Cloud Computing

Information Retrieval
in the Cloud

Dell Zhang
Birkbeck, University of London
2018/19

First, nomenclature...

* |Information Retrieval (IR)

— Focus on textual information (= text/document
retrieval)

— Other possibilities include image, video, music, ...

First, nomenclature...

* What do we search?
— Generically, “collections”
— Less-frequently used, “corpora”

* What do we find?

— Generically, “documents”

— Even though we may be referring to web pages,
PDFs, PowerPoint slides, paragraphs, etc.

Information Retrieval Cycle

Source
Selection Resource
A
Query
Formulation Nluery

Search

Nesults

Selection
System discovery

Vocabulary discovery |

Nocu ments

Concept discovery \

Document discovery

Examination

source reselection

anormation

Delivery

The Central Problem in Search

Searcher

>

Concepts Concepts
Query Terms < > Document Terms
“tragic love story” “fateful star-crossed romance”

Do these represent the same concepts?

Abstract IR Architecture

IR Documents ﬂ on
| lqocumen acquis! n
doc wiin
e Cra
| online | offline |eg W
Representation Representation

Function Function

Query Representation Document Representation

Comparison
Function

Index

Hits

How do we represent text?

“Bag of words”
— Treat all the words in a document as index terms

— Assign a “weight” to each term based on
“importance”
(or, in simplest case, presence/absence of word)

— Disregard order, structure, meaning, etc. of the
words

— Simple, yet effective!

How do we represent text?

* Assumptions
— Term occurrence is independent
— Document relevance is independent
— “Words” are well-defined

) 4
What’s a word?
%I@ﬂ%ﬁ%&%ﬁ:ﬂ@@%ﬁrﬁﬁi& anly LY - Gy & jla JU g
5. SEMSEE_SEREIOMEER. s 0,150 - il fe gl
Bk (g¥) Ball o sheng 350l
el ALy gha B 81 il Al ¢l g
1982 ale (L (pa Lga g Ay Apihaiulil) gy atl) daliial e I,

BbicTynaa 8 MewaHckom cyae Mockbl 3Kc-rnasa FOKOCa 3aasun
He coBepLUan HUYEro NPOTUMBO3aKOHHOrO, B YeM 06BUHAET ero

reHnpokKyparypa Poccuu.
YRd RPR A AP gderor 7 fa<ha a9 2005-06 & A1
BRI e R B BT 3MTh A fpaT g R B
YR R AR fear
AXESTEmEBPEI=YWN.. 7 — S T—CliRIEEIRS
ZIE 7|Xf= ME2A =25 O|HHEE A o
d-detof Cljslf L2t S ol B4

LR AES HE S FIMC

Sample Document

McDonald's slims down spuds

Fast-food chain to reduce certain types of fat
in its french fries with new cooking oil.

NEW YORK (CNN/Money) - McDonald's Corp. is
cutting the amount of "bad" fat in its french fries
nearly in half, the fast-food chain said Tuesday as it
moves to make all its fried menu items healthier.

But does that mean the popular shoestring fries won't
taste the same? The company says no. "It's a win-win
for our customers because they are getting the same
great french-fry taste along with an even healthier
nutrition profile," said Mike Roberts, president of
McDonald's USA.

But others are not so sure. McDonald's will not
specifically discuss the kind of oil it plans to use, but
at least one nutrition expert says playing with the
formula could mean a different taste.

Shares of Oak Brook, lll.-based McDonald's (MCD:
down $0.54 to $23.22, Research, Estimates) were
lower Tuesday afternoon. It was unclear Tuesday
whether competitors Burger King and Wendy's
International (WEN: down $0.80 to $34.91, Research,
Estimates) would follow suit. Neither company could
immediately be reached for comment.

“Bag of Words”

14 x McDonalds

12 x fat

11 x fries

8 X hew

7 x french

6 x company, said, nutrition

5 x food, oil, percent, reduce,
taste, Tuesday

Counting Words...

Em/tﬂ

\ 4

Bag of

Words %, sexacs, worlcxwledge, etc.

case folding, tokenization, stopword removal, stemming

Boolean Retrieval

* Users express queries as a Boolean expression
— AND, OR, NOT
— Can be arbitrarily nested

e Retrieval is based on the notion of sets

— Any given query divides the collection into two
sets: retrieved, not-retrieved

— Pure Boolean systems do not define an ordering of
the results

Inverted Index: Boolean Retrieval

Doc1 Doc 2 Doc 3 Doc4

one fish, two fish red fish, blue fish cat in the hat green eggs and ham
1 2 3 4

blue 1 blue —> 2

cat 1 cat —» 3

egg 1 egg 4

fish 11 fish —> 1> 2

green 1 » green —» 4

ham 1 ham — 4

hat 1 hat — 3

one 1 one —» 1

red 1 red —> 2

two 1 two — 1

Boolean Retrieval

* To execute a Boolean query:

