
20 Putting into Practice: COUCHDB, a JSON
Semi-Structured Database

This PiP chapter proposes exercises and projects based on COUCHDB, a recent database
system which relies on many of the concepts presented so far in this book. In brief:

1. COUCHDB adopts a semi-structured data model, based on the JSON (JavaScript Object
Notation) format; JSON offers a lightweight alternative to XML;

2. a database in COUCHDB is schema-less: the structure of the JSON documents may vary
at will depending on their specific features;

3. in order to cope with the absence of constraint that constitutes the counterpart of this
flexibility, COUCHDB proposes an original approach, based on structured materialized
views that can be produced from document collections;

4. views are defined with the MAPREDUCE paradigm, allowing both a parallel computa-
tion and incremental maintenance of their content;

5. finally, the system aspects of COUCHDB illustrate most of the distributed data man-
agement techniques covered in the last part of the present book: distribution based on
consistent hashing, support for data replication and reconciliation, horizontal scalability,
parallel computing, etc.

COUCHDB is representative of the emergence of so-called key-value store systems that
give up many features of the relational model, including schema, structured querying and
consistency guarantees, in favor of flexible data representation, simplicity and scalability. It
illustrates the “No[tOnly]SQL” trend with an original and consistent approach to large-scale
management of “documents” viewed as autonomous, rich pieces of information that can be
managed independently, in contrast with relational databases which take the form of a rich
graph of interrelated flat tuples. This chapter will help you to evaluate the pros and cons of
such an approach.

We first introduce COUCHDB and develop some of its salient aspects. Exercises and projects
follow. As usual, complementary material can be found on the Web site, including JSON data
sets extracted from the DBLP source. We also provide an on-line testing environment that lets
you play with COUCHDB, insert data and run MAPREDUCE scripts.

20.1 Introduction to the COUCHDB document database

This section is an introduction to the COUCHDB features that will be explored in the project
and exercises. We left apart many interesting aspects (e.g., security, load balancing, view man-
agement) that fall beyond the scope of this introductory chapter. The presentation successively
covers the data model, the definition of views, and data replication and distribution.

389

For personal use only, not for distribution. 390

20.1.1 JSON, a lightweight semi-structured format

JSON is a simple text format initially designed for serializing Javascript objects. For the
record, Javascript is a scripting language (distinct from Java) which is intensively used in Web
browsers for “dynamic HTML” applications. In particular, a Javascript function can access
and modify the DOM tree of the document displayed by a browser. Any change made to
this document is instantaneously reflected in the browser window. This gives a means to
react to user’s actions without having to request a new page from the server (a development
technique know as AJAX), and therefore enables the creation of rich, interactive client-side
applications.

Although JSON comes from the Javascript world, the format is language-independent.
There exist libraries in all programming languages to read and parse JSON documents, which
makes it a simple alternative to XML. This is particularly convenient when persistent data
must be tightly integrated in a programming environment because objects can be instantiated
from the JSON serialization with minimal programming effort.

Key-value pairs

The basic construct of JSON is a key-value pair of the form "key": value. Here is a first example,
where the value is a character string:

"title": "The Social network"

Usual escaping rules apply: the character ’"’ for instance must be escaped with ’\’. Special
characters like tabs and newlines are also escaped:

"summary": "On a fall night in 2003, Harvard undergrad and computer\n
programming genius Mark Zuckerberg sits down at his computer\n
and heatedly begins working on a new idea. (...)"

JSON accepts a limited set of basic data types: character strings, integers, floating-point
numbers and Booleans (true or false). Non-string values need not be surrounded by ’"’.

"year": 2010

Complex values: objects and arrays

Complex values are built with two constructors: objects and arrays. An object is an unordered
set of name/value pairs, separated by commas, and enclosed in braces. The types can be
distinct, and a key can only appear once. The following is an object made of three key-value
pairs.

{"last_name": "Fincher", "first_name": "David", "birth_date": 1962}

Since constructors can be nested, an object can be used as the (complex) value component
of a key-value construct:

For personal use only, not for distribution. 391

"director": {
"last_name": "Fincher",
"first_name": "David",
"birth_date": 1962

}

An array is an ordered collection of values that need not be of the same type (JSON
definitely does not care about types). The list of values is enclosed in square brackets []. The
following key-value pairs represents a list of actors’ names.

