
2.4. EXTENSIONS TO MAPREDUCE 41

(c) Bag Difference, defined to be the bag of tuples in which the number of
times a tuple t appears is equal to the number of times it appears in R
minus the number of times it appears in S. A tuple that appears more
times in S than in R does not appear in the difference.

! Exercise 2.3.4 : Selection can also be performed on bags. Give a MapReduce
implementation that produces the proper number of copies of each tuple t that
passes the selection condition. That is, produce key-value pairs from which the
correct result of the selection can be obtained easily from the values.

Exercise 2.3.5 : The relational-algebra operation R(A,B) ⊲⊳ B<C S(C,D)
produces all tuples (a, b, c, d) such that tuple (a, b) is in relation R, tuple (c, d) is
in S, and b < c. Give a MapReduce implementation of this operation, assuming
R and S are sets.

! Exercise 2.3.6 : In Section 2.3.5 we claimed that duplicate elimination is an
associative and commutative operation. Prove this fact.

2.4 Extensions to MapReduce

MapReduce proved so influential that it spawned a number of extensions and
modifications. These systems typically share a number of characteristics with
MapReduce systems:

1. They are built on a distributed file system.

2. They manage very large numbers of tasks that are instantiations of a
small number of user-written functions.

3. They incorporate a method for dealing with most of the failures that
occur during the execution of a large job, without having to restart that
job from the beginning.

We begin this section with a discussion of “workflow” systems, which ex-
tend MapReduce by supporting acyclic networks of functions, each function
implemented by a collection of tasks. While many such systems have been
implemented (see the bibliographic notes for this chapter), an increasingly pop-
ular choice is UC Berkeley’s Spark. Also gaining in importance is Google’s
TensorFlow. The latter, while not generally recognized as a workflow system
because of its very specific targeting of machine-learning applications, in fact
has a workflow architecture at heart.

Another family of systems uses a graph model of data. Computation occurs
at the nodes of the graph, and messages are sent from any node to any adjacent
node. The original system of this type was Google’s Pregel, which has its
own unique way of dealing with failures. But it has now become common to
implement a graph-model facility on top of a workflow system and use the
latter’s file system and failure-management facility.

dell
Rectangle



42 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

2.4.1 Workflow Systems

Workflow systems extend MapReduce from the simple two-step workflow (the
Map function feeds the Reduce function) to any collection of functions, with an
acyclic graph representing workflow among the functions. That is, there is an
acyclic flow graph whose arcs a → b represent the fact that function a’s output
is an input to function b.

The data passed from one function to the next is a file of elements of one
type. If a function has a single input, then that function is applied to each
input independently, just as Map and Reduce functions are applied to their
input elements individually. The output of the function is a file collected from
the result of applying the function to each input. If a function has inputs from
more than one file, elements from each of the files can be combined in various
ways. But the function itself is applied to combinations of input elements, at
most one from each input file. We shall see examples of such combinations when
we discuss the implementation of union and the relational join in Section 2.4.2.

h

f g

i

j

Figure 2.6: An example of a workflow that is more complex than Map feeding
Reduce

Example 2.6 : A suggestion of what a workflow might look like is in Fig. 2.6.
There, five functions, f through j, pass data from left to right in specific ways,
so the flow of data is acyclic and no task needs to provide data out before
its entire input is available. For instance, function h takes its input from a
preexisting file of the distributed file system. Each of h’s output elements is
passed to the functions i and j, while i takes the outputs of both f and h as
inputs. The output of j is either stored in the distributed file system or is
passed to an application that invoked this dataflow. ✷

In analogy to Map and Reduce functions, each function of a workflow can
be executed by many tasks, each of which is assigned a portion of the input to
the function. A master controller is responsible for dividing the work among
the tasks that implement a function, possibly by hashing the input elements to
decide on the proper task to receive an element. Thus, like Map tasks, each task
implementing a function f has an output file of data destined for each of the
tasks that implement the successor function(s) of f . These files are delivered



2.4. EXTENSIONS TO MAPREDUCE 43

by the master controller at the appropriate time – after the task has completed
its work.

