
Link Analysis
in the Cloud

Dell Zhang

Birkbeck, University of London

2018/19

Cloud Computing

Graph Problems & Representations

What is a Graph?

• G = (V,E), where

– V represents the set of vertices (nodes)

– E represents the set of edges (links)

– Both vertices and edges may contain additional
information (e.g., edge weights)

• Different types of graphs:

– directed vs. undirected edges

– presence or absence of cycles

Source: Wikipedia (Königsberg)

We See Graphs Everywhere

• Ubiquitous network (graph) data
• Technological Network

• Internet

• Information Network
• WWW, Sematic Web/Ontologies, XML/RD

– Social network

– Biological Network

– Financial Network

– Transportation Network

http://belanger.wordpress.com/2007/06/28/

the-ebb-and-flow-of-social-networking/

6

Semantic Search, Guha et. al., WWW’03

Some Graph Problems

• Finding shortest paths

– Routing Internet traffic and UPS trucks

• Finding minimum spanning trees

– Telecommunication companies laying down fibre

• Finding max flow

– Airline scheduling

Some Graph Problems

• Identify “special” nodes and communities

– Breaking up terrorist cells, spread of avian flu

• Bipartite matching

– Monster.com, Match.com

• And of course... PageRank

Challenge in Dealing with Graph Data

• Flat Files

– No query support

• RDBMS

– Can store the graph

– But limited support for graph query

• Connect-By (Oracle)

• Common Table Expressions (CTEs) (Microsoft)

• Temporal Table

Native Graph Databases

• An Emerging Field

– http://en.wikipedia.org/wiki/Graph_database

• Storage and Basic Operators

– Neo4j (an open source graph database),
InfiniteGraph, VertexDB, …

• Distributed Graph Processing (mostly in-
memory-only)

– Google’s Pregel, GraphLab, …

http://en.wikipedia.org/wiki/Graph_database

The Graph Analytics Industry

• Status of Practice

– Graph data in many industries

– Graph analytics are powerful and can bring great
business values/insights

– Graph analytics not utilized enough in enterprises
due to lack of available platforms/tools (except
leading tech companies which have high caliber in
house engineering teams and resources)

Graphs and MapReduce

• Graph algorithms typically involve:

– Performing computations at each node: based on
node features, edge features, and local link
structure

– Propagating computations: “traversing” the graph

• Key questions:

– How do you represent graph data in MapReduce?

– How do you traverse a graph in MapReduce?

Representing Graphs

• Two common representations

– Adjacency matrix

– Adjacency list

Adjacency Matrices

• Represent a graph as an n × n square matrix M

– n = |V|

– Mij = 1 means a link from node i to j

1

2

3

4

1 2 3 4

1 0 1 0 1

2 1 0 1 1

3 1 0 0 0

4 1 0 1 0

Adjacency Matrices: Critique

• Advantages:

– Amenable to mathematical manipulation

– Iteration over rows and columns corresponds to
computations on out-links and in-links

• Disadvantages:

– Lots of zeros for sparse matrices

– Lots of wasted space

Adjacency Lists

• Take adjacency matrices… and throw away all
the zeros

1: 2, 4

2: 1, 3, 4

3: 1

4: 1, 3

1 2 3 4

1 0 1 0 1

2 1 0 1 1

3 1 0 0 0

4 1 0 1 0

Adjacency Lists: Critique

• Advantages:

– Much more compact representation

– Easy to compute over out-links

• Disadvantages:

– Much more difficult to compute over in-links

Parallel Breadth-First Search

Single Source Shortest Path

• Problem: find shortest path from a source
node to one or more target nodes
– “shortest” might also mean lowest weight or cost

• First, a refresher: Dijkstra’s algorithm

Dijkstra’s Algorithm

0









10

5

2 3

2

1

9

7

4 6

Example from CLR

Dijkstra’s Algorithm

0

10

5





Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm

0

8

5

14

7

Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm

0

8

5

13

7

Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm

0

8

5

9

7

1

Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm

0

8

5

9

7

Example from CLR

10

5

2 3

2

1

9

7

4 6

Single Source Shortest Path

• Problem: find shortest path from a source
node to one or more target nodes
– “shortest” might also mean lowest weight or cost

• On a single machine: Dijkstra’s algorithm

• MapReduce: Parallel Breadth-First Search
(BFS)
– Consider simplest case of equal edge weights first

– Solution to the problem can be defined
inductively

Finding the Shortest Path

• Here’s the intuition:
– Define: b is reachable from a if b is in the

adjacency list of a

– DISTANCETO(s) = 0

– For all nodes p reachable from s:
DISTANCETO(p) = 1

– For all nodes n reachable from some other set of
nodes M:
DISTANCETO(n) = 1 + minmM DISTANCETO(m)

Finding the Shortest Path

s

m3

m2

m1

n

…

…

…

d1

d2

d3

Visualizing Parallel BFS

n0

n3
n2

n1

n7

n6

n5

n4

n9

n8

Source: Wikipedia (Wave)

From Intuition to Algorithm

• Data representation:

– Key:
node n

– Value:
d (distance from start),
adjacency list (list of nodes reachable from n)

– Initialization:
for all nodes except the start node, d = .