"actors": ["Eisenberg", "Mara", "Garfield", "Timberlake"]

JSON documents

A document is an object. It can be represented with an unbounded nesting of array and object
constructs, as shown by the following example which provides a JSON representation of the
movie The Social Network.

{
"title": "The Social network",
"year": "2010",
"genre": "drama",
"summary": "On a fall night in 2003, Harvard undergrad and computer
programming genius Mark Zuckerberg sits down at his computer
and heatedly begins working on a new idea. In a fury of blogging
and programming, what begins in his dorm room soon becomes a global
social network and a revolution in communication. A mere six years
and 500 million friends later, Mark Zuckerberg is the youngest
billionaire in history... but for this entrepreneur, success leads
to both personal and legal complications.",
"country": "USA",

"director": {
"last_name": "Fincher",
"first_name": "David",
"birth_date": "1962"

},
"actors": [

{
"first_name": "Jesse",
"last_name": "Eisenberg",
"birth_date": "1983",
"role": "Mark Zuckerberg"

},
{

"first_name": "Rooney",
"last_name": "Mara",
"birth_date": "1985",
"role": "Erica Albright"

},

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 392

{
"first_name": "Andrew",
"last_name": "Garfield",
"birth_date": "1983",
"role": " Eduardo Saverin "

},
{

"first_name": "Justin",
"last_name": "Timberlake",
"birth_date": "1981",
"role": "Sean Parker"

}
]

}

To summarize, JSON relies on a simple semi-structured data model, and shares with XML
some basic features: data is self-described, encoded independently from any application or
system, and the representation supports simple but powerful constructs that allow building
arbitrarily complex structures. It is obvious that any JSON document can be converted to an
XML document. The opposite is not true, at least if we wish to maintain all the information
potentially conveyed by XML syntax. Namespaces are absent from JSON, documents are
always encoded in UTF-8, and the language lacks from a built-in support for references (the
ID-IDREF mechanism in XML).

Moreover, at the time of writing, there is nothing like a “JSON schema” that could help to
declare the structure of a JSON database (some initiatives are in progress: see the references).
The attractiveness from JSON comes primarily from its easy integration in a development
framework, since a JSON document can directly be instantiated as an object in any program-
ming language. The absence of typing constraint requires some complementary mechanisms
to ensure that a JSON database presents a consistent and robust data interface to an appli-
cation. Documents should be validated before insertion or update, and data access should
retrieve documents whose structure is guaranteed to comply to at least some common struc-
tural pattern. COUCHDB is an interesting attempt to provide answers to these issues.

20.1.2 COUCHDB, architecture and principles

A COUCHDB instance is based on a Client/Server architecture, where the COUCHDB server
handles requests sent by the client, processes the requests on its database(s), and sends an
answer (Figure 20.1). Unlike most of the database management systems that define their
own, proprietary client-server communication protocol, COUCHDB proposes a REST-based
interface. Requests sent by the Client to the server are REST calls, and take actually the
form of an HTTP request, together with parameters transmitted with one of the basic HTTP
method: GET, POST, PUT and DELETE.

It is probably worth recalling at this point the essential features of the HTTP requests that
constitute a REST interface. First, we aim at manipulating resources, in our case, essentially
JSON documents or collections of documents. Second, each resource is referenced by a
Universal Resource Identifier (URI), i.e., a character string that uniquely determines how and
where we access the resource on the Internet. And, third, we apply operations to resources.
Operations are defined by the HTTP protocol as follows:

For personal use only, not for distribution. 393

GET retrieves the resource referenced by the URI.

PUT creates the resource at the given URI.

POST sends a message (along with some data) to an existing resource.

DELETE deletes the resource.

The difference between PUT and POST, often misunderstood, is that PUT creates a new
resource, whereas POST sends some data to an existing resource (typically, a service that pro-
cesses the data). The difference is harmless for many applications that ignore the specificities
of REST operation semantics, and simply communicate with a web server through HTTP. A
so-called RESTful service takes care of the meaning of each operation, and deliberately bases
its design of the concept of resources manipulation.

This is the case of a COUCHDB server. It implements a REST interface to communicate
with the client application. HTTP calls can be encapsulated either by a REST client library,
or even expressed directly with a tool like curl (see below). The server answers through
HTTP, with messages encoded in JSON. Here is a first, very simple communication with
an hypothetical COUCHDB server located at, say, http://mycouch.org: we send a GET
request and receive a JSON-encoded acknowledgment message.