— Build query syntax tree oR

(blue AND fish) OR ham » ham AND
/\

blue fish

— For each clause, look up postings

blue —2
fish —> 12

— Traverse postings and apply Boolean operator

Boolean Retrieval

e Efficiency analysis

— Postings traversal is linear (assuming sorted
postings)

— Start with shortest posting first

Strengths and Weaknesses

e Strengths

— Precise
* If you know the right strategies
* If you have an idea of what you’re looking for

— Implementations are fast and efficient

Strengths and Weaknesses

 Weaknesses
— Users must learn Boolean logic

— Boolean logic insufficient to capture the richness
of language

— No control over size of result set: either too many
hits or none

— When do you stop reading? All documents in the
result set are considered “equally good”

— What about partial matches? Documents that
“don’t quite match” the query may be useful also

Ranked Retrieval

 Order documents by how likely they are to be
relevant to the information need

— Estimate relevance(q, d)
— Sort documents by relevance
— Display sorted results

e User model
— Present hits one screen at a time, best results first
— At any point, users can decide to stop looking

Ranked Retrieval

* How do we estimate relevance?

— Assume document is relevant if it has a lot of
qguery terms

— Replace relevance(q, d;) with sim(q, d))
— Compute similarity of vector representations

Vector Space Model

ty

Assumption:
Documents that are “close together” in vector space “talk
about” the same things

Therefore, retrieve documents based on how close the
document is to the query (i.e., similarity ~ “closeness”)

Similarity Metric

e Use ”angle” between the vectors:

—»

cos(f) =

dH\

d;-d
sim(d ., d,) k Z-l i ik

]

* Or, more generally, inner products:

sim(d,,d,)=d,-d = w

1 1,] |k

Term Weighting

* Term weights consist of two components

— Local: how important is the term in this
document?

— Global: how important is the term in the
collection?

Term Weighting

e Here’s the intuition:

— Local: Terms that appear often in a document
should get high weights

— Global: Terms that appear in many documents
should get low weights

* How do we capture this mathematically?
— Local: Term Frequency (TF)
— Global: Inverse Document Frequency (IDF)

TF.IDF Term Weighting

N

w, ; =tf; ;-log—
n.

Wi,j weight assigned to term j in document j

tfi,j number of occurrence of term i in document
N number of documents in entire collection

N, number of documents with term i

Doc1

Inverted Index: TF.IDF

one fish, two fish

blue
cat
egs
fish
green
ham
hat
one
red

two

Doc 2

red fish, blue fish

tf
1 2 3 4 df
1 1
1 1
1|1
2 2 2
1|1
1|1
1 1
1 1
1 1
1 1

Doc 3
cat in the hat

=)

blue
cat
egs
fish
green
ham
hat
one
red

two

Doc 4
green eggs and ham

Positional Indexes

* Store term position in postings
e Supports richer queries (e.g., proximity)
* Naturally, leads to larger indexes...

Inverted Index: Positional Information

Doc1 Doc 2 Doc 3 Doc 4
one fish, two fish red fish, blue fish cat in the hat green eggs and ham
tf
1 2 3 4 df
blue 1 1 blue = 1 —> 2|18
cat 1 1 cat -1 —> 3| 1|1
egg 1|1 egg - 141 @
fish 2|2 2 fish > 2 > 1|2 24— 2|2 [24]
green 1 1 » green -1 —>4 1|1
ham 11 ham = 1 —> 4|18
hat 1 1 hat -1 —>3|1]|@
one 1 1 one - 1—>1 1|1
red 1 1 red > 12 |1 @
two 1 1 two »1—>1 |1 B

Retrieval in a Nutshell

Look up postings lists corresponding to query
terms

Traverse postings for each query term

Store partial query-document scores in
accumulators

Select top k results to return

Retrieval: Document-at-a-Time

* Evaluate documents one at a time (score all
query terms)

blue 9 [2||21/1 35|1

fish 1 /29 1/21/3//34/1//35|2| 803

] Document score in top k?

Yes: Insert document score, extract-min if queue too large

Accumulators
No: Do nothing

(e.g. priority queue)

Retrieval: Document-at-a-Time

* Tradeoffs

— Small memory footprint (good)

— Must read through all postings (bad), but skipping
possible

— More disk seeks (bad), but blocking possible

Retrieval: Query-At-A-Time

* Evaluate documents one query term at a time

— Usually, starting from most rare term (often with
tf-sorted postings)

blue

Accumulators]

t t t Score{q=x}(docn>=s{ S ey
t t t t t t

fish

Retrieval: Query-At-A-Time

* Tradeoffs

— Early termination heuristics (good)

— Large memory footprint (bad), but filtering
heuristics possible

MapReduce it?

* The indexing problem
— Scalability is critical
— Must be relatively fast, but need not be real time
— Fundamentally a batch operation
— Incremental updates may or may not be important
— For the web, crawling is a challenge in itself

Perfect for I\/IapReduce'

MapReduce it?

* The retrieval problem
— Must have sub-second response time
— For the web, only need relatively few results

Uh... not so good...

