
For personal use only, not for distribution. 340

16.2 PIG

The MAPREDUCE processing model is low-level. The computation of complex tasks with
MAPREDUCE typically requires combining several jobs. Frequently used operations such as
sort or group must be repeatedly introduced in applications as map/reduce functions, and
integrated with more application specific operations. To design large-scale data processing
applications, it would be definitely useful to dispose of a language that would save the burden
of these low-level tasks while preserving the assets of MAPREDUCE. In some sense, this can
be compared to introducing declarative languages such as SQL in databases, to facilitate
the task of developing applications and thereby improve the productivity of application
programmers.

To illustrate the use of high-level language primitives, we present the PIG environment and
PIG (or PIGLATIN) language. In spite of sometimes clumsy ad hoc features, the language is in
general quite adapted to standard large scale data processing tasks. Another advantage is that
it can be tested with minimal installation overhead. PIG brings two important features with
respect to the MAPREDUCE approach: (i) a richer data model, with nested data structures,
and (ii) expressive data manipulation primitives that can be combined in data flows to obtain
complex operations.

In brief, a PIG program takes as input a “bag” represented in a file. We will detail the bag
data structure further, but it is a roughly speaking a nested relation, i.e., a relation where the
entries may themselves be relations. A PIG program also produces a bag, either stored in a
file or displayed on screen.

We begin with a short illustrative session, and then develop the data and processing
model of PIG. The Putting into Practice chapter devoted to HADOOP gives practical hints and
exercises to experiment with PIG.

16.2.1 A simple session

Consider the following simple example: given a file with a list of publications in a scientific
journal, determine the average number of papers published each year. We use data coming
from DBLP, a large collection of information on scientific publications, publicly available2 in
XML.

The PIG loader accepts a variety of input formats. We use here the default file format that it
accepts. Each line of the file is interpreted as an entry (here a publication). Within a line, the
attributes are separated by tabs. Suppose the input consists of the following lines:

2005 VLDB J. Model-based approximate querying in sensor networks.
1997 VLDB J. Dictionary-Based Order-Preserving String Compression.
2003 SIGMOD Record Time management for new faculty.
2001 VLDB J. E-Services - Guest editorial.
2003 SIGMOD Record Exposing undergraduate students to system internals.
1998 VLDB J. Integrating Reliable Memory in Databases.
1996 VLDB J. Query Processing and Optimization in Oracle Rdb
1996 VLDB J. A Complete Temporal Relational Algebra.
1994 SIGMOD Record Data Modelling in the Large.
2002 SIGMOD Record Data Mining: Concepts and Techniques - Book Review.
...

2http://www.sigmod.org/dblp/db/index.html

For personal use only, not for distribution. 341

Each line gives the year a publication was published, the journal it was published in (e.g.,
the VLDB Journal) and its title.

Here is the complete PIG program that computes the average number of publications per
year in SIGMOD RECORD.

-- Load records from the journal-small.txt file (tab separated)
articles = load ’../../data/dblp/journal-small.txt’

as (year: chararray, journal:chararray, title: chararray) ;
sr_articles = f i l t e r articles BY journal==’SIGMOD Record’;
year_groups = group sr_articles by year;
avg_nb = foreach year_groups generate group, COUNT(sr_articles.title);
dump avg_nb;

When run on a sample file, the output may look as follows:

(1977,1)
(1981,7)
(1982,3)
(1983,1)
(1986,1)
...

The program is essentially a sequence of operations, each defining a temporary bag that
can be used as input of the subsequent operations. It can be viewed as a flow of data
transformation, that is linear in its simplest form but can more generally be an acyclic workflow
(i.e., a directed acyclic graph).

We can run a step-by-step evaluation of this program with the grunt command interpreter
to better figure out what is going on.