$ curl -X GET http://mycouch.org
{"couchdb":"Welcome","version":"1.0.1"}

A nice feature of the approach is that is quite easy to directly communicate with a server.
Keeping in mind the three main REST concepts (resource, URI and operation semantics) helps
figuring out the purpose of each request.

The server maintains one or several collections of JSON documents. In addition to the
JSON structure which constitutes the description of a document d, non-structured files can
be attached to d. COUCHDB adds to each document an id and a revision number. The id of
a document is unique in the collection (an error is raised by COUCHDB if one attempts to
create a document with an already existing id), and is stored as the value of the _id key in
the JSON document. In case the value of _id is not part of the inserted document, COUCHDB
automatically assigns a unique value (a long, obscure character string).

Revisions correspond to the versioning feature of COUCHDB: each update to a document
creates a new version, with the same _id but a new revision number, represented by the
value of a _rev key.

A collection in a COUCHDB collection has no schema: a document d1 with a structure A
can cohabit with a document d2 with a structure B, potentially completely different from A.
Basically, this means that the application is in charge of checking the structural constraints
before insertion or updates.

COUCHDB proposes some support to solve the problem. First, validation functions can be
assigned to a collection: any document inserted or updated must be validated by these func-
tions; else the modification request is rejected. This is somewhat equivalent to implementing
a specific type-checking function instead of a declarative specification.

Second, COUCHDB allows the definition of views. A view is a new key-document collection,
specified via a function (actually the specification is based on MAPREDUCE: see below), and
organized as a B-tree built on the key. Defining a view is tantamount to a virtual restructuring
of the document collection, generating new keys, new documents and new ways of exploring

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://mycouch.org

For personal use only, not for distribution. 394

the collection. Since the view is structured as a B-tree, an important advantage is that it
supports efficient key and range queries. Views are a means in COUCHDB of presenting a
structured and well-organized content to applications.

Finally, the last COUCHDB aspect illustrated by Figure 20.1 is data replication. It is possible
to ask a COUCHDB instance to synchronize itself with another instance located anywhere
on the Web. This enables a replication mechanism that copies each document to the remote
servers. Replication is useful for security (replicated data is safer data) and for scalability. It
also gives rise to consistency concerns, since two client applications may modify indepen-
dently two replicas of a same document. COUCHDB detects update conflicts and reports
them, but does not attempt an automatic reconciliation.

These are the basics of COUCHDB principles. Let us now delve into practice.

20.1.3 Preliminaries: set up your COUCHDB environment

From now on, we will guide you through a step-by-step exploration of a few salient features
of COUCHDB: creating data and views, replication and distribution. You are invited to
download a sample of our movies data set, encoded in JSON, from the book web site. You
also need an access to a running COUCHDB server. You can set up your own environment
(see the site http://couchdb.apache.org), or use our on-line environment. Please look
at the site for details. In the following, $COUCHDB will refer to the IP of the COUCHDB server.
In case you would use a Unix console, this variable can be defined with:

export COUCHDB=http://<couchIP>:5984

where couchIP denotes the IP address of the host1. In order to communicate with the
server, you need a client application that sends HTTP requests to your COUCHDB server.
The universal command-line tool to do so is curl, which should be available on any Unix-like
system. For instance the following command:

curl $COUCHDB

sends an HTTP request GET (the default method) to the server, which should answer:

{"couchdb":"Welcome","version":"1.0.1"}

Using the option -v unveils the details of the HTTP protocol.

$ curl -v $COUCHDB

* About to connect() to xx.xxx.xxx port 5984 (#0)

* Trying xx.xxx.xxx... connected

* Connected to xx.xxx.xxx (xx.xxx.xxx) port 5984 (#0)
> GET / HTTP/1.1
> User-Agent: curl/7.19.7
> Host: xx.xxx.xxx:5984
> Accept: */*
>
< HTTP/1.1 200 OK
< Server: CouchDB/1.0.1 (Erlang OTP/R13B)

1If you use our COUCHDB server, you must add you login/password to this IP.

http://couchdb.apache.org

For personal use only, not for distribution. 395

< Date: Tue, 09 Nov 2010 08:34:36 GMT
< Content-Type: text/plain;charset=utf-8
< Content-Length: 40
< Cache-Control: must-revalidate
<
{"couchdb":"Welcome","version":"1.0.1"}

