
Data Management
in the Cloud

Dell Zhang

Birkbeck, University of London

2018/19

Cloud Computing

Data Management in
Today’s Organisations

Big Data Analysis

• Peta-scale datasets are everywhere:
– Facebook: 2.5PB of user data + 15TB/day (4/2009)

– eBay: 6.5PB of user data + 50TB/day (5/2009)

– …

• A lot of these datasets are (mostly) structured
– Query logs

– Point-of-sale records

– User data (e.g., demographics)

– …

Big Data Analysis

• How do we perform data analysis at scale?

– Relational databases (RDBMS)

– MapReduce (Hadoop)

RDBMS vs MapReduce

• Relational databases

– Multipurpose

• transactions & analysis

• batch & interactive

– Data integrity via ACID transactions

– Lots of tools in software ecosystem

• for ingesting, reporting, etc.

– Supports SQL (and SQL integration, e.g., JDBC)

– Automatic SQL query optimization

Source: O’Reilly Blog post by Joseph Hellerstein (11/19/2008)

RDBMS vs MapReduce

• MapReduce (Hadoop):

– Designed for large clusters, fault tolerant

– Data is accessed in “native format”

– Supports many query languages

– Programmers retain control over performance

– Open source

Source: O’Reilly Blog post by Joseph Hellerstein (11/19/2008)

Database Workloads

• Online Transaction Processing (OLTP)
– Typical applications:

• e-commerce, banking, airline reservations

– User facing:
• real-time, low latency, highly-concurrent

– Tasks:
• relatively small set of “standard” transactional queries

– Data access pattern:
• random reads, updates, writes (involving relatively

small amounts of data)

Database Workloads

• Online Analytical Processing (OLAP)
– Typical applications:

• business intelligence, data mining

– Back-end processing:
• batch workloads, less concurrency

– Tasks:
• complex analytical queries, often ad hoc

– Data access pattern:
• table scans, large amounts of data involved per query

One Database or Two?

• Downsides of co-existing OLTP and OLAP
workloads
– Poor memory management

– Conflicting data access patterns

– Variable latency

• Solution: separate databases
– OLTP database for user-facing transactions

– OLAP database for data warehousing

• How do we connect the two?

OLTP/OLAP Architecture

OLTP OLAP

ETL
(Extract, Transform, and Load)

OLTP/OLAP Integration

• Extract-Transform-Load (ETL)

– Extract records from OLTP database

– Transform records

• clean data, check integrity, aggregate, etc.

– Load records into OLAP database

OLTP/OLAP Integration

• OLTP database for user-facing transactions

– Retain records of all activity

– Periodic ETL (e.g., nightly)

• OLAP database for data warehousing

– Business intelligence

• reporting, ad hoc queries, data mining, etc.

– Feedback to improve OLTP services

Business Intelligence

• Premise: more data leads to better business
decisions

– Periodic reporting as well as ad hoc queries

– Analysts, not programmers

• Importance of tools and dashboards

Business Intelligence

• Examples:
– Slicing-and-dicing activity by different dimensions

to better understand the marketplace

– Analyzing log data to improve OLTP experience

– Analyzing log data to better optimize ad
placement

– Analyzing purchasing trends for better supply-
chain management

– Mining for correlations between otherwise
unrelated activities

OLTP/OLAP Architecture: Hadoop?

OLTP OLAP

ETL
(Extract, Transform, and Load)

OLTP/OLAP/Hadoop Architecture

OLTP OLAP

ETL
(Extract, Transform, and Load)

Hadoop

ETL Bottleneck

• Reporting is often a nightly task:
– ETL is often slow: why?

– What happens if processing 24 hours of data takes
longer than 24 hours?

ETL Bottleneck

• Hadoop is perfect:
– Most likely, you already have some data

warehousing solution

– Ingestion is limited by the speed of HDFS

– Scales out with more nodes

– Massively parallel

– Ability to use any processing tool

– Much cheaper than parallel databases

– ETL is a batch process anyway!