Load and filter. The load operator produces as temporary result, a bag named articles.
PIG disposes of a few atomic types (int, chararray, bytearray). To “inspect” a bag,
the interpreter proposes two useful commands: describe outputs its type, and illustrate
produces a sample of the relation’s content.

grunt> DESCRIBE articles;
articles: {year: chararray,journal: chararray,title: chararray}

grunt> ILLUSTRATE articles;

| articles | year: chararray | journal: chararray | title: chararray |

| | 2003 | SIGMOD Record | Call for Book Reviews.|

The file contains a bag of tuples, where the tuple attributes are distinguished by position.
After loading, articles also contains a bag of tuples, but the tuple attributes are now
distinguished by name.

The filter operation simply selects the elements satisfying certain conditions, pretty much
like a relational selection.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 342

Group. In the example, the bags resulting from the load or from the filter do not look
different than standard relations. However, a difference is that they may have two identical
elements. This would happen, in the example, if the file contains two identical lines. Note that
this cannot happen in a relation that is a set of tuples. Bags allow the repetition of elements.
Furthermore, like nested relations, PIG bags can be nested. The result of a group for instance
is a nested bag. In the example, the group operation is used to create a bag with one element
for each distinct year:

grunt> year_groups = GROUP sr_articles BY year;

grunt> describe year_groups;
year_groups: {group: chararray,

sr_articles: {year: chararray,journal: chararray,title:chararray}}

grunt> illustrate year_groups;
group: 1990
sr_articles:
{
(1990, SIGMOD Record, An SQL-Based Query Language For Networks of Relations.),
(1990, SIGMOD Record, New Hope on Data Models and Types.)

}

PIG represents bags, nested or not, with curly braces {}. Observe the year_groups exam-
ple provided by the illustrate command. Note that the grouping attribute is by convention
named group. All the elements with the same year compose a nested bag.

Before detailing PIG, we summarize its main features essentially contrasting it with SQL:

• Bags in PIG allow repeated elements (therefore the term bag) unlike relations that are
sets of elements.

• Bags in PIG allow nesting as in nested relations, but unlike classical relations.

• As we will see further, in the style of semistructured data, bags also allow further
flexibility by not requiring any strict typing, i.e., by allowing heterogeneous collections.

• For processing, PIG is deliberately oriented toward batch transformations (from bags to
bags) possibly in multiple steps. In this sense, it may be viewed as closer to a workflow
engine than to an SQL processor.

Note that these design choices have clear motivations:

• The structure of a bag is flexible enough to capture the wide range of information
typically found in large-scale data processing.

• The orientation toward read/write sequential data access patterns is, of course, moti-
vated by the distributed query evaluation infrastructure targeted by PIG program, and
(as we shall see) by the MAPREDUCE processing model.

• Because of the distributed processing, data elements should be processable indepen-
dently from each other, to make parallel evaluation possible. So language primitives
such as references or pointers are not offered. As a consequence, the language is not
adapted to problems such as graph problems. (Note that such problems are notoriously
difficult to parallelize.)

For personal use only, not for distribution. 343

The rest of this section delves into a more detailed presentation of PIG’s design and
evaluation.

16.2.2 The data model

As shown by our simple session, a PIG bag is a bag of PIG tuples, i.e., a collection with possibly
repeated elements. A PIG tuple consist of a sequence of values distinguished by their positions
or a sequence of (attribute name, attribute value) pairs. Each value is either atomic or itself a
bag.

To illustrate subtle aspects of nested representations, we briefly move away from the
running example. Suppose that we obtain a nested bag (as a result of previous computations)
of the form:

a : { b : chararray, c : { c’ : chararray }, d : { d’ : chararray } }

Examples of tuples in this bag may be:

〈a : { 〈b : 1, c : {〈c′ : 2〉, 〈c′ : 3〉},d : {〈d′ : 2〉}〉, 〈b : 2, c : ∅,d : {〈d′ : 2〉, 〈d′ : 3〉}〉 }〉

Note that to represent the same bag in the relational model, we would need identifiers for
tuples in the entire bag, and also for the tuples in the c and d bags. One could then use a
relation over bidb, one over bidcidc and one over biddidd:

bid b bid cid c bid did d
i1 1 i1 j1 2 i1 j2 2
i2 2 i1 j3 3 i2 j4 2

i2 j5 3

Observe that an association between some b, c and d is obtained by sharing an id, and requires
a join to be computed. The input and output of a single PIG operation would correspond to
several first-normal-form relations3. Joins would be necessary to reconstruct the associations.
In very large data sets, join processing is very likely to be a serious bottleneck.