* Connection #0 to host xx.xxx.xxx left intact

* Closing connection #0

Every interaction with the server can in principle be handled by curl. Of course, a graphical
interface is more pleasant that a command-line tool. Our site proposes such an interface. If
you have your own installation of COUCHDB, Futon is an application, shipped with any
COUCHDB environment, that lets you manage your databases. Futon is actually a Javascript
application natively stored in a COUCHDB server, so that it works without any further
installation step. It can be accessed at the following URL:

$COUCHDB/_utils

Fig. 20.2 shows a screen copy of the Futon home page. In the following, we will describe
the interactions with COUCHDB through the curl command line interface. Most of them can
also be expressed with Futon.

20.1.4 Adding data

Let us create our first database. We simply send a PUT request to the COUCHDB server, asking
for the creation of a resource. The following command creates the movies database.

$ curl -X PUT $COUCHDB/movies
{"ok":true}

Now the resource exists at the given URI, and a GET request will retrieve some information
about the database.

$ curl -X GET $COUCHDB/movies
{"db_name":"movies",
"doc_count":0,
"doc_del_count":0,
"update_seq":0,
"purge_seq":0,
"compact_running":false,
"disk_size":79,
"instance_start_time":"1289290809351647",
"disk_format_version":5,
"committed_update_seq":0}

That’s all: we send HTTP requests to COUCHDB, which answers with a JSON document.
COUCHDB offers an “API” which takes the form of REST services whenever appropriate
(not all services can be conveniently implemented as REST calls). The _all_dbs service for
instance returns an array with the list of existing databases.

$ curl -X GET $COUCHDB/_all_dbs
["movies","_users"]

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 396

It is time now to add documents. Get the JSON-encoded documents of the movies database
from the book’s web site. We shall first insert The Social Network.

$ curl -X PUT $COUCHDB/movies/tsn -d @The_Social_Network.json
{"ok":true,"id":"tsn","rev":"1-db1261d4b2779657875dafbed6c8f5a8"}

This deserves some explanations. First, we follow the very same logic as before, asking
COUCHDB to create a new resource at URI $COUCHDB/movies/tsn. The resource content
must be JSON-encoded: we transfer the content of the The_Social_Network.json file. Note the
-d curl option which must be followed by the content of the HTTP request message. Note
also that this content can be extracted from a file with the special syntax @fileName.

COUCHDB answers with a resource that contains several information. First, "ok":true
means that the document has been successfully inserted. Then we get the id, and the revision
number. The id (or key) of the document is the means by which it can be retrieved from the
database. Try the following request:

$ curl -X GET $COUCHDB/movies/tsn

You should get the document just inserted. In this case, the document id, tsn is user-
defined. We must be careful to ensure that the id does not already exist in the database.
COUCHDB generates an error if we attempt to do so:

$ curl -X PUT $COUCHDB/movies/tsn -d @The_Social_Network.json
{"error":"conflict","reason":"Document update conflict."}

A conflict has been detected. COUCHDB uses an “eventually consistent” transaction model,
to be described next.

If we want COUCHDB to generate the id of the document, we must send a POST request,
along with the content and its MIME encoding. Recall that POST sends some data to an
existing resource, here the database in charge of inserting the document:

$ curl -X POST $COUCHDB/movies -d @The_Social_Network.json \
-H "Content-Type: application/json"

{"ok":true,
"id":"bed7271",
"rev":"1-db126"}

A new id has been generated for us by COUCHDB, and the document has been stored as a
resource whose URI is determined by this id, e.g., $COUCHDB/movies/bed7271.

In order to update a document, you must send a PUT request that refers to the modified
document by its id and its revision number. The multi-version protocol of COUCHDB requires
that both values must be given to refer to a document value. The usual update mechanism
involves thus (i) getting the document from the database, including its revision number, (ii)
modify locally the document and (iii) put back the document to COUCHDB which creates a
new version with a new revision id.

Let us show how to update a document by adding an attachment. We execute a PUT request
on the previous movie to associate its poster (a JPEG file). We must provide the file content in
the request body, along with the MIME type. The version of the document which is modified
is referred to by its revision number. Here is the curl command, which specifies the MIME
type of the attachment:

For personal use only, not for distribution. 397

$ curl -X PUT $COUCHDB/movies/tsn/poster?rev=1-db1261 -d
@poster-tsn.jpg -H "Content-Type: image/jpg"
{"ok":true,"id":"tsn","rev":"2-26863"}

As a result, a new revision "2-26863" has been created. The poster can be retrieved from
COUCHDB with the URI $COUCHDB/movies/tsn/poster.