The functions of a workflow, and therefore the tasks, share with MapReduce
tasks an important property: the blocking property, in that they only deliver
output after they complete. As a result, if a task fails, it has not delivered
output to any of its successors in the flow graph.7 A master controller can
therefore restart the failed task at another compute node, without worrying
that the output of the restarted task will duplicate output that previously was
passed to some other task.

Some applications of workflow systems are effectively cascades of MapRe-
duce jobs. An example would be the join of three relations, where one MapRe-
duce job joins the first two relations, and a second MapReduce job joins the
third relation with the result of joining the first two relations. Both jobs would
use an algorithm like that of Section 2.3.7.

There is an advantage to implementing such cascades as a single workflow.
For example, the flow of data among tasks, and its replication, can be managed
by the master controller, without need to store the temporary file that is out-
put of one MapReduce job in the distributed file system. By locating tasks at
compute nodes that have a copy of their input, we can avoid much of the com-
munication that would be necessary if we stored the result of one MapReduce
job and then initiated a second MapReduce job (although Hadoop and other
MapReduce systems also try to locate Map tasks where a copy of their input is
already present).

2.4.2 Spark

Spark is, at its heart, a workflow system. However, it is an advance over the
early workflow systems in several ways, including:

1. A more efficient way of coping with failures.

2. A more efficient way of grouping tasks among compute nodes and schedul-
ing execution of functions.

3. Integration of programming language features such as looping (which tech-
nically takes it out of the acyclic workflow class of systems) and function
libraries.

The central data abstraction of Spark is called the Resilient Distributed
Dataset, or RDD. An RDD is a file of objects of one type. The primary example
of an RDD that we have seen so far is the files of key-value pairs that are used
in MapReduce systems. They are also the files that get passed among functions
that we talked about in connection with Fig. 2.6. RDD’s are “distributed” in
the sense that an RDD is normally broken into chunks that may be held at

7As we shall discuss in Section 2.4.5, the blocking property only holds for acyclic workflows,

and systems that support recursion cannot use it to manage failures.



44 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

different compute nodes. They are “resilient” in the sense that we expect to be
able to recover from the loss of any or all chunks of an RDD. However, unlike
the key-value-pair abstraction of MapReduce, there is no restriction on the type
of the elements that comprise an RDD.

A Spark program consists of a sequence of steps, each of which typically
applies some function to an RDD to produce another RDD. Such operations
are called transformations. It is also possible to take data from the surrounding
file system, such as HDFS, and turn it into an RDD, and to take an RDD and
return it to the surrounding file system or to produce a result that is passed back
to an application that called a Spark program. The latter kinds of operations
are called actions.

We shall not try to list all the available transformations and actions that
are available. Neither shall we fix on the dictions of a particular programming
language, since the Spark operations are designed to be expressable in a number
of different programming languages. However, here are some of the commonly
used operations.

Map, Flatmap, and Filter

The Map transformation takes a parameter that is a function, and it applies that
function to every element of an RDD, producing another RDD. This operation
should remind us of the Map of MapReduce, but it is not exactly the same.
First of all, in MapReduce, a Map function can only apply to a key-value pair.
Second, in MapReduce, a Map function produces a set of key-value pairs, and
each key-value pair is considered an independent element of the output of the
Map function. In Spark, a Map function can apply to any object type, but it
produces exactly one object as a result. The type of the resulting object can
be a set, but that is not the same as producing many objects from one input
object. If you want to produce a set of objects from a single object, Spark
provides for you another transformation called Flatmap, which is analogous to
Map of MapReduce, but without the requirement that all types be key-value
pairs.

Example 2.7 : Suppose our input RDD is a file of documents, as in the “word-
count” of Example 2.1. We could write a Spark Map function that takes one
document and produces one set of pairs, with each pair of the form (w, 1), where
w is one of the words in the document. However, if we do so, then the output
RDD is a list of sets, each set consisting of all the words of one document,
each word paired with the integer 1. If we want to duplicate the Map function
described in Example 2.1, then we need to use Spark’s Flatmap transformation.
That operation applied to the RDD of documents will produce another RDD,
each of whose elements is a single pair (w, 1). ✷

Spark also provides an operation similar to a limited form of Map, called
Filter. Instead of a function as a parameter, the Filter transformation takes a
predicate that applies to the type of objects in the input RDD. The predicate



2.4. EXTENSIONS TO MAPREDUCE 45

returns true or false for each object, and the output RDD of a Filter trans-
formation consists of only those objects in the input RDD for which the filter
function returns true.

