Cloud Computing

Link Analysis in the Cloud

Dell Zhang

Birkbeck, University of London 2018/19

Graph Problems \& Representations

What is a Graph?

- $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, where
-V represents the set of vertices (nodes)
- E represents the set of edges (links)
- Both vertices and edges may contain additional information (e.g., edge weights)
- Different types of graphs:
- directed vs. undirected edges
- presence or absence of cycles

We See Graphs Everywhere

- Ubiquitous network (graph) data
- Technological Network
- Internet
- Information Network
- WWW, Sematic Web/Ontologies, XML/RD
- Social network
- Biological Network
- Financial Network
- Transportation Network

Some Graph Problems

- Finding shortest paths
- Routing Internet traffic and UPS trucks
- Finding minimum spanning trees
- Telecommunication companies laying down fibre
- Finding max flow
- Airline scheduling

Some Graph Problems

- Identify "special" nodes and communities
- Breaking up terrorist cells, spread of avian flu
- Bipartite matching
- Monster.com, Match.com
- And of course... PageRank

Challenge in Dealing with Graph Data

- Flat Files
- No query support
- RDBMS
- Can store the graph
- But limited support for graph query
- Connect-By (Oracle)
- Common Table Expressions (CTEs) (Microsoft)
- Temporal Table

Native Graph Databases

- An Emerging Field
- http://en.wikipedia.org/wiki/Graph database
- Storage and Basic Operators
- Neo4j (an open source graph database), InfiniteGraph, VertexDB, ...
- Distributed Graph Processing (mostly in-memory-only)
- Google's Pregel, GraphLab, ...

The Graph Analytics Industry

- Status of Practice
- Graph data in many industries
- Graph analytics are powerful and can bring great business values/insights
- Graph analytics not utilized enough in enterprises due to lack of available platforms/tools (except leading tech companies which have high caliber in house engineering teams and resources)

Graphs and MapReduce

- Graph algorithms typically involve:
- Performing computations at each node: based on node features, edge features, and local link structure
- Propagating computations: "traversing" the graph
- Key questions:
- How do you represent graph data in MapReduce?
- How do you traverse a graph in MapReduce?

Representing Graphs

- Two common representations
- Adjacency matrix
- Adjacency list

Adjacency Matrices

- Represent a graph as an $n \times n$ square matrix M
$-n=|\mathrm{V}|$
$-M_{i j}=1$ means a link from node i to j

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	0	1	0	1
$\mathbf{2}$	1	0	1	1
$\mathbf{3}$	1	0	0	0
$\mathbf{4}$	1	0	1	0

Adjacency Matrices: Critique

- Advantages:
- Amenable to mathematical manipulation
- Iteration over rows and columns corresponds to computations on out-links and in-links
- Disadvantages:
- Lots of zeros for sparse matrices
- Lots of wasted space

Adjacency Lists

- Take adjacency matrices... and throw away all the zeros

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	0	1	0	1
$\mathbf{2}$	1	0	1	1
$\mathbf{3}$	1	0	0	0
$\mathbf{4}$	1	0	1	0

$$
\begin{aligned}
& 1: 2,4 \\
& 2: 1,3,4 \\
& 3: 1 \\
& 4: 1,3
\end{aligned}
$$

Adjacency Lists: Critique

- Advantages:
- Much more compact representation
- Easy to compute over out-links
- Disadvantages:
- Much more difficult to compute over in-links

Parallel Breadth-First Search

Single Source Shortest Path

- Problem: find shortest path from a source node to one or more target nodes
- "shortest" might also mean lowest weight or cost
- First, a refresher: Dijkstra's algorithm

Dijkstra's Algorithm

Dijkstra’s Algorithm

Single Source Shortest Path

- Problem: find shortest path from a source node to one or more target nodes
- "shortest" might also mean lowest weight or cost
- On a single machine: Dijkstra's algorithm
- MapReduce: Parallel Breadth-First Search (BFS)
- Consider simplest case of equal edge weights first
- Solution to the problem can be defined inductively

Finding the Shortest Path

- Here's the intuition:
- Define: b is reachable from a if b is in the adjacency list of a
- DistanceTo $(s)=0$
- For all nodes p reachable from s : DISTANCETO $(p)=1$
- For all nodes n reachable from some other set of nodes M :
$\operatorname{DISTANCETO}(n)=1+\min _{m \in M} \operatorname{DISTANCETO}(m)$

Finding the Shortest Path

Visualizing Parallel BFS

From Intuition to Algorithm

- Data representation:
- Key:
node n
- Value:
d (distance from start),
adjacency list (list of nodes reachable from n)
- Initialization:
for all nodes except the start node, $d=\infty$.