Finally, a document can be deleted with the REST DELETE command. The revision number
must be indicated. Here is an example:

$ curl -X DELETE $COUCHDB/movies/tsn?rev=2-26863
{"ok":true,"id":"tsn","rev":"3-48e92b"}

A surprising aspect of the result is that a new revision is created! Indeed, the deletion is
“logical”: old revisions still exist, but the latest one is marked as “deleted”, as shown by the
following query that attempts to retrieve the current version of tsn.

$ curl $COUCHDB/movies/tsn
{"error":"not_found","reason":"deleted"}

We invite you now to load in your collection the movies documents available on our Web
site. The following section shows how to query COUCHDB databases with views.

20.1.5 Views

A view in COUCHDB is the result of a MAPREDUCE job. The main rationale behind this
seemingly odd choice is, first, the ability to run in parallel the evaluation of view queries in
a distributed environment, and, second, the incremental maintenance of view results. Both
aspects are closely related: because the MAP phase is applied to each document independently,
the evaluation process is inherently scalable; and because COUCHDB records any change
that affects a document in a collection, view results can be maintained by re-evaluating the
MAPREDUCE job only on changed documents.

Views definition are stored in the COUCHDB database as special documents called design
documents. Temporary views can also be created using the Futon interface which provides a
quite convenient tool for interactive view definition and testing. From your favorite browser,
access the $COUCHDB/_utils URL, move to the movies database and select the temporary
views choice form the Views menu. You should obtain the form shown on Figure 20.3.

The form consists of two text windows: the left one (mandatory) for the MAP function,
and the right one (optional) for the REDUCE function. Functions are written in Javascript
(we use simple examples that are self-explanatory). We begin with a simple MAP function
that takes as input a document (i.e., a representation of a movie, see above) and produces
a (key,value) pair consisting of the movie title (key) and the movie’s director object (value).
Write the following text in the left window and press the Run button: you should obtain the
list of (title,director) pairs shown on Figure 20.3.

function(doc)
{

emit(doc.title, doc.director)
}

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

$COUCHDB/_utils

For personal use only, not for distribution. 398

A MAP function always takes as input a document of the collection. The reader is referred
to Chapter 16 for a detailed description of the MAPREDUCE parallel computation principles.
Essentially, the point is that the above function can be spread over all the nodes that participate
to the storage of a COUCHDB database, and run on the local fragment of the database.

Here is a second example that shows how one can create a view that produces a list of
actors (the key) along with the movie they play in (the value). Note that, for each document,
several pairs are produced by the MAP function

function(doc)
{

for each (actor in doc.actors) {
emit({"fn": actor.first_name, "ln": actor.last_name}, doc.title) ;

}
}

Note that the key component may consist of a complex JSON object. From Futon, save the
first function as “director” and the second one as “actors” in a design document called
(“examples”). The views are now stored in the movies database and can be queried from the
REST interface, as shown below:

$ curl $COUCHDB/movies/_design/examples/_view/actors
{"total_rows":16,"offset":0,
"rows":[
{"id":"bed7271399fdd7f35a7ac767ba00042e",

"key":{"fn":"Andrew","ln":"Garfield"},"value":"The Social network"},
{"id":"91631ba78718b622e75cc34df8000747",

"key":{"fn":"Clint","ln":"Eastwood"},"value":"Unforgiven"},
{"id":"91631ba78718b622e75cc34df80020d3",

"key":{"fn":"Ed","ln":"Harris"},"value":"A History of Violence"},
...
{"id":"91631ba78718b622e75cc34df800016c",

"key":{"fn":"Kirsten","ln":"Dunst"},"value":"Spider-Man"},
{"id":"91631ba78718b622e75cc34df800028e",

"key":{"fn":"Kirsten","ln":"Dunst"},"value":"Marie Antoinette"},
...
]

}

Two comments are noteworthy. First, COUCHDB keeps in the view result, for each
(key,value) pair, the id of the document from which the pair has been produced. This
might be useful for getting additional information if necessary.