Example 2.8 : Continuing Example 2.7, suppose we want to avoid counting
stop words: the most common words like “the” or “and.” We could write a
filter function that has built into it the list of words we want to eliminate.
When applied to a pair (w, 1), this function returns true if and only if w is not
on the list. We can then write a Spark program that first applies Flatmap to
the RDD of documents, producing an RDD R1 consisting of a pair (w, 1) for
each occurrence of the word w in any of the documents. The program then
applies the stop-word-eliminating Filter to R1, producing another RDD, R2.
The latter RDD consists of a pair (w, 1) for each occurrence of word w in any
of the documents, but only if w is not a stop word. ✷

Reduce

In Spark, the Reduce operation is an action, not a transformation. That is,
the operation Reduce applies to an RDD but returns a value and not another
RDD. Reduce takes a parameter that is a function which takes two elements of
some particular type T and returns another element of the same type T . When
applied to an RDD whose elements are of type T , Reduce is applied repeatedly
to each pair of consecutive elements, reducing them to a single element. When
only one element remains, that becomes the result of the Reduce operation.

For example, if the parameter is the addition function, and this instance
of Reduce is applied to an RDD whose elements are integers, then the result
will be a single integer that is the sum of all the integers in the RDD. As long
as the function parameter is an associative and commutative function, such as
addition, it does not matter in which order elements of the input RDD are
combined. However, it is also possible to use an arbitrary function, as long as
we are satisfied with combination of elements in any order.

Relational Database Operations

There are a number of built-in Spark operations that behave like relational-
algebra operators on relations that are represented by RDD’s. That is, think
of the elements of the RDD’s as tuples of a relation. The transformation Join
takes two RDD’s, each representing one of the relations. The type of each RDD
must be a key-value pair, and the key types of both relations must be the same.
The Join transformation then looks for two objects, one from each of its input
RDD’s, such that the key values are the same, say (k, x) and (k, y). For each
such pair found, Join produces the key-value pair

(

k, (x, y)
)

, and the output
RDD consists of all such objects.

The group-by operation of SQL is also implemented in Spark by the trans-
formation GroupByKey. This transformation takes as input an RDD whose
type is key-value pairs. The output RDD is also a set of key-value pairs with



46 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

the same key type. The value type for the output is a list of values of the input
type. GroupByKey sorts its input RDD by key and for each key k produces
the pair (k, [v1, v2, . . . , vn]) such that the vi’s are all the values associated with
key k in the input RDD. Notice that GroupByKey is exactly the operation that
is performed behind the scenes by MapReduce in order to group the output of
the Map function by key.

2.4.3 Spark Implementation

There are a number of ways that Spark implementation differs from Hadoop or
other MapReduce implementations. We shall discuss two important improve-
ments: lazy evaluation of RDD’s and lineage for RDD’s. Before we do, we
should mention one way in which Spark is similar to MapReduce: the way
large RDD’s are managed.

Recall that when applying Map to a large file, MapReduce divides that file
into chunks and creates a Map task for each chunk or group of chunks. The
chunks and their tasks are typically distributed among many different compute
nodes. Likewise, many Reduce tasks can run in parallel on different compute
nodes, and each of these tasks takes a portion of the entire set of key-value pairs
that are passed from Map to Reduce. Spark also allows any RDD to be divided
into chunks, which it calls splits. Each split can be given to a different compute
node, and the transformation on that RDD can be performed in parallel on
each of the splits.

Lazy Evaluation

As mentioned in Section 2.4.1, it is common for workflow systems to exploit
the blocking property for error handling. To do so, a function is applied to a
single intermediate file (analogous to an RDD) and the output of that function
is made available to consumers of that output only after the function completes.
However, Spark does not actually apply transformations to RDD’s until it is
required to do so, typically because it must apply some action, e.g., storing
a computed RDD in the surrounding file system or returning a result to an
application.