MapReduce Algorithms for
Processing Relational and Matrix Data

Working Scenario

• Two tables:
– User demographics (gender, age, income, etc.)

– User page visits (URL, time spent, etc.)

• Analyses we might want to perform:
– Statistics on demographic characteristics

– Statistics on page visits

– Statistics on page visits by URL

– Statistics on page visits by demographic
characteristic

Relational Algebra

• Primitives

– Projection ()

– Selection ()

– Cartesian product ()

– Set union ()

– Set difference (−)

– Rename ()

– …

Relational Algebra

• Other operations

– Join (⋈)

– Group by… aggregation

– …



Projection

R1

R2

R3

R4

R5

R1

R2

R3

R4

R5

Projection in MapReduce

• Easy!

– Map over tuples, emit new tuples with
appropriate attributes

– No reducers

• unless for regrouping or resorting tuples

– Alternatively: perform in reducer, after some
other processing

Projection in MapReduce

• Basically limited by HDFS streaming speeds

– Speed of encoding/decoding tuples becomes
important

– Relational databases take advantage of
compression

– Semi-structured data? No problem!

Selection

R1



R2

R3

R4

R5

R1

R3

Selection in MapReduce

• Easy!

– Map over tuples, emit only tuples that meet
criteria

– No reducers

• unless for regrouping or resorting tuples

– Alternatively: perform in reducer, after some
other processing

Selection in MapReduce

• Basically limited by HDFS streaming speeds

– Speed of encoding/decoding tuples becomes
important

– Relational databases take advantage of
compression

– Semi-structured data? No problem!

Group by… Aggregation

• What is the average time spent per URL?

• In SQL:

– SELECT url, AVG(time) FROM visits GROUP BY url

• In MapReduce:

– Map over tuples, emit time, keyed by url

– Framework automatically groups values by keys

– Compute average in reducer

– Optimize with combiners

Relational Joins
R1

R2

R3

R4

S1

S2

S3

S4

R1 S2

R2 S4

R3 S1

R4 S3

Natural Join: Example

sid bid day

22 101 10/10/96

58 103 11/12/96

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

SR

sid sname rating age bid day

22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

R S =

Types of Relationships

One-to-OneOne-to-ManyMany-to-Many

Join Algorithms in MapReduce

• Reduce-side join

• Map-side join

• In-memory join

– Striped variant

– Memcached variant

Reduce-side Join

• Basic idea: group by join key

– Map over both sets of tuples

– Emit tuple as value with join key as the
intermediate key

– Execution framework brings together tuples
sharing the same key

– Perform actual join in reducer

– Similar to a “sort-merge join” in database
terminology

Reduce-side Join

• Two variants

– 1-to-1 joins

– 1-to-many and many-to-many joins

Reduce-side Join: 1-to-1

R1

R4

S2

S3

R1

R4

S2

S3

keys values

Map

R1

R4

S2

S3

keys values

Reduce

Note: no guarantee if R is going to come first or S

Reduce-side Join: 1-to-many

R1

S2

S3

R1

S2

S3

S9

keys values

Map

R1 S2

keys values

Reduce

S9

S3 …

Reduce-side Join: 1-to-many

R1

keys values

In reducer…

S2

S3

S9

R4

S3

S7

New key encountered: hold in memory

Cross with records from other set

New key encountered: hold in memory

Cross with records from other set

Value-to-Key Conversion

Reduce-side Join: many-to-many

R1

keys values

In reducer…

S2

S3

S9

Hold in memory

Cross with records from other set

R5

R8

Map-side Join: Basic Idea

Assume two datasets are sorted by the join key:

R1

R2

R3

R4

S1

S2

S3

S4

A sequential scan through both datasets to join
(called a “merge join” in database terminology)

Map-side Join: Parallel Scans

• If datasets are sorted by join key, join can be
accomplished by a scan over both datasets

• How can we accomplish this in parallel?