Second, you will notice that the result is sorted on the key value. This relates to the
underlying MAPREDUCE process: the (key,value) pairs produced by the MAP function are
prepared to be merged and aggregated in the REDUCE phase, and this requires an intermediate
“shuffle” phase that puts together similar key values. In the above results samples, movies
featuring Kirsten Dunst are consecutive in the list.

From this sorted representation, it is easy to derive “reduced” result by applying a REDUCE

function. It takes as input a key value k and an array of values v, and returns a pair (k,v′)
where v′ is a new value derived from v and, hopefully, smaller. Here is a first, generic example,
that return the number of values associated to a key:

For personal use only, not for distribution. 399

function (key, values) {
return values.length;

}

Add this REDUCE function to the actors view, and compute the result (be sure to set the
“reduce” option in Futon, or pass a group=true parameter to activate the reduction). You
should see indeed with each actor’s name the number of movies s/he features in.

$ curl $COUCHDB/movies/_design/examples/_view/actors?group=true
{"rows":[
{"key":{"fn":"Andrew","ln":"Garfield"},"value":1},
{"key":{"fn":"Clint","ln":"Eastwood"},"value":1},
...
{"key":{"fn":"Kirsten","ln":"Dunst"},"value":2},
{"key":{"fn":"Maria","ln":"Bello"},"value":1},
{"key":{"fn":"Morgan","ln":"Freeman"},"value":1}
...
]}

20.1.6 Querying views

In COUCHDB, views are materialized. The MAPREDUCE job is run once, when the view is
created, and the view content is maintained incrementally as documents are added, updated
or deleted. In addition, this content is a represented as a B-tree which supports efficient
search on either key value or ranges. Create a third view, called “genre”, with the following
definition.

function(doc)
{

emit(doc.genre, doc.title) ;
}

This is tantamount to issuing the following command in a relational database:

c r e a t e index on movies (genre);

Now the database system (whether relational or COUCHDB) can efficiently evaluate a
query that refers to the key value. Here is the REST request searching for all documents in
genre with key value “Drama”.

$ curl $COUCHDB/movies/_design/examples/_view/genre?key=\"Drama\"
{"total_rows":5,"offset":2,"rows":[
{"id":"91631ba78718b622e75cc34df800028e",

"key":"Drama","value":"Marie Antoinette"},
{"id":"bed7271399fdd7f35a7ac767ba00042e",

"key":"Drama","value":"The Social network"}
]}

Range queries can be expressed by sending two parameters startkey and endkey.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 400

View creation (based on MAPREDUCE) and view querying (based on view materialization
and B-tree indexing on the results’ key) constitute in essence the solution proposed by
COUCHDB to the challenge of satisfying both the flexible data structuring of semi-structured
models, and the robust data representation needed by applications. Views provide a means
to clean up and organize a collection of documents according to the regular representation
expected by application programs. MAP and REDUCE functions act first as filters that check
the content of input documents, and second as data structuring tools that create the virtual
document representation put as values in a view.

The cost of computing the view representation each time a query is submitted by such a
program is avoided thanks to the incremental materialization strategy. The design is also
strongly associated to the distribution features of a COUCHDB instance, described next.

20.1.7 Distribution strategies: master-master, master-slave and shared-nothing

Several distribution strategies can be envisaged with COUCHDB. The system does not impose
any of them, but rather provides a simple and powerful replication functionality which lies at
the core of any distribution solution.

Replication

Replication is specified in COUCHDB with a POST request sent to the _replicate utility.
The following example requires a replication from local database movies to the local database
backup. The continuous option is necessary to ensure that any future update to a document in
movies will be reflected in backup (otherwise a one-shot replication is made).

curl -X POST $COUCHDB/_replicate \
-d ’{"source": "movies", "target": "backup", "continuous": true}’ \
-H "Content-Type: application/json"

Futon proposes actually an interface which makes trivial the specification of a replication.
Note that the command defines a one-way copy of the content of a database. Full, symmetric
replication can be obtained by submitting a second command inverting the target and
source roles.

You are invited to experiment right away the replication feature: create a second database
on one of your available COUCHDB server, and replicate your movies database there. You
should be able to verify that the content of movies can be found in the replica, as well as any
subsequent change. Replication is basically useful for security purposes, as it represents a
backup of the database (preferably on a remote server). It also serves as a basic service of the
distribution options, presented next.

