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MapReduce Basics

Source: Wikipedia (IBM Roadrunner)



Divide and Conquer



Parallelization Challenges

• How do we assign work units to workers?

• What if we have more work units than workers?

• What if workers need to share partial results?

• How do we aggregate partial results?

• How do we know all the workers have finished?

• What if workers die?



Common Theme?

• Parallelization problems arise from:

– Communication between workers (e.g., to 
exchange state)

– Access to shared resources (e.g., data)

• Thus, we need a synchronization mechanism



Source: Ricardo Guimarães Herrmann



Managing Multiple Workers

• Difficult because
– We don’t know the order in which workers run

– We don’t know when workers interrupt each 
other

– We don’t know the order in which workers access 
shared data



Managing Multiple Workers

• Thus, we need:
– semaphores (lock, unlock)

– conditional variables (wait, notify, broadcast)

– barriers

• Still, lots of problems:
– deadlock, livelock, race conditions...

– dining philosophers, sleeping barbers, cigarette 
smokers...

• Moral of the story: be careful!





Current Tools

• Programming models

– Shared Memory (pthreads)

– Message Passing (MPI)
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Current Tools

• Design Patterns

– Master-Slaves

– Producer-Consumer Flows

– Shared Work Queues

master

slaves

producer consumer

producer consumer

work queue



Where the rubber meets the road

• Concurrency is difficult to reason about

• Concurrency is even more difficult to reason 
about

– At the scale of datacenters (even across 
datacenters)

– In the presence of failures

– In terms of multiple interacting services

• Not to mention debugging…



Where the rubber meets the road

• The reality:

– Lots of one-off solutions, custom code

– Write you own dedicated library, then program 
with it

– Burden on the programmer to explicitly manage 
everything



Fallacies of Distributed Computing

• The network is reliable.

• Latency is zero.

• Bandwidth is infinite.

• The network is secure.

• Topology doesn't change.

• There is one administrator.

• Transport cost is zero.

• The network is homogeneous.



What’s the point?

• It’s all about the right level of abstraction

– The von Neumann architecture has served us well, 
but is no longer appropriate for the multi-core or 
cluster environment.

The datacenter is the computer!



What’s the point?

• Hide system-level details from the developers

– No more race conditions, lock contention, etc.

• Separating the what from how

– Developer specifies the computation that needs to 
be performed

– Execution framework (“runtime”) handles actual 
execution



“Big Ideas”

• Scale “out”, not “up”

– Limits of SMP and large shared-memory machines

• Move processing to the data

– Cluster have limited bandwidth

• Process data sequentially, avoid random access

– Seeks are expensive, disk throughput is reasonable

• Seamless scalability

– From mythical man-month to tradable machine-hour



Warm-Up

• The task:

– We have a huge text document

– Count the number of times each distinct word 
appears in the file

• Sample application:

– Analyse web server logs to find popular URLs



Warm-Up

• In UNIX, it can be easily done:

words(doc.txt) | sort | uniq -c

– Here words is a script that takes a file and outputs 
the words in it, one per a line.

– The file doc.txt may be too large for memory, 
but all <word, count> pairs fit in memory

– The great thing is that it is naturally parallelizable 

– This captures the essence of MapReduce



Typical Big-Data Problem

• Iterate over a large number of records

• Extract something of interest from each

• Shuffle and sort intermediate results

• Aggregate intermediate results

• Generate final output

Key idea: provide a functional abstraction for 
these two operations

(Dean and Ghemawat, OSDI 2004)

Map

Reduce



Source: Hadoop Illuminated



MapReduce overview

• Read a lot of data, sequentially

• Map:

– Extract something you care about

• Shuffle and Sort

– Group by key

• Reduce:

– Aggregate, summarize, filter or transform

• Write the result

Outline stays the same, map and reduce change to fit the problem.