– Partition and sort both datasets in the same
manner

Map-side Join: Parallel Scans

• In MapReduce:

– Map over one dataset, read from other
corresponding partition

– No reducers necessary

• unless to repartition or resort

• Consistently partitioned datasets: realistic to
expect?

In-Memory Join

• Basic idea: load one dataset into memory,
stream over other dataset

– Works if R << S and R fits into memory

– Called a “hash join” in database terminology

In-Memory Join

• MapReduce implementation

– Distribute R to all nodes

– Map over S, each mapper loads R in memory,
hashed by join key

– For every tuple in S, look up join key in R

– No reducers

• unless for regrouping or resorting tuples

In-Memory Join: Variants

• Striped variant:

– R too big to fit into memory?

– Divide R into R1, R2, R3, … s.t. each Rn fits into
memory

– Perform in-memory join: n, Rn ⋈ S

– Take the union of all join results

In-Memory Join: Variants

• Memcached join:

– Load R into memcached

– Replace in-memory hash lookup with memcached
lookup

Memcached

Database layer:
800 eight-core Linux servers running MySQL (40 TB user data)

Caching servers:
15 million requests per second, 95% handled by memcache (15 TB of RAM)

Source: Technology Review (July/August, 2008)

Memcached Join

• Capacity and Scalability?

– Memcached capacity >> RAM of individual node

– Memcached scales out with cluster

• Latency?

– Memcached is fast (basically, speed of network)

– Batch requests to amortize latency costs

Source: See tech report by Lin et al. (2009)

Which join to use?

• In-memory join >
Map-side join >
Reduce-side join

– Why?

• Limitations of each?

– In-memory join: memory

– Map-side join: sort order and partitioning

– Reduce-side join: general purpose

Processing Relational Data

• Summary: MapReduce algorithms for
processing relational data

– Group by, sorting, partitioning are handled
automatically by shuffle/sort in MapReduce

– Selection, projection, and other computations
(e.g., aggregation), are performed either in
mapper or reducer

– Multiple strategies for relational joins

Processing Relational Data

• Complex operations require multiple
MapReduce jobs

– Example: top 10 URLs in terms of average time
spent

– Opportunities for automatic optimisation

Matrix-Vector Multiplication

• Suppose we have an n×n matrix M, whose
element in row i and column j is denoted mij .

• Suppose we also have a vector v of length n,
whose jth element is vj .

• Then the matrix-vector product is the vector x
of length n, whose ith element xi is given by

Matrix-Vector Multiplication

Matrix-Vector Multiplication

• If v can fit in main memory

Matrix-Vector Multiplication

• If v can fit in main memory:

– Each Map task will operate on a chunk of the
matrix M.

– At the compute node executing a Map task, v is
first read (in its entirety) into main memory, and
subsequently it will be available to all applications
of the Map function performed at this Map task.

Matrix-Vector Multiplication

• If v can fit in main memory

– The Map Function: For each matrix element mij it
produces the key-value pair (i, mijvj).

– The Reduce Function: It simply sums all the values
associated with a given key i, thus the result will
be a pair (i, xi).

Matrix-Vector Multiplication

• If v cannot fit in main memory

– To avoid excessive disk access, we can divide the
matrix into vertical stripes of equal width and
divide the vector into an equal number of
horizontal stripes, of the same height, so that the
portion of the vector in one stripe can fit into
main memory at a compute node.

Matrix-Vector Multiplication

• If v cannot fit in main memory

Matrix-Vector Multiplication

• If v cannot fit in main memory

– The ith stripe of the matrix multiplies only
components from the ith stripe of the vector.

– Thus, we can divide the matrix into one file for
each stripe, and do the same for the vector.

– Each Map task is assigned a chunk from one of the
stripes of the matrix and gets the entire
corresponding stripe of the vector.