Distribution options

A first distribution strategy, called master-slave, is illustrated on Figure 20.4, left part (refer
also to the introduction given in Chapter 14). It relies on a Master server and one or several
slaves (for the sake of simplicity we illustrate the ideas with a 2-machines scenario, but the
extension to any number of participants is straightforward). The master receives all write
requests of the form w(d) by Clients. A replication service at the Master’s site monitors all

For personal use only, not for distribution. 401

the writes and replicates them to the slave(s). Replication in COUCHDB is asynchronous: the
Client does not have to wait for the completion of the write on the slave.

Read requests, on the other hand, can be served either by the Master or by the slave.
This approach avoids inconsistencies, because writes are handled by a single process, and
therefore implicitly serialized. On the other hand, it may happen that a Client issues a w(d)
to the Master, then a read r(d) to the slave, and receives an outdated version of d because the
replication has not yet been carried out. The system is said to be eventually consistent (see,
again, Chapter 14).

Remark 20.1.1 Recall that “Client” in our terminology refers to any software component in charge
of communicating with the distributed storage system. It may take the form of a library incorporated
in the client application, of a proxy that receives network requests, etc.

A second strategy, called master-master, allows write operations to take place at any node of
the distributed system. So, each server plays the role of a “Master”, as defined above, and
the replication now works both sides. In a cluster with n machines, each COUCHDB servers
replicates its write request to the n− 1 other nodes. This avoids the bottleneck of sending
writes to a single machine, but raises consistency issues. It may happen that a same document
d is modified concurrently on two distinct sites S1 and S2, thereby creating two conflicting
versions.

Conflict management

When a replication is attempted from, say, S1 to S2, COUCHDB detects the conflict. The
detection is based on a classical transaction protocol called Multi-Versions Concurrency
Control (MVCC) that relies heavily on the revision numbers. The protocol is simple and
easily understood from an example (summarized in Figure 20.5). Assume a document d with
revision number r, denoted d(r). This document is replicated on S1 and S2, and each replica is
going to be modified by two client transactions denoted respectively T1 and T2.

1. T1: d(r) is modified on S1 by the local COUCHDB server which assigns a new revision,
r′; the current version becomes d(r′)

2. T2: d(r) is modified on S2 by the local COUCHDB server which assigns a new revision,
r′′; the current version becomes d(r′′)

3. now, the replication mechanism must be triggered; S1 sends to S2 a transaction request
specifying that d evolves from revision r to revision r′; S2 detects that its current revision
is not r but r′′ and concludes that there is an update conflict.

A conflict is also detected when S2 attempts a replication of its own transaction to S1.
Basically, the protocol describes the modification of a document d by specifying the initial and
final revisions, and each replica must check that it is able to execute the very same transaction,
which is only possible if its own current revision is the initial one specified by the transaction.
Else, the document has been modified meanwhile by another application and we are in
presence of two conflicting versions.

What happens then? COUCHDB takes two actions. First, a current version is chosen with
a deterministic algorithm that operates similarly for each replica. For instance, each local
COUCHDB server chooses d(r′′) as the current revision, both at S1 and S2. No communication

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 402

is required: the decision algorithm is guaranteed to make the same decision at each site. This
can be seen as a serialization a posteriori of the concurrent transactions T1→ T2, resulting in a
revision sequence d(r)→ d(r′)→ d(r′′). Second, the conflict is recorded in both d(r′) and d(r′′)
with a _conflict attribute added to the document.

COUCHDB does not attempt any automatic reconciliation, since the appropriate strategy
is clearly application dependent. A specific module should be in charge on searching for
conflicting documents versions (i.e, those featuring a _conflicts attribute) in order to
apply an ad hoc reconciliation mechanism.

Conflict management is easy to investigate. Run the following simple scenario: in your
replicated, backup, database, edit and modify with Futon one of the movies (say, The Social
Network). Then change (in a different way) the same movie in the original database movies.
The continuous replication from movies to backup will generate a conflict in the latter. Conflicts
can be reported with the following view:

function(doc) {
if(doc._conflicts) {

emit(doc._conflicts, null);
}

}

It returns an array of the conflicting versions. A reconciliation-aware application should
implement a module that monitors conflicts and determines the correct current version
content, based on the specific application needs.