MapReduce: Index Construction

Map over all documents
— Emit term as key, (docno, tf) as value
— Emit other info as necessary (e.g., term position)

Sort/shuffle: group postings by term
Reduce

— Gather and sort the postings (e.g., by docno or tf)
— Write postings to disk

MapReduce does all the heavy lifting!

Inverted Indexing with MapReduce

Doc1l Doc 2 Doc 3
one fish, two fish red fish, blue fish cat in the hat
one |11 red 211 cat 31
Ma p two |11 blue |21 hat 31
fish 12 fish 2 2

Shuffle and Sort: aggregate values by keys

cat 31
blue |2 |1
Reduce fish 1 2|22
hat 31
one |11
two |11
red 21

Inverted Indexing: Pseudo-Code

1: class MAPPER

2 procedure MAP(docid n,doc d)

3: H + new ASSOCIATIVEARRAY

4: for all term ¢t € doc d do

5 H{t} «+ H{t} +1

6 for all term t € H do

7 EMIT(term t, posting (n, H{t}))

class REDUCER
procedure REDUCE(term ¢, postings [(n1, f1), (n2, f2)...])
P + new LIST

for all posting (a, f) € postings [(n1, fi1), (n2, f2)...] do
APPEND(P, (a, f))

SORT(P)
EMIT(term ¢, postings P)

A

Positional Indexes

Doc1 Doc 2 Doc3
one fish, two fish red fish, blue fish cat in the hat
one |1 /(1] [red 2 1| [cat 31| [
Map two 1 1] 38 blue |21 | [3 hat 31| 2
fish 12|24 fish 212 124

Shuffle and Sort: aggregate values by keys

cat 31| [1

Reduce fish |12 rall 2|24

one 11| 1

blue |2 |1/ 3]

hat 31| 2

two 1/ 1] @

red 2 11| [

Inverted Indexing: Pseudo-Code

1: class MAPPER

2 procedure MAP(docid n,doc d)

3: H + new ASSOCIATIVEARRAY

4: for all term ¢t € doc d do

5 H{t} « H{t} +1

6 for all term t € H do

7 EMIT(term t, posting (n, H{t}))

class REDUCER
procedure REDUCE(term ¢, postings [(n1, f1), (n2, f2)...])
P + new LIST
‘fnr j;\.l.l.p.ﬁs.tm.g.(a;,_f_) € pnstmgs [(n1, f1), (n2, f2)...] do
s~ APPEND(P, (a, f)) ™ o\
‘<. Sorr(P) / 15 the PrO

~==7 What®
EMITUE'I’HI‘E‘ “postings P)

I

A

Scalability Bottleneck

* |nitial implementation:
terms as keys, postings as values

— Reducers must buffer all postings associated with
key (to sort)

— What if we run out of memory to buffer postings?

 Uh ohl

(key)
fish

Another Try...

(keys) (values)
fish| 1 [2.4]

fish| 9 [9]

(values)

1 | 2| [24]

34 | 1] 23]

21 | 3 | [18,22]
35 | 2 | [8,41]
80 | 3 | [2,9,76]
9 |[1]19]

:: fish| 21 [1,8,22]
fish| 34 [23]

fish| 35 [8,41]

fish| 80 [2,9,76]

How is this different?

* Let the framework do the sorting
* Term frequency implicitly stored
* Directly write postings to disk!

Where have we seen this before?

Inverted Indexing: Pseudo-Code

1: class MAPPER

2 method MAP(docid n,doc d)

3: H < new ASSOCIATIVEARRAY
4: for all term t € doc d do

5 H{t} « H{t} +1

6 for all term t € H do

7 EMIT(tuple (¢, n),tf H{t})

1: class REDUCER

2: method INITIALIZE

3: tp,-ev +— 0

4 P + new POSTINGSLIST

5: method REDUCE(tuple (t,n),tf [f])
6: if t # tprew A tprev # 0 then

T: EMIT(term t,,.,, postings P)
8: P.RESET()

9: P.App({(n, f))
10: tp,,.ev +— 1
11: method CLOSE
12: EMIT(term ¢, postings P)

Retrieval with MapReduce?

 MapReduce is fundamentally batch-oriented
— Optimized for throughput, not latency
— Startup of mappers and reducers is expensive
 MapReduce is not suitable for real-time
gueries!

— Use separate infrastructure for retrieval...

Important ldeas

Partitioning (for scalability)
Replication (for redundancy)
Caching (for speed)

Routing (for load balancing)

The rest is just details!

Term vs. Document Partitioning

Term
Partitioning

o
N

Document
Partitioning

hadoop cluster or
single server

HDFS, NAS or shared

create index local filesystem

and copy to shared filesystem

.'

fail over

\
command line
management

(Distributed Lucene) assign download

shards / shards

server nodes in the
grid

multicast query

shard replication
(plug-able policy)

multicast query distributed ranking
plug-able selection
policy (custom load

balancing)

java client API
http://katta.sourceforge.net/)

Take Home Messages

Introduction to Information Retrieval
Basics of indexing and retrieval
Inverted indexing in MapReduce
Retrieval at scale

