q is less than n2, or else we can just use a serial
algorithm at one compute node and not use map-reduce at all. Thus, n3/

√
q is

smaller than n4/q, and if q is close to its minimum possible value of 2n,10 then
the two-pass algorithm beats the one-pass algorithm by a factor of O(

√
n) in

communication. Moreover, we can expect the difference in communication to be
the significant cost difference. Both algorithms do the same O(n3) arithmetic
operations. The two-pass method naturally has more overhead managing tasks
than does the one-job method. On the other hand, the second pass of the two-
pass algorithm applies a Reduce function that is associative and commutative.
Thus, it might be possible to save some communication cost by using a combiner
on that pass.

2.6.8 Exercises for Section 2.6

Exercise 2.6.1 : Describe the graphs that model the following problems.

(a) The multiplication of an n × n matrix by a vector of length n.

(b) The natural join of R(A, B) and S(B, C), where A, B, and C have do-
mains of sizes a, b, and c, respectively.

(c) The grouping and aggregation on the relation R(A, B), where A is the
grouping attribute and B is aggregated by the MAX operation. Assume
A and B have domains of size a and b, respectively.

! Exercise 2.6.2 : Provide the details of the proof that a one-pass matrix-
multiplication algorithm requires replication rate at least r ≥ 2n2/q, including:

(a) The proof that, for a fixed reducer size, the maximum number of outputs
are covered by a reducer when that reducer receives an equal number of
rows of M and columns of N .

10If q is less than 2n, then a reducer cannot get even one row and one column, and therefore

cannot compute any outputs at all.

2.7. SUMMARY OF CHAPTER 2 65

(b) The algebraic manipulation needed, starting with
∑k

i=1 q2
i ≥ 4n4.

!! Exercise 2.6.3 : Suppose our inputs are bit strings of length b, and the outputs
correspond to pairs of strings at Hamming distance 1.11

(a) Prove that a reducer of size q can cover at most (q/2) log2 q outputs.

(b) Use part (a) to show the lower bound on replication rate: r ≥ b/ log2 q.

(c) Show that there are algorithms with replication rate as given by part (b)
for the cases q = 2, q = 2b, and q = 2b/2.

2.7 Summary of Chapter 2

✦ Cluster Computing: A common architecture for very large-scale applica-
tions is a cluster of compute nodes (processor chip, main memory, and
disk). Compute nodes are mounted in racks, and the nodes on a rack are
connected, typically by gigabit Ethernet. Racks are also connected by a
high-speed network or switch.

✦ Distributed File Systems: An architecture for very large-scale file sys-
tems has developed recently. Files are composed of chunks of about 64
megabytes, and each chunk is replicated several times, on different com-
pute nodes or racks.

✦ Map-Reduce: This programming system allows one to exploit parallelism
inherent in cluster computing, and manages the hardware failures that
can occur during a long computation on many nodes. Many Map tasks
and many Reduce tasks are managed by a Master process. Tasks on a
failed compute node are rerun by the Master.

✦ The Map Function: This function is written by the user. It takes a
collection of input objects and turns each into zero or more key-value
pairs. Keys are not necessarily unique.

✦ The Reduce Function: A map-reduce programming system sorts all the
key-value pairs produced by all the Map tasks, forms all the values asso-
ciated with a given key into a list and distributes key-list pairs to Reduce
tasks. Each Reduce task combines the elements on each list, by applying
the function written by the user. The results produced by all the Reduce
tasks form the output of the map-reduce process.

✦ Reducers : It is often convenient to refer to the application of the Reduce
function to a single key and its associated value list as a “reducer.”

11Bit strings have Hamming distance 1 if they differ in exactly one bit position. You may

look ahead to Section 3.5.6 for the general definition.

dell
Rectangle