The Map Step



The Reduce Step



Roots in Functional Programming





MapReduce Programming Model

• Programmers must specify two functions:
map (k, v) → <k’, v’>*

• Takes a key value pair and outputs a set of key value 
pairs, e.g., key = filename, value = the file content

• There is one Map call for every (k,v) pair

reduce (k’, <v’>*) → <k’, v’’>*
• All values v’ with same key k’ are reduced together and 

processed in v’ order

• There is one Reduce function call per unique key k’

• The execution framework handles everything 
else





Execution in Parallel



Two More Details…

• Barrier between map and reduce phases
– But we can begin copying intermediate data 

earlier

• Keys arrive at each reducer in sorted order
– No enforced ordering across reducers



“Hello World”: Word Count



“Hello World”: Word Count

map(key, value):
// key: document name; value: text of the document

for each word w in value:
emit(w, 1)

reduce(key, values): 
// key: a word; values: an iterator over counts 

result = 0 
for each count v in values: 

result += v 
emit(key, result)
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Exercise

• Information Retrieval (TFxIDF):

– Given a large document collection, for every word, 
we need to count the number of documents 
containing it (i.e., document frequency)

• Statistical Machine Translation (5-gram):

– Given a large document collection, for every 5-
word sequence, we need to count the number of 
times it occurs in the whole collection



What’s “everything else”?

• MapReduce “runtime” environment handles 
– scheduling: assigns workers to map and reduce 

tasks

– data distribution: partitions the input data and 
moves processes to data

– synchronization: manages required inter-machine 
communication to gather, sort, and shuffle 
intermediate data

– errors and faults: detects worker failures and 
restarts

Everything happens on top of a DFS



Data Flow

• The input and final output are stored on a 
distributed file system

– Scheduler tries to schedule map tasks “close” to 
physical storage location of input data

• The intermediate results are stored on the 
local file system of map and reduce workers

• The output is often the input to another 
MapReduce task



Coordination

• Master keeps an eye on each task’s status: 
(idle, in-progress, completed)
– Idle tasks get scheduled as workers become 

available

– When a map task completes, it sends Master the 
location and sizes of its R intermediate files, one 
for each reducer, and then Master pushes this info 
to reducers

– Master pings workers periodically to detect 
failures



Dealing with Failures

• Map worker failure
– Map tasks completed or in-progress at worker are 

reset to idle

– Reduce workers are notified when task is 
rescheduled on another worker

• Reduce worker failure
– Only in-progress tasks are reset to idle

• Master failure
– MapReduce task is aborted and client is notified



How many Map and Reduce tasks?

• M map tasks, R reduce tasks

• Rule of a thumb:
– Make M and R much larger than the number of 

nodes in cluster

– One DFS chunk per map is common

– Improves dynamic load balancing and speeds 
recovery from worker failure

• Usually R is smaller than M
– because output is spread across R files



Task Granularity

• Fine granularity tasks: map tasks >> machines

– Minimizes time for fault recovery

– Can pipeline shuffling with map execution

– Better dynamic load balancing



Refinement: Combine & Partition

• Really, “everything else”?

• Not quite… often, programmers also specify:
combine (k’, v’) → <k’, v’>*

• Mini-reducers that run in memory after the map phase

• Used as an optimization to reduce network traffic

partition (k’, #partitions) → partition for k’
• Often a simple hash of the key, e.g., hash(k’) mod n

• Divides up key space for parallel reduce operations



Combine Function

• A map task can produce many pairs with the 
same key:  (k,v1), (k,v2), …
– e.g., popular words in the WordCount example
– They need to be sent over the network to the 

reducer: costly

• It is often possible to pre-aggregate these 
pairs into a single key-value pair at the 
mapper
– Decreases the size of intermediate data and thus 

save network time



Combine Function

• The combiner is executed to combine the 
values for a given key
– e.g., (jaguar,1), (jaguar, 1), (jaguar, 1), (jaguar, 2) 
→ (jaguar, 5)

– The combiner can be called several times, or not 
at all

• Easy case: the combine function is the same as 
the reduce function
– Works only if the reduce function is commutative 

and associative.



Word Count with Combine
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Partition Function

• Inputs to map tasks are simply created by 
contiguous splits of input file, but reduce tasks 
need to ensure that records with the same 
intermediate key end up at the same worker
– System uses a default partition function: 

hash(key) mod R

– Sometimes useful to override: e.g., 
hash(hostname(URL)) mod R ensures URLs from 
one host end up in the same output file





Optimisation: Compression

• Data transfers over the network:
– From datanodes to mapper nodes (usually reduced 

using data locality)

– From mappers to reducers

– From reducers to datanodes to store the final output

• Each of these can benefit from compression
– Trade-off between the volume of data transfer and 

the (de)compression time. 

