
Information Retrieval
in the Cloud

Dell Zhang

Birkbeck, University of London

2018/19

Cloud Computing

First, nomenclature…

• Information Retrieval (IR)

– Focus on textual information (= text/document
retrieval)

– Other possibilities include image, video, music, …

First, nomenclature…

• What do we search?

– Generically, “collections”

– Less-frequently used, “corpora”

• What do we find?

– Generically, “documents”

– Even though we may be referring to web pages,
PDFs, PowerPoint slides, paragraphs, etc.

Information Retrieval Cycle

Source
Selection

Search

Query

Selection

Results

Examination

Documents

Delivery

Information

Query
Formulation

Resource

source reselection

System discovery
Vocabulary discovery
Concept discovery
Document discovery

The Central Problem in Search

Searcher Author

Concepts Concepts

Query Terms Document Terms

Do these represent the same concepts?

“tragic love story” “fateful star-crossed romance”

Abstract IR Architecture

DocumentsQuery

Hits

Representation
Function

Representation
Function

Query Representation Document Representation

Comparison
Function Index

offlineonline

How do we represent text?

• “Bag of words”

– Treat all the words in a document as index terms

– Assign a “weight” to each term based on
“importance”
(or, in simplest case, presence/absence of word)

– Disregard order, structure, meaning, etc. of the
words

– Simple, yet effective!

How do we represent text?

• Assumptions

– Term occurrence is independent

– Document relevance is independent

– “Words” are well-defined

What’s a word?
天主教教宗若望保祿二世因感冒再度住進醫
院。這是他今年第二度因同樣的病因住院。

الناطق باسم-وقال مارك ريجيف

إن شارون قبل-الخارجية الإسرائيلية

الدعوة وسيقوم للمرة الأولى بزيارة

تونس، التي كانت لفترة طويلة المقر

1982الرسمي لمنظمة التحرير الفلسطينية بعد خروجها من لبنان عام .

Выступая в Мещанском суде Москвы экс-глава ЮКОСа заявил
не совершал ничего противозаконного, в чем обвиняет его
генпрокуратура России.

भारत सरकार नेआर्थिक सरे्वक्षण में र्र्वत्तीय र्वर्ि 2005-06 में सात
फीसदी र्र्वकास दर हार्सलकरने काआकलन र्कया हैऔरकर

सुधार पर ज़ोर र्दया है

日米連合で台頭中国に対処…アーミテージ前副長官提言

조재영기자= 서울시는 25일이명박시장이 `행정중심복합도시''
건설안에대해 `군대라도동원해막고싶은심정''이라고말했다는
일부언론의보도를부인했다.

Sample Document
McDonald's slims down spuds
Fast-food chain to reduce certain types of fat
in its french fries with new cooking oil.

NEW YORK (CNN/Money) - McDonald's Corp. is
cutting the amount of "bad" fat in its french fries
nearly in half, the fast-food chain said Tuesday as it
moves to make all its fried menu items healthier.

But does that mean the popular shoestring fries won't
taste the same? The company says no. "It's a win-win
for our customers because they are getting the same
great french-fry taste along with an even healthier
nutrition profile," said Mike Roberts, president of
McDonald's USA.

But others are not so sure. McDonald's will not
specifically discuss the kind of oil it plans to use, but
at least one nutrition expert says playing with the
formula could mean a different taste.

Shares of Oak Brook, Ill.-based McDonald's (MCD:
down $0.54 to $23.22, Research, Estimates) were
lower Tuesday afternoon. It was unclear Tuesday
whether competitors Burger King and Wendy's
International (WEN: down $0.80 to $34.91, Research,
Estimates) would follow suit. Neither company could
immediately be reached for comment.

…

14 × McDonalds

12 × fat

11 × fries

8 × new

7 × french

6 × company, said, nutrition

5 × food, oil, percent, reduce,
taste, Tuesday

…

“Bag of Words”

Counting Words…

Documents

Inverted
Index

Bag of

Words

case folding, tokenization, stopword removal, stemming

syntax, semantics, world knowledge, etc.