Shared-nothing architecture

The third replication option is an implementation of the shared-nothing architecture presented
in Chapter 15, based on consistent hashing and data partition (often called “sharding”). A set
of COUCHDB servers is (logically) assigned to a position on a ring, and documents are stored
on the server that follows their hash value on the ring. The topology of the ring is replicated
on each server, so that Client requests can be forwarded in one message to the relevant server.
We do not further elaborate the design which closely follows that presented in Chapter 15,
and tends to become a standard in the world of distributed storage system (see CASSANDRA,
VOLDEMORT, MONGODB, and other “NoSQL” emerging platforms).

20.2 Putting COUCHDB into Practice!

We now propose several exercises and projects to further discover the features of COUCHDB
that relate to the book scope, namely data representation, semi-structured data querying, and
distribution features. Recall that you can create an account on our COUCHDB server and one
or several database to play with the system.

20.2.1 Exercises

The following exercises apply to the movies database. You should first load the JSON docu-
ments available on our site. Then create and query MAPREDUCE views to obtain the required
results. Views can be created with Futon, and searched with the following HTTP request:

For personal use only, not for distribution. 403

/database/_design/application/_view/viewname?key=value

Many of these queries are similar to those suggested in the Chapter devoted to EXIST.

1. Give all titles.

2. Titles of the movies published after 2000.

3. Summary of “Spider-Man”.

4. Who is the director of Heat?

5. Title of the movies featuring Kirsten Dunst.

6. What was the role of Clint Eastwood in Unforgiven?

7. Get the movies whose cast consists of exactly three actors?

8. Create a flat list of all the title-role pairs. (Hint: recall that you can emit several pairs in
a MAP function.)

9. Get a movie given its title. (Hint: create a view where movies are indexed by their title,
then query the view.)

10. Get the movies featuring an actor’s name.

11. Get the title of movies published a given year or in a year range.

12. Show the movies where the director is also an actor.

13. Show the directors, along with the list of their films.

14. Show the actors, along with the list of directors of the film they played in.

Note: some of the above queries are joins. Expressing joins in MAPREDUCE is not the
most natural operation but it can be achieved with a few tricks. Hint: recall that the result
of the MAP phase is sorted on the key because it is stored in a Btree (and because this can
be convenient if a subsequent REDUCE operation must be carried out). The order thereby
defined on the MAP results helps to obtain the join result.

20.2.2 Project: build a distributed bibliographic database with COUCHDB

The proposed project consists in building a (simple) distributed bibliographic database based
on a master-master architecture. Here are the full specifications:

1. there should be several (at least two!, up to the number of participants) COUCHDB
instances (or “master”), storing a fully replicated collection of bibliographic entries;
each update on one master should be replicated to all the other masters;

2. there should be a view that produces the Bibtex entry;

3. PDF files can be associated with entries (COUCHDB uses “attachments” to associate file
in any format with a JSON document: see the documentation for details);

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 404

4. several views should be created to allow the presentation (and search) of the biblio-
graphic collection with respect to the following criteria: title, author, journal or publisher,
year.

5. (advanced) COUCHDB manages a log of changes that records all the modifications
affecting a database; use this log to create (with a view) a notification mechanism
showing all the recently created entries of interest to a user (for instance: all the entries
referring to a publication in JACM).

We provide a collection of JSON bibliographic entries extracted from the DBLP data sets as
a starting point. The project could include the development of an interface to add / update /
remove entries.

20.3 Further reading

The main source of information on COUCHDB is the Wiki available at http://couchdb.
apache.org. The book [17], available on-line at http://wiki.apache.org/couchdb/,
covers the main practical aspects of the system. The incremental maintenance of views built
using a MAPREDUCE is inspired from the Sawzall language presented in [135].

http://couchdb.apache.org
http://couchdb.apache.org
http://wiki.apache.org/couchdb/

For personal use only, not for distribution. 405

CouchDB
server

Client
application

HTTP (REST) requests
disk

Documents

view A

Btree Btree

view B

Btree

view X

...

disk

Server Server

Replication
Replication

DB
access

Figure 20.1: Overview of a COUCHDB instance

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 406

Figure 20.2: Futon, the admin interface of COUCHDB

For personal use only, not for distribution. 407

Figure 20.3: The view creation form in Futon

Figure 20.4: Distribution strategies with COUCHDB

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 408

Figure 20.5: Multi-version concurrency in COUCHDB