The benefit of this strategy of lazy evaluation is that many RDD’s are not
constructed all at once. When one split of an RDD is created at a node, it may
be used immediately at the same compute node to apply another transforma-
tion. The benefit of this startegy is that this RDD is never stored on disk and
never transmitted to another compute nodes, thus saving orders of magnitude
in running time in some cases.

Example 2.9 : Consider the situation suggested in Example 2.8, where Flat-
map is applied to one RDD, which we shall refer to as R0. Note that RDD R0

is created by converting the external file of documents into an RDD. As R0 is
a large file, we shall want to divide it into splits and operate on the splits in
parallel.



2.4. EXTENSIONS TO MAPREDUCE 47

The first transformation on R0 applies Flatmap to create a set of pairs
(w, 1) for each word. For each split of R0, a split of the resulting RDD, which
we called R1 in Example 2.8, is created at the same compute node. This split
of R1 is then passed to the transformation Filter, which eliminates pairs whose
first component is a stop word. When this Filter is applied to the split, the
result is a split of the RDD R2, located at the same compute node.

However, neither the Flatmap nor Filter transformations occur unless an
action is applied to R2. For example, the Spark program may store R2 in the
surrounding file system or perform a Reduce operation that counts occurrences
of the words. Only when the program reaches this action does Spark apply the
Flatmap and Filter transformations to R0, running these transformations at
each of the compute nodes that holds a split of R0, in parallel. Thus, the splits
of R1 and R2 exist only locally at the compute node that created them, and
unless the programmer explicitly calls for them to be maintained, these splits
are dropped as soon as they are used locally. ✷

Resilience of RDD’s

One may naturally ask what happens in Example 2.9 if a compute node fails
after creating a split of R1 and before transforming that split into a split of
R2. Since R1 is not backed up to the file system, is it not lost forever? Spark’s
substitute for redundant storage of intermediate values is to record the lineage
of every RDD it creates. The lineage tells the Spark system how to recreate
the RDD, or a split of the RDD, if that is needed.

Example 2.10 : Considering again the situation described in Example 2.9,
the lineage for R2 would say that it is created by applying to R1 the particular
Filter operation that eliminates stop words. In turn, R1 is created from R0 by
the Flatmap operation that turns words of a document into (w, 1) pairs. And
R0 was created from a particular file of the surrounding file system.

For instance, if we lose a split of R2, we know we can reconstruct it from
the corresponding split of R1. But since that split exists at the same compute
node, we’ve probably lost that split also. If so, we could reconstruct it from
the corresponding split of R0, which is also probably lost if this compute node
has failed. But we know that we can reconstruct the split of R0 from the
surrounding file system, which is presumably redundant and will not be lost.
Thus, Spark will find another compute node, reconstruct the lost split of R0

from the file system there, and then apply the known transformations needed
to reconstruct the corresponding splits of R1 and R2. ✷

As we can see from Example 2.10, recovery from a node failure can be more
complex in Spark than in MapReduce or in workflow systems that store inter-
mediate values redundantly. However, the tradeoff of more complex recovery
when things go wrong against greater speed when things go right is generally a
good one. The faster a Spark program runs, the less chance there is of a node
failure while running.



48 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

We should contrast Spark’s need to be able to execute a program in the face
of failures with the need for redundant storage of files that are expected to exist
for a long period. Over a long period, failures are almost certain, so we are very
likely to lose pieces of a file if we do not store it redundantly. But over a short
period – minutes or even hours – there is a good chance of avoiding failures.
Thus, it is reasonable to be willing to pay more when there is a failure in this
case.

2.4.4 TensorFlow

TensorFlow is an open-source system developed initially at Google to support
machine-learning applications. Like Spark, TensorFlow provides a program-
ming interface in which one writes a sequence of steps. Programs are typically
acyclic, although like Spark it is possible to iterate blocks of code.

One major difference between Spark and TensorFlow is the type of data
that is passed between steps of the program. In place of the RDD, TensorFlow
uses tensors; a tensor is simply a multidimensional matrix.