As already mentioned, more flexibility is obtained by allowing heterogeneous tuples to
cohabit in a same bag. More precisely, the number of attributes in a bag (and their types)
may vary. This gives to the programmer much freedom to organize her dataflow by putting
together results coming from different sources if necessary.

Returning to the running example, an intermediate structure created by our program
(year_groups) represents tuples with an atomic group value (the year) and a nested
article value containing the set of articles published that year.

Also, PIG bags introduce lots of flexibility by not imposing a strong typing. For instance,
the following is a perfectly valid bag in PIG:

{
(2005, {’SIGMOD Record’, ’VLDB J.’}, {’article1’, article2’})
(2003, ’SIGMOD Record’, {’article1’, article2’}, {’author1’, ’author2’})

}

3A relation is in first-normal-form, 1NF for short, if each entry in the relation is atomic. Nested relations are also
sometimes called not-first-normal-form relations.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 344

This is essentially semistructured data, and can be related to the specificity of applications
targeted by PIG. Input data sets often come from a non-structured source (log files, documents,
email repositories) that does not comply to a rigid data model and needs to be organized
and processed on the fly. Recall also that the application domain is typically that of data
analysis: intermediate results are not meant to be persistent and they are not going to be used
in transactions requiring stable and constrained structures.

PIG has a last data type to facilitate look-ups, namely maps. We mention it briefly. A map
associates to a key, that is required to be a data atom, an arbitrary data value.

To summarize, every piece of data in PIG is one of the following four types:

• An atom, i.e., a simple atomic value.

• A bag of tuples (possibly heterogeneous and possibly with duplicates).

• A PIG tuple, i.e., a sequence of values.

• A PIG map from keys to values.

It should be clear that the model does not allow the definition of constraints commonly met
in relational databases: key (primary key, foreign key), unicity, or any constraint that needs to
be validated at the collection level. Thus, a collection can be partitioned at will, and each of
its items can be manipulated independently from the others.

16.2.3 The operators

Table 16.1 gives the list of the main PIG operators operating on bags. The common charac-
teristic of the unary operations is that they apply on a flow of tuples, that are independently
processed one-at-a-time. The semantics of an operation applied to a tuple never depends on
the previous or subsequent computations. Similarly, for binary operations: elementary opera-
tions are applied to a pair of tuples, one from each bag, independently from the other tuples
in the two bags. This guarantees that the input data sets can be distributed and processed in
parallel without affecting the result.

Operator Description
foreach Apply one or several expression(s) to each of the input tuples.
filter Filter the input tuples with some criteria.
order Order an input.
distinct Remove duplicates from an input.

cogroup Associate two related groups from distinct inputs.
cross Cross product of two inputs.
join Join of two inputs.
union Union of two inputs (possibly heterogeneous, unlike in SQL).

Table 16.1: List of PIG operators

We illustrate some important features with examples applied to the following tiny data
file webdam-books.txt. Each line contains a publication date, a book title and the name of an
author.

For personal use only, not for distribution. 345

1995 Foundations of Databases Abiteboul
1995 Foundations of Databases Hull
1995 Foundations of Databases Vianu
2010 Web Data Management Abiteboul
2010 Web Data Management Manolescu
2010 Web Data Management Rigaux
2010 Web Data Management Rousset
2010 Web Data Management Senellart

-- Load records from the webdam-books.txt file (tab separated)
books = load ’../../data/dblp/webdam-books.txt’

as (year: int, title: chararray, author: chararray) ;
group_auth = group books by title;
authors = foreach group_auth generate group, books.author;
dump authors;

Figure 16.4: Example of group and foreach

The first example (Figure 16.4) shows a combination of group and foreach to obtain a bag
with one tuple for each book, and a nested list of the authors.