Matrix Multiplication

• If M is a matrix with element mij in row i and
column j,
and N is a matrix with element njk in row j and
column k,
then the product P = MN is the matrix P with
element pik in row i and column k, where

Matrix Multiplication

Matrix Multiplication

• A matrix = a relation with three attributes:
the row number, the column number, and
the value at that row and column.

– M➔ relation M(I, J, V), with tuples (i, j, mij)

– N➔ relation N(J, K, W), with tuples (j, k, njk)

• The product MN is almost a natural join (on
attribute J) followed by grouping and
aggregation.

Matrix Multiplication

• With two MapReduce steps (1/2)
– The Map Function: For each matrix element mij ,

produce the key-value pair (j, (M, i, mij)). Likewise,
for each matrix element njk, produce the key-value
pair (j, (N, k, njk)) .

– The Reduce Function: For each key j, examine its
list of associated values. For each value from M,
say (M, i, mij), and each value from N, say (N, k,
njk), produce a key-value pair ((i, k), mijnjk).

Matrix Multiplication

• With two MapReduce steps (2/2)
– The Map Function: This function is just the

identity.

– The Reduce Function: For each key (i, k), produce
the sum of the list of values associated with this
key. The result is a pair ((i, k), v), where v is the
value of the element in row i and column k of the
matrix P = MN .

Matrix Multiplication

• With one MapReduce step
– The Map Function: For each element mij of M,

produce all the key-value pairs ((i, k), (M, j, mij))
for k = 1, 2, …, up to the number of columns of N.
Similarly, for each element njk of N, produce all the
key-value pairs ((i, k), (N, j, njk)) for i = 1, 2, …, up
to the number of rows of M.

Matrix Multiplication

• With one MapReduce step
– The Reduce Function: Each key (i, k) has an

associated list with all the values (M, j, mij) and
(N, j, njk), for all possible values of j. To connect
the two values on the list that have the same
value of j for each j, we can sort by j the values
beginning with M and the values beginning with
N, in separate lists. The jth values on each list
must have their third components mij and njk

extracted and multiplied. Then, these products are
summed and the paired with (i, k) in the output.

Evolving Roles for
Relational Database and MapReduce

Need for High-Level Languages

• Hadoop is great for large-data processing!

– But writing Java programs for everything is
verbose and slow

– Analysts don’t want to (or can’t) write Java

• Solution: develop higher-level data processing
languages

– Hive: HQL is like SQL

– Pig: Pig Latin is a bit like Perl

Hive and Pig

• Common idea:

– Provide higher-level language to facilitate large-
data processing

– Higher-level language “compiles down” to Hadoop
jobs

Hive

• Hive: data warehousing application in Hadoop

– Query language is HQL, variant of SQL

– Tables stored on HDFS as flat files

– Developed by Facebook, now open source

Hive: Example

• Hive looks similar to an SQL database

• Relational join on two tables:

– Table of word counts from Shakespeare collection

– Table of word counts from the Bible

Hive: Example

Source: Material drawn from Cloudera training VM

the 25848 62394
I 23031 8854
and 19671 38985
to 18038 13526
of 16700 34654
a 14170 8057
you 12702 2720
my 11297 4135
in 10797 12445
is 8882 6884

SELECT s.word, s.freq, k.freq
FROM shakespeare s JOIN bible k ON (s.word = k.word)
WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

Hive: Behind the Scenes
SELECT s.word, s.freq, k.freq
FROM shakespeare s JOIN bible k ON (s.word = k.word)
WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF shakespeare s) (TOK_TABREF bible k) (= (. (TOK_TABLE_OR_COL s) word)
(. (TOK_TABLE_OR_COL k) word)))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT
(TOK_SELEXPR (. (TOK_TABLE_OR_COL s) word)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq)) (TOK_SELEXPR (.
(TOK_TABLE_OR_COL k) freq))) (TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq) 1) (>= (. (TOK_TABLE_OR_COL k)
freq) 1))) (TOK_ORDERBY (TOK_TABSORTCOLNAMEDESC (. (TOK_TABLE_OR_COL s) freq))) (TOK_LIMIT 10)))