From Intuition to Algorithm

• Mapper:
– m  adjacency list: emit (m, d + 1)

• Sort/Shuffle
– Groups distances by reachable nodes

• Reducer:
– Selects the minimum distance path for each

reachable node

– Additional bookkeeping needed to keep track of
the actual path

Multiple Iterations Needed

• Each MapReduce iteration advances the
“known frontier” by one hop
– Subsequent iterations include more and more

reachable nodes as frontier expands

– Multiple iterations are needed to explore entire
graph

• Preserving graph structure:
– Problem: Where did the adjacency list go?

– Solution: mapper emits (n, adjacency list) as well

BFS Pseudo-Code

Stopping Criterion

• How many iterations are needed in parallel
BFS (equal edge weight case)?

• Convince yourself: when a node is first
“discovered”, we’ve found the shortest path

• Now answer the question...

– Six degrees of separation?

• Practicalities of implementation in
MapReduce

Weighted Edges

• Now add positive weights to the edges

– Why can’t edge weights be negative?

• Simple change: adjacency list now includes a
weight w for each edge

– In mapper, emit (m, d + wp) instead of (m, d + 1)
for each node m

• That’s it?

Stopping Criterion

• How many iterations are needed in parallel
BFS (positive edge weight case)?

• Convince yourself: when a node is first
“discovered”, we’ve found the shortest path

Additional Complexities

s

p
q

r

search frontier

10

n1

n2

n3

n4

n5

n6 n7

n8

n9

1

1
1

1

1

1

1

1

How many iterations are required to discover
the shortest distances to all nodes from n1?

Stopping Criterion

• How many iterations are needed in parallel
BFS (positive edge weight case)?

• Practicalities of implementation in
MapReduce

Comparison to Dijkstra

• Dijkstra’s algorithm is more efficient

– At any step it only pursues edges from the
minimum-cost path inside the frontier

• MapReduce explores all paths in parallel

– Lots of “waste”

– Useful work is only done at the “frontier”

• Why can’t we do better using MapReduce?

Implementation on Hadoop

http://goo.gl/TEoU4

http://goo.gl/TEoU4

Graphs and MapReduce

• Generic recipe:
– Represent graphs as adjacency lists
– Perform local computations in mapper
– Pass along partial results via out-links, keyed by

destination node
– Perform aggregation in reducer on in-links to a

node
– Iterate until convergence: controlled by external

“driver”
– Don’t forget to pass the graph structure between

iterations

PageRank

Random Walks over the Web

• Random surfer model:

– User starts at a random Web page

– User randomly clicks on links, surfing from page to
page

• PageRank

– Characterizes the amount of time spent on any
given page

– Mathematically, a probability distribution over
pages

Random Walks over the Web

• PageRank captures the notion of page
importance

– Correspondence to human intuition?

– One of thousands of features used in Web search

– Note: query-independent

PageRank: Simplified

X

t1

t2

tn

…

• Given page x with in-links t1…tn, where

– C(t) is the out-degree of t

PageRank: Simplified


=

=
n

i i

i

tC

tPR
xPR

1)(

)(
)(

Example: the Web in 1839

Yahoo

MicrosoftAmazon

y 1/2 1/2 0

a 1/2 0 1

m 0 1/2 0

y a m

Simulating a Random Walk

• Start with the vector v = [1,1,…,1]
representing the idea that each Web page is
given one unit of importance.

• Repeatedly apply the matrix M to v, allowing
the importance to flow like a random walk.

• Limit exists, but about 50 iterations is
sufficient to estimate final distribution.

Example: the Web in 1839

• Equations v = M v :

y = y /2 + a /2

a = y /2 + m

m = a /2

y

a =

m

1

1

1

1

3/2

1/2

5/4

1

3/4

9/8

11/8

1/2

6/5

6/5

3/5

. . .

Solving the Equations

• Because there are no constant terms, these 3
equations in 3 unknowns do not have a
unique solution.