Example 2.11 : A constant, e.g. 3.14159, is regarded as a 0-dimensional ten-
sor. A vector is a 1-dimensional tensor. For instance, the vector (1, 2, 3) can
be written in tensorFlow as [1., 2., 3.]. A matrix is a 2-dimensional tensor. For
example, the matrix

1 2 3 4
5 6 7 8
9 10 11 12

is expressed as [[1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.]].

Higher-dimensional arrays are possible as well. For instance, a 2-by-2-by-2
cube of 0’s is represented as [[[0., 0.], [0., 0.]], [[0., 0.], [0., 0.]]]. ✷

Although tensors are in fact a restricted form of RDD, the power of Tensor-
Flow comes from its selection of built-in operations. Linear algebra operations
are available as functions. For example, if you want matrix C to be the product
of matrices A and B, you can write

C = tensorflow.matmul(A,B)

Even more powerful are the common approaches to machine learning that
are built in as operations. a single statement in the TensorFlow language can
cause a model that is a tensor to be constructed from training data, which is
also represented as a tensor, using a method like gradient descent. (We discuss
gradient descent in Sections 9.4.5 and 12.3.4).



2.4. EXTENSIONS TO MAPREDUCE 49

2.4.5 Recursive Extensions to MapReduce

Many large-scale computations are really recursions. An important example is
PageRank, which is the subject of Chapter 5. That computation is, in sim-
ple terms, the computation of the fixedpoint of a matrix-vector multiplication.
It is computed under MapReduce systems by the iterated application of the
matrix-vector multiplication algorithm described in Section 2.3.1, or by a more
complex strategy that we shall introduce in Section 5.2. The iteration typi-
cally continues for an unknown number of steps, each step being a MapReduce
job, until the results of two consecutive iterations are sufficiently close that
we believe convergence has occurred. A second important example of a recur-
sive algorithm on massive data is gradient descent, which we just mentioned in
connection with TensorFlow.

Recursions present a problem for failure recovery. Recursive tasks inherently
lack the blocking property necessary for independent restart of failed tasks. It
is impossible for a collection of mutually recursive tasks, each of which has an
output that is input to at least some of the other tasks, to produce output only
at the end of the task. If they all followed that policy, no task would ever receive
any input, and nothing could be accomplished. As a result, some mechanism
other than simple restart of failed tasks must be implemented in a system that
handles recursive workflows (flow graphs that are not acyclic). We shall start
by studying an example of a recursion implemented as a workflow, and then
discuss approaches to dealing with task failures.

Example 2.12 : Suppose we have a directed graph whose arcs are represented
by the relation E(X,Y ), meaning that there is an arc from node X to node Y .
We wish to compute the paths relation P (X,Y ), meaning that there is a path
of length 1 or more from node X to node Y . That is, P is the transitive closure
of E. A simple recursive algorithm to do so is:

1. Start with P (X,Y ) = E(X,Y ).

2. While changes to the relation P occur, add to P all tuples in

πX,Y

(

P (X,Z) ⊲⊳ P (Z, Y )
)

That is, find pairs of nodes X and Y such that for some node Z there is
known to be a path from X to Z and also a known path from Z to Y .

Figure 2.7 suggests how we could organize recursive tasks to perform this
computation. There are two kinds of tasks: Join tasks and Dup-elim tasks.
There are n Join tasks, for some n, and each corresponds to a bucket of a hash
function h. A path tuple P (a, b), when it is discovered, becomes input to two
Join tasks: those numbered h(a) and h(b). The job of the ith Join task, when
it receives input tuple P (a, b), is to find certain other tuples seen previously
(and stored locally by that task).

1. Store P (a, b) locally.



50 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

Join
task
0

Join
task
1

Join
task
i

task
0

Dup−elim

task
1

Dup−elim

task
j

Dup−elim

.

.

.

.

.

.

.

.

.

.

.

.

