Cloud Computing

Link Analysis in the Cloud

Dell Zhang Birkbeck, University of London 2018/19

Graph Problems & Representations

What is a Graph?

- G = (V,E), where
 - V represents the set of vertices (nodes)
 - E represents the set of edges (links)
 - Both vertices and edges may contain additional information (e.g., edge weights)
- Different types of graphs:
 - directed vs. undirected edges
 - presence or absence of cycles

We See Graphs Everywhere

- Ubiquitous network (graph) data
 - Technological Network
 - Internet
 - Information Network
 - WWW, Sematic Web/Ontologies, XML/RD
 - Social network
 - Biological Network
 - Financial Network
 - Transportation Network

Some Graph Problems

- Finding shortest paths
 - Routing Internet traffic and UPS trucks
- Finding minimum spanning trees
 - Telecommunication companies laying down fibre
- Finding max flow
 - Airline scheduling

Some Graph Problems

- Identify "special" nodes and communities
 Breaking up terrorist cells, spread of avian flu
- Bipartite matching
 - Monster.com, Match.com
- And of course... PageRank

Challenge in Dealing with Graph Data

- Flat Files
 - No query support
- RDBMS
 - Can store the graph
 - But limited support for graph query
 - Connect-By (Oracle)
 - Common Table Expressions (CTEs) (Microsoft)
 - Temporal Table

Native Graph Databases

• An Emerging Field

– <u>http://en.wikipedia.org/wiki/Graph_database</u>

- Storage and Basic Operators
 - Neo4j (an open source graph database),
 InfiniteGraph, VertexDB, ...
- Distributed Graph Processing (mostly inmemory-only)
 - Google's Pregel, GraphLab, …

The Graph Analytics Industry

- Status of Practice
 - Graph data in many industries
 - Graph analytics are powerful and can bring great business values/insights
 - Graph analytics not utilized enough in enterprises due to lack of available platforms/tools (except leading tech companies which have high caliber in house engineering teams and resources)

Graphs and MapReduce

- Graph algorithms typically involve:
 - Performing computations at each node: based on node features, edge features, and local link structure
 - Propagating computations: "traversing" the graph
- Key questions:
 - How do you represent graph data in MapReduce?
 - How do you traverse a graph in MapReduce?

Representing Graphs

- Two common representations
 - Adjacency matrix
 - Adjacency list

Adjacency Matrices

• Represent a graph as an $n \times n$ square matrix M

$$-n = |V|$$

 $-M_{ij} = 1$ means a link from node *i* to *j*

	1	2	3	4
1	0	1	0	1
2	1	0	1	1
3	1	0	0	0
4	1	0	1	0

Adjacency Matrices: Critique

- Advantages:
 - Amenable to mathematical manipulation
 - Iteration over rows and columns corresponds to computations on out-links and in-links
- Disadvantages:
 - Lots of zeros for sparse matrices
 - Lots of wasted space

Adjacency Lists

 Take adjacency matrices... and throw away all the zeros

	1	2	3	4
1	0	1	0	1
2	1	0	1	1
3	1	0	0	0
4	1	0	1	0

1:2,4 2: 1, 3, 4 3: 1 4:1,3

Adjacency Lists: Critique

- Advantages:
 - Much more compact representation
 - Easy to compute over out-links
- Disadvantages:
 - Much more difficult to compute over in-links

Parallel Breadth-First Search

Single Source Shortest Path

 Problem: find shortest path from a source node to one or more target nodes

- "shortest" might also mean lowest weight or cost

• First, a refresher: Dijkstra's algorithm

Example from CLR

Example from CLR

Example from CLR

Example from CLR

Single Source Shortest Path

- Problem: find shortest path from a source node to one or more target nodes
 - "shortest" might also mean lowest weight or cost
- On a single machine: Dijkstra's algorithm
- MapReduce: Parallel Breadth-First Search (BFS)
 - Consider simplest case of equal edge weights first
 - Solution to the problem can be defined inductively

Finding the Shortest Path

- Here's the intuition:
 - Define: b is reachable from a if b is in the adjacency list of a
 - DISTANCETO(s) = 0
 - For all nodes p reachable from s: DISTANCETO(p) = 1
 - For all nodes *n* reachable from some other set of nodes *M*: DISTANCETO(*n*) = $1 + \min_{m \in M} \text{DISTANCETO}(m)$

Finding the Shortest Path

Visualizing Parallel BFS

From Intuition to Algorithm

- Data representation:
 - Key: node *n*
 - Value:

d (distance from start), adjacency list (list of nodes reachable from n)

– Initialization:

for all nodes except the start node, $d = \infty$.