From Intuition to Algorithm

- Mapper:
$-\forall m \in$ adjacency list: emit ($m, d+1$)
- Sort/Shuffle
- Groups distances by reachable nodes
- Reducer:
- Selects the minimum distance path for each reachable node
- Additional bookkeeping needed to keep track of the actual path

Multiple Iterations Needed

- Each MapReduce iteration advances the "known frontier" by one hop
- Subsequent iterations include more and more reachable nodes as frontier expands
- Multiple iterations are needed to explore entire graph
- Preserving graph structure:
- Problem: Where did the adjacency list go?
- Solution: mapper emits (n, adjacency list) as well

BFS Pseudo-Code

```
class Mapper
    method \(\operatorname{MAP}(\operatorname{nid} n\), node \(N)\)
        \(d \leftarrow N\).DISTANCE
        Emit(nid \(n, N) \quad \triangleright\) Pass along graph structure
        for all nodeid \(m \in N\).AdJacencyList do
        Emit(nid \(m, d+1) \quad \triangleright\) Emit distances to reachable nodes
    class Reducer
        method Reduce(nid \(m,\left[d_{1}, d_{2}, \ldots\right]\) )
        \(d_{\text {min }} \leftarrow \infty\)
        \(M \leftarrow \emptyset\)
        for all \(d \in\) counts \(\left[d_{1}, d_{2}, \ldots\right]\) do
            if IsNode \((d)\) then
                \(M \leftarrow d\)
            else if \(d<d_{\text {min }}\) then
                    \(d_{\text {min }} \leftarrow d\)
10: \(\quad\) M.DISTANCE \(\leftarrow d_{\text {min }}\)
        Emit(nid \(m\), node \(M\) )
        \(\triangleright\) Recover graph structure
        \(\triangleright\) Look for shorter distance
\(\triangleright\) Update shortest distance
```


Stopping Criterion

- How many iterations are needed in parallel BFS (equal edge weight case)?
- Convince yourself: when a node is first "discovered", we've found the shortest path
- Now answer the question...
- Six degrees of separation?
- Practicalities of implementation in MapReduce

Weighted Edges

- Now add positive weights to the edges
- Why can't edge weights be negative?
- Simple change: adjacency list now includes a weight w for each edge
- In mapper, emit ($m, d+w_{p}$) instead of $(m, d+1)$ for each node m
- That's it?

Stopping Criterion

- How many iterations are needed in parallel BFS (positive edge weight case)?
- Convince yourself: when a node is first "discovered", we've found the shortest path

Additional Complexities

How many iterations are required to discover the shortest distances to all nodes from n_{1} ?

Stopping Criterion

- How many iterations are needed in parallel BFS (positive edge weight case)?
- Practicalities of implementation in MapReduce

Comparison to Dijkstra

- Dijkstra's algorithm is more efficient
- At any step it only pursues edges from the minimum-cost path inside the frontier
- MapReduce explores all paths in parallel
- Lots of "waste"
- Useful work is only done at the "frontier"
- Why can't we do better using MapReduce?

Implementation on Hadoop

http://goo.gl/TEoU4

Graphs and MapReduce

- Generic recipe:
- Represent graphs as adjacency lists
- Perform local computations in mapper
- Pass along partial results via out-links, keyed by destination node
- Perform aggregation in reducer on in-links to a node
- Iterate until convergence: controlled by external "driver"
- Don't forget to pass the graph structure between iterations

PageRank

Random Walks over the Web

- Random surfer model:
- User starts at a random Web page
- User randomly clicks on links, surfing from page to page
- PageRank
- Characterizes the amount of time spent on any given page
- Mathematically, a probability distribution over pages

Random Walks over the Web

- PageRank captures the notion of page importance
- Correspondence to human intuition?
- One of thousands of features used in Web search
- Note: query-independent

PageRank: Simplified

PageRank: Simplified

- Given page x with in-links $t_{1} \ldots t_{\mathrm{n}}$, where
$-C(t)$ is the out-degree of t

$$
P R(x)=\sum_{i=1}^{n} \frac{P R\left(t_{i}\right)}{C\left(t_{i}\right)}
$$

Example: the Web in 1839

Simulating a Random Walk

- Start with the vector $\mathbf{v}=[1,1, \ldots, 1]$ representing the idea that each Web page is given one unit of importance.
- Repeatedly apply the matrix M to \mathbf{v}, allowing the importance to flow like a random walk.
- Limit exists, but about 50 iterations is sufficient to estimate final distribution.

Example: the Web in 1839

- Equations $\mathbf{v}=M \mathbf{v}$:

$$
\begin{aligned}
& y=y / 2+a / 2 \\
& a=y / 2+m \\
& m=a / 2
\end{aligned}
$$

y	1	1	$5 / 4$	$9 / 8$		$6 / 5$
$\mathrm{a}=$	1	$3 / 2$	1	$11 / 8$	\ldots	$6 / 5$
m	1	$1 / 2$	$3 / 4$	$1 / 2$		$3 / 5$

Solving the Equations

- Because there are no constant terms, these 3 equations in 3 unknowns do not have a unique solution.
- Add in the fact that $y+a+m=3$ to solve.
- In Web-sized examples, we cannot solve by Gaussian elimination, but we need to use the power method (= iterative solution).