P(a,b) if
h(a) = i or
h(b) = i

P(c,d) if
g(c,d) = j

P(c,d) if never
seen before

To join task h(d)

To join task h(c)

Figure 2.7: Implementation of transitive closure by a collection of recursive
tasks

2. If h(a) = i then look for tuples P (x, a) and produce output tuple P (x, b).

3. If h(b) = i then look for tuples P (b, y) and produce output tuple P (a, y).

Note that in rare cases, we have h(a) = h(b), so both (2) and (3) are executed.
But generally, only one of these needs to be executed for a given tuple.

There are also m Dup-elim tasks, and each corresponds to a bucket of a
hash function g that takes two arguments. If P (c, d) is an output of some Join
task, then it is sent to Dup-elim task j = g(c, d). On receiving this tuple, the
jth Dup-elim task checks that it has not received this tuple before, since its job
is duplicate elimination. If previously received, the tuple is ignored. But if this
tuple is new, it is stored locally and sent to two Join tasks, those numbered
h(c) and h(d).

Every Join task has m output files – one for each Dup-elim task – and every
Dup-elim task has n output files – one for each Join task. These files may be
distributed according to any of several strategies. Initially, the E(a, b) tuples
representing the arcs of the graph are distributed to the Dup-elim tasks, with
E(a, b) being sent as P (a, b) to Dup-elim task g(a, b). The master controller



2.4. EXTENSIONS TO MAPREDUCE 51

waits until each Join task has processed its entire input for a round. Then,
all output files are distributed to the Dup-elim tasks, which create their own
output. That output is distributed to the Join tasks and becomes their input
for the next round. ✷

In Example 2.12 it is not essential to have two kinds of tasks. Rather, Join
tasks could eliminate duplicates as they are received, since they must store
their previously received inputs anyway. However, this arrangement has an
advantage when we must recover from a task failure. If each task stores all
the output files it has ever created, and we place Join tasks on different racks
from the Dup-elim tasks, then we can deal with any single compute node or
single rack failure. That is, a Join task needing to be restarted can get all the
previously generated inputs that it needs from the Dup-elim tasks, and vice
versa.

In the particular case of computing transitive closure, it is not necessary to
prevent a restarted task from generating outputs that the original task gener-
ated previously. In the computation of the transitive closure, the rediscovery of
a path does not influence the eventual answer. However, many computations
cannot tolerate a situation where both the original and restarted versions of a
task pass the same output to another task. For example, if the final step of the
computation were an aggregation, say a count of the number of nodes reached
by each node in the graph, then we would get the wrong answer if we counted
a path twice.

There are at least three different approaches that have been used to deal
with failures while executing a recursive program.

1. Iterated MapReduce: Write the recursion as repeated execution of a Map-
Reduce job or of a sequence of MapReduce jobs. We can then rely on the
failure mechanism of the MapReduce implementation to handle failures
at any step. The first example of such a system was HaLoop (see the
bibliographic notes for this chapter).

2. The Spark Approach: The Spark language actually includes iterative
statements, such as for-loops that allow the implementation of recursions.
Here, failure management is implemented using the lazy-evaluation and
lineage mechanisms of Spark. In addition, the Spark programmer has
options to store intermediate states of the recursion.

3. Bulk-Synchronous Systems : These systems use a graph-based model of
computation that we shall describe next. They typically use another
resilience approach: periodic checkpointing.

2.4.6 Bulk-Synchronous Systems

Another approach to implementing recursive algorithms on a computing cluster
is represented by the Google’s Pregel system, which was the first example of a



52 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

graph-based, bulk-synchronous system for processing massive amounts of data.
Such a system views its data as a graph. Each node of the graph corresponds
roughly to a task (although in practice many nodes of a large graph would be
bundled into a single task, as in the Join tasks of Example 2.12). Each graph
node generates output messages that are destined for other nodes of the graph,
and each graph node processes the inputs it receives from other nodes.

Example 2.13 : Suppose our data is a collection of weighted arcs of a graph,
and we want to find, for each node of the graph, the length of the shortest path
to each of the other nodes. As the algorithm executes, each node a will store
a set of pairs (b, w), where w is the length of the shortest path from node a to
node b that is currently known.