– Usually, compressing map outputs using a fast 
compressor increases efficiency



Optimisation: Shuffle and Sort

• Sorting of pairs on each reducer to compute the 
groups is a costly operation

• It would be much more efficient in memory than 
on disk
– Increasing the amount of memory available for shuffle 

operations can greatly increase the performance

– . . . at the downside of less memory available for map 
and reduce tasks (but usually not much needed)



Optimisation: Speculative Execution

• The MapReduce jobtracker tries detecting tasks 
that take longer than usual
– Problem: Such slow workers (e.g., due to hardware 

problems or heavy workload of the machine …) would 
significantly lengthen the job completion time. 

– Solution: When detected, backup copies of the task
would be spawn and speculatively executed, without 
discarding the existing task. Eventually, whichever one 
finishes first “wins” and the others will be killed.

– Effect: The job completion time could be dramatically 
shortened.



MapReduce can refer to…

• The programming model

• The execution framework (aka “runtime”)

• The specific implementation

Usage is usually clear from the context!



MapReduce Implementations

• Google has a proprietary implementation in C++

– Bindings in Java, Python

• Hadoop is an open-source implementation in Java

– Development led by Yahoo, used in production

– Now an Apache project

– Rapidly expanding software ecosystem

• Lots of custom research implementations

– For GPUs, cell processors, etc.
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Adapted from (Dean and Ghemawat, OSDI 2004)



Hadoop Basics



Hadoop

• Open-source implementation of Google’s GFS and 

MapReduce

– Java-based software

– Managed by the Apache foundation

– Originally developed for Apache Nutch (open-source 

Web search engine), a part of Apache Lucene (text 

indexing platform)

– Yahoo! has been a main contributor of the 

development of Hadoop



Hadoop

• Components

– Hadoop File System (HDFS)

– MapReduce

– Pig (data exploration), Hive (data warehousing): 
higher-level languages for describing MapReduce
applications

– HBase: column-oriented distributed DBMS

– ZooKeeper: coordination service for distributed 
applications



© Peter DaSilva for The New York Times



Source: Hadoop Illuminated



Source: Hadoop Illuminated



Hadoop History

• 12/2004 – Google GFS paper published

• 07/2005 – Nutch uses MapReduce

• 02/2006 – Becomes Lucene subproject

• 04/2007 – Yahoo! on 1000-node cluster

• 01/2008 – An Apache Top Level Project

• 07/2008 – A 4000 node test cluster

• 09/2008 – Hive becomes a Hadoop subproject



Hadoop History

• 02/2009 – The Yahoo! Search Webmap is a Hadoop 
application that runs on more than 10,000 core Linux 
cluster and produces data that is now used in every 
Yahoo! Web search query. 

• 06/2009 – On June 10, 2009, Yahoo! made available 
the source code to the version of Hadoop it runs in 
production. 

• xx/2010 – In 2010 Facebook claimed that they have 
the largest Hadoop cluster in the world with 21 PB of 
storage. On July 27, 2011 they announced the data 
has grown to 30 PB.



Who use Hadoop?

• Amazon/A9

• Facebook

• Google

• IBM

• Joost

• Last.fm

• New York Times

• PowerSet

• Veoh

• Yahoo!

• …… http://wiki.apache.org/hadoop/PoweredBy

http://wiki.apache.org/hadoop/PoweredBy


Typical Hadoop Cluster

Aggregation switch

Rack switch

• 40 nodes/rack, 1000-4000 nodes in cluster

• 1 GBps bandwidth in rack, 8 GBps out of rack

• Node specs (Yahoo terasort):

8 x 2.0 GHz cores, 8 GB RAM, 4 disks (= 4 TB?)