Boolean Retrieval

• Users express queries as a Boolean expression

– AND, OR, NOT

– Can be arbitrarily nested

• Retrieval is based on the notion of sets

– Any given query divides the collection into two
sets: retrieved, not-retrieved

– Pure Boolean systems do not define an ordering of
the results

Inverted Index: Boolean Retrieval

one fish, two fish

Doc 1

red fish, blue fish

Doc 2

cat in the hat

Doc 3

1 2 3 4

green eggs and ham

Doc 4

1

1

1

1

1

1

1

1

1

blue

cat

egg

fish

green

ham

hat

one

3

4

1

4

4

3

2

1

blue

cat

egg

fish

green

ham

hat

one

2

1red

1two

2red

1two

Boolean Retrieval

• To execute a Boolean query:

– Build query syntax tree

– For each clause, look up postings

– Traverse postings and apply Boolean operator

(blue AND fish) OR ham

blue fish

ANDham

OR

1

2blue

fish 2

Boolean Retrieval

• Efficiency analysis

– Postings traversal is linear (assuming sorted
postings)

– Start with shortest posting first

Strengths and Weaknesses

• Strengths
– Precise

• If you know the right strategies

• If you have an idea of what you’re looking for

– Implementations are fast and efficient

Strengths and Weaknesses

• Weaknesses
– Users must learn Boolean logic

– Boolean logic insufficient to capture the richness
of language

– No control over size of result set: either too many
hits or none

– When do you stop reading? All documents in the
result set are considered “equally good”

– What about partial matches? Documents that
“don’t quite match” the query may be useful also

Ranked Retrieval

• Order documents by how likely they are to be
relevant to the information need

– Estimate relevance(q, di)

– Sort documents by relevance

– Display sorted results

• User model

– Present hits one screen at a time, best results first

– At any point, users can decide to stop looking

Ranked Retrieval

• How do we estimate relevance?

– Assume document is relevant if it has a lot of
query terms

– Replace relevance(q, di) with sim(q, di)

– Compute similarity of vector representations

Vector Space Model

Assumption:
Documents that are “close together” in vector space “talk
about” the same things

t1

d2

d1

d3

d4

d5

t3

t2

θ

φ

Therefore, retrieve documents based on how close the
document is to the query (i.e., similarity ~ “closeness”)

Similarity Metric

• Use “angle” between the vectors:

• Or, more generally, inner products:





==

==


=
n

i ki

n

i ji

n

i kiji

kj

kj

kj

ww

ww

dd

dd
ddsim

1

2

,1

2

,

1 ,,
),(


kj

kj

dd

dd





=)cos(

 =
==

n

i kijikjkj wwddddsim
1 ,,),(



Term Weighting

• Term weights consist of two components

– Local: how important is the term in this
document?

– Global: how important is the term in the
collection?

Term Weighting

• Here’s the intuition:

– Local: Terms that appear often in a document
should get high weights

– Global: Terms that appear in many documents
should get low weights

• How do we capture this mathematically?

– Local: Term Frequency (TF)

– Global: Inverse Document Frequency (IDF)

TF.IDF Term Weighting

i

jiji
n

N
w logtf ,, =

jiw ,

ji,tf

N

in

weight assigned to term i in document j

number of occurrence of term i in document j

number of documents in entire collection

number of documents with term i

Inverted Index: TF.IDF

1 2 3 4

tf
df

2

1

1

2

1

1

1

1

1

1

1

2

1

2

1

1

1

1

1

1

1

1

1

1

1

1

2

1

blue

cat

egg

fish

green

ham

hat

one

1

1

1

1

1

1

2

1

blue

cat

egg

fish

green

ham

hat

one

1 1red

1 1two

1red

1two

3

4

1

4

4

3

2

1

2

2

1

one fish, two fish

Doc 1

red fish, blue fish

Doc 2

cat in the hat

Doc 3

green eggs and ham

Doc 4

Positional Indexes

• Store term position in postings

• Supports richer queries (e.g., proximity)

• Naturally, leads to larger indexes…

Inverted Index: Positional Information

1 2 3 4

tf
df

[2,4]

[3]

[2,4]

[2]

[1]

[1]

[3]

[2]

[1]

[1]

[3]

2

1

1

2

1

1

1

1

1

1

1

2

1

2

1

1

1

1

1

1

1

1

1

1

1

1

2

1

blue

cat

egg

fish

green

ham

hat

one

1

1

1

1

1

1

2

1

blue

cat

egg

fish

green

ham

hat

one

1 1red

1 1two

1red

1two

3

4

1

4

4

3

2

1

2

2

1

one fish, two fish

Doc 1

red fish, blue fish

Doc 2

cat in the hat

Doc 3

green eggs and ham

Doc 4

Retrieval in a Nutshell

• Look up postings lists corresponding to query
terms

• Traverse postings for each query term

• Store partial query-document scores in
accumulators

• Select top k results to return

Retrieval: Document-at-a-Time

• Evaluate documents one at a time (score all
query terms)

fish 2 1 3 1 2 31 9 21 34 35 80 …

blue 2 1 19 21 35 …

Accumulators
(e.g. priority queue)

Document score in top k?