The operator foreach applies some expressions to the attributes of each input tuple. PIG

provides a number a predefined expressions (projection/flattening of nested sets, arithmetic
functions, conditional expressions), and allows User Defined Functions (UDF) as well. In the
example, a projection expressed as books.authors is applied to the nested set result of the
group operator. The final authors nested bag is:

(Foundations of Databases,
{(Abiteboul),(Hull),(Vianu)})

(Web Data Management,
{(Abiteboul),(Manolescu),(Rigaux),(Rousset),(Senellart)})

The flatten expression serves to unnest a nested attribute.

-- Take the ’authors’ bag and f l a t t e n the nested set
flattened = foreach authors generate group, f l a t t e n(author);

Applied to the nested bag computed earlier, flatten yields a relation in 1NF:

(Foundations of Databases,Abiteboul)
(Foundations of Databases,Hull)
(Foundations of Databases,Vianu)
(Web Data Management,Abiteboul)
(Web Data Management,Manolescu)
(Web Data Management,Rigaux)
(Web Data Management,Rousset)
(Web Data Management,Senellart)

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 346

The cogroup operator collects related information from different sources and gathers them
as separate nested sets. Suppose for instance that we also have the following file webdam-
publishers.txt:

Fundations of Databases Addison-Wesley USA
Fundations of Databases Vuibert France
Web Data Management Cambridge University Press USA

We can run a PIG program that associates the set of authors and the set of publishers for
each book (Figure 16.5).

--- Load records from the webdam-publishers.txt file
publishers = load ’../../data/dblp/webdam-publishers.txt’

as (title: chararray, publisher: chararray) ;
cogrouped = cogroup flattened by group, publishers by title;

Figure 16.5: Illustration of the cogroup operator

The result (limited to Foundations of databases) is the following.

(Foundations of Databases,
{ (Foundations of Databases,Abiteboul),

(Foundations of Databases,Hull),
(Foundations of Databases,Vianu)

},
{(Foundations of Databases,Addison-Wesley),
(Foundations of Databases,Vuibert)

}
)

The result of a cogroup evaluation contains one tuple for each group with three attributes.
The first one (named group) is the identifier of the group, the second and third attributes
being nested bags with, respectively, tuples associated to the identifier in the first input bag,
and tuples associated to the identifier in the second one. Cogrouping is close to joining the
two (or more) inputs on their common identifier, that can be expressed as follows:

-- Take the ’flattened’ bag, join with ’publishers’
joined = join flattened by group, publishers by title;

The structure of the result is however different than the one obtained with cogroup.

(Foundations of Databases,Abiteboul,Fundations of Databases,Addison-Wesley)
(Foundations of Databases,Abiteboul,Fundations of Databases,Vuibert)
(Foundations of Databases,Hull,Fundations of Databases,Addison-Wesley)
(Foundations of Databases,Hull,Fundations of Databases,Vuibert)
(Foundations of Databases,Vianu,Fundations of Databases,Addison-Wesley)
(Foundations of Databases,Vianu,Fundations of Databases,Vuibert)

For personal use only, not for distribution. 347

In this example, it makes sense to apply cogroup because the (nested) set of authors and
the (nested) set of publishers are independent, and it may be worth considering them as
separate bags. The join applies a cross product of these sets right away which may lead to
more complicated data processing later.

The difference between cogroup and join is an illustration of the expressiveness brought by
the nested data model. The relational join operator must deliver flat tuples, and intermediate
states of the result cannot be kept as first class citizen of the data model, although this could
sometimes be useful from a data processing point of view. As another illustration, consider
the standard SQL group by operator in relational databases. It operates in two, non-breakable
steps that correspond to a PIG group, yielding a nested set, followed by a foreach, applying
an aggregation function. The following example is a PIG program that computes a 1NF
relation with the number of authors for each book.

-- Load records from the webdam-books.txt file (tab separated)
books = load ’webdam-books.txt’

as (year: int, title: chararray, author: chararray) ;
group_auth = group books by title;
authors = foreach group_auth generate group, COUNT(books.author);
dump authors;

The possible downside of this modeling flexibility is that the size of a tuple is unbounded:
it can contain arbitrarily large nested bags. This may limit the parallel execution (the extreme
situation is a bag with only one tuple and very large nested bags), and force some operators
to flush their input or output tuple to the disk if the main memory is exhausted.