From Intuition to Algorithm

- Mapper:
 - $-\forall m \in adjacency list: emit (m, d + 1)$
- Sort/Shuffle
 - Groups distances by reachable nodes
- Reducer:
 - Selects the minimum distance path for each reachable node
 - Additional bookkeeping needed to keep track of the actual path

Multiple Iterations Needed

- Each MapReduce iteration advances the "known frontier" by one hop
 - Subsequent iterations include more and more reachable nodes as frontier expands
 - Multiple iterations are needed to explore entire graph
- Preserving graph structure:
 - Problem: Where did the adjacency list go?
 - Solution: mapper emits (n, adjacency list) as well

BFS Pseudo-Code

1:	class MAPPER				
2:	method MAP(nid n , node N)				
3:	$d \leftarrow N.\text{Distance}$				
4:	Emit(nid n, N)	\triangleright Pass along graph structure			
5:	for all nodeid $m \in N$. ADJACENCYLIST do				
6:	Emit(nid $m, d+1$)	\triangleright Emit distances to reachable nodes			
1:	class Reducer				
2:	2: method REDUCE(nid $m, [d_1, d_2, \ldots]$)				
3:	$d_{min} \leftarrow \infty$				
4:	$M \leftarrow \emptyset$				
5:	for all $d \in \text{counts} [d_1, d_2, \ldots]$	do			
6:	if $IsNode(d)$ then				
7:	$M \leftarrow d$	\triangleright Recover graph structure			
8:	else if $d < d_{min}$ then	\triangleright Look for shorter distance			
9:	$d_{min} \leftarrow d$				
10:	$M.DISTANCE \leftarrow d_{min}$	\triangleright Update shortest distance			
11:	$\operatorname{EMIT}(\operatorname{nid} m, \operatorname{node} M)$				

Stopping Criterion

- How many iterations are needed in parallel BFS (equal edge weight case)?
- Convince yourself: when a node is first "discovered", we've found the shortest path
- Now answer the question...

– Six degrees of separation?

 Practicalities of implementation in MapReduce
Weighted Edges

- Now add positive weights to the edges
 Why can't edge weights be negative?
- Simple change: adjacency list now includes a weight *w* for each edge

– In mapper, emit $(m, d + w_p)$ instead of (m, d + 1) for each node m

• That's it?

Stopping Criterion

- How many iterations are needed in parallel BFS (positive edge weight case)?
- Convince yourself: when a node is first "discovered", we've found the shortest path Not true!

Additional Complexities

search frontier

How many iterations are required to discover the shortest distances to all nodes from n_1 ?

Stopping Criterion

- How many iterations are needed in parallel BFS (positive edge weight case)?
- Practicalities of implementation in MapReduce

Comparison to Dijkstra

• Dijkstra's algorithm is more efficient

At any step it only pursues edges from the minimum-cost path inside the frontier

- MapReduce explores all paths in parallel
 - Lots of "waste"
 - Useful work is only done at the "frontier"
- Why can't we do better using MapReduce?

Implementation on Hadoop

http://goo.gl/TEoU4

Graphs and MapReduce

- Generic recipe:
 - Represent graphs as adjacency lists
 - Perform local computations in mapper
 - Pass along partial results via out-links, keyed by destination node
 - Perform aggregation in reducer on in-links to a node
 - Iterate until convergence: controlled by external "driver"
 - Don't forget to pass the graph structure between iterations

Random Walks over the Web

- Random surfer model:
 - User starts at a random Web page
 - User randomly clicks on links, surfing from page to page
- PageRank
 - Characterizes the amount of time spent on any given page
 - Mathematically, a probability distribution over pages

Random Walks over the Web

- PageRank captures the notion of page importance
 - Correspondence to human intuition?
 - One of thousands of features used in Web search
 - Note: query-independent

PageRank: Simplified

PageRank: Simplified

• Given page x with in-links $t_1...t_n$, where -C(t) is the out-degree of t

$$PR(x) = \sum_{i=1}^{n} \frac{PR(t_i)}{C(t_i)}$$

Example: the Web in 1839

Simulating a Random Walk

- Start with the vector v = [1,1,...,1] representing the idea that each Web page is given one unit of *importance*.
- Repeatedly apply the matrix *M* to **v**, allowing the importance to flow like a random walk.
- Limit exists, but about 50 iterations is sufficient to estimate final distribution.

Example: the Web in 1839

- Equations $\mathbf{v} = M \mathbf{v}$:
 - y = y/2 + a/2a = y/2 + mm = a/2

У	1	1	5/4	9/8		6/5
a =	1	3/2	1	11/8	•••	6/5
m	1	1/2	3/4	1/2		3/5

Solving the Equations

- Because there are no constant terms, these 3 equations in 3 unknowns do not have a unique solution.
- Add in the fact that y + a + m = 3 to solve.
- In Web-sized examples, we cannot solve by Gaussian elimination, but we need to use the power method (= iterative solution).