Yes: Insert document score, extract-min if queue too large
No: Do nothing

Retrieval: Document-at-a-Time

• Tradeoffs

– Small memory footprint (good)

– Must read through all postings (bad), but skipping
possible

– More disk seeks (bad), but blocking possible

Retrieval: Query-At-A-Time

• Evaluate documents one query term at a time

– Usually, starting from most rare term (often with
tf-sorted postings)

fish 2 1 3 1 2 31 9 21 34 35 80 …

blue 2 1 19 21 35 …

Accumulators
(e.g., hash)

Score{q=x}(doc n) = s

Retrieval: Query-At-A-Time

• Tradeoffs

– Early termination heuristics (good)

– Large memory footprint (bad), but filtering
heuristics possible

MapReduce it?

• The indexing problem

– Scalability is critical

– Must be relatively fast, but need not be real time

– Fundamentally a batch operation

– Incremental updates may or may not be important

– For the web, crawling is a challenge in itself

MapReduce it?

• The retrieval problem

– Must have sub-second response time

– For the web, only need relatively few results

MapReduce: Index Construction

• Map over all documents

– Emit term as key, (docno, tf) as value

– Emit other info as necessary (e.g., term position)

• Sort/shuffle: group postings by term

• Reduce

– Gather and sort the postings (e.g., by docno or tf)

– Write postings to disk

• MapReduce does all the heavy lifting!

1

Inverted Indexing with MapReduce

one fish, two fish
Doc 1

red fish, blue fish
Doc 2

cat in the hat
Doc 3

2red

1

1

2

1

1

2 2

1
1

1

1

1

1

1

2

1one

1two

1fish

2red

2blue

2fish

3cat

3hat

1fish 2

1one
1two

3cat
2blue

3hat

Shuffle and Sort: aggregate values by keys

Map

Reduce

Inverted Indexing: Pseudo-Code

Positional Indexes

[2,4]

[1]

[3]

[1]

[2]

[1]

[1]

[3]

[2]

[3]

[2,4]

[1]

[2,4]

[2,4]

[1]

[3]

1

1

2

1

1

2

1

1

2 2

1
1

1

1

1

1

1one

1two

1fish

2red

2blue

2fish

3cat

3hat

1fish 2

1one
1two

2red

3cat
2blue

3hat

Shuffle and Sort: aggregate values by keys

one fish, two fish
Doc 1

red fish, blue fish
Doc 2

cat in the hat
Doc 3

Map

Reduce

Inverted Indexing: Pseudo-Code

Scalability Bottleneck

• Initial implementation:
terms as keys, postings as values

– Reducers must buffer all postings associated with
key (to sort)

– What if we run out of memory to buffer postings?

• Uh oh!

[2,4]

[9]

[1,8,22]

[23]

[8,41]

[2,9,76]

[2,4]

[9]

[1,8,22]

[23]

[8,41]

[2,9,76]

2

1

3

1

2

3

Another Try…

1fish

9

21

(values)(key)

34

35

80

1fish

9

21

(values)(keys)

34

35

80

fish

fish

fish

fish

fish

How is this different?

• Let the framework do the sorting
• Term frequency implicitly stored
• Directly write postings to disk!

Where have we seen this before?

Inverted Indexing: Pseudo-Code

Retrieval with MapReduce?

• MapReduce is fundamentally batch-oriented

– Optimized for throughput, not latency

– Startup of mappers and reducers is expensive

• MapReduce is not suitable for real-time
queries!

– Use separate infrastructure for retrieval…

Important Ideas

• Partitioning (for scalability)

• Replication (for redundancy)

• Caching (for speed)

• Routing (for load balancing)

The rest is just details!

Term vs. Document Partitioning

…

T

D

T1

T2

T3

D

T…

D1 D2 D3

Term
Partitioning

Document
Partitioning

(Distributed Lucene)

http://katta.sourceforge.net/

Take Home Messages

• Introduction to Information Retrieval

• Basics of indexing and retrieval

• Inverted indexing in MapReduce

• Retrieval at scale