16.2.4 Using MAPREDUCE to optimize PIG programs

The starting point of this optimization is that a combination of group and foreach operators
of PIG can be almost directly translated into a program using MAPREDUCE. In that sense, a
MAPREDUCE job may be viewed as a group-by operator over large scale data with build-in
parallelism, fault tolerance and load balancing features. The MAP phase produces grouping
keys for each tuple. The shuffle phase of MAPREDUCE puts these keys together in intermediate
pairs (akin to the nested bags, result of the PIG group). Finally, the REDUCE phase provides
an aggregation mechanism to cluster intermediate pairs. This observation is at the core of
using a MAPREDUCE environment as a support for the execution of PIG programs.

Basically, each (co)group operator in the PIG data flow yields a MAPREDUCE tasks that
incorporates the evaluation of PIG operators surrounding the (co)group. As previously
explained, a join, can be obtained using a cogroup followed by a flattening of the inner nested
bags. So, joins can also benefit from the MAPREDUCE environment.

To conclude, we illustrate such a MAPREDUCE evaluation with two of the examples
previously discussed.

Example: group and foreach. In a first example, we use the program given in Figure 16.4,
page 345. Following the classical query evaluation mechanism, the compilation transforms
this program through several abstraction levels. Three levels are here represented. The “logi-
cal” level directly represents the dataflow process. At this point, some limited reorganization

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 348

may take place. For instance, a filter operator should be “pushed” as near as possible to the
load to decrease the amount of data that needs to be processed.

Figure 16.6: Compilation of a PIG program in MAPREDUCE

The second level represents the sequence of physical operations that need to be executed
in a parallel query processing environment. PIG targets several parallel execution models,
and this intermediate level provides the means to describe and manipulate a physical plan
independently from a specific infrastructure.

The blocks in the physical plan introduce some new operators, namely REARRANGE (LOCAL

and GLOBAL), and PACKAGE. REARRANGE denotes a physical operator that groups tuples
with the same key, via either hashing or sorting. The distinction between LOCAL and GLOBAL

stems from the parallelization context. The LOCAL operator takes place on a single node,
whereas the GLOBAL operator needs to collect and arrange tuples initially affected to many
nodes. The algorithms that implement these variants may therefore be quite different.

PACKAGE relates to the PIG data model. Once a set of tuples sharing the same key are put
together by a REARRANGE, a nested bag can be created and associated with the key value to
form the typical nested structure produced by the (co)group operation. Expressions in the
foreach operator can then be applied.

The lower level in Figure 16.4 shows the MAPREDUCE execution of this physical plan.
There is only one MAPREDUCE job, and the physical execution proceeds as follows:

1. MAP generates the key of the input tuples (in general, this operation may involve the
application of one or several functions), and groups the tuples associated to given key
in intermediate pairs;

2. the GLOBAL REARRANGE operator is natively supported by the MAPREDUCE frame-
work: recall that intermediate pairs that hash to a same value are assigned to a single
Reducer, that performs a merge to “arrange” the tuples with a common key together;

3. the PACKAGE physical operator is implemented as part of the reduce() function, that
takes care of applying any expression required by the foreach loop.

Example: join and group. Our second example involves a join followed by a group. It
returns the number of publishers of Victor Vianu. Note that one might want to remove
duplicates from the answer; this is left as an exercise.

Figure 16.8 shows the execution of this program using two MAPREDUCE jobs. The first one
carries out the join. Both inputs (books and publishers) are loaded, filtered, sorted on the title,

For personal use only, not for distribution. 349

-- Load records from the webdam-books.txt file (tab separated)
books = load ’../../data/dblp/webdam-books.txt’

as (year: int, title: chararray, author: chararray) ;
-- Keep only books from Victor Vianu
vianu = f i l t e r books by author == ’Vianu’;
--- Load records from the webdam-publishers.txt file
publishers = load ’../../data/dblp/webdam-publishers.txt’

as (title: chararray, publisher: chararray) ;
-- Join on the book title
joined = join vianu by title, publishers by title;
-- Now, group on the author name
grouped = group joined by vianu::author;
-- Finally count the publishers (nb: we should remove duplicates!)
count = foreach grouped generate group, COUNT(joined.publisher);

Figure 16.7: A complex PIG program with join and group

tagged with their provenance, and stored in intermediate pairs (MAP phase). Specifically, the
map() function receives rows:

1. either from the books input with year, title, and author.