(one or more of MapReduce jobs)

(Abstract Syntax Tree)

STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-2 depends on stages: Stage-1
Stage-0 is a root stage

STAGE PLANS:
Stage: Stage-1
Map Reduce
Alias -> Map Operator Tree:
s
TableScan
alias: s
Filter Operator
predicate:

expr: (freq >= 1)
type: boolean

Reduce Output Operator
key expressions:

expr: word
type: string

sort order: +
Map-reduce partition columns:

expr: word
type: string

tag: 0
value expressions:

expr: freq
type: int
expr: word
type: string

k
TableScan
alias: k
Filter Operator
predicate:

expr: (freq >= 1)
type: boolean

Reduce Output Operator
key expressions:

expr: word
type: string

sort order: +
Map-reduce partition columns:

expr: word
type: string

tag: 1
value expressions:

expr: freq
type: int

Reduce Operator Tree:
Join Operator
condition map:

Inner Join 0 to 1
condition expressions:
0 {VALUE._col0} {VALUE._col1}
1 {VALUE._col0}

outputColumnNames: _col0, _col1, _col2
Filter Operator
predicate:

expr: ((_col0 >= 1) and (_col2 >= 1))
type: boolean

Select Operator
expressions:

expr: _col1
type: string
expr: _col0
type: int
expr: _col2
type: int

outputColumnNames: _col0, _col1, _col2
File Output Operator
compressed: false
GlobalTableId: 0
table:

input format: org.apache.hadoop.mapred.SequenceFileInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat

Stage: Stage-2
Map Reduce
Alias -> Map Operator Tree:
hdfs://localhost:8022/tmp/hive-training/364214370/10002

Reduce Output Operator
key expressions:

expr: _col1
type: int

sort order: -
tag: -1
value expressions:

expr: _col0
type: string
expr: _col1
type: int
expr: _col2
type: int

Reduce Operator Tree:
Extract
Limit
File Output Operator
compressed: false
GlobalTableId: 0
table:

input format: org.apache.hadoop.mapred.TextInputFormat
output format:

org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

Stage: Stage-0
Fetch Operator
limit: 10

Pig

• Pig: large-scale data processing system

– Scripts are written in Pig Latin, a dataflow
language

– Developed by Yahoo!, now open source

– Roughly 1/3 of all Yahoo! internal jobs

Pig: Example

User Url Time

Amy cnn.com 8:00

Amy bbc.com 10:00

Amy flickr.com 10:05

Fred cnn.com 12:00

Url Category PageRank

cnn.com News 0.9

bbc.com News 0.8

flickr.com Photos 0.7

espn.com Sports 0.9

Visits Url Info

Task: Find the top 10 most visited pages in each category

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig Query Plan

Load Visits

Group by url

Foreach url
generate count Load Url Info

Join on url

Group by
category

Foreach category
generate top10(urls)

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig Script
visits = load ‘/data/visits’ as (user, url, time);

gVisits = group visits by url;

visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);

visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;

topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig Script in Hadoop

Load Visits

Group by url

Foreach url
generate count Load Url Info

Join on url

Group by
category

Foreach category
generate top10(urls)

Map1

Reduce1
Map2

Reduce2

Map3

Reduce3

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Parallel Databases  MapReduce

• Lots of synergy between parallel databases
and MapReduce

• Communities have much to learn from each
other

• Bottom line: use the right tool for the job!

Take Home Messages

• Data management in today’s organisations

– Where does MapReduce fit in?

• MapReduce algorithms for processing
relational and matrix data

– How do I perform a join, etc.?

• Evolving roles of relational databases and
MapReduce

– What’s in store for the future?