Image from http://wiki.apache.org/hadoop-data/attachments/HadoopPresentations/attachments/aw-apachecon-eu-2009.pdf



Hadoop API

• Different APIs to write Hadoop programs:

– A rich Java API (main way to write Hadoop 
programs)

– A Streaming API that can be used to write map 
and reduce functions in any programming 
language (using standard inputs and outputs), 
e.g., in Python

– A C++ API (Hadoop Pipes)

– With a higher language level (e.g., Pig, Hive)



Hadoop API

• Mapper
– void map(K1 key, V1 value, OutputCollector<K2, V2> 

output, Reporter reporter)
– void configure(JobConf job)
– void close() throws IOException

• Reducer/Combiner
– void reduce(K2 key, Iterator<V2> values, 

OutputCollector<K3,V3> output, Reporter reporter)
– void configure(JobConf job)
– void close() throws IOException

• Partitioner
– void getPartition(K2 key, V2 value, 

int numPartitions)

*Note: forthcoming API changes…



WordCount.java

package org.myorg;

import java.io.IOException;

import java.util.*;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.conf.*;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapred.*;

import org.apache.hadoop.util.*;

public class WordCount {

……

}



WordCount.java

public static class Map extends MapReduceBase

implements Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(

LongWritable key, Text value, 

OutputCollector<Text, IntWritable> output, 

Reporter reporter) throws IOException {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());

output.collect(word, one);

}

}

}



WordCount.java

public static class Reduce extends MapReduceBase

implements Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values, 

OutputCollector<Text, IntWritable> output, 

Reporter reporter) throws IOException {

int sum = 0;

while (values.hasNext()) {

sum += values.next().get();

}

output.collect(key, new IntWritable(sum));

}

}



WordCount.java
public static void main(String[] args) throws Exception {

JobConf conf = new JobConf(WordCount.class);

conf.setJobName("wordcount");

conf.setOutputKeyClass(Text.class);

conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(Map.class);

conf.setCombinerClass(Reduce.class);

conf.setReducerClass(Reduce.class);

conf.setInputFormat(TextInputFormat.class);

conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(conf, new Path(args[0]));

FileOutputFormat.setOutputPath(conf, new Path(args[1]));

JobClient.runJob(conf);

}



Writable Defines a de/serialization protocol. 
Every data type in Hadoop is a Writable.

WritableComparable Defines a sort order.  
All keys must be of this type (but not values).

IntWritable
LongWritable
Text
…

Concrete classes for different data types.

SequenceFiles Binary encoded of a sequence of key/value 
pairs

Basic Data Types in Hadoop



Complex Data Types in Hadoop

• The easy way:

– Encoded it as Text, e.g., (a, b) = “a:b”

– Use regular expressions to parse and extract data

– Works, but pretty hack-ish



Complex Data Types in Hadoop

• The hard way:

– Define a custom implementation of 
WritableComparable

– Must implement: readFields, write, compareTo

– Computationally efficient, but slow for rapid 
prototyping



A Few Gotchas

• Avoid object creation, at all costs

• Execution framework reuses value in reducer

• Passing parameters into mappers and 
reducers

– DistributedCache for larger (static) data



Basic Cluster Components

• One of each:

– Namenode (NN)

– Jobtracker (JT)

• Set of each per slave machine:

– Tasktracker (TT)

– Datanode (DN)



Putting Everything Together

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…
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Linux file system

…
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namenode daemon

job submission node

jobtracker



Anatomy of a Job

• MapReduce program in Hadoop = Hadoop job

– Jobs are divided into map and reduce tasks

– An instance of running a task is called a task 
attempt

– Multiple jobs can be composed into a workflow



Anatomy of a Job

• Job submission process

– Client (i.e., driver program) creates a job, 
configures it, and submits it to job tracker

– JobClient computes input splits (on client end)

– Job data (jar, configuration XML) are sent to 
JobTracker

– JobTracker puts job data in shared location, 
enqueues tasks

– TaskTrackers poll for tasks

– Off to the races…



Source: Hadoop Illuminated



Source: redrawn from a slide by Cloduera, cc-licensed



Source: redrawn from a slide by Cloduera, cc-licensed



Source: redrawn from a slide by Cloduera, cc-licensed



Input and Output

• InputFormat:
– TextInputFormat

– KeyValueTextInputFormat

– SequenceFileInputFormat

– …

• OutputFormat:
– TextOutputFormat

– SequenceFileOutputFormat

– …



Shuffle and Sort in Hadoop

• Map side

– Map outputs are buffered in memory in a circular 
buffer

– When buffer reaches threshold, contents are 
“spilled” to disk

– Spills merged in a single, partitioned file (sorted 
within each partition): combiner runs here