2. or from the publishers input with title and publisher. again recording provenance.

Each row records its provenance, either books or publishers.
These intermediate pairs are sorted during the shuffle phase, and submitted to the reduce()

function. For each key (title), this function must take the set of authors (known by their
provenance), the set of publishers (idem), and compute their cross product that constitutes a
part of the join result. This output can then be transmitted to the next MAPREDUCE job in
charge of executing the group.

Figure 16.8: A multi-jobs MAPREDUCE execution

Clearly, this complex query would require an important amount of work with MAPREDUCE

programming, whereas it is here fulfilled by a few PIG instructions. The advantage is more
related to the software engineering process than to the efficiency of the result. the Due to
the rather straighforward strategy applied by the PIG evaluator, early performance reports
show that PIG execution is, not surprisingly, slightly worse than the equivalent MAPREDUCE

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 350

direct implementation. This is notably due to the overhead introduced by the translation
mechanism. The next section mentions alternative approaches that pursue similar goal that
PIG.

16.3 Further reading

Distributed computing now has a long history, with Web services as a recent popular outcome.
We refer the reader to the general references [153] for distributed systems and [31] for parallel
algorithms. At the center of distributed computing we find the possibility of activating some
computation on a distant machine. This leads to remote procedure call, an abstraction that
allows interacting with a remote program while ignoring its details. Some data is sent as
argument of the call. The remote program is activated with this data as input. Its result is
shipped back to the caller. Note that this involves transmission of data in both directions,
from the caller to the callee (parameters of the call) and back (results).

To support such communications, one needs to provide end-points for these communica-
tions, e.g. sockets. A communication happens between a local socket and a remote one. To
understand each other, they need to use some common protocol for the messages, e.g., TCP,
UDP, raw IP, or, in the Web Services realm, SOAP.

Based on such communications, middleware systems have been developed since the 1960’s,
the so-called message-oriented middleware. They are based on asynchronous calls, i.e., the call
is made and the caller is not blocked waiting for an answers. The messages are managed in
queues. Examples of such systems are IBM Websphere and Microsoft MQ serie.

The object-oriented paradigm proved to be very successful for distributed computing.
Indeed, it is very natural to see an external resource as an object, i.e., a black box with a set of
methods as interface. This lead to very popular systems, object brokers.

From a data management perspective, one may want to support transactions between the
distributed machines. This leads to transaction processing monitors, , e.g., IBM CICS or BEA
Tuxedo. Such systems provide support for persistence, distributed transactions, logging and
error recovery.

By merging, object brokers and TP monitors, one obtains the object monitors. These systems
became popular in the 1990’s, notably with Corba from the Object Management Group and
DCOM by Microsoft

Closer to us and targeting the Web, we find XML-RPC (in the late 1990’s) that, as indicated
by its name, is based on remote procedure calls using XML as underlying data format. The
calls are performed using HTTP-POST.

Finally, we briefly discuss Corba that had a very important influence in the evolution
of distributed computing. Corba stands for Common Object Request Broker Architecture. As
previously mentioned, it is based on RPC and the object-oriented paradigm. The development
of Corba-based components is somewhat independent of the programming language, e.g.,
C++ or Java may be used. An implementation of Corba consists of the deployment of a
system (called an ORB) that provides the interoperability between applications distributed
on different machines. The ORB provides a large set of services, e.g., persistence, transaction,
messaging, naming, security, etc. Corba and DCOM were the main supports for distribution
before Web services.

There is a long history of research on so-called nested relations, e.g., [4], or complex objects,
e.g., [3], that somehow paved the way for semistructured data models. An algebra for bags,

dell
Rectangle