Computing PageRank

- Properties of PageRank
 - Can be computed iteratively
 - Effects at each iteration are local

Computing PageRank

- Sketch of algorithm:
 - Start with seed PR_i values
 - Each page distributes its PR_i "credit" to all of its out-links
 - Each page adds up the "credits" from all of its in-links to compute PR_{i+1}
 - Iterate until the values converge

Sample PageRank Iterations

Iteration 1

Sample PageRank Iterations

Iteration 2

PageRank in MapReduce

PageRank Pseudo-Code

```
1: class MAPPER
        method MAP(nid n, node N)
 2:
           p \leftarrow N.PAGERANK/|N.ADJACENCYLIST|
 3:
           EMIT(nid n, N)
 4:
                                                        \triangleright Pass along graph structure
           for all nodeid m \in N. ADJACENCYLIST do
 5:
               EMIT(nid m, p)
                                               \triangleright Pass PageRank mass to neighbors
 6:
 1: class Reducer.
        method REDUCE(nid m, [p_1, p_2, \ldots])
 2:
           M \leftarrow \emptyset
 3:
           for all p \in \text{counts } [p_1, p_2, \ldots] do
 4:
               if IsNODE(p) then
 5:
                   M \leftarrow p
                                                           \triangleright Recover graph structure
 6:
               else
 7:
                                         \triangleright Sum incoming PageRank contributions
 8:
                   s \leftarrow s + p
           M.PAGERANK \leftarrow s
9:
           EMIT(nid m, node M)
10:
```

Real-World Problems

• Some pages are "dead ends" (no out-links).

Such a page causes importance to leak out.

- Some other (groups of) pages are *spider traps* (all out-links are within the group).
 - Eventually spider traps absorb all importance.

Microsoft becomes a dead end

Microsoft becomes a dead end

- Equations $\mathbf{v} = M \mathbf{v}$:
 - y = y/2 + a/2a = y/2m = a/2

У		1	1	3/4	5/8		0
a	=	1	1/2	1/2	3/8	• • •	0
m		1	1/2	1/4	1/4		0

Microsoft becomes a spider trap

Microsoft becomes a spider trap

- Equations $\mathbf{v} = M \mathbf{v}$:
 - y = y/2 + a/2a = y/2m = a/2 + m

y11
$$3/4$$
 $5/8$ 0a =1 $1/2$ $1/2$ $3/8$...0m1 $3/2$ $7/4$ 23

Google's Solution

- "Tax" each page a fixed percentage at each iteration.
- Add the same constant to all pages.
- Models a random walk with a fixed probability of going to a random place next.

Example: with 20% Tax

• Equations v = 0.8(M v) + 0.2:

$$y = 0.8(y/2 + a/2) + 0.2$$

$$a = 0.8(y/2) + 0.2$$

$$m = 0.8(a/2 + m) + 0.2$$

y11.000.840.7767/11a =10.600.600.536
$$\dots$$
5/11m11.401.561.68821/11

PageRank: Complete

- Two additional complexities
 - What is the proper treatment of dangling nodes (i.e., nodes with no out-links)?
 - How do we factor in the random jump factor?

PageRank: Complete

- Solution:
 - Second pass to redistribute "missing PageRank mass" and account for random jumps

$$p' = \alpha \left(\frac{1}{N}\right) + (1 - \alpha) \left(\frac{m}{N} + p\right)$$

- *p* is PageRank value from before,
 p' is updated PageRank value
- *N* is the total number of nodes in the graph
- *m* is the missing PageRank mass

PageRank Convergence

- Alternative convergence criteria
 - Iterate until PageRank values don't change
 - Iterate until PageRank rankings don't change
 - Fixed number of iterations
- Convergence for web graphs?

Beyond PageRank

- Link structure is important for web search
 - PageRank is one of many link analysis algorithms: HITS, SALSA, etc.
 - Used with thousands of other features in ranking...
- Adversarial nature of web search
 - Link spamming
 - Spider traps
 - Keyword stuffing

— ...

Efficient Graph Algorithms

- Sparse vs. Dense Graphs
- Graph Topologies

Figure from: Newman, M. E. J. (2005) "Power laws, Pareto distributions and Zipf's law." Contemporary Physics 46:323–351.

Local Aggregation

- Use combiners!
 - In-mapper combining design pattern also applicable
- Maximize opportunities for local aggregation
 Simple tricks: sorting the dataset in specific ways
Take Home Messages

- Graph Problems and Representations
- Parallel Breadth-First Search
- PageRank: Simplified and Complete