Initially, each graph node a stores the set of pairs (b, w) such that there
is an arc from a to b of weight w. These facts are sent to all other nodes, as
triples (a, b, w), with the intended meaning that node a knows about a path of
length w to node b.8 When the node a receives a triple (c, d, w), it must decide
whether this fact implies a shorter path than a already knows about from itself
to node d. Node a looks up its current distance to c; that is, it finds the pair
(c, v) stored locally, if there is one. It also finds the pair (d, u) if there is one.
If w + v < u, then the pair (d, u) is replaced by (d, w + v), and if there was
no pair (d, u), then the pair (d, w + v) is stored at the node a. Also, the other
nodes are sent the message (a, d, w + v) in either of these two cases. ✷

Computations in Pregel are organized into supersteps. In one superstep, all
the messages that were received by any of the nodes at the previous superstep
(or initially, if it is the first superstep) are processed, and then all the messages
generated by those nodes are sent to their destination. It is this packaging of
many messages into one that gives this approach the name “bulk-synchronous.”

There is a very important advantage to grouping messages in this way.
Communication over a network generally requires a large amount of overhead
to send any message, however short. Suppose that in Example 2.13 we sent
a single new shortest-distance fact to the relevant node every time one was
discovered. The number of messages sent would be enormous if the graph was
large, and it would not be realistic to implement such an algorithm. However,
in a bulk-synchonous system, a task that has the responsibility for managing
many nodes of the graph can bundle together all the messages being sent by
its nodes to any of the nodes being managed by another task. That choice
typically saves orders of magnitude in the time required to send all the needed
messages.

Failure Management in Pregel

In case of a compute-node failure, there is no attempt to restart the failed tasks
at that compute node. Rather, Pregel checkpoints its entire computation after

8This algorithm uses much too much communication, but it will serve as a simple example

of the Pregel computation model.



2.5. THE COMMUNICATION-COST MODEL 53

some of the supersteps. A checkpoint consists of making a copy of the entire
state of each task, so it can be restarted from that point if necessary. If any
compute node fails, the entire job is restarted from the most recent checkpoint.

Although this recovery strategy causes many tasks that have not failed to
redo their work, it is satisfactory in many situations. Recall that the reason
MapReduce systems support restart of only the failed tasks is that we want
assurance that the expected time to complete the entire job in the face of fail-
ures is not too much greater than the time to run the job with no failures.
Any failure-management system will have that property as long as the time
to recover from a failure is much less than the average time between failures.
Thus, it is only necessary that Pregel checkpoints its computation after a num-
ber of supersteps such that the probability of a failure during that number of
supersteps is low.

2.4.7 Exercises for Section 2.4

! Exercise 2.4.1 : Suppose a job consists of n tasks, each of which takes time t
seconds. Thus, if there are no failures, the sum over all compute nodes of the
time taken to execute tasks at that node is nt. Suppose also that the probability
of a task failing is p per job per second, and when a task fails, the overhead of
management of the restart is such that it adds 10t seconds to the total execution
time of the job. What is the total expected execution time of the job?

! Exercise 2.4.2 : Suppose a Pregel job has a probability p of a failure during
any superstep. Suppose also that the execution time (summed over all compute
nodes) of taking a checkpoint is c times the time it takes to execute a superstep.
To minimize the expected execution time of the job, how many supersteps
should elapse between checkpoints?

2.5 The Communication-Cost Model

In this section we shall introduce a model for measuring the quality of algorithms
implemented on a computing cluster of the type so far discussed in this chapter.
We assume the computation is described by an acyclic workflow, as discussed
in Section 2.4.1. For many applications, the bottleneck is moving data among
tasks, such as transporting the outputs of Map tasks to their proper Reduce
tasks. As an example, we explore the computation of multiway joins as single
MapReduce jobs, and we see that in some situations, this approach is more
efficient than the straightforward cascade of 2-way joins.

2.5.1 Communication Cost for Task Networks

Imagine that an algorithm is implemented by an acyclic network of tasks. These
tasks could be Map tasks feeding Reduce tasks, as in a standard MapReduce
algorithm, or they could be several MapReduce jobs cascaded, or a more general

dell
Rectangle