Computing PageRank

- Properties of PageRank
- Can be computed iteratively
- Effects at each iteration are local

Computing PageRank

- Sketch of algorithm:
- Start with seed $P R_{i}$ values
- Each page distributes its $P R_{i}$ "credit" to all of its out-links
- Each page adds up the "credits" from all of its in-links to compute $P R_{i+1}$
- Iterate until the values converge

Sample PageRank Iterations

Iteration 1

Sample PageRank Iterations

Iteration 2

PageRank in MapReduce

Map

PageRank Pseudo-Code

```
class Mapper
    method MAP(nid n, node N)
        p\leftarrowN.PageR.ank/|N.AdJacencyList 
        Emit(nid n,N) }\triangleright\mathrm{ Pass along graph structure
        for all nodeid m}\inN.ADJACENCYLIST d
            Emit(nid m,p) \triangleright Pass PageRank mass to neighbors
    class Reducer
    method Reduce(nid m, [p, p},\mp@subsup{p}{2}{},\ldots]
    M\leftarrow\emptyset
        for all p\in counts [ }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{},\ldots]\mathrm{ do
            if IsNode( }p\mathrm{ ) then
                M\leftarrowp \triangleright Recover graph structure
            else
                s\leftarrows+p \triangleright Sum incoming PageRank contributions
            M.PageRANK }\leftarrow
10: }\quad\mathrm{ Emit(nid m, node M)
```


Real-World Problems

- Some pages are "dead ends" (no out-links).
- Such a page causes importance to leak out.
- Some other (groups of) pages are spider traps (all out-links are within the group).
- Eventually spider traps absorb all importance.

Microsoft becomes a dead end

Microsoft becomes a dead end

- Equations $\mathbf{v}=M \mathbf{v}$:

$$
\begin{aligned}
& y=y / 2+a / 2 \\
& a=y / 2 \\
& m=a / 2
\end{aligned}
$$

y						
a						
m	$=$	1	1	$3 / 4$	$5 / 8$	
1	$1 / 2$	$1 / 2$	$3 / 8$	\cdots	0	
1	$1 / 2$	$1 / 4$	$1 / 4$		0	

Microsoft becomes a spider trap

Microsoft becomes a spider trap

- Equations $\mathbf{v}=M \mathbf{v}$:

$$
\begin{aligned}
& y=y / 2+a / 2 \\
& a=\mathrm{y} / 2 \\
& m=a / 2+m
\end{aligned}
$$

y	1	1	$3 / 4$	$5 / 8$		0
$\mathrm{a}=$	1	$1 / 2$	$1 / 2$	$3 / 8$	\cdots	0
m	1	$3 / 2$	$7 / 4$	2		3

Google's Solution

- "Tax" each page a fixed percentage at each iteration.
- Add the same constant to all pages.
- Models a random walk with a fixed probability of going to a random place next.

Example: with 20\% Tax

- Equations $\mathbf{v}=0.8(M \mathbf{v})+0.2$:

$$
\begin{aligned}
& y=0.8(y / 2+a / 2)+0.2 \\
& a=0.8(y / 2)+0.2 \\
& m=0.8(a / 2+m)+0.2
\end{aligned}
$$

y		1	1.00	0.84	0.776	
	$7 / 11$					
$\mathrm{a}=$	1	0.60	0.60	0.536	\ldots	$5 / 11$
m	1	1.40	1.56	1.688		$21 / 11$

PageRank: Complete

- Two additional complexities
- What is the proper treatment of dangling nodes (i.e., nodes with no out-links)?
- How do we factor in the random jump factor?

PageRank: Complete

- Solution:
- Second pass to redistribute "missing PageRank mass" and account for random jumps

$$
p^{\prime}=\alpha\left(\frac{1}{N}\right)+(1-\alpha)\left(\frac{m}{N}+p\right)
$$

- p is PageRank value from before, p^{\prime} is updated PageRank value
- N is the total number of nodes in the graph
- m is the missing PageRank mass

PageRank Convergence

- Alternative convergence criteria
- Iterate until PageRank values don't change
- Iterate until PageRank rankings don't change
- Fixed number of iterations
- Convergence for web graphs?

Beyond PageRank

- Link structure is important for web search
- PageRank is one of many link analysis algorithms: HITS, SALSA, etc.
- Used with thousands of other features in ranking...
- Adversarial nature of web search
- Link spamming
- Spider traps
- Keyword stuffing

Efficient Graph Algorithms

- Sparse vs. Dense Graphs
- Graph Topologies

Figure from: Newman, M. E. J. (2005) "Power laws, Pareto distributions and Zipf's law." Contemporary Physics 46:323-351.

Local Aggregation

- Use combiners!
- In-mapper combining design pattern also applicable
- Maximize opportunities for local aggregation
- Simple tricks: sorting the dataset in specific ways

Take Home Messages

- Graph Problems and Representations
- Parallel Breadth-First Search
- PageRank: Simplified and Complete