Shuffle and Sort in Hadoop

• Reduce side

– First, map outputs are copied over to reducer 
machine

– “Sort” is a multi-pass merge of map outputs 
(happens in memory and on disk): combiner runs 
here

– Final merge pass goes directly into reducer





Hadoop Workflow

Your Hadoop Cluster
You

1. Load data into HDFS

2. Develop code locally

3. Submit MapReduce job
3a. Go back to Step 2

4. Retrieve data from HDFS



On AWS: with EC2 and S3

You

1. Load data into HDFS

2. Develop code locally

3. Submit MapReduce job
3a. Go back to Step 2

4. Retrieve data from HDFS

0. Allocate Hadoop cluster

EC2

Your Hadoop Cluster

5. Clean up!

Uh oh.  Where did the data go?



On AWS: with EC2 and S3

Your Hadoop Cluster

S3
(Persistent Store)

EC2
(Cloud Computer)

Copy from S3 to HDFS

Copy from HFDS to S3



Testing and Executing a Hadoop job

• Required environment:

– JDK on client

– JRE on all Hadoop nodes

– Hadoop distribution (HDFS + MapReduce) on 
client and all Hadoop nodes

– SSH servers on each tasktracker, SSH client on 
jobtracker (used to control the execution of 
tasktrackers)

– An IDE (e.g., Eclipse + plugin) on client



Testing and Executing a Hadoop job

• Three different execution modes:

– local: one mapper, one reducer, run locally from 
the same JVM as the client

– pseudo-distributed:  mappers and reducers are 
launched on a single machine, but communicate 
over the network

– distributed: over a cluster for real runs



Testing and Executing a Hadoop job

• Task JVM Reuse

– By default, each map and reduce task (of a given 
split) is run in a separate JVM

– When there is a lot of initialization to be done, or 
when splits are small, it might be useful to reuse 
JVMs for subsequent tasks

– Of course, only works for tasks run on the same 
node



Testing and Executing a Hadoop job

• Hadoop in the cloud

– Possibly to set up one’s own Hadoop cluster

– But often easier to use Hadoop clusters in the 
cloud that support MapReduce: 

• Amazon EMR etc.

– Not always easy to know the cluster’s 
configuration (in terms of racks, etc.) when on the 
cloud, which hurts data locality in MapReduce



Debugging Hadoop Programs

• First, take a deep breath

• Start small, start locally
– Debugging in local mode is the easiest

– Remote debugging possible but complicated to set 
up (impossible to know in advance where a map 
or reduce task will be executed)

• Learn to use the Web interface with status 
information about the job

• Throw RuntimeExceptions



Debugging Hadoop Programs

• Where does println go? 
– Standard output and error channels saved on each 

node, accessible through the Web interface

• Don’t use println, use logging 

• Counters can be used to track side information 
across a MapReduce job
– e.g., the number of invalid input records

• IsolationRunner allows to run in isolation part 
of the MapReduce job



Debugging at Scale

• Your program works on small datasets, but it 
won’t scale… Why?

– Memory management issues (object creation and 
buffering)

– Too much intermediate data

– Mangled input records



Debugging at Scale

• Real-world data is messy!

– For example, WordCount

• How many unique words there are in Wikipedia?

– There’s no such thing as “consistent data”

– Watch out for corner cases

– Isolate unexpected behavior, bring local



Hadoop Zen

• This is bleeding edge technology (i.e.,  
immature!)

– Bugs, undocumented features, inexplicable 
behavior

– Data loss(!)

• Don’t get frustrated (take a deep breath)…

– Those W$*#T@F! moments

• RTFM, RTFC



Hadoop Zen

• Be patient … 

– We will inevitably encounter “situations” along 
the way

• Be flexible …

– We will have to be creative in workarounds

• Be constructive …

– Tell me how I can make everyone’s experience 
better



Help Us to Help You

• If your code failed to run on AWS EMR and 
you would like to contact the TA, please tell us
– whether the dummy mapper/reducer that does 

nothing can complete successfully

– whether the identity mapper/reducer that just 
reads each line of stdin and then writes it to 
stdout can complete successfully, and if so what 
the output files look like

– what the error messages in the log files (especially 
sys.log) say



Take Home Messages

• MapReduce Basics

• Hadoop Basics