• Add in the fact that y +a +m = 3 to solve.

• In Web-sized examples, we cannot solve by
Gaussian elimination, but we need to use the
power method (= iterative solution).

Computing PageRank

• Properties of PageRank

– Can be computed iteratively

– Effects at each iteration are local

Computing PageRank

• Sketch of algorithm:

– Start with seed PRi values

– Each page distributes its PRi “credit” to
all of its out-links

– Each page adds up the “credits” from
all of its in-links to compute PRi+1

– Iterate until the values converge

Sample PageRank Iterations

n1 (0.2)

n4 (0.2)

n3 (0.2)
n5 (0.2)

n2 (0.2)

0.1

0.1

0.2 0.2

0.1
0.1

0.066 0.066
0.066

n1 (0.066)

n4 (0.3)

n3 (0.166)
n5 (0.3)

n2 (0.166)

Iteration 1

Sample PageRank Iterations

n1 (0.066)

n4 (0.3)

n3 (0.166)
n5 (0.3)

n2 (0.166)

0.033

0.033

0.3 0.166

0.083
0.083

0.1 0.1
0.1

n1 (0.1)

n4 (0.2)

n3 (0.183)
n5 (0.383)

n2 (0.133)

Iteration 2

PageRank in MapReduce

n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

n2 n4 n3 n5 n1 n2 n3n4 n5

n2 n4n3 n5n1 n2 n3 n4 n5

n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

Map

Reduce

PageRank Pseudo-Code

Real-World Problems

• Some pages are “dead ends” (no out-links).

– Such a page causes importance to leak out.

• Some other (groups of) pages are spider traps
(all out-links are within the group).

– Eventually spider traps absorb all importance.

Microsoft becomes a dead end

Yahoo

MicrosoftAmazon

y 1/2 1/2 0

a 1/2 0 0

m 0 1/2 0

y a m

Microsoft becomes a dead end

• Equations v = M v :

y = y /2 + a /2

a = y /2

m = a /2

y

a =

m

1

1

1

1

1/2

1/2

3/4

1/2

1/4

5/8

3/8

1/4

0

0

0

. . .

Microsoft becomes a spider trap

Yahoo

MicrosoftAmazon

y 1/2 1/2 0

a 1/2 0 0

m 0 1/2 1

y a m

Microsoft becomes a spider trap

• Equations v = M v :

y = y /2 + a /2

a = y /2

m = a /2 + m

y

a =

m

1

1

1

1

1/2

3/2

3/4

1/2

7/4

5/8

3/8

2

0

0

3

. . .

Google’s Solution

• “Tax” each page a fixed percentage at each
iteration.

• Add the same constant to all pages.

• Models a random walk with a fixed probability
of going to a random place next.

Example: with 20% Tax

• Equations v = 0.8(M v) + 0.2:

y = 0.8(y /2 + a/2) + 0.2

a = 0.8(y /2) + 0.2

m = 0.8(a /2 + m) + 0.2

y

a =

m

1

1

1

1.00

0.60

1.40

0.84

0.60

1.56

0.776

0.536

1.688

7/11

5/11

21/11

. . .

PageRank: Complete

• Two additional complexities

– What is the proper treatment of dangling nodes
(i.e., nodes with no out-links)?

– How do we factor in the random jump factor?

PageRank: Complete

• Solution:

– Second pass to redistribute “missing PageRank
mass” and account for random jumps

• p is PageRank value from before,
p' is updated PageRank value

• N is the total number of nodes in the graph

• m is the missing PageRank mass









+−+








= p

N

m

N
p)1(

1
' 

PageRank Convergence

• Alternative convergence criteria

– Iterate until PageRank values don’t change

– Iterate until PageRank rankings don’t change

– Fixed number of iterations

• Convergence for web graphs?

Beyond PageRank

• Link structure is important for web search
– PageRank is one of many link analysis algorithms:

HITS, SALSA, etc.

– Used with thousands of other features in ranking…

• Adversarial nature of web search
– Link spamming

– Spider traps

– Keyword stuffing

– …

Efficient Graph Algorithms

• Sparse vs. Dense Graphs

• Graph Topologies

Figure from: Newman, M. E. J. (2005) “Power laws, Pareto distributions and
Zipf's law.” Contemporary Physics 46:323–351.

Local Aggregation

• Use combiners!

– In-mapper combining design pattern also
applicable

• Maximize opportunities for local aggregation

– Simple tricks: sorting the dataset in specific ways

Take Home Messages

• Graph Problems and Representations

• Parallel Breadth-First Search

• PageRank: Simplified and Complete